
International Journal on Interactive Design and Manufacturing (IJIDeM)
https://doi.org/10.1007/s12008-022-00872-7

TECHNICAL PAPER

A theoretical reflection on smart shapemodeling

Francisco J. Serón1 · Ángel Zaldívar1 · Alfonso Blesa2 · Gabriela Celani3 · Juan Magallón1

Received: 3 September 2020 / Accepted: 11 March 2022
© The Author(s) 2022

Abstract
This paper presents, as far as the authors are aware, a complete and extended new taxonomy of shape specification modeling
techniques and a characterization of shape design systems, all based on the relationship of users’ knowledge to the modeling
system they use to generate shapes. In-depth knowledge of this relationship is not usually revealed in the regular university
training courses such as bachelor’s, master’s and continuing education. For this reason, we believe that it is necessary to
modify the learning process, offering a more global vision of all the currently existing techniques and extending training
in those related to algorithmic modeling techniques. We consider the latter to be the most powerful current techniques for
modeling complex shapes that cannot be modeled with the usual techniques known to date. Therefore, the most complete
training should include everything from the usual geometry to textual programming. This would take us a step further along
the way to more powerful design environments. The proposed taxonomy could serve as a guideline to help improve the
learning process of students and designers in a complex environment with increasingly powerful requirements and tools. The
term “smart” is widely used nowadays, e.g. smart phones, smart cars, smart homes, smart cities... and similar terms such
as “smart shape modeling”. Nowadays, the term smart is applied from a marketing point of view, whenever an innovation
is used to solve a complex problem. This is the case for what is currently called smart shape modeling. However, in the
future; this concept should mean a much better design environment than today. The smart future requires better trained and
skilled engineers, architects, designers or technical students. This means that they must be prepared to be able to contribute
to the creation of new knowledge, to the use of innovations to solve complex problems of form, and to the extraction of the
relevant pieces of intelligence from the growing volume of knowledge and technologies accessible today. Our taxonomy is
presented from the point of view of methods that are possibly furthest away from what is considered today as “intelligent
shape modeling” to the limit of what is achievable today and which the authors call “Generic Shape Algorithm”. Finally, we
discuss the characteristics that a shape modeling system must have to be truly “intelligent”: it must be “proactive” in applying
innovative ideas to achieve a solution to a complex problem.

Keywords Shape modelling · Smart systems · Taxonomy · Procedural modeling · Geometrical modeling · Proactive
geometrical modeling · Proactive procedural modeling

B Alfonso Blesa
ablesa@unizar.es

Francisco J. Serón
seron@unizar.es
http://webdiis.unizar.es/~seron/

Ángel Zaldívar
zaldivar@unizar.es

Gabriela Celani
celani@unicamp.edu

Juan Magallón
magallon@unizar.es

1 Introduction

Smart Geometry is based on using computational and para-
metric software tools and it is focused on using of the
computer as an “intelligent design” aid in architecture,

1 Department of Informatics, Universidad de Zaragoza Escuela
de Ingeniería y Arquitectura (EINA), Campus Río Ebro,
Zaragoza, Spain

2 Department of Electronics, Universidad de Zaragoza Escuela
Universitaria Politécnica, Teruel, Spain

3 Laboratory of Automation and Prototyping for Architecture
and Construction, School of Civil Engineering, Architecture
and Urban Design, University of Campinas, Campinas, Brazil

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12008-022-00872-7&domain=pdf
http://orcid.org/0000-0003-1683-4694
http://orcid.org/0000-0001-9688-2260
http://orcid.org/0000-0001-5524-4748
http://orcid.org/0000-0002-3355-0055

International Journal on Interactive Design and Manufacturing (IJIDeM)

design, engineering and construction. An example of gath-
ering of the global community of innovators and pioneers
in these fields are the sg20XX conferences [1] that “pro-
motes the emergence of this new paradigm in which digital
designers and craftsmen are able to intelligently exploit the
combination of digital and physical media to take projects
from design right through to production”. Smart shape mod-
elling is a part of this global knowledge.

In the near future, or perhaps even now, theses smart
environments require better educated and trained engineers,
architects, designers, or technical students. They must be
aware of this challenge and, therefore, they must be pre-
pared to extract the relevant pieces of intelligence from the
ever-growing volume of knowledge and technologies acces-
sible today. In doing so, they will be able to use innovations
to solve/design complex shapes and also contribute to the
creation of new knowledge. As in other fields where the evo-
lution of knowledge is faster and faster, we must take into
account how our students learn it; that is, the strategies that
they can use for ordering and prioritizing. It is also important
to consider how to efficiently generate and incorporate new
methods or tools that allow solving the same problems, or
even addressing new ones. In this context, we must highlight
the following aspects:

1. As theoretical models and tools increase in complexity
and power, shape design can be approached from differ-
ent options, so the student or designer who must know
how to classify and categorize the knowledge of shape
modeling systems to choose the best one for each project;
i.e., userswith different awareness or ability levels should
use the right tool or methodology, adapted to his/her
skills.
Thus, it is necessary to offer the student a complete shape
modeling taxonomy from the outset that allows them to
know from the point of view of a global context how to
select the correct models and tools to work with shapes.
This global context knowing is even one of the most
important objective to achieve during the learning pro-
cess when the engineering or design student faces to, for
the first time, a design project with a set complex set of
solutions, usually with limited time to deal with them in
detail: without right references for the student’s level it
can generate frustration or lack of motivation, affecting
his/her performance.
In addition, a good taxonomy must allow the inclusion
of new options that they can appear in time to advance
in the design of smart shapes. For all this, we propose a
taxonomy, taking in account the topic “smart” to classify
the different modeling categories from the least to the
smartest. Furthermore, we introduce as a proposal a new
category associated to smart shape modelling (algorith-
mic generic shape): The genuine coding task to build a

textual algorithm. This proposal is compared with all rest
on the taxonomic tree.

