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Resumen

Las prótesis visuales actuales son capaces de proporcionar percepción visual a personas

con cierta ceguera. Sin pasar por la parte dañada del camino visual, la estimulación

eléctrica en la retina o en el sistema nervioso provoca percepciones puntuales conocidas

como “fosfenos”. Debido a limitaciones fisiológicas y tecnológicas, la información que

reciben los pacientes tiene una resolución muy baja y un campo de visión y rango dinámico

reducido afectando seriamente la capacidad de la persona para reconocer y navegar en

entornos desconocidos. En este contexto, la inclusión de nuevas técnicas de visión por

computador es un tema clave activo y abierto. En esta tesis nos centramos especialmente

en el problema de desarrollar técnicas para potenciar la información visual que recibe el

paciente implantado y proponemos diferentes sistemas de visión protésica simulada para

la experimentación. Las contribuciones generales de esta tesis son cinco:

1. Al combinar la salida de dos redes neuronales convolucionales para detectar bordes

informativos estructurales y siluetas de objetos, demostramos cómo se pueden recono-

cer rápidamente diferentes escenas y objetos incluso en las condiciones restringidas

de la visión protésica. Nuestro método es muy adecuado para la comprensión de

escenas de interiores comparado con los métodos tradicionales de procesamiento de

imágenes utilizados en prótesis visuales.

2. Presentamos un nuevo sistema de realidad virtual para entornos de visión protésica

simulada más realistas usando escenas panorámicas, lo que nos permitió estudiar

sistemáticamente el rendimiento de la búsqueda y reconocimiento de objetos. Las

escenas panorámicas permiten que los sujetos se sientan inmersos en la escena al

percibir la escena completa (360 grados).

3. Demostramos cómo un sistema de navegación de realidad aumentada para visión

protésica ayuda al rendimiento de la navegación al reducir el tiempo y la distancia

para alcanzar los objetivos, incluso reduciendo significativamente el número de

colisiones de obstáculos. Mediante el uso de un algoritmo de planificación de ruta,

el sistema encamina al sujeto a través de una ruta más corta y sin obstáculos.

4. Evaluamos la agudeza visual midiendo la influencia del campo de visión con respecto

a la resolución espacial en un nuevo entorno de visión protésica simulada. Nuestro
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entorno de simulación aprovecha un software de realidad virtual combinado con una

pantalla portátil montada en la cabeza para simular la experiencia de la vida real

de usar una prótesis de retina.

5. Proponemos un modelo de Spiking Neural Network que se basa en mecanismos

biológicamente plausibles y utiliza un esquema de aprendizaje no supervisado para

obtener mejores algoritmos computacionales y mejorar el rendimiento de las prótesis

visuales actuales. El modelo propuesto puede hacer uso de la señal de muestreo

descendente de la unidad de procesamiento de información de las prótesis retinianas

sin pasar por el análisis de imágenes retinianas, proporcionando información útil a

los ciegos.
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Abstract

Current visual prostheses are capable of providing visual perception to people with

certain blindness. Bypassing the damaged part of the visual path, electrical stimulation

in the retina or nervous system provokes spot percepts known as “phosphenes”. Due

to physiological and technological limitations, the information received by patients has

very low resolution, low field of view and reduced dynamic range seriously affecting the

person’s ability to recognize and navigate in unknown environments. In this context,

the inclusion of new computer vision techniques is an active and open key topic. In this

thesis, we particularly focus on the problem of developing techniques to enhance the

visual information received by the implanted patient and propose different simulated

prosthetic vision systems for experimentation. The overarching contributions of this thesis

are fivefold:

1. By combining the output of two Fully Convolutional Networks for structural informa-

tive edges and object masks and silhouettes detection, we demonstrated how different

scenes and objects can be quickly recognized even under the restricted conditions of

prosthetic vision. Our method is well suited for indoor scene understanding over

traditional image processing methods used in visual prostheses.

2. We present a new virtual-reality system for more realistic simulated prosthetic vision

environments using panoramic scenes, which allowed us to systematically study

object search and recognition performance. This system acts as an electronic visual

aid that attach to the user’s head and presents information directly to the user’s

eyes. The panoramic scenes allow subjects felt immersed in the scene by perceiving

the entire scene (360 degrees).

3. We demonstrate how an augmented reality navigation system for prosthetic vision

help navigation performance by reducing the time and distance to reach goals, even

significantly reducing the number of obstacles collisions. By using a route planning

algorithm, the system route the subject through a shorter, obstacle-free route.

4. We assess visual acuity by measuring the influence of the field of view with respect to

spatial resolution in a new simulated prosthetic vision environment. Our simulation
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environment took advantage of virtual-reality software paired with a portable head-

mounted display to simulate the real-life experience of wearing a retinal prosthesis.

5. We propose a Spiking Neural Network model that is based on biologically plausible

mechanisms and uses an unsupervised learning scheme to obtain better computational

algorithms and improve the performance of current visual prostheses. The proposed

model can make use of the down-sampled signal from information processing unit of

retinal prostheses bypassing retinal image analysis, providing useful information to

the blind.
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1 INTRODUCTION

Chapter 1

1 Introduction

“The best and most beautiful things in the world cannot be seen or even touched - they

must be felt with heart.”

— Hellen Keller

How far away is a cure for blindness? Understanding the brain, its functions, and its

diseases has motivated researchers in the last century to cross new biomedical frontiers and

develop advanced neurotechnologies to help the hundreds of million people worldwide that

suffer from neurological disorders [1]. Neuroengineering might nowadays offer potential so-

lutions for neurological afflictions based on prosthetic devices, which establish bidirectional

communication between electronic machines and neurons [2–4]. For example, the activity

of neurons can be influenced through their excitation or inhibition [5]. Consequently,

the modulation of the central and peripheral nervous system allows to induce sensory

perception, e.g., for blindness. One approach to stimulate and record neuronal activity is

using implantable neural interfaces, which offer an intimate connection with the nervous

tissue.

Owing to the incredible recent technological progress in the development of tools

and devices aiming at interfacing to the nervous system, considerable research has been

done in recent decades to deepen our understanding of the human nervous system or

to interact with the nervous system for prosthetic purposes [6–9]. Implantable systems

designed and developed to either stimulate the nervous system or directly record neuronal

activities are referred to as visual prostheses. In this regard, the proposed thesis is about

novel computer vision techniques suitable for improving the visual information received

by implanted patients. The work focuses on enhancing important aspects of modern

retinal prostheses to obtain a safer and more useful form of artificial vision for people

blinded by retinal degeneration diseases. In the following sections, relevant aspects related

to the thesis will be introduced; namely, the human visual system, vision impairments,
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Figure 1.1: Schematic representation of the eye and retina. Light enters the eye through
cornea and is focused by the lens onto the retina. The retina is mainly composed of three
layers of neurons, photoreceptors, bipolar cells and retinal ganglion cells, with horizontal
and amacrine cells in between. (Adapted from Tong et al. [10]).

some sight restoration technologies (with emphasis on retinal prostheses), and the use of

simulated prosthetic vision to improve the design of current visual prostheses, which is

the working principle of the research in this thesis.

1.1 The human visual system

Visual perception begins when light enters the eye and induces electrical signals that

are subsequently processed within the brain producing an image of the visual world

(Figure 1.1). This process starts when the light enters the eye through the cornea, passes

the pupil surrounded by the iris, and is focused by the lens onto the retina, the nervous

tissue that conveys extraordinary image processing. Light has to travel through the entire

thickness of the retina until reaching the outer nuclear layer where photoreceptors (rods and

cones) are radially oriented and accommodated on the retinal pigmented epithelium. Cone

photoreceptors are responsible for high-acuity and color vision, while rod photoreceptors

allow us to see at low light intensity levels. Photoreceptors communicate to horizontal

and bipolar cells in the inner nuclear layer, which signal to amacrine cells and finally to

retinal ganglion cells (RGCs). The axon of each RGC extends from the location of the

cell body to the optic disc, where they are collected and directed out of the eyeball to

form the optic nerve. At the optic chiasm, the two optic nerves are split roughly in half
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and recollected to have the same field of view side bundle together. The axons finally

arrive at the lateral geniculate nucleus of the thalamus, where the visual input is sent

to the occipital lobe at the primary visual cortex (V1) for information integration and

generation of visual experiences.

Visual acuity is an important term when talking about the visual system. Visual

acuity refers to the ability of the eye to distinguish shapes and the details of objects at a

given distance. Typically, a 20/20 visual acuity value is considered perfect vision. High

visual acuity vision is found in the fovea (central point on the retina), which is densely

saturated with cone photoreceptors. It is very important for reading and faces recognition

[11]. Nevertheless, peripheral vision is characterized by a lower concentration of cone

photoreceptors compared to the fovea. Although peripheral vision has a lower resolution,

it is just as much valuable as the macular high visual acuity. In fact, humans can get

information about the location of objects, their overall shape and size, their color, and

their movements from a field of view much wider than 10◦. The extent of a normal field

of view is up to about 200◦ horizontally (with 120◦ binocular) and 130◦ vertically. Vision

is necessary up to the far periphery, even if with poor resolution, in order for us to move

in the environment, avoid obstacles, and react to incoming dangers.

1.2 Vision impairments

According to the World Health Organization, 285 million people are estimated to be

visually impaired worldwide [12]. Of these, 39 million are blind and 246 million have low

vision. In various parts of the world, legal blindness is defined as visual acuity of 20/200

or field of view no greater than 20◦ in the better eye with best correction possible.

Vision disorders are a major health issue for society and for the individual’s quality of

life. Low vision is uncorrectable vision loss that interferes with the possibility to perform

the basic self-care activities of daily, sustain independency, and experience everyday-life

visual emotions (like seeing someone’s face and expressions). The leading causes of

blindness are primarily age-related eye diseases such as age-related macular degeneration

(AMD), cataract, retinitis pigmentosa (RP) and glaucoma [13–15].

Photoreceptors are particularly susceptible to cellular stress and loss of photoreceptors

due to degeneration is a major cause of vision loss, resulting in dysfunctional light detection,

transduction, and transmission. These inherited disorders can affect either rods or cones
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(a) (b) (c)

Figure 1.2: Visual impairments reflected in a beautiful dog image. (a) Normal vision.
(b) Age-related macular degeneration (AMD). (c) Retinitis pigmentosa (RP).

primarily, as in RP. The most common form of RP is a rod–cone dystrophy, affecting night

blindness, followed by progressive loss in the peripheral field of view in daylight, eventually

leading to blindness after several decades. Another important degenerative disease of the

retina is the AMD. This retinal disease is characterized by sudden acuity loss resulting

from untreatable submacular neovascularisation. Therefore, the outer retinal degeneration

in AMD and RP leads to the appearance of stains in the macular or peripheral regions of

the retina, respectively. Consequently, the image perceived by the patients is affected in

the center for AMD or on the sides for RP, which develops the so-called “tunnel vision”

before complete blindness, as can be seen in Figure 1.2.

1.3 Sight restoration technologies

At the moment, there is no cure for blindness and conditions like AMD and RP but to

prevent or mitigate the disease advancement. Researchers are been trying to come up

with ways to restore sight in these individuals. One way would be to use gene therapy

[16, 17] to simply replace the faulty genes with functioning ones. Another way would be

to induce small optogenetic proteins [18, 19] that make the surviving cells sensitive to

light again. The third idea is based on an electrical prostheses [20, 21] where directly

elicit responses in surviving retinal cells, analogous to cochlear implants.

Although the development of efficient biomedical and engineering concepts is promis-

ingly advancing, for some of the emerging treatments the path for clinical and commercial

applications remains delayed. However, visual prostheses, more precisely retinal prostheses,
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have finally received regulatory market approval in Europe and United States, becoming

a valuable option to artificially induce visual perceptions in blind patients. A visual

prosthesis is an visual device intended to restore functional vision in people suffering from

partial or total blindness. A number of researchers are studying the partial restoration

of sight to blind people through the electrical stimulation of a component of the visual

system. The idea of electrically stimulating the human visual system was first described

by Franklin [22] and Leroy et al. [23]. Leroy et al. [23] studied visual sensations of light by

passing an electrical charge through the eye of a blind man. Later, in 1929, it was shown

that stimulating the human visual cortex led to the perception of spots of light referred to

as “phosphenes” (see Figure 1.3). The phosphenes created by prosthetic vision can have

various brightness, shape, size, and blurring depending on the stimulating electrodes (size,

shape, pitch, and field lines distribution), stimulation parameters (current pulse intensity,

length, and frequency), and anatomical target. Since then, the idea of restoring sight to

the blind is closer.

1.3.1 Principles of prosthetic vision

A visual prosthesis system needs to perform a specific sequence of actions in order to

simulate the complex series of events that take place between the outside world and the

visual cortex, such as image capture, image processing, microelectrode array stimulation,

which in turn must deliver a suitable stimulation current (directly or indirectly) to the

RGC (see Figure 1.3).

Image capture

The image capture component is based on capturing information from the visual scene

using an external video camera, which is usually mounted on glasses. The video camera

then transmits data directly to an external video-processing unit (VPU). However, due

to the fixed camera position, there is a risk of discrepancy between its orientation and

that of the eye, risking inaccuracies in the perceived spatial location of an object of

interest following retinal stimulation. Various solutions to this problem include both the

incorporation of an eye tracker to coordinate the direction of gaze with the stimulation

pattern, or placement of the camera system intraocularly, for which there have been some

preliminary attempts to design such a system [24].
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Figure 1.3: Prosthetic vision. Initially, the patient receives an implant in their retina.
Glasses worn have a miniature camera which then send signals to the implanted chip
located in the retina. Then, the chip converts these signals into electrical impulses that
can then be sent to the optic nerve and processed as an image in the brain.

Image processing

The image processing takes place within the external VPU, which receives a high-quality

signal from a camera system and transforms the data into a set of commands to be wirelessly

transmitted to the microelectrode array to generate a particular stimulation pattern. In

systems such as the Argus II retinal prosthesis, there are only 60 microelectrodes [25].

This suggests that even with a perfect contact of the electrodes and an accurate perception

of the retinotopic phosphene, the resolution of the image would be still be low. To deal

with this, several researchers have emphasized the development of software algorithms

that can filter the most relevant parts of a visual scene, before creating simple stimulation

configurations that map the object of interest onto the array [26–28].

Data transmission

Normally, the delivery of visual information that is sent to the microelectrode array is done

wirelessly (via inductively coupled coils). An AC current passing through the external

coil induces an AC voltage in the internal coil, which can subsequently be converted
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into DC power. A capacitor in series with the secondary coil permits amplification of

the received voltage by creating a tuned resonance at the transmitter frequency, thus

supporting efficient power transfer while minimizing the body’s exposure to radiation.

With this model, the data transfer capacity is sufficient to support the resolution and

refresh rate of today’s systems [29].

Microelectrode array stimulation

Electrode material, size, shape, spacing, tissue contact and the anatomical position of the

array are considerations to take into account when designing an electrode array to deliver

electrical currents to RGCs in order to replicate the spatial resolution of the natural

retina. Electrode shape may significantly affect the integration of the device by creating

an environment where retinal tissue can migrate around the array and create a close

interface. Size, shape and contact of the electrode at the tissue interface affect the charge

density per unit area. It is known that as the size of the electrode becomes smaller, the

concentration of the current increases exponentially, which can result in target tissue

damage.

Regarding to the electrode position, there are three main types of retinal implants

by placement because of the easy ocular access: epiretinal (on the retinal surface, held

with retinal tacks), subretinal (between the retinal pigment epithelium and neural retina,

replacing photoreceptors), and suprachoroidal (between the sclera and the choroid).

Suprachoroidal implants have the disadvantage that they are placed relatively far from the

target cells. Even so, they have shown the appearance of phosphenes in clinical studies

and have a lower risk in terms of retinal damage and detachment. In spite of that, the

two most common retinal implant placements are epi- and subretinal. However, the main

disadvantages of subretinal implants include impaired nourishment of the inner retina

due to the creation of a mechanical barrier between the outer retina and the choroid and

trauma to the retina during implantation. These prostheses also show poor dissipation

of heat and therefore could damage the retina. In contrast, among the advantages of

epiretinal prostheses are the possibility of wide coverage of the field of view (allow the

restoration of vision in both central and peripheral fields), easy placement and better

heat dissipation, compared to the great disadvantage of subretinal implants of presenting

a high risk of retinal detachment. Another advantage of epiretinal implants is that a
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camera can process signals before they reach the implant. This allows to optimize the

signal quality and the use of artificial intelligence techniques, which may lead to improved

visual perception.

1.3.2 Retinal prostheses

In the last decade, several groups have developed retinal prostheses (see Figure 1.4). Only

four devices have been granted CE Mark for commercial use in the European Economic

Area: Retina Implant Alpha IMS (first-generation device, Retina Implant AG, Reutlingen,

Germany) [30, 31], Retina Implant Alpha AMS (second-generation device, Retina Implant

AG) [32, 33], IRIS II (Pixium Vision, Paris, France) [34] and Argus II Retinal Prosthesis

System (Second Sight Medical Products Inc, Sylmar, CA), which was the first visual

prosthesis to become commercially available: it received the European conformity mark

in 2011 and FDA approval was granted in early 2013 for humanitarian use in the USA

[25, 32].

Alpha IMS and AMS Subretinal implant

The Alpha IMS and Alpha AMS devices both consist of a microchip on a polyimide foil

and a cable for power supply and signal control (see Figure 1.4(a)). The microchip consists

of 1500 (Alpha IMS) or 1600 (Alpha AMS) independent photodiode-amplifier-electrode

units. Each electrode transforms the local luminance information into an electrical current

that is amplified and transferred to the adjacent bipolar cells via an electrode. The light

that falls on the chip is used to directly control the stimulation current amplitude in each

pixel. One of the advantages of this system is that a large number of electrodes can be

addressed, no external camera is needed, and natural eye movements can be used by the

patients to locate and fixate on objects [35].

IRIS II Epiretinal implant

IRIS II incorporates innovative and distinctive features: A bio-inspired camera intended

to mimic the functioning of the human eye by continuously capturing the changes in a

visual scene with event-based camera with asynchronous pixels, and unlike an imaging

sensor that takes a sequence of video frames with largely redundant information (see

Figure 1.4(b)). It is composed by an epiretinal implant with 150 electrodes secured on the
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(a) (b) (c)

Figure 1.4: Retinal prostheses. (a) Alpha AMS Subretinal implant (Alpha AMS;
Germany, CE marking 2016), (b) IRIS from Pixium Vision (France, CE marking 2016)
and (c) Argus II from Second Sight Medial Producst (USA, CE marking 2011, FDA-PMA
2014).

retinal surface by a patented support system that is intended to allow future replacements

or upgrades.

Argus II Epiretinal implant

The Argus II device consists of three internal components and three external components

(see Figure 1.4(c)). The internal components implanted around the eye include a receiver

coil, electronics and an electrode array which has 60 platinum arranged in a 6x10 grid

(diameter = 200 µm) spaced 575 µm (center-to-center). The array of electrodes covers

about 20◦ of field of view (diagonally). The electrode array, which is made of a material

that allows a perfect adjustment to the curvature of the retina, is attached to the retina

over the macula with a retinal tack.

The external components consist of a video camera that is mounted on glasses allowing

real-time image capture, a VPU that is placed on the patient’s belt and a coil on the side

arm of the glasses to transmit data between the internal and external components using

radio frequency. The patient is wearing a pair of glasses with a small camera embedded.

The VPU has adjustable settings that transform the images from the camera into electrical

stimulation, which is then transmitted using an antenna via the coil on the side of the

glasses to the receiving coil in the sclera. This information is then sent via the cable to

the electrode array on the patient’s retinal surface stimulating remaining viable inner

retinal cells. This artificial stimulation makes its way via the optic nerve and lateral

geniculate nucleus through the visual system to the occipital cortex and the induced vision

is perceived as light patterns in the visual cortex [36].
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Figure 1.5: Simulated Prosthetic Vision (SPV) setups. (a) The stimulus is displayed
in a computer screen in front of the subject [37]. (b) Subjects carry a PC video camera
placed in a modified adjustable head strap in a midline position above the eyes. The
laptop is placed in a specially designed computer backpack, making the system completely
portable [38]. (c) Subjects view pixelized imagery in a head-mounted display [39] or (d)
through a virtual patient [40].

1.4 Simulated Prosthetic Vision

Many clinical trials related to visual prosthesis are carried out over long periods of time

and in very closed protocols. Therefore, implanted subjects are not available to perform

other experiments and test other possible versions of implants. However, it is possible to

use Simulated Prosthetic Vision (SPV).

The simulation is based on the subjects’ descriptions of the phosphenes they have

perceived. The SPV setup contains the characteristics of the implant to simulate, as

well as the shape of the desired phosphenes. The function of a SPV system is to show

a representation that corresponds as closely as possible to the implant to be simulated.

Different SPV setups have been used in the literature [37, 38, 40] (see Figure 1.5). One

option is to display the visual stimulus on a computer screen in front of the subject [37].

Another option is to carry a PC video camera placed in a modified adjustable head strap

in a midline position above the eyes. The laptop is placed in a specially designed computer

backpack, making the system completely portable [38] or subjects view pixelized imagery

in a head-mounted display [39]. The prosthetic vision models currently used simulate

the shape, intensity, size and regularity of phosphene to simplify the possible range of

perceptions of volunteers with normal vision and, therefore, represent the best scenario

for a blind patient in these terms.
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Figure 1.6: Visual models of phosphenes. First, the phosphene processor filter the original
image and phosphenized based on the selected phosphene appearance and phosphene
map. The output of the phosphene processor is visualized at the phosphene renderer and
produce the final simulated prosthetic vision.

1.4.1 Visual models of phosphenes

Prosthetic vision is built upon phosphenes. A phosphene can be described as ‘a visual

sensation caused by means other than stimulation of the visual system by light’. It can be

directly induced by mechanical, electrical, or magnetic stimulation of the retina or visual

cortex, or by random firing of cells in the visual system. But despite the increasing clinical

and commercial use of these devices, the perception of implant users remains poorly

understood. The appearance of individual phosphenes is highly variable not only across

subjects but also across electrodes within a subject, with subjects typically reporting

seeing distorted and often elongated geometric shapes that fade quickly over time [41–43].

Taking this idea of phosphenes, many investigators have implemented simulations (or

visual models) of the anticipated form of restored vision [43–45]. More interesting, Beyeler

et al. [44] have developed “pulse2percept”, an open-source Python implementation of a

computational model that predicts the perceptual experience of retinal prosthesis patients

across a wide range of implant configurations and phosphene models. Usually, a simulated

phosphene can be divided into four modules: Phosphene appearance, phosphene map,

phosphene processor and phosphene renderer (see Figure 1.6).
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Phosphene appearance

A phosphene appearance is a set of phosphene visual profiles with different sizes, luminance,

color, and other visual attributes [45]. The common form of phosphenes is a small, round,

colored spot of light in the field of view.

Gaussian luminous distribution is often used to model the single phosphene through

feedback from prosthesis wearers. The distribution function of the 2-D Gaussian profile

presents a luminance profile where the luminance is the brightest at the center and

gradually decays to the periphery. Up to 12 levels of luminance have been observed in the

literature [46]. Typically, eight different luminance levels are used in SPV according to

the number of luminance levels attainable in most human trials using retinal prostheses

[45, 47].

Phosphene map

The phosphene map locates phosphenes in the field of view based on information provided

by the implant recipient. Despite well-known regular mappings between the stimulation

sites and the field of view such as the retinotopic field of view organization, the phosphene

maps from regular lattices of stimulating electrodes are often quite distorted. However,

the regular lattices adopted by SPV investigators are commonly square or hexagonal.

Phosphene processor

The phosphene processor is a simple image processing routine taking the gray level values

at phosphene locations on the visual scene corresponding to the phosphene map to obtain

the size and luminance for each phosphene. A simple extension of this used in SPV is a

mean filter, which converts the input image directly to the phosphene map by averaging

the brightness on the region covered by each phosphene. On the other hand, with a

Gaussian filter, the phosphene will be weighted with the luminance information towards

the center of the receptive field.

Phosphene renderer

The phosphene renderer composes a phosphene field with the phosphenes retrieved by

the phosphene processor and determines how realistic the simulation is compared to
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implantee reports. This step is a type of visualization module responsible for painting

the SPV on the screen. Some investigators simply rendered phosphenes as square pixels

immediately adjacent to each other. This simulation is very unrealistic compared to the

actual prosthetic vision. In addition, additional perceptual artifacts in the square corner

and edges where grayscale levels change gradually will affect the quality of perception

and performance using SPV. A more realistic simulation is to separate each phosphene

with an empty space in the presentation to simulate gaps between phosphenes, as most

investigators have done.

Dropout

Some amount of electrodes cannot elicit phosphene successfully due to the degenerating

ganglion cells in retina of the implant recipients, and some might not be able to elicit

phosphenes after long-term implantation, which account for the dropout phenomenon

of phosphene map. Normally the dropout effect is simulated as a random percentage of

the corresponding amount of dotted phosphenes from the phosphene map in SPV being

turned off.

1.4.2 Experimentation with SPV

SPV has been used as a tool for more than two decades to assess the characteristics of

implants necessary to enable future people with implantation to perform different tasks

in their daily lives. The most experimented tasks in SPV are reading, face recognition,

object recognition and localization and navigation (see Figure 1.7).

Reading

Reading is one of the most studied tasks in SPV, reflecting its importance for implanted

people. So far, implanted people had previously acquired blindness; therefore, they could

read before losing their sight. Some reading studies have focused on character recognition

[51–53]. Others studied focused on how many electrodes were needed to limit the number

of errors in individual words, concluding around 300 electrodes [54], or 600 electrodes to

allow paragraph or full text reading [55, 56]. For low resolution implants, it is possible to

read at a speed of 15 words per minute with only about 40 phosphenes [57].
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Figure 1.7: SPV approaches for different tasks. (a) Reading [37], (b) face recognition
[48], (c) object localization [49] and (d) navigation [50].

Face Recognition

Another very explored area in SPV concerns the face recognition and localization. Facial

expressions are very important for social interactions [58], communication containing a

large part of non-verbal communication [59]. Restoring the perception of faces is therefore

essential for the blind. The first SPV experiment involving faces focused on discrimination

between faces, studying the minimum resolution necessary for the recognition of faces

[60, 61]. According to this study, difficulties in recognizing faces begin when the electrode

array contains less than 100 electrodes. Other experiments focus on the use of image

processing algorithms to modify the contrasts of a face so that it can be recognized more

easily [62–64]. For instance, Chang et al. [62] generated a contrast-enhanced image
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and an edge image by applying the Sobel edge detector. They found that the subjects

recognized a distinctive face especially more accurately and faster when using the proposed

contrast and edge-enhancement method than the other given facial images even under

low-resolution prosthetic vision.

