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A B S T R A C T

The trend for heterogeneous embedded systems is the integration of accelerators and general-purpose CPU cores
on the same die. In these integrated architectures, like the Zynq UltraScale+ board (CPU+FPGA) that we target
in this work, hardware support for shared memory and low-overhead synchronization between the accelerator
and the CPU cores make the case for exploring strategies that exploit a tight collaboration between the CPUs
and the accelerator. In this paper we propose a novel lightweight scheduling strategy, FastFit, targeted to FPGA
accelerators, and a new scheduler based on it, named MultiFastFit, which asynchronously tackles heterogeneous
systems comprised of a variety of CPU cores and FPGA IPs. Our strategy significantly reduces the overhead to
automatically compute the near-optimal chunksizes when compared to a previous state-of-the-art auto-tuned
approach, which makes our approach more suitable for fine-grained applications. Additionally, our scheduler
MultiFastFit has been designed to enable the efficient co-execution of work among compute devices in such a
way that all the devices are busy while minimizing the load unbalance.

Our approaches have been evaluated using four benchmarks carefully tuned for the low-power UltraScale+
platform. Our experiments demonstrate that the FastFit strategy always finds the near-optimal FPGA chunksize
for any device configuration at a reasonable cost, even for fine-grained and irregular applications, and that
heterogeneous CPU+FPGA co-executions that exploit all the compute devices are usually faster and more
energy efficient than the CPU-only and FPGA-only executions. We have also compared MultiFastFit with other
state-of-the-art scheduling strategies, finding that it outperforms other auto-tuned approach up to 2x and it
achieves similar results to manually-tuned schedulers without requiring an offline search of the ideal CPU-FPGA
partition or FPGA chunk granularity.
1. Introduction

The demise of Dennard’s scaling has boosted the interest on hetero-
geneous platforms, which are now seen as a path forward to deliver
the energy and the performance improvements needed over the next
decade. A plethora of heterogeneous devices and platforms, featuring
CPU cores, GPUs and FPGAs, among other accelerators and ASICs, have
arisen. In this arena, some consensus exists over the ‘‘No transistor
left behind’’ idea, meaning that all devices should help in optimiz-
ing different kind of applications or part of them. In this regard,
new heterogeneous programming models, as SYCL [1], DPC++ and
oneAPI [2], are gaining momentum in order to ease the development
of heterogeneous applications without compromising performance.
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In this paper, we aim at contributing towards this goal, by proposing
heterogeneous schedulers capable of distributing the workload among
CPU cores and FPGA compute units (usually known as FPGA IPs),
minimizing load unbalance and energy consumption. More precisely,
we target a Xilinx Zynq UltraScale+ board featuring 4 Cortex-A53
cores along with an on-chip FPGA. The FPGA is large enough to
accommodate up to four instances (4 IPs) of the kernels we evaluate
in this work. In Fig. 1 we show four possible heterogeneous computing
scenarios of increasing complexity considered in this work. Scenario
A is a very common one in which only the accelerator is used, and
out of the four CPU cores, only one is running the so-called ‘‘host-
thread’’ that is just taking care of feeding the FPGA IPs (busy-waiting
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Fig. 1. Different scenarios when using CPU+FPGA platforms.
until FPGA completion). Scenario B, shows a situation in which one
CPU cores runs the ‘‘host-thread’’ while the other three CPU cores can
collaborate in the computation. If the application is regular and there
is no noise in the platform (other processes) a perfect balance can be
achieved. These conditions are not always met, so in Scenario C we
see a common situation for an irregular code in which the workload
cannot be statically estimated beforehand. In this case, seven chunks of
work (of an estimated size) are submitted to the 3 CPU cores and the
4 FPGA IPs, while the host-thread consumes another core busy-waiting
for the FPGA to finish. Due to either the irregularities of the code or to
other noise in the platform, the estimated size does not result in evenly
balanced workload, which results in resources underutilization (shown
in the figure as idle CPU and idle FPGA times).

Our goal is to achieve Scenario D, in which: (i) there is no host-tread
wasting a CPU core; and (ii) the workload is partitioned into variable
size chunks of work that are dynamically offloaded to the FPGA IPs and
CPU cores, so that near-perfect load balanced is achieved.

This last scenario (Scenario D) may come as a surprise to developers
that are used to targeting discrete accelerators connected through a
PCIe bus. With these discrete accelerators, it usually makes sense to
minimize the number of data offloads and kernel invocations due the
high latency of the PCIe bus. However, the trend for heterogeneous
embedded systems, integrating accelerators and general-purpose CPU
cores on the same die, is to enable unified virtual address spaces for
both devices, which, in turn, seamlessly allows for data sharing and
low-overhead synchronization between the accelerator and the CPU
cores. In these integrated architectures, like our UltraScale+ board
(CPU+FPGA), it can be profitable to explore strategies that exploit
a tight collaboration and communication between the CPUs and the
accelerator.

In addition to the scheduling problem, we are also concerned about
the programmer’s productivity and about the platform energy consump-
tion. For some years running, we have been contributing to solve these
issues by proposing a high level API called Heterogeneous Building
Blocks (HBB). This library offers an easy-to-use parallel_for template
built on top of TBB (Threading Building Blocks) [3] and encapsu-
lates different heterogeneous schedulers that we have validated on
CPU+GPU [4] and CPU+FPGA [5,6] platforms. Some of the included
scheduling strategies are Static, Dynamic, Logfit (originally devised for
CPU+GPU) and HAP (a Logfit specialization for FPGAs).

Logfit and HAP are capable of dynamically distributing different
chunks1 of the parallel iteration space among CPU cores and the
accelerator. To this end, the scheduler monitors the throughput of
each compute unit during the execution of the iterations and uses
this metric to adaptively resize the CPU and accelerator chunks in
order to optimize overall throughput and to prevent underutilization
and load unbalance. One disadvantage of these scheduling strategies
is the overhead in which incur due to the logarithmic fitting needed
to recompute the accelerator chunks. In this work, we take a step
forward and extend the previous schedulers in different aspects: (i)
now they do not rely on busy-waiting host threads to feed the FPGA
IP. Instead we incorporate an interruption mechanism that blocks a

1 A chunk is a block of consecutive iterations that are independent of other
iterations or chunks of a parallel loop.
2

host thread while the FPGA IP is working and later it is woken-up
once the IP has finished; (ii) now they are able to consider several
FPGA IPs working asynchronously instead of just one; and (iii) now
a new scheduling strategy, called FastFit, designed to simplify the
computation of accelerator chunks and further reduce the scheduling
overheads on CPU+FPGA systems, and a new version of our scheduler
based on it, named MultiFastFit, which is able to tackle multiple FPGA
IPs, are added to the library.

With all this, this paper proposes the following novel contributions:

1. A proposal of an FPGA-specialized scheduling strategy, called
FastFit (from Fast Fitting), which simplifies the training phase
of our scheduler by using just two runtime samples to estimate
the near-optimal FPGA chunksize of iterations. This lightweight
strategy significantly reduces the number of samples and the
cost of re-computing FPGA chunksizes when compared to the
previous state-of-the-art HAP scheduling strategy. HAP requires
four (or more, particularly in fine-grained applications) runtime
samples to perform the first logarithmic fitting to compute the
FPGA chunksize, and later each time that a new FPGA chunk is
required, it has to recompute the new size applying logarithmic
fitting again.

2. An extension of our schedulers that now asynchronously cope
with several FPGA IPs and several CPU cores (MultiStatic, Mul-
tiDynamic, MultiHAP and MultiFastFit), striving to keep all the
compute devices busy and minimize the load unbalance. FPGA
IPs are configured to generate interruptions as soon as they are
ready to process more data.

3. A thorough exploration of the optimality, scalability, perfor-
mance and energy efficiency of our MultiFastFit proposal for
different device configurations using four applications in which
the main kernels have been carefully tuned for the low-power
UltraScale+ CPU+FPGA platform. We compare this scheduler
against MultiStatic, MultiDynamic and MultiHAP schedulers to
find that the FastFit strategy always discovers the near-optimal
FPGA chunksize for all device configurations without requiring
manually tuning, and at a reasonable cost even for fine-grained
and irregular applications.

