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1. Introduction  

 

Historically, in the Spanish sheep industry, the control 
and supervision of animals have been carried out based on 
traditional grazing practices, which usually involve direct, 
continuous, or periodic observations by the shepherd 
(Escribano et al 2020; Bertolozzi-Caredio et al 2021). In the 
process, the shepherd acquires profound knowledge about 
the daily and seasonal behavior of the ewes concerning 
grazing resources and environment features, among other 
factors; however, the time required to acquire that 
knowledge, along with social (the expanding rural exodus) 
and economic (the detriment of extensive practices due to 
the higher economic profitability of intensive production 
systems) factors has greatly diminished traditional grazing 
practices and, consequently, the loss of knowledge of these 
animals behavior.  

Given the critical situation, it is essential to introduce 
new technologies that contribute to developing an objective 
method for understanding how grazing flocks behave and 
which factors have the most influence. Modern extensive 
systems, which strive to maximize economic profitability and 

sustainability, might benefit from an objective analysis of the 
suitability of habitat for grazing as a means of improving the 
organization and distribution of flocks and increasing support 
for decision-making in sheep management (Launchbaugh 
and Howery 2005). Understanding the behavior of grazing 
flocks is a difficult challenge because the processes occur at 
multiple spatial and temporal scales (Senft et al 1987; Hulbert 
et al 2019). Nevertheless, abiotic factors (environmental, 
climatological, and topographical) affect the feeding 
behavior of ewes in free-range systems (Arnold and Dudzinski 
1978; Harris et al 2002). Abiotic factors include the location 
of waterholes, the size, and geometry of rangelands, the 
topographic attributes, soils, and weather fluctuations (e.g., 
wind, temperature, atmospheric pressure). However, it is 
also important to evaluate the physiological state of the 
animals and the social conformation of the flock. Thus, when 
analyzing the distribution of grazing ewes, the environment, 
the flocks, and their interaction must be considered. 

Technologies for monitoring flocks have proven 
effective and have become common among farmers. As 
geolocation and remote sensing technologies have become 
widespread, farmers have been implementing new practices 
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statistics (directional distribution, Kernel density, and Hot Spot analysis) were also calculated. Results in both monitoring 
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The point cloud (Figure 2a) had a point density of one point 
per 2 m2 and an accuracy of 15-20 cm for Z and 10-15 cm for 
XY. Before extracting any derived product, a workflow of 
refinement and editing was performed on the .las files, 
including removing overlapped and outlier points, deleting 
duplicates, identifying noisy points, and reclassifying. This 
was performed in ArcGIS Pro 2.4 and the LAStools LiDAR 
processing toolbox (https://rapidlasso.com). 

After refinement, the LiDAR point cloud (Figure 2a) 
was rasterized into the Digital Terrain Model (DTM) (Figure 
2b, top) and the Digital Surface Model (DSM) (Figure 2b, 
bottom). To match the original point density, the spatial 
resolution of the two raster files was set to 2 m. In both cases, 
elevation was interpolated; however, for the DTM, the points 
classified as ground data were selected, whereas, for the 
DSM, a filter of the first return signal was applied. It was 
shown that using the first return of the signal may lead to an 
underestimation of the crown height because the probability 
that a small footprint laser pulse intercepts the apex of a 
conic crown is low (Lim et al 2003). In the study area, 
however, the trees (mostly Quercus ilex) have a rounded, 
typically plain crown, which is not affected by this problem.  

Based on the DTM, several terrain features were 
evaluated, including watershed slope, aspect, flow direction, 
and accumulation. A preliminary assessment identified slope 
and aspect as key attributes. In addition, the Canopy Height 
Model (CHM) was calculated by subtracting the DTM from 
the DSM. Therefore, the elevation, slope, CHM, and aspect of 
the whole study area were extracted and analyzed at each 
location of the monitored sheep. 
 

2.3.2. Aerial photographs and classification map 
 

Four orthophotos from the ITACyL at 25-cm spatial 
resolution were mosaicked to cover the study area, including 
three RGB bands and one NIR.  

To investigate the LU/LC in the study area, a 
supervised classification was tested by the ArcGIS Pro 2.4 
schema of pixel-based classification and the Support Vector 
Machine algorithm (Priya et al 2012; Saini and Ghosh 2018). 
The training dataset consisted in 100 ground-truth points 
randomly selected in the orthophotos, in which their LU/LC 
was estimated from the VNIR images. To reinforce the 
classification, the Normalized Difference Vegetation Index 
(NDVI) between red and NIR bands was calculated and used 
as a reference map in the process. The proposed legend 
identified the most common grazing scenarios, i.e., trees 
and/or shrublands, rainfed crop areas, grasslands and 
pasture, roads and tracks, and rocky-asphalt patches. The 
accuracy of the map produced was evaluated by a confusion 
matrix, a tool that allows a comparison of the real class and 
the class that resulted from the process within a range of 
known areas. Each column of the matrix indicates the 
number of predictions of each class, and each row indicates 
the instances in the real class. The tool calculates errors of 
omission and commission, the index of agreement (or kappa 
concordance), and an overall precision between the classified 
map and the reference data. For that purpose, a dataset of 
other 100 ground-truth points, previously selected in the 
orthophotos, was used as reference. Then, statistics were 
extracted from the expected vs. observed values, a typical 
schema of the accuracy assessment used in classifications  
(Foody 2002; Lillesand et al 2015). Similarly to the other 
LiDAR-derived maps, each GPS position was overlaid on the 
resulting LU/LC map, and each class was extracted for each 
record. 

 

 
Figure 2 (a) LiDAR data with a point cloud density representation and the locations of the study area, and (b) details of the rasters DTM (top) 
and DSM (bottom) of the study area. 
 

2.4. Analysis of spatial distribution by spatial statistics 
 

Several spatial statistics were suggested as an 
objective way to identify both the empirical relationships 

between factors that influence grazing and the spatial 
patterns of the flock based on the GPS locations. Only the 
temporal continuity of the 18-20 data allowed that analysis.  
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