Object Recognition and localization

Complex tasks such as object recognition and localization are still very limited with

visual prostheses. Denis et al. [65] tested the object recognition and localization in the

surrounding only highlighting a few representative phosphenes. Subjects were asked to

search for a specific object placed among nine others on a table. Their results suggest

that the efficiency of current electrode arrays can be improved by including an algorithm

for locating contextual objects in the visual prosthesis. Three years later, Macé et al.

[49] proposed an alternative method based on object recognition in order to display only

relevant information. They evaluated this approach in a reach-and-touch task requiring

object discrimination and localization using a real-time object recognition system. When

an object of interest was recognized and localized within the camera image, its position

was displayed by switching on a unique phosphene at the corresponding location. Only

nine electrodes were necessary for object localization.

Image processing has also been proposed for object recognition tasks. For example,

Han et al. [66] proposed a foreground extraction method based on a saliency model to

obtain a foreground object. Their results showed that the foreground extraction method

had prominent advantages in comparison with direct pixelization in terms of recognition

accuracy and efficiency. Li et al. [67] applied an image processing strategy for optimizing

the visual perception focusing on recognition of the object of interest. They show how

using a saliency segmentation method and image processing strategies can automatically

extract and enhance foreground objects, and significantly improve object recognition

performance. In more recent work, Han et al. [68] combine deep learning-based scene

simplification strategies with a psychophysically validated computational model of the

retina to generate realistic predictions of simulated prosthetic vision and measure its

ability to support scene understanding of sighted subjects. (virtual patients) in a variety of

outdoor settings. Their findings show that object segmentation can better support scene

understanding than models based on visual prominence and monocular depth estimation.
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Navigation

Navigation is an important component of the self-reliance of the blind, and SPV studies

have focused on this issue, more specifically on obstacle detection and avoidance.

Dagnelie et al. [38] performed two experiments based on navigation using prosthetic

vision. In the first part of the experiment subjects traveled similar routes around a suite of

offices with simulated implants of 4×4, 6×10 and 16×16 dots. In the second experiment,

they used ten different virtual buildings adding dynamic noise and removed a subset of

phosphenes from a 6×10 array. Their findings suggest that a retinal implant with as

few as 60 electrodes may provide independent orientation skills to the blind. Wang et

al. [39] assessed virtual maze navigation performance with SPV in gaze-locked viewing,

under the conditions of varying luminance contrast, background noise, and phosphene

dropout. The results suggest that the simulated gaze-locked can be helpful for wayfinding

in simple mobility tasks, though phosphene dropout may interfere with performance. Van

Rheede et al. performed a similar study on navigation [69]. They developed a simulation

paradigm that used a head-mounted camera and eye tracker to lock the simulation to the

point of fixation. They evaluated visual acuity, object recognition and manipulation, and

wayfinding under SPV in three ways of optimizing the information varying the field of

view.

Other researchers have focused on techniques based on depth visualization, more

concretely, encoding distance as a function of luminance. The idea is to represent the

environment by translating the distance to an element of the visual scene into light

intensity. So, a phosphene no longer represents the luminosity of a certain area, but

the average distance of this area [70–72]. This strategy allowed subjects to have better

mobility performance than with conventional rendering when obstacles had to be avoided.

Based on these results, McCarthy et al. [73] proposed to use ground surface segmentation

to enhance the perception of obstacles in low to medium resolution prosthetic visual

representations. In 2012, McCarthy et al. [74] proposed another rendering to try to

overcome renderings based on the luminance of objects or their distance in the image.

The luminance of the phosphenes indicated the time remaining before the object made

contact with the subject. Another augmented rendering has been proposed by Parikh et

al. [75]. The proposed rendering indicated the salient objects present in the field of view

of the camera. To this field of view representing a salience map, the authors proposed
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adding a clue indicating the direction of the nearest object. More recently, Zapf et al. [50]

proposed to use a white line on the ground in order to pass between stationary cars.

1.5 Motivation and challenges

Millions of people worldwide could potentially benefit from more efficient visual prostheses.

With current prostheses, reasonable expectations in vision restoration are limited to large

object recognition, localization, and movement detection, large letters reading, and large

obstacles avoidance. Furthermore, extremely long times are necessary for the patients

to detect, analyze, and react to the scene in front of them, mostly because of the poor

prosthetic resolution and limited field of view. Although these results are still very

promising and mark an important milestone artificial vision, with a low resolution implant,

rendering the visual scene with no specific processing leads to visual overcrowding.

The perception system used by most of these visual prostheses is based on the

acquisition of images with an external camera. This configuration (camera+prosthesis)

allows exploring more advanced computer vision and deep learning techniques to enhance

the semantics and the relevance of the information displayed to the patient.

Our motivation is that powered visual prostheses could react in synchronicity with

their users by recognizing and anticipating the environment in front of them.

1.6 Goals and Contributions

Once we have asserted our motivation of the thesis, it is time to define the specific goals to

pursue, and the extent of the work developed in these four years in those lines of research.

In particular, the thesis can be divided in five main lines of work.

• Schematic representation of indoor scenes: The ability of object recognition in

real-life scenarios is severely restricted for prosthetic users due to the low resolution,

limited field of view, and the low dynamic range of the visual perception. This results

in huge loss of information occurred when presenting daily scenes. To overcome the

limitations, we aim to optimize the visual information in the SPV. We want to build

a schematic representation of indoor environments for simulated phosphene images.

To do that, we will use a variety of convolutional neural networks for extracting and

17



1.6 Goals and Contributions 1 INTRODUCTION

conveying relevant information about the scene such as structural informative edges

of the environment and silhouettes of segmented objects.

• Influence of field of view: The field of view in prosthetic vision is linked to

the retinal coverage of the prosthesis, while the visual acuity to the density of

the stimulating electrodes. Therefore, the number, density, and coverage of the

electrodes is an important design parameter for retinal prostheses to provide adequate

artificial vision in daily life. We aim to investigate the influence of field of view

with respect to spatial resolution in visual prostheses. We took advantage of the

proposed virtual-reality system based on a head-mounted display and panoramic

scene to monitor the performance of healthy participants under SPV with variable

pixel density and field of view angle. This system acts as an electronic visual aid

that attaches to the user’s head and presents information directly to the user’s eyes.

Our system allows replications and extensions of experiments in a simple way.

• Augmented reality navigation: Implanted patients still require constant assis-

tance for navigating from one location to another. Hence there is a need for a system

that is able to assist them safely during their journey. However, the development

of navigation devices capable of guiding the blind through different scenarios has

remained a challenge. We aim to investigate a new augmented navigation system

with obstacle avoidance for guidance in visual prosthesis. By using a route planning

algorithm, the system guides the subject through a shorter, obstacle-free path.

• Visual acuity assessment with VR: The visual acuity of prosthetic vision is

limited by various factors from both engineering and physiological perspectives. One

of the main causes of low visual acuity is the limited spatial resolution that can

be achieved by electrical stimulation with existing retinal implants. The size of

the electrodes in today’s retinal implants is often much larger than the size of the

neurons in the retina, and the number of electrodes is low. We aim to investigate

the influence of field of view with respect to spatial resolution in visual prostheses

measuring visual acuity. We implemented prosthetic vision in a virtual reality

environment in order to simulate the real-life experience of using a retinal prosthesis.

• Spiking neural network: While using artificial neural network algorithms may

be sufficient to improve perceptions with visual prostheses, employing better neural
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coding algorithms would improve the performance of retinal prostheses. The recon-

struction of visual scenes can be significantly improved by adding an encoder that

converts the input images into the spiking codes used by retinal ganglion cells and

use these codes to stimulate electrodes. We aim to develop a spiking neural network

model for visual coding to obtain better computational algorithms and improve the

performance of future retinal prostheses.

Next we present this thesis’ contributions leading towards the aforementioned goals.

1.6.1 Schematic representation of indoor scenes

The goal of this part of the thesis is to build a schematic representation of indoor

environments for simulated phosphene images since the phosphenic images produced by the

current implants have very limited information bandwidth due to the poor resolution and

lack of color or contrast. Thus, the ability of object recognition and scene understanding

in real environments is severely restricted for prosthetic users.

We propose a new visual representation of indoor environments for prosthetic vision,

which emphasizes the scene structure and object shapes [76, 77]. The proposed method

combines a variety of convolutional neural networks for extracting and conveying relevant

information about the scene such as structural informative edges of the environment

and silhouettes of segmented objects. Our results demonstrate that our method is well

suited for indoor scene understanding over traditional image processing methods used in

visual prostheses. The key idea of our current results is that, with only a few significant

elements of the scene, it is possible to obtain a good perception of the environment, even

in complex and occluded scenes. These methods and their evaluation are presented in

detail in Chapter 2. In the benefit of the visual prostheses design community and for

reproducibility purposes, we have created an image Dataset of phosphene images which can

be found in the dataset available online: https://doi.org/10.6084/m9.figshare.11493249.v4.

1.6.2 Influence of field of view

The second part of the thesis addresses the problem of how to improve the quality of

electrode arrays, in terms of features, such as response time, resolution or size. To the

best of our knowledge, this is what the latest developments in retinal implant technology
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are investigating. Understanding the influence of these parameters in the perception

results can guide prostheses research and design. The general objective is to addresses the

question of how to evaluate and predict the utility and functionality in terms of patient

benefit with respect to design parameters.

We evaluate the influence of field of view with respect to spatial resolution in visual

prostheses. To meet this goal, we measure the accuracy and response time in a search

and recognition task [78]. To validate this approach, twenty-four normal participants

were asked to find and recognize usual objects, such as furniture and home appliance

in indoor scenes. For the experiment, we use a new simulated prosthetic vision system

that allows simple and effective experimentation. Our system uses a virtual-reality

environment based on panoramic scenes. The simulator employs a head-mounted display

which allows users to feel immersed in the scene by perceiving the entire scene all

around. Our experiments use public image datasets and a commercial head-mounted

display. We have also released the virtual-reality software for replicating and extending

the experimentation http://webdiis.unizar.es/~rmcantin/index.php/Research/Vrfov. This

method and its evaluation is presented in detail in Chapter 3.

1.6.3 Augmented reality navigation

The goal of this third part of the thesis is to develop a new augmented reality navigation

system with obstacle avoidance for guidance in visual prosthesis since unfortunately

implanted patients still require constant assistance for navigating from one location to

another. Hence there is a need for a system that is able to assist them safely during their

journey.

We propose an augmented reality navigation system for visual prosthesis that incor-

porates a software of reactive navigation and path planning which guides the subject

through convenient, obstacle-free route. It consists on four steps: locating the subject on

a map, planning the subject trajectory, showing it to the subject and re-planning without

obstacles. We have also designed a simulated prosthetic vision environment which allows

us to systematically study navigation performance. Twelve subjects participated in the

experiment. Subjects were guided by the augmented reality navigation system and their

instruction was to navigate through different environments until they reached two goals,

cross the door and find an object (bin), as fast and accurately as possible. Results show
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how our autonomous navigation system help navigation performance by reducing the

time and distance to reach the goals, even significantly reducing the number of obstacles

collisions, compared to other baseline methods.

1.6.4 Visual acuity assessment with VR

The goal of this fourth part of the thesis is to study the optimal number of the electrodes

and field of view that a visual prosthesis should have to provide adequate visual acuity in

daily activities. This is still an open question and an important design parameter needed

to develop better implants.

We asses visual acuity in visual prostheses by taking advantage of a virtual-reality

system in order to simulate real-life experience of wearing a visual prosthesis. Subjects were

required to identify computer-generated Landolt-C optotypes and different stimulus based

on luminance, time-resolution of luminance, localization of light and motion commonly

used for visual acuity examination in the sighted. Ten normally sighted participants

volunteered for the study. Performance of subjects in correct identification and reaction

time of Landolt-C gap orientation and stimulus is reported. Visual acuity was estimated

by fitting the performance versus Landolt-C gap size. The results of our study showed

that in all the tasks the field of view played the most significant role in improving the

performance of the subjects. The optimal visual acuity was 1.43 logMAR and was obtained

for the condition of 20◦ of field of view and 1000 resolution. The design of new retinal

prostheses should take into account the relevance of the restored field of view to provide a

helpful and valuable visual aid to profoundly or totally blind patients.

1.6.5 Spiking neural network

The goal of the last part of the thesis is to develop a spiking neural network model for

visual coding to obtain better computational algorithms and improve the performance of

future retinal prostheses.

We present a spiking neural network which relies on a combination of biologically

plausible mechanisms and uses unsupervised learning scheme, i.e., the weights of the

network learn patterns of the input images without using labels. Our model is simple, fast,

energy-efficient and bio-inspired and uses spike-timing-dependent-plasticity and lateral

inhibition with one trainable layer. We use a pre-processing scheme based on feature
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extraction using multiple spatial frequencies in the input sample and we combine them at

the output of the spiking neural network for a classification task.

1.7 Organization of the Document

The following five chapters relate the research conducted in the direction of the main

contributions of this thesis regarding schematic representation of indoor scenes (Chap-

ter 2), influence of field of view (Chapter 3), augmented reality navigation (Chapter 4),

visual acuity assessment (Chapter 5) and spiking neural network (Chapter 6) with some

preliminary results. Each of these chapters intends to be self-explanatory and contains its

specific related work as well as its respective conclusions and discussions. In Chapter 7

we seek to outline the general conclusions of the thesis, as well as our vision of its future

directions. A summary of the results can be found in Chapter 8.
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2 SCHEMATIC REPRESENTATION OF INDOOR SCENES

Chapter 2

2 Schematic representation of indoor scenes

Prosthetic vision is being applied to partially recover the retinal stimulation of visually

impaired people. However, the phosphenic images produced by the implants have very

limited information bandwidth due to the poor resolution and lack of color or contrast.

The ability of object recognition and scene understanding in real environments is severely

restricted for prosthetic users. Computer vision can play a key role to overcome the

limitations and to optimize the visual information in the prosthetic vision, improving

the amount of information that is presented. We present a new approach to build a

schematic representation of indoor environments for simulated phosphene images. The

proposed method combines a variety of convolutional neural networks for extracting and

conveying relevant information about the scene such as structural informative edges of

the environment and silhouettes of segmented objects. Experiments were conducted with

normal sighted subjects with a Simulated Prosthetic Vision system.
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2.1 Introduction

Retinal degenerative diseases such as retinitis pigmentosa and age-related macular degener-

ation cause loss of vision due to the gradual degeneration of the sensory cells in the retina

[79, 80]. Retinal prostheses are currently the most promising technology to improve vision

in patients with such advanced degenerative diseases [25, 81–83]. These devices elicit

visual perception by electrically stimulating retina cells. As a result, implanted patients

are able to see patterns of spots of light called phosphenes that the brain interprets as a

visual information [45, 84, 85]. Current retinal prosthetic devices are limited to hundreds

of electrical receptors, which produce a very limited visual elicitation [86–88]. From the

actual technologies for retinal implants [89], one of the most active line of research is

based on implants with a micro camera that captures external stimuli and a processor

that converts the visual information in microstimulations in the implant. Following the

computer image paradigm, we can say that the visual information evoked by the implants

has very low spatial resolution and very limited dynamic range (only few levels of stimulus

intensity are perceived as different) [90–92]. Intuitively, from an information theory

perspective, the process from the external sensor input to the implant stimuli is analogous

to taking a high definition image and convert it to a low resolution, grayscale image with

just a few grey levels. Thus, a large amount of visual information is lost. Prosthetic vision

allows users to recognize objects with simple shapes, to see people’s silhouettes in bright

light or detect motion [93], but high level tasks require more precise visual cues and a

deeper interpretation of the information.

Recent developments in implants might result in an improved resolution and perfor-

mance of the visual elicitation [94], but quality would still be several orders of magnitude

lower than a current micro camera. Alternatively, the visual information gathered by the

external camera could be processed prior to being transferred to the retinal electrodes. Im-

age processing can be used to extract and highlight relevant information from the external

camera. This information can be presented with visual cues that help to understand the

perceived scene by the implanted subject. Several studies have already been conducted

testing specific cues for object recognition [47, 49, 67, 69, 95–97], reading [37, 54, 55, 98],

facial recognition [48, 64] or navigation [38, 75, 99–101] in the context of prosthetic vision.

One of the most basic image processing tasks from the cognitive, but also from the
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computational level, is the segmentation of the image in different regions [102–104]. From

a statistical point of view, this corresponds to the problem of clustering. Rooted on the

Aristotelian laws of association, early research in perception from Gestalt psychologists

found the importance of the principles of grouping [105]. These principles state that our

brain tends to group image elements based on proximity, color, shape or other similarities.

Although some of the Gestalt ideas are controverted, the principles of grouping have been

supported by posterior empirical research [106, 107]. From a computational perspective,

image segmentation dates back to the seminal work of Minsky and Pappert [108] followed

by several works in the 60s and 70s [109, 110]. At that time, segmentation was based

on grouping elements as belonging to the same object. Adelson [111] proposed to group

elements based on abstract textures and materials, advocating the idea of seeing stuff

rather than things. This was the stepping stone for modern semantic segmentation, where

the objective is to group the image regions based on labels with semantic meaning, without

relying on individual objects [112]. Furthermore, the use of semantic labels transforms

the clustering problem into a classification problem. Recent research using deep learning

has gone one step further to produce instance-aware semantic segmentation [113]. In this

case, we are back to the concept of seeing things by grouping pixels of single objects, but

including a semantic label for the object.

For visually impaired people, basic scene understanding is essential for many everyday

tasks and it also facilitates subsequent tasks of finer perception. In this work, we use

segmentation to provide a basic visual representation of indoor scenes for prosthetic users.

We combine both semantic segmentation and instance segmentation. We use instance

segmentation to highlight relevant objects in the scene. This has a double purpose:

on one hand, we are able to reduce visual clutter, which becomes indistinguishable

noise in a low resolution implant array; on the other hand, the grouping highlights the

silhouette of the object, making it more distinguishable. One of the main problems of

using object silhouettes for recognition is the lack of sense of scale or perspective. Thus,

we rely on a second semantic segmentation component to extract structural informative

edges of the scenes, such as wall and ceiling intersections. Those edges provide an

intuitive representation of the 3D structure of the room as concluded in [114], where it

is shown that the results with the structural edges are significant and better than the

results obtained without edges for scene recognition. The idea of combining instance and
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semantic segmentation has been previously studied in the computer vision literature with

different approaches [115, 116] and it has shown to be of great benefit for holistic scene

understanding [117]. The limiting case where every pixel of the image has a semantic

label and instance id is called panoptic segmentation [118].

Current state of the art methods for image segmentation are mostly based on deep

neural networks [112]. Most recent developments of semantic and instance-aware segmen-

tation are based on Fully Convolution Networks (FCN) [112, 113, 119–121]. A FCN is

an architecture based on convolutional layers with added upsampling layers with skip

connections to allow for detailed pixel prediction on arbitrary-sized inputs [122]. Similar

approaches, like the U-net architecture, are able to provide accurate pixel prediction [123].

In this work, we use two different types of FCN-based segmentation to highlight the

information available in the image and to present the most useful information to the user:

PanoRoom [119] for semantic segmentation of structural elements and Mask-RCNN [120]

for instance segmentation of relevant objects.

We evaluate and compare the proposed semantic and structural image segmentation

with baseline methods through a Simulated Prosthetic Vision (SPV) experiment, which is

a standard procedure for non-invasive evaluation using normal vision subjects [37, 38, 47–

49, 54, 55, 64, 67, 69, 75, 95–101]. The experiments included two tasks: object recognition

and room identification.

2.2 Methods

2.2.1 Subjects

Eighteen subjects with normal vision volunteered for the formal experiment. The subjects

(four females and fourteen males) were between 20 and 57 years old.

Ethics Statements

The research process was conducted according to the ethical recommendations of the

Declaration of Helsinki and was approved by the Aragon Autonomous Community Research

Ethics Committee (CEICA) that evaluates human research projects, human biological

samples or personal data. The research protocol used for this study is non-invasive, purely

observational, with absolutely no-risk for any participant. There is no personal data
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collection or treatment and all subjects were volunteers. Subjects gave their informed

written consent after explanation of the purpose of the study and possible consequences.

The consent allowed the abandonment of the study at any time. All data were analyzed

anonymously.

2.2.2 Stimuli

We use a two step process to generate the stimuli used in the experiments. First, we process

the original color image with the different methods stated in the following subsections.

This generates a grayscale or binary image which corresponds to the signal to activate the

electrodes of the retinal implant. Then, we use simulated prosthetic vision by generating

the phosphene pattern as an image in a computer screen. The phosphene simulation has

been designed to represent the descriptions of phosphene perception reported by retinal

prothesis patients.

The following sections describe the three segmentation methods used in the experiments

to process the input images and generate the activation of the phosphenes. First, our

proposal based on semantic segmentation with artificial neural networks (SIE-OMS). To

our knowledge, this is the first work that have used deep learning models in this setup.

Therefore, we have used two standard processing methods as baselines: a) detecting the

silhouettes and structure within the scene with a standard edge detector (Edge), and b)

generating the stimulus directly from the input image luminance (Direct). Examples of

the resulting effect are shown in Figure 2.1. For reproducibility purposes, all the stimuli

images used in the experiments can be found in the dataset available online1.

SIE-OMS

We propose to combine two FCNs to select and highlight informative elements in indoor

scenes as an intelligent way of activating the phosphenes. Specifically, we extract structural

informative edges (SIE) and object masks and silhouettes (OMS) to later combined both,

SIE and OMS, to build our proposed schematic representation of the scene (SIE-OMS),

as can be seen in Figure 2.2. This idea comes from our previous study, where the results

concluded that the representation of SIE in the schematic representation of the scene is

significant and produce better results in object and scene recognition for SPV than the

1Image dataset: https://doi.org/10.6084/m9.figshare.11493249.v4
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Figure 2.1: Top row: Example of a bathroom scene with the three processing methods
used in this work (a) Direct image, (b) Edge image and (c) SIE-OMS image. Bottom row:
the three processing methods in the SPV.

schematic representation without edges [114].

Structural Informative Edges (SIE) One of the main problems in the recognition

of scene elements based on silhouettes is the lack of sense of scale or perspective. The scale

and the structure of the scene can be achieved by detecting the structural informative

edges (SIE), that is, those main edges formed by the intersection of the walls, floor and

ceiling of the room. These edges can be seen in Figure 2.3. Our approach is based on the

model by Fernandez-Labrador et al. [119] for indoor scenes. Similarly to the object masks

network described below, this method is also based on a FCN for pixel classification. In

this case, the network was trained to estimate probability maps representing the room

structural edges, even in the presence of clutter and occlusions. The architecture of the

network is an the encoder-decoder structure [119]. The encoder is built from a ResNet-50

model [124], pre-trained on the ImageNet dataset, with the final layer replaced with a

decoder that jointly predicts layout edges and corners locations already refined. The

output of the model is an unique branch whose output has two channels, corners and
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Mask-RCNN
He et al. [50]

PanoRoom
Fernandez-Labrador et al. [49] 
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Figure 2.2: The stimulation of the electrode array is based on two information pathways
to extract the regions of pixels that represents important objects (OMS) and structural
edges (SIE). The regions are computed using two different types of FCN from He et al.
([120]) and Fernandez-Labrador et al. [119].

edges maps. In the decoder, the model employs skip-connections from the encoder to

the decoder concatenating ‘up-convolved’ features with their corresponding features from

the contracting part. In order to improve the training phase, Fernandez-Labrador et al.

suggest to perform preliminary predictions in different resolutions which are concatenated

and feed back to the network. The loss function for training is a pixel-wise sigmoid

cross-entropy, regularized by the L1-norm of the network parameters. The loss function

was minimized by using Adam with an initial learning rate of 2.5e4 and exponentially

decayed by a rate of 0.995 every epoch. They also applied 0.3 dropout 2 rate and 5e−6

weight decay and a batch size of 16 which allowed the learning of more complex rooms.

In this work, we have used a model pre-trained with the LSUN dataset [125].

Object Mask and Silhouettes (OMS) We perform instance segmentation of ob-

jects using the original architecture of Mask R-CNN [120] which is partially represented in

Figure 2.4. This method is an extension of Faster R-CNN [126] with several improvements

and an extra branch to segment the object masks. The first part of the network, called a

Region Proposal Network (RPN), proposes object bounding box candidates on the input

image. These candidates are called regions of interest (ROIs). It also generates feature

maps from the whole image. In our case, we used the Feature Pyramid Network (FPN)
2In this context, dropout refers to the technique used in deep learning to prevent overfitting. Do not

confuse with the dropout of phosphenes.

30



2 SCHEMATIC REPRESENTATION OF INDOOR SCENES 2.2 Methods

  

Figure 2.3: Using [119] we detect the main structure of the room extracting the structural
informative edges (SIE) (right) which are those formed by the intersection of walls, ceiling
and floor of the room (middle).

[127]. The second module is a RoIAlign layer that pools a small feature map for the

object region from those extracted by the FPN. Then, it aligns each ROI to the feature

map. This is the backbone architecture. Then, the model splits in two branches, as can

be seen in Figure 2.4. The box branch is based on the classification component of Faster

R-CNN. It generates two outputs for each ROI: a) the class of the object present in the

ROI and, b) a refined object bounding box using a regression model. The mask branch

is a convolutional neural network that takes the high probability regions selected by the

ROI classifier –box branch– and generates a binary masks of the object. Then, it uses

upsampling and deconvolution layers to scale the predicted masks to the size of the ROI

bounding box which gives the final masks, one per object. Regarding the loss function for

the model, it is composed by the total loss in doing classification, generating bounding

box and generating the mask. The mask loss was defined only on positive RoIs and the

mask target was the intersection between an RoI and its associated ground-truth mask.