The rest of the paper is organized as follows. The next section
introduces the problem as well as related works that tackle a similar
problem. Section 3 briefly describes our heterogeneous library, HBB,
and a summary of implementation details for the different scheduling
strategies that have been studied. Section 4 outlines the platform con-
figuration and benchmark characteristics. In Section 5 we delve into a
thorough and extensive experimental evaluation that covers the FastFit
model validation, scalability and energy efficiency of the scheduler
proposed. Finally, we wrap up with conclusions in Section 6.

2. Background and related work

The traditional approach of using heterogeneous platforms consists
of offloading complex kernels to the accelerator by selecting the best ex-
ecution resource either at compile time or runtime. New programming
models and frameworks such as OmpSs [7], oneAPI [2] or SYCL [1]
are being proposed following this paradigm. However, for the par-
allel_for pattern, which is of interest to our research work, they do
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not solve the automatic workload partition and scheduling problems.
In particular, those approaches do not consider any compile time or
runtime mechanism to find the most suitable work granularity for each
device. Moreover, there are cases in which it makes sense to exploit
all the available compute devices at once. This means that there is
the need to develop a strategy to divide the work among all these
compute resources so they are used effectively. This is often referred
as workload balancing or collaborative co-execution, which has been
explored extensively in the literature in systems that combine GPUs
and CPUs. For example, Fluidic [8] allows for CPU+GPU collaborative
execution of parallel loops. The GPU starts computing a data buffer
in ascending order in parallel with the CPU that process sub-ranges
(chunks) of iterations in descending order. The GPU is responsible of
aborting its execution when it tries to execute an iteration that has
been already processed by the CPU. Another related work focusing
on parallel_for [4] has also been implemented for heterogeneous chips
composed of CPU plus an integrated GPU.

The possibility of adding an FPGA to a system using CPU and
GPU and use them simultaneously and collaboratively has also been
explored in diverse application areas such as medical research [9]. In
that work, the hardware uses multiple devices connected through a
common PCIe backbone, and the designers optimized how different
parts of the application are mapped to each computing resource. This
type of heterogeneous computing can be considered as connecting
devices vertically (i.e. exploit temporal parallelism) since the idea is to
build a streaming pipeline with results from one part of the algorithm
moving to the next. Data is captured and initially processed in the FPGA
and moved with DMA engines to the CPU and GPU components. A
study of the potential of FPGAs and GPUs to accelerate data center
applications is done in [10]. The paper confirms that FPGA and GPU
platforms can provide compelling energy efficiency gains over general
purpose processors, but it also indicates that the possible advantages
of FPGAs over GPUs are unclear due to the similar performance per
watt and the significant programming effort of FPGAs. In any case, it
is important to note that the paper does not use high level languages
to increase FPGA productivity as done in our work, and the power
measurements for the FPGA are based on worst case tool estimations
and not direct measurements as done here.

In our research, we explore a horizontal (i.e. exploit data paral-
lelism) collaborative solution more closely related to the work done
in [11] that also targets Xilinx FPGAs. This previous research focuses on
a multiple device solution and demonstrates how the N-Body algorithm
can be implemented in a heterogeneous platform in which both FPGA
and GPU work together to compute the same algorithm kernel on
different sets of particles. While the research in this paper uses a
dynamic scheduling approach to compute the optimal split, in [11]
the split is calculated manually with 2∕3 of the workload to FPGA and
the remaining 1∕3 to GPU. The concept of distributing the workload
t runtime has also been studied in other heterogeneous CPU+FPGA
ystems such as the Intel HARP that combines high-end Xeon-class
ightly coupled to an FPGA device located in the same package [6] or
he low-power low-cost Terasic DE1 board that comprises two ARM
ortex-A9 and an embedded FPGA on the same chip [12]. In these
wo previous works a scheduling strategy called HAP (Heterogeneous
daptive Partitioner), which adaptively and continuously adjusts the
ize of the chunk of iterations offloaded to both CPU cores and the
PGA device is evaluated. This strategy uses a three-phase strategy
onsisting of training, stable and final where it tries to determine the
teration chunksize that maximizes the performance of the FPGA. In
his paper we also evaluate HAP as a comparison point, but while
n the two previous works only one FPGA IP was considered, in this
ork we extend HAP to asynchronously serve several FPGA IPs. A
ifferent approach presented in [13] is based on work-stealing. In this
ase, threads that have completed their assigned workloads can obtain
ork from busy hardware threads. It is applied to graph processing
3

enchmarks and it shows levels of performance comparable to HAP. a
Both techniques exploit cache coherence, possible between hardware
threads mapped to the FPGA and software threads mapped to the
CPU cores. We do not consider this strategy in this paper because the
described work stealing mechanism can incur in duplicate processing
of items at the beginning of the thief’s new chunk. While this is not an
issue for the graphs evaluated in [13], it may affect correctness in our
benchmarks.

In this paper we base part of our approach on the system done
in [5], where Xilinx SDSoC is used to generate the FPGA compute
units for regular applications. We extend here this previous work by
analyzing irregular parallel loops2 that can be found in applications
such as SPMM and propose a new scheduling strategy called FastFit
better suited to make the most out of the FPGA features by minimizing
the scheduling overheads. Moreover, the work in [5] targeted smaller
Zynq devices consisting on a dual 32-bit Cortex A9 processor coupled
to a small FPGA fabric. In here we target Zynq Ultrascale+ devices that
offer a much higher performance platform based on four 64-bit ARM
processors and a much larger FPGA fabric that enables the deployment
of higher performance benchmarks.

2.1. Motivation for efficient asynchronous scheduling

In order to highlight the relevance of key aspects exploited by
our approach, in particular the use of interruptions instead of a busy-
waiting mechanism to feed the FPGA IPs, as well as the fact that
we consider several FPGAs IPs, we refer to Fig. 2 were we plot the
throughput achieved by the Static scheduling strategy for two of the
benchmarks evaluated in this paper, HOTSPOT and GEMM (see Sec-
tion 4) on our UltraScale+ platform with 4 CPU cores and 4 FPGA
IPs.

The Static scheduling strategy requires a user defined argument,
offload_ratio (from 0 to 1), that indicates the percentage of parallel
iterations (from 0% to 100%) that should be offloaded to the FPGA. The
FPGA includes 4 IPs running at 200 MHz, which can generate interrup-
tions (IntOn, blue line) or not (IntOff, green dashed line) after finishing
the computation. Without interruptions, 4 host-threads have to be busy-
waiting until FPGA IP completion. This hampers the execution of the
4 CPU threads that are also processing part of the iterations on the
CPU cores. With interruptions, the 4 host-threads are blocked while the
FPGA IP is working and later woken-up by the interruption that the IP
triggers once it has finished. From the figure we can see the positive
impact of enabling interruptions and blocking host-threads: the whole
platform can deliver up to 1,5x more throughput and the CPU cores
can process a larger percentage of the iteration space (e.g. in HOTSPOT
IntOn the CPU cores should process 40% of the iterations wheres with
InOff, it is better if they only process 30% of the iterations). Since this
feature has been already introduced in our framework and discussed
elsewhere [5,14], from now on we consider that IntOn is the default
mode for the rest of this work.

3. Heterogeneous parallel_for and schedulers

The Heterogeneous Building Blocks (HBB) library API is a C++
emplate library that facilitates exploiting heterogeneous platforms
y automatically partitioning and scheduling the workload among
he cores and the accelerator. The current version offers a paral-
el_for() function template, originally devised to exploit CPU+GPU
latforms [4], which we extended to run on heterogeneous systems
omprising CPU cores and OpenCL/SDSoC capable FPGAs [6].

