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Abstract: Combining multiple biomarkers to provide predictive models with a greater discriminatory
ability is a discipline that has received attention in recent years. Choosing the probability threshold
that corresponds to the highest combined marker accuracy is key in disease diagnosis. The Youden
index is a statistical metric that provides an appropriate synthetic index for diagnostic accuracy and a
good criterion for choosing a cut-off point to dichotomize a biomarker. In this study, we present a new
stepwise algorithm for linearly combining continuous biomarkers to maximize the Youden index.
To investigate the performance of our algorithm, we analyzed a wide range of simulated scenarios
and compared its performance with that of five other linear combination methods in the literature
(a stepwise approach introduced by Yin and Tian, the min-max approach, logistic regression, a
parametric approach under multivariate normality and a non-parametric kernel smoothing approach).
The obtained results show that our proposed stepwise approach showed similar results to other
algorithms in normal simulated scenarios and outperforms all other algorithms in non-normal
simulated scenarios. In scenarios of biomarkers with the same means and a different covariance
matrix for the diseased and non-diseased population, the min-max approach outperforms the rest.
The methods were also applied on two real datasets (to discriminate Duchenne muscular dystrophy
and prostate cancer), whose results also showed a higher predictive ability in our algorithm in the
prostate cancer database.

Keywords: linear combination; stepwise algorithm; Youden index; biomarkers; diagnosis

MSC: 62H30; 62J12; 62P10

1. Introduction

In clinical practice, it is usual to obtain information on multiple biomarkers to diagnose
diseases. Combining them into a single biomarker is a widespread practice that often
provides better diagnostics than each of the biomarkers alone [1–6]. Although recent
studies have analyzed the diagnostic accuracy of built models in the presence of covariates
and binary biomarkers [7–9], the combination of continuous biomarkers should provide a
better discrimination ability. Linear combination methods have been widely developed
and applied for both binary and multi-class classification problems in medicine [10,11] for
their ease of interpretation and good performance. The accuracy of a diagnostic marker is
usually analyzed using statistics derived from the receiver operating characteristic (ROC)
curve, such as sensitivity and specificity, the area or partial area under the ROC curve or
the Youden index, which allow for its discriminatory capacity to be measured.
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The formulation of algorithms to estimate binary classification models that maximize
the area under the ROC curve is a widely developed line of research. Su and Liu [12], using
a discriminant function analysis, provided the best linear combination that maximizes area
under ROC curve (AUC) under the multivariate normality assumption. Pepe and Thomp-
son [13] proposed a distribution-free approach to estimate the linear model that maximizes
AUC based on the Mann–Whitney U statistic [14]. This formulation has given rise to the
development of non-parametric and semiparametric approaches in the construction of
classifiers under optimality criteria derived from the ROC curve.

The process that Pepe and Thompson proposed lies in a discrete optimization that is
based on a grid search over the parameter vector for a set of selected values. However, this
process requires a great computational effort when the number of biomarkers is greater
than or equal to three. In order to address the computational burden, various methods were
proposed. Liu et al. [15] developed a non-parametric min-max approach, reducing the prob-
lem to a linear combination of two markers (minimum and maximum of biomarker values).
Pepe et al. [13,16] also suggested the use of stepwise algorithms, where a new variable is
introduced into the model at each stage searching for the partial combination of variables
that maximizes AUC. Esteban et al. [17] implemented this approach, providing strategies
to handle ties that appear in the sequencing of partial optimizations. Kang et al. [10,18]
proposed a less computationally demanding stepwise approach based on a descending
order of the AUC values corresponding to the predictor variables.

Other authors have developed algorithms focused on optimizing other parameters
derived from the ROC curve. Liu et al. [19] analyzed the optimal linear of diagnostic
markers that maximize sensitivity over a range of specificity. Yin and Tian [20] analyzed the
joint inference on sensitivity and specificity at the optimal cut-off point associated with the
Youden index. More recently, Yu and Park [21], Yan et al. [22] and Ma et al. [23] explored
methods for the linear combination of multiple biomarkers that optimizes the pAUC.

The Youden index has also been used in different clinical studies and is both an
appropriate summary for making the diagnosis and a good criterion for choosing the best
cut-off point to dichotomize a biomarker [24]. The Youden index defines the effectiveness
of a biomarker, as it maximize the sum of the sensitivity and specificity when an equal
weight is given for both values [25]. Thus, the cut off point that simultaneously maximizes
the probability of correctly classifying positive and negative subjects or minimizes the
maximum of the misclassification error probability is chosen. It ranges from 0 to 1, where a
0 value indicates that the biomarker is equally distributed on the positive and the negative
populations, whereas a value of 1 indicates completely separate distributions [26].

Based on the stepwise approach of Kang et al. [18], Yin and Tian [27] carried out a
study aimed at optimizing the Youden index. These authors also analyzed the optimization
of the AUC and Youden index simultaneously and presented both a parametric and a
non-parametric approach to estimate the joint confidence region for the AUC and the
Youden index [28]. However, the usual procedure is to estimate models that maximize
either the AUC or the Youden index separately.

Unlike the AUC, the study and exploration of methods that optimize the Youden
index has not received enough attention in the literature. The aim of our study was to
propose a new stepwise distribution-free approach to find the optimal linear combination
of continuous biomarkers based on maximizing the Youden index. In order to analyze its
performance, our method was compared with five other linear methods from the literature
(the Yin and Yan stepwise approach, the min-max method, logistic regression, a parametric
approach under multivariate normality and a non-parametric kernel smoothing approach)
adapted to optimize the Youden index, both in simulated data and in real datasets.

2. Materials and Methods

Firstly, we introduce the non-parametric formulation of Pepe et al. [13,16] and their
suggestions for the estimation of the parameter vector of the linear model, which are the
basis for the formulation and estimation of our proposed algorithm and of the analyzed
algorithms. Then, we introduce our proposed method and five existing models in the
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literature adapted to optimize the Youden index to be compared: stepwise algorithm
proposed by Yin and Tian, min-max approach, logistic regression, parametric method
under multivariate normality and non-parametric kernel smoothing method. Finally, the
simulated scenarios, as well as the real datasets considered, are described. All methods
were programmed and applied using free software R [29]. In particular, a library in R
(SLModels) [30] openly available to the scientific community was created that incorporates
our proposed stepwise algorithm, among other linear algorithms.

Suppose that p continuous biomakers are measured for n1 individuals with disease:
X1 = (X11, . . . , X1n1) and for n2 individuals without it: X2 = (X21, . . . , X2n2). Xki denotes
the vector of p biomarkers for the ith individual of group k = 1,2 (disease and non-disease)
and Xkij the jth biomarker (j = 1, . . . , p) for the ith individual of group k = 1,2.

Given β = (β1, . . . , βp)T as the parameter vector, the linear combination for the disease
and non-disease group is represented as follows:

Yk = βTXk, k = 1, 2 (1)

The Youden index (J) is defined as

J = maxc{Sensitivity(c) + Speci f icity(c)− 1}
= maxc{FY2(c)− FY1(c)}

(2)

where c denotes the cut-off point and FYk(c) = P(Yk ≤ c) the cumulative distribution
function of random variable Yk, k = 1, 2.

Denoting by cβ = {c : maxc
(

FY2(c)− FY1(c)
)
} as the optimal cut-off point and substi-

tuting (1) in (2), the empirical estimate of Youden index ( Ĵβ) is obtained as follows:

Ĵβ = F̂Y2(ĉβ)− F̂Y1(ĉβ)

=
∑n2

i=1 I
(

βTX2i ≤ ĉβ

)
n2

−
∑n1

i=1 I
(

βTX1i ≤ ĉβ

)
n1

(3)

where I denotes the indicator function.

2.1. Background: Non Parametric Approach

By contrast to Su and Liu [12], who provided best linear model under multivariate
normality, Pepe and Thompson [13] proposed a non-parametric approach to estimate the
linear model that maximizes the AUC evaluated by the Mann–Whitney U statistic,

ÂUC =
∑n1

i=1 ∑n2
j=1 I(L(X1i) > L(X2j)) +

1
2 I(L(X1i) = L(X2j))

n1 · n2
(4)

considering the linear model formulation as follows:

L(X) = X1 + β2X2 + · · ·+ βpXp (5)

where p denotes the number of biomarkers, Xi the biomarker i ∈ [1, . . . , p] and βi the
parameter to be estimated. In order to be able to address the computational burden,
Pepe et al. [13,16] suggest, for the estimation of the parameter βi, a discrete optimization
that is based on a grid search over 201 equally spaced values in the interval [−1,1]. The
justification for choosing this range lies in the property of the ROC curve that is invariant
to any monotonic transformation. Consider, for simplicity, the linear combination of
biomarkers Xi + βXj. Then, due to the invariant property of the ROC curve for any
monotonic transformation, dividing by the β value does not change the value of the
sensitivity and specificity pair. That is, estimating Xi + βXj for β > 1 and β < −1 is
equivalent to estimating αXi + Xj for α = 1

β ∈ [−1, 1] and, therefore, all possible values of
β ∈ R are covered.
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However, the search for the best linear combination in (5) is still computationally
costly when p ≥ 3. To solve this problem, Pepe et al. [13,16] suggested using stepwise
algorithms by turning a computationally intractable problem into an approachable problem
of single-parameter estimation (linear combination of two variables) p− 1 times.

2.2. Our Proposed Stepwise Approach

Our proposed stepwise linear modelling (SLM) is an adaptation of the one proposed
by Esteban et al. [17] for Youden index maximization. The general idea of this approach, as
Pepe et al. [13,16] suggest, is to follow a step by step algorithm that includes a new variable
in each step, selecting the best combination (or combinations) of two variables, in terms of
maximizing the Youden index. The following steps explain the algorithm in detail:

1. Firstly, given p biomarkers, the linear combination of the two biomarkers that maxi-
mizes the Youden index is chosen,

Ĵβ2 =
∑n2

i=1 I
(
X2ij + β2X2ik ≤ ĉβ2

)
n2

−
∑n1

i=1 I
(
X1ij + β2X1ik ≤ ĉβ2

)
n1

β2 ∈ [−1, 1], ∀j 6= k = 1, . . . , p (6)

using empirical search proposed by Pepe et al.: for each biomarker pair, for each value
β of the 201 ∈ [−1, 1], the optimal cut-off point (ĉβ) that maximizes Youden index is
selected. The final value chosen (β̂) is the one with the highest Youden ( Ĵβ) obtained;

2. Once the pair of biomarkers and the parameter that maximizes the Youden index
are chosen, this linear combination is considered as a single variable. For simplicity,
suppose the linear combination Xki1 + β2Xki2. Then, in the same way as point 1, the
biomarker Xkij (of the remaining p − 2s) and the β3 parameter whose new linear
combination maximize the Youden index are selected:

Ĵβ3 =
∑

n2
i=1 I((X2i1+β2X2i2)+β3X2ij≤ĉβ3)

n2
− ∑

n1
i=1 I((X1i1+β2X1i2)+β3X1ij≤ĉβ3)

n1
β3 ∈ [−1, 1], ∀j = 3, . . . , p (7)

Ĵβ3 =
∑

n2
i=1 I(β3(X2i1+β2X2i2)+X2ij≤ĉβ3)

n2
− ∑

n1
i=1 I(β3(X1i1+β2X1i2)+X1ij≤ĉβ3)

n1
β3 ∈ [−1, 1], ∀j = 3, . . . , p (8)

Specifically, either the combination (7) or (8) that maximizes the Youden index Ĵβ3
is selected. This new linear combination will be considered as a new variable in the
next step;

3. The process (2) is repeated for the rest of biomarkers (i.e., p− 3 times) until all of them
are included in the model.

At each step, the maximum Youden index can be reached for more than one optimal
linear combination. Our proposed algorithm considers each of these combinations and
generates a branch to be explored by the algorithm. That is, it considers all ties at each
stage and drags them forward until they are broken in the next steps (whenever possible)
or until the end of the algorithm.

2.3. Yin and Tian’s Stepwise Approach

The stepwise non-parametric approach with downward direction (SWD) introduced by
Yin and Tian [27] is an adaptation of the step-down approach proposed by Kang et al. [10,18]
for the Youden index maximization. As the stepwise approach previously described, the
general idea is to introduce a new variable at each stage and find the combination of two
variables that maximizes the Youden index using the empirical search for combination
parameters proposed by Pepe et al. [13,16].

Unlike our proposed stepwise approach, where, in each step, a search is performed
not only for the parameter β but also for the new biomarker that obtains the best linear
combination, the approach proposed by Yin and Tian sets the biomarker that is entered in
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each step, based on the values ordered from largest to smallest of the empirical Youden
index, obtained for each biomarker as follows:

Ĵj =
∑n2

i=1 I
(
X2ij ≤ ĉj

)
n2

−
∑n1

i=1 I
(
X1ij ≤ ĉj

)
n1

∀j = 1, . . . , p (9)

Therefore, the approach is reduced to choosing, in each step, the parameter β whose
linear combination achieves the highest Youden index. Another difference from our pro-
posed stepwise algorithm is that the Yin and Tian approach does not handle ties but chooses
only one combination from among the optimal ones at each step.

Therefore, the approach presented by Yin and Tian could be considered as a simpler
particular case of our proposed stepwise approach, where the new biomarkers of each stage
are fixed from the beginning and where the ties are not considered.

2.4. Min-Max Approach

The non-parametric min-max approach (MM) was proposed by Liu et al. [15]. The
aim was to reduce the order of the linear combination by considering only two markers
(maximum value and the minimum value of all the p biomarkers) and estimate only the
parameter β of the linear combination that maximizes the AUC. Under this idea, the
min-max approach can be adapted to maximize the Youden index with an expression as
follows:

Ĵβ =
∑n2

i=1 I
(
X2i,max + βX2i,min ≤ ĉβ

)
n2

−
∑n1

i=1 I
(
X1i,max + βX1i,min ≤ ĉβ

)
n1

(10)

where Xki,max = max1≤j≤p

(
Xkij

)
and Xki,min = min1≤j≤p

(
Xkij

)
for k = 1, 2 and each

i = 1, . . . , nk, and β ∈ [−1, 1], following Pepe et al’s. [13,16] suggestion of the empirical
search for the optimal value of β.

2.5. Logistic Regression

The logistic regression [31] (LR) (or logit regression) is a statistical model that models
the probability of an event (disease or non-disease) given a set of independent variables
through the logistics function. Assuming that the set of predictive independent variables
for patient i is Xi = (Xi1, . . . , Xip)

T , the classification problem becomes the estimation of
the parameters β = (β0, β1, . . . , βp)T , such that:

P(Yi = 1|Xi) =
1

1 + e−βTXi

=
eβTXi

1 + eβTXi

(11)

and linear dependence:

log
P(Yi = 1|Xi)

1− P(Yi = 1|Xi)
= βTXi = β0 + β1Xi1 + · · ·+ βpXip ∀i = 1, . . . , n1 + n2 (12)

For the application of the logistic regression model, the R function glm() was used.