The training was performed with a batch size of 16 and for 160k iterations. The learning

rate was 0.02 which was decreased by 10 at the 120k iteration. They also used a weight

decay of 0.0001. For this work, we have used a pre-trained model on the COCO dataset

[120, 128]. Thus, we have only considered the object classes that were already defined in

the pre-trained model. In order to speed up computation and remove spurious detections

we removed the object classes of clearly small objects (e.g.: scissors, banana, etc.) as the

scale of the scene in the image would not have allow it to be identified, and non-indoor

objects (e.g.: car, tree, etc.). Once the object masks have been generated by the network,
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we highlighted the contour of each mask to avoid confusion on overlapping masks, as can

be seen in Figure 2.5. We also performed morphological operations to reduce the aliasing

effect when translated to phosphene images.

Object-like 
regions proposed 

in feature map

Bounding box 

ROI 
Layer

Class

Box branch

RPN

Mask branch

14x14x256 14x14x256 28x28x256 28x28x80
Mask

x4

7x7x256 1024 1024

Figure 2.4: Above: box branch for classification and bounding box regression. Below:
mask branch for predicting segmentation masks on each Region of Interest (ROI). Numbers
denote spatial resolution and channels. Arrows denote either convolutions, deconvolutions,
or fully conected layers. The x4 means 4 consecutive convolution layers. (Adapted from
He et al. [120])

Dealing with occlusions Although this algorithm has achieved good results for

object segmentation, there are more complicated cases, such as images with overlapping

objects or scenes with occlusions, where the view of one object may be blocked by other

objects. In that case, we could use a depth sensor, such as an RGB-D camera, or a stereo

camera to estimate the depth. Alternatively, there are some works to estimate the depth

purely, based on monocular information [129]. As a proof of concept, we found that the

probability score for the detection network was correlated to the level of occlusion of each

object. In non-occluded objects its form is complete and therefore its recognition is more

likely detected. In contrast, the form of the occluded objects is not complete and therefore

its recognition is less likely to be detected. That is, a high probability is most likely to

appear in objects that are in the front. Thus, we stacked the instances from the least to

the highest probability, leaving the objects with the highest score overlapping the objects

with the least score, as can be seen in Figure 2.5. This was confirmed experimentally for

our setup, which is a simple problem with a limited number of classes and scenarios. In

the case of a more general environment with more classes it would be necessary to use a
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Figure 2.5: Object masks were generated from [120] and were sorted by probability
scores to avoid occlusions between objects. The extracted information was combined in an
image highlighting the silhouettes of the objects in white with the object masks in gray.

more complex model, but that is beyond the scope of the paper.

The final representation of the SIE-OMS method is a superposition of both parts, SIE

and OMS, always assuming the edges as background and object masks as foreground.

Baseline methods

We have considered two baseline methods that are the most used in the literature and that

follow a completely different structure to our SIE-OMS model [62, 130–132]. We compared

SIE-OMS with two baseline methods used in retinal prothesis: a) a direct method that

converts the input image directly to the phosphene map by averaging the brightness on the

region covered by each phosphene, and b) a standard edge detector to extract brightness

contours (see Figure 2.1). The direct method has proved to be very effective in scenes

where high contrast predominates [130]. Edge detectors have also been previously used

for prosthesis vision and phosphene images [62, 131, 132]. Since the contours of an image

holds much information, edge extraction is a useful method of encoding and selecting the

information contained in an image. The drawback here is that the understanding of a
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complete scene in low vision represented by edges may be more challenging because the

amount of clutter. For example, Sanocki et al. investigated how complicated is an edge

extractor method comparing object recognition with and without removal of background

clutter with edge images [133]. The results showed that the increase in the number of edges

greatly increase the complexity. For the edge detector, we used the Canny implementation

from the scikit image Python package with the default parameters [134]. In this case,

we also added morphological operations (dilation) to reduce aliasing without adding clutter.

Phosphene simulation

As commented before, first, the input images are processed by one of the three methods

(SIE-OMS, Direct, Edge) resulting in the grayscale images from Figure 2.1. Then,these

grayscale images are used to activate the phosphene map. In this work, we have used a

simulated phosphene map on a computer screen, but the same activation images could be

directly applied to the retinal implant.

Based on previous studies with simulated prosthetic vision [45, 135, 136], we approxi-

mate the phosphenes as grayscale circular dots with a Gaussian luminance profile –each

phosphene has maximum intensity at the center and gradually decays to the periphery,

following a Gaussian function–. The intensity of a phosphene is directly extracted from

the intensity of the same region in the processed image. The size and brightness are

directly proportional to the quantified sampled pixel intensities. For our phosphenic

images, the array of phosphenes was limited to 32 x 32 (1024 electrodes) and 8 different

luminance levels according to the number of luminance levels attainable in human trials

using retinal prostheses [45, 47]. We also included a 10% dropout of electrodes, which

is a standard value used in the literature [136]. The dropout percentage has shown that

significantly affects the performance of recognition tasks decreasing recognition accuracy

as the dropout percentage increases [137]. The complete process of phosphene generation

can be found in the Supplementary material (see Appendix).

2.2.3 Experimental setup

Most of the SPV configurations are usually based on a computer screen for the presentation

of static or dynamic phosphene images [37, 138, 139]. This methodology allow controlled
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evaluation of normally sighted subject response and task performance which is fundamental

to know the way humans perceive and interpret phosphenized renderings. SPV also offers

the advantage of adapting implant designs to improve the perceptual quality using image

processing techniques without involving implanted subjects. In our case, the participants

were normal sighted subjects seated on a chair facing a computer screen at 1m distance

resulting in a 20 degrees simulated field of view, as can be seen in Figure 2.6.

~20º

Figure 2.6: SPV setup: Subjects were seated on a chair facing a computer screen at 1m
distance. The visual field was 20 degrees that simulates the prostheses device. Trial setup:
Each gray rectangle represents the image shown on the computer monitor during the
trial. Each image appeared for 10 seconds and switched for the next image automatically.
Break time between image sequences was 30 seconds. The complete experiment took
approximately 15 minutes.

For the formal experiment, subjects were recruited to complete two tasks: object

recognition and room identification. The recognition accuracy was analyzed after the

trials. Each trial consisted of a sequence of images presented randomly to the subject with

the proposed SIE-OMS stimuli method and the two baseline methods (Edge, Direct), as

can be seen in Figure 2.7. At the beginning of the experiment, a white dot was displayed

in the center of the screen indicating where the subjects had to maintain the fixation sight

until the beginning of the task. Next, each phosphenic image appeared for 10 seconds

and switched for the next image automatically. This procedure was repeated for the
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other test images. To avoid distractions in the participants, they verbally indicate the

type of objects seen in each image and their selection of room type keeping the fixation

sight on the screen. The responses of each image were annotated by the experimenter.

If the subjects did not respond within the 10 seconds that the image is displayed, the

result of the test image was considered not answered (NA). If the subjects were only able

to respond to one of the two phases of the experiment, only the unanswered phase was

considered as not answered. Every 15 test images we made a pause of 30 seconds. The

complete experiment took approximately 15 minutes.

The experiments were conducted using a public database of indoor scenes [140]. All

the images from the database are still life scenes, from arbitrary scenarios, locations,

clutter, cameras and lightning conditions. Some images are from old phone cameras with

very poor quality and resolution to be more challenging as a computer vision benchmark.

Thus, we replaced some images with the first results of querying Google Images with the

room label, that also matched the database features (e.g., still life, mid-wide view...). For

each of the six categories, we randomly selected 50 images. Hence, we conducted the

experiment using 300 images from different indoor environments. The original images

were processed using our proposed method and the two baseline approaches, resulting

in 900 phosphenic images. Prior to beginning the experiment, subjects were informed

about the number of images in the experiment (54 images per subject). Subjects were

unaware that multiple image processing strategies were used in the experiment, although

a screen with four images were shown to the subjects at the beginning of the test. These

demo images were not included in the experiment, to avoid learning effects. Subjects

were informed that all scenes were indoor scenarios, but they were not informed about

the types of room, neither the object classes, nor the number of objects in each image.

The types of room studied were: bathroom, dining room, living room, kitchen, office and

bedroom. No subject identified a type of room or scene not belonging to that list. In most

of the tests, the objects identified by the subjects were: chair, table, couch, toilet, bath,

sink, bed, oven/microwave, refrigerator, laptop. This coincides with the list of classes

used for our SIE-OMS which was selected without looking at the database and before

conducting any trial or test. As commented before, the object classes were those already

included in the pre-trained model. However, in two images with the direct method, a

couple of subjects were able to find a window that our system did not detect because the
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Figure 2.7: Six examples of indoor environments represented with 1024 phosphenes
(rows: bathroom, bedroom, dining room, kitchen, living room and office, respectively).
Each column shows: a) input images, b) images processed using the Edge method, c)
images processed using the Direct method and d) images processed by our SIE-OMS
method, respectively.
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class was not included. Furthermore, in a couple of cases a subject wrongly identified

wardrobe and door in images containing a fridge.

2.3 Results

The following section shows the results of the experiment. We analyze separately the

results of object recognition phase and room identification phase. We show the percentage

of correct responses in both tasks and we include 95% confidence intervals. We also

differentiate between incorrect response and no answer.

2.3.1 Comparison of stimuli generation methods

Table 2.1 and Figure 2.8 show the global results for object recognition and room identifi-

cation tasks considering the proposed stimuli generator (SIE-OMS) and the two baseline

methods (Edge and Direct). The analysis of the average correct responses for both tasks

reveals a significant difference between methods (p< 0.001). In both tasks, the results

show a considerably better performance of SIE-OMS compared to the other methods.

The SIE-OMS method has the highest percentage of correctly identified objects (62.78%)

compared to Edge (19.17%) and Direct (36.83%) methods. Likewise, there is a clear

increase in the percentage of success in the room identification of SIE-OMS versus Edge

and Direct method. The number of unanswered responses for our method was also smaller,

indicating that there was no difficulty in the comprehension of most of the images. In

contrast, it is worth noting the high percentage of unanswered responses for the Edge

method, reaching more than 70% of the scenes.

Table 2.1: Global object recognition (OR) and room identification (RI) values for each
phosphenic stimuli method. Comparison of mean responses and standard deviation
grouped by type of phosphenic image method (Edge, Direct and SIE-OMS). 95% of
confidence interval for the mean difference.

Method % % RI
Edge 19.17 ± 4.45 13.33 ± 3.85
Direct 36.83 ± 5.46 35.33 ± 5.41

SIE-OMS 62.78 ± 5.50 70.33 ± 5.17

Figure 2.9 and Figure 2.10 show the results for the object recognition and room
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Figure 2.8: Percentage of correct, incorrect and not answered responses in a single
trial. Higher scores in correct responses indicate that subjects were able to identify and
recognize the objects and the type of room in each test image. Higher ratios of not
answered indicate that subjects were not able to identify and recognize the objects and
the type of room in each test image. The general findings are that: SIE-OMS method
improves the identification of the objects resulting to be the most effective method. This
translates in an increase in the number of correct answers for the room type identification
test for the SIE-OMS method. Results also show that the Edge method is the least
effective with the highest percentage of non responses images for the two tasks. The test
found significant difference between SIE-OM and Direct method (p<.001). The same
conclusion was found between SIE-OM and Edge method (p<.001). Where: ***=p<.001;
**=p<.01; *=p<.05; ns=p>.05. All t-tests paired samples, two-tailed.

identification tasks for each room-type, respectively. As before, when comparing the

baseline methods versus our approach, the highest number of correct responses is obtained

for SIE-OMS method for all room types. Besides, the largest difference in results was

obtained comparing the Edge method versus the SIE-OMS method (p< 0.001) for all

room-types. However, there was no significant difference for kitchen type in Direct vs SIE-

OMS (p=0.464). Similarly, there is a significant difference for living room (p< 0.05), office

(p< 0.01) and bathroom (p< 0.01). On the other hand, the results of room identification

task for each room-type (Figure 2.10) provide additional support for the SIE-OMS method

since this method also has the best percentage of correct responses in each room-type,

exceeding 85% for the cases of bedroom and dining room. In the same way as in the

identification of objects, the case of the kitchen obtained the worst results, followed by the

office case. Taken together, these findings indicate that SIE-OMS method was significantly

effective improving object recognition and room identification, yet also significantly more
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Figure 2.9: Higher scores in correct responses indicate that subjects were able to
recognize the objects in each room. Higher ratios in non responses indicate that subjects
were not able to recognize the objects in each room. The SIE-OMS method obtained
the highest score of the three methods in all room types compared with Edge and Direct
methods. The results also show how the most difficult room was the kitchen. ***=p<.001;
**=p<.01; *=p<.05; ns=p>.05. All t-tests paired samples, two-tailed.

effective than the baseline methods, Edge and Direct.

Figure 2.11 shows four examples of failed and successful tests from the three methods.

The two top rows show a bathroom and a bedroom scene where the identification of the

objects and room was a success for all the methods. This is due to the location of a

characteristic object with a clear silhouette in the center of the image that also helps in

the identification of the room. Contrary, the bottom rows show a kitchen and an office

where the recognition of the objects and the identification of the type of room failed in all

cases as a result of the lack of distinguishable shapes (rectangle silhouettes) and visual

clutter.

2.3.2 Performance analysis of SIE-OMS

We also analyzed the performance of the proposed SIE-OMS method. The SIE-OMS

system detected all the clearly visible objects of the scenes and even most of the occluded

objects that matched the selected classes. Structural edges also improve the performance

of our method. Recovering the main structure of the room provide sense of scale or
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Figure 2.10: Higher scores in correct responses indicate that subjects were able to
recognize the type of room in each test image. Higher ratios in non responses indicate
that subjects were not able to recognize the type of room in each image. The SIE-OMS
method obtained the highest score of the three methods in all room-type compared with
Edge and Direct methods. In the same way as in the identification of objects, results also
showed how the most difficult room was the kitchen. ***=p<.001; **=p<.01; *=p<.05;
ns=p>.05. All t-tests paired samples, two-tailed.

perspective of the objects and hence a better understanding of the 3D scene. Table 2.2

shows the confusion matrix of room-type based on answered images (correct and incorrect

responses). Table 2.3 shows the confusion matrix of the room-type based on the total

images of the test (correct, incorrect and no answer).

Table 2.2: Confusion matrix results for room identification based only on answered
images (correct and incorrect responses) using SIE-OMS method.

Actual/Predicted Bathroom Bedroom Dining room Kitchen Living room Office Total Recall
Bathroom 0.89 0.00 0.00 0.00 0.09 0.02 1.00 88.64
Bedroom 0.00 0.98 0.00 0.00 0.02 0.00 1.00 97.73

Dining room 0.00 0.00 0.96 0.02 0.00 0.02 1.00 95.56
Kitchen 0.04 0.00 0.00 0.89 0.04 0.04 1.00 88.89

Living room 0.05 0.03 0.00 0.00 0.87 0.05 1.00 86.84
Office 0.13 0.08 0.00 0.03 0.00 0.76 1.00 76.32
Total 1.11 1.08 0.96 0.94 1.02 0.90 6.00

Precision 80.02 90.28 100.00 94.82 85.21 85.01

Concerning the performance of our method, the recall and the precision are high,

reaching in some cases up to 97% (Table 2.2). The diagonal elements show the number of
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Figure 2.11: Some examples of phosphenic images generated with the three methods.
Successful images (top rows) and cases of images failed by the subjects (bottom rows)
with the three approaches: Edge, Direct and SIE-OMS, respectively.

Table 2.3: Confusion matrix results for room identification based on the total images
(correct, incorrect and no answer (NA)) using SIE-OMS method.

Actual/Predicted Bathroom Bedroom Dining.r Kitchen Living.r Office NA Total Recall
Bathroom 0.78 0.00 0.00 0.00 0.08 0.02 0.12 1.00 78.00
Bedroom 0.00 0.86 0.00 0.00 0.02 0.00 0.12 1.00 86.00

Dining room 0.00 0.00 0.86 0.02 0.00 0.02 0.10 1.00 86.00
Kitchen 0.02 0.00 0.00 0.48 0.02 0.02 0.46 1.00 48.00

Living room 0.04 0.02 0.00 0.00 0.66 0.04 0.24 1.00 66.00
Office 0.10 0.06 0.00 0.02 0.00 0.58 0.24 1.00 58.00
Total 0.94 0.94 0.86 0.52 0.78 0.68 1.28 6.00

Precision 82.98 91.49 100.00 92.31 84.62 85.29

correct classifications for each class. Hence, most of confusions are found in bathroom,

living room and office. Office was confused with bathroom because of the similarity of
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shape between some chairs and toilets. In addition, office was confused by bedrooms since

many of them usually have study desks in the bedrooms. There were other less relevant

cases where the dining room was confused with an office since both are composed of chairs

and tables. This confusion can be explained because the database is from Northamerican

locations, while the subjects live in Spain where apartments commonly join the dining

room and the kitchen.

Note that when the unanswered responses are taken into account (Table 2.3), the recall

for the kitchen case decreased significantly (from 88.89% to 48.00%). This means that

the kitchen room is more difficult to be identified. This low performance in the kitchen

identification is mainly because the information provided turned out to be very limited in

this case. For instance, ovens, microwaves and fridges with a rectangular shape masks

were sometimes confused with windows, doors or wardrobes (which are object classes not

considered by our system).

2.4 Discussion

The visual information in interpretation of the phosphene simulation is an important issue

due to the limited capabilities of retinal implants. Low resolution, limited dynamic range

and narrow visual field are some of the limitations present in current retinal prostheses

[45, 85]. Furthermore, Nanduri et al. [84] showed that phosphenes are not perfectly

located in the visual field corresponding to a specific grayscale pixel. Electrically elicited

phosphenes change in form and size with increasing amplitude. However, depending on

the type of device the perceptual distortions will be affected differently. For example, in

retinal prostheses this distortion produce visual effects called comets that might result in a

substantial loos of information [141]. Other devices, such as optogenetic technologies, may

suffer a loss of temporal resolution, while cortex implants suffer from crosstalk [141]. This

fact results in loss of visual information which affects patient perception. However, there

are research groups using computer vision approaches to try to expand the perceptible

visual field in implanted patients to provide useful information in the peripheral vision

[142, 143].

Another important limitation of retinal implants is phosphene dropout, which has

been reported in retinal prostheses trials [93, 144] as a result of very high threshold values

needed to elicit phosphenes in areas with a high number of degenerating nerve cells.
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Clinical trials by Thompson et al. [63] indicated that the dropout rate has significant

effects on the speed and accuracy of recognition tasks. Similarly, Cao et al. [145] showed

that the accuracy and efficiency in writing tasks decrease as the variability of distortion

and dropout percentage increase.

To overcome the limitations of implants, SPV researchers have tried to optimize the

image presentation to deliver the effective visual information in daily activities. For

example, Vergnieux et al. [99] limited the cues in a virtual scene using different renderings

methods, highlighting structural cues such as the edges of different surfaces for navigation.

For the same purpose, Perez et al. [101] proposed a phosphene map coding using a

ground representation of the obstacle-free space and a ceiling representation based on

vanishing lines. Wang et al. [47] proposed two image representation strategies using

background subtraction to segment moving elements for object recognition. Similarly, Guo

et al. [97] and Li et al. [67] proposed two image processing strategies based on a saliency

segmentation technique. For scene recognition, McCarthy et al. [146] presented a visual

representation based on intensity augments in order to emphasise regions of structural

change.

In terms of complex scene understanding, just few SPV studies have been proposed

[67, 147]. It is well established that in realistic environment, which is made of complex

scenes, the observer is forced to select relevant elements [148]. That is necessary to quickly

understand the meaning of a scene as well as for object search. For instance, the set

of objects in the environment give rise to a corresponding set of representations in the

observer. Each representation describe the identity, location, and meaning of the item

it refers to finally forming a literal representation of the environment. Some research on

the visual perception of subjects has shown that because the fixation of the gaze changes

in a short period of time when an environment is observed, the content of the scene can

not be integrated into a complete and detailed representation [149, 150]. This suggests

that such complete and detailed representations are not needed to obtain a meaning of

the scene. Just a few set of object and scene elements are enough to provide access to

semantic information [151].

A well-known result in psychophysics highlight that grouping elements in a scene

are fundamental for scene understanding [107]. First, the grouping of pixels in a region

defines a contour. In many cases, shape alone permits recognition of objects. Biederman
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et al. [149, 152] demonstrated that the silhouettes of the objects are generally very easy

to identify and to recognize. The silhouette conveys only part of the visual information

needed for the interpretation of an object. Concretely, the concepts such as convexities,

concavities, or inflections of contours allow the observer to infer the surface geometry [153].

However, this bottom-up perception can be computed first and to help any top-down

search to converge to the right answer. This can help to understand the visual scene

through the interpretation of its content. However, in order to fully understand a scene,

it is not only important the identification of individual objects comprising the scene but

also their relative locations and relations [151]. Based on this idea, the segmentation of

the scene into elements with semantic meaning becomes a key point in low vision.

The state of the art in semantic segmentation include deep learning algorithms.

Specifically, FCNs have proven to be successful in various recognition tasks such as

semantic segmentation of images. In this work, we use two FCNs to select and highlight

useful information in indoor scenes such as relevant object masks and silhouettes and

structural edges which recover the main structure of the scene providing sense of scale

or perspective of the objects. Even though deep learning methods are known for being

resource-hungry during training, they can achieve real time performance for prediction

even in mobile or embedded devices [154]. Thus, our method could be easily integrated in

an implant device.

The performance of the proposed visual stimuli, the SIE-OMS method, was investigated

for object recognition and room identification tasks. We introduced the effect of dropout

with a 10% of phosphenes omitted at random. This effect has been shown in other

studies that decreases the performance of subjects in daily tasks, although it is known

that with practice it will improve performance [63, 84, 141, 143]. Our results show that

generating phosphene images by extracting specific segments of the scene such as structural

informative edges and objects shapes are effective at improving object recognition and

room identification. Moreover, the SIE-OMS method produces a large improvement on

object recognition and room type identification compared to standard methods in SPV.

Here, we have taken the pre-trained neural network model of He et al. [120] with the

same classes as it had pre-defined without modifying any of them. The pre-defined classes

coincided with those classes detected by users with the Direct method, which does not

depend on the model of [120], since both methods, the SIE-OMS and the Direct, are
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independent. Note the case of the “window” class that was detected by users with the

Direct method but was not a pre-defined class in the model [120]. We consider large

objects since the scale of the images allowed a complete view of the room and that could

also be identified by the users with the Direct method. However, object appearance

alone is not enough for accurate object recognition in certain scenes. Since the only

piece of visual data that our system uses for each object is its shape, the introduction of

complementary information such as the object label could make recognition easier and

avoid confusion between objects with similar shape. These factor will be considered in

future studies for more realistic practices. We also note that structural edge detection

is fundamental for performing tasks such as self-orientation and building a mental map

of the environment. Finding such structure is crucial for personal mobility with retinal

prosthesis, where the bandwidth of image information that can be represented per frame

is quite restricted. Overall, we can affirm that the perception and comprehension of the

scene can be obtained with just a few set of elements represented in the environment.

2.5 Conclusions

We have propose a new visual representation of indoor environments for prosthetic vision,

which emphasizes the scene structure and object shapes. By combining the output of

two FCN for structural informative edges and object masks and silhouettes, we have

demonstrated how different scenes and objects can be quickly recognized even under the

restricted conditions of prosthetic vision. Our results demonstrate that our method is well

suited for indoor scene understanding over traditional image processing methods used in

visual prostheses. The key idea of our current results is that, with only a few significant

elements of the scene, it is possible to obtain a good perception of the environment, even

in complex and occluded scenes. We believe that in the near future, deep learning–based

algorithms may aimed at improving a patient’s scene understanding.
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Chapter 3

3 Influence of field of view

Visual prostheses are designed to restore partial functional vision in patients with total vision

loss. Retinal visual prostheses provide limited capabilities as a result of low resolution,

limited field of view and poor dynamic range. Understanding the influence of these

parameters in the perception results can guide prostheses research and design. In this

work, we evaluate the influence of field of view with respect to spatial resolution in visual

prostheses, measuring the accuracy and response time in a search and recognition task.

Twenty-four normal participants were asked to find and recognize usual objects, such as

furniture and home appliance in indoor room scenes. For the experiment, we use a new

simulated prosthetic vision system that allows simple and effective experimentation. Our

system uses a virtual-reality environment based on panoramic scenes. The simulator

employs a head-mounted display which allows users to feel immersed in the scene by

perceiving the entire scene all around. Our experiments use public image datasets and a

commercial head-mounted display.
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3.1 Introduction

Retinitis pigmentosa and aged-related macular degeneration are the two major retinal

degenerative diseases that cause a loss of vision [79, 80]. These diseases involve gradual

loss of photoreceptor, or rod cells, while generally preserving the inner retinal cells. This

results in a progressive loss of vision. Retinal prostheses are a promising technology to

improve vision in patients with such advanced degenerative diseases [25, 81–83]. These

visual prostheses can partially restore vision, bypassing damaged photoreceptors and

electrically stimulating the surviving retinal cells, such as the retinal ganglion cells [155].

The Argus II epiretinal prostheses (Second Sight Medical Products Inc., Sylmar, CA, USA)

is the most widely used retinal prostheses world-wide [25, 81]. It is made up of an external

component (glasses-mounted camera) and an implanted component (electrode implant).

The camera acquires images from the real-world that are transmitted to a portable visual

processing unit linked to the camera. The processed information is sent to the retina via

electrical impulses in the implant by an electrode array. The stimulation can activate a

group of neurons in a small localized area of the retina leading to percepts of spots of light

known as “phosphenes” [156]. The brain interprets patterns of phosphenes in the restricted

area as visual information. Results in implanted subjects have demonstrated partial

visual restoration, with improvement in both coarse objective function and performance

of everyday tasks [157–166].

There are still physiological and technological limitations of the information received

by implanted patients. The number of electrodes and implant size limit the maximum

amount of information that can be provided by the stimulating array. This fact has

restricted the degree of visual resolution (up to 1500 phosphenes) and dynamic range of

the visual perception (8 gray levels) that can be delivered to the user. Depth perception

is also not possible due to low resolution or monocular implantation. Although most

current implants have shown good results using static electrode stimulation, they only

elicit perception of multiple isolated phosphenes, sometimes resulting in a combination

of non-coherent shapes. Therefore, alternative approaches using dynamic activation of

an electrode sequence are being studied [167]. Additionally, field of view (FOV) is a key

limitation affecting visual experience of recipients. The ocular anatomy and surgery are

two major limiting factors for the narrow FOV [142, 168]. Current systems provide a FOV
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of approximately 18◦ × 11◦ in the retinal area, which correspond to the FOV subtended

by the electrode implant on the retina.