HBB offers an abstraction layer that hides the initialization and
anagement details of TBB and OpenCL constructs (contexts, command

2 By irregular parallel loops we mean parallel loops that exhibit different
omputational load per iteration and that may access non-coalesced data of
n irregular data structure.
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Fig. 2. Throughput of Static for different offload_ratio values. The higher the better.
Fig. 3. Scheme of the scheduler engine implementation. Stage 0 performs the partitioning and scheduling, while Stage 1 computes the assigned chunks. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
queues, device_ids, etc.), thus users can focus on their own applica-
tions instead of dealing with thread management and synchronization.
The engine managing the parallel_for pattern is implemented with a
two-stage pipeline TBB template, which we explain next.

3.1. Scheduler engine implementation

We cover here how the scheduler engine is implemented in HBB and
how the chunks that will be executed by the CPU cores and the FPGA
IPs are assigned, depending on the selected scheduling (partitioning)
strategy: Static, Dynamic, HAP and FastFit.

Fig. 3 depicts a simplified scheme of how the scheduler engine for
our parallel_for() has been built. The engine is implemented
with a two-stage pipeline TBB template with Stage 0 and Stage 1. Each
token corresponds to a compute unit class, FPGA IP or CPU core in
our system, and the sum of tokens represents the number of chunks
of the iteration space that will be processed simultaneously. In the
figure, we have two CPU tokens and two FPGA tokens being processed
concurrently, two on the CPU cores and two more on the FPGA IPs.
The first stage, Stage 0, gets an available token (line 1) and selects the
chunksize for FPGA and CPU tokens, and extracts the corresponding
chunk of iterations (𝐶𝐹 and 𝐶𝐶) from the set of remaining iterations,
𝑟 (lines 2–6). The procedure to compute the FPGA and CPU chunksizes
is covered in Section 3.2. Then, when a token reaches the second stage,
Stage 1, the chunk gets processed on the corresponding device. The
time required for the computation of the chunk on the FPGA and on a
CPU core is recorded. This time3 is used to update the relative speed of

3 For the FPGA, the registered computation time includes the data transfer,
when the platform does not support shared memory among devices. It could
incorporate the host-to-device and device-to-host data communications times
for the case of discrete accelerators.
4

the FPGA w.r.t. a CPU core, that we call 𝜑. Factor 𝜑 will be required
to adaptively adjust the size of the next chunk assigned to a CPU core,
because as we will explain next, our schedulers always try to balance
the time consumed by accelerator and CPU chunks. Tokens are recycled
until there are no remaining iterations. On behalf of understanding, in
Table 1 we show a summary of the parameters included in the following
model description.

3.2. FastFit Analytical model

The FPGA-specialized scheduling strategy that we propose in this
paper, called FastFit (Fast Fitting), is based on an analytical model
that can quickly estimate the throughput (e.g. iterations per sec.) for
each FPGA IP when executing a chunk of parallel iterations. Our
proposal uses an abstract pipeline model to obtain a near optimal FPGA
chunksize, and with that, the corresponding CPU chunksize optimizing
the throughput in both devices while ensuring load balancing.

Our hypothesis is that the effective FPGA throughput can be guessed
by a model that assumes that the FPGA IP is implemented as a pipeline.
This assumption leads to a good balance between accuracy and simplic-
ity. More complex models could be more accurate, but their extra over-
head may not payoff. Two latencies characterize the pipeline model:
issue and completion. The Issue Latency (denoted by 𝐼𝐿) is the number
of cycles required between issuing two consecutive independent itera-
tions. On the other hand, the Completion Latency (denoted by 𝐶𝐿) is the
number of cycles until the result of a parallel iteration is available. In
other words, the issue latency is the time before the next independent
iteration can be started, while the completion latency depends on the
depth of the pipeline and is the time required to fill it up. In most cases,
both latencies suffice to estimate the execution time of the FPGA kernel.

The scheduling strategy, as sketched in Algorithm 1, comprises two
phases: the Training Phase, which finds near-optimal chunksizes for the
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Table 1
Summary of the model parameters.

Acronym Name Description

𝐶𝐹 FPGA Chunk size of the FPGA chunk (min(𝐶𝐹𝜌, 𝑟))
𝐶𝐶 CPU Chunk size of the CPU chunk. Eq. (12)

𝐼𝐿 Issue Latency Cycles between 2 consecutive parallel iterations
𝐶𝐿 Completion Latency Cycles to complete 1 iteration
𝐷𝐿 Depth Latency 𝐷𝐿 = 𝐶𝐿 − 𝐼𝐿
𝐹 Frequency Clock frequency of FPGA kernel

𝛿 second chunk size Number of iterations for second chunk just FPGA (Training Phase)
𝑡𝐹𝑚

(𝛺) Measured FPGA time Measured execution time of 𝛺 iterations on the FPGA
𝑡𝐶𝑚

(𝛺) Measured CPU time Measured execution time of 𝛺 iterations on the CPU

𝑡𝐹𝑒
(𝛺) Estimated FPGA time Estimated execution time of 𝛺 iterations on the FPGA. Eq. (1)

𝜆𝐹𝑒
(𝛺) Estimated throughput Estimated throughput of 𝛺 iterations on the FPGA. Eq. (6)

𝜆𝐹𝑝𝑒𝑎𝑘
Peak throughput Estimated peak throughput on the FPGA with full pipeline. Eq. (7)

𝜌 Optimal threshold Ratio of the 𝜆𝐹𝑝𝑒𝑎𝑘
to be reached (0.9-0.99) at Exploitation Phase

𝐶𝐹𝜌 Optimal chunksize FPGA chunksize for optimal throughput threshold. Eqs. (4), (5), and (9)

𝑁𝐶 CPU elements Number of elements processed in a single iteration on the CPU
𝑁𝐹 FPGA elements Number of elements processed in 𝛿 iterations on the FPGA
𝜆𝐶 CPU throughput Estimated/Measured CPU throughput at Training/Exploitation Phase
𝜆𝐹 FPGA throughput Estimated/Measured FPGA throughput at Training/Exploitation Phase

𝜑 Relative speed Rrelative speed of the FPGA w.r.t a CPU core 𝜑 = 𝜆𝐹
𝜆𝐶

𝑟 remaining iterations Pending iterations of the parallel_for loop
w
p

a

𝜆

FPGA and CPU; and the Exploitation Phase, which uses the previously
computed FPGA chunksize and adaptively modified the CPU chunksize,
until the end of the iteration space.

Algorithm 1: FastFit scheduling strategy

// First step: Training Phase

Input: Frequency (F), second chunk size (𝛿), optimal
throughput threshold (𝜌)

1 𝑡𝐶𝑚
(1) = time_single_iteration_chunk_cpu();

2 𝑡𝐹𝑚 (1) = time_single_iteration_chunk_fpga(); // Eq. (2)
3 𝑡𝐹𝑚 (𝛿) = time_multiple_iterations_chunk_fpga(𝛿); // Eq. (3)
4 𝐶𝐹𝜌 = compute_fpga_chunk_throughput_threshold(𝜌);

// Eqs. (4), (5), and (9)
5 𝐶𝐶 = compute_cpu_chunk(𝐶𝐹𝜌); // Eqs. (10), (11),

and (12)

// Second step: Exploitation Phase

Input: 𝐶𝐹 , r, 𝜑
6 while 𝑟 > 0 do

// Concurrent Execution while pending work
7 𝐶𝐹 = 𝑚𝑖𝑛(𝐶𝐹𝜌, 𝑟); // Compute_next_fpga_chunk
8 𝐶𝐶 = 𝐶𝐹∕𝜑; // Compute_next_cpu_chunk:

Eq. (12)
9 end

In the Training Phase, Lines 1–5, the scheduler offloads two chunks
o the FPGA and one chunk to the CPU, recording the execution times.
n lines 1 and 2, the first chunk for the FPGA and the CPU is made
f 1 iteration each one. In Line 3, the second chunk, only for the
PGA, contains a representative number of parallel iterations 𝛿 (in our

study we find that around 1%–5% of the iteration space is enough to
characterize the FPGA throughput of our applications).