2. Shape designers’ learning process: Depending on their
training, a user (shape designer, engineer, architect, stu-
dent, etc.) can be characterized in terms of the final
knowledge and his/her relationship with the systemmod-
eling used to generate a shape. In order to make the
student clear what level he has reached: This relationship
can be described as follows: (a) his/her awareness about
the underlying mathematical and algorithm descriptions
and their properties and, (b) the user’s ability to construct
new mathematical descriptions or/and new mental algo-
rithms. We must distinguish between knowing a shape
modeling tool and how it is used, and understanding
why that tool is so and why it reveals certain properties.
The user reaches the most complete knowledge when he
acquires the ability to expand it.

1.1 Shape specification

A geometric shape is the manner in which a curve, surface
or volume occupies space. The specification (or definition or
method to describe an object) and representation of a shape
(a data structure in which the object can be instantiated and
manipulated by the computer) are significantly different ele-
ments in geometric design. Although a shape’s specification
is often treated as a representation, it is, however, useful to
differentiate one from the other.

In the context of computer-aided design, computer graph-
ics, geometry processing and shape description, digitally
creating a shape is called modeling. A general 3D shape
modeling system should be capable of specifying and rep-
resenting any physically constructible or imaginable mean-
ingful shape, so that it can be analyzed and queried easily.
This is not straightforward or possible without some level
of approximation/representation change with current tech-
nology, since there is no single way to express the possible
shape of an object. Even if we restrict ourselves toman-made
shapes, specifying and representing problems are still very
difficult. Usual modeling systems “solve” this problem by
restricting the shapes they deal with to a narrow domain.

If we adopt a more rigorous view of modeling, we can
differentiate between three separate levels:

– Physical objects: using models, our aim is to discuss
some real or imagined, yet plausible, things in our
three-dimensional real world. Unfortunately, we cannot
perceive a real-world object in its full complexity, and if
it were possible, we could not represent all aspects of it
with a computer.

– Mathematical or algorithmic objects: to have any hope of
modeling objects with a computer, we must adopt a suit-
able idealization of the real three–dimensional physical

123

International Journal on Interactive Design and Manufacturing (IJIDeM)

objects (shape specification). As we shall see later, such
a characterization can be achieved using basic concepts
from mathematical and algorithmic theories.

– Representations: the final step of the modeling activity is
to assign the representation suitable for computer mod-
eling. These representation scheme properties are:

– Expressive power and precision: which objects can
be modeled? And how accurately can complicated
objects be modeled?

– Validity: Are all admissible representations valid?
– Unambiguity and uniqueness: Do every valid repre-
sentations model exactly one shape? Do some shapes
have more than one valid representation?

– Conciseness: How large (in terms of computer stor-
age) do representations of solids become? (This
property often contradicts the precision of the rep-
resentation).

– Time: can the representation be manipulated in a
timely manner?

– Closure of operations: How general are the manipu-
lations that can be supported?

In any case, it is helpful to divide a shape computer-based
modeling system into four parts:

– A shape specification, which defines what a shape is,
– a computer representation to instantiate the shape,
– a user interface that allows shapes to be specified,
– a set of tools for manipulating shape representation, to
determine what can be done with shapes.

Although we believe that all four are important, spec-
ification is the part of the modeling system that mostly
determines the chance of achieving the intended shape.
Therefore, without neglecting the others, in this article we
will focus primarily on specification.

The structure of the paper is as follows: in this Section the
authors explain the reasons why designers need to under-
stand the concepts that underlie the taxonomy chosen to
explore the world of shape design and know how to choose
the most appropriate one. In addition, the parts that make up
a digital shape modeling system are described and guide the
paper to the shape specification part. Section 2 presents the
taxonomy for shape specification and a comprehensive and
detailed description of approaches to shape specification. It
also shows the scope offered by each category in relation
to the adjective smart. Section 3 presents a suggestion of a
possible work methodology to train designers. In Section 4
the authors have selected two of their own examples, which
are analyzed from the point of view of the knowledge the
shape designer must have. Finally, in Sect. 5, we present the

conclusions and future work, and we discuss what features a
shape modeling system should have to be called “smart”.

2 Shapemodeling and its associated
specification taxonomy

Taxonomy, in awider,more general sense,may refer to a clas-
sification of things or concepts, and the principles underlying
this classification. In this paper, the concepts are approaches
to generating a shape, and the principles are the specification
modeling techniques. In our taxonomy, the broad specifica-
tion classes of a geometric shape are: when the modeling
system is not based on an algorithmic description, principle
1, it will be termed “geometric modeling” in this paper, and
when the modeling system is based on an algorithm descrip-
tion, principle 2, it will be termed “procedural modeling”.
Figure 1 shows the taxonomy proposed and it is used as
guide for this section. The first level is related with main tax-
onomy branchs: geometrical and procedural modeling global
classification.

Geometric modeling (GM) is considered a branch of
applied mathematics and computational geometry that stud-
ies methods for the mathematical description of shapes as
surfaces or solids. These descriptions may be based on math-
ematical functions used to compute the coordinates of points
on or within the shape, or they may be based on discrete
samples of points on or within the shape.