The constrained FOV limits mobility and recognition capabilities of the prosthetic

vision system reducing quality of life [169–171]. To improve the design of current retinal

prostheses in terms of FOV and resolution, one of the questions to be answered is whether

expanding the FOV of the input image can benefit implanted subjects. Some studies

have attempted to improve the narrow FOV on the clever design of microelectrode arrays

[172, 173]. Lohmann et al. [172] developed a flexible and thin retinal implant consisting

of a multielectrode array approximately three times the size of the comparable epiretinal

Argus II device which shows the possible recovery of meaningful peripheral vision. Other

devices for retinitis pigmentosa patients (tunnel vision) have been designed to expand the

projected FOV on their retina, for example, minimizing the scene zooming out using a

camera [174, 175]. He et al. [176] studied the influence of FOV in the Argus II system

with thermal imaging by changing the mapping (zoom out) between the sensor and the

electrode array. Zooming out turns out in a larger visual angle mapped onto the same

implant region on the retina, effectively decreasing the spatial resolution of their prosthetic

vision. Alternatively, Ameri et al. [173] have designed an implant with wider FOV, by

spreading the electrodes in a wider retinal surface. This setup seem to have advantages for

motion perception and head scanning, at the expense of a reduced electrode density and

fine detail. Therefore, the optimal implant area for a fixed number of electrodes remains

an open question, which we address in this study.

One of the concerns that has limited the development and wider use of retinal prosthetic

devices is how to evaluate their utility and function in terms of benefit to the patient

and, consequently, how to predict in which direction to develop these devices [32]. Most

studies in this field have incorporated performance-based measures and questionnaires to

try to understand the relative importance of visual parameters such as resolution, FOV

and visual acuity, in the performance of daily tasks in subjects with visual impairment.

However, studies with implanted subjects have limited statistical power and require

cumbersome experiments. For example, the study of He et al. [176] was limited to

four implanted participants. Simulated prosthetic vision (SPV) opens the opportunity to

evaluate potential and forthcoming functionality, in early stages of design, of these implants

with larger studies by using normally sighted participants. SPV is a standard procedure
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for non-invasive evaluation using participants without visual impairments. Furthermore,

SPV systems allow for quick or even interactive modifications of the parameters of the

simulation.

Researchers have previously used SPV for analysis of the visual perception in terms

of resolution or FOV with normally sighted subjects. For example, Fornos et al. [177]

used SPV to study how such restrictions of the amount of visual information provided

would affect performance on simple pointing and manipulation tasks. Li et al. [67]

applied an image processing algorithm to the image-to-electrode mapping process which

improved the ability of the prosthesis visual perception under SPV. Hayes et al. [95]

designed a set of tasks to assess performance of object recognition and manipulation

and reading using different sizes of electrode array. Contrary to our approach in this

paper, they used a constant electrode density, meaning that wider arrays also had larger

number of electrodes. In a subsequent study, Dagnelie et al. [38] explored minimal visual

resolution requirements of a simulated retinal electrode array for mobility in real and

virtual environments, experienced by normally sighted subjects in video headsets.

These experiments relied on some form of head-mounted device which allowed a

virtual-reality experience during the experiment, but the immersiveness of experience was

poor due to the technological limitations compared to modern commercial VR systems.

Furthermore, most SPV studies use computer screens to present phosphenic images

[37, 77, 138]. Modern commercial VR systems have specifications in terms of resolution,

latency and response time that allows a fully immersive experience with unexpensive

equipment and computers. Using these devices, subjects are immersed and able to interact

with complex environments. SPV with commercial VR systems, such as the Oculus Rift

used in this work, can be a useful tool to evaluate everyday tasks in more realistic setups

and complex simulations. Furthermore, prosthetic vision can be assessed in controlled,

real or simulated environments.

In this work, we evaluated the influence of FOV and resolution of the prostheses on the

subject’s performance in a recognition task, since it is of high priority for patients with

visual diseases such as retinitis pigmentosa. Concretely, we analyzed an object search and

recognition task performance in indoor scenes with different reduced FOVs and resolutions

limited to hundreds of electrodes. For that, we present a new VR system for more realistic

SPV environments using panoramic scenes. The VR system could be extended to more
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Figure 3.1: SPV system. The components consist of an Oculus Rift powered by a
consumer level laptop. The VR system is composed by two lenses, two screens and a suite
of internal sensors (gyroscope and accelerometer). The representation with simulated
phosphenes is displayed on the laptop screen as well as on the Oculus system worn by the
subjects. During the experiment, subjects were seated in a swivel chair allowing them to
scan the entire scene all around them (360 degrees).

complex tasks because it supports realistic environments. This system acts as an electronic

visual aid that attaches to the user’s head and presents information directly to the user’s

eyes. The panoramic scenes (360 degrees) are intended to allow subjects to feel immersed

in the scene.

3.2 Materials and Methods

We evaluate the influence of FOV on object search and recognition tasks using SPV through

a VR system. The SPV system is a standard procedure for non-invasive evaluation using

normal vision subjects. This methodology allows controlled evaluation of normally sighted

subject response and task performance which is fundamental to know the way humans

perceive and interpret phosphenized renderings. SPV also offers the advantage of adapting

implant designs to improve the perceptual quality without involving implanted subjects.
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3.2.1 Participants

Twenty four subjects aged 20-30 (6 female, 18 male) participated in the experiment. They

had no visual problems or wore their normal optical correction during the experiment.

Ethics Statements

The research process was conducted according to the ethical recommendations of the

Declaration of Helsinki. The research protocol used for this study is non-invasive, purely

observational, with absolutely no-risk for any participant. There was no personal data

collection or treatment and all subjects were volunteers. Subjects gave their informed

written consent after explanation of the purpose of the study and possible consequences.

The consent allowed the abandonment of the study at any time. All data were analyzed

anonymously. The experiment was approved by the Aragon Autonomous Community

Research Ethics Committee (CEICA).

3.2.2 Simulated Prosthetic Vision (SPV)

This section describes the SPV system including the hardware specifications, software

components and phosphene generation.

Hardware

As shown in Figure 3.1, the experiment was conducted on an Oculus Rift powered by

a consumer level laptop (Intel(R) Core(TM) i5-8265U CPU). This system is capable

of working in real time with any mid-range laptop. The VR system, Oculus Rift DK2,

is composed by two lenses, two screens and an inertial measurement unit (IMU) with

gyroscopes and accelerometers, a standard setup for most commercial VR systems. It

contains 5.7 inch dual OLED screens with a resolution of 960 x 1080 projected on to

each eye. Each display is projected into the eye using a lens with pincushion distortion

to provide peripheral vision. In our experiments we mostly use the central part of the

display which remains undistorted. The representation with simulated phosphenes was

displayed on the VR system worn by the participants as well as on the laptop screen

for the experimenter to check the progress. For the head mounted display, we use a

single channel (green) to avoid the chromatic aberration of the device lenses. During the
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Figure 3.2: Data process. The input scene in our VR system is a panoramic image in
equirectangular representation. The system estimate the head orientation using the IMU
sensors (gyroscope and accelerometer) allowing to choose the area of the panoramic scene
that is being observed at the moment. The area selected is then projected on the two
Oculus screens and represented using simulated phosphenes.

experiment, participants were seated in a swivel chair allowing them to scan the entire

scene with head rotation movements.

Software

The implementation was done in C++, using the Oculus Rift SDK to connect with the

VR system and OpenCV for image processing. Our software is compatible with the

Windows operating system. Figure 3.2 shows the data process designed to generate the

stimuli for the VR system. Starting from a panoramic scene capturing 360◦ of horizontal

FOV and 180◦ of vertical FOV, the system estimates the orientation of the user using

the information collected from the IMU (Figure 3.1). The selected area is then projected

on the two Oculus displays and finally represented with simulated phosphenes. The

projection models for the VR system can be found in the Appendix.
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Figure 3.3: Stimuli conditions in the experiment. Rows: different FOVs used in the
experiment (60, 40 and 20 degrees). Columns: different resolutions used in the experiment
(200 and 500 phosphenes). Note that in the last row only part of the lamp is visible, the
beds cannot be seen without moving the point of view.

Our phosphene map configuration is similar to the frameworks of McKone et al. [48]

and Chen et al. [45]. We approximate the phosphenes as circular dots with a Gaussian

luminance profile –each phosphene has maximum intensity at the center and gradually

decays to the periphery, following a Gaussian function–. The intensity of a phosphene is

directly extracted from the intensity of the same region in the image. For our experiments,

each phosphene has 8 intensity levels. The size and brightness are directly proportional

to the quantified sampled pixel intensities. The phosphene map is calculated and updated

with respect to head orientation in real time. The complete process of phosphene generation

can be found in the Appendix.

The software used in the experiment to simulate the prosthetic vision with the VR

system is available at http://webdiis.unizar.es/~rmcantin/index.php/Research/Vrfov.
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Figure 3.4: Object classes considered during the experiment. Subjects have to recognize
the main objects of the scene, those objects that are usually present in hotel rooms such
as bed, window, chair, tv, sofa, table/nightstand, door, wardrobe/shelving and lamp.

3.2.3 Procedure

The experiment was conducted using a selection of indoor panoramic scenes from a public

database of Xiao et al. [178] that are adapted to our SPV system. The resolution of the

panoramic scenes is 1024 x 512 pixels. All the scenes from the database are hotel rooms

containing objects such as beds, tables, chairs, windows and doors, among others (see

Figure 3.4). We removed several scenes because they had external distractions, such as

signatures and watermarks, that could affect the experiment. From them, we randomly

selected 50 scenes. The scenes were presented to the subjects using different stimuli

conditions based on two resolutions (200 and 500 phosphenes) and three circular FOVs

(20, 40 and 60 degrees), as can be seen in Figure 3.3. We used a circular FOV to avoid

directionality in the searching process that might bias the results. We selected these

particular resolutions and FOVs based on current retinal prostheses [32, 179], although

our VR platform allows to quickly change those parameters. The total number of stimuli

scenes generated for the experiment was 300.

For the formal experiment, participants were recruited to complete an object search

and recognition task using the SPV system. By turning the swivel chair and head, subjects

had to scan the entire scene by changing the head orientation, but not the position. At

the same time, participants had to search and recognize the main objects of the scene

such as bed, window, chair, tv, sofa, table/nighstand, door, wardrobe/shelving and lamp

(see Figure 3.4). Small objects such as telephones, vases or remote controls were not taken

into account. We took into account both the type of recognized object and the number of

each of them. At the beginning of the experiment, subjects were trained during 2 minutes

on a test set of images. Participants were informed that all scenes were indoor scenes,
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but they were not informed about the class and number of objects in each scene nor the

different stimuli conditions. The demo images were not included in the experiment to

avoid learning effects.

Figure 3.5 shows the trial setup. Each trial consisted of a sequence of fifteen scenes

generated by choosing a resolution, a FOV and a scene, among the shuffled conditions.

Initially, a white dot was displayed in the center of the screen indicating where the

participants had to maintain fixation until the beginning of the task. Next, each scene was

presented and the user has a maximum of 60 seconds to scan the scene moving the chair

and their head. The following scene was displayed when the participant verbally ordered

that the task had been completed (‘I cannot see more objects’) or after 60 seconds. This

procedure was repeated for each scenario of the trial. Between two scenes the participants

were instructed to ‘look for’ the white dot to fixate the gaze in a steady position before

the next scene. There was a break time in the middle of the sequence (between 7th − 8th

scene) of 60 seconds.

The participants verbally indicated the type of objects seen in each scene during the

scanning to minimize distractions. The responses of each stimulus scene were timed

recorded and annotated by the experimenter. If the participants did not respond within

the 60 seconds frame, the result of that scene was considered as ‘no object was recognized’

and a time of 60 seconds was recorded. Participants did not get feedback of their responses.

The complete experiment took approximately 20 minutes per participant.

3.2.4 Statistical analysis

Data were analyzed using two-way ANOVA and post hoc-test with Tukey’s method to

evaluate simultaneously the effect of the two grouping variables (resolution and FOV) on

the response variables object recognition and recognition time with p = 0.05, * < 0.05 ,

** < 0.01, *** < 0.001 and ns not significant.

3.3 Results

The performance for all resolutions and FOVs is summarized in Figure 3.6. The results

show the ratio of recognized object and recognition time (mean ± standard deviation)

for aggregated data from all subjects and all images. For the same scene, we normalized
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Figure 3.5: Trial setup. To generate the scene in each step of the trial sequence we used
shuffled conditions of FOV, resolution and scenes. During the experiment, each scene
appeared for 60 seconds and switched for the next scene automatically. Break time in the
middle of the sequence (between 7th−8th scene) was 60 seconds. The complete experiment
took approximately 20 minutes.
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Figure 3.6: Ratio of recognized objects and recognition time. (a) Object recognition
results for 20, 40 and 60 FOVs and for the two resolutions, 200 and 500 phosphenes. High
scores indicate that subjects were able to recognize most of the objects in each scene. (b)
Recognition time results for 20, 40 and 60 FOVs and for the two resolutions, 200 and
500 phosphenes. High scores indicate that the subjects needed more time to perform the
recognition task. ***=p<.001; **=p<.01; *=p<.05; ns=p>.05.

the results of the object recognition with all the conditions of the experiment, with “1”

being the experiment case with the highest number of recognized objects for a particular

scene. The time recorded in each scene was the time it took the subject to recognize the

first object. We also performed a test to determine if the mean difference between specific

pairs of conditions are statistically significant using Tukey’s method with a significant
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Figure 3.7: Ratio of recognized objects and recognition time. a) Box-plot for object
recognition and b) box-plot for recognition time.

level α = 0.05.

Figure 3.6(a) shows the object recognition performance for the three FOVs (20, 40 and

60 degrees) and the two resolutions (200 and 500 phosphenes). For the same resolution,

the object recognition performance decreases as the FOV increases. For the resolution

of 500 phosphenes the average performance is 80.66±7.85, 63.84±8.68 and 34.74±7.83

for 20, 40 and 60 degrees respectively. For the resolution of 200 phosphenes the average

performance is 60.24±8.28, 19.65±5.97, 16.58±5.82 for 20, 40 and 60 degrees respectively.

No significant differences were found for 40-60 FOVs for 200 phosphenes (p=0.8056), as

performance was very poor in both cases. Comparing the performance for the same FOV,

the performance increases with the number of phosphenes for all cases.

Figure 3.6(b) shows the recognition time for the three FOVs and two resolutions.

For the same resolution, the recognition time increases as the FOV increases. For the

resolution of 500 phosphenes the average recognition time is 10.81±4.32s, 14.10±4.41s and

23.71±4.91s for 20, 40 and 60 degrees respectively. For the resolution of 200 phosphenes the

average recognition time is 9.24±2.35s, 30.50±5.79s, 36.61±5.77s for 20, 40 and 60 degrees

respectively. No significant differences were found for 20-40 FOVs for 500 phosphenes

(p=0.733) and similarly to 40-60 FOVs for 200 resolution (p=0.199). Comparing the

performance for the same FOV, the recognition time decreases with the number of

phosphenes. Table 5.1 shows the number of cases considered failure, where no object has

been recognized in 60s. The condition 60 FOV and 200 resolution had more number of

failures. Contrary, the condition 20 FOV and 200 resolution had fewer number of failures.
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Figure 3.7 shows box-plots of data distribution with 25, 50 and 75th quartiles for

recognized objects and recognition time. In the recognized object (see Figure 3.7(a)),

there is difference between the two resolution (200 and 500 phosphenes) for 20 and 40

FOVs. On the other hand, for 200 phosphenes there is only difference between 20 and

40 FOVs. In the case of recognition time (see Figure 3.7(b)), there is difference between

the two resolution for 40 and 60 FOVs. At the same time, there is difference between

40 and 60 FOVs for 500 phosphenes and between 20 and 40 FOVs for 200 phosphenes.

Note that the data distribution for the condition 20 FOV and 200 resolution and the

condition 40 FOV and 500 resolution are very similar, even though they are two totally

different schemes. However, it makes sense because they have practically the same angular

resolution (see Figure 3.8).

Figure 3.8 shows the ratio of recognized objects and time recognition according to

angular resolution (AR), measured in phosphenes per radian. We perform a logarithmic

regression for all data. The logarithmic regression equation for the object recognition

rate (OR) is OR = −1.0345 + 0.4482 · log(AR) with R2 = 0.4031 and F − value = 201.3.

The positive coefficient indicates that as the angular resolution increases, the object

recognition ratio tends to increase (see Figure 3.8(a)). The logarithmic regression equation

for the recognition time (RT ) is RT = 83.14 − 18.78 · log(AR) with R2 = 0.2344 and

F − value = 91.26. The negative coefficient indicates that as the angular resolution

increases, the recognition time tends to decrease (see Figure 3.8(b)). The regression

output shows that both, ratio of recognized object and the recognition time variables are

statistically significant with p− value < 0.05 (see Table 5.1).

3.4 Discussion

Recent developments in the technology for retinal implants should allow to improve the

quality of electrode arrays, in terms of features, such as response time, resolution or size

[94, 173]. Thus, an open question for the prosthesis design is how to evaluate and predict

the utility and functionality in terms of patient benefit with respect to design parameters

[32]. Several studies have incorporated performance-based measures and questionnaires

to understand the relation of visual parameters in the performance of everyday tasks in

visually impaired subjects.

In this work, we study how certain features interact and affect perception. Intuitively,

60



3 INFLUENCE OF FIELD OF VIEW 3.4 Discussion

0 10 20 30 40 50 60 70

0.0

0.2

0.4

0.6

0.8

1.0

Resolution
      500
      200

Angular resolution (phosp/rad)

R
at

io
 o

f 
R

ec
og

ni
ze

d 
ob

je
ct

s 

(a)

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

Resolution
      500
      200

Angular resolution (phosp/rad)

R
ec

og
ni

tio
n 

tim
e 

(s
)

(b)

Figure 3.8: Angular resolution. (a) Performance of recognized objects according to
angular resolution (phosphenes/radian) and (b) recognition time according to angular
resolution. We perform a logarithmic regression for all data. The performance of recognized
object tends to increase with angular resolution. Contrary, the recognition time tends to
decrease with the angular resolution.

wider sensors should improve perception by allowing a larger field of view which can help

detect motion and perform scanning [173]. Our results seem to indicate that it is not the

case for head scanning, if it comes at the expense of phosphene density. Similarly, He et

al. [176] investigated the effect of a wider FOV of a retinal prostheses on the performance

of Argus II users in an object localization task using a thermal sensor. The results showed

that users were able to find objects using the current 11◦ × 18◦ FOV with no zoom with

higher precision and speed than when using a wider FOV by zooming out the sensor input.

They also suggest that a higher spatial resolution may be preferred over a wider input

FOV. This has demonstrated the importance of some parameters such as FOV, visual

resolution and angular resolution [180]. Others works have also shown that the lack of

visual information caused by the low resolution and the restriction in a large portion of

the FOV can be compensated by scene scanning [93, 181]. During scene scanning, the

relevant information of the environment is actively sought, quickly and efficiently. For

instance, there is some evidence on humans that eye and head rotation facilitates the

learning process to recognize simple objects [181–184].

Simulated prosthetic vision (SPV) can be used to estimate the visual requirements

to deliver a sufficient visual resolution and FOV with a large statistical power and cost

efficiency. It provides an opportunity for simulation-based research regarding the design

of a functional visual prosthesis, improvement of functional vision in low-phosphene-
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Table 3.1: Mean value of the ratio of recognized object and recognition time for the
six angular resolutions. Parameters for logarithmic regression and R2, F − value and
p− value.

Angular resolution Ratio of Recognition time # Results
(phosp/rad) Recognized object (s) > 60s

13.5 0.166 ± 0.058 36.61 ± 5.77 20
20.3 0.197 ± 0.059 30.50 ± 5.79 14
21.4 0.346 ± 0.078 23.71 ± 4.91 7
32.0 0.638 ± 0.087 14.10 ± 4.41 4
40.5 0.602 ± 0.083 9.24 ± 2.35 1
64.0 0.807 ± 0.076 10.81 ± 4.32 4

intercept −1.0345 83.14 −
slope 0.4482 −18.78 −
R2 0.4031 0.2344 −

F − value 201.3 91.26 −
p− value ∗ ∗ ∗ ∗ ∗ ∗ −

count devices, and also as a tool to search for image processing strategies to impart the

most understandable prosthetic vision making experimentation with implanted patients

unnecessary. In the work of He at al. [176], the FOV is modified at the external sensor by

introducing a zoom lens, therefore changing the perceived scale. In contrast, thanks to

the use of SPV we can actually change the properties of the electrode array, altering the

FOV at the stimulus, mainting the 1:1 scale ration between perception and real world.

Visual scanning has also been studied in SPV showing that it has a positive impact on the

task performance by allowing subjects to increase the visual information [185]. Cai et al.

[186] noticed during experiments that head rotation also allowed subjects to expand their

effective FOVs and rudimentary depth perception through parallax. Chen et al. [187] also

reported that maximizing visual information with scanning techniques improves visual

acuity performance.

The theoretical resolution achievable by present-day retinal implants such as Argus

II is 4◦ [188]. There have also been cases reported in Argus II clinical trials with 1.1◦,

well below the theoretical limit. This may be explained by effective scanning techniques,

allowing subjects to temporally integrate percepts. Previous studies in SPV found out that

a minimum angular resolution of 170 pixels/radian is needed for an acceptable accuracy

in some tasks such as mobility and object recognition [38, 95, 177, 189]. However, this

angular resolution is around three times more than the maximum angular resolution

obtained in our experiment (64.0 phosphenes/radian).
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We found that object recognition is well achieved with low resolution and restricted

FOV. As can be seen in Figure 3.6(a), we obtained a significant improvement in the

recognition performance as the FOV was reduced, for both resolutions. Besides, partici-

pants took less time to recognize objects with a narrower FOV (see Figure 3.6(b)). This

seems counterintuitive since with a narrower FOV the global reference of the scene is

lost. However, the narrower the FOV, the higher the angular resolution and therefore

the greater the image detail (higher frequencies). Contrary, the widest FOV allows to

cover the widest area of the scene but it only allows to see the gist of the image (lower

frequencies).

Psychophysical and computational studies have shown that high and low spatial

frequency provide different content from a scene: higher spatial frequencies contain

fine information of image details and/or object boundaries, whereas lower frequencies

preserve coarse blobs representing the gist of the scene [190–193]. In our experiments, the

narrower FOV produces a higher phosphene density or angular resolution. By increasing

the FOV (20, 40, 60 degrees), the angular resolution decreases: 40.5, 20.3 and 13.5

phosphenes/radian for 200 phosphenes and 64.0, 32.0 and 21.4 phosphenes/radian for

500 phosphenes, as can be seen in Figure 3.8. For lower angular resolutions, there were

more cases of responses from subjects that exceeded the 60 s limit in the experiment,

which implies that the subjects need more time to recognize details in these conditions

(see Table 3.1). Our results suggest that it is better to see higher spatial frequencies of

the scene, even if the global reference is lost due to the narrow FOV, since the subjects

are able to holding back the global concept of the scene through visual scanning. Further,

in more complex scenes such as low-contrast or low-luminance level, the time required to

recognize the objects was higher and recognition performance decreased. In the same way,

in those scenes with high contrast the subjects needed less time and the performance in

the task increased. This fact has been demonstrated by Ehrlich et al. [184], where they

observed that as the contrast increases the perception of the scene increases.

Virtual-reality (VR) systems have been widely used for experimentation [65, 69, 99,

194, 195]. They improve the quality of SPV tests since the experimentation environment

is closer to the real-world. Some SPV research such as Denis et al. [194] used a VR

system with two videos cameras mounted on the front of the headset to capture the visual

scene for text localization. In [65], the SPV was generated on a VR headset with a stereo
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camera that captured the scene in real-time for object recognition and localization. In

similar studies, participants interacted with the VR system for different tasks such as

visual acuity measurement [195] or wayfinding task [69]. Vergnieux et al. [99] used a

virtual environment that was displayed via a VR system for navigation task evaluation.

Despite these proposals, we need more realistic and easier to use experimentation

environments to improve the quality of SPV tests. A complete immersive experience

implies to consider rotations and translations in the virtual environment. This approach

would require the development of a detailed 3D model of the scene, to track the user

and a large space allowing the free movement of the user in the real world. Since the

influence of visual scanning in the FOV is dominated by rotations we have considered a

simpler option. The environment is represented by a 360 panoramic scene so that the

head can be turned in all directions from the center of the scene and the subject can

explore the entire scene. This approach has a set of advantages. Panoramic scenes are

easy to obtain in any real scene. By contrast, modelling a complete 3D model of the

environment is very expensive. Further, the rotational movement of the head can be easily

obtained from the embedded inertial sensors of the headset avoiding external cameras for

the translation tracking. The experiment can be performed sitting on a chair, avoiding

collisions, the requirement of a very large space and facilitating repeatability. Furthermore,

our SPV system allows replication of the experiment using many subjects with normal

vision without being limited by the number of implanted subjects.

3.5 Conclusions

We have analyzed the influence of field of view with respect to resolution in retinal

prostheses through a study with a novel simulated prosthetic vision setup: a virtual-reality

system using panoramic scenes. Participants perceived phosphene images in an immersive

head-mounted device. The task consisted on finding and identifying common objects with

different field of view and number of phosphenes. Our results show that, for the same

number of phosphenes, recognition accuracy and response time improved by reducing

the field of view. In fact, angular resolution is major determinant for effective object

recognition, being directly correlated to the accuracy and inversely correlated to the

response time. However, it has also shown a diminishing return even for an angular

resolution of less than 2.3 phosphenes per degree. Simulated prosthetic vision allows
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experiments with larger number of participants and simpler procedures than clinical

studies with implanted patients. Our experimental setup relies on a consumer-level head-

mounted display, public image databases and we have released the software needed to

run the simulator, to facilitate replications and extensions. Our results indicate that the

phosphene versus field-of-view trade-off for improvements to the angular resolution should

prioritize the former to the latter.