Let us suppose that we know the clock frequency of the FPGA
(denoted by 𝐹 and provided by the SDSoC compiler in a report file).
When we offload a chunk of parallel iterations of size 𝐶𝐹 to the FPGA,
then the time to complete them can be estimated as,

𝑡 (𝐶𝐹 ) = (𝐶𝐹 ⋅ 𝐼𝐿 +𝐷𝐿) ⋅ 1 (1)
5

𝐹𝑒 𝐹
here 𝐷𝐿 represents the number of cycles required to flush the
ipeline, that can be computed as the difference between 𝐶𝐿 and 𝐼𝐿,

𝐷𝐿 = 𝐶𝐿 − 𝐼𝐿. By applying Eq. (1) to the two FPGA chunks of 1 and
𝛿 iterations, respectively, we obtain a system of two equations and two
unknowns:

𝑡𝐹𝑚 (1) = 𝑡𝐹𝑒 (1) = (𝐼𝐿 +𝐷𝐿) ⋅ 1
𝐹

(2)

𝑡𝐹𝑚 (𝛿) = 𝑡𝐹𝑒 (𝛿) = (𝛿 ⋅ 𝐼𝐿 +𝐷𝐿) ⋅ 1
𝐹

(3)

As we know 𝐹 , 𝛿, 𝑡𝐹𝑚 (1) and 𝑡𝐹𝑚 (𝛿), we can figure out 𝐼𝐿 and 𝐷𝐿
s,

𝐼𝐿 =
𝑡𝐹𝑚 (𝛿) − 𝑡𝐹𝑚 (1)

𝛿 − 1
⋅ 𝐹 (4)

𝐷𝐿 = 𝑡𝐹𝑚 (1) ⋅ 𝐹 − 𝐼𝐿 (5)

From previous equations, we can model the FPGA estimated through-
put for a chunk 𝐶𝐹 of parallel iterations as,

𝐹𝑒 (𝐶𝐹 ) = 𝐹
𝐼𝐿 +𝐷𝐿∕𝐶𝐹

(6)

Peak performance is attained with full pipelines, for which there are
enough parallel iterations to effectively hide the completion latency.
Therefore, latency hiding is achieved by executing a large enough
chunk of independent iterations. Ideally, when the 𝐷𝐿 is completely
hidden (𝐷𝐿∕𝐶𝐹 → 0), then the issue latency determines the run time
and we achieve peak performance. From Eq. (6) we compute the peak
performance or optimal throughput, that we denote 𝜆𝐹𝑝𝑒𝑎𝑘 as,

𝜆𝐹𝑝𝑒𝑎𝑘 = 𝐹
𝐼𝐿

(7)

The goal of the Training Phase in our scheduler is to find a sufficiently
large block of parallel iterations that guarantees that the estimated
FPGA throughput is above a certain threshold of the peak performance,
𝜌⋅𝜆𝐹𝑝𝑒𝑎𝑘 . Typically we will seek 𝜌 values in the range [0.9, 0.99], meaning
that we aim for chunksizes that achieve throughputs that are within
90% and 99% of the peak performance. Larger FPGA chunksizes do
not pay off, increase the probability of load unbalance and hinder CPU
collaboration, as we corroborate in the Experimental Section. From
Eqs. (6) and (7), and for a user-defined 𝜌, we know,

𝐹 ≥ 𝜌 ⋅ 𝐹 (8)

𝐼𝐿 +𝐷𝐿∕𝐶𝐹𝜌 𝐼𝐿
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In other words, the chunk of parallel iterations that guarantee a
throughput above a 𝜌 threshold of the peak, 𝐶𝐹𝜌, can be computed as,

𝐹𝜌 ≥
𝐷𝐿
𝐼𝐿

⋅
𝜌

1 − 𝜌
(9)

This step was summarized in Line 4 of Algorithm 1 where, using
the execution times computed in Lines 2–3, Eqs. (4) and (5) can be
computed. These results allow to solve Eq. (9) to get the near-optimal
FPGA chunksize, 𝐶𝐹𝜌.

Likewise, we can discover the optimal chunk for each CPU core
from the FPGA chunk computed above, as can be seen in Line 5 of
Algorithm 1. As input we take the execution time of one iteration in
CPU 𝑡𝐶𝑚

(1) (measured in Line 1), and the number of elements, 𝑁𝐶 ,
processed in that iteration. We also take as input 𝑁𝐹 (the number of
elements processed on the FPGA for the chunk of 𝛿 iterations). With
hat, we compute the throughput (elements per unit of time) of the
PU and the FPGA for both chunks as can be seen in Eqs. (10) and
11).

𝜆𝐶 =
𝑁𝐶

𝑡𝐶𝑚
(1)

(10)

𝐹 =
𝑁𝐹

(𝐶𝐹𝜌 ⋅ 𝐼𝐿 +𝐷𝐿)∕𝐹
(11)

As we said, the relative speed of the FPGA over the CPU is 𝜑 = 𝜆𝐹
𝜆𝐶

.
It is advisable that the FPGA and CPU cores take the same time to
compute their corresponding chunks, which results in the optimal CPU
chunk size, 𝐶𝐶, which can be computed as:

𝐶𝐶 =
𝐶𝐹𝜌

𝜑
(12)

After the first assignment of chunks 𝐶𝐹𝜌 and 𝐶𝐶, the scheduler
ransitions to the Exploitation Phase in Lines 6–9 of Algorithm 1. During
his phase, each thread entering Stage 0 (see Fig. 3), will invoke either
q. (9) (FPGA token) or Eq. (12) (CPU token), in order to assign the
orresponding FPGA and CPU chunks, 𝐶𝐹 , 𝐶𝐶, respectively. After each
hunk execution, the throughputs, 𝜆𝐹 , 𝜆𝐶 , and the corresponding rela-
ive speed, 𝜑, are updated. When the number of remaining iterations,
, is not enough to feed the FPGA with 𝐶𝐹𝜌 iterations, then 𝐶𝐹 = 𝑟 (see
ine 7) and 𝐶𝐶 is also recomputed so that the FPGA cores and the CPU
ores finish computing their chunks at the same time.

As we validate in Section 5, FastFit is superior to our previous
PU+FPGA scheduling strategy, HAP [6]. The main difference is due
o the reduction of the partitioning/scheduling overhead that FastFit
chieves thanks to the new model. Firstly, FastFit only uses two FPGA
amples at the beginning of the iteration space, which significantly
educes the time of the Training Phase. On the other hand, HAP, requires
everal FPGA samples (for monotonically increasing 𝐶𝐹 s) until the
hroughput stabilizes. With these samples, HAP computes a logarithmic
itting that is needed to model the FPGA throughput as a function of
𝐹 . Additionally, during the Exploitation Phase, HAP has to recompute
ach new FPGA chunksize using again a logarithmic fitting function,
hile FastFit only re-uses the near-optimal chunk already computed in

ts Training Phase.

.3. Adapting the scheduler for several FPGA IPs

In previous works we have validated the three scheduling (partition-
ng) strategies that we have implemented in our HBB library to target
eterogeneous systems [4,6]:

• Static: it splits the iteration space in two chunks at once: one
for the CPU cores and the other for the accelerator. The size
of these two chunks is user-defined and provided via the of-
fload_ratio input argument. If offload_ratio=0 (0%)
the CPU process the whole iteration space, and so does the FPGA
if it is equal to 1 (100%). The CPU chunk is divided in equally
sized sub-chunks for each CPU core, i.e.
chunkCore=chunkCPU/NumCPUCores.
6

• Dynamic: it lazily splits the iteration space dynamically. Each time
the FPGA is idle, it takes a fixed-size chunk from the iteration
space. The size of this chunk is user-provided using the CF input
argument. The CPU cores also take chunks of the iteration space,
but now they are adaptively computed as CC=CF/𝜑. A guided
self-scheduling [15] is used when there are not enough remaining
iterations to enforce the previous equations.

• HAP: it also dynamically splits the iteration space, but the user
does not provide the CF size. On the contrary, this CF size
is now an adaptive variable that is automatically computed by
the scheduler following a logarithmic fitting strategy that has
been proved beneficial for irregular codes on CPU+GPU [4] or
CPU+FPGA [6] systems.