Procedural modeling (PM) (The object is defined implic-
itly by an algorithm, i.e., the shapes emerge from the
algorithmic description of a construction process that com-
putes points on or within it). In mathematical and computer
sciences, an algorithm is a self-contained step-by-step set of
operations to be performed to solve a particular problem. In
the context of this paper, we believe there is a clear distinc-
tion between the ability to construct an algorithm capable of
generating a shape, and the ability to implement an algorithm
on a computer. The first ability describes an algorithm, ignor-
ing the implementation details; the second requires a more
machine formal description. In this paper we refer to the first
capacity.

Both GM and PM are produced using a computer and
for computer-based applications, but the user’s cognitive
approach to each differs greatly. Usually, end users of a
modeling system (architects or engineers) have a rich inter-
face that they interact with by selecting 2D/3D actions that
correspond to specific internal computer codes involved in
different achievable options. Normal users do not have a
background in algorithm techniques and do not have in-
depth knowledge of the geometric/mathematical foundations
involved in the achievable options. Therefore, user interface
(interoperability) remains the main issue between common
architects or engineers and commercial modeling systems.

123

International Journal on Interactive Design and Manufacturing (IJIDeM)

Shape
modeling

Procedural
modeling (PM)

Algorithm generic shape

Fractals

Self-affinity
Random

Deterministic

Self-similar
Random

Deterministic

Generative
modeling

Grammar

Subdivision surfaces

Triangular meshes

Quadrilateral meshes

Box splineIterated function systems

Implicit functions
Partial parmetric/implicit

Parametric functions

Traditional surfaces
(deformations)

More general non-lineal
deformations

Tapering

Twistinig

Stretching/
Compressing

Bulging

Shearing

Bending

Traditional surfaces
(simple motions)

Other spatial motions

Skinning

Sweeping

Pipe

Helical

Ruled

Rotational

Translational

Basic composition of
transformation

Other more general
composition

Spiral

Helical

Glide

Geometrical
modeling (GM)

Discrete
samples

Surfaces

Reconstruction

Surface evolution-Level se

Parametric patch

Implicit surface

Voronoy-Delaunay

Triangle mesh

I.B.M.

shape from focus and defocus

shape from photometric

shape from shading

shape from silhouettes

Scanning

Active stereo

Passive stereo

Triangulation

Mathematical
functions

Solids

Boundary (B-Rep)

Decomposition models

Volumetric decomposition
Finite Element mesh

Octree or bintree o Kdtree
Voxel occupancy

Parametrized primitives
instancing

Constructive Solid Geometry (CSG)

Surfaces

Symmetrical
Implicit equations

Parametric equations

Field functions

Blobbies

Metalabs

Other software
objects

Patchwork
mesh

Other polynomial
bases

Free-form
mesh

Bezier

B-spline

Nurbs
Polygon
mesh

Higher-order algebraic
surfaces

Algebraic surfaces

No Symmetrical Explicit equations

smart shape modeling

less smart

Fig. 1 Shape modeling taxonomy

123

International Journal on Interactive Design and Manufacturing (IJIDeM)

In this kind of approximation, users often ignore the essen-
tial differences between geometry and computer science in
defining/describing a shape.

Slowly but increasingly, the ability to design an algo-
rithm to describe a shape is favored by the emergence of
systems that offer both textual and visual scripting capa-
bilities. A script language is a programming language that
supports scripts, programs written for a special run-time
environment that can interpret (rather than compile) and
automate the execution of tasks that could alternatively be
executed one-by-one by a human operator. The spectrum
of scripting languages ranges from very small and highly
domain-specific languages to general-purpose programming
languages. In these kinds of approximation users need to
have a background in algorithm techniques and understand
the geometric/mathematical foundations involved in achiev-
able shapes [2].

2.1 Geometric modeling (GM) shape specification
based onmathematical functions

This section surveys several techniques for shape specifi-
cation based on geometric modeling using mathematical
functions. Application areas of these techniques are central
to computer-aided-design and manufacturing (CAD/CAM)
and widely used in many applied technical fields, including
shipbuilding, aircraft and automotive industries, as well as
architectural and industrial design and computer graphics.

Identifying relationships between the coordinates (x, y and
z) of a point on or within a geometric object is helpful to
further develop the taxonomy. This relationship may differ
depending on how the coordinates are treated [3]:

– Non-symmetrical approach

– Explicit equations: z = g(x, y)

– Symmetrical approach

– Parametric equations, where the coordinates are
treated as functional values: x = fx (u, v), y =
fy(u, v), z = fz(u, v)

– Implicit equations, where the coordinates are treated
as functional arguments: F(x, y, z) = 0, F(x, y, z) =
c (isosurfaces)

The functions g, fx,y,z or F may contain any mathemat-
ical expressions. An expression that is only polynomial (the
expressionmay be rational) is called algebraic; an expression
that is non-polynomial (trigonometric, exponential, logarith-
mic and hyperbolic) is called transcendental.

Traditionally, computer graphics has favored the poly-
nomial parametric over the implicit equation because the
former is simpler to draw, render, tessellate, subdivide, bound

and perform operations requiring detailed knowledge of the
surface, and it is more convenient for certain geometric dif-
ferential operations.

Implicit surface functions naturally describe whether a
point is inside, outside, or on a surface, represent blends of
volumes and provide an alternative to the often difficult pro-
cess of filleting and rounding parametric surfaces.

Since parametric and implicit equations have complemen-
tary advantages with respect to certain geometric operations,
converting from one to the other can be useful. Conver-
sion from the parametric to the implicit form is known as
implicitization and it is not always tractable and is often com-
putationally demanding; conversion from the implicit to the
parametric form is known as parameterization and it is not
always possible. The implicitization of parametric curves and
surfaces, parameterization of implicits, and techniques used
to circumvent conversions between implicit and parametric
representations are discussed in [4].