3.6 Related Publications

1. Sanchez-Garcia M., Martinez-Cantin R., Bermudez-Cameo J and Guerrero J. J.

2020. “Influence of field of view in visual prostheses design: Analysis with a VR

system”. Journal of Neural Engineering

65



4 AUGMENTED REALITY NAVIGATION

Chapter 4

4 Augmented reality navigation

The visual functions of visual prostheses seriously restrict the person’s ability to navigate in

unknown environments. Implanted patients still require constant assistance for navigating

from one location to another. Hence, there is a need for a system that is able to assist

them safely during their journey. In this work, we propose an augmented reality navigation

system for visual prosthesis that incorporates a software of reactive navigation and path

planning which guides the subject through convenient, obstacle-free route. It consists on

four steps: locating the subject on a map, planning the subject trajectory, showing it to the

subject and re-planning without obstacles. We have also designed a simulated prosthetic

vision environment which allows us to systematically study navigation performance. Twelve

subjects participated in the experiment. Subjects were guided by the augmented reality

navigation system and their instruction was to navigate through different environments

until they reached two goals, cross the door and find an object (bin), as fast and accurately as

possible. Results show how our augmented navigation system help navigation performance

by reducing the time and distance to reach the goals, even significantly reducing the number

of obstacles collisions, compared to other baseline methods.

  

SPV visual feedback 
(object goal)

SPV visual feedback 
(object goal)
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(door goal)
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(door goal)

Virtual
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4.1 Introduction

Technological integration of Artificial Intelligence (AI) in the field of prosthetics and

assistive technology has become a helpful tool for people with disabilities. Application of

AI and robotics technology has a huge potential in achieving independent mobility and

enhances the quality of life in persons with disabilities [196–200].

Augmented reality (AR) is showing day by day that has a place in our daily lives and

can become a useful tool. Researchers have placed this new horizon to produce technology

that is destined to change the way we solve problems and interact with the world. This

ranges from work, education, medicine, and enhancing the independence of people with

disabilities such as Retinitis Pigmentosa (RP) and Age-related Macular Degeneration

(AMD) [77, 194, 201, 202].

RP and AMD are the two most prevalent retinal degenerative diseases. They affect

millions of individuals worldwide and cause permanent blindness due to a gradual loss of

photoreceptor [168, 203, 204]. Although current remedies can slow the progression of vision

loss, there are no permanent cures for these retinal diseases [205, 206]. Retinal prostheses

have turned out to a promising technology to improve vision in patients with RP and

AMD. Visual prostheses can partially restore vision, bypassing damaged photoreceptors

and electrically stimulating the surviving retinal cells, such as the retinal ganglion cells.

For the blind, a retinal prosthesis can be life-changing, partially restoring sight, improving

mobility and even helping to recognize some objects. The Argus II epiretinal prosthesis

(Second Sight Medical Products Inc., Sylmar, CA) combines a miniature eye implant with

a patient-worn camera and a processor to transform how the patient experience the world

[25]. The camera acquires images from the real-world that are transmitted to a portable

visual processing unit linked to the camera. The processed information is sent to the

retina via electrical impulses in the implant by an electrode array. The stimulation can

activate a group of neurons in a small localized area of the retina. Patients implanted

with an array of electrodes in the visual system report the perception of reproducible

white spots in the visual fields (called phosphenes) after stimulation. The brain interprets

patterns of phosphenes in the restricted area as visual information. To date, the results

of implanted subjects have shown to be promising, and all subjects have demonstrated

improved function using the implanted prosthesis.
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There are still physiological and technological limitations of the information received

by implanted patients. Spatial resolution of prosthetic implants is limited by several

factors, including electrode density, size, number and pitch, electrode contact, and visual

encoding. Up to 600 or 1,000 pixels are required for restoration of useful vision; however,

the majority of prostheses use 100 or fewer stimulating electrodes [207]. Besides, current

systems provides a field of view of approximately 18◦ x 11◦ in the retinal area, which

correspond to the field of view covered by the electrode implant on the retina.

Because of the small number of implanted patients, it is difficult to improve prosthesis

design through extensive clinical trials. To systematically progress on the design of retinal

prostheses it is possible to rely on Simulated Prosthetic Vision systems (SPV). SPV opens

the opportunity to evaluate potential and forthcoming functionality in early stages of

design with not implanted subjects.

The SPV system usually consists in a computer screen for the presentation of static

or dynamic phosphene images or in a camera mounted on a virtual-reality headset

[73, 74, 77, 99, 131, 208, 209]. Participants perform various tasks perceiving a set of

phosphenes mimicking the percepts elicited by a retinal prosthesis, while wearing the

head-mounted display. For example, Fornos et al. [177] used SPV to study how the

restrictions of the amount of visual information provided would affect performance on

simple pointing and manipulation tasks. Hayes et al. [95] designed a set of tasks to

assess performance of object recognition and manipulation and reading using different

sizes of electrode array. In a posterior study, Dagnelie et al. [38] explored minimal

visual resolution requirements of a simulated retinal electrode array for mobility in real

and virtual environments, experienced by normally sighted subjects in video headsets.

Sanchez-García et al. [78] evaluated the influence of field of view with respect to spatial

resolution in visual prostheses using a virtual-reality environment system for more realistic

SPV environments using panoramic scenes. However, they mainly focused on reading and

object recognition.

More and more SPV navigation studies are being carried out [39, 99, 210]. Navigation

is an important component of the self-reliance of the blind. The visual functions of

patients are restricted enough to seriously affect the person’s ability to navigate unknown

environments. Some researchers have focused on mobility and obstacle avoidance. Cha et

al. [143] investigated the feasibility of achieving visually-guided mobility without extra
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information. They show that 625 phosphenes and a camera field of view of 30◦ were

required to reach acceptable performances. More recent studies also focused on obstacle

avoidance in a corridor [72, 75]. Other works showed that highlighting obstacles [211]

or planar surfaces [212] improve the preferred walking speed [213]. Dagnelie et al. [38]

explored minimal visual resolution requirements of a simulated retinal electrode array

for mobility in real and virtual environments with a high contrast between the ground

and the walls. Rheede et al. [69] also used a virtual environment to check if subjects

were able to follow instructions and walk through a predetermined path. The results of

Dagnelie et al. [38] and Rheede et al. [69] also demonstrated that the comprehension

of the environment was not necessary for the subjects to follow a predetermined path.

Successful localization is based on the perception of specific signals from the environment

(landmarks), but also on the selection of an appropriate path [214]. This is precisely

the trend that has been followed in Robotics in recent years [215–219]. The problem

of navigation in Robotics has been extensively studied. We can define autonomous

navigation as a set of methodologies that make possible to move a robot safely through

the environment. Autonomous navigation and obstacle avoidance have been widely study

in mobile robotics [220–223]. More concretely, the aim of navigation systems is to search

an optimal or quasi-optimal path from the start point to the goal point with obstacle

avoidance competence. The autonomous navigation system usually includes various

tasks such as: planning, perception and control. Planning in mobile robots generally

consists of establishing the mission, the route and the avoidance of obstacles, sometimes

in the presence of uncertainty [224, 225]. In the case of robotics, autonomous navigation

culminates by sending orders to the robot so that it moves in the calculated direction. In

our case of people assistance, we look for a way to communicate the information obtained

through a visual prosthesis.

In this work, we take advantage of the robotic algorithms, adapt them to human

navigation, and include them in SPV using a virtual environment. Specifically, we propose

an augmented reality navigation system for visual prostheses. This method consists on

four tasks: locating the subject on a map, planning the subject trajectory, showing it

to the subject and re-planning without obstacles. We also design a virtual environment

which allows us to systematically study navigation performance based on prosthetic vision.

The main issue is to determine whether the use of a smart prosthesis based on a robotic
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(c)

Figure 4.1: Virtual environments used in the experiments. (a) Environment 1, (b)
Environment 2 and (c) Environment 3. Both, Environment 2 and Environment 3 have the
same map but vary in the number and distribution of obstacles, being the Environment 2
more complicated than Environment 3, but less than Environment 1.

navigation system help in navigation tasks. We evaluate and compare the proposed

guidance system with baseline methods through a SPV experiment, which is a standard

procedure for non-invasive evaluation using normal vision subjects. The experiments

included one task: finding and reaching a large object while avoiding obstacles in wildly

crowded scenarios.

4.2 Methods

4.2.1 Subjects

Twelve subjects with normal vision volunteered for the formal experiment. The subjects

(two females and ten males) were between 22 and 35 years old. Every subject used a

computer daily (video games).

Ethical statement

The research process was conducted according to the ethical recommendations of the

Declaration of Helsinki. The research protocol used for this study is non-invasive, purely

observational, with absolutely no-risk for any participant. There was no personal data

collection or treatment and all subjects were volunteers. Subjects gave their informed

written consent after explanation of the purpose of the study and possible consequences.

The consent allowed the abandonment of the study at any time. All data were analyzed

anonymously. The experiment was approved by the Aragon Autonomous Community
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Figure 4.2: In this example, the subject’s goal is to cross the door. (a) Simulation
environment showing the door goal. (b) The robotic system obtains an optimized trajectory
to the goal avoiding obstacles (green line). (c) Image captured by RGB camera showing
the door goal. (d) Image generated by the SPV with the RoboticG method. (e) Image
generated by the SPV with the PerceptualG method. (f) Image generated by the SPV
with the DirectG method.

Research Ethics Committee (CEICA, see Ethical Statement for additional details).

4.2.2 Augmented Reality System

The following subsections describe the three guidance methods used in the experiments.

First, our proposal called Robotic Guidance (RoboticG) based on augmented reality

navigation system highlights the optimized trajectory or path and the object goals on the

phosphene representation. Second, we have used two guidance methods as baselines: a)

we remove the path augmentation from our RoboticG method, leaving the goal perception

(PerceptualG) and b) we remove both, the path and the goal augmentation from our

RoboticG method (DirectG). Examples of the resulting effect on the phosphene images

are shown in Figure 4.2 and Figure 4.3.
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Figure 4.3: In this example, the subject’s goal is to find the bin. (a) Simulation
environment showing the bin goal. (b) he robotic system obtains an optimized trajectory
to the goal avoiding obstacles (green line). (c) Image captured by RGB camera. (d) Image
generated by the SPV with the RoboticG method. (e) Image generated by the SPV with
the PerceptualG method. (f) Image generated by the SPV with the DirectG method.

Robotic Guidance (RoboticG)

We propose an autonomous navigation system with obstacle avoidance for visual prosthesis

called Robotic Guidance (RoboticG). This method performs a path planning that the

person has to follow to reach a goal avoiding obstacles and highlight the path with

phosphenes (augmented path), as can be seen in Figure 4.2(d) and Figure 4.3(d). Moreover,

we use a goal perception method which segment the goals and highlight them with

phosphenes (augmented goal), as can be seen in Figure 4.2(e) and Figure 4.3(e). We

evaluate our RoboticG method using SPV. SPV is made up of Gazebo and simulated

phosphenes.

Path planning The most important tasks for navigation are locating the user on

the map and the path planning to reach a goal. For the location problem we determine

the position and orientation of the subject relative to a 2D map of the virtual environment

where it is going to be navigated. One of the great advantages of working in a simulated
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Figure 4.4: Diagram of SPV environment. We use the Robot Operating System (ROS)
which handles communications between programs allowing easy control of a robot’s mobile
operations. We evaluated our RoboticG method composed of Path planning and Goal
perception using Simulated Prosthetic Vision (SPV). SPV is made up of Gazebo and
simulated phosphenes. One advantage of our method is that in a real environment, Gazebo
could easily be exchanged for the external camera of the prosthesis and the simulated
phosphenes for the implant electrode array.

environment is that it allows us to know the user’s location on the map at all times.

However, for real experiments, we could use a SLAM system [226] which allows locating

the subject as long as the scene has previously been mapped. For both, the location

system (3D map) and the navigation system (2.5D map), we use a common reference

system that allows us to express information from the reference system of one map to the

reference system of the other. Our simulation environment is precisely designed so that it

can be used with a real sensor.

We use two planners for the path planning: a global planner and a local planner. The

global planner is based on the A∗ Search Algorithm which calculates the optimal path

between the source (initial state) and the destination (final state) using the 2D map (see

Figure 4.4). The local planner is based on the Dynamic Window Approach (DWA) [227]

which following the A∗ path, finds a collision-free (‘admissible’) trajectory considering the

obstacles not included in the map. This algorithm uses the information of the obstacles

from the 3D point cloud projected on a 2D map, to calculate the most optimal path with

which to avoid them. The global trajectory is modified as a function of distance to which

obstacles are located, the distance to the target and the alignment of the subject with

respect to it. Obstacles are detected in real time.
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Goal perception In order to augment the goals to highlight them, it is necessary

to apply some kind of goal perception method, that allow us to recognize the goal element

in the scene. Nevertheless, ‘goal perception’ is a broad term and the method to apply may

need to be goal-specific. For instance, we could use the Region-Growing algorithm [228],

deep learning detection/segmentation algorithms to identify certain objects in an image

[120], or advanced 3D perception algorithms that leverage point clouds. Since object

detection is not in the scope of this work, we leverage the known map and fix the goals

(door and bin) to a certain point in the map so that they are unequivocally identified.

This algorithm locates the objects/goals only when they are within a 5m radius.

Augmented representation with phosphenes We use a simple representation

with phosphenes for our RoboticG method to represent the direction of the path and

the goals. Since in prosthetic vision systems the spatial and photometric resolution is

very low, we use a simple representation that is capable of communicating the clues for

navigation without obstructing but rather complementing the useful information of the

scene.

Our guidance method consists of representing a line on the floor plane (and projecting

it on the image) that follows the path that the person must follow to reach a goal. To

represent in the image the sequence of 2D points that leads to a goal calculated by the

trajectory planner, we define the location of the goal on the 2D map and project the 3D

points onto a phosphene mesh. We assign to these points a high intensity value to clearly

differentiate them from the rest of the objects in the scene (augmented path). We also

assign a high intensity value to the segmented goals by the goal perception method to

differentiate them from the rest of the scene (augmented goal).

Simulated Prosthetic Vision (SPV) In this work, we simulated two components

of the visual prosthesis: the external camera and the electrode array of the prosthesis,

shown in orange in Figure 4.4. We simulate the external camera with the virtual envi-

ronment called Gazebo, which is an open-source 3D robotics simulator [229]. The main

advantage of Gazebo with respect to other simulators is that it is perfectly integrated

with ROS, uses the same type of communication through topics and therefore facilitates a

comfortable integration with the rest of the processes. Furthermore, sensor simulations

produce messages of the same type as real sensors, so that the same code can be used
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regardless of the source of the information. One of the main uses of Gazebo is the

development of robotics algorithms in controlled simulation environments, so that they

can then be applied to real systems without having to modify the algorithm itself. In

this way, a person with a visual prosthesis could turn off the implant to stop seeing

the real environment and plug in Gazebo seeing the 3D world in the physical implant.

One advantage of our method is that in a real environment, Gazebo could easily be

exchanged for the external camera of the prosthesis and simulated phosphenes for the

implant electrode array.

In relation to the simulated electrode array, our simulated phosphene map is similar to

the frameworks of Sanchez-Garcia et al. [77], McKone et al. [48] and Chen et al. [45]. We

approximate the phosphenes as circular dots with a Gaussian luminance profile —each

phosphene has maximum intensity at the center and gradually decays to the periphery,

following a Gaussian function–. The intensity of a phosphene is directly extracted from

the intensity of the same region in the image. For our experiments, each phosphene has

eight intensity levels. The size and brightness are directly proportional to the quantified

sampled pixel intensities. For our experiment, we use a field of view restricted to 20◦ and

1000 phosphenes. The augmented path and goals are highlighted with a higher phosphene

brightness level when the subject is less than 5 m closer from the goal.

In this study, we have generated three virtual scenarios with Gazebo and use a dynamic

human model in order to simulate the movements performed by a real person. With this

two simulators we evaluate the operation of our RoboticG method in the fastest and most

comfortable way as a previous step to taking it to a real environment, as can be seen in

Figure 4.5.

Baseline

We perform an ablation study as used in AI by removing components from the RoboticG

system to determine the significance of each component. First, we remove the path

augmentation from our RoboticG method leaving the goal perception, as can be seen

in Figure 4.3(e). This representation is called PerceptualG. Second, we remove any

augmentation as can be seen in Figure 4.3(f). This method is called DirectG. Previous

studies have shown that DirectG can be very effective in scenes where high contrast

predominates [130].
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Experimenter Subject

Simulated Prosthetic Vision 

Figure 4.5: SPV system. Subjects were seated on a chair adjusted to their comfort in
front of a computer screen holding a video game controller. The experimenter was in front
of the subject seeing the same scene but in normal/RGB visualization.

4.2.3 Procedure

For the formal experiment, participants were recruited to complete a task: finding and

reaching a large object while avoiding obstacles in wildly crowded scenarios. Each trial

consisted of a sequence of scenarios presented randomly to the subject with the proposed

RoboticG method, PerceptualG method and DirectG method, as can be seen in Figure 4.6.

Participants were seated on a chair adjusted to their comfort in front of a computer

screen holding a video game controller, as can be seen in Figure 4.5. Participants were

asked to navigate in a virtual environment while performing various tasks that involved

locating an object and crossing the door of the room. Prior to starting the experiment,

subjects were shown a training scenario with the normal/RGB visualization, as can be

seen in Figure 4.2(c). The purpose of this training experiment was that subjects could

become accustomed with controls, obstacles, goals and the experimental task. Participants

were instructed to walk through the environment to familiarize themselves with the video

game controller and the simulated environments. Participants also had to demonstrate

to the experimenter that they were able to distinguish the goal from the obstacles by

walking up to an example of both the door and the object. Following this introductory

phase, subjects were given the training scenario with each of the navigation methods
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START 1st scenario 2nd scenario 6th scenario

“Break”
2 min

Shuffled conditions

Guidance methods: RoboticG, PerceptualG, DirectG

Goal conditions: (1)door-(2)object, (1)object-(2)door

Environments: Environment 1, Environment 2, Environment 3

END...3rd scenario 4th scenario 5th scenario

“Break”
60 sec

“Break”
60 sec

“Break”
60 sec

“Break”
60 sec

Figure 4.6: Trial setup. To generate the scenario in each step of the trial sequence we
used shuffled conditions of environment, goal condition and guidance method. During the
experiment, the break time after each scenario was 60 seconds. Break time in the middle
of the sequence (between 3th−4th scenario) was 2 minutes. The complete experiment
took approximately 30 minutes.

(RoboticG, PerceptualG and DirectG) in a random order and they were asked to perform

the experimental task of finding the goals without colliding with any of the obstacles. Data

from this session was recorded but not included in the analysis. Following the completion

of the training trials the experiment was started.

There were twelve test conditions in total: 3 environments different from training

(Environment 1, Environment 2 and Environment 3), 2 goals conditions ((1)door-(2)object:

find the door first and then the object; or (1)object-(2)door: find the object first and

then the door) and 3 guidance methods (RoboticG, PerceptualG and DirectG), as can

be seen in Figure 4.6. Participants were instructed to perform six test scenarios with

randomly chosen conditions. The participants were asked to walk through the scene until

they find the door or object (depending on which goal the experimenter indicated to the

subject to find first), avoiding the obstacles in the environment. Session duration was

adjusted to allow completion of one trial given the participants’ comfort and including

short breaks every scenario. The break time after each scenario was 60 seconds. Break time

in the middle of the sequence (between 3th−4th scenario) was 2 minutes. The complete

experiment took approximately 30 minutes. Data acquisition for each participant was

completed after six scenarios.

We gave additional aid to the participants if they were lost or expressed difficulties, e.g.

‘take a few steps back’ or ‘turn right’. The number of additional aids was also registered.
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(a) (b)

Figure 4.7: Mean time and distance required to reach both goals for the three guidance
methods. (a) Time results for RoboticG, PerceptualG and DirectG methods. High
scores indicate that the subjects needed more time to perform the location and avoiding
obstacles task. (b) Distance results for RoboticG, PerceptualG and DirectG methods. High
scores indicate that subjects covered a longer trajectory to reach the goals. ***=p<.001;
**=p<.01; *=p<.05; ns=p>.05. All t-tests paired samples, two-tailed.

The performance was assessed according to the time elapsed from the beginning of the

experiment until the subject found the second goal as well as the number of collisions.

Subject positions were randomized for the three environments and for the goal order

condition to decrease potential learning effects.

4.2.4 Statistical analysis

Data were analyzed using two-tailed paired t-test with Tukey’s correction to evaluate

simultaneously the effect of the navigation methods (RoboticG, PerceptualG and DirectG)

on the response variables covered distance and navigation time with p = 0.05, * < 0.05 ,

** < 0.01, *** < 0.001 and ns not significant.

4.3 Results

The performance for the three guidance methods is summarized in Figure 4.7. The results

show the time and the distance (mean ± standard deviation) for aggregated data from all

subjects and all environments. Time (in seconds) is the time from the subject’s first step

until the subject reach the goal. The distance (in meters) is defined as the covered distance

since the subject start walking until the subject reach the goal. We also performed a test
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Table 4.1: Mean value of time, distance and total number of bumps for the three methods
(RoboticG, PerceptualG and DirectG). ∗ ∗ ∗ = p < .001; ∗∗ = p < .01; ∗ = p < .05;
ns = p > .05.

Guidance Time Distance Total Helps by the
methods (s) (m) bumps experimenter

RoboticNG 54.02 ± 18.87 16.42 ± 4.59 4 0
PerceptualG 80.91 ± 25.47 20.03 ± 5.67 27 6
DirectG 88.80 ± 27.55 20.48 ± 4.85 24 9

to determine if the mean difference between specific conditions are statically significant

using two-tailed test with a significance level α = 0.05. The number of obstacle contacts

or bumps within a trial was recorded as the number of times the distance between the

center of an obstacle and the center of the subject’s body is less than 1 m. The total

number of bumps per method is shown in Table 5.1.

Figure 4.7(a) shows the time performance for the three guidance methods (RoboticG,

PerceptualG and DirectG). For the DirectG method, the average performance is 88.80 ±

27.55. For the PerceptualG the average performance is 80.91 ± 25.47. For the RoboticG

the average performance is 54.02 ± 18.87. No significance difference were found for the

DirectG and PerceptualG method (p = 0.2512), as time performance was very similar

for both method. However, very significant differences were found for the RoboticG-

PerceptualG and RoboticG-DirectG.

Figure 4.7(b) shows the covered distance for the three guidance methods. For the

DirectG method, the average performance is 20.48 ± 4.85. For the PerceptualG the

average performance is 20.03 ± 5.67. For the RoboticG the average performance is 16.42

± 4.59. No significance difference were found for the DirectG and PerceptualG method

(p = 0.7812), as distance performance was very similar for both method.

Table 5.1 shows the total number of bumps for all the guidance methods. The

PerceptualG method has more number of bumps than other methods. Interestingly, the

methods DirectG and PerceptualG have almost the same number of collisions. However,

it makes sense because in the PerceptualG method does not locate the goals until the

subject is not close to them. This means that until reaching the goals the PerceptualG

method is basically the same as the DirectG method.

Figure 4.8 shows box-plots of data distribution with 25, 50 and 75th quartiles for

time and distance. In the case of required time to reach both goals (see Figure 4.8(a)),
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(a) (b)

Figure 4.8: Mean time and distance required to reach both goals for the three guidance
methods. (a) Box-plot for time. (b) Box-plot for distance.

there is difference between DirectG-RoboticG and PerceptualG-RoboticG. There is also

difference between DirectG-PerceptualG. In Figure 4.8(b), the medians of the DirectG

and PerceptualG methods are similar. However, comparing the medians of the DirectG

and PerceptualG methods with RoboticG they are well separated, being the median for

the RoboticG around 15m.

4.4 Discussion

Efficient navigation is a fundamental capability of every person to have autonomy on our

daily life. People have their own well-defined criteria for choosing a path when moving from

one place to another. But visually impaired people are not privileged to make their own

choices when navigating. Significant amount of work has already been done for developing

navigation systems for visually impaired people so that they could independently reach

a target, without any kind of external assistance. Some examples of these systems are

ultrasonic sensors, Global Positioning System (GPS) or radio-frequency identification

[230, 231]. Very few researchers have focused on developing routing algorithms for the

visually impaired [232–234].

In this work, we propose an augmented navigation system inspired on robotics research,

called RoboticG, which combines a path planning algorithm and an obstacle avoidance

method for routing the visually impaired person through an obstacle free optimal path.

80



4 AUGMENTED REALITY NAVIGATION 4.4 Discussion

There have been various methods introduced by researchers in different context to study

path planning problem [235–237]. In the field of robotic, path planning is usually the

first step to navigate a robot, where the final step incorporate techniques for obstacle

avoidance [238–240].

We evaluated our RoboticG system using simulated prosthetic vision (SPV) composed

by Gazebo [229], a virtual environment simulator, and the Robotic Operating System

(ROS) [241]. Virtual environments can be built to implement the intended experimental

platform without constraints associated with the real world. Furthermore, the use of

virtual environments can help to avoid the experimental error caused by collisions and

the use of touch to identify objects indirectly. Virtual environments have been widely

used for experimentation in navigation tasks [38, 210, 242]. Some SPV research such as

Vergnieux et al. [210] used a virtual indoor environment to investigate the navigation

capabilities that could be restored through two different stimulation strategies consisting

in a reduction of the environment view to match the number of electrodes and an object

recognition algorithm in order to present only recognized elements. Wang et al. [39]

created a virtual maze with SPV to assess navigation performance under contrasting

conditions of varying luminance, background noise, and phosphene loss.

We found that object localization is well achieved with low resolution and restricted

field of view using our guidance method (RoboticG). In a study by Golledge et al. [243],

they conducted on the criteria of selection of roads or routes of an average human being

and showed that the best classified criteria are the shortest distance, the least time and

the least number of turns. As can be seen in Figure 4.8(a), we obtained a significant

reduction in the navigation time until reaching the goals, compared to other baseline

methods which do not used a navigation system, the PerceptualG and DirectG methods.

Besides, participants took a shorter path with the RoboticG method compared with

the baseline methods (see Figure 4.9). This is intuitive since the navigation algorithm

RoboticG calculates the shortest path to reach the goals. Contrary, the participants

took longer to reach the goals without the navigation system. Further, no significant

difference was obtained with the baseline methods. This makes sense since the PerceptualG

method locates the goals when the subject is at a distance less than 5m. From a real

implementation, using the A* search algorithm we need to know where the goal is, but

in practice the goal can be moved. Therefore, our navigation system gives an estimated

81



4.4 Discussion 4 AUGMENTED REALITY NAVIGATION

2D location of the goals. But when it comes to highlighting the goal we need a precise

3D location. In our case, the bin is placed on the ground but if the bin was not on the

ground, we would need delicate perception. Therefore, our method leads the subject to

an approximate location and identifies targets at 5 m. Until the subject is close enough

to the targets, both the PerceptualG and DirectG methods are similar.