The previous evaluated implementations are able to deal with sev-
ral CPU cores and a single accelerator (GPU or FPGA). However, the
latform that we describe in the next section implements 4 FPGA IPs
or each of the benchmarks that we use in the experimental valida-
ion. Thanks to the IP interruption (IntOn) mechanism that we have
mplemented on the device, each IP can process a chunk of iterations
synchronously at its own pace, which requires that we feed each IP as
oon as it has completed the previous chunk.

This new requirement is easily accomplished in our scheduler en-
ine by considering the FPGA IPs as individual compute devices as
e do with the CPU cores. This is, there is a TBB working thread for
ach device (CPU core or FPGA IP) that process in Stage 1 (see Fig. 3)
he corresponding chunk (of size 𝐶𝐶 or 𝐶𝐹 , respectively). Thanks to
he IntOn feature, the FPGA working threads (a.k.a. host-threads) are
locked most of the time (they awake just to offload a new chunk to the
PGA IPs), that way avoiding the oversubscription of the CPU cores.
hanks to that, we now have what we call ‘‘Multi’’ versions of the
eterogeneous schedulers: MultiStatic, MultiDynamic, MultiHAP and
ultiFastFit, which we evaluate in Section 5.

. Experimental settings

.1. Platform

As previously mentioned, the platform features the Xilinx Zynq
ltrascale+ SoC [16], which has a quad core ARM Cortex-A53, as well
s an on-chip FPGA. Data transfer between the CPU and FPGA logic
s done via AXI interface and the chip supports access via 4 High-
erformance (HP) and 2 High-Performance-Cacheable (HPC) ports into
PU memory. The HPC memory buses are used in our implementations
o support cache coherent shared memory between the CPU cores and
PGA IPs. Programming the FPGA is done via the SDSoC environment
ith optimized hardware accelerator implementations for the bench-
arks that are used in the evaluation. A key component of the platform

s the custom interrupt generation mechanism (IntOn) consisting of (i)
ardware interrupt generators, which connect to the CPU IRQ lines and
ndicate when each hardware accelerator is finished; and (ii) software
ernel-level drivers, which catch the interrupts and wake the host
hread (the thread in charge of offloading work to the FPGA). The
rocedure to put the issuing threads to sleep and wake them up when
he accelerator finishes work is as follows:

1. Load the corresponding accelerator bitstream onto the FPGA,
which includes the (up to 4) interrupt controllers already con-
nected to the ap_done output line of each accelerator (up to
4). The accelerators are also connected via the PS IRQ lines to
the CPU.

2. Use insmod command to insert the interrupt driver kernel
module (.ko) files to the system kernel.

3. The host (CPU) part of the workload/program opens the inter-
rupt drivers, each interrupt driver listens for interrupt requests
coming from the dedicated IRQ lines to the CPU.
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Fig. 4. SDSoC multiprocessing platform.
4. When the host program issues some work onto an accelerator,
the issuing thread executes an ioctl call to the interrupt driver,
which puts the current thread to sleep, until an interrupt event
occurs on the monitored IRQ line.

5. When an interrupt occurs, i.e. the accelerator has finished com-
puting the allocated workload, the current issuing thread gets
woken up and returns to the scheduling thread, so we can keep
issuing the next piece of work to the accelerator until the entire
problem is solved.

Fig. 4 shows the hardware platform configurations, including the
data access ports and the interrupt controllers. A key feature is that
every FPGA IP has its own dedicated interrupt controller, interrupt
driver and host thread so that each FPGA IP can perform independently
in an asynchronous way. Moreover, the host thread does not waste
CPU cycles waiting for the accelerator. This is needed because the
standard mechanism deployed by the vendor tools (e.g. SDx, Vitis) with
IPs obtained via high-level synthesis is to implement a busy-waiting
thread that locks a CPU thread monitoring if the IP has finished. This
is incompatible with our heterogeneous computing approach since, in
essence, a core is wasted and becomes unavailable during this busy-
waiting time. The platform set-up is open-source under the BSD-3
license and all the relevant files can be found online [17].

In order to measure the energy consumption in this platform, we
rely on Ubuntu and the server part of the pmlib library [18]. This pmlib
server is a thread that samples the INA266 power monitors at 200 Hz so
that power readouts are available from the benchmark. The underlying
linux kernel driver is configured to sample the power monitors at the
maximum programmable rate (every 2 ms). The library monitors a total
of 12 power rails, 7 for the PL-side (Programmable Logic/FPGA) and 5
for the PS-side (Processing Subsystem/ARM Cortex-A53).

4.2. Benchmarks

This subsection describes our benchmark collection. This collection
comprises both integer and floating point applications from different
domains: linear algebra (Sparse Matrix Matrix Multiplication-SPMM,
Dense Matrix Matrix Multiplication-GEMM), cryptography (AES),
physics simulation (HOTSPOT-HS). More information on the implemen-
tation of the benchmarks can be obtained online [17].

HS HOTSPOT [19] is a well known application from the Rodinia
benchmark collection used to estimate processor tem-
perature based on an architectural floorplan and sim-
ulated power measurements. The thermal simulation
iteratively solves a series of differential equations. Each
output cell in the computational grid represents the
average temperature value of the corresponding area of
the chip. In these experiments an input of 1024 × 32768
points was considered. HOTSPOT main computation
consists in applying a 2D filter of size 3 × 3 to all
temperature values organized in a 2D array represent-
ing the chip surface. The Vivado HLS implementation
7

stores a 2D patch of temperatures values in internal
FPGA memory organized as a logical shift register that
receives a new temperature value as the filter moves
along the patch. Data is organized so that tempera-
ture values disregarded from the shift register are not
needed again and a temperature value is computed per
clock cycle.

GEMM General Matrix Multiplication is the dense matrix ma-
trix multiplication, well suited for parallel computing
since all the multiplications of the row and column
elements can be done in parallel. A naïve implementa-
tion in hardware will simply buffer matrix A and B in
the FPGA, and it will then compute the multiplication.
This is effective, but it is very resource-intensive and
can quickly overwhelm the BRAM and DSP resources
available in the considered device. An alternative is to
buffer only one row of A and a tile of B formed by
a number of complete columns BW and then work in
the multiplication in parallel. The amount of parallelism
is defined by the width of BW, with higher values
meaning that more DSP blocks work in parallel. The
main constrain is that memory allocated in the FPGA
needs to be sufficient to store the area BW. There is a
trade-off between the largest matrix supported, and the
amount of parallelism exploited.

AES This benchmark comes from the Hetero-Mark suite
[20]. It implements the Advanced Encryption Standard
(AES) algorithm. The program takes plain text as input
and encrypts it using a given encryption key. In our
experiments we took an input text of 250 MB and a key
of 256 bits. The AES considered in this work consists
of an initial addroundkey function and then a total of
14 rounds that apply functions shiftrow, subbytes and
mixcolumn to input data blocks of 16 bytes, finally
producing 16 bytes of cypher text. The proposed Vivado
HLS description consists of a full dataflow implemen-
tation with a fully unroll main loop and independent
functions than write and read from 16-byte buffers.
This approach results in very high performance since
data streams with minimum latency through dedicated
hardware for each unrolled function. We have used the
ARMv8 Cryptographic Extension for AES [21] trying to
get the best possible performance on the CPU side.

SPMM Sparse Matrix Matrix Multiplication is a sparse matrix-
dense vector multiplication from Bell and Garland work
[22], also representing an irregular application since
each row has a different number of non-zeros. The mix-
tank_new sparse matrix (dimension of 29957 × 29957)
from the University of Florida Sparse Matrix Collection
that exhibits a diagonal-like profile was selected as
input. The SPMM hardware is based on our previous
work of an SPMV (sparse matrix dense vector) kernel
presented in [23]. The SPMM accelerator has been de-
signed to support the popular CSR (compressed store

row) format to store sparse matrices, and it avoids
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Table 2
Details and characterization of the benchmarks.
Benchmark Iteration size Iteration space Granularity (s. per iter.) Throughput unit

HOTSPOT 1024 doubles 32 K iter. 1.75 x 10−5 elements/s
GEMM 1024 doubles 16 K iter. 3.05 x 10−3 elements/s
AES 16 bytes 16 000 K iter. 8.16 x 10−8 bytes/s
SPMM 66.5 doubles on average 29 957 iter. 6.8 x 10−5 non-zeros/s
5

w
t

having to buffer full chunks of the input matrices us-
ing a streaming dataflow architecture. It consists of an
input stage, streaming mapping layers, compute stage,
streaming mapping layers and output stage. The stream-
ing mapping layers reformat and distribute the data
received from its input buffers among its output buffers
that then feed the compute stage. To accelerate the mul-
tiplications on the CPU, the CPU cores call the highly
tuned ARM Performance Libraries sparse routines [24].