2.6. Parametric Approach under Multivariate Normality

The parametric approach to estimate the Youden index under multivariate normality
(MVN) is based on the results presented by Schisterman and Perkins [32].

Suppose Xk ∼ MVN(mk, Σk) and the single marker Yk ∼ N(µk, σ2
k ), the result of

linear combination is Yk = βTXk, where:

µk = βTmk, σk =
√

βTΣkβ (13)
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for k = 1, 2 (disease and non-disease groups, respectively).
The formula for the Youden index and the optimal cut-off point differs depending

on whether σ2
1 6= σ2

2 (i.e., Σ1 6= Σ2) or σ2
1 = σ2

2 (i.e., Σ1 = Σ2). Under the first scenario
(Σ1 6= Σ2), for Yk, the Youden index (Jβ) and the optimal cut-off point (cβ) are expressed
as follows:

Jβ = Φ
( cβ − µ2

σ2

)
−Φ

( cβ − µ1

σ1

)
, cβ =

µ1σ2
2 − µ2σ2

1 − σ1σ2

√
(µ2 − µ1)2 + (σ2

2 − σ2
1 ) ln σ2

2
σ2

1

σ2
2 − σ2

1

(14)

where Φ indicates the normal cumulative distribution function. Under the second one
(Σ1 = Σ2), the expressions are the following:

Jβ = 2Φ

µ1 − µ2

2
√

σ2
1

− 1, cβ =
µ1 + µ2

2 (15)

These formulations are also valid under Box–Cox-type transformations [33].
Note that the Youden index (Jβ) is a continuous differentiable function with respect to

the parameter vector β and its estimation ( Ĵβ) can be numerically optimized from quasi-
Newton algorithms. Specifically, the R package optimr() was used to estimate the parameter
vector β from a initial parameter vector.

2.7. Non-Parametric Kernel Smoothing Approach

When no distributional hypothesis can be assumed, empirical distribution functions
are often used, and their estimations can be performed using kernel-type approximations.
In particular, a non-parametric Kernel Smoothing approach (KS) was applied in our study,
whose estimation of the Youden index is as follows:

ĴKS
β = F̂KS

Y2
(ĉKS

β )− F̂KS
Y1

(ĉKS
β )

=
1
n2

n2

∑
i=1

Φ

(
ĉKS

β −Y2i

hY2

)
− 1

n1

n1

∑
i=1

Φ

(
ĉKS

β −Y1i

hY1

)

=
1
n2

n2

∑
i=1

Φ

(
ĉKS

β − βTX2i

hY2

)
− 1

n1

n1

∑
i=1

Φ

(
ĉKS

β − βTX1i

hY1

) (16)

where the kernel function Φ is the normal cumulative distribution function and the general-
purpose bandwidth hYk [34–37] is:

hYk = 0.9 min
{

SD(Yk), IQR(Yk)

1.34

}
n−0.2

k , for k = 1, 2,

where SD(Yk) and IQR(Yk) denote the standard deviation and the interquartile range of
the combined marker Yk, respectively.

Note that the Youden index ( Ĵβ) is a continuous differentiable function with respect
to the parameter vector β and cβ. As in the previous approach, the R package optimr()

was used to numerically optimize the Youden index JKS
β from an initial vector

(
β̂T , ĉKS

β

)T
.

Thus, the estimated parameter vector β can be obtained.

2.8. Simulations

A wide range of simulated scenarios were explored in order to compare the perfor-
mance of the algorithms. Four (p = 4) biomarkers were considered in each simulation
scenario. Different joint and marginal distributions were considered, ranging from normal
to non-normal distributions, with the aim of broadening the range for the evaluation and
comparison of methods beyond normality.
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A wide range of combinations were considered for the generation of simulated data
following normal distributions: biomarkers with equal or different means (i.e., differ-
ent capacity to discriminate between biomarkers) and independent or non-independent
biomarkers, with negative or positive correlations with low, medium and high intensity, as
well as the same and different covariances matrix for the group with disease and without
disease. For each scenario, 1000 random samples from the underlying distribution were
considered, with different sample sizes for the diseased and non-diseased population:
(n1, n2) = (10, 20), (30, 30), (50, 30), (50, 50), (100, 100), (500, 500). Each method was ap-
plied on each simulated dataset and the maximum Youden index for the optimal linear
combination of biomarkers was obtained.

In terms of the scenarios of normal distributions, the null vector is considered in all
scenarios as the mean vector of the non-diseased population (m2 = (0, 0, 0, 0)T). With
respect to the diseased population (m1), scenarios are explored with the same mean for each
biomarker, as well as with mean vectors with different values. As for the covariance matrix,
scenarios are analyzed with both the same covariance matrices for both populations and
with different covariance matrices. For simplicity, the variance of each biomarker is set to be
1 in all cases and, therefore, the covariances equal to the correlations. The same correlation
value for all pairs of biomarkers is assumed. Both positive and negative correlations
are considered. Concerning negative correlations, the values ρ = −0.3 and ρ = −0.1
are considered. Regarding positive correlations, four types of correlations are assumed
depending on the intensity: independence (ρ = 0.0), low (ρ = 0.3), medium (ρ = 0.5) and
high (ρ = 0.7). Specifically, the following covariance matrices (Σ1, Σ2 for diseased and non-
diseased population, respectively) are considered in the different scenarios: Σ1 = Σ2 = I
(independent biomarkers), Σ1 = Σ2 = 0.7·I + 0.3·J (low correlation), Σ1 = Σ2 = 0.5·I +
0.5·J (medium correlation), Σ1 = Σ2 = 0.3·I + 0.7·J (high correlation) and Σ1 = 0.3·I + 0.7·J,
Σ2 = 0.7·I + 0.3·J (different correlations), where I is the identity matrix and J a matrix of
all of them.

In terms of scenarios that do not follow a normal distribution, the following scenarios
were considered: simulated data with different marginal distributions (multivariate chi-
square/normal/gamma/exponential distributions via normal copula) and simulated data
following the multivariate log-normal skewed distribution. The latter simulated data were
generated from the normal scenario configurations and then exponentiated to obtain these
multivariate log-normal observations.

2.9. Application in Clinical Diagnosis Cases

The analyzed methods were also applied to two real data examples related to clinical
diagnosis cases. In particular, a Duchenne muscular dystrophy dataset and a prostate cancer
dataset were analyzed through their respective biomarkers. Duchenne Muscular Dystrophy
(DMD) is a progressive and recessive muscular disorder that is transmitted from a mother
to her children. Percy et al. [38] analyzed the effectiveness in detecting the following four
biomarkers of blood samples: serum creatine kinase (CK), haemopexin (H), pyruvate kinase
(PK) and lactate dehydrogenase (LDH). The available data contain complete information on
these four biomarkers of 67 women who are carriers of the progressive recessive disorder
DMD and 127 women who are not carriers.

Prostate cancer is the second most common cancer in males worldwide after lung
cancer [39] and it is therefore a matter of social and medical concern. The detection of
clinically significant prostate cancer (Gleason score ≥ 7) through the combination of clinical
characteristics and biomarkers has been an important line of study in recent years [40,41].
The data set used contains complete information on 71 people who were diagnosed with
clinically significant prostate cancer and 398 with non-significant prostate cancer in 2016
at Miguel Servet University Hospital (Zaragoza, Spain) on the following four biomarkers:
prostate-specific antigen (PSA), age, body mass index (BMI) and free PSA.
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2.10. Validation

To analyze the performance of the compared algorithms in prediction scenarios, we
validated built models for simulation and real data. For each scenario of simulated data,
we built 100 models using small (50) and large (500) sample sizes, and then we validated
these models by estimating the mean of the 100 Youden indexes calculated for new data
simulated using the same setting of parameters and sample sizes. For real data, a 10-fold
cross validation procedure was performed.

3. Results

This section first presents the results of the simulations for the training set. Then, the
results of simulated scenarios for the validation data are presented. Finally, for a specific
scenario, the time carried out in each of the methods is also presented in order to illustrate
the computational cost of each one of them.

3.1. Simulations

Tables 1–10 show the results of the performance of each algorithm for each simu-
lated data scenario. In particular, for each simulated dataset (1000 random samples), the
mean and standard deviation (SD) of the empirical estimates of the Youden index of each
biomarker are shown. In addition, for each method, the mean and standard deviation of the
maximum Youden indexes obtained in each of the 1000 samples, as well as the probability
of obtaining the highest Youden index, are presented. These results and conclusions drawn
in terms of performance in the simulated scenarios are presented below.

3.1.1. Normal Distributions. Different Means and Equal Positive Correlations for Diseased
and Non-Diseased Population

Tables 1–4 show the results obtained in the scenarios under multivariate normal
distribution with mean vectors m1 = (0.2, 0.5, 1.0, 0.7)T and m1 = (0.4, 1.0, 1.5, 1.2)T and
independent biomarkers, low correlations, medium correlations and high correlations,
respectively.

The results in Table 1 show that our proposed stepwise method outperforms the rest
of the methods in all scenarios and with a remarkable estimated probability of yielding
the largest Youden index of 0.5 or more in most of them. It is followed by Yin and Tian’s
stepwise approach and the non-parametric kernel smoothing approach, which perform
similarly in general. Logistic regression and the parametric approach under multivariate
normality perform comparably in general. The min-max approach is the one with the worst
results in such scenarios. The same conclusions are drawn from the results reported in
Table 2.
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Table 1. Normal distributions: Different means. Independence (Σ1 = Σ2 = I).

Mean (SD) Probability Greater than or Equal to Youden Index

Size
(n1 , n2) Mean (SD) Variables SLM SWD MM LR MVN KS SLM SWD MM LR MVN KS

m1 = (0.2, 0.5, 1.0, 0.7)T

(10, 20) x̄ = (0.2737, 0.3560, 0.5178, 0.4314) 0.7782 0.731 0.6352 0.6926 0.6937 0.7272 0.5962 0.1389 0.0588 0.0532 0.0355 0.1175
σ = (0.1357, 0.1395, 0.1421, 0.1457) (0.1022) (0.1104) (0.119) (0.1346) (0.1253) (0.1179)

(30, 30) x̄ = (0.2063, 0.3024, 0.4663, 0.3673) 0.6737 0.6402 0.5556 0.6057 0.6050 0.6395 0.6480 0.1350 0.0453 0.0221 0.0161 0.1335
σ = (0.0943, 0.0991, 0.0990, 0.1053) (0.0836) (0.0876) (0.0962) (0.0957) (0.0946) (0.0891)

(50, 30) x̄ = (0.1933, 0.2975, 0.4630, 0.3603) 0.6434 0.6278 0.5424 0.5895 0.5896 0.6203 0.5806 0.1756 0.0448 0.0179 0.0176 0.1636
σ = (0.0846, 0.0937, 0.0894, 0.0898) (0.0771) (0.0778) (0.0812) (0.0839) (0.0828) (0.0806)

(50, 50) x̄ = (0.1764, 0.2784, 0.4484, 0.3458) 0.6219 0.6005 0.5193 0.5693 0.5693 0.5998 0.6586 0.1428 0.0272 <0.01 0.0132 0.1495
σ = (0.0736, 0.0789, 0.0774, 0.0796) (0.0667) (0.0702) (0.0736) (0.0732) (0.0732) (0.0701)

(100, 100) x̄ = (0.1487, 0.2498, 0.4254, 0.3214) 0.5734 0.5623 0.4837 0.5412 0.5409 0.5620 0.6174 0.1543 0.0132 0.0171 0.0137 0.1844
σ = (0.0533, 0.0590, 0.0560, 0.0590) (0.0506) (0.051) (0.0526) (0.0538) (0.0537) (0.0528)

(500, 500) x̄ = (0.1062, 0.2185, 0.3991, 0.2925) 0.5213 0.5191 0.4447 0.5120 0.5119 0.5196 0.4545 0.1824 <0.01 0.0332 0.0317 0.2982
σ = (0.0257, 0.0282, 0.0274, 0.0280) (0.0257) (0.0257) (0.027) (0.0262) (0.0263) (0.0258)

m1 = (0.4, 1.0, 1.5, 1.2)T

(10, 20) x̄ = (0.3359, 0.5120, 0.6604, 0.5815) 0.9134 0.8783 0.8042 0.8771 0.8594 0.8786 0.4822 0.1128 0.0350 0.1913 0.0565 0.1221
σ = (0.1413, 0.1386, 0.1275, 0.1402) (0.074) (0.0834) (0.1013) (0.0158) (0.0958) (0.0886)

(30, 30) x̄ = (0.2699, 0.4695, 0.6172, 0.5299) 0.8488 0.8190 0.7463 0.8086 0.8044 0.8242 0.5826 0.1304 0.0319 0.0692 0.0420 0.1438
σ = (0.0989, 0.0988, 0.0911, 0.1019) (0.0645) (0.0690) (0.0787) (0.0778) (0.0750) (0.0719)

(50, 30) x̄ = (0.2586, 0.4636, 0.6133, 0.5218) 0.8310 0.8172 0.7400 0.8005 0.7960 0.8162 0.5270 0.1755 0.0372 0.0540 0.0362 0.1700
σ = (0.0905, 0.0926, 0.0810, 0.0854) (0.0598) (0.0621) (0.069) (0.0676) (0.0666) (0.0633)

(50, 50) x̄ = (0.2444, 0.4475, 0.6010, 0.5099) 0.8144 0.7972 0.7235 0.7840 0.7806 0.8007 0.5841 0.1403 0.0199 0.0436 0.0295 0.1826
σ = (0.0791, 0.0796, 0.0695, 0.0772) (0.0545) (0.0569) (0.0624) (0.0598) (0.0584) (0.0573)

(100, 100) x̄ = (0.2178, 0.4243, 0.5821, 0.4906) 0.7827 0.7728 0.6987 0.7620 0.7611 0.7749 0.5701 0.1690 <0.01 0.0262 0.0286 0.2036
σ = (0.0570, 0.0579, 0.0526, 0.0562) (0.04) (0.0412) (0.0456) (0.0423) (0.0423) (0.0412)

(500, 500) x̄ = (0.1809, 0.3997, 0.5604, 0.4673) 0.7483 0.7461 0.6692 0.7424 0.7422 0.7471 0.4667 0.1695 <0.01 0.0431 0.0359 0.2848
σ = (0.0271, 0.0272, 0.0255, 0.0260) (0.02) (0.0199) (0.0223) (0.0201) (0.0201) (0.0199)

Table 2. Normal distributions: Different means. Low correlation (Σ1 = Σ2 = 0.7·I + 0.3·J).