2.1.1 Geometric modeling (GM) surface shape specification
based on algebraic functions

As mentioned, algebraic surfaces [5], may be defined para-
metrically or implicitly. There are some principal means to
define algebraic objects that are more complex than low-
order surfaces such as planes, quadric surfaces, and tori:

– Algebraic surfaces.
– Higher-order algebraic surfaces. Designing surfaces with
this type of shape modeling is very difficult, except in
some situations (i.e., super quadric).

– Patchwork mesh is a technique that allows users to define
a shape obtained by joining fragments of other simpler
shapes. Patch specification can be implicit or parametric
[3]. These fragments are usually named patches con-
sisting of, piecewise, low-order parametric or implicit
algebraic surfaces. With this kind of approximation,
the patched may need to be carefully joined to their
neighbors to maintain continuity along patch boundaries.
Patches are desirable because they provide a compact and
highly continuous surface specification and an easy rep-
resentation based on the specification itself or surface
tessellation. Important issues in the free-form polyno-
mial patch modeling of shapes depending of the type of
piecewise rational/non–rational bases used [6].

– Polygon mesh, based on triangle faces or quadrilat-
eral linear faces; they are the simplest algebraic prim-
itives. Used as specifications of polygonal shapes or
as a representation of tessellating other types of sur-
faces.

123

International Journal on Interactive Design and Manufacturing (IJIDeM)

– Free-formmesh based on interpolation or approxima-
tion splines (uniform or non-uniform) bases (tensor
product schemes): Bezier, B-spline and Nurbs.

– Other Polynomial bases.

– Previous specifications make it difficult or inefficient to
represent some computer-based 3Dgeometricmodels for
smooth and deformable objects. A possible and popular
approach has been the use of implicit algebraic surfaces
called field functions in 3D that can generate isosur-
faces through thefield. Three commonly used techniques,
each differentiated by their field functions, are [7]: Blobs,
Metaballs and Soft objects.

2.1.2 Geometric modeling (GM) volume shape specification
based onmathematical functions

The division of space into inside and outside is the basis for
the form of geometric modeling called solid modeling. A
solid model is defined as a surface and it’s interior. The theo-
retical underpinnings of solidmodeling are found in point-set
topology: a solid is defined as a bounded closed regular set
of points. Representations achieving this may be divided into
three large classes as follows [8]:

– Constructive solid geometry (CSG) representing a point
set as a combination of primitive point sets. Each of the
primitives is represented as an instance of a primitive
solid type. Constructive models include more general
construction operations thanmere gluing (union), namely
rigid motions and set Boolean operations (union, inter-
section, and difference).

– Decomposition models representing a point set as a
collection of simple objects from a fixed collection of
primitive objects, combined with a single gluing opera-
tion.

– Parameterized primitive instancing.
– Voxel occupancy (also called spatial enumeration).
– Volumetric decomposition:

• Octree or bintree or Kd-tree
• Finite element mesh

– Boundary (B–Rep) representing a point set in relation to
the boundary. The boundary of a three-dimensional solid
point set is a two dimensional surface usually represented
as patches.

2.1.3 Geometric modeling (GM) surface shape specification
based on discrete samples

When designing products with free form shapes, the shape
information can be acquired as a set of data points and
then the surface patches have to be designed from the same.

This modeling is named Point-based shapes. Point primitives
have experienced a major renaissance in recent years. Mod-
ern three-dimensional digital photography and 3D scanning
systems acquire both geometry and appearance of complex
shapes, generating point clouds of a 3D shape of real-world
objects. An overview of acquisition techniques [9]:

– Scanning system: triangulation-based 3D scanners, Pas-
sive stereo and Active stereo.

– Image-based modeling (IBM). This is a set of methods
relying on a set of 2D images of a shape that are used
[10].

– Shape from silhouettes.
– Shape from shading and photometric stereo.
– Shape from focus and defocus.

– Converting a point-cloud shape representation of an
object into a more explicit representation is known as
surface reconstruction. Usual representations are [9]:

– Triangle mesh.
– Voronoi and Delaunay triangulations.
– Implicit surface methods.
– Parametric patches.
– Surface evolution or level set method. This is a type
of geometric modeling that adds dynamics to implicit
surfaces. They are characterized by several useful
properties allowing shape specification that involves
topology or time-varying shape objects or problems
in which sharp corners and cusps are present.

2.2 Procedural modeling (PM) shape specification
based on algorithms

This section surveys several shape specification techniques
based on procedural modeling using algorithms. Applica-
tion areas of this technique are central to computer graphics,
industrial design, architectural shapes, city generation, ter-
rain modeling, and so on.

Algorithms are often accompanied by a list of parameters.
The term parameter (sometimes called formal parameter) is
an intrinsic property of the algorithm included in its defini-
tion.

The procedural modeling design focuses on creating a
shape based on a selected algorithmic procedure and the set of
parameters that characterize it.Moreover, the specific derived
shape depends on parameters that are explicit in the informa-
tion structure and must be evaluated to obtain a specific solid
shape. We must be aware that a procedural model comprises
all the specific shapes derivable from the representation. Fur-
thermore, the supported design paradigm allows the shape
designer to define entire families of shapes, not just specific
instances. This added flexibility can be exploited in many

123

International Journal on Interactive Design and Manufacturing (IJIDeM)

ways, and forms an important advance in shapemodeling and
its applications. Such possibilities are certainly not suitable
for all users; they require a fairly sophisticated mathematical
background, the ability to design and modify algorithms and
substantial training investment.