For HOTSPOT, GEMM and SPMM, we parallelize the traversal of
the rows of the matrices (each row is a parallel iteration). For AES,
each parallel iteration encrypts a 16-byte block. Table 2 contains some
relevant details of the benchmarks that will be discussed and analyzed
in the next section.

5. Experimental results

In this section, we evaluate different aspects of MultiFastFit: from
the accuracy of the model, FastFit, on which is based and its ability to
estimate the near optimal chunksize (and its impact in the through-
put), to the scalability and energy efficiency of the heterogeneous
co-executions delivered by our scheduler. We also include a perfor-
mance comparison of MultiFastFit vs. state-of-the-art heterogeneous
schedulers.

5.1. Analysis of MultiFastFit

In our framework, MultiFastFit incorporates two parameters that
can be tuned according to the particularities of the applications. One of
them is 𝛿, the ratio to set the number of iterations used for recording
the time of the second chunk in the Training Phase (Eq. (3)). If this
parameter is not provided by the user, by default our scheduler assigns
𝛿 = 0.1 (1% of the iteration space). The other parameter is 𝜌, the
threshold to compute the near optimal FPGA chunksize (Eq. (9)). We
conducted a sensitive study consisting of an exhaustive exploration of
𝜌 = {0.9, 0.95, 0.99} and 𝛿 = {0.1, 0.2, 0.5} analyzing their impact on the
erformance of our benchmarks. Higher values of 𝜌 report bigger FPGA
hunksizes (see Eq. (9)), which can improve slightly FPGA performance
uring the Exploitation Phase but at the cost of generating a smaller
umber of chunks to feed the FPGA IPs, as well as leaving less workload
o the CPU cores, which in some cases (GEMM and SPMM) produced
ome load imbalance at the end of the Exploitation Phase when all
PGA IPs and CPU cores were working. For instance, on average 15%
f throughput degradation was observed for 𝜌 = 0.99 in GEMM when
ompared to 𝜌 = 0.95. For HOTSPOT and AES, both 𝜌 = 0.95 and 𝜌 =
.99 reported similar performance. We also observed slightly smaller
erformance for 𝜌 = 0.9 in all benchmarks, although degradation was
elow 3% w.r.t the maximum measured throughput. On the other hand,
nce 𝜌 had been selected, 𝛿 values did not have noticeable impact on
erformance, although 𝛿 = 0.05 (5% of the iteration space) consistently
rovided stable times to robustly compute 𝐼𝐿 (Eq. (4)) and 𝐷𝐿 (Eq. (5))
or all our benchmarks. As a summary we found that 𝜌 = 0.95 and 𝛿 =
.05 provided a good trade-off, thus, these are the values that are used
y default in our suite of experiments. Also, FPGA frequency was set
p at the maximum supported by the IPs, 200 Mhz, because we wanted
8

o study the efficiency of our approach at maximum performance.
.1.1. Accuracy and optimal scalability of the model
Fig. 5 provides two set of results for each benchmark. At the bottom,

e illustrate the near optimal chunksize that our model reports at
he end of the Training Phase (yellow dashed line) vs. the average

chunksize measured (green dashed line) for different configurations.
The chunksize represents a block of parallel iterations. Note that each
parallel iteration of a chunk contains several items, which depends
on the benchmark (row size on the temperature matrix in HOTSPOT,
row size for GEMM, average row size for SPMM, or the size of an
encrypted block of 16 bytes in AES; please see Table 2 for more details).
A configuration given by 𝑦|𝑥, indicates 𝑦 CPU cores and 𝑥 FPGA IPs. In
particular, for each group of lines we study the accuracy of our model
and the optimal scalability of MultiFastFit for 5 different experiments.
On each experiment, the number of CPU cores is fixed (from 0 to 4),
but we incrementally incorporate additional FPGA IPs (from 1 to 4).
So, the leftmost group of lines (0|𝑥) represents the FPGA-only homoge-
neous executions on 𝑥 FPGA IPs, while the remaining groups represent
heterogeneous co-executions. In fact, the starting point for any of these
remaining 4 groups (𝑦|0) represents CPU-only homogeneous executions
on 𝑦 CPU cores.

At the top of Fig. 5 we depict the throughput that MultiFastFit es-
timates (yellow solid line) vs. the actual average throughput measured
(green solid lines) for the corresponding configurations. The throughput
is represented as items/s for HOSTSPOT, GEMM, SPMM, and bytes/s in
AES. The modeled throughput (yellow solid line) is computed from Eqs.
(10) (𝜆𝐶 ) and (11) (𝜆𝐹 ) once MultiFastFit has found the near optimal
chunksize (𝐶𝐹𝜌) in the Training Phase for each configuration. As these
equations just compute the throughput for one CPU or one FPGA IP
respectively, the throughput for any configuration 𝑦|𝑥 can be finally
modeled as: 𝑦 ⋅𝜆𝐶 +𝑥 ⋅𝜆𝐹 , and it represents the aggregated near-optimal
throughput for each configuration.

From Fig. 5 we see that MultiFastFit is able of improving perfor-
mance when the number of compute devices increases, and heteroge-
neous CPU+FPGA co-executions that exploit all the compute devices
are usually faster. But let us study each benchmark in detail. For
both GEMM and HOTSPOT, FastFit predicts a stable chunksize on any
configuration, as we see in Fig. 5. In these codes, the average measured
chunksize is above the predicted one. In any case, the difference
between the modeled and the average measured chunksize is lower
than 1% for HOTSPOT or 10% for GEMM. This difference is caused
by the size of the second chunk explored in the Training Phase (5%
of the iteration space, which is much bigger than the finally modeled
chunksize). In particular, in GEMM the maximum size of the matrix that
can be allocated to perform the experiments is 16Kx1024 doubles, due
to board coherent memory constraints. As the near-optimal chunksize
is around 430 iterations (rows in this case), increasing the number
of IPs reduces the number of chunks that can be assigned to each
one, so incorporating the training chunk (around 819 iterations) to the
average tends to result in higher average chunksizes. This effect is more
noticeable when the number of CPU cores increases, because then fewer
iterations and therefore fewer chunks will be left to the FPGA IPs.

In any case, chunksizes near or above the modeled values should
guarantee near optimal throughput. In fact, for both GEMM and
HOTSPOT the measured throughput and the estimated one are close
on any configuration. Also note that for each experiment once the
number of CPU cores is fixed, increasing the number of IPs does not
affect the size of the estimated near optimal chunk. These results hint

that for each experiment, executions should scale well when increasing
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Fig. 5. Modeled throughput vs. average measured throughput on different configurations (solid lines). Near optimal modeled chunksize vs. average measured chunksize (dashed
lines). For HOTSPOT, GEMM, SPMM the throughput is in items/s, and the chunksize in rows. For AES the throughput is in bytes/s and the chunksize in 16-byte blocks. The higher
the throughput the better. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
the number of IPs. In fact, the measured throughput scales similarly
to the modeled one, and it degrades slightly within the range [1%,
4%] w.r.t the estimated one for GEMM, and within [2%, 15%] for
HOTSPOT. The degradation is more apparent in HOTSPOT due to the
finer granularity of the FPGA chunks (below 100 μs) what exposes the
overhead of MultiFastFit particularly when the number of compute
resources increases. On the contrary, the granularity of a chunk in
GEMM is around 100 ms, enough to conceal the scheduler overhead.