Mean (SD) Probability Greater than or Equal to Youden Index

Size
(n1 , n2) Mean (SD) Variables SLM SWD MM LR MVN KS SLM SWD MM LR MVN KS

m1 = (0.2, 0.5, 1.0, 0.7)T

(10, 20) x̄ = (0.2666, 0.3621, 0.5180, 0.4226) 0.7348 0.6811 0.5730 0.6380 0.6385 0.6755 0.6163 0.1309 0.0617 0.0404 0.0312 0.1195
σ = (0.1378, 0.1439, 0.1377, 0.1427) (0.1063) (0.1158) (0.1294) (0.1389) (0.1358) (0.1266)

(30, 30) x̄ = (0.2037, 0.3051, 0.4700, 0.3774) 0.6228 0.5873 0.4842 0.5472 0.5483 0.5844 0.6869 0.1276 0.0343 0.0103 0.0125 0.1284
σ = (0.0951, 0.1029, 0.1002 ,0.1004) (0.0848) (0.0896) (0.0948) (0.0994) (0.0982) (0.0939)

(50, 30) x̄ = (0.1963,0.2917,0.4606,0.3620) 0.5905 0.5701 0.4677 0.5278 0.5284 0.5628 0.6378 0.1491 0.0322 0.0151 0.0141 0.1517
σ = (0.0841, 0.0888, 0.0899, 0.0903) (0.0788) (0.0787) (0.0831) (0.0868) (0.0862) (0.0852)

(50, 50) x̄ = (0.1771, 0.2780, 0.4448, 0.3459) 0.5641 0.5380 0.4435 0.5030 0.5038 0.5354 0.7324 0.1176 0.0165 0.0123 0.0113 0.1098
σ = (0.0751, 0.0798, 0.0778, 0.0805) (0.0683) (0.0707) (0.0753) (0.0752) (0.0756) (0.0717)

(100, 100) x̄ = (0.1464, 0.2526, 0.4270, 0.3230) 0.5148 0.5012 0.4078 0.4770 0.4768 0.4984 0.6986 0.1268 <0.01 0.013 <0.01 0.1457
σ = (0.0515, 0.0593, 0.0580, 0.0591) (0.0546) (0.0550) (0.0542) (0.0584) (0.0585) (0.0563)

(500, 500) x̄ = (0.1063, 0.2178, 0.3980, 0.2923) 0.4524 0.449 0.3586 0.4404 0.4402 0.4488 0.5629 0.1693 <0.01 0.0234 0.0222 0.2221
σ = (0.0262, 0.0282, 0.0278, 0.0278) (0.0264) (0.0265) (0.0271) (0.0269) (0.0268) (0.0265)

m1 = (0.4, 1.0, 1.5, 1.2)T

(10, 20) x̄ = (0.3272, 0.5176, 0.6594, 0.5757) 0.8558 0.8128 0.7198 0.7941 0.7847 0.809 0.5515 0.1334 0.0565 0.1059 0.0445 0.1081
σ = (0.1436, 0.1440, 0.1291, 0.1388) (0.0907) (0.1001) (0.1174) (0.1256) (0.1137) (0.1056)

(30, 30) x̄ = (0.2685, 0.4690, 0.6182, 0.5362) 0.7751 0.7433 0.6514 0.7196 0.7175 0.7433 0.6647 0.1203 0.0238 0.0329 0.0271 0.1313
σ = (0.1006, 0.1013, 0.0920, 0.0949) (0.0742) (0.0772) (0.0892) (0.0852) (0.0841) (0.082)

(50,30) x̄ = (0.2629, 0.4602, 0.6113, 0.5246) 0.7515 0.7343 0.6393 0.7057 0.7047 0.7291 0.643 0.1586 0.0228 0.0243 0.0204 0.1308
σ = (0.0891, 0.0909, 0.0813, 0.0870) (0.0681) (0.0705) (0.078) (0.0779) (0.0762) (0.0733)

(50, 50) x̄ = (0.2441, 0.4483, 0.5975, 0.5108) 0.7307 0.7107 0.6204 0.6883 0.6870 0.7109 0.6652 0.1333 0.0168 0.0217 0.021 0.142
σ = (0.0793, 0.0795, 0.0729, 0.0761) (0.0609) (0.0646) (0.0702) (0.0675) (0.0673) (0.0648)

(100, 100) x̄ = (0.2160, 0.4258, 0.5829, 0.4909) 0.6934 0.6818 0.5922 0.6642 0.6641 0.6814 0.655 0.1473 <0.01 0.0229 0.0229 0.1485
σ = (0.0537, 0.0578, 0.0529, 0.0567) (0.0488) (0.0488) (0.0496) (0.0525) (0.0516) (0.0492)

(500, 500) x̄ = (0.1803, 0.3987, 0.5594, 0.4663) 0.6453 0.643 0.5543 0.6379 0.6378 0.6436 0.4826 0.1741 <0.01 0.0363 0.0354 0.2717
σ = (0.0277, 0.0274, 0.0252, 0.0266) (0.023) (0.023) (0.0244) (0.0237) (0.0238) (0.0229)

The results reported in Table 3 show that, in general, our proposed stepwise method
dominates over the rest of the algorithms. The non-parametric kernel smoothing approach
slightly outperforms Yin and Tian’s approach in terms of the average Youden index, and
even for large sample sizes (n1 = n2 = 500), its mean Youden index is even slightly higher
than that of our proposed stepwise method. This behaviour is accentuated in the scenarios
of Table 4, where Yian and Tian’s stepwise approach performs significantly worse than
the non-parametric kernel smoothing approach, and even their average values are lower
than those achieved by logistic regression or the parametric approach under multivariate
normality.



Mathematics 2022, 10, 1221 10 of 26

Table 3. Normal distributions: Different means. Medium correlation (Σ1 = Σ2 = 0.5·I + 0.5·J).

Mean (SD) Probability Greater than or Equal to Youden Index

Size
(n1 , n2) Mean (SD) Variables SLM SWD MM LR MVN KS SLM SWD MM LR MVN KS

m1 = (0.2, 0.5, 1.0, 0.7)T

(10, 20) x̄ = (0.2713, 0.3657, 0.5268, 0.428) 0.7314 0.667 0.5534 0.6404 0.6432 0.674 0.4883 0.1566 0.0399 0.0496 0.0804 0.1851
σ = (0.1353, 0.1477, 0.1423, 0.1427) (0.1093) (0.1181) (0.1271) (0.1387) (0.1356) (0.1306)

(30, 30) x̄ = (0.2030, 0.3020, 0.4665, 0.3668) 0.62 0.5647 0.4598 0.548 0.5433 0.5777 0.5478 0.1417 0.0118 0.0244 0.0572 0.2171
σ = (0.0933, 0.1014, 0.0991, 0.1008) (0.0847) (0.0882) (0.0945) (0.0972) (0.0952) (0.0921)

(50, 30) x̄ = (0.1931, 0.2928, 0.4581, 0.3632) 0.5874 0.5568 0.4415 0.5288 0.5297 0.5631 0.4942 0.1885 <0.01 0.0295 0.0282 0.2543
σ = (0.0847, 0.0908, 0.0883 ,0.0905) (0.0769) (0.0764) (0.0811) (0.0856) (0.0842) (0.0831)

(50, 50) x̄ = (0.1753, 0.2761, 0.4472, 0.3495) 0.5637 0.5274 0.4187 0.5096 0.5094 0.5401 0.5076 0.1588 <0.01 0.0247 0.0502 0.2528
σ = (0.0742, 0.0798, 0.0787, 0.0791) (0.0677) (0.0717) (0.0738) (0.0755) (0.0746) (0.0738)

(100, 100) x̄ = (0.1449, 0.2487, 0.4250, 0.3236) 0.5114 0.4907 0.3806 0.4766 0.4766 0.5005 0.4238 0.3977 <0.01 0.0152 <0.01 0.1548
σ = (0.0520, 0.0578, 0.0591, 0.0595) (0.0539) (0.0551) (0.056) (0.0583) (0.0584) (0.0566)

(500, 500) x̄ = (0.1063, 0.2187, 0.3994, 0.2921) 0.4511 0.443 0.3325 0.4429 0.4429 0.4516 0.3103 0.3948 <0.01 0.0237 0.0204 0.2508
σ = (0.0261, 0.0280, 0.0264, 0.0279) (0.0256) (0.0276) (0.0272) (0.0265) (0.0265) (0.0256)

m1 = (0.4, 1.0, 1.5, 1.2)T

(10, 20) x̄ = (0.3339, 0.5172, 0.6658, 0.5790) 0.844 0.7906 0.6879 0.7838 0.7736 0.7996 0.4078 0.1614 0.0258 0.1348 0.0884 0.1817
σ = (0.1406, 0.1442, 0.1287, 0.1370) (0.0934) (0.1050) (0.1184) (0.1288) (0.1167) (0.1107)

(30, 30) x̄ = (0.2685, 0.4669, 0.6160, 0.5254) 0.7609 0.7139 0.6157 0.7084 0.7007 0.7294 0.5169 0.1461 0.0115 0.0512 0.0628 0.2116
σ = (0.0998, 0.1025, 0.0945, 0.0954) (0.0766) (0.0801) (0.0906) (0.0876) (0.087) (0.0804)

(50, 30) x̄ = (0.2580, 0.4621, 0.6105, 0.5264) 0.7348 0.7101 0.6034 0.6945 0.6929 0.7177 0.4785 0.1823 <0.01 0.0643 0.0438 0.2257
σ = (0.0887, 0.0908, 0.0807, 0.0862) (0.0686) (0.0707) (0.0782) (0.0773) (0.0743) (0.0721)

(50, 50) x̄ = (0.2428, 0.4477, 0.5994, 0.5124) 0.7162 0.6874 0.5831 0.6778 0.6762 0.7013 0.4817 0.1485 <0.01 0.0496 0.0575 0.2574
σ = (0.0782, 0.0810, 0.0723, 0.0769) (0.0620) (0.0649) (0.0715) (0.0697) (0.0665) (0.0639)

(100, 100) x̄ = (0.2146, 0.4235, 0.5816, 0.4916) 0.6755 0.6572 0.5535 0.6519 0.6513 0.6684 0.5904 0.083 <0.01 0.04 0.0382 0.2475
σ = (0.0554, 0.0572, 0.0550, 0.0580) (0.0480) (0.0493) (0.0524) (0.0510) (0.0509) (0.0494)

(500, 500) x̄ = (0.1808, 0.3990, 0.5606, 0.4663) 0.6286 0.6239 0.5165 0.6258 0.6255 0.6317 0.379 0.1055 <0.01 0.0561 0.0563 0.403
σ = (0.0270, 0.0277, 0.0244, 0.0260) (0.0236) (0.0242) (0.0251) (0.0232) (0.0232) (0.023)

Table 4. Normal distributions: Different means. High correlation (Σ1 = Σ2 = 0.3·I + 0.7·J).

Mean (SD) Probability Greater than or Equal to Youden Index

Size
(n1 , n2) Mean (SD) Variables SLM SWD MM LR MVN KS SLM SWD MM LR MVN KS

m1 = (0.2, 0.5, 1.0, 0.7)T

(10, 20) x̄ = (0.2708, 0.3672, 0.5202, 0.4299) 0.754 0.6634 0.5546 0.6702 0.6704 0.6962 0.5549 0.1035 0.0211 0.0879 0.0684 0.1642
σ = (0.1361, 0.1398, 0.1435, 0.1447) (0.1036) (0.119) (0.1268) (0.1418) (0.1383) (0.1317)

(30, 30) x̄ = (0.2005, 0.3040, 0.4663, 0.3703) 0.6514 0.5668 0.4559 0.5844 0.5834 0.6166 0.5812 0.0826 0.0116 0.0521 0.0397 0.2329
σ = (0.0936, 0.1025, 0.1045, 0.1038) (0.0817) (0.0937) (0.0946) (0.0981) (0.0972) (0.0940)

(50, 30) x̄ = (0.1951, 0.2932, 0.4625, 0.3591) 0.6175 0.5628 0.4401 0.5689 0.5690 0.6000 0.5288 0.1146 <0.01 0.0414 0.0324 0.2768
σ = (0.0815, 0.0877, 0.0893, 0.0914) (0.0779) (0.0834) (0.0817) (0.0882) (0.0874) (0.0859)

(50, 50) x̄ = (0.1781, 0.2779, 0.4479, 0.3450) 0.5983 0.5325 0.4166 0.5527 0.5521 0.5805 0.5430 0.0799 <0.01 0.0454 0.0431 0.2858
σ = (0.0735, 0.0787, 0.0800, 0.0806) (0.0671) (0.0754) (0.0747) (0.0782) (0.0774) (0.0741)

(100, 100) x̄ = (0.1461, 0.2526, 0.4243, 0.3207) 0.5472 0.4969 0.3773 0.5203 0.5202 0.5413 0.4680 0.2348 <0.01 0.0173 0.0222 0.2577
σ = (0.0534, 0.0597, 0.0566, 0.0606) (0.0515) (0.0567) (0.0548) (0.0547) (0.0547) (0.0530)

(500, 500) x̄ = (0.1057, 0.2177, 0.3992, 0.2928) 0.4949 0.4587 0.3313 0.4893 0.4892 0.4972 0.3588 0.1517 <0.01 0.0418 0.0358 0.4118
σ = (0.0267, 0.0281, 0.0276, 0.0278) (0.0257) (0.0308) (0.0274) (0.0260) (0.0259) (0.0255)

m1 = (0.4, 1.0, 1.5, 1.2)T

(10, 20) x̄ = (0.3322, 0.5204, 0.6594, 0.5826) 0.8612 0.7759 0.6874 0.8091 0.7979 0.8204 0.5229 0.0699 0.0183 0.1656 0.0730 0.1503
σ = (0.1426, 0.1414, 0.1301, 0.1402) (0.0882) (0.1107) (0.1232) (0.1266) (0.1156) (0.1099)

(30, 30) x̄ = (0.2669, 0.4678, 0.6169, 0.5312) 0.7842 0.7095 0.6146 0.7393 0.7369 0.7607 0.5373 0.0759 <0.01 0.0856 0.0629 0.2325
σ = (0.0982, 0.0999, 0.0961, 0.1011) (0.0702) (0.0854) (0.0884) (0.0835) (0.0821) (0.0782)

(50,30) x̄ = (0.2620, 0.4584, 0.6136, 0.5234) 0.7596 0.7128 0.6007 0.7304 0.7283 0.7514 0.4932 0.0898 <0.01 0.0842 0.0564 0.2714
σ = (0.0865, 0.0865, 0.0817, 0.0866) (0.0682) (0.0722) (0.078) (0.0760) (0.0735) (0.0696)

(50, 50) x̄ = (0.2458, 0.4465, 0.6006, 0.5098) 0.7394 0.6899 0.5806 0.7165 0.7149 0.7361 0.4764 0.0643 <0.01 0.0650 0.0637 0.3282
σ = (0.0776, 0.0776, 0.0756, 0.0769) (0.0612) (0.0717) (0.0729) (0.0676) (0.0663) (0.0638)

(100, 100) x̄ = (0.2155, 0.4256, 0.5809, 0.4890) 0.7018 0.6658 0.5523 0.6898 0.6886 0.7036 0.4592 0.0528 <0.01 0.0712 0.0544 0.3625
σ = (0.0562, 0.0606, 0.0520, 0.0570) (0.042) (0.0525) (0.0502) (0.0469) (0.047) (0.0458)

(500, 500) x̄ = (0.1802, 0.3992, 0.5603, 0.4668) 0.6588 0.6451 0.5148 0.6643 0.6643 0.6701 0.1175 0.2240 <0.01 0.0793 0.0653 0.5138
σ = (0.0280, 0.0267, 0.0250, 0.0256) (0.0226) (0.0270) (0.0253) (0.0222) (0.0222) (0.0220)

Given the reported results of these simulations, it could be concluded that, in scenarios
of multivariate normal distributions with different means and equal positive correlations,
our proposed stepwise method dominates generally over the rest of the algorithms, fol-
lowed by the non-parametric kernel smoothing approach and Yin and Tian’s stepwise
approach, with the former being better in scenarios of higher correlations.