The principal ideas of procedural modeling (PM) are:

– The information necessary to generate a given shape is
recoverable from the shape’s algorithmic definition. The
procedural modeling captures the evolution of the shape
from the building blocks, rather than merely specifying
the end result of a creative process. The standard geo-
metric model approach has no memory, since the shape’s
generation is ignored rather than stored or regenerated
for later recovery.

– PM offers the ability to encapsulate a design and opens
up new approaches and possibilities.

– PM replaces complicated formulas with simple proce-
dures. Thus, it is more in tune with modern computer
science than classical mathematics.

– PM can generate a larger class of shapes.
– The complexity of a procedure, when measured in terms
of the length of the shortest computer program that can
generate it, is very small.

When a designer writes a geometric algorithm to solve a
shape design andmanufacture problem, the algorithm is both
a description of the problem and the solution. Geometric
algorithmic thinking means:

– Taking on an interpretative role to understand the result
of the algorithm.

– Understanding how to modify the algorithm to explore
new options.

– Speculating on further design potential.

An algorithmic design enables the designer to define rela-
tionships between elements or groups of elements, and to
assign values of complex expressions to organize and con-
trol those definitions.

As with any design tool, there are positive and negative
aspects. The primary advantage is that, once the relation-
ship has been established, the systemmay run autonomously
within its parameters and explore novel solutions that may
not be apparent to the designer. Themain disadvantage of the
parametric-design process is that it is very time-consuming,
particularly for inexperienced designers. In the algorithmic
approach, designers spend time and effort “designing the
design”. Understanding this way of thinking requires con-
sidering algorithm-related knowledge, in its broadest sense,
in the design process [11].

Consequently, the algorithm is about rationalization, rea-
soning, logic, deduction, induction, extrapolation, explo-

ration, and estimation of processes. In its manifold impli-
cations, it involves problem solving, mental structures,
cognition, simulation, and rule-based intelligence, to name a
few. It is well known that to find the algorithm that solves a
problem, you first have to know how to solve the problem.
Therefore, to paraphrase what tradition says was engraved
on the door of Plato’s Academy, the school he founded in
Athens, to produce an algorithmic design, “let no one igno-
rant of geometry enter”. We believe this sentence highlights
the need for geometric knowledge to work in this field of
design.

The most common types of geometry, and, therefore,
necessary for algorithmic design, are: Euclidean geometry,
computational geometry, differential geometry, differential
topology, algebraic geometry, and fractal geometry. How-
ever, designers without much formal training in geometry
can rely on the computer to help with geometry teaching,
since it allows geometry to be manipulated dynamically and
interactively. The proposed taxonomy can be seen in Fig. 1.

2.2.1 Generative modeling

In this article, the representation of a shape obtained by a gen-
erative model is considered a shape described by continuous
arbitrary transformation of an initial shape called the gener-
ator. Generators and transformations may be embedded in a
space of any dimension [12]. Typically, a generative model is
formed by transformations of a lower-dimensional generator.
As an example, consider a generative surface consisting of
all points generated by transformation acting on each point
of a 3D curve.

– Allows agenerator be represented by the parametric func-
tion F(t) : Rl → Rm .

– Allows a continuous set of transformation be represented
as a parametric transformation T (p; q) : Rm×Rk → Rn

where p ∈ Rm is a point to be transformed and q ∈ Rk

is an additional parameter defining a continuum set of
transformations.

– The shape is the parametric function T (F(t); q) :
Rl+k → Rn .

A generative model allows arbitrary transformation of
generators. Usually the base for representing generative
models (generators and transformations) is functions of
any number of parameters. In this approach, shapes are
represented as multidimensional, continuous, piecewise dif-
ferentiable parametric functions. Ultimately, the shape is a
set of points that are the image of a mapping.

The taxonomy proposed split Generative modeling on
these branchs: Parametric/Implicit functions [12,13], Iterated
function systems (IFSs were conceived in their present form
by John E. Hutchinson in 1981 [14] and was popularized by

123

International Journal on Interactive Design and Manufacturing (IJIDeM)

Michael Barnsley’s book [15]), Subdivision surfaces [16,17]
and Grammars [18].

2.2.2 Generative modeling. Parametric/implicit functions

Theuse of parametric generators and transformations yields a
closure property because transformations of a generator can
be expressed as a simple composition of parametric func-
tions, resulting in another parametric function. In fact, the
use of parametric generators and transformations blurs the
distinction between generator and transformation, both are
parametric functions:

– Parametric functions are not the only basis for represent-
ing generative models that can be chosen. Generators
and transformations can also be determined by implicit
functions. An implicit function describes a shape as the
set of points that solves a system of equations rather
than as the set of points that is the image of a map-
ping. Although an implicit representation is valuable in
many circumstances, rendering general implicit shapes
is a costly computation.

– Partly parametric and partly implicit generative shape:

– Allows a generator to be represented by an implicit
function F(x) : Rn → Rm

– Allows a continuous transformation set to be rep-
resented as a parametric transformation T (p; q) :
Rn × Rk → Rn where p ∈ Rn is a point to be
transformed and q ∈ Rk is an additional parameter
defining a continuum set of transformations.

– The shape canbe expressed as the setT (x; q)|F(x) =
0, q ∈ Rk

– Totally implicit generative shape

– Allows a generator to be represented by an implicit
function F(x) : Rn → Rm .

– Allows a continuous transformation set to be repre-
sented implicitly as T (p; q) : Rn × Rk → Rk can be
seen as a transformation of p by determining a q that
solves T (p; q) = 0, where p ∈ Rn is a point to be
transformed and q ∈ Rk is an additional parameter
defining a continuum set of transformations.