AES is another very fine-grained application (chunks take less than
60 μs), but contrary to HOTSPOT, AES is memory bound. In particular,
the two HPC memory buses of the board saturate when the number
of IPs working concurrently is higher than 3, which causes FPGA
starvation. This is noticeable in Fig. 5 when comparing the estimated
throughput and the measured one on any experiment. Interestingly, the
size of the chunk predicted for the model and the average measured one
are close (differences are lower than 1%), indicating that the Training
Phase does not have an impact. However, for any experiment we notice
that the size of the modeled chunksize drops when the number of
compute IPs is precisely higher than 3. Lower chunk values mean sub-
optimal sizes. These lower values are a consequence of sub-optimal
throughput measured in the Training Phase, when all the devices are
competing for the saturated HPC bus bandwidth. In any case, this
saturation is the main responsible for the loss of scalability of the mea-
sured throughput when compared to the estimated one, which assumes
optimal linear scalability. The second culprit is the oversubscription in
the CPU cores since the 4 FPGA host-threads awake every 60 μs. to
feed the FPGA and collide with the computation of chunks on the CPU
cores. For instance, the degradation of the measured throughput drops
to 37% in the 0|4 FPGA-only configuration (4 IPs), and even to 63% in
the 4|4 CPU+FPGA heterogeneous configuration.

SPMM is also a memory bound application, but with a higher
granularity than AES or HOTSPOT (a chunk takes around 56 millisec.).
Additionally is an irregular benchmark. As a memory bound appli-
cation, we notice that increasing the number of compute IPs causes
the reduction of the size of the near optimal chunk reported by the
model. This has an effect in the measured throughput when compared
to the estimated one. For instance, for the homogeneous 0|4 FPGA-
only configuration, the measured throughput degrades 7% w.r.t. the
estimated one. Also the degradation is clearly visible in Fig. 5, where
the average measured throughput tends to flatten out and not scale up
when the number of IPs increases on the heterogeneous CPU+FPGA
experiments. There is also another issue related again to the board
9

memory constraints. The maximum size of the sparse matrix that
can be allocated to perform the experiments has 29957 rows. As the
near optimal chunksize reported is around 3000–4000 iterations (rows
in this case), increasing the number of compute devices reduces the
number of chunks that can be assigned to each IP. So when the final
step of the Exploitation Phase of our scheduler assigns a smaller (sub-
optimal) chunksize with the last remaining iterations, this has the effect
of reporting smaller average measured chunksizes, as can be seen in
Fig. 5 for the heterogeneous CPU+FPGA experiments (dashed green
lines). This problem is exacerbated when the number of CPU cores
increases, because then fewer iterations (and chunks) will be available
for the FPGA IPs, which coupled with the irregular nature of the few
available chunks will result in load unbalance between the devices in
that final step. This issue is visible in the figure for the 3|𝑦 or 4|𝑦
heterogeneous experiments, where the average measured throughput
is always below the estimated one. Summarizing, the reduction of
the near-optimal chunksize (sub-optimal size) due to the HPC bus
congestion and the load unbalance between devices caused by the few
irregular chunks explain the important degradation of throughput in
these experiments. For instance, for the 3|4 and 4|4 configurations
the measured throughput drops by 28% and 40%, respectively, when
compared to the corresponding predicted throughput.

5.1.2. Exploring ideal scalability
While the previous section discusses the sensitivity of our model

to find the near-optimal chunksize for each configuration, and the
impact that different sources of overhead have in the scalability of the
performance when compared to an optimal linear model, in this section
we discuss in more detail the heterogeneous CPU+FPGA experiment in
which our benchmarks achieve the maximum performance: 4|𝑥. Now,
we compare the average measured throughput against an aggregated
ideal throughput computed as the sum of the measured throughput in
homogeneous 𝑥 FPGA (FPGA-only, where 𝑥 goes from 1 to 4) and 4
CPU-only executions. Fig. 6 reports the measured and ideal throughputs
(from 5 to 8 compute units). Also, the FPGA-only (𝑥 FPGA IPs) and
CPU-only (𝑦 CPU) throughputs are shown for reference: 1 to 4 are CPU
cores in a blue line, or FPGA IPs in an orange line; green lines are for
4 CPU cores plus 1 to 4 FPGA IPs; the ideal throughput is represented
with a dark green dotted line (4 (CPU + 𝑥 FPGA ideal).

In Fig. 6 we see that for HOTSPOT and GEMM, the FPGA-only
experiments clearly scale from 1 to 4, while for AES and SPMM there
is a loss of scalability beyond 3 IPs due to the saturation of the HPC
memory buses, as commented in the previous section. This behavior is

projected on the 4 CPU + 𝑥 FPGA ideal results, factoring out this way
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he effect of the bus saturation in the performance of the heterogeneous
xperiment. For fine-grained benchmarks as HOTSPOT and AES, the
egradation of throughput is due mainly to the scheduler partitioning
verhead (Stage 0 of Fig. 3). This overhead can represent a 15% (20%)
f loss of efficiency in HOTSPOT (AES). In the case of SPMM the
egradation is due to a very small number of sub-optimal chunks that
roduce load unbalance between the CPU cores and the FPGA IPs (as
ommented in the previous section), which has a greater impact as the
umber of compute units increases. In this benchmark the throughput
s degraded by up to 24% w.r.t. the ideal.

In any case Fig. 6 also shows that the heterogeneous 4CPU+4FPGA
onfiguration is the one that achieves the highest performance for
OTSPOT, GEMM and SPMM, being the improvement 1,7x, 1,4x and
,4x respectively w.r.t. the FPGA-only 4 FPGA, while for AES there is
slight degradation of 0,94x.

.1.3. Exploring energy efficiency
Once we have studied the performance and quantified the loss of

fficiency due to various scheduler overheads in the 4|𝑥 heterogeneous
xperiment, our next step is to study its energy efficiency.

Fig. 7 depicts energy efficiency as items/J or bytes/J for the hetero-
eneous 4CPU+𝑥FPGA experiment. Also, the FPGA-only (𝑥 FPGA IPs)
nd CPU-only (𝑦 CPU cores) energy efficiencies are shown for reference:
to 4 are CPU cores in a blue line, or FPGA IPs in an orange line;

he green line is for 4 CPU cores plus 1 to 4 FPGA IPs. Similarly,
s stated in the previous section, the heterogeneous 4CPU+4FPGA
onfiguration is the one that achieves the highest energy efficiency for
OTSPOT, GEMM and SPMM, being the improvement 1,4x, 1,1x and
,3x respectively w.r.t. the 4 FPGA (FPGA-only), while for AES there is
degradation of 0,92x.

In general, configurations that achieve the highest throughput are
lso the ones that obtain the best energy efficiency. However, we
ave also explored the possibility of changing the FPGA operational
requency, from the highest, 200 MHz, to the lowest, 25 MHz, or
ven clock-gating the FPGA (0 Hz) when it is not used in CPU-only
xecutions. This study can be of interest for memory bound applications
10

d

or which a power capping might be required. AES benchmark is a
nteresting case of study for this scenario. Fig. 8 shows the impact in
he throughput (bytes/s) and mean power (watts) for AES and different
ompute units: 1 to 4 are CPU cores in bluish lines, or FPGA IPs in
range lines; green lines are for 4 CPU cores plus 1 to 4 FPGA IPs.
olid lines are for the FPGA running at 25 MHz and dashed lines for
he FPGA at 200 MHz.

From Fig. 8 we notice that when the FPGA is not being used is better
o clock-gate it, because we can reduce power consumption in more
han 1 W (more than 30% of saving). Other important observation is
hat changing the FPGA operational frequency to 25 MHz significantly
educes the power consumption of the board: by 1/2 on the 4 FPGA
onfiguration and by 1/1,7 on the 4CPU+4FPGA one. Interestingly,
lthough at 200 MHz AES does not scale beyond 3 IPs due to the
PC memory bus contention, at 25 MHz both the 𝑥 FPGA and the
eterogeneous 4CPU+𝑥FPGA experiments scale linearly, being the con-
iguration 4CPU+4FPGA the one that achieves the highest throughput
nd highest energy efficiency at that operational point. In other words,
t that frequency the benchmark is not bound by memory accesses.
ssuming a power capping of 4 Watts, we can conclude that for AES,

he heterogeneous configuration that exploits all the compute units is
he optimal solution, both from the performance and energy efficiency
oints of view.