Obstacle avoidance also becomes a crucial point when dealing with visually impaired

people. In any day-to-day environment, a visually impaired person may encounter various

types of obstacles, whether dynamic or static. Early prototypes of obstacle detection

devices were based on radar and sonar systems [244–246]. Recently, some of the available

assistance systems focus on ringing a bell when an obstacle is detected on the road.

However, these systems are unable to redirect the user from their current position to

their desired destination once an obstacle has been detected. Our results show that the

RoboticG method reduce drastically the number of bumps during the navigation due to the

recalculation of the trajectory once an obstacle has been detected (see Table 5.1). One of

the objectives of navigation systems is to calculate the optimal route that the user can take

from his initial position to the destination. Figure 4.9 shows examples of path trajectories

for the three guidance methods. In the three environments the path trajectories from

the initial position to the goals were shorter and smoother with the RoboticG method.

The PerceptualG and DirectG methods do not show much difference between them in

environments 2 and 3. Although when we analyze it in a more complicated environment

(with more obstacles) such as environment 1, we can see how an object recognize algorithm,

PerceptualG, achieve a more direct path than the DirectG method which presents more

oscillations. Moreover, our results suggest that subjects do not need additional aid with

the navigation system from another person, in this case the experimenter (see Table 5.1).

Although the RoboticG method has shown good results compared to the baseline methods,

we believe that using only the augmented path of the RoboticG method (removing the

augmented goal) would achieve very similar results.

This system has numerous tasks that have to be working simultaneously: point cloud

processing, location on a map, path planning and generation of the phosphene image with

the trajectory. All this is a challenge at the implementation level, since the numerous

software packages involved have to communicate with each other and send the necessary

information to each other on time. Our RoboticG implementation allows working in a
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Figure 4.9: Examples of path trajectories for the three guidance methods. (a) Path
trajectories in Environment 1. (b) Path trajectories in Environment 2. (c) Path trajectories
in Environment 3.

simulation environment, which allows repeatability in the design of experiments with real

subjects and gives statistical meaning to the results. Furthermore, the proposed guidance

system works on ROS. ROS has been used to communicate and program the different

systems of this project, a set of libraries and tools developed mostly in C ++ focused

on the development of robotic applications. One of the advantages of using a robotics

framework such as ROS is that it allows us to extend the initial approach so that the

system can be used in real scenarios using an RGB-D camera or using a SLAM system

for localization [226].

4.5 Conclusions

We have proposed an augmented navigation system with obstacle avoidance for guidance

in visual prosthesis which point out the path that the subject have to follow to reach

the goals. Our motivation is that navigation in day-to-day environments is fundamental

for all humans. Implanted patients still require constant assistance for navigating from

one location to another. Hence there is a need for a system that is able to assist them

safely during their journey. By using a route planning algorithm, the system route the

subject through a shorter, obstacle-free route. We also designed a simulated prosthetic

vision environment which allowed us to systematically study navigation performance.

Twelve subjects participated in the experiment. The experiments included two tasks:

object localization and obstacle detection and avoidance. Subjects were guided by the
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visual guidance produced by the navigation system and their instruction was to navigate

through different virtual environments until they reached a goals. Results show how our

autonomous navigation system help navigation performance by reducing the time and

distance to reach the goals, even significantly reducing the number of obstacles collisions,

compared to other baseline methods.

4.6 Related Publications

1. Sanchez-Garcia M., Perez-Yus A., Martinez-Cantin R., and Guerrero J. J. 2021.

“Augmented reality navigation system for visual prosthesis”. Submitted.
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Chapter 5

5 Visual acuity assessment with VR

In this chapter, we took advantage of VR software paired with a portable head-mounted

display and evaluated the performance of normally sighted participants under SPV with

variable field of view and number of pixels. In our system, the head-mounted display mimics

the external camera of a retinal implant subjects and allows simple experimentation in

order to study the design parameters of future visual prostheses. Subjects were required to

identify different stimulus based on light perception, time-resolution, light location, motion

perception and Landolt-C orientation commonly used for visual acuity examination in the

sighted. Our results showed that of all conditions, a FOV of 20◦ and 1000 phosphenes

proved optimal, with a visual acuity of 1.3 logMAR. Furthermore, performance appears to

be correlated with phosphene density, but showing a diminishing return when FOV is less

than 20º.
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5.1 Introduction

Low vision or blindness are major health issues for the individual’s quality of life. The

leading causes of blindness are primarily age-related eye diseases such as age-related

macular degeneration (AMD) [247, 248], cataract, retinitis pigmentosa (RP)[79] and

glaucoma [249]. The loss of photoreceptors due to degeneration is a major cause of

vision loss, resulting in dysfunctional light detection, transduction, and transmission

[168, 203, 204]. In the case of RP, these inherited disorders can affect either rods or cone

primarily. The most common form of RP is characterized initially by night blindness,

followed by progressive loss in the peripheral field of view in daylight, eventually leading

to blindness after several decades. The case of AMD is characterized by sudden acuity

loss. Currently, there is no cure for RP or AMD [205, 206]. Nevertheless, different ways

of restoring the resulting poor visual function have been studied, relying mainly on gene

therapy, stem cell transplantation or visual prosthesis [32, 250–254].

Visual prostheses are presently the most viable technology for the treatment of

low vision and there are many types being proposed because of its potential for the

development of various types of devices with existing technologies. The basic concept of a

visual prosthesis is ‘electrically stimulating nerve tissues associated with vision (such as

the retina) to help transmit electrical signals with visual information to the brain’ [255].

Thus, various groups in the field are focusing on the development of new approaches

for artificial vision based on electric stimulation of the retina [33, 157, 256], optic nerve

[257–259], lateral geniculate nucleus [37, 260], or visual cortex [261–265]. All of these

prosthetic devices work by exchanging information between the electronic devices and

different types of neurons, and although most of them are still in development, they show

promise of restoring vision in many forms of blindness.

At present, retinal prostheses are the most successful approach in this field [33, 157]. In

a retinal implant a multielectrode array is set up on the retinal surface and stimulates the

retina from the top side with electrodes. All this current implantable system are designed

with electrodes implanted in the body working together with several devices worn outside

the body. Thus, a visual prosthesis incorporates an external video camera for image

acquisition, an image processor converting the image to a suitable pattern of electrical

stimulation, and finally the electrical stimulation array on the retina itself [88, 266–268].
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In spite of reports showing retinal prostheses capable of helping some participants perform

simple tasks of daily living, such as detecting lights, recognizing objects and even reading

large letters, there are still physiological and technological limitations of the information

received by implanted patients. The number of electrodes and implant size limit the

maximum amount of information that can be provided by the stimulating array. This fact

has restricted the degree of visual resolution (up to 1500 phosphenes) and dynamic range

of the visual perception (8 grey levels) that can be delivered to the user. Besides, current

systems such as retinal implants provide a field of view (FOV) of approximately 18◦×11◦

in the retinal area, which correspond to the FOV subtended by the electrode implant on

the retina. Moreover, the visual acuity of existing devices is very low, which means that

crucial skills such as facial recognition or navigation in unknown environments are not yet

possible.

The visual acuity of prosthetic vision is limited by various factors from both engineering

and physiological perspectives [269]. One of the main causes of low visual acuity is the

limited spatial resolution that can be achieved by electrical stimulation with existing

retinal implants. The size of the electrodes in today’s retinal implants is often much

larger than the size of the neurons in the retina, and the number of electrodes is low

[270]. In addition, it has been shown that increased FOV is associated with a significant

improvement in visual acuity [173]. Current retinal prostheses already approved for

commercial use such as the Argus II epiretinal implant (Second Sight Medical Products

Inc.) [156, 157, 271] and the Alpha-IMS subretinal implant (Retina Implant AG) [30, 272]

have yet to provide sufficient visual acuity to allow blind patients to lead independent live.

These devices have been shown to restore vision up to a visual acuity of 1.8 logMAR and

1.44 logMAR, respectively. Regardless, the optimal number of the electrodes and FOV

to provide adequate prosthetic vision is still an open question and an important design

parameter needed to develop better implants.

In order to gain a better understanding of the potential benefits of low resolution

visual prostheses we can use Simulated Prosthetic Vision (SPV). The SPV system is a

standard procedure for non-invasive evaluation using normal vision subjects. Generally,

in SPV, low-resolution image of the view is presented on a computer screen [77] or on a

head-mounted display [78, 195, 273] glasses to a normally sighted user (see Figure 5.1).

It allows researchers to rigorously investigate the minimal requirements for a functional
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visual prosthesis and to explore which variables are important in the development of a

visual prosthesis. Furthermore, prosthetic vision can be assessed in controlled, real, or

virtual environments. Modern commercial virtual-reality (VR) systems have specifications

in terms of resolution, latency and response time that allows a fully immersive experience

with inexpensive equipment and computers. Using these devices, subjects are immersed

and able to interact with complex environments.

Some researchers have used the combination of SPV with a VR system for experi-

mentation. Sanchez et al. [78] analyzed the influence of field of view with respect to

resolution in visual prostheses through a study with a SPV setup using a VR system.

Kasowski et al. [40] proposed to embed biologically realistic models of SPV in immersive

VR so that sighted subjects can act as virtual patients in real-world tasks. Thorn et al.

[274] implemented prosthetic vision in a VR environment in order to simulate the real-life

experience of using a retinal prosthesis and investigated the interaction between the field

of view and the pixel number. Visual acuity has also been tested under a VR simulation

for rectangular and hexagonal phosphene grids [195]. Chen et al. [273] examined visual

acuity of prosthetic vision under VR simulation measuring parameters such as filtering

scheme, filter aperture and the phosphene matrix.

In this work, we assess visual acuity in visual prostheses. We took advantage of

virtual-reality software paired with a portable head-mounted display and evaluated the

performance of normally sighted participants under simulated prosthetic vision with

variable field of view and number of pixels. Our simulated prosthetic vision system allows

simple experimentation in order to study the design parameters of future visual prostheses.

The VR system acts as an electronic visual aid that attach to the user’s head and presents

information directly to the user’s eyes.

5.2 Methods

We examined visual acuity on a stimuli recognition task using SPV through a VR system.

The SPV system is a standard procedure for non-invasive evaluation using normal vision

subjects. This methodology allows controlled evaluation of normally sighted subject

response and task performance which is fundamental to know the way humans perceive

and interpret phosphenized renderings. SPV also offers the advantage of adapting implant

designs to improve the perceptual quality without involving implanted subjects.
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Figure 5.1: Data process. From the cameras of the VR HTC Vice Pro, we capture
the raw images of the computer screen for the left and right eye. We select the central
segments of the image to avoid distorted edges produces by the cameras and convert it to
phosphenes. We simulate a single eye on, in this case the right eye and we turn off the
left eye.

5.2.1 Participants

Ten subjects with normal vision volunteered for the formal experiment. The subjects

(four females and six males) were between 22 and 35 years old. Every subject used a

computer daily.

Ethical statement

The research process was conducted according to the ethical recommendations of the

Declaration of Helsinki. The research protocol used for this study is non-invasive, purely

observational, with absolutely no-risk for any participant. There was no personal data

collection or treatment and all subjects were volunteers. Subjects gave their informed

written consent after explanation of the purpose of the study and possible consequences.

The consent allowed the abandonment of the study at any time. All data were analyzed

anonymously. The experiment was approved by the Aragon Autonomous Community

Research Ethics Committee (CEICA, see Ethical Statement for additional details).

5.2.2 Simulated Prosthetic Vision (SPV)

This section describes the SPV system including the hardware specifications, software

components and phosphene generation.
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Hardware

The experiment was conducted on an HTC VIVE PRO powered by a computer (Intel(R)

Core(TM) i9-9900KF CPU 3.60GHz, NVIDIA GeForce RTX 2080 Ti). The VR system is

composed by two lenses, two screens, SteamVR Tracking, G-sensor, gyroscope, proximity

and Eye Comfort Setting (IPD). It contains dual AMOLED 3.5" diagonal screen with a

resolution of 1440 x 1600 pixels per eye (2880 x 1600 pixels combined), covering a visual

field of approximately 110 degrees. In our experiments we mostly use the central part of

the display which remains undistorted. The representation with simulated phosphenes

was displayed on the VR system worn by the participants as well as on the computer

screen for the experimenter to check the progress. During the experiment, participants

were seated in a backless chair allowing them to scan the entire scene with head rotation

movements.

Software

The implementation was done in C++, using OpenVR for HTC VIVE Pro to connect

with the VR system and OpenCV for image processing. Figure 5.1 shows the data process

designed to generate the stimuli for the VR system. We watch the camera FOV to the

viewfinder FOV. The selected area is projected on the two HTC displays. Finally, we

convert the images into simulated phosphenes. We only project the phosphenic image to

the right eye, simulating an implant in the right eye, and lack of vision on the left (see

Figure 5.1).

Our phosphene map configuration is similar to the framework of Sanchez et al. [78].

We approximate the phosphenes as circular dots with a Gaussian luminance profile —each

phosphene has maximum intensity at the center and gradually decays to the periphery,

following a Gaussian function–. The intensity of a phosphene is directly extracted from

the intensity of the same region in the image. For our experiments, each phosphene has

eight intensity levels. The size and brightness are directly proportional to the quantified

sampled pixel intensities. The phosphene map is calculated and updated with respect to

head orientation in real time.
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Figure 5.2: The six possible stimulus conditions are depicted for the ‘Landolt-C orien-
tation test’. ‘FOV-Resolution’: C1: 10◦-100 phosphenes, C2: 10◦-1000 phosphenes, C3:
20◦-100 phosphenes, C4: 20◦-1000 phosphenes, C5: 50◦-100 phosphenes and C6: 50◦-1000
phosphenes.

5.2.3 Procedure

The experiment was conducted using a selection of stimulus from Balm [275] and

Freiburg [276] tests, adapted to our SPV system, which are automated procedures for

self-administered measurement of visual acuity. The images were presented to the subjects

using different stimuli conditions based on two resolutions (100 and 1000 phosphenes) and

three FOVs (10, 20 and 50 degrees), as can be seen in Figure 5.2. We selected these partic-

ular resolutions and FOVs based on current visual prostheses [30, 32, 156, 157, 271, 272],

although our VR platform allows to quickly change those parameters.

The participants performed five tests based on different types of stimuli, described as

‘light perception’, ‘time recognition’, ‘light location’, ‘motion perception’ and ‘Landolt-C

orientation’ (see Figure 5.3). The first stimulus corresponded to the ‘light perception’ and

is the simplest stimulus of the experiment that tests the basic perception of light. The

subjects’ task was to decide whether they see the light appear after the warning tone or not.

The second stimulus corresponded to ‘time resolution’, which assesses one basic aspect of

time resolution—namely, whether one or two flashes occur after an indicator beep. The

third stimulus corresponded to the ‘light location’ that tests the projection of light. A

light disc appeared that the subject must center in the limited visual field. After a pre-set

delay, simultaneously with a warning tone, a wedge appeared directed up, down, right, or

left from the fixation disc. The fourth stimulus corresponded to ‘motion perception’. A
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Figure 5.3: Subject and trial setup. Subjects view through the head-mounted display
what is shown in the picture on the monitor. Subjects scanned the underlying picture with
their head motion. They used the joystick to indicate the orientation of the stimuli for
subject response. For the experiment, we used five stimuli from Balm [275] and Freiburg
[276] tests: Light, Time, Location, Motion, and Landolt C. Each test consisted of 24
stimuli. The stimuli in each test were randomly selected.

random hexagonal pattern of light and dark elements appeared. After an acoustic signal,

it began to move in one of four directions (up-down-right-left). The subject indicated

the motion’s direction. The last stimulus corresponded to the ‘Landolt-C orientation’

test. Subjects had to indicate the orientation in one of four directions (up-down-right-left)

of the gap in the Landolt-C, which is a standard international symbol for testing visual

acuity. In all tests subjects responded via corresponding joystick positions. The number

of trials was set to 24 for all the tests.

5.2.4 Statistical analysis

Data were analyzed using two-way ANOVA and post hoc-test with Tukey’s method to

evaluate simultaneously the effect of the two grouping variables (resolution and FOV) on

the response variables performance and reaction time with p = 0.05, ∗ < 0.05 , ∗∗ < 0.01,

∗ ∗ ∗ < 0.001 and ns not significant.
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5.3 Results

The results are summarized from Figure 5.4 to Figure 5.8. The results show the performance

and the reaction time (mean ± standard deviation) for aggregated data from all subjects.

The performance (in percentage) is defined as number of correct responses. Time (in

seconds) is the time from the subject’s first response. We also performed a test to

determine if the mean difference between specific pairs of conditions are statistically

significant using Tukey’s method with a significant level α = 0.05.

5.3.1 Light perception

Figure 5.4 shows the performance and reaction time for the ‘light perception’ test. This

test is the simplest of the five tests carried out in the experiment. All subjects were able

to perceive light or not in almost all trials. All the conditions obtain high values above

95%, as can be seen in Figure 5.4(a). There was no significant difference between the

stimulus conditions. The reaction time for all conditions are similar and close to 1.6s (see

Figure 5.4(b)). The lowest reaction time was 1.47± 0.34s, corresponding to the condition

of 20◦ and 1000 phosphenes. For the resolution of 100, no significant difference was found

for 10-20 FOVs (p=0.9964), 20-50 FOVs (p=0.7723) and 10-50 FOVs (p=0.8174). For

the resolution of 1000, nor significant difference was found for 10-20 FOVs (p=0.2497),

20-50 FOVs (p=0.7680) and 10-50 FOVs (p=0.6223). There was no significant difference

between the two resolutions (p > 0.05). Some outliers can be observed in both graphs

corresponding to instants in which the subjects were distracted during the task.

5.3.2 Time resolution

Figure 5.5 shows the performance and reaction time for the ‘time resolution’ test. For the

resolution of 100 phosphenes, the average performance is 96.15± 4.53, 96.70± 4.64 and

79.55 ± 11.78 for 10, 20 and 50 degrees respectively (see Figure 5.5(a)). No significant

difference was found for 10-20 FOVs (p=0.9863). However, significant difference was

found for 10-50 and 20-50 FOVs. For the resolution of 1000, the average performance is

95.05 ± 4.82, 98.35 ± 2.66 and 97.80 ± 2.84 for 10, 20 and 50 degrees respectively. No

significant difference was found for 10-20 FOVs (p=0.1163), 20-50 FOVs (p=0.2160) and

10-50 FOVs (p=0.9369).
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(a) (b)

Figure 5.4: Light perception. Performance of correct responses and reaction time for
Light module. (a) Box-plot for performance. (b) Box-plot for time.

(a) (b)

Figure 5.5: Time resolution. Performance of correct responses and reaction time for
Time module. (a) Box-plot for performance. (b) Box-plot for time.

Figure 5.5(b) shows the reaction time for the ‘time resolution’ test. For the resolution

of 100 phosphenes, the average reaction time is 1.44± 0.31s, 1.46± 0.42s and 2.15± 0.43s

for 10, 20 and 50 degrees respectively. No significant difference was found for 10-20

FOVs (p=0.9947). For the resolution of 1000, the average reaction time is 1.33± 0.32s,

1.31 ± 0.30s and 1.48 ± 0.14s for 10, 20 and 50 degrees respectively. No significant

difference was found for 10-20 FOVs (p=0.9877), 20-50 FOVs (p=0.3160) and 10-50 FOVs

(p=0.3909).
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(a) (b)

Figure 5.6: Light location. Performance of correct responses and reaction time for
Location module. (a) Box-plot for performance. (b) Box-plot for time.

5.3.3 Light location

Figure 5.6 shows the performance and reaction time for the ‘light location’ test. The

performance increases as the FOV and the resolution increases (see Figure 5.6(a)). For the

resolution of 100 phosphenes the average performance is 70.00± 21.79, 87.75± 14.37 and

73.63± 26.15 for 10, 20 and 50 degrees respectively. No significant difference was found

for 10-20 FOVs (p=0.1697), 20-50 FOVs (p=0.3158) and 10-50 FOVs (p=0.9237). For the

resolution of 1000 phosphenes the average performance is 81.00± 19.89, 94.13± 9.70 and

98.38± 2.64 for 10, 20 and 50 degrees respectively. No significant difference was found for

20-50 FOVs (p=0.7512).

Figure 5.6(b) shows the reaction time for the three FOVs and two resolutions. For the

resolution of 100 phosphenes the average reaction time is 16.25± 8.63s, 8.00± 6.82s and

9.40± 10.56s for 10, 20 and 50 degrees respectively. No significant difference was found

for 10-20 FOVs (p=0.1099), 20-50 FOVs (p=0.9335) and 10-50 FOVs (p=0.2089). For the

resolution of 1000 phosphenes the average reaction time is 14.62± 10.98s, 4.47± 3.27s

and 2.24± 1.17s for 10, 20 and 50 degrees respectively. No significant difference was found

for 20-50 FOVs (p=0.6704). Comparing the performance for the same FOV, the reaction

time decreases with increasing number of phosphenes.
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(a) (b)

Figure 5.7: Motion perception. Performance of correct responses and reaction time for
Motion module. (a) Box-plot for performance. (b) Box-plot for time.

5.3.4 Motion perception

Figure 5.7 shows the performance and reaction time for the ‘motion perception’ test. For

the same resolution, the performance decreases as the FOV increases (see Figure 5.7(a)).

For the resolution of 100 phosphenes the average performance is 88.63±6.57, 87.38±11.64

and 32.63 ± 9.76 for 10, 20 and 50 degrees respectively. No significant difference was

found for 10-20 FOVs (p=0.9540). For the resolution of 1000 phosphenes the average

performance is 99.50 ± 1.58, 99.50 ± 1.58 and 92.88 ± 7.17 for 10, 20 and 50 degrees

respectively. No significant difference was found for 10-20 FOVs (p=1.000).

Figure 5.7(b) shows the reaction time for the ‘motion perception’ test. For the same

resolution, the reaction time increases as the FOV increases. For the resolution of 100

phosphenes the average reaction time is 5.84± 2.73s, 5.80± 1.94s and 10.59± 7.13s for

10, 20 and 50 degrees respectively. No significant difference was found for 10-20 FOVs

(p=0.9998), 20-50 FOVs (p=0.0647) and 10-50 FOVs (p=0.0675). For the resolution of

1000 phosphenes the average reaction time is 3.64± 1.72s, 2.64± 0.75s and 3.71± 0.85s

for 10, 20 and 50 degrees respectively. No significant difference was found for 10-20

FOVs (p=0.1591), 20-50 FOVs (p=0.1265) and 10-50 FOVs (p=0.9915). Comparing the

performance for the same FOV, the reaction time decreases with increasing number of

phosphenes.
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5.3.5 Landolt-C orientation

Figure 5.8 shows the performance and reaction time for the ‘Landolt-C orientation’ test.

For the resolution of 100 phosphenes the average performance is 43.89±23.78, 59.44±12.02

and 52.78± 11.19 for 10, 20 and 50 degrees respectively (see Figure 5.8(a)). No significant

difference was found for 10-20 FOVs (p=0.1141), 20-50 FOVs (p=0.6499) and 10-50 FOVs

(p=0.4732). For the resolution of 1000 phosphenes the average performance is 60.65±10.94,

63.33 ± 13.41 and 57.22 ± 7.43 for 10, 20 and 50 degrees respectively. No significant

difference was found for 10-20 FOVs (p=0.8366), 20-50 FOVs (p=0.4314) and 10-50 FOVs

(p=0.7738).

For the resolution of 100 phosphenes the average reaction time is 15.92 ± 6.53s,

8.92 ± 3.93s and 9.24 ± 2.70s for 10, 20 and 50 degrees, respectively. No significant

difference was found for 20-50 FOVs (p=0.9874) (see Figure 5.8(b)). For the resolution of

1000 phosphenes the average reaction time is 8.29± 2.91s, 8.17± 3.97s and 7.46± 4.16s

for 10, 20 and 50 degrees respectively. No significant difference was found for 10-20 FOVs

(p=0.9970), 20-50 FOVs (p=0.9041) and 10-50 FOVs (p=0.8711).

Figure 5.9 shows the values of visual acuity (in logMAR) for the ‘Landolt-C orientation’

test obtained for each condition. Comparing the same FOV, we obtain higher visual

acuity for 1000 resolution than for 100. However, the most significant difference between

the two resolutions was found for the 10 FOV. The best visual acuity is obtained for the

condition of 20◦ and 1000 resolution, with a visual acuity value of 1.3 logMAR This visual

acuity is considered the limit of blindness.

5.4 Discussion

During the past decade, much effort has been put into developing visual prosthesis devices

that help restore vision in blind people. Nevertheless, less research has been done to

find acceptable procedures for evaluating the functionality of different visual implant

technologies and maximizing the benefits of machine vision.

Visual acuity tests have proven to be one of the main quantitative measures used to

evaluate the efficacy and cost-effectiveness of procedures designed to improve or restore

vision. Visual acuities of 0.5 logMAR and 1.0 logMAR are considered moderate and severe

visual impairment, respectively. A visual acuity greater than 1.3 logMAR is considered

97



5.4 Discussion 5 VISUAL ACUITY ASSESSMENT WITH VR

(a) (b)

Figure 5.8: Landolt-C orientation. Performance of correct responses and reaction time
for FrAct module. (a) Box-plot for performance. (b) Box-plot for time.

Figure 5.9: Visual acuity for Landolt-C. Values of visual acuity (in logMAR) for the
‘Landolt-C’ stimuli and for each condition.

total blindness. The theoretical visual acuity achievable by present-day retinal implants

such as Argus II with a FOV of approximately 20◦ is 2.5 logMAR (20/6325), and the

highest acuity is shown to be 1.8 logMAR (20/1262) [156, 161] in several basic tasks, such

as those concerning grating visual acuity, square localization, and movement detection

[81, 158–161]. Clinical trials for the Alpha-IMS assessed the visual acuity and object

recognition of the restored vision in the context of daily living and mobility [30]. Three

patients were able to read letters with a visual angle between 5◦ and 10◦, demonstrating

the highest visual acuity of 1.44 logMAR in the Landolt-C test. The visual acuity achieved

by the Alpha-IMS is not significantly higher than that of the Argus II, given its 25-fold

higher number of stimulating channels. These results may imply that the patterned
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Table 5.1: Pixel density on the phosphenic image. Amount of pixels needed to form one
phosphene on each of the conditions.