– The shape canbe expressed as the setT (x; q)|F(x) =
0, q ∈ Rk

The transformation set utilized may be linear (affine
transformations), fraction of linear functions (projective
transformation) or non-linear (deformation transformation).

In general, generative models are easy to control and edit,
since they encourage building high-dimensional shapes from
low-dimensional components. Generativemodels are natural
for specifying many man-made shapes and digital manufac-

turing processes. These digital fabrication approaches are
known by the names: sectioning, interlocking, contouring,
tessellation, and folding.

The usefulness of the generative modeling approach is not
limited to mimicking the manufacturing processes. Totally
synthetic generators and transformations can be used. Gen-
erative modeling can be seen as a device for humanmodelers
to conceptualize shapes. Very complex shapes can be built
with a series of transformations that act on simpler generator
shapes.

Generative models are not limited to rigid 3D shapes.
They can represent shapes deforming in time, shapes that are
functions of manufacturing variables, or shapes composed of
non-uniformmaterials. Such shapes can be represented using
generators and transformations that are functions of desired
parameters. Generative models allow meta-shapes through
parameterized generators and transformations [19].

Usually, as a user interface, a set of symbolic operators on
such functions are used to build complicated shapes by sim-
ple composition of symbolic operators. All operators in the
generative modeling approach are recursive, i.e., their results
can be used as inputs for other operators. This recursive prop-
erty together with the closure property gives the designer the
use of any reasonable combination of operations to specify
shapes.

An overview of the more usual techniques relationship
with Generative Modeling is [13]:

– Basic spatial affine and projective transformations are:
translation, rotation, reflection, scaling (uniformandnon-
uniform), shear, perspective.

– Basic composition of transformation: glide reflection
(reflection and a special translation), helical (rotation
and translation), spiral (rotation, translation and scaling),
other more general composition.

– Traditional surface classes obtained with simple motions
are: translational, rotational, ruled, helical, pipe, sweep-
ing, skinning, other more general spatial motions.

– Traditional surface classes obtained with deformations
are: tapering, twisting, stretching/Compressing, bulging,
shearing, bending, more general non-linear deforma-
tions.

2.2.3 The deterministic fractal shapes based on iterated
function systems (IFS) as a special case of generative
modeling

Conceptually, building a deterministic fractal based on IFSs
requires two ingredients: a space of geometric shapes qk and
a transformation T that maps a coarse shape qk−1 to a fine
shape pk . Given an initial shape q0, a fractal method defines
an infinite sequence of shapes by iterating S according to
qk = T (qk−1). If the transformation T is chosen appropri-

123

International Journal on Interactive Design and Manufacturing (IJIDeM)

ately, the limit of qk as k → ∞ is a well-defined shape q∞
satisfying the fixed-point property q∞ = T (q∞).

In the standard fractal algorithm, we begin with a com-
pact set C0 of points and iterate over a collection of (m)

contractive transformations Wm each with a respective con-
tractivity factor (r) to generate a sequence of compact sets
Cn+1 = Wm(Cn) that converge in the limit to a fractal
shape Cm,∞ = limx→∞ Cm,n ; the final shape is q∞ =
∪n

(i=1)Wm(Ci).
The principal algorithms used are termed [15]: determin-

istic and random iteration.
Each Wm is associated with a probability pi > 0, where

∑n
i=1 pi = 1. pi indicates the probability of occurrence of

the event Cn = Wm(Cn−1). Despite the use of probabilities,
the final shape is always deterministic [20,21].

The goal of fractal procedures is to construct extraordi-
nary shapes like the patterns that can be found in nature [22],
unconventional forms as the obtained in [23], from conven-
tional origins.

One of the simplest methods for constructing fractals
involves iterating a set of affine transformations. However,
conceptually, it is possible to apply any of the previously
presented transformations, provided that the selected trans-
formation turns into contractive property. The problem of
intentionality, which consists in finding the necessary trans-
formations from a certain form, is a problem that has not
yet been resolved. For example, in the case of IFS, the fea-
sibility is found in the Collage theorem [24]. However, the
exhaustive search of an IFS to approximate a given image
is beyond the capabilities of current computing systems. An
IFS like that of the fern consists of 24 parameters, so find-
ing their respective values by “brute force” would require a
computation time that is impossible to quantify.

The question could be, so what are they useful for, a pos-
sible answer could be, so that the designer can find reasons
or causes for inspiration.

2.2.4 Subdivision surfaces as another special case of
generative modeling

Subdivision surfaces as another special case of generative
modeling Subdivision algorithms are similar to fractal IFS
procedures. In the standard fractal algorithm, we begin with
a compact set C0 and iterate over a collection of contractive
transformations Wm to generate, in each case, a sequence of
compact sets Cn+1 = Wm(Cn) that converge in the limit to
a fractal shape q∞ = ∪n

(i=1)Wm(Ci).
In subdivision procedures, we start with a set P0 (usu-

ally either a control polygon or a control polyhedron, or a
quadrilateral or triangular mesh) and recursively apply a set
of rules S to generate a sequence of sets Pn+1 = S(Pn) of
the same general type as P0 that converge in the limit to a
smooth curve or surface P∞ = limn→∞ Pn .

Although classical subdivision algorithms are essentially
fractal (IFS) procedures, the goals of subdivision algorithms
and fractal (IFS) procedures are, nevertheless, fundamen-
tally different. The goal of fractal (IFS) procedures is to
construct extraordinary shapes, unconventional forms from
conventional origins; the goal of subdivision algorithms is to
construct smooth shapes, differentiable functions from dis-
crete data.