3.1.2. Normal Distributions. Different Means and Unequal Positive Correlations for
Diseased and Non-Diseased Population

Table 5 shows the results obtained in the scenarios under multivariate normal dis-
tribution with mean vectors m1 = (0.2, 0.5, 1.0, 0.7)T and m1 = (0.4, 1.0, 1.5, 1.2)T and
different correlations for the diseased and non-diseased populations (Σ1 = 0.3·I + 0.7·J,
Σ2 = 0.7·I + 0.3·J). The results indicate that our proposed stepwise approach outperforms
the other algorithms in most scenarios. It is followed by the non-parametric kernel smooth-
ing approach and Yin and Tian’s stepwise approach. The min-max approach is the worst
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performer. Logistic regression and the parametric approach under multivariate normality
performed comparably in general.

Table 5. Normal distributions: Different means. Different correlation (Σ1 = 0.3·I + 0.7·J, Σ2 = 0.7·I + 0.3·J).

Mean (SD) Probability Greater than or Equal to Youden Index

Size
(n1 , n2) Mean (SD) Variables SLM SWD MM LR MVN KS SLM SWD MM LR MVN KS

m1 = (0.2, 0.5, 1.0, 0.7)T

(10, 20) x̄ = (0.2706, 0.3608, 0.5172, 0.4272) 0.736 0.6644 0.5952 0.637 0.6408 0.669 0.4899 0.1413 0.0987 0.0536 0.0679 0.1486
σ = (0.1367, 0.1405, 0.1453, 0.1456) (0.0998) (0.116) (0.1258) (0.1328) (0.1338) (0.1292)

(30, 30) x̄ = (0.2023, 0.3027, 0.4703, 0.3748) 0.6268 0.5745 0.5086 0.5512 0.5527 0.5871 0.5236 0.1399 0.0877 0.0244 0.038 0.1864
σ = (0.0948, 0.1002, 0.0979, 0.1003) (0.0825) (0.0869) (0.0905) (0.0973) (0.0928) (0.0896)

(50, 30) x̄ = (0.1957, 0.2895, 0.4586, 0.3606) 0.5986 0.567 0.4958 0.5373 0.5383 0.5717 0.4958 0.1717 0.0993 0.0327 0.0282 0.1723
σ = (0.0832, 0.0925, 0.0862, 0.0918) (0.0794) (0.0775) (0.0827) (0.0907) (0.0868) (0.0856)

(50, 50) x̄ = (0.1785, 0.2736, 0.4439, 0.3447) 0.5727 0.5297 0.4708 0.5096 0.5129 0.5426 0.5447 0.1275 0.0869 0.0149 0.0376 0.1883
σ = (0.0735, 0.0793, 0.077, 0.0831) (0.0669) (0.0719) (0.0745) (0.0772) (0.0763) (0.0741)

(100, 100) x̄ = (0.1465, 0.2526, 0.4273, 0.3225) 0.5198 0.4946 0.4378 0.482 0.4835 0.508 0.4783 0.3068 0.0648 0.0128 0.0113 0.1258
σ = (0.052, 0.0572, 0.0576, 0.0598) (0.052) (0.0539) (0.0557) (0.0557) (0.0556) (0.0529)

(500, 500) x̄ = (0.1063, 0.2181, 0.3994, 0.2929) 0.4576 0.4482 0.3916 0.4446 0.4464 0.4565 0.3803 0.3227 <0.01 0.0122 0.0187 0.2593
σ = (0.0264, 0.0271, 0.0272, 0.0276) (0.0256) (0.0264) (0.0271) (0.0271) (0.0268) (0.026)

m1 = (0.4, 1.0, 1.5, 1.2)T

(10, 20) x̄ = (0.3328, 0.5141, 0.6583, 0.5798) 0.8422 0.7851 0.6824 0.7763 0.7697 0.7934 0.4419 0.1638 0.0412 0.1108 0.0785 0.1637
σ = (0.1429, 0.1394, 0.1338, 0.1404) (0.091) (0.1103) (0.1244) (0.1259) (0.1146) (0.1113)

(30, 30) x̄ = (0.2664, 0.4658, 0.6184, 0.5334) 0.7628 0.7199 0.6068 0.7102 0.7055 0.7333 0.5186 0.1604 0.013 0.0512 0.056 0.2007
σ = (0.1005, 0.0991, 0.0921, 0.0971) (0.0752) (0.0803) (0.089) (0.0869) (0.0846) (0.0802)

(50, 30) x̄ = (0.2627, 0.4576, 0.6125, 0.5232) 0.7403 0.7154 0.5945 0.6961 0.6947 0.7219 0.5055 0.2028 0.0115 0.0428 0.0379 0.1996
σ = (0.0894, 0.0924, 0.0783, 0.088) (0.0714) (0.0713) (0.0773) (0.0827) (0.0767) (0.0722)

(50, 50) x̄ = (0.2455, 0.4442, 0.5970, 0.5088) 0.7176 0.687 0.5735 0.6765 0.6759 0.6998 0.5134 0.1669 <0.01 0.048 0.045 0.2182
σ = (0.0782, 0.0794, 0.0700, 0.0784) (0.0617) (0.0668) (0.0713) (0.0706) (0.0676) (0.0649)

(100, 100) x̄ = (0.2150, 0.4275, 0.5840, 0.4909) 0.6804 0.661 0.5473 0.6543 0.6545 0.6724 0.4505 0.3459 <0.01 0.0262 0.021 0.1555
σ = (0.0546, 0.0565, 0.0523, 0.0558) (0.0477) (0.0486) (0.0537) (0.0512) (0.0509) (0.0488)

(500, 500) x̄ = (0.1807, 0.3992, 0.5600, 0.4667) 0.6309 0.6258 0.5091 0.6255 0.6258 0.6326 0.2942 0.3528 <0.01 0.0317 0.0346 0.2868
σ = (0.0278, 0.0270, 0.0251, 0.0258) (0.0233) (0.0237) (0.0256) (0.024) (0.0239) (0.0235)

3.1.3. Normal Distributions. Different Means and Equal Negative Correlations for
Diseased and Non-Diseased Population

Tables 6 and 7 show the results obtained in the scenarios under multivariate normal
distribution with mean vectors m1 = (0.2, 0.5, 1.0, 0.7)T and m1 = (0.4, 1.0, 1.5, 1.2)T and
equal negative correlations (ρ = −0.1,−0.3, respectively).

Table 6. Normal distributions: Different means. Negative correlation (−0.1).

Mean (SD) Probability Greater than or Equal to Youden Index

Size
(n1 , n2) Mean (SD) Variables SLM SWD MM LR MVN KS SLM SWD MM LR MVN KS

m1 = (0.2, 0.5, 1.0, 0.7)T

(10, 20) x̄ = (0.2651, 0.3652, 0.5164, 0.4329) 0.8127 0.7625 0.678 0.7395 0.7356 0.7664 0.4308 0.1033 0.0474 0.1301 0.08 0.2084
σ = (0.1298, 0.1462, 0.1450,0.1438) (0.0967) (0.105) (0.1216) (0.1334) (0.1259) (0.1163)

(30, 30) x̄ = (0.2064, 0.3013, 0.4704, 0.3718) 0.7108 0.6747 0.5997 0.6603 0.6599 0.6905 0.4499 0.0831 0.0309 0.0744 0.0694 0.2924
σ = (0.0949, 0.0980, 0.1005, 0.1040) (0.0799) (0.0823) (0.0893) (0.092) (0.0904) (0.0847)

(50, 30) x̄ = (0.1947, 0.2934, 0.4588, 0.3593) 0.6862 0.6681 0.5863 0.6422 0.6413 0.6692 0.4088 0.132 0.0245 0.058 0.0495 0.3272
σ = (0.0836, 0.0880, 0.0879, 0.0926) (0.072) (0.0742) (0.0799) (0.0829) (0.0801) (0.0788)

(50, 50) x̄ = (0.1755, 0.2784, 0.4466, 0.3465) 0.6667 0.6419 0.568 0.6297 0.6288 0.654 0.4187 0.1011 0.0219 0.065 0.0756 0.3177
σ = (0.0717, 0.0792, 0.0787, 0.0800) (0.0622) (0.0672) (0.0721) (0.0716) (0.0704) (0.0676)

(100, 100) x̄ = (0.1445, 0.2522, 0.4264, 0.3212) 0.6252 0.6135 0.5321 0.6054 0.6053 0.6229 0.3913 0.1198 <0.01 0.05 0.0572 0.3759
σ = (0.0531, 0.0578, 0.0579, 0.0585) (0.0502) (0.0507) (0.0534) (0.0515) (0.0516) (0.05)

(500, 500) x̄ = (0.1068, 0.2180, 0.3989, 0.2923) 0.5784 0.5761 0.4947 0.5734 0.5735 0.5804 0.3137 0.1578 <0.01 0.0484 0.0567 0.4234
σ = (0.0263, 0.0277, 0.0275, 0.0273) (0.0237) (0.0239) (0.0251) (0.0243) (0.0244) (0.0238)

m1 = (0.4, 1.0, 1.5, 1.2)T

(10, 20) x̄ = (0.3266, 0.5185, 0.6594, 0.5868) 0.9466 0.9098 0.8538 0.9296 0.9078 0.922 0.3156 0.1426 0.056 0.267 0.0912 0.1276
σ = (0.1344, 0.1434, 0.1322, 0.1347) (0.0619) (0.0752) (0.0916) (0.0898) (0.0825) (0.0757)

(30, 30) x̄ = (0.2701, 0.4666, 0.6203, 0.5327) 0.8952 0.8625 0.8046 0.8737 0.8652 0.8835 0.3993 0.1047 0.026 0.168 0.0824 0.2195
σ = (0.0986, 0.0999, 0.0926, 0.1011) (0.056) (0.0622) (0.0697) (0.0655) (0.0625) (0.0581)

(50, 30) x̄ = (0.2602, 0.4611, 0.6101, 0.5226) 0.8806 0.8672 0.7964 0.8604 0.8545 0.8714 0.3853 0.1296 0.0278 0.1445 0.0751 0.2376
σ = (0.0888, 0.0855, 0.0793, 0.0905) (0.0516) (0.0533) (0.0644) (0.0609) (0.0578) (0.055

(50, 50) x̄ = (0.2427, 0.4476, 0.6006, 0.5110) 0.8677 0.8508 0.7835 0.8503 0.8454 0.8616 0.381 0.1215 0.0217 0.1144 0.0651 0.2963
σ = (0.0757, 0.0791, 0.0731, 0.0765) (0.0448) (0.0477) (0.0574) (0.0506) (0.0485) (0.0476)

(100, 100) x̄ = (0.2138, 0.4268, 0.5832, 0.4905) 0.8442 0.8342 0.757 0.8329 0.831 0.8427 0.3815 0.1121 <0.01 0.0856 0.0672 0.351
σ = (0.0573, 0.0578, 0.0533, 0.0558) (0.0367) (0.0379) (0.0422) (0.037) (0.0367) (0.0356)

(500, 500) x̄ = (0.1813, 0.3989, 0.5598, 0.4665) 0.8152 0.8127 0.7294 0.8108 0.8105 0.8145 0.3765 0.1367 <0.01 0.0724 0.0619 0.3525
σ = (0.0273, 0.0270, 0.0255, 0.0255) (0.0180) (0.0182) (0.0208) (0.0176) (0.0175) (0.0173)
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Table 7. Normal distributions: Different means. Negative correlation (−0.3).