Resolution Field of view
(degrees)

Pixel density
(Pixels/Phos)

100
10 9
20 36
50 361

1000
10 1
20 4
50 36

stimulation generated from all the 1500 individual channels of the Alpha-IMS could not

be perfectly discriminated by the retinal cells, lowering the perceived spatial.

Visual acuity has already been used in the past both in clinical trials of visual

neuroprosthesis [181, 277] but also in simulation experiments of prosthetic vision (SPV)

[95, 185, 273]. The SPV software samples the image to match the resolution of the

retinal prosthesis devices. By using SPV, researchers evaluated whether and under what

conditions a measured visual acuity level is a true indication that the visual prosthesis

provides a patterned image. Visual acuity is classically measured by optotypes such as

letters, numbers or Landolt C-rings. Just as the interest in developing a visual prosthesis

intensified in recent years, some researchers published their SPV study findings regarding

the number of phosphenes required for comparable-to-normal visual acuity. In 2004, Chen

et al. [273] examined visual acuity under virtual-reality (VR) in SPV using different

filtering schemes. The best mean score recorded by the subjects was 1.55 logMAR. Later,

they tested visual acuity for both rectangular and hexagonal phosphene grids using the

Freiburg test [276]. The visual acuity scores ranged from 1.45 to 1.80 logMAR depending

on subject. Similarly, Cha et al. [185] measured visual acuity as a function of the number

of pixels and their spacing. They concluded that 625 electrodes implanted in a 1x1 cm

area near the foveal representation of the visual cortex should produce a phosphene image

with a visual acuity of approximately 20/30, 0.17 logMAR. Hayes et al. [95] simulate

three retinal implants and test the functionality of this vision with four-choice orientation

discrimination of a Sloan letter E. Subjects were found to have visual acuities of 1.96,

1.82, and 1.32 logMAR with the 4x4, 6x10, and 16x16 electrode arrays, respectively.

We found that the recognition of the different stimuli is well achieved with low resolution

and restricted FOV. As can be seen in Figures 5.4, 5.5, 5.6, 5.7 and 5.8, for almost all
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tests a significant improvement in task performance was obtained for a 20 FOV and a

resolution of 1000. Besides, participants took less time to recognize the stimuli with this

condition. Generally, participants took less time to recognize stimuli with the 20 FOV

than the 50 FOV. This seems counterintuitive since with a narrower FOV the global

reference of the image is lost. However, the narrower the FOV, the higher the angular

resolution and therefore the greater the image detail (higher frequencies). Contrary, to

generate one phosphene in the largest FOV, a larger number of pixels is averaged and

therefore more information on image details is lost (see Table 5.1). Thus, the widest FOV

allows to cover the widest area of the image but it only allows to see the gist of the image

(low spatial frequency). On the other hand, the higher visual acuity was also obtained

with the condition of 20 FOV and 1000 resolution (see Figure 5.9). For this condition,

subjects obtained a visual acuity of 1.3 logMAR. If the number of phosphenes is reduced

to 100 for the 20 FOV condition, visual acuity decreases to 1.86 logMAR. We can compare

this visual acuity value with those obtained by some studies with Argus II using similar

conditions of FOV and resolution [156, 161]. Furthermore, for the experimental condition

of 10◦ FOV and 1000 resolution which can be compared to the Alpha-IMS implant [30],

subjects obtained a visual acuity of 1.43 logMAR.

However, visual acuity is not the only important parameter nor the spatial details

of visual scenes. There are many other relevant aspects in visual scenes such as shape,

color and movement that would allow the extraction of complex information, for example

identifying human faces, from relatively poor-quality images by using specific cues and

multiple visual features [278] or obstacle detection from depth information and motion

cues to facilitate the safe movement of the user in complex or unfamiliar environments

[101]. This suggests that besides image resolution, we should try to pay attention to

other relevant visual attributes such as receptive field size, localization, orientation, or

movement [279]. In addition, depending on the subjects, there is one need or another.

For example, some people focus more on identifying objects or people, while others prefer

orientation and mobility. The key issue is to encode and send useful information that can

be translated into functional gains for activities of daily living. Furthermore, it has been

observed that there may be subtle differences in perceived visual field or encoding between

subjects. Therefore, future advanced systems for interacting with the brain of people with

low vision should allow the customization of functions to meet the needs of each subject.
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5.5 Conclusions

Visual acuity tests are the main quantitative measures used to evaluate the effectiveness

and cost-effectiveness of procedures designed to improve or restore vision. However, finding

acceptable procedures for evaluating the functionality of visual implant technologies and

maximizing the benefits of prosthetic vision is still under study. The present work

constitutes a first essential step towards immersive virtual-reality simulations of prosthetic

vision which has the potential to accelerate the prototyping of new devices. Via a head-

mounted display, subjects were afforded simulated prosthetic vision (phosphene images)

and required to recognise different stimuli normally used to measure visual acuity. Of

all conditions tested, a FOV of 20◦ and 1000 phosphenes of resolution proved optimal,

with higher visual acuity of 1.3 logMAR. Our simulated prosthetic vision system allows

simple experimentation in order to study the design parameters of future visual prostheses.

This work is a step toward the design of more effective electrode arrays that we hope will

benefit the blind through neuroprosthesis.
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Chapter 6

6 Spiking neural network

In this part of the thesis, we present a Spiking Neural Network (SNN) which relies on

biologically plausible mechanisms and uses an unsupervised learning scheme to be part of

a visual prostheses. The proposed SNN model can make use of the down-sampled signal

from information processing unit of retinal prostheses bypassing retinal image analysis,

providing useful information to the blind. Our SNN is separated in two stages. First, we

simulated neurons in primary layers of the system which are capable of perceiving different

spatial frequencies, similar to those found in the earliest stages of visual processing. These

neurons fire asynchronously, with the most strongly activated neurons firing first. Second,

we simulated neurons at later stages of the system, called V1 neurons, implementing

a spike-timing-dependent-plasticity rule. We demonstrate that with one SNN layer V1

neurons become selective to features that are present in the input image. When presented

with different spatial frequency images, V1 neurons detect coarse and fine information

leading to a global representation of the scene. Our network also achieves an average image

classification accuracy of 94.0% with the MNIST dataset and 82.0% for fashion-MNIST

dataset.
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6.1 Introduction

Current retinal prostheses have demonstrated significant progress in improving visual

acuity and activities of daily living in blind patients. However, several technical problems

are slowing down its evolution. One of the solutions being proposed is to develop an

advanced retinal prosthesis to directly stimulate retinal ganglion cells (RGCs) with an

array of electrodes using better computational models. For example, the reconstruction

of visual scenes could be significantly improved by adding an encoder that converts the

input images into the spiking codes used by RGCs; these codes are then used to drive

electrodes.

The biological brain displays powerful information processing functionality. The

primary visual cortex is the first stage in the processing of visual stimuli. There, neurons

are synchronized in tune with a limited range of spatial frequencies (SF) ([280–284]).

Neuron selective sensitivity for certain narrow ranges of SF is an immediate consequence

of their receptive-field organization. Because neurons’ receptive fields vary in size, the

responses of different subsets of neurons would constitute a neural representation at some

particular SF. As a result, neurons sensitive to low spatial frequencies are responsible

for the global processing of visual scenes (the breaking-up of the scene into objects) and

the neurons sensitive to high spatial frequencies are responsible for the local processing

(fine details, recognition of particular patterns). However, our visual world is generally

highly complex, composed of numerous features at a variety of scales, thereby having

broad band SF spectra. This means that information signaled by individual neurons is

highly incomplete, and combining information across multiple SF bands must be essential

for the visual system to function in a robust and reliable manner.

In recent years various neural network models have been proposed to explain how

the visual system is able to process an image efficiently ([285–288]). Specifically, Spiking

Neural Networks (SNNs) have become an increasingly active field of research. This has

been driven both by the interest to build more biologically realistic neural network models,

and by recent improvements and the availability of larger-scale neuromorphic computing

platforms, which emulate brain-like spike-based computation in dedicated analog or digital

hardware ([285, 288–290]). On the other hand, SNNs are widely used because information

can be transmitted using very weak signals, since rate coding is very resistant to noise,
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and because they provide new learning algorithms for unsupervised learning. In fact,

spike neurons allow the implementation of bioinspired local learning rules such as Hebbian

learning and spike time-dependent plasticity (STDP) [291]. Also, it takes into account

the times of the presynaptic and postsynaptic peaks and can be modified to achieve

non-bimodal distributions of synaptic weights. The STDP rule is used in SNN to extract

visual features of low or intermediate complexity in an unsupervised manner. From this,

significant efforts have been expended in the recent past to demonstrate the efficacy

of SNNs in pattern recognition applications. Yu et al. [292] proposed a novel spiking

neural network with supervised learning rule and temporal coding scheme to generate the

spike pattern. Such SNN system and its supervised learning rule achieved a relatively

high correct classification rate when cross-validate the MNIST database. On the other

hand, Liu et al. [293] a spike timing-based feed-forward spike neural network and its

own unsupervised STDP learning rule achieving satisfactory results on MNIST database.

Masquelier et al. [294] used the STDP rule in an asynchronous feedforward SNN that

mimics the ventral visual pathway and showed that when the network was presented with

natural images, selectivity to intermediate-complexity visual features emerged. Sboev et

al. [295] proposed a method to solve the classification task using a SNN with encoding

the input by patterns of spike times along with STDP learning. Furthermore, Diehl et

al. [296] used STDP with lateral inhibition and rate coding of input data on the MNIST

dataset, where digits were clustered into populations of neurons and then each cluster

was labeled with corresponding digit.

We present a Spiking Neural Network (SNN) which relies on biologically plausible

mechanisms and uses an unsupervised learning scheme to be part of a visual prosthesis.

The proposed SNN model can make use of the down-sampled signal from the information

processing unit of retinal prostheses bypassing retinal image analysis, providing useful

information to the blind. Our SNN is separated in two stages. First, we simulated

neurons in primary layers of the system which are capable of perceiving different spatial

frequencies, similar to those found in the earliest stages of visual processing. These neurons

fire asynchronously, with the most strongly activated neurons firing first. The first spikes

approach is important for rapidly encoding the most important information about the

visual stimulus. Second, we simulated neurons at later stages of the system, called V1

neurons, implementing a STDP rule which adjusts the efficacy of synaptic connections
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based on the relative timing of post-synaptic spike and its input pre-synaptic spike.

6.2 Spiking Neural Network

Spiking neural networks are artificial neural networks that more closely mimic natu-

ral neural networks and are inspired by information processing in biology. They are

being explored for their potential energy efficiency resulting from sparse, event-driven

computations. In contrast to Artificial Neural Networks (ANNs) where information is

presented by real numbers, information in SNNs is presented in the form of electrical

impulses called spikes. The spikes are used as the only communication mechanism between

network components which allow a complete desynchronization of the system because

each component is only affected by the incoming spikes. The spike is described as a binary

event, which can be defined by two parameters: the timestamp and the voltage.

The next sections describe the most important components for a SNN model.

6.2.1 Spiking Neurons

Spiking neurons are an intermediate model between biological neurons and artificial

neurons. Various models of spiking neurons have been proposed ([297–300]). However, the

most used spiking neuron model is the Leaky Integrate and Fire model (LIF) ([301]). This

model integrates input spike to its membrane potential adding also a leak which allows

neurons to return to the resting state in the absence of activity. LIF can be expressed as:

τm
dV

dt
= −(V − EL) +

I

gL
(6.1)

where V is the membrane potential, gL is the leak conductance, EL is the resting potential,

I is the external input current, and τm is membrane time constant.

6.2.2 Neural coding

The neural coding in SNN is an important aspect to represent the spike mechanism.

Typically, neural coding schemes are used to convert input pixels into spikes that are

transmitted to the excitatory neurons. Temporal coding is the most used neural coding.
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Figure 6.1: Spike-timing-dependent-plasticity (STDP) is the most studied learning rule
for SNNs. STDP follows the Hebbian principle and suggests that synaptic connection
depends on the difference of spike timestamps. (Adapted from Markram et al. [302]).

It represents the information on the timing of each spike. Thus, the value that encodes

a spike is the offset of the spike timing according to a time reference, which locates the

beginning of the pattern.

6.2.3 Synapses

Synapses can be present on the connection between two neurons. Their role is to modulate

the voltage of the spikes transmitted on this connection, in order to modulate the influence

of the input neuron over the output neuron. The modulation factor is defined by the

synapse weight, a weak synaptic weight i.e. close to zero, will greatly reduce the influence

of the input neuron over the output neuron, since spikes that reach the output neuron

will have a low voltage (i.e. behave the same way as if there was no spike at all). On the

contrary, a strong weight will produce post-synaptic spikes with high voltages, which will

significantly affects the output neuron state. Adapting the weight of the synapse in the

network directly affects the pattern that will excite the neurons, and thus the tasks that

the network is able to solve. Training a network consists notably to make this adaptation,

thanks to learning rules.

Spike-timing-dependent-plasticity (STDP) is the most studied learning rule for SNNs.

STDP follows the Hebbian principle and suggest that synaptic connection depends on the

difference of spike timestamps, following the next equation (6.2).
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∆w =

Awe
− tpre−tpost

τSTDP , iftpre ≤ tpost

−Awe
− tpost−tpre

τSTDP , otherwise

(6.2)

with Aw the learning rate and τSTPD the time constant that controls the leak, tpre

and tpost, respectively the timestamp of fires for input and output neurons. This rule

combines two mechanisms: the long-term potentiation (LTP), when the input neuron fires

just before the output neuron, and the long-term depression (LTD) in the other case.

6.2.4 Inhibition

Inhibition means that spikes decrease the action potentials of the output neurons. That

fact happens in biology, where excitatory neurons constitute about 80% and inhibitory

neurons about 20%. A frequent case of use of inhibition is competition: when a neuron

reacts to a pattern, it sends inhibitory spikes to other neurons in competition to prevent

them from firing, and thus, increase the sparsity of the activity.

6.3 Method

In this section, the proposed feed-forward SNN model is presented and described in details

along with the dataset and setup used in the experiments.

6.3.1 Dataset

In this work we use three datasets. We use a public database of indoor scenes from

Quattoni et al. [140]. We choose five type of images, those belonging to indoor scene

rooms: bathroom, bedroom, kitchen, living room and dining room. We test our network

with this dataset for feature detection using different spatial frequencies. We also use

the MNIST dataset from Lecun et al. [303] and the fashion-MNIST dataset from Xiao et

al. [304]. Both, the MNIST and the fashion-MNIST datasets comprise 28x28 grayscale

images of 70.000 digits or fashion products from 10 categories, with 7.000 images per

category. The training set has 60.000 images and the test set has 10.000 images.
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6.3.2 Pre-processing

Before input samples are converted into spikes to be fed to our SNN, we applied one

pre-processing steps which is called “Modeling of the retinogeniculate pathway”. This

first step corresponds to the primary processing of the visual information received by

the eye’s retina. We focused on the lateral geniculate nucleus (LGN), where cells have

center-surround receptive fields just like RGCs. We use a difference-of-Gaussians (DoG)

filter to simulate on-off cells ([305]). The DoG filters detect contrasts in the input image

in terms of spatial frequency (high, medium and low filter),as can be seen in Figure 6.2.

To simulate the computations performed by the RGCs and the LGN, the images were

convolved with ON and OFF center-surround kernels, followed by half-wave rectification.

Thus, two maps were calculated, corresponding to ON- and OFF-center populations.

The filters were implemented using difference of Gaussian (DoG) kernels, which were

normalized to zero response for uniform inputs, and a response of 1 for the maximally

stimulating input. These filters detect positive or negative contrasts in the input image

and the result is an ON and OFF LGN activity maps. The receptive field sizes were the

same as the size of the input image. The activity of each kernel can approximately be

interpreted as a retinotopic contrast map of the sample. Further thresholding was applied

such that, on average, only a small portion (the most active 10%) of the LGN units fired.

This pre-processing allows the SNN to learn useful patterns. The LGN activity maps were

converted to relative first-spike latencies through a monotonically decreasing function

(a token function, y = 1/x, was chosen), but all monotonically decreasing functions are

equivalent ([294]), thereby ensuring that the most active units (higher contrast) fired first,

while units with lower activity (lower contrast) fired later or not at all. Latency-based

encoding of stimulus properties has been reported extensively in the early visual system

and it determines the content and the amount of information carried by each spike, which

deeply affects the neural computations in the network ([306, 307]).

6.3.3 STDP neural network

We use a SNN with a STDP rule which extract visual features of low or intermediate

complexity in an unsupervised manner. The samples were presented to the network

sequentially. For each sample, the first spikes from the most active 10% of LGN neurons
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Figure 6.2: Combination of spatial frequency sub-networks. Our network combine
the activation outputs of three sub-networks (act i, act j, act k), each corresponding to
one spatial frequency: high, medium and low spatial frequency. Each of the activation
vectors of the three sub-networks are normalized by a divisive normalization method.
The normalized activations of the three networks (actNorm i, actNorm j, actNorm k) are
combined into a single vector resulting in a vector of activations that combines different
frequencies of activations. Finally, the classification is carried out using the unsupervised
or supervised network.

were propagated through plastic synapses to a V1 population of 100 integrate-and-fire

neurons. Furthermore, a winner-take-all inhibition scheme was implemented such that, if

any V1 neuron fired during a certain iteration, it simultaneously prevented other neurons

in the population from firing until the next sample was processed ([308]). After each

iteration, the synaptic weights for the first V1 neuron to fire were updated using an STDP

rule, and the membrane potentials of the entire population were reset to zero. This scheme

leads to a sparse neural population where the probability of any two neurons learning

the same feature is greatly reduced. At the start, each neuron was fully connected to all

LGN afferents within its receptive field through synapses with randomly assigned weights

between 0 and 1. The weights were restricted between 0 and 1 throughout the simulation.

The non-negative values of the weights reflect the fact that thalamic connections to V1

are excitatory in nature ([309, 310]).

Each iteration began with the calculation of the ON and OFF LGN activity maps.

This activity was thresholded, converted to spike latencies, and propagated through the

network. The thresholding process allowed spikes from the fastest 10% of LGN neurons to

propagate through the network. The propagated LGN spikes contributed to an increase

in the membrane potential of V1 neurons (excitatory postsynaptic potentials) until one
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of the V1 membrane potentials reached threshold, resulting in a postsynaptic spike and

inhibition of all other V1 neurons until the next iteration (for more detail, see [291]).

After the LGN spike propagation, the synaptic weights were updated using an un-

supervised multiplicative STDP rule [311]. The synaptic weight update was calculated

as:

∆w =

−α
− · wµ− ·K(∆t, τ−),∆t ≤ 0

α+ · (1− w)µ
+ ·K(∆t, τ+),∆t > 0

(6.3)

Here, a presynaptic and postsynaptic pair of spikes with a time difference (∆t)

introduces a change in the weight (∆w) of the synapse, which is given by the product of a

temporal filter K [typically, K(∆t, τ) = e−|∆t|/τ ] and a power function of its current weight

(w). In our implementation, the efficiency and speed of calculations was greatly increased

by making the windowing filter K infinitely wide (equivalent to assuming τ± → ∞, or

K = 1). This, however, does not imply that there was no temporal windowing in the

model, as the thresholding at the LGN stage allowed only the fastest 10% of spikes to

propagate in each iteration. As we said before, when a postsynaptic spike occurs shortly

after a presynaptic spike (∆t > 0), there is a strengthening of the synapse, also called

long-term potentiation (LTP). Conversely, when the postsynaptic spike occurs before

the presynaptic spike (∆t ≤ 0), or in the absence of a presynaptic spike, there is a

weakening of the synapse or a long-term depression (LTD). The LTP and LTD are driven

by their respective learning α+ and α−. The learning rates are non-negative (α± ≥ 0)

and determine the maximum amount of change in synaptic weights when ∆t→ ±0. The

parameters µ± ∈ [0, 1] describe the degree of nonlinearity in the LTP and LTD update

rules. In practice, a nonlinearity ensures that the final weights are graded and prevents

convergence to bimodal distributions saturated at the upper and lower limits (0 and 1 in

our case).

The propagated LGN spikes contributed to an increase in the membrane potential of

V1 neurons (excitatory postsynaptic potentials or EPSPs) until one of the V1 membrane

potentials reached threshold, resulting in a postsynaptic spike and inhibition of all other

V1 neurons until the next iteration. The EPSP conducted by the synapse connecting

the mth LGN neuron and the nth V1 neuron was taken as the weight of the synaptic

connection itself (say wmn wmn). The membrane potential, En(t), of the nth V1 neuron
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at time t is described as follow:

En(t) =


∑

m∈LGN
wmn ·H(t− tm), t < min

t
{t|max

n∈V 1
En(t) ≥ Θ}

0, otherwise

(6.4)

After a neuron fires the membrane potentials of the entire population were reset to

zero. This scheme leads to a sparse neural population where the probability of any two

neurons learning the same feature is greatly reduced. At the start, each neuron was fully

connected to all LGN afferents within its receptive field through synapses with randomly

assigned weights between 0 and 1. The weights were restricted between 0 and 1 throughout

the simulation.

For the network used in the present study, the input images were presented sequentially.

For each sample, the first spikes from the most active 10% of LGN neurons were propagated

through plastic synapses to a V1 population of 100 integrate-and-fire neurons. At the start,

each neuron was fully connected to all LGN afferents within its receptive field through

synapses randomly assigned weights between 0 and 1. Here we used a winner-take-all

inhibition scheme; if any V1 neurons fired during a certain iteration, it simultaneously

prevent other neurons in the population from firing until the next sample. The learning

rates were fixed with α+ = 5× 10−3 and α+/α− = (4/3). The rate ratio α+/α− is crucial

to the stability of the network and was based on previous work demonstrating STDP-based

visual feature learning ([294]). For these values of the learning rate, the threshold of the V1

neurons was fixed at Θ = 50. This value was unmodified for all the results. Furthermore,

we used a high nonlinearity for the LTP process (µ+ = 0.65) to ensure that we were able to

capture fading receptive fields through continuous weights, and we used an almost adding

LTD rule (µ− = 0.05) to ensure the pruning of continuously depressed synapses. In both

LTP and LTD updates, the weights were maintained in the range w ∈ [0,1]. The STDP

and inhibition rules were active only during the learning phase, and all subsequent testing

of the converged population involved simultaneous spiking of all V1 neurons without any

synaptic learning. After each iteration, the synaptic weights for the first V1 neuron to fire

were updated using the Equation 6.3.

The post-convergence receptive fields of the STDP neurons were approximated by a

linear summation of the afferent LGN receptive fields weighted by the converged synaptic

weights. The receptive field ξj of the ith V1 neuron was estimated by the following:
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ξi ≈
∑

j∈LGN

wijψj, (6.5)

where ψj is the receptive field of the jth LGN afferent, and wij is the weight of the synapse

connecting the jth afferent to the ith V1 neuron. The receptive fields calculated using this

method are, in principle, similar to point wise estimates of the receptive field calculated

by electrophysiologists.

6.3.4 Divisive normalization

The activation of the output neurons of each sub-network is normalized using a divisive

normalization method. Let ȳil be the activation of neuron l in the sub-network i. The

basic idea of divisive normalization is that the response of neuron l:

ȳil(x) =
y2
il(x)

σ2
i +Winti.

∑
j∈K

y2
j (x) +Wexti.

∑
k∈K

y2
k(x) +

∑
i∈K

y2
i (x)

, (6.6)

is given by its driving input activity yil(x) in the sub-network i divisively normalized

by a weighted sum over neurons’ responses with various spatial frequency tunings (yj(x),

yk(x)) [312, 313], where x represents the stimulus and σ2
i is called the semi-saturation

constant for sub-network i. As long as σi is nonzero, the normalized output will always be

a value between 0 and 1, saturating for high contrasts. Here, the set of normalizing neurons

K and the normalization weights, Winti and Wexti, define which neurons contribute to

the normalization pool of neuron l and with what strength, respectively. With this model,

the parameters σl, Winti and Wexti are learned by optimizing the divisive normalization

function using the gradient descent algorithm.

6.4 Results

In this section, we show the results of the classification task using an unsupervised and

supervised networks.
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(a) (b) (c)

(d) (e) (f)

Figure 6.3: Receptive fields learned by different neurons for MNIST and fashion−MNIST
[304] using various spatial frequencies (SFs). Top row: neurons receptive fields for MNIST,
(a) high SF, (b) medium SF, (c) low SF. Bottom row: neurons receptive fields for
fashion−MNIST,(d) high SF, (e) medium SF and (f) low SF.

6.4.1 Classification using supervised or unsupervised network

For both networks, the unsupervised and supervised, we train the network three times,

each one corresponding to a specific spatial frequency or DoG filter: high pass, medium

pass and low pass filter. We trained and tested each network with 100 excitatory neurons

by presenting 40,000 examples of the MNIST and fashion−MNIST training set.

The learning rates were fixed with α+ = 5 × 10−3 and α+/α− = (4/3). The rate

ratio α+/α− is crucial to the stability of the network and was based on previous work

demonstrating STDP-based visual feature learning [294]. For these values of the learning

rate, the threshold of the V1 neurons was fixed at Θ = 50. This value was unmodified for

all the results. Furthermore, we used a high nonlinearity for the LTP process (µ+ = 0.65)

to ensure that we were able to capture fading receptive fields through continuous weights,

and we used an almost adding LTD rule (µ− = 0.05) to ensure the pruning of continuously

depressed synapses. In both LTP and LTD updates, the weights were maintained in the

range w ∈ [0,1]. The STDP and inhibition rules were active only during the learning phase,

and all subsequent testing of the converged population involved simultaneous spiking of
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Figure 6.4: (a) Average confusion matrix of the testing results over ten presentations of
the 10,000 MNIST test set digits. (b) Average confusion matrix of the testing results over
ten presentations of the 10,000 fashion−MNIST test set articles.

all V1 neurons without any synaptic learning.

Figure 6.3 shows the preferred visual features of some neuronal maps in the first layer

at the end of the learning process. The visual features learned by a neuron in the current

layer is reconstructed as the weighted combinations of the visual features in the previous

layer, whose preferred visual features are computed by DoG functions.

Before the classification layer, the normalized activations of the neurons of the three

spatial frequencies sub-networks are combined into a single vector resulting in a vector of

neuron activations with various spatial frequency tunings. To classify the images using

the supervised approach, the normalized activation vector is fed to a fully-connected layer.