The subdivision algorithms are interesting for three rea-
sons:

– They are easy to understand and simple to implement.
– They can generate a large class of smooth functions, not
just polynomials and piecewise polynomials.

– Subdivision algorithms on polyhedral meshes can pro-
duce shapes with arbitrary topology, unlike tensor prod-
uct schemes that can only generate surfaces topologically
equivalent to a rectangle, or by identifying edges to a
cylinder or a torus.

There are three distinct paradigms for subdividing sur-
faces [16]:

– Box spline (a generalization of uniform tensor product
B-spline surfaces).

– Quadrilateral meshes, or arbitrary quadrilateral meshes.
– Triangular meshes or arbitrary triangular meshes.

2.2.5 Grammars as another special case of generative
modeling

A shape grammar consists of shape rules and a generation
engine that selects and processes rules [25]. The foundation
of shape grammars has been defined in [18]. A shape rule
defines how an existing (part of a) shape can be transformed.
A shape rule consists of two parts separated by an arrow
pointing from left to right. The left part of the arrow is termed
the left-hand side (LHS); it depicts a condition in terms of
a shape and a marker. The right part of the arrow is termed
the right-hand side (RHS); it depicts how the LHS shape
should be transformed and where the marker is positioned.
The marker helps to locate and orient the new shape.

A shape grammar minimally consists of three shape ele-
ments: an initial shape, at least one transformation rule, and
a termination rule. The initial shape is necessary to start the
shape generation process. The termination rule is necessary
to stop the shape generation process. The simplest way to
stop the process is by a shape rule that removes the marker.

Parametric shape grammars [26] are an extension of shape
grammars. The new shape in the RHS of the shape rule is
defined by parameters so that it can consider more of the
context of the already existing shapes. This typically affects

123

International Journal on Interactive Design and Manufacturing (IJIDeM)

internal proportions of the new shape so that a greater variety
of forms can be created.

Despite their popularity and applicability in academic cir-
cles [27], shape grammars have not found widespread use in
generic computer-aided design applications, in part due to
difficulties in implementing the identification of sub-shapes
for applying rules, and of new emerging shapes that are not
coincident with the geometric representation of the existing
ones.

2.2.6 Fractal shapes in general

Since Euclid, mathematicians have developed the theory of
smooth curves and surfaces. These shapes may have a very
complicated structure globally, but in small neighborhoods
they are just straight lines or planes. The discipline that deals
with these objects is differential geometry. Fractals feature
just the opposite of smoothness.While the smooth objects do
not yield anymore detail on smaller scales, a fractal possesses
infinite detail at all scales no matter how small they are.

How are fractals different from the usual Euclidean
shapes?

– Whereas Euclidean shapes have one or at most a few,
characteristic sizes or length scales (i.e., the size of a
cube), fractals possess no characteristic sizes.

– Euclidean geometry provides a concise accurate descrip-
tion of man-made objects but is inappropriate for natural
shapes. Fractals, however, provide an excellent descrip-
tion of many natural shapes.

– Finally, whereas Euclidean shapes are usually described
by mathematical formulas, fractals, in general, are the
result of a construction procedure or algorithm that is
often recursive and ideally suited to computers. The com-
plexity of a fractal, when measured in terms of the length
of the shortest computer program than can generate it, is
very small.

Fractal shapes are said to be self-similar and independent of
scale or scaling; in other words, self-similar shapes repeat
(statistically or exactly) under magnification with uniform
scaling.

When the magnification is with non-uniform scaling, the
shapes are (statistically or exactly) invariant under transfor-
mations that scale coordinates by different amounts, and the
fractal is known as self-affinity.

The distinction between similarity and affinity is impor-
tant. By way of summary, a self-similar object comprises
N copies of itself (with possible translations and rotations),
each of which is scaled down by the ratio r in all coordinates
from the whole. On the other hand, a self-affinity object is
the union of N distinct (non-overlapping) subsets, each of
which is scaled down by different ratios in each coordinate

from the whole. Fractals can be Self-similar and Self-affine
(see Fig. 1).

Fractals come in two major variations termed [15]:

– Deterministic. The procedure requires the use of a partic-
ular rule that is then repeated over and over in a usually
recursive scheme. Application of the same procedure
with the same input data, always generates the same
shape.

– Random. The procedure is similar to a deterministic pro-
cedure but there is an additional element of randomness.
The same procedure, with the same initial data but with
different random data, generates shapes of the same fam-
ily but different from each other.

2.2.7 Generic shapes= algorithms+ data structures

Many objects and environments contain repetitive or self-
similar structures that can be modeled easily using some
types of procedural modeling, generative and fractal tech-
niques. This kind of procedural modeling as a mature
technology in contemporary commercial systems has per-
vaded several architectural and engineering domains. After
the advent of this paradigm, designers are now endowed with
tools to construct new entities. In accordance with its philos-
ophy, any design is viewed as a geometric object resulting
fromspecific algorithmic computations.The typeof procedu-
ralmodelingwe are referring to is also known in the literature
as “smart geometry” [28].

These approaches have been used to generate many com-
plex shapes, but each method is mainly limited to a specific
class of model or requires considerable user input or guid-
ance. If the new objective is to shift from an instance design
to a generic one, the procedural modeling paradigm is broad-
ened by using the “bricks” that allow geometric algorithms
to be built. The algorithm may employ conventional math-
ematical functions, arithmetic operators, vector and matrix
operators, integration, differentiation, constraint solutions,
constrained minimization, numerical solvers, widely used
numerical techniques, data tables, or a rule-based or graph-
based approach. Itmay also employ randomness or stochastic
methods, and conditionals and iterations as well. In algorith-
mic science, a data structure is a particular way of organizing
data in a computer so that it can be used efficiently.