.2. Comparison of MultiFastFit with state-of-the-art heterogeneous sched-
lers

Fig. 9 shows HOTSPOT, GEMM, AES and SPMM for MultiStatic,
ultiDynamic, MultiHAP and MultiFastFit schedulers. Y-axes show the

hroughput measured as items/s or bytes/s, thus the higher the better.
-axes represent the FPGA chunksize, 𝐶𝐹 , measured in number of
arallel iterations (rows in all benchmarks but in AES for which each
arallel iteration process a 16-byte-block). Bluish lines are MultiDy-
amic executions in which only the CPU is exploited (from one, 1C, to
our, 4C, CPU cores). As we can see, these CPU-only executions do not

epend on the FPGA chunksize. Greenish lines represent all possible
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Fig. 7. Energy efficiency for MultiFastFit on heterogeneous 4CPU+𝑥FPGA. As baseline, energy efficiency for homogeneous CPU-only and FPGA-only configurations. For HOTSPOT,
GEMM, SPMM the efficiency is in items/J, while for AES is in bytes/J. The higher the better. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
Fig. 8. Throughput and power consumption for AES when setting the FPGA operation frequency at 25 MHz vs. 200 MHz on different configurations. On LHS: throughput, the
higher the better, on the RHS: power, the lower the better. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
configurations in which the 4 FPGA IPs are exploited. They include:
the FPGA-only execution with 4 FPGA IPs (4F), and the CPU+FPGA
heterogeneous configurations with 4 FPGA IPs and one to four CPU
cores (1C+4F to 4C+4F). These results for the MultiDynamic scheduler
shed light on the relative performance of the CPU and the FPGA and
how chunksizes affect the throughput. In heterogeneous executions
very large chunks cause load unbalance among the devices, while sizes
too small produce sub-optimal performance on the accelerator. From
the figure we also discover the FPGA chunksizes at which maximum
throughput is achieved. Note however, that MultiDynamic requires an
offline chunksize exploration in order to find the optimal chunk. In this
study we explore 2𝑖 sizes, but a finer step exploration may be necessary
for other applications.

The yellow star, , indicates the throughput that can be achieved
with the MultiStatic scheduler. Remember that, as we saw in Fig. 2, for
11
MultiStatic, the user has to manually find the best ratio of the iteration
space that is offloaded to the FPGA (while the rest is computed on the
CPU). MultiStatic performs a single offload operation: the FPGA frac-
tion of the iteration space is evenly split between the 4 FPGA IPs, much
as the CPU fraction is divided between the CPU cores. This minimizes
the scheduler overhead (Stage 0 of Fig. 3 is invoked only once) but
at the price of the offline exploration for the best partition ratio. The
X-axes position of the yellow star indicates the FPGA chunksize that
corresponds to the best ratio (found by traversing all the ratios from
0% to 100% in 10% steps). That way, this MultiStatic scheduler can be
considered both an oracle-like and a brute-force approach.

The orange star, , and red star, , indicate the throughput
achieved by MultiHAP and MultiFastFit, respectively. Now, the X-
coordinate of those stars is the average size of all the FPGA chunks,
𝐶𝐹 , that have been offloaded to the four IPs. This includes the chunks
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i

i

Fig. 9. Throughput comparison for MultiFastFit vs. state-of-the-art schedulers. The higher the better. (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of this article.)
n the Exploration and Exploitation Phases, as well as the last chunk that,
at the end of the iteration space, can be smaller (sub-optimal) than the
one obtained by the models (HAP or FastFit).

Summarizing, the heterogeneous CPU+FPGA executions have the
potential of being faster than the CPU-only and FPGA-only executions.
The exception is the AES benchmark whose dataflow architecture maps
optimally onto the FPGA. In that case, adding CPU cores to try to
help in the computation slightly reduces the throughput. As explained
previously, this heavily memory bound application is working with a
congested memory bus when the number of FPGA IPs is higher than
3 and adding CPU cores does not help to mitigate this problem. More-
over, given the very fine granularity of the benchmark any scheduler
partitioning stage introduces not negligible overhead.

Although the manually-tuned MultiDynamic and MultiStatic can
result in better throughputs, as in HOTSPOT and AES, the auto-tuned
MultiHAP and MultiFastFit are not far from the best throughput or
can even outperform MultiStatic. MultiFastFit is always better than
MultiHAP: 40% in HOTSPOT, 108% in GEMM, 4% in AES and 102% in
SPMM. For GEMM and SPMM the main source of overhead of HAP is
its Training Phase that needs several samples to perform the fitting and
find the near-optimal chunk. For HOTSPOT and AES the main source of
overhead is now the cost of the logarithmic fitting computation needed
each time that a new FPGA chunk is assigned. Our new FPGA-oriented
proposal, MultiFastFit, is never more than 9% slower than the best
manually-tuned alternative (the worse case is HOTSPOT), it can be
up to 5% faster than MultiStatic (the best case is SPMM), and more
importantly it does not require an offline search of the ideal CPU-FPGA
partition or FPGA chunk granularity.

6. Conclusions

In this paper we propose a novel lightweight scheduling strategy,
12

FastFit, targeted at FPGA accelerators, and a new scheduler based on
it, named MultiFastFit, which asynchronously tackles heterogeneous
systems comprised of a variety of CPU cores and FPGA IPs. Our strat-
egy significantly reduces the overhead to automatically compute the
near-optimal chunksize when compared to a previous state-of-the-art
auto-tuned approach, which makes our approach more suitable for fine-
grained applications. Additionally, our scheduler MultiFastFit has been
designed to enable the efficient co-execution of work among compute
devices in such a way that all the devices are busy while minimizing
the load unbalance.

Our approaches have been evaluated using four benchmarks care-
fully tuned for the low-power UltraScale+ CPU+FPGA platform, which
is our system of choice. Our experiments demonstrate that the Fast-
Fit strategy always finds the near-optimal chunksize for any device
configuration at a reasonable cost, even for fine-grained and irregular
applications, and that scalability is ensured provided that the HPC
memory bus is not saturated or there are enough parallel iterations
to supply near-optimal chunks to all the devices. We have found that
heterogeneous CPU+FPGA co-executions that exploit all the compute
devices are up to 1,7x faster and 1,4x more energy efficient than the
FPGA-only executions.

We have also compared MultiFastFit with other state-of-the-art
scheduling strategies. Comparing the two auto-tuned schedulers stud-
ied, we have found that MultiFastFit outperforms MultiHAP up to 2x.
Also, the results show us that MultiFastFit achieves similar results to
manually-tuned schedulers such as MultiStatic or MultiDynamic: in
the worst case it is only 9% slower than the best manually-tuned
alternative.

This work focuses on scheduling the workload of a single benchmark
such that it can run in parallel with CPU and FPGA resources on
different data inputs. We do not consider optimization techniques for
FPGA runtime reconfiguration that fall outside the scope of this work.
In the general case that different and independent benchmarks must
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be run (e.g. GEMM and Hotspot) in parallel then the OS can perform
this function using CPUs and FPGA IPs as long as the independent
accelerators for each kernel are implemented in the FPGA.

Future work involves applying MultiFastFit to other irregular ap-
plications such as Graph processing. Complex graphs contain up to
trillions of edges that combined with their potentially irregular nature
pose significant challenges for a heterogeneous runtime scheduler. For
example, we would like to explore periodically launching the training
phase to capture changes in the data input that produce computational
irregularities. How often this should be done or when to trigger the
activation of the training phase is still an open question. We also plan
to apply the current GEMM and SPMM heterogeneous benchmarks to
sparse neural network problems. In this scenario the amount of sparsity
in the network layers varies and the distribution of work between the
dense and sparse CPU-FPGA kernels can be adjusted by the scheduler
at runtime
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