Mean (SD) Probability Greater than or Equal to Youden Index

Size
(n1 , n2) Mean (SD) Variables SLM SWD MM LR MVN KS SLM SWD MM LR MVN KS

m1 = (0.2, 0.5, 1.0, 0.7)T

(10, 20) x̄ = (0.2624, 0.3591, 0.5238, 0.4281) 0.976 0.8938 0.845 0.9963 0.9874 0.9902 0.2058 0.0617 0.0166 0.2782 0.2115 0.2261
σ = (0.1354, 0.1447, 0.1413, 0.1425) (0.0468) (0.0964) (0.0935) (0.0189) (0.0289) (0.0258)

(30, 30) x̄ = (0.2057, 0.3046, 0.4707, 0.3672) 0.9589 0.8946 0.7906 0.9875 0.9746 0.9821 0.1978 0.0499 <0.01 0.3625 0.15661 0.2331
σ = (0.0942, 0.1007, 0.1004, 0.1008) (0.0472) (0.0852) (0.0717) (0.0254) (0.027) (0.0243)

(50, 30) x̄ = (0.1967, 0.2948, 0.4565, 0.3621) 0.9405 0.9125 0.7819 0.9835 0.9725 0.9802 0.1498 0.0712 <0.01 0.3874 0.1407 0.2504
σ = (0.0868, 0.0899, 0.0933, 0.0903) (0.0577) (0.0726) (0.0674) (0.0267) (0.0269) (0.0243)

(50, 50) x̄ = (0.1769, 0.2795, 0.4447, 0.3482) 0.9471 0.9052 0.7678 0.9775 0.9668 0.975 0.192 0.0609 <0.01 0.3861 0.1163 0.2447
σ = (0.0754, 0.0805, 0.0780, 0.0789) (0.0447) (0.0718) (0.0583) (0.0255) (0.0243) (0.0218)

(100, 100) x̄ = (0.1435, 0.2540, 0.4258, 0.3240) 0.9421 0.9178 0.7469 0.9652 0.9606 0.9674 0.1053 0.1346 <0.01 0.2778 0.1168 0.3655
σ = (0.0543, 0.0544, 0.0591, 0.0595) (0.0345) (0.0503) (0.0431) (0.0202) (0.019) (0.0177)

(500, 500) x̄ = (0.1067, 0.2173, 0.3981, 0.2919) 0.9365 0.9309 0.7161 0.9509 0.9502 0.9531 0.1671 0.0586 <0.01 0.1500 0.1057 0.5185
σ = (0.0270, 0.0284, 0.0280, 0.0276) (0.0195) (0.0217) (0.0215) (0.0096) (0.0097) (0.0093)

m1 = (0.4, 1.0, 1.5, 1.2)T

(10, 20) x̄ = (0.3223, 0.5169, 0.6668, 0.5786) 0.9998 0.9876 0.9734 1.0000 1.0000 1.0000 0.1838 0.1479 0.1131 0.1851 0.1851 0.1851
σ = (0.1401, 0.1425, 0.1279, 0.1364) (0.0034) (0.0311) (0.0413) (0.00000) (0.0000) (0.0000)

(30, 30) x̄ = (0.2701, 0.4693, 0.6214, 0.5251) 0.9997 0.9891 0.9519 1.0000 1.0000 0.9999 0.201 0.1504 0.0378 0.2037 0.2037 0.2032
σ = (0.0990, 0.1018, 0.0922, 0.0968) (0.0031) (0.0249) (0.0384) (0.0000) (0.0000) (0.0015)

(50, 30) x̄ = (0.2631, 0.4635, 0.6084, 0.5255 0.999 0.9958 0.9503 1.0000 1.0000 1.0000 0.1952 0.1699 0.0217 0.2046 0.2043 0.2043
σ = (0.0933, 0.0889, 0.0858, 0.0867) (0.0064) (0.0132) (0.0355) (0.0000) (0.0006) (0.0006)

(50, 50) x̄ = (0.2436, 0.4498, 0.5975, 0.5118) 0.9995 0.9953 0.9431 1.0000 0.9999 1.0000 0.2018 0.1672 <0.01 0.2082 0.2066 0.2082
σ = (0.0795, 0.0802, 0.0713, 0.0768) (0.0033) (0.013) (0.0322) (0.0000) (0.0015) (0.0000)

(100, 100) x̄ = (0.2131, 0.4277, 0.5819, 0.4917) 0.9996 0.9981 0.933 1.0000 0.9999 1.0000 0.1985 0.1723 <0.01 0.2107 0.2077 0.2107
σ = (0.0578, 0.0541, 0.0543, 0.0577) (0.0022) (0.0057) (0.0243) (0.0000) (0.001) (0.0000)

(500, 500) x̄ = (0.1812, 0.3992, 0.5598, 0.4662) 0.9995 0.9992 0.916 0.9999 0.9996 0.9998 0.1821 0.1581 <0.01 0.247 0.1911 0.2217
σ = (0.0278, 0.0277, 0.0255, 0.0262) (0.0011) (0.0016) (0.0121) (0.0005) (0.0009) (0.0006)

The same conclusions as in the previous tables can be deduced from Table 6 for the
mean vector scenario m1 = (0.2, 0.5, 1.0, 0.7)T , globally. The results show that our proposed
stepwise approach, in general, outperforms over the other algorithms. After it, the non-
parametric kernel smoothing approach and Yin and Tian’s stepwise approach are the best
performers, the results of the former being slightly better than those of the latter. Logistic
regression and the parametric approach under multivariate normality conditions obtain
similar results. The min-max approach is the worst performer.

However, the results provided by the simulated data with mean vector
m1 = (0.4, 1.0, 1.5, 1.2)T (Table 6) show that Yin and Tian’s stepwise approach and logistic
regression perform comparably. In these scenarios, the algorithms achieve a superior per-
formance than when considering simulated data with mean vector m1 = (0.2, 0.5, 1.0, 0.7)T ,
as is the case in all tables. Moreover, in this scenario (m1 = (0.4, 1.0, 1.5, 1.2)T ; Table 6), the
algorithms discriminate successfully, with the average Youden index achieved by all algo-
rithms being higher than 0.8, with the exception of min-max, which ranges between 0.72
and 0.85. Table 7 shows that these are also scenarios where the combination of biomarkers
discriminates satisfactorily. This result could be in line with the literature, where Pinsky
and Zhu [42] already unveiled a remarkable increase in performance when considering
the combination of highly negatively correlated variables. The results in Table 7 show
that the stepwise approaches are worse than the other algorithms, although all of them
achieve a perfect or near-perfect performance in some scenarios, with the exception of the
min-max approach.

3.1.4. Normal Distributions. Same Means for Diseased and Non-Diseased Population

Table 8 shows the results obtained from the multivariate normal distribution simula-
tions with mean vector m1 = (1.0, 1.0, 1.0, 1.0, 1.0)T under the low correlation (Σ1 = Σ2 =
0.7·I + 0.3·J) and different correlation (Σ1 = 0.3·I + 0.7·J, Σ2 = 0.7·I + 0.3·J) scenarios.
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Table 8. Normal distributions: Same means: m1 = (1.0, 1.0, 1.0, 1.0)T .

Mean (SD) Probability Greater than or Equal to Youden Index

Size
(n1 , n2) Mean (SD) Variables SLM SWD MM LR MVN KS SLM SWD MM LR MVN KS

Same Correlation. Low Correlation (Σ1 = Σ2 = 0.7·I + 0.3·J)

(10, 20) x̄ = (0.5178, 0.5176, 0.5180, 0.5150) 0.8023 0.7592 0.704 0.7158 0.7128 0.7505 0.5881 0.1306 0.0969 0.0468 0.0263 0.1113
σ = (0.1439, 0.1440, 0.1377, 0.1427) (0.0993) (0.1061) (0.1177) (0.1335) (0.1256) (0.1165)

(30, 30) x̄ = (0.4661, 0.469, 0.4700, 0.4741) 0.7069 0.6756 0.6379 0.6384 0.6377 0.6682 0.6635 0.1258 0.0902 0.0201 0.0167 0.0836
σ = (0.1023, 0.1013, 0.1002, 0.0993) (0.0822) (0.0843) (0.0891) (0.0965) (0.0947) (0.0895)

(50, 30) x̄ = (0.4642, 0.4602, 0.4606, 0.4605) 0.6793 0.6629 0.6267 0.6224 0.6218 0.6523 0.6006 0.1586 0.1148 0.0118 0.0169 0.0972
σ = (0.0882, 0.0909, 0.0899, 0.0881) (0.0729) (0.0742) (0.0775) (0.0822) (0.0827) (0.078)

(50, 50) x̄ = (0.4491, 0.4483, 0.4448, 0.4479) 0.6564 0.634 0.606 0.6039 0.6044 0.6307 0.6627 0.1242 0.1036 <0.01 0.0138 0.0867
σ = (0.0787, 0.0795, 0.0778, 0.0782) (0.0644) (0.0674) (0.0719) (0.0724) (0.072) (0.0689)

(100, 100) x̄ = (0.4266, 0.4258, 0.4270, 0.4252) 0.6102 0.5989 0.5779 0.5793 0.5788 0.5979 0.5803 0.1536 0.1003 0.014 0.0129 0.1389
σ = (0.0536, 0.0578, 0.0580, 0.0581) (0.0484) (0.0499) (0.0499) (0.0518) (0.0515) (0.0503)

(500, 500) x̄ = (0.3998, 0.3987, 0.3980, 0.3989) 0.5556 0.5536 0.5387 0.5479 0.5478 0.555 0.3932 0.2252 0.0557 0.0337 0.0241 0.2681
σ = (0.0264, 0.0274, 0.0278, 0.0272) (0.0247) (0.0251) (0.025) (0.0253) (0.0255) (0.0247)

Different Correlation (Σ1 = 0.3·I + 0.7·J, Σ2 = 0.7·I + 0.3·J)

(10, 20) x̄ = (0.5149, 0.5141, 0.5172, 0.5203) 0.7563 0.7156 0.7406 0.6664 0.6654 0.7022 0.3382 0.2086 0.2474 0.0590 0.0363 0.1104
σ = (0.1438, 0.1394, 0.1453, 0.1453) (0.1051) (0.1141) (0.1139) (0.1372) (0.1345) (0.1261)

(30, 30) x̄ = (0.4640, 0.4658, 0.4703, 0.4718) 0.6641 0.6353 0.6782 0.5896 0.5905 0.6224 0.3442 0.0746 0.4400 0.0210 0.0160 0.1041
σ = (0.1016, 0.0991, 0.0979, 0.0981) (0.0853) (0.0877) (0.0846) (0.0964) (0.0959) (0.0912)

(50, 30) x̄ = (0.4625, 0.4576, 0.4586, 0.4598) 0.6424 0.6256 0.6669 0.5791 0.5813 0.6119 0.2979 0.0744 0.4954 0.0119 0.0142 0.1062
σ = (0.0902, 0.0924, 0.0862, 0.0906) (0.0735) (0.0752) (0.0762) (0.0839) (0.0818) (0.0785)

(50, 50) x̄ = (0.4481, 0.4442, 0.4439, 0.4457) 0.6145 0.5936 0.6465 0.5552 0.5562 0.5826 0.3163 0.0587 0.5325 <0.01 <0.01 0.0800
σ = (0.0805, 0.0794, 0.0770, 0.0822) (0.0653) (0.0686) (0.0696) (0.0745) (0.075) (0.0728)

(100, 100) x̄ = (0.4253, 0.4275, 0.4273, 0.4254) 0.5658 0.5551 0.6220 0.5297 0.53 0.5491 0.1722 0.0516 0.7520 <0.01 <0.01 0.0187
σ = (0.0564, 0.0565, 0.0576, 0.0578) (0.05) (0.0513) (0.0504) (0.0538) (0.0534) (0.0527)

(500, 500) x̄ = (0.3994, 0.3992, 0.3994, 0.3993) 0.5085 0.5058 0.5870 0.5004 0.5005 0.5069 <0.01 <0.01 0.9930 <0.01 <0.01 <0.01
σ = (0.0275, 0.0270, 0.2720, 0.0267) (0.025) (0.0253) (0.0240) (0.026) (0.0262) (0.0256)

In contrast to the results in Table 2 (different means and low correlation), the results
in Table 8 show that the min-max approach performs better in scenarios with biomarkers
with the same means. This means that these are scenarios in which the biomarkers have a
similar discriminatory capacity, as can be seen in the second column of the table, where the
empirical estimates of the Youden index for each biomarker are presented. The table shows
that, for scenarios with a low correlation, the min-max algorithm performs similar to the
logistic regression and parametric approach under multivariate normality. In this scenario,
our proposed stepwise approach dominates the other algorithms. However, this is not the
case in the scenario of different covariance matrices (Σ1 = 0.3·I + 0.7·J, Σ2 = 0.7·I + 0.3·J),
where the min-max approach is the best performer, becoming more and more prominent as
the sample size increases. Specifically, in almost 100% of the 1000 simulations of sample
size n1 = n2 = 500, the min-max approach performs best.

3.1.5. Non-Normal Distributions. Different Marginal Distributions

Table 9 shows the results obtained from simulations of multivariate chi-square, normal,
gamma and exponential distributions via normal copula with a dependence/correlation
parameter between biomarkers of 0.7 and 0.3 for the diseased and non-diseased popu-
lation, respectively. Biomarkers for the non-diseased population were considered to be
marginally distributed as χ2

0.1, N(0.1, 1), Γ(0.1, 1) and Exp(0.1), where the considered
probability density function for the gamma distribution X ∼ Γ(α, β), using the shape-rate
parametrization, is

f (x; α, β) =
xα−1 exp(−βx)βα

Γ(α)
, x ≥ 0, α, β ≥ 0 (17)

and, for the exponential distribution X ∼ Exp(λ), λ denoting the rate parameter, the
following:

f (x; λ) = λ exp(−λx), x > 0, λ ≥ 0 (18)

In the case of the diseased population, two scenarios were considered: χ2
0.1, N(0.3, 1),

Γ(0.4, 1), Exp(0.1) and χ2
0.1, N(0.6, 1), Γ(0.8, 1), Exp(0.1). Since the range of values for each

of the four biomarkers was markedly different, it was necessary to normalize the values for
each biomarker.
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Table 9. Non-normal distributions: Different marginal distributions.

Mean (SD) Probability Greater than or Equal to Youden Index

Size
(n1 , n2) Mean (SD) Variables SLM SWD MM LR MVN KS SLM SWD MM LR MVN KS

N(0.3, 1)/Γ(0.4, 1)

(10, 20) x̄ = (0.2111, 0.2710, 0.6032, 0.2119) 0.7476 0.7004 0.4910 0.6047 0.5436 0.6672 0.5544 0.1723 0.0531 0.0767 0.0187 0.1237
σ = (0.1249, 0.1339, 0.1215, 0.1247) (0.099) (0.1076) (0.1258) (0.16) (0.1809) (0.1283)

(30, 30) x̄ = (0.1494, 0.2072, 0.5553, 0.1453) 0.661 0.6294 0.4306 0.5214 0.4585 0.6101 0.5692 0.1607 0.0112 0.0367 <0.01 0.2129
σ = (0.0875, 0.0942, 0.0940, 0.0854) (0.0803) (0.0876) (0.0916) (0.1278) (0.1488) (0.1144)

(50, 30) x̄ = (0.1364, 0.1939, 0.5476, 0.1328) 0.6413 0.6218 0.4300 0.5136 0.4492 0.6015 0.5183 0.1802 0.0170 0.0312 <0.01 0.2460
σ = (0.0757, 0.0828, 0.0876, 0.0745) (0.0778) (0.0809) (0.0798) (0.1212) (0.1447) (0.1059)

(50, 50) x̄ = (0.1161, 0.1752, 0.5384, 0.1126) 0.6239 0.6031 0.3957 0.4926 0.4455 0.5940 0.5254 0.1658 <0.01 0.0142 0.0104 0.2828
σ = (0.0656, 0.0720, 0.0744, 0.0610) (0.0651) (0.0704) (0.0726) (0.1048) (0.1275) (0.0878)

(100, 100) x̄ = (0.0847, 0.1466, 0.5216, 0.0829) 0.5869 0.5755 0.3728 0.4651 0.4403 0.5834 0.3691 0.1404 <0.01 <0.01 0.0102 0.4759
σ = (0.0459, 0.0551, 0.0537, 0.0460) (0.047) (0.05) (0.0564) (0.0773) (0.1037) (0.0620)

(500, 500) x̄ = (0.0387, 0.1061, 0.4968, 0.0387) 0.5423 0.5369 0.3497 0.4423 0.4404 0.5716 0.0395 0.0155 <0.01 <0.01 0.0115 0.9335
σ = (0.0201, 0.0265, 0.0252, 0.0206) (0.0235) (0.0253) (0.0260) (0.0439) (0.0652) (0.0271)