In the output layer we use a softmax layer and compute the cross-entropy loss.

For the classification with the unsupervised network we use a classification method

based on the average of spikes for each neuron. Once the training is done, we set the

learning rate to zero, fix each neuron’s spiking threshold, and assign a class to each neuron,

based on its highest response to the image class over the presentation of the training set.

This is the only step where labels are used. The response of the class-assigned neurons

is then used to measure the classification accuracy of the network on the test set. The

predicted images are determined by averaging the responses of each neuron per class and

then choosing the class with the highest average firing rate.

The two datasets, MNIST and fashion−MNIST achieved an average classification
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Figure 6.5: Feature detection using various spatial frequencies (SFs), from high (HSF)
to low (LSF). Training our SNN individually using various SFs results in different types
of features that, when combined, provide a sharper reconstruction of the image. Results
using Quattoni et al. [140] dataset.

accuracy of 94.0 and 82.0% respectively. For both datasets we used the same neuron,

synapse and STDP parameters.

Figure 6.4(a) shows the average confusion matrix over ten presentations of the MNIST

test set, i.e., every single classification of the test examples belongs to one of the 10 by

10 tiles and its position is determined by the actual digit and the inferred digit. Not

surprisingly, given a classification rate of 94%, most examples are on the identity which

corresponds to correct classification; more interesting are the misclassified examples. The

most common confusions are that 4 is 57 times identified as 9, 7 is identified 40 times

as 9 and 7 is 26 times identified as 2. While 4 and 9, and 7 and 2 are easily confused it

does not seem immediately obvious that a 7 could be mistaken as a 9. Often the only

distinguishing feature between the misclassified 7’s and a typical 9 is that the middle

horizontal stroke in the 7 is not connected to upper stroke, which means that neurons

which have a receptive field of a 9 are somewhat likely to fire as well. Figure 6.4(b) shows

the average confusion matrix over ten presentations of the fashion−MNIST test set.

6.4.2 Feature detection

We also performed a second study for feature detection using different spatial frequencies

with the unsupervised network. For the experiment we use the public database of Quattoni

et al. [140]. We selected five types of indoor rooms: bathroom, bedroom, kitchen, dining
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Figure 6.6: Results of features learned by our unsupervised network for Quattoni et al.
[140] dataset. We show the features learned by our network in six examples of indoor
scenes: bathroom, bedroom, kitchen, dining room and living room.

room and living room, as can be seen in Figure 6.6. We trained the unsupervised network

with 250 images (50 images/class).

For the generation of the LGN maps, we processed the input image using four different

spatial frequencies, from SF1 to SF4, being SF1 the highest spatial frequency and SF4

the lowest spatial frequency (see Figure 6.5). Figure 6.6 shows the image reconstruction

based on the features detected by our network. For that, we use a linear approximation

using the activation and receptive fields of each V1 neuron, as we can see in the equation:
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IRk =
∑
j∈V 1

akjξj, (6.7)

where akj is the activation value of jth V1 neuron in the kth image and ξj is the receptive

field of the jth V1 neuron.

As we can see, training the network with different spatial frequencies, just as neurons

do in primary layers of the system, the network detects different types of features that,

when combined, provide a sharper reconstruction of the image (see Figure 6.6).

6.5 Conclusions

Theories on visual perception claims the existence of multiple channels, or multiple

receptive field sizes, in the visual system the visual system. Because of the visual system

has numerous relatively ‘narrow’ filters (channels) capable of perceiving different scales,

scenes are processed in terms of spatial frequencies. This is important during scene

recognition. Specifically, the primary visual system processes low and high level stimulus

properties using inputs from the retina via the lateral geniculate nucleus. Low spatial

frequencies, conveyed by fast magnocellular pathways, carry coarse information (e.g., the

global shape and structure of a scene) whereas high spatial frequencies, conveyed more

slowly by the parvocellular pathways, carry fine details of the scene (e.g., the edges and

borders in the scene). We present a spiking neural network which relies on a combination

of biologically plausible mechanisms and uses unsupervised learning scheme with multiple

spatial frequencies. We demonstrate that with one spiking neural network layer V1 neurons

become selective to features that are present in the input image. When presented with

different spatial frequency images, V1 neurons detect coarse and fine information leading

to a global representation of the scene. In the near future we want to test our network to

classify more complex categories such as the Oliva et al. [314] dataset which is designed

following principles of human visual cognition.

6.6 Related Publications

1. Sanchez-Garcia M., Chauchan T., Martinez-Cantin R., Guerrero J. J., and Cottereau

B. 2022. “Spiking neural network using multiple spatial frequencies under an
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unsupervised STDP Model”. In preparation.
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Chapter 7

7 Conclusions and future prospects

To conclude this thesis, I would like to highlight some aspects for future research, which

are particularly exciting for us, with the goal of improving future visual prostheses devices.

In this thesis we advance on various topics related to the design of visual prostheses

but, of course, there is much more out there. In this thesis we have taken advantage of

the fact that most retinal implants are equipped with an external video processing unit

that is capable of applying simple image processing techniques to the visual input. In the

last few years, deep learning has exploded, beating old traditional methods of the state of

the art in many tasks. This allows the deployment of a diverse array of state-of-the-art

deep-learning techniques for task-oriented and general image smart processing for the

prosthesis, such as semantic segmentation and object detection, aimed at improving a

patient’s scene understanding. We have proposed to introduce deep learning, specifically

fully convolutional networks to select and highlight useful information in interior scenes

such as masks and silhouettes of relevant objects and structural edges that recover the main

structure of the scene providing a sense of scale or perspective of the objects. Although

deep learning methods are known to consume resources during training, they can achieve

real-time performance for prediction even on mobile or embedded devices. Therefore, the

next step in our research is to make our algorithm work in real time and easily integrate

it into an implant device.

Although our results demonstrate the utility of deep learning–based scene simplification

for prosthetic vision, there are a number of limitations that should be addressed in future

work. First, we limited our approaches to indoor scenes. However, it would also be

interesting to evaluate the performance of different scene simplification strategies in

outdoor scenarios. For indoor scenes we use a structural and semantic segmentation

algorithm for different layouts and types of objects, but these algorithms may perform

differently compared to outdoor scenes. One of the problems that can occur in outdoor
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environments is the interference of light and shadow contrasts.

Second, a major challenge is predicting what people ‘see’ when they use visual devices.

Our studies simplify phosphenes into small independent light sources, although recent

evidence suggests that phosphenes vary dramatically between subjects and electrodes.

We can address this by incorporating a biologically realistic simulated prosthetic vision

model in immersive virtual-reality, allowing sighted subjects to act as virtual patients in

real-world tasks.

Third, the present study should be understood as a first step towards the ultimate goal

of creating a retinal implant supported by deep learning–based image processing. Future

devices would require all processing to happen in real time at the edge. Spiking Neural

Networks (SNNs) with spike-timing-dependent-plasticity rule have been applied many

times on image categorization tasks, in order to benchmark them against more common

artificial neural networks. However, most of these studies used static images as stimuli. In

contrast, dynamic images are more suited for SNNs due to their spatio-temporal nature.

One solution could come in the form of low power, low-latency hardware such as an event-

based vision camera. These cameras only encode variations in brightness or frequency

and are totally asynchronous, just like the retina. That is why these sensors allow to

take advantage of all the benefits of SNNs. Indeed, a combination of SNNs with event

cameras could be a solution for tasks such as object detection, optical flow estimation or

motion detection, among others. These studies show that a bioinspired system composed

of an SNN driven by event-based camera inputs can learn, in an unsupervised manner, to

optimally process spatio-temporal data. The ability to use accurate timing information

is a feature only offered by SNNs, but has not been sufficiently explored and exploited.

That is why SNNs have great potential in processing event-based sensor inputs, because

only SNNs can fully exploit the precise temporal information that these sensors offer. To

advance research in this direction, new benchmarks are needed, which do not carry the

legacy of assessment in conventional machine learning or computer vision.

On the other hand, visual prosthetics are continually developing. At present, retinal

prostheses are the most successful approach in this field. However, the inner layers of

the retina can degenerate into many retinal diseases. Consequently, a retinal prosthesis

may not be useful, for example if the inner layers of the retina are damaged, leading

to advanced retinal degenerations such as glaucoma or optic atrophy. Thus, since the

120



7 CONCLUSIONS AND FUTURE PROSPECTS

neurons in the higher visual regions of the brain are usually spared from the damage to

the retina and optic nerve, visual prostheses are being developed to directly stimulate the

brain or designed for electrical stimulation of the visual cortex. Recently, Second Sight

Medical Products has suspended production of new Argus II systems and has approved

the Argus 2s Retinal Prosthesis System, a redesigned set of external hardware (glasses and

video processing unit) initially for use in combination with previously implanted Argus II

systems for the treatment of retinitis pigmentosa. The new Argus system will be adapted

to be the external system for the next generation Orion Visual Cortical Prosthesis System

currently under development. One of the benefits of shifting research to the new Orion

Visual Cortical Prosthesis System is that, unlike the Argus II, which treats only retinitis

pigmentosa, the Orion system treats a wide range of visual problems including glaucoma,

diabetic retinopathy, optic nerve injury or disease, and eye injury.

To conclude, we could say that the development of visual prosthesis is still an emerging

problem with many considerations to take into account, and many possible lines of research

to move forward. This thesis proposes a collection of new methods that address some

of the most important tasks related to scene understanding and object detection, but

there are certainly others. The current climate of profound interest in computer vision

and machine learning along with the progressive enhancements in technology to expect in

the near future are very promising and encouraging to keep working on this important

topic. We envision that the next steps in this direction of research will bring increased

performance in the design of future visual prosthetics as well as a marked increase in the

quality of life of people with visual impairments.
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Conclusiones y perspectivas de futuro
Para concluir esta tesis, me gustaría destacar algunos aspectos para futuras investiga-

ciones, que son especialmente emocionantes para nosotros, con el objetivo de mejorar los

dispositivos de prótesis visuales del futuro.

En esta tesis avanzamos en diversos temas relacionados con el diseño de prótesis

visuales pero, por supuesto, hay mucho más por hacer. En esta tesis hemos aprovechado

que la mayoría de los implantes de retina están equipados con una unidad externa

de procesamiento de video que es capaz de aplicar técnicas simples de procesamiento

de imágenes a la entrada visual. En los últimos años, el aprendizaje profundo se ha

disparado, superando los antiguos métodos tradicionales del estado del arte en muchas

tareas. Esto permite el despliegue de una amplia gama de técnicas de aprendizaje profundo

de vanguardia para el procesamiento inteligente de imágenes generales y orientado a tareas

para la prótesis, como la segmentación semántica y la detección de objetos, con el objetivo

de mejorar la comprensión de la escena del paciente. Hemos propuesto introducir el

aprendizaje profundo, específicamente redes totalmente convolucionales para seleccionar

y resaltar información útil en escenas de interior como máscaras y siluetas de objetos

relevantes y bordes estructurales que recuperan la estructura principal de la escena

proporcionando un sentido de escala o perspectiva de los objetos. Aunque se sabe que los

métodos de aprendizaje profundo consumen recursos durante el entrenamiento, pueden

lograr un rendimiento en tiempo real para la predicción incluso en dispositivos móviles o

integrados. Por lo tanto, el siguiente paso en nuestra investigación es hacer que nuestro

algoritmo funcione en tiempo real e integrarlo fácilmente en un dispositivo de implante.

Aunque nuestros resultados demuestran la utilidad de la simplificación de la escena

basada en el aprendizaje profundo para la visión protésica, hay una serie de limitaciones

que deben abordarse en el trabajo futuro. Primero, limitamos nuestros enfoques a escenas

de interior. Sin embargo, también sería valioso evaluar el rendimiento de diferentes

estrategias de simplificación de escenas en escenarios de exterior. Debido a que en las

escenas de interior utilizamos un algoritmo de segmentación semántica y estructural para

diferentes diseños y tipos de objetos, los algoritmos estudiados aquí pueden tener un
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rendimiento diferente en comparación con las escenas de exterior. Uno de los problemas

que pueden ocurrir en ambientes exteriores es la interferencia de contrastes de luces y

sombras.

En segundo lugar, un desafío importante es predecir lo que las personas "ven" cuando

utilizan dispositivos visuales. Nuestros estudios simplifican los fosfenos en pequeños

puntos de luz independientes, aunque la evidencia reciente sugiere que los fosfenos varían

drásticamente entre sujetos y electrodos. Podemos abordar esto incorporando un modelo

de visión protésica simulada biológicamente realista en una realidad virtual inmersiva, lo

que permite que los sujetos videntes actúen como pacientes virtuales en tareas del mundo

real.

En tercer lugar, el presente estudio debe entenderse como un primer paso hacia el

objetivo final de crear un implante de retina respaldado por un procesamiento de imágenes

basado en el aprendizaje profundo. Los dispositivos futuros requerirían que todo el

procesamiento se realice en tiempo real en el borde. Las redes neuronales de picos (SNN)

con la regla de plasticidad dependiente del tiempo de picos se han aplicado muchas

veces en tareas de categorización de imágenes, para compararlas con las redes neuronales

artificiales más comunes. Sin embargo, la mayoría de estos estudios utilizaron imágenes

estáticas como estímulos. Por el contrario, las imágenes dinámicas son más adecuadas

para SNN debido a su naturaleza espacio-temporal. Una solución podría venir en forma de

hardware de baja latencia y bajo consumo de energía, como una cámara de visión basada

en eventos. Estas cámaras solo codifican variaciones de brillo o frecuencia y son totalmente

asincrónicas, al igual que la retina. Es por eso que estos sensores permiten aprovechar

todos los beneficios de las SNNs. De hecho, una combinación de SNN con cámaras de

eventos podría ser una solución para tareas como detección de objetos, estimación de

flujo óptico o detección de movimiento, entre otras. Estos estudios muestran que un

sistema bioinspirado compuesto por un SNN impulsado por entradas de cámara basadas

en eventos puede aprender, de manera no supervisada, a procesar de manera óptima datos

espacio-temporales. La capacidad de utilizar información de sincronización precisa es una

característica que solo ofrecen los SNN, pero no se ha explorado ni explotado lo suficiente.

Es por eso que los SNN tienen un gran potencial en el procesamiento de entradas de

sensores basados en eventos, porque solo los SNN pueden explotar completamente la

información temporal precisa que ofrecen estos sensores. Para avanzar en la investigación
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en esta dirección, se necesitan nuevos puntos de referencia, que no llevan el legado de la

evaluación en el aprendizaje automático convencional o la visión por computadora.

Por otro lado, las prótesis visuales se están desarrollando continuamente. En la

actualidad, las prótesis de retina son el enfoque más exitoso en este campo. Sin embargo,

las capas internas de la retina pueden degenerar en muchas enfermedades de la retina. En

consecuencia, una prótesis de retina puede no ser útil, por ejemplo, si las capas internas

de la retina están dañadas, dando lugar a degeneraciones retinianas avanzadas como

glaucoma o atrofia óptica. Por lo tanto, dado que las neuronas en las regiones visuales

superiores del cerebro generalmente no sufren daños en la retina y el nervio óptico, se están

desarrollando prótesis visuales para estimular directamente el cerebro o diseñadas para la

estimulación eléctrica de la corteza visual. Recientemente, Second Sight Medical Products

ha suspendido la producción de nuevos sistemas Argus II y ha aprobado el Sistema de

Prótesis de Retina Argus 2s, un conjunto rediseñado de hardware externo (gafas y unidad

de procesamiento de video) inicialmente para su uso en combinación con sistemas Argus

II previamente implantados para el tratamiento de la retinitis pigmentosa. El nuevo

sistema Argus está adaptado para ser el sistema externo del sistema de prótesis cortical

visual Orion de próxima generación, actualmente en desarrollo. Uno de los beneficios de

cambiar la investigación al nuevo sistema de prótesis cortical visual de Orion es que, a

diferencia del Argus II, que solo trata la retinitis pigmentosa, el sistema Orion trata una

amplia gama de problemas visuales que incluyen glaucoma, retinopatía diabética, lesiones

o enfermedades del nervio óptico. y lesiones oculares.

Para concluir, podríamos decir que el desarrollo de prótesis visuales sigue siendo un

problema emergente con muchas consideraciones a tener en cuenta, y muchas líneas de

investigación posibles para avanzar. Esta tesis propone una colección de nuevos métodos

que abordan algunas de las tareas más importantes relacionadas con la comprensión de la

escena y la detección de objetos, pero ciertamente hay otras. El clima actual de profundo

interés en la visión por computadora y el aprendizaje automático junto con las mejoras

progresivas en la tecnología que se esperan en un futuro cercano son muy prometedores y

alentadores para seguir trabajando en este importante tema. Prevemos que los próximos

pasos en esta dirección de la investigación traerán un mayor rendimiento en el diseño

de prótesis visuales futuras, así como un marcado aumento en la calidad de vida de las

personas con discapacidad visual.
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Chapter 8

8 Summary of results

8.1 Research Stays

During the years of the thesis I have made the following research stays:

• I was at the Institut de Recherche en Informatique de Toulouse (IRIT) and the Centre

de recherche cerveau et cognition - CERCO from September 2019 to December

2019. I had the opportunity to meet and work with Prof. Benoit Cottereau and Dr.

Tushar Chauchan.

• I also was at the Instituto de Bioingeniería, Universidad Miguel Hernandez Elche,

from May 2021 to June 2021. My direct supervisor during this stay was Eduardo

Fernández Jover.

8.2 Supervision of Students

Aside from research, I have also participated in teaching, imparting the “Visión y Robótica”

and “Representación gráfica del patrimonio” subjects together with my supervisor Prof.

JJ.Guerrero at the University of Zaragoza. Also, during the doctoral studies I participated

in the supervision of students projects.

• Lorenzo Mur Labadia: “Bayesian deep learning for visual affordance”. MS. Robotics,

CV, graphics 2020-2021

• Violeta Estepa Ramos: “Creación de un entorno visual de visión protésica”. MSc.

Industrial Eng. 2019-2020

• María Santos Villafranca: “Simulador de prótesis visuales en entornos 360◦ con gafas

de realidad virtual”. Bs. Industrial Eng. 2018-2019
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• Pedro Luis Compais Serrano: “Sistema de asistencia a la navegación basado en la

cámara de eventos”. MSc. Industrial Eng. 2018-2019

8.3 Dissemination

8.3.1 Peer-Reviewed Publications

The research developed in this thesis has resulted in the following peer-reviewed publica-

tions in journals, conferences and workshops.

Journals

• Sanchez-Garcia M., Martinez-Cantin R., Bermudez-Cameo J and Guerrero J. J. 2020.

“Influence of field of view in visual prostheses design: Analysis with a VRsystem”.

Journal of Neural Engineering (Q1)

• Sanchez-Garcia M, Martinez-Cantin R and Guerrero J. J, 2020. “Semantic and

structural image segmentation for prosthetic vision”, PLoS ONE (Q2)

• Sanchez-Garcia M., Perez-Yus A., Martinez-Cantin R., and Guerrero J. J. 2021.

“Augmented reality navigation system for visual prosthesis”. Submitted

• Sanchez-Garcia M., Morollon-Ruiz R., Martinez-Cantin R., Guerrero J. J., and

Fernandez-Jover E. 2021. “Visual acuity assessment with visual prosthesis through

a virtual-reality system.”. Submitted

In preparation

• Sanchez-Garcia M., Chauhan T., Martinez-Cantin R., Guerrero J. J., and Cottereau

B. 2022. “Spiking neural network using multiple spatial frequencies under an

unsupervised STDP Model”. In preparation.

Conferences

• Sanchez-Garcia M., Martinez-Cantin R., and Guerrero, J. J, 2019. “Indoor scenes

understanding for visual prosthesis with fully convolutional networks”. In 14th

International Conference on Computer Vision Theory and Applications

Workshops
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• Sanchez-Garcia M., Martinez-Cantin R., Bermudez-Cameo J and Guerrero, J. J,

2020. “Influence of Field of View in Visual Prostheses Design: Analysis with a VR

System”. In IX Jornada de Jovenes Investigadores (I3A)

• Sanchez-Garcia M., Martinez-Cantin R., and Guerrero, J. J, 2019. “Semantic and

Structural Image Segmentation for Prosthetic Vision”. In VIII Jornada de Jovenes

Investigadores (I3A)

• Sanchez-Garcia M., Martinez-Cantin R., and Guerrero, J. J, 2018. “Smart Repre-

sentation of Indoor Scenes under Simulated Prosthetic Vision”. In WiCV Women

in Computer Vision Workshop, 15th European Conference on Computer Vision

(ECCV)

8.3.2 Open-Source Software

We have released an Image dataset for SPV experimentation and also a virtual-reality

software for replicating and extending SPV experimentation.

• SIE-OMS dataset (https://doi.org/10.6084/m9.figshare.11493249.v4)

• SIE-OMS code (https://github.com/mesangar/SIE-OMS)

• Vrfov (http://webdiis.unizar.es/rmcantin/in-dex.php/Research/Vrfov)

8.3.3 Conference and Research Seminar Attendance

I participated in the following courses or seminars offered outside the PhD program:

• Summer School on Computer Vision (BMVA 2018), Norwich - UK

• “Influence of Field of View in Visual Prostheses Design: Analysis with a VR System”

Presented at IX Jornada de Jóvenes Investigadores del I3A, 2020

• I was featured in Ágora, which is the Aragón Radio program dedicated to popular

science.

• “Semantic and Structural Image Segmentation for Prosthetic Vision”

Presented at VIII Jornada de Jóvenes Investigadores del I3A, 2019
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Appendix

Appendix for Schematic representation of in-

door scenes

Phosphene generation

In order to simulate the visual perception in prosthetic vision, our phosphenes generated

are idealized representations of the percepts feasible in the current implants. Concretely,

our phosphene map configuration is similar to the framework described in [48]. First, once

the image has been processed according to the chosen processing method, the image is

sampled at each location in a given phosphene layout. The most commonly phosphene

patterns adopted by SPV in the literature [45] are square or hexagonal array. Due to

the prevalence of vertical lines in indoor scenarios [315] we opted to use a square pattern

(Fig A0.1 (middle)). The simulation of indoor images with square pattern keeps the

structure of each line as it really is, while the hexagonal pattern tends to distort it due to

the deviation of the phosphenes when forming hexagons (Fig A0.1 (right)).

Figure A0.1: Vertical lines in indoor environments. (a) Example of indoor scene, (b)
prevalence of vertical lines, (c) square pattern and (d) hexagonal pattern. As a result of
the abundance of vertical lines in indoor environments, we opted to use the square grid.

Similarly to many SPV studies [45], phosphenes are approximated as grayscale circular

dots with a Gaussian luminance profile. The luminance profile of each phosphene has

maximum intensity at the center and gradually decays to the periphery, following an
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unnormalized Gaussian function G(x, y) defined in Eq (2.1).

G(x, y) ∝ exp

{
(x− µx)2 + (y − µy)2

2σ2lum

}
(2.1)

The intensity of a phosphene is a function f : IRn → IR of the intensity of the pixels

covering the same location in the processed image. Usually, f is the mean function, but

we found that the median function preserved the line structures of SIE-OMS and Edges.

In addition, each sampled pixel intensity (i) is quantified to each individual phosphene’s

dynamic range as:

L(x, y) =
I(x, y)

max(l)
(2.2)

In Eq (2.2), l is the number of gray levels intensity of the phosphene. The size and

brightness are directly proportional to the quantified sampled pixel intensities. Then, the

phosphene profile P (x, y) is applied to every phosphene resulting in the final image:

P (x, y) = lum ·G(x, y) (2.3)

where P (x, y) represents the pixel value at the coordinates (x, y) of the stimulus image

(Eq (2.3)).

Furthermore, several important works have demonstrated that exists a degree of

incomplete phosphene visual field maps (dropout) in implanted patients. This is because

of the high threshold required values to elicit phosphenes that placed in areas with a high

proportion of dead nerve cells [93]. This results in a lower resolution than the number of

electrode elements. We included a 10% dropout of phosphenes. Those phosphenes were

initially selected randomly but kept the same for all the images. Note that our prosthetic

vision simulation does not integrate all aspects of visual appearance reported by implanted

subjects (e.g. distortion effect [145, 316]).
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Appendix for Influence of field of view

Spherical image projection in the VR system

Since the participants only rotate the head and body during the experiment, in our

SPV system, we only consider rotation movements. In the absence of translation, all

the visual information of the environment can be encoded in a spherical image, i.e. an

equirectangular panorama. Thus, if the rotation of the head is known, the image received

by the subject through the screen can be virtually simulated from a panoramic image.

To achieve the effect of the stimulus image on the VR system we combine two different

projections models: the spherical projection that models the projection on the panoramic

image and the perspective projection that models the projection on the viewfinder screen.

In the Oculus VR system, the inertial measurement unit (IMU) collect the information

of the head movement made by the user in form of quaternions like q = a+ bi+ cj + dk.

This information is used to generate the rotation matrix which describes the basis of the

absolute reference system used by the IMU with respect to the screen reference system as:

Rimu =


1− b2 − c2 2ab− 2cd 2ac+ 2bd

2ab+ 2cd 1− 2a2 − 2c2 2cb+ 2ad

2ac− 2bd 2bc+ 2ad 1− 2a2 − 2b2

 (3.4)

This rotation matrix defines the head orientation and, therefore, it can be used to find

the area of the panoramic scene that is currently being observed. Then, the selected area

is projected on the screen.

For the generation of the screen image, we calculate the ray corresponding to each

phosphene on the screen as

~v = RT
panR

T
imuK

−1u (3.5)

where ~v = (vx, vy, vz)
T is the direction vector of the ray in the panorama reference system,

Rimu is the rotation matrix from the IMU data, Rpan is the the basis of the panorama

reference system with respect to the absolute reference system of the IMU and u = (j, i, 1)T

are the coordinates of each phosphene on the screen image. K is the calibration matrix

used in the perspective projection that models the projection in the screen.
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The spherical coordinates of the ray ~v, known as azimuth φ and elevation θ angles,

and computed as:

φ = atan2(vy, vx) (3.6)

θ = sin−1 vz√
v2
x + v2

y + v2
z

(3.7)

and are related with the coordinates of the pixels in the panorama though the linear

mapping,

xpan = x0 +
φ

2π
W (3.8)

ypan = y0 +
θ

π
H (3.9)

where (x0, y0) is the center of the panoramic image, and (W,H) are, respectively, the

width and height of the panoramic image in pixels.
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