N(0.6, 1)/Γ(0.8, 1)

(10, 20) x̄ = (0.2111, 0.3666, 0.7690, 0.2119) 0.8899 0.8479 0.5380 0.804 0.7612 0.8296 0.5278 0.1513 <0.01 0.1438 0.0396 0.1282
σ = (0.1249, 0.1412, 0.1005, 0.1247) (0.0756) (0.0868) (0.1301) (0.1413) (0.1563) (0.1097)

(30, 30) x̄ = (0.1494, 0.3073, 0.7331, 0.1453) 0.8406 0.8013 0.5206 0.7626 0.7249 0.8042 0.6367 0.1127 <0.01 0.07 0.0154 0.1622
σ = (0.0875, 0.0997, 0.0797, 0.0854) (0.0685) (0.0723) (0.0909) (0.1083) (0.1202) (0.0807)

(50, 30) x̄ = (0.1364, 0.2940, 0.7280, 0.1328) 0.8283 0.7992 0.5504 0.7622 0.7188 0.7974 0.6465 0.1148 <0.01 0.0707 0.0111 0.1558
σ = (0.0757, 0.0891, 0.0763, 0.0745) (0.0651) (0.0686) (0.0811) (0.1012) (0.1125) (0.0766)

(50, 50) x̄ = (0.1161, 0.2745, 0.7216 ,0.1126) 0.8178 0.786 0.4974 0.7476 0.7158 0.7916 0.6727 0.0982 <0.01 0.0583 0.0152 0.1557
σ = (0.0656, 0.0785, 0.0654, 0.0610) (0.0554) (0.0603) (0.0768) (0.089) (0.0999) (0.0635)

(100, 100) x̄ = (0.0847, 0.2516, 0.7089, 0.0829) 0.7976 0.771 0.4836 0.7354 0.7114 0.7805 0.7245 0.0628 <0.01 0.0304 <0.01 0.1727
σ = (0.0459, 0.0605, 0.0457, 0.0460) (0.0399) (0.0424) (0.0579) (0.0651) (0.0733) (0.0433)

(500, 500) x̄ = (0.0387, 0.2177, 0.6886, 0.0387) 0.7774 0.7547 0.4635 0.7221 0.6929 0.7698 0.8105 0.0217 <0.01 <0.01 <0.01 0.1645
σ = (0.0201, 0.0274, 0.0215, 0.0206) (0.0193) (0.0217) (0.0256) (0.0347) (0.0373) (0.0194)

The results in Table 9 show that our stepwise approach also generally dominates
the other approaches in non-normal scenarios with different marginal distributions. It is
followed by Yin and Tian’s stepwise approach and the non-parametric kernel smoothing
approach. Logistic regression outperforms the parametric approach under multivariate
normality. The min-max approach is the worst performer.

3.1.6. Non-Normal Distributions. Log-Normal Distributions

Table 10 shows the results obtained from simulated data following a log-normal distri-
bution. Specifically, three scenarios were analyzed under this distribution: independent
biomarkers with different means (Σ1 = Σ2 = I and m1 = (0.2, 0.5, 1.0, 0.7)T), biomarkers
correlated with a medium intensity and different means (Σ1 = Σ2 = 0.5·I + 0.5·J and
m1 = (0.2, 0.5, 1.0, 0.7)T) and biomarkers correlated with a medium intensity and same
means (Σ1 = Σ2 = 0.5·I + 0.5·J and m1 = (1.0, 1.0, 1.0, 1.0, 1.0)T).

The results in Table 10 indicate that, in these scenarios of skewed distributions, our
stepwise approach performs significantly better than the other methods. Yin and Tian’s
stepwise approach performs slightly better than the non-parametric kernel smoothing
approach in most scenarios, especially in scenarios where the biomarkers have a similar
mean. Logistic regression globally outperforms the parametric approach under multivari-
ate normality and the min-max approach performs better than the logistic approach in
biomarker scenarios with the same predictive ability.

From the results provided under sample scenarios of non-normal distributions, it can
be deduced that our proposed stepwise approach remains the method that achieves the best
overall performance, followed by Yin and Tian’s stepwise approach and the non-parametric
kernel smoothing approach. The min-max method follows a similar behaviour to that
found in normal distribution scenarios, increasing its performance in biomarker samples
with a similar predictive ability. Unlike most simulated normal sample data scenarios, in
scenarios under non-normal distributions, logistic regression outperforms the parametric
approach under multivariate normality.
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Table 10. Non-normal distributions: Log-normal distributions.

Mean (SD) Probability Greater than or Equal to Youden Index

Size
(n1 ,n2) Mean (SD) Variables SLM SWD MM LR MVN KS SLM SWD MM LR MVN KS

Different means: m1 = (0.2, 0.5, 1.0, 0.7)T . Independence (Σ1 = Σ2 = I)

(10, 20) x̄ = (0.2737, 0.3560, 0.5178, 0.4314) 0.765 0.7189 0.627 0.6548 0.6284 0.7051 0.6045 0.1424 0.0867 0.0424 0.0157 0.1082
σ = (0.1357, 0.1395, 0.1421, 0.1457) (0.1013) (0.1097) (0.1222) (0.1448) (0.1524) (0.1194)

(30, 30) x̄ = (0.2063, 0.3024, 0.4663, 0.3673) 0.6545 0.6235 0.5527 0.5651 0.5422 0.6162 0.6476 0.1413 0.0772 0.0152 <0.01 0.1121
σ = (0.0943, 0.0991, 0.0990, 0.1053) (0.0835) (0.0857) (0.0959) (0.1014) (0.1088) (0.0892)

(50, 30) x̄ = (0.1933, 0.2975, 0.4630, 0.3603) 0.6289 0.6137 0.5397 0.5539 0.5313 0.6023 0.5810 0.1785 0.0862 0.0164 <0.01 0.1317
σ = (0.0846, 0.0937, 0.0894, 0.0898) (0.0742) (0.0758) (0.0816) (0.0888) (0.0942) (0.0798)

(50, 50) x̄ = (0.1764, 0.2784, 0.4484, 0.3458) 0.605 0.5829 0.5163 0.5308 0.5139 0.5735 0.6739 0.1518 0.0638 <0.01 <0.01 0.0996
σ = (0.0736, 0.0789, 0.0774, 0.0796) (0.0663) (0.0682) (0.0737) (0.0796) (0.0832) (0.0715)

(100, 100) x̄ = (0.1487, 0.2498, 0.4254, 0.3214) 0.5507 0.5399 0.4802 0.5027 0.4911 0.5322 0.6514 0.1676 0.0418 0.0105 <0.01 0.1223
σ = (0.0533, 0.0590, 0.0560, 0.0590) (0.0498) (0.0514) (0.0528) (0.0560) (0.0578) (0.0526)

(500, 500) x̄ = (0.1062, 0.2185, 0.3991, 0.2925) 0.4926 0.4904 0.4412 0.4779 0.4745 0.4890 0.5157 0.2015 <0.01 0.0257 0.0198 0.2308
σ = (0.0257, 0.0282, 0.0274, 0.0280) (0.0255) (0.0255) (0.0267) (0.0265) (0.0269) (0.0259)

Different means: m1 = (0.2, 0.5, 1.0, 0.7)T . Medium Correlation (Σ1 = Σ2 = 0.5·I+0.5·J)

(10, 20) x̄ = (0.2713, 0.3657, 0.5268, 0.4280) 0.7319 0.6647 0.5354 0.6227 0.5784 0.6732 0.5570 0.1647 0.0280 0.0741 0.0245 0.1518
σ = (0.1353, 0.1477, 0.1423, 0.1427) (0.1064) (0.1185) (0.1314) (0.1429) (0.1568) (0.1191)

(30, 30) x̄ = (0.2032, 0.3020, 0.4665, 0.3668) 0.6177 0.5641 0.4490 0.5177 0.4834 0.5712 0.5712 0.1799 0.0124 0.0354 0.0101 0.1911
σ = (0.0933, 0.1014, 0.0991, 0.1008) (0.0836) (0.0885) (0.0981) (0.1016) (0.1153) (0.0899)

(50, 30) x̄ = (0.1931, 0.2928, 0.4581, 0.3632) 0.5848 0.5579 0.4333 0.5066 0.4713 0.5564 0.5245 0.2395 <0.01 0.0220 0.011 0.1972
σ = (0.0847, 0.0908, 0.0883, 0.0905) (0.0767) (0.0786) (0.0838) (0.0896) (0.1036) (0.082)

(50, 50) x̄ = (0.1753, 0.2761, 0.4472, 0.3495) 0.5619 0.5243 0.4121 0.4864 0.4546 0.5268 0.5553 0.1843 <0.01 0.0260 <0.01 0.2243
σ = (0.0742, 0.0798, 0.0787, 0.0791) (0.0676) (0.0712) (0.0767) (0.0792) (0.0899) (0.0745)

(100, 100) x̄ = (0.1449, 0.2487, 0.4250, 0.3236) 0.5089 0.4845 0.378 0.4567 0.4345 0.4859 0.5573 0.2003 <0.01 0.0208 <0.01 0.2118
σ = (0.0520, 0.0578, 0.0591, 0.0595) (0.0539) (0.056) (0.0567) (0.0608) (0.0677) (0.0582)

(500, 500) x̄ = (0.1063, 0.2187, 0.3994, 0.2921) 0.4446 0.4374 0.3329 0.4285 0.4202 0.4394 0.5233 0.1825 <0.01 0.0315 <0.01 0.2538
σ = (0.0261, 0.0280, 0.0264, 0.0279) (0.0261) (0.0257) (0.0273) (0.0265) (0.0282) (0.0265)

Same means: m1 = (1.0, 1.0, 1.0, 1.0)T . Medium Correlation (Σ1 = Σ2 = 0.5·I+0.5·J)

(10, 20) x̄ = (0.5224, 0.5172, 0.5268, 0.5197) 0.7619 0.7249 0.66 0.663 0.6254 0.7041 0.5180 0.2036 0.0794 0.0675 0.0183 0.1132
σ = (0.1405, 0.1442, 0.1423, 0.1404) (0.1032) (0.1127) (0.1267) (0.1402) (0.1508) (0.1187)

(30, 30) x̄ = (0.4685, 0.4669, 0.4665, 0.4640) 0.6624 0.6291 0.5882 0.5676 0.5385 0.6089 0.5416 0.2341 0.0776 0.0251 <0.01 0.1123
σ = (0.1024, 0.1025, 0.0991, 0.0991) (0.0851) (0.0878) (0.0926) (0.101) (0.1092) (0.0939)

(50, 30) x̄ = (0.4586, 0.4621, 0.4581, 0.4627) 0.6337 0.6167 0.5758 0.5566 0.5263 0.5949 0.5167 0.2714 0.0851 0.0171 0.0107 0.0991
σ = (0.0878, 0.0908, 0.0883, 0.0878) (0.0759) (0.0773) (0.082) (0.0871) (0.102) (0.083)

(50, 50) x̄ = (0.4459, 0.4477, 0.4472, 0.4479) 0.6089 0.5887 0.5562 0.5335 0.5061 0.5688 0.5359 0.2648 0.0887 0.0127 <0.01 0.0929
σ = (0.0769, 0.0810, 0.0787, 0.0789) (0.0673) (0.0715) (0.0737) (0.0795) (0.087) (0.0758)

(100, 100) x̄ = (0.4243, 0.4235, 0.4250, 0.4263) 0.5598 0.5457 0.5266 0.5081 0.4879 0.5331 0.5434 0.2628 0.0996 0.0128 <0.01 0.0772
σ = (0.0569, 0.0572, 0.0591, 0.0597) (0.0498) (0.0525) (0.0537) (0.0565) (0.0638) (0.0544)

(500, 500) x̄ = (0.3993, 0.3990, 0.3994, 0.3992) 0.4963 0.4934 0.4883 0.4819 0.4748 0.4908 0.4802 0.2588 0.1300 0.0135 <0.01 0.1105
σ = (0.0268, 0.0277, 0.0264, 0.0270) (0.0254) (0.0255) (0.0256) (0.0265) (0.0277) (0.0259)

3.2. Simulations. Validation

Tables 11–16 show the results of the validation of each algorithm for every simulated
data scenario. In particular, for all simulated setting of parameters, using 100 random sam-
ples, and for each method, the mean and standard deviation (in brackets) of the maximum
Youden indexes obtained in the analysis of the 100 validation samples are presented.

These results and conclusions drawn in terms of validation in the simulated scenarios
are presented below.

3.2.1. Normal Distributions. Different Means and Equal Positive Correlations for Diseased
and Non-Diseased Population

The results in Table 11 show that, for normal simulated data, different means and
equal positive correlation, the logistic regression and the parametric approach under
multivariate normality outperform the rest of the methods in all scenarios for small or large
sample sizes. The non-parametric kernel smoothing approach shows lower but comparable
results to the logistic regression and non-parametric approach, especially in large sample
sizes. Our stepwise approach outperforms Yin and Tian’s stepwise approach, especially
and significantly in the high correlation scenario. Our stepwise approach is closer in
performance to the non-parametric kernel smoothing approach for large sample sizes. The
min-max approach is the one with the worst results in such scenarios.
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Table 11. Normal distributions: Different means and equal positive correlations. Validation.

Size (n1, n2)
Independence (Σ1 = Σ2 = I)

SLM SWD MM LR MVN KS

m1 = (0.2, 0.5, 1.0, 0.7)T

(50, 50) 0.4270 (0.0951) 0.4206 (0.1134) 0.3696 (0.1037) 0.4530 (0.0919) 0.4520 (0.0934) 0.4434 (0.0911)
(500, 500) 0.4823 (0.0304) 0.4804 (0.0291) 0.4103 (0.0308) 0.4882 (0.0282) 0.4895 (0.0297) 0.4863 (0.0301)

m1 = (0.4, 1.0, 1.5, 1.2)T

(50, 50) 0.6610 (0.0842) 0.6610 (0.0880) 0.6024 (0.0908) 0.6990 (0.0779) 0.6994 (0.0787) 0.6902 (0.0773)
(500, 500) 0.7163 (0.0224) 0.7159 (0.0228) 0.6418 (0.0253) 0.7238 (0.0205) 0.7249 (0.0200) 0.7223 (0.0207)

Low correlation (Σ1 = Σ2 = 0.7·I + 0.3·J)

SLM SWD MM LR MVN KS

m1 = (0.2, 0.5, 1.0, 0.7)T

(50, 50) 0.3430 (0.0969) 0.3376 (0.1041) 0.2642 (0.1211) 0.3686 (0.0949) 0.3736 (0.0924) 0.3586 (0.1012)
(500, 500) 0.4074 (0.0285) 0.4056 (0.0303) 0.3189 (0.0322) 0.4149 (0.0309) 0.4155 (0.0314) 0.4131 (0.0292)

m1 = (0.4, 1.0, 1.5, 1.2)T

(50, 50) 0.5576 (0.0939) 0.5510 (0.1024) 0.5056 (0.0979) 0.5790 (0.0921) 0.5790 (0.0853) 0.5740 (0.0955)
(500, 500) 0.6084 (0.0294) 0.6079 (0.0284) 0.5213 (0.0289) 0.6183 (0.0286) 0.6181 (0.0284) 0.6161 (0.0289)

Medium correlation (Σ1 = Σ2 = 0.5·I + 0.5·J)

SLM SWD MM LR MVN KS

m1 = (0.2, 0.5, 1.0, 0.7)T

(50, 50) 0.3618 (0.0984) 0.3442 (0.1009) 0.2474 (0.1072) 0.3750 (0.0854) 0.3678 (0.0839) 0.3640 (0.0880)
(500, 500) 0.4088 (0.0351) 0.4039 (0.0327) 0.2924 (0.0323) 0.4178 (0.0334) 0.4189 (0.0340) 0.4154 (0.0336)

m1 = (0.4, 1.0, 1.5, 1.2)T

(50, 50) 0.5490 (0.0921) 0.5340 (0.1002) 0.4584 (0.0994) 0.5660 (0.0830) 0.5684 (0.0864) 0.5584 (0.0876)
(500, 500) 0.5936 (0.0303) 0.5914 (0.0303) 0.4840 (0.0293) 0.6063 (0.0319) 0.6059 (0.0301) 0.6034 (0.0286)

High correlation (Σ1 = Σ2 = 0.3·I + 0.7·J)

SLM SWD MM LR MVN KS

m1 = (0.2, 0.5, 1.0, 0.7)T

(50, 50) 0.4150 (0.0946) 0.3430 (0.1203) 0.2522 (0.1081) 0.4296 (0.0952) 0.4310(0.0989) 0.4136 (0.0962)
(500, 500) 0.4588 (0.0307) 0.4234 (0.0386) 0.2899 (0.0317) 0.4662 (0.0260) 0.4666 (0.0258) 0.4632 (0.0280)

m1 = (0.4, 1.0, 1.5, 1.2)T

(50, 50) 0.5892 (0.09036) 0.5364 (0.1098) 0.4542 (0.0957) 0.6218 (0.0839) 0.6196 (0.0851) 0.6134 (0.0892)
(500, 500) 0.6285 (0.0234) 0.6171 (0.0307) 0.4823 (0.0315) 0.6456 (0.0220) 0.6461 (0.0213) 0.6460 (0.0227)

3.2.2. Normal Distributions. Different Means and Unequal Positive Correlations for
Diseased and Non-Diseased Population

For normal simulated data, different means and unequal positive correlation for
diseased and non-diseased population, the results displayed in Table 12 show logistic
regression and the parametric approach under multivariate normality as the best models,
and as very similar to the non-parametric kernel smoothing approach, with the stepwise
approaches slightly worse and the min-max method with clearly lower values.

Table 12. Normal distributions: Different means and unequal positive correlations. Validation.

Size (n1, n2)
Different Correlation (Σ1 = 0.3·I + 0.7·J, Σ2 = 0.7·I + 0.3·J)

SLM SWD MM LR MVN KS

m1 = (0.2, 0.5, 1.0, 0.7)T

(50, 50) 0.3528 (0.1106) 0.3532 (0.1072) 0.3236 (0.1012) 0.3878 (0.1079) 0.3814 (0.1061) 0.3832 (0.1127)
(500, 500) 0.4162 (0.0278) 0.4128 (0.0318) 0.3534 (0.0329) 0.4224 (0.0282) 0.4233 (0.0295) 0.4120 (0.0281)

m1 = (0.4, 1.0, 1.5, 1.2)T

(50, 50) 0.5500 (0.1030) 0.5218 (0.1041) 0.4328 (0.0880) 0.5792 (0.1014) 0.5730 (0.1012) 0.5700 (0.1025)
(500, 500) 0.5974 (0.0295) 0.5966 (0.0299) 0.4757 (0.0320) 0.6062 (0.0276) 0.6053 (0.0275) 0.6038 (0.0271)



Mathematics 2022, 10, 1221 17 of 26

3.2.3. Normal Distributions. Different Means and Equal Negative Correlations for
Diseased and Non-Diseased Population

The performance of the algorithms for normal simulated data, different means and
equal negative correlation was very similar to previous results. It can be seen in Table 13
that logistic regression and the parametric approach under multivariate normality were
the best models, followed by the non-parametric kernel smoothing approach, our stepwise
approach and Yin and Tian’s stepwise approach, with worse results for the min-max
algorithm.

Table 13. Normal distributions: Different means and equal negative correlations. Validation.

Size (n1, n2)
Negative Correlation (−0.1)

SLM SWD MM LR MVN KS

m1 = (0.2, 0.5, 1.0, 0.7)T

(50, 50) 0.4822 (0.0990) 0.4670 (0.1028) 0.4316 (0.0939) 0.5168 (0.0944) 0.5160 (0.0920) 0.5010 (0.0920)
(500, 500) 0.5457 (0.0263) 0.5452 (0.0268) 0.4631 (0.0296) 0.5545 (0.0255) 0.5558 (0.0264) 0.5504 (0.0275)

m1 = (0.4, 1.0, 1.5, 1.2)T

(50, 50) 0.7444 (0.0800) 0.7388 (0.0725) 0.6788 (0.0874) 0.7694 (0.0671) 0.7730 (0.0653) 0.7702 (0.0611)
(500, 500) 0.7960 (0.0209) 0.7953 (0.0213) 0.7085 (0.0265) 0.8015 (0.0204) 0.8015 (0.0216) 0.7990 (0.0194)

Negative correlation (−0.3)
SLM SWD MM LR MVN KS

m1 = (0.2, 0.5, 1.0, 0.7)T

(50, 50) 0.8696 (0.0790) 0.8046 (0.1118) 0.6602 (0.0787) 0.9210 (0.0426) 0.9284 (0.0374) 0.9198 (0.0444)
(500,500) 0.9192 (0.0242) 0.9107 (0.0278) 0.6930 (0.0239) 0.9424 (0.0110) 0.9423 (0.0117) 0.9417 (0.0114)

m1 = (0.4, 1.0, 1.5, 1.2)T

(50, 50) 0.9382 (0.0600) 0.9462 (0.0485) 0.8754 (0.0545) 0.9544 (0.0410) 0.9734 (0.0338) 0.9646 (0.0443)
(500,500) 0.9950 (0.0043) 0.9943 (0.0047) 0.9001 (0.0153) 0.9948 (0.0049) 0.9975 (0.0030) 0.9958 (0.0047)

3.2.4. Normal Distributions. Same Means for Diseased and Non-Diseased Population

Regarding scenarios with normal simulated data and same means for the diseased and
non-diseased populations, the results in Table 14 present clear differences with previous
simulations. For scenarios of the same correlation, the min-max algorithm is not the worst
and all algorithms show a very similar mean Youden index in large samples. However,
for scenarios of different correlations, the min-max algorithm clearly outperforms the rest
of the algorithms.

Table 14. Normal distributions: Same means. Validation.

Size (n1, n2)
Same Means (m1 = (1.0, 1.0, 1.0, 1.0)T )

SLM SWD MM LR MVN KS

Same Correlation. Low Correlation (Σ1 = Σ2 = 0.7·I + 0.3·J)

(50, 50) 0.4626 (0.1062) 0.4376 (0.1081) 0.4794 (0.0954) 0.4878 (0.0900) 0.4882 (0.0944) 0.4852 (0.0951)
(500 ,500) 0.5129 (0.0305) 0.5174 (0.0318) 0.5073 (0.0278) 0.5254 (0.0285) 0.5254 (0.0284) 0.5219 (0.0283)

Different Correlation (Σ1 = 0.3·I + 0.7·J, Σ2 = 0.7·I + 0.3·J)

(50, 50) 0.4030 (0.1110) 0.4102 (0.1057) 0.5220 (0.0966) 0.4340 (0.1029) 0.4402 (0.1027) 0.4312 (0.1018)
(500, 500) 0.4726 (0.0281) 0.4697 (0.0280) 0.5609 (0.0285) 0.4783 (0.0259) 0.4793 (0.0260) 0.4753 (0.0256)

Thus, in summary, for normal simulated data, our stepwise approach, Yin and Tian’s
stepwise model, logistic regression, parametric under multivariate normality and non-
parametric kernel smoothing algorithms showed a close performance, with the best results
for logistic regression and the parametric approach under multivariate normality, an
intermediate position for the kernel smoothing algorithm and lower values for our proposed
stepwise approach, which is still better than Yin and Tian’s stepwise algorithm in most cases,
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and significantly for high correlations. By contrast, the min-max algorithm has a worse
performance for scenarios with different means, but is clearly superior for simulations
generated with the same mean for disease markers and different correlations for disease
and non-disease populations.

3.2.5. Non-Normal Distributions. Different Marginal Distributions

Table 15 shows results for the non-normal scenario with different marginal distribu-
tions, which is a scenario that is probably closer to the reality of the actual data, where
asymmetries occur when patients have different degrees of a disease. In this cases, the
stepwise approaches clearly outperform the rest of the algorithms, with the better results
for our proposed stepwise algorithm. For large sample sizes, the non-parametric kernel
smoothing shows markedly superior results to the logistic and the parametric approach.
As in some previous cases, the min-max method fails to provide similar results in these
scenarios.

Table 15. Non-normal distributions: Different marginal distributions. Validation.

Size (n1, n2)
Different Marginal Distributions

SLM SWD MM LR MVN KS

N(0.3, 1)/Γ(0.4, 1)

(50, 50) 0.4732 (0.0860) 0.4684 (0.0891) 0.2374 (0.1158) 0.3656 (0.1243) 0.3316 (0.1534) 0.3146 (0.2140)
(500, 500) 0.5095 (0.0277) 0.5018 (0.0297) 0.3180 (0.0442) 0.4137 (0.0459) 0.4285 (0.0671) 0.4787 (0.1191)

N(0.6, 1)/Γ(0.8, 1)

(50, 50) 0.7058 (0.0848) 0.6794 (0.0877) 0.3716 (0.1194) 0.6572 (0.1080) 0.6368 (0.1079) 0.6716 (0.1207)
(500, 500) 0.7568 (0.0231) 0.7351 (0.0229) 0.4350 (0.04530) 0.7065 (0.0363) 0.6807 (0.0360) 0.7469 (0.0304)

3.2.6. Non-Normal Distributions. Log-Normal Distributions

Table 16 shows the results for the simulated log-normal distributions. Similar conclu-
sions can be drawn for the simulated normal data. We can infer that, for distributions that
can be converted into normal distributions by means of monotonic transformations, we
expect to find similar conclusions as for the simulations under the normality hypothesis.

Table 16. Non-normal distributions: Log-normal distributions. Validation.

Size (n1, n2)
Log-Normal Distributions

SLM SWD MM LR MVN KS

Different means: m1 = (0.2, 0.5, 1.0, 0.7)T . Independence (Σ1 = Σ2 = I)

(50, 50) 0.4022 (0.1019) 0.4078 (0.1041) 0.3658 (0.1060) 0.4112 (0.0936) 0.4034 (0.0903) 0.3914 (0.1142)
(500, 500) 0.4504 (0.0296) 0.4506 (0.0315) 0.4096 (0.0324) 0.4562 (0.0300) 0.4541 (0.0321) 0.4507 (0.0534)

Different means: m1 = (0.2, 0.5, 1.0, 0.7)T . Medium correlation (Σ1 = Σ2 = 0.5·I + 0.5·J)

(50, 50) 0.3460 (0.0103) 0.3454 (0.1056) 0.2574
(0.1024017) 0.3482 (0.1065) 0.3370 (0.1100) 0.3374 (0.1133)

(500, 500) 0.3990 (0.0345) 0.3954 (0.0358) 0.2924 (0.0336) 0.3990 (0.0372) 0.3960 (0.0367) 0.4014 (0.0348)

Same means: m1 = (1.0, 1.0, 1.0, 1.0)T . Medium correlation (Σ1 = Σ2 = 0.5·I + 0.5·J)

(50, 50) 0.3890 (0.1035) 0.3756 (0.1029) 0.4170 (0.1046) 0.4102 (0.0969) 0.3796 (0.1187) 0.3584 (0.1133)
(500, 500) 0.4465 (0.0306) 0.4515 (0.0315) 0.4548 (0.0282) 0.4570 (0.0309) 0.4514 (0.0317) 0.4545 (0.0317)

3.3. Computational Times

In addition to the performance of the algorithms in terms of the Youden index, in
practice, it can be important to also consider the computational time taken by the algorithm
to be used. Although our proposal is an algorithm of an extensive search, when k is the
number of values of βi to be considered and p is the number of markers, the number
of Youden indexes necessary to estimate the parameters of the model is reduced from
the p · kp−1 order using the comprehensive Pepe and Thompson algorithm [13] to the
k · (p− 1)( 3

2 p− 1) order using the stepwise procedure.
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Without a loss of generality, Table 17 shows the average computational time of 1000
simulations of each of the analyzed algorithms for the scenario of normal distributions, a
low positive correlation and vector of means (m1 = (0.2, 0.5, 1.0, 0.7)) (Table 2), both for the
smallest sample size (n1 = 10, n2 = 20) and for the largest sample size (n1 = 500, n2 = 500).

Table 17. Total computational time for each algorithm (estimated by mean of 1000 samples).

Computational Times (min)

SLM SWD MM LR MVN KS

(n1, n2) = (10, 20) 17.1157 0.096 0.014 0.00003 0.00004 0.0003
(n1, n2) = (500, 500) 0.5939 0.096 0.033 0.00004 0.00004 0.0007

Table 17 shows that the stepwise algorithms have a longer computational time than the
other algorithms. Our proposed algorithm entails a noticeably higher computational time
compared to Yin and Tian’s stepwise approach. This difference in the computational time
is due to the biomarker search that optimizes the linear combination at each step and the
handling of ties in our algorithm, which gets worse at small sample sizes where ties are more
common. As a consequence, there is a high disparity between computational times with
small sample sizes. This computational burden increases significantly for a larger number
of biomarkers. However, although this high computational time presents a limitation in our
algorithm, it addresses a correct handling of ties, leading to better discriminatory ability
results. Furthermore, the computational time of a single simulation is, for four biomarkers,
in any case, addressable. It should also be noted that the computational times of derivative-
based numerical search methods (such as the non-parametric kernel smoothing approach)
significantly depend on the initial values.

3.4. Application in Clinical Diagnosis Cases

Figures 1 and 2 show the distribution of each biomarker for the Duchenne muscular
dystrophy and prostate cancer dataset, respectively, where disease refers to clinically
significant prostate cancer.

Figure 1. Marginal distributions of biomarkers. DMD dataset. CK: serum creatine kinase, H:
haemopexin, PK: pyruvate kinase, LD: lactate dehydrogenase.
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Figure 2. Marginal distributions of biomarkers. Prostate cancer dataset. PSA: prostate specific
antigen, Age: age in years, BMI: body mass index, Free PSA: percentage of Free PSA.

Tables 18 and 19 show the empirical estimates of the Youden index of each biomarker
and the optimal cut-off point (threshold), as well as the characteristics of each of them
in terms of mean, standard deviations (SD) and correlations between them for both the
disease and non-disease group, considered as a non-carrier for the Duchenne muscular
dystrophy dataset and non-clinically significant prostate cancer for the prostate cancer
dataset, respectively.

Table 18. DMD dataset information.

Non-Carrier Carrier

Youden Threshold Mean SD Mean SD
CK 0.6124 57 36.6102 18.6006 185.791 226.9330
H 0.4172 87.5 82.3072 12.2403 92.9303 9.8576

PK 0.5079 16.7 12.1447 4.3935 23.9310 17.2122
LD 0.5776 188 164.5748 41.3686 250.9403 72.4368

Correlations
Non-

Carrier rCK−H rCK−PK rCK−LD rH−PK rH−LD rPK−LD

−0.3340 0.1029 0.1987 0.0812 0.1824 0.2188
Carrier rCK−H rCK−PK rCK−LD rH−PK rH−LD rPK−LD

−0.1364 0.6953 0.4851 −0.118 −0.1048 0.4813
rCK−H , rCK−PK , rCK−LD , rH−PK , rH−LD , rPK−LD denote the correlations between CK and H biomarkers, CK
and PK biomarkers, CK and LD biomarkers, H and PK biomarkers, H and LD biomarkers and PK and LD
biomarkers, respectively.
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Table 19. Prostate cancer dataset information.

Non-Cancer Cancer

Youden Threshold Mean SD Mean SD
PSA 0.1571 9.45 6.7875 2.3160 7.9887 5.2761
Age 0.2202 68 65.0804 7.2840 68.8732 6.6846
BMI 0.0953 25.83 27.8590 3.8243 27.7559 3.8756

Free PSA 0.4007 13.95 18.3629 7.5917 14.7190 11.4067

Correlations
Non-

Cancer rPSA−Age rPSA−BMI rPSA−FreePSA rAge−BMI rAge−FreePSA rBMI−FreePSA

0.0901 −0.1179 −0.1127 0.0536 0.0894 0.0694
Cancer rPSA−Age rPSA−BMI rPSA−FreePSA rAge−BMI rAge−FreePSA rBMI−FreePSA

−0.1985 0.0896 −0.0756 0.0758 0.2478 −0.0767
rPSA−Age, rPSA−BMI , rPSA−FreePSA, rAge−BMI , rAge−FreePSA, rBMI−FreePSA denote the correlations between PSA and
Age biomarkers, PSA and BMI biomarkers, PSA and FreePSA biomarkers, Age and BMI biomarkers, Age and
FreePSA biomarkers and BMI and FreePSA biomarkers, respectively.

Concerning the performance achieved by each method, Tables 20 and 21 present the
linear combination for the optimal cut-off point that maximizes the Youden index, as well as
the sensitivity and specificity values achieved, for the Duchenne muscular dystrophy and
prostate cancer dataset, respectively. Tables 22 and 23 show these metrics after applying
the 10-fold cross validation procedure.

Table 20. Linear combination that maximizes the Youden index for each method. DMD dataset.

Optimal Linear Combination Youden Sensitivity Specificity

SLM 0.57× CK + H + 0.65× PK + 0.08× LD 0.8255 0.8806 0.9449
SWD 0.36× CK + 0.82× H + PK + 0.1296× LD 0.8184 0.8657 0.9528
MM 0.14×max{CK, H, PK, LD}+ min{CK, H, PK, LD} 0.7335 0.8358 0.8976
LR 0.0482× CK + 0.1039× H + 0.0992× PK + 0.0138× LD 0.8106 0.8657 0.9449

MVN 0.0956× CK + 0.126× H + 0.1847× PK + 0.0316× LD 0.7878 0.8507 0.9370
KS 1.1699× CK + 3.1787× H + 3.819× PK + 0.5899× LD 0.8035 0.8507 0.9528

CK, H, PK, LD: biomarkers normalized after min-max scaling. The results rounded to four decimal places
are displayed.

Table 21. Linear combination that maximizes the Youden index for each method. Prostate can-
cer dataset.

Optimal Linear Combination Youden Sensitivity Specificity

SLM 0.04× PSA + 0.48× Age− 0.01× BMI − FreePSA 0.4857 0.7746 0.7111
SWD PSA + 0.84× Age + 0.07× BMI − FreePSA 0.4319 0.7887 0.6432
MM max{PSA, Age, BMI, FreePSA} −min{PSA, Age, BMI, FreePSA} 0.2986 0.5775 0.7211
LR 0.0881× PSA + 0.0803× Age− 0.0079× BMI − 0.0755× FreePSA 0.4284 0.7324 0.6960

MVN 0.2605× PSA + 0.335× Age− 0.086× BMI − 0.162× FreePSA 0.3660 0.6901 0.6759
KS 1.1737× PSA + 27.7107× Age− 7.7898× BMI − 51.2465× FreePSA 0.4681 0.7746 0.6935

PSA, Age, BMI, FreePSA: biomarkers normalized after min-max scaling. The results rounded to four decimal
places are displayed.

Table 22. Ten-fold cross validation. DMD dataset.

10-Fold Cross Validation. DMD Dataset.

Youden Sensitivity Specificity

SLM 0.7611 0.8576 0.9135
SWD 0.7301 0.8167 0.9135
MM 0.6215 0.7786 0.8429
LR 0.7861 0.8476 0.9345

MVN 0.7391 0.8167 0.9224
KS 0.7635 0.8333 0.9301
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Table 23. Ten-fold cross validation. Prostate dataset.

10-Fold Cross Validation. Prostate Dataset.

Youden Sensitivity Specificity

SLM 0.3844 0.6786 0.7058
SWD 0.3628 0.6946 0.6681
MM 0.2247 0.4661 0.7586
LR 0.3327 0.6768 0.6559

MVN 0.2785 0.6625 0.6160
KS 0.3820 0.6911 0.6910

3.4.1. Duchenne Muscular Dystrophy Dataset

The mean values of each biomarker and the correlations between them are very
different and differ between carriers and non-carriers. Likewise, the variances of the four
biomarkers are very different and, therefore, it is necessary to normalize the values of each
variable before applying the min-max method. In this way, different units of measurement
are avoided so that a correct use of the min-max algorithm is made, where all biomarkers
must be in the same unit. The estimates of the Youden index of each biomarker (CK, H, PK,
LD) in a univariate way were 0.6124, 0.4172, 0.5079 and 0.5776.

The linear methods (combination of biomarkers) achieved a remarkable Youden index
in training data, with values above 0.8 for most of them. Stepwise methods followed
by logistic regression and the non-parametric method based on kernel smoothing are
the ones that obtained the best results. Our proposed stepwise approach achieved the
best performance in training data (Youden index = 0.8255) with the linear combination
0.57× CK + H + 0.65× PK + 0.08× LD, but the logistic regression showed the best result
in a 10-fold cross validation procedure (Youden index = 0.7861) with the linear combination
0.0482 × CK + 0.1039 × H + 0.0992 × PK + 0.0138 × LD. It is followed by the kernel
algorithm and our stepwise approach. These results are in concordance with those of
normal simulated data or variables that can be converted into normal distributions by
means of monotonic transformations.

3.4.2. Prostate Cancer Dataset

Although to a lesser extent than the previous example, there is a notable difference be-
tween the variances of the biomarkers, so the values were also normalized before applying
the min-max approach. The correlations between biomarkers are close to zero (independent
biomarkers). The Youden index estimates for each biomarker (PSA, age, BMI, free PSA) in
a univariate way were lower than the previous data set: 0.1571, 0.2202, 0.0953 and 0.0141.

Our proposed stepwise algorithm and the non-parametric method based on kernel
smoothing dominate all of the other methods. Our algorithm achieved the best performance
in training and validation data (maximum Youden index = 0.4857, 0.3844 for training and
validation data respectively) with the linear combination 0.04× PSA + 0.48× Age− 0.01×
BMI − FreePSA. In these cases, PSA and free PSA are markers that usually present a
marked asymmetry, showing a greater or lower degree of progress of the cancer disease; in
this scenario, simulated data also showed the superiority of the stepwise algorithm.

4. Discussion

Although continuous markers usually provide better adjusted predictions, in classi-
fication problems, the ultimate goal is to assign a class 0/1 for any individual. Choosing
threshold probabilities to dichotomize a predictive or prognostic model is the key to solve
this problem. There are different methods to provide the cut-off point depending on the
purpose of the classification, but there is a consensus that, without a clear reason to provide
higher values for sensitivity or specificity, the Youden index provides an optimized balance
of sensitivity/specificity [43].

Thus, the Youden index has been the most usual method to classify patients according
to predictive or prognostic models in medicine. As previous studies provide methods
to estimate the parameter of linear models in order to optimize ROC parameters, in this
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work, we have proposed a stepwise algorithm that maximizes the Youden index. This
algorithm is based on sequential optimizations, as they happen in dynamic programming,
thus following the Bellman’s optimality principle [44]. Unlike similar algorithms that use
partial optimizations, we explore, at any step, the candidate biomarkers to be added to the
model that provide linear combinations with the highest Youden index, following Pepe
and Thompson’s parameter search approach. In addition, our proposal also considers the
ties that appear in the sequencing of the partial optimizations.

Our proposed approach has been explored in extensive simulation scenarios and
compared with other methods. In particular, five other linear combination methods from
the literature adapted to optimize the Youden index have been considered for comparison.
Two of them are also based on Pepe and Thompson’s empirical search (the Yin and Tian
stepwise approach and the min-max approach) and three methods in numerical search
based on derivatives (the classical logistic regression approach, a parametric approach and
a non-parametric kernel smoothing approach).

The results obtained show that our proposed stepwise approach is superior to all other
compared methods in most of the simulated scenarios considered for training data, but
remains close to the rest for validation data, except in cases that are far from the verification
of the normality hypothesis, in which, it is the best method for both training and validation
data. It is globally followed by the Yin and Tian stepwise approach and the non-parametric
kernel smoothing approach, the latter being slightly better in scenarios of higher correlation
normal distributions for training data. However, in normal distributions scenarios, the non-
parametric kernel smoothing approach outperformed Yian and Tian’s stepwise approach for
the validation data. In normal distribution scenarios, logistic regression and the parametric
approach under multivariate normality showed a comparable performance overall, inferior
to the non-parametric kernel smoothing approach in training data but superior or similar to
the rest in validation data. However, the performance of the parametric approach worsened
compared to logistic regression in non-normal distribution scenarios, as expected.

The min-max approach performed the worst in scenarios with different biomarker
predictive capacities. However, it performed better in scenarios with the same predictive
capacity of biomarkers (both in normal and non-normal distributions) and it outperformed
the other algorithms when the covariance matrices differed between the diseased and
non-diseased population. Among the wide range of simulated scenarios, highly negatively
correlated biomarker scenarios were also included. In these scenarios, most algorithms
achieved a very high performance, a result that is in agreement with the study by Pinsky
and Zhu, who reported an increase in performance when considering highly negatively
correlated biomarkers. In cases where they achieved near-perfect Youden indexes, the
stepwise approaches performed worse than the other algorithms, with the exception of the
min-max approach.

The performance of the linear combination methods was also analyzed on real datasets.
The results obtained derived similar conclusions to those deduced from the simulated data.
Remarkably, the stepwise approach performance is superior to the rest of the algorithms
for the prostate cancer database in training and validation data. This is a data set where
the PSA and free PSA variables for screening populations, or without previous treatment,
present clear asymmetries that reflect the progression of the disease. This situation will
occur for many other diseases where markers do not present results under the hypothesis
of normality and the triggered values are associated with advanced stages of a disease.
In these scenarios, the stepwise algorithm that we have proposed performs better than
parametric algorithms where the non-verification of the hypothesis (normality or logistic
relation) results in a loss of prediction capacity in the models.

The stepwise approaches and the non-parametric kernel smoothing approach achieved
a good performance in general. Logistic regression also achieved one of the best discrimina-
tive capabilities on the DMD dataset (the best in the validation data), whose performance
was relatively high overall.

Therefore, given the results of the spectrum analyzed, we could suggest the reader
to use the min-max algorithm in scenarios with biomarkers with a similar predictive
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power and different covariance matrices between the disease and non-disease group, and
our proposed stepwise approach in other scenarios, especially for those apart from the
normality hypothesis. In addition, we have created a library in R (SLModels) that can be
used to implement these algorithms.

However, in terms of the computational time, stepwise approaches and, in particular,
our proposal entail a significantly higher computational time due to the handling of ties,
which may be more present in small sample sizes. This may be a limitation in the use of our
algorithm, since, in practice, a faster computational speed is desired, especially when the
number of biomarkers increases (p > 5). In these cases, the other algorithms (non-stepwise
or min-max approach) have the advantage of being much more efficient. However, it has
been shown that the min-max approach may not be sufficient in terms of discrimination
in some scenarios. Aznar-Gimeno et al. [45] proposed a new approach that extends the
min-max approach in order to analyze whether it increased predictive capacity while also
being computationally tractable independently of the number of biomarkers.

As a line of future work, it is intended to optimize the proposed stepwise algorithm,
with the aim of reducing its computational burden. It is intended to create tie handling
strategies in such a way that the least pernicious criteria are used to break ties and not
to drag them through many stages. The idea is to balance a certain increase in perfor-
mance against an increase in computational load. Readers are also encouraged to adapt
our algorithm using other target metrics to optimize and validate it in other scenarios,
such as to explore and analyze the algorithm in multi-class classification problems using
ROC surfaces.

5. Conclusions

In this work, we present a stepwise algorithm that complements and extends related
existing ideas to optimize ROC-curve-derived parameters for linear models. We used, as
the optimization parameter, the Youden index, which is the most used threshold point
to dichotomize markers. As a strength, the developed method is a fully non-parametric
distribution-free approach that showed a better performance in some scenarios. In addition,
it captures the full predictive ability of a set of variables, in contrast to methodologies
that try to reduce them. Additionally, the research has led to the creation of the R library
SLModels, which incorporates our proposed algorithm, can be used and is openly available
to the scientific community. We believe that the findings of this research will provide insight
for the development and application of algorithms for classification problems in medicine.
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