In general, a procedural definition is not expressible in
closed form. Consequently, geometers cannot understand the
surface analytically. In this case, geometric properties can be
deduced only through the function’s numerical evaluation.
Designers, however, may find considerable flexibility in pro-
cedural methods.

The constraint-based algorithmic design is important in
CAD/CAM applications. It allows the algorithm used to
design the shape to be a function of a given set of parame-

123

International Journal on Interactive Design and Manufacturing (IJIDeM)

ters and constraints on them. A constraint specifies a relation
on or between entities in a model that must be maintained.
The following classes of constraints arise naturally in shape
design:

– Geometric relationship as well as metric dimensional
constraints.

– Equational constraints that express relations between
dimensional parameters and/or technological variables,
for instance (mechanical properties).

– Semantic constraints that define validity conditions on a
shape.

– Topological relations between entities in a model, such
as incidence or connectivity.

Although it would be impossible to describe all the ways
algorithms are used to solve problems in a few lines, there
are four strategies regularly employed by computer scientists
at the core of this modern style of problem solving:

– Careful problem definition.
– Logical reasoning.
– Decomposition techniques, also called divide and con-
quer. strategies. The idea is to approach a problem by
separating it into its constituent sub problems, and then
solve each sub problem individually.

– Abstraction using anything that allows us to concentrate
on important characteristics while deemphasizing less
important, perhaps distracting, details.

Describing algorithms requires a notation to express a
sequence of steps to be performed. The most common option
is pseudocode, and the control structure is the mechanism for
specifying the proper order the five steps must be performed
in: sequential, selection, repetition, control abstraction and
concurrency.

There are many different programming paradigms used
in the field of algorithmic modeling. From the highest to the
lowest capacity to generate shapes they are:

– Imperative and oriented object: Using classical program-
ming paradigms [29].

– Dataflow based: A shape description can be represented
by a direct graph of the data flowing between operations
[30].

– Ruled-based systems: These systems provide a declara-
tive description of the construction behavior of a model
by a set of rules. An example is L-systems [25].

3 A suggestion for a possible methodology

The basic guideline of all good training is that our brain
behaves in the following way: what is heard is forgotten.
What is seen is remembered. What is done is learned. As we
are now in the century of information and technology: What
you hear, see and do at the same time is what really matters,
what you learn and what you enjoy. And therefore, it is the
best that can be taught. In addition, a reasonably complete
training capable of preparing a designer must offer 1. Basic
knowledge of the fundamentals on which they are based. 2.
Seeing not only academic examples but learn real examples
of application. 3. Learning how to use the tools available at
the time to meet the challenges of design.

It is evident that there are different basic formations of
form designers, such as industrial designers, engineers of
different types, architects, etc. who are usually dedicated to
a specific set of form modeling. This fact requires a dif-
ferent training as the different conditions of each type of
student have to be taken into account. We all know that
there is a lot to teach and that the time for training is finite,
and that the designer must look for the moment and find
opportunities. But as William Ward (1921–1994) said: “The
mediocre teacher says. The good teacher explains. Senior
teacher demonstrates. The great teacher inspires”. Finally,
and in relation to existing professionals, there is no way to
access new knowledge without retraining.

When askingwhat to teach, inwhat order shapemodelling
methods could be presented, and what references might be
appropriate to cite, this document provides, as a script, an
overview of the current possibilities and indicates the mini-
mum knowledge required.

If one looks at the taxonomy presented in Fig. 1, the meth-
ods are presented from least to most intelligent, and the last
line highlighted, which is called Algorithm generic shape.
Any teacher specializing in form design can teach any of the
above techniques, leaving it up to his or her discretion (and
the time available for training) to go deeper into the aspects
mentioned in the previous paragraph, referred to in (1–3).
However, it is very rare to advance in the teaching of the
Algorithm generic shape. For this reason, we are going to
propose a reflection on the minimum knowledge necessary
to do so.

The procedural modeling cited are: Generative modeling,
fractals and generic algorithmic shapes. Although all shapes
are based on the concept of algorithm, the algorithm based
generativemodeling considers that a shape is describedby the
arbitrary continuous transformation of an initial shape called
generator. In the case of fractals, they are based on procedures
that use a particular rule that is then repeated over and over
again in a deterministic way or with an additional element of
randomness. Therefore, both techniques have a limitation in
terms of the set of all the shapes that can be obtained with

123

International Journal on Interactive Design and Manufacturing (IJIDeM)

them. This is not the case for the technique we have gener-
ically called Algorithm generic shape . To the question of
”what are the limits of this technique?” The answer lies in
theoretical computer science, and in the closely related fields
of algorithm analysis and theory of computation. In our case,
the question is ”what kinds of shape problems can, in princi-
ple, be solved algorithmically?”. Without going into further
depth in this paper, it is clear that all of the above techniques
shown in Fig. 1 are obviously algorithmically solvable. But
there are shapes that do not meet the necessary requirements
either by generative or fractal means.

The academic answer to the academic question “what is
to be taught” is to perform the equality:

generic shapes = algori thms + data structures (1)

This expression is understood in the context that it is not
necessary for the designer to become a computer scientist,
but we are stating that he needs to broaden his language to
expand his ability to model forms through a slightly deeper
knowledge of what algorithms are, how they are expressed
and the types of data that are most commonly used.

The original shape and aesthetics that the designer intends
to model will depend on the designer’s creativity, bearing in
mind that, at the moment, creativity cannot be taught, only
trained.

Algorithm generic shapes opens the way to future design
systems defined more accurately as smart ones. The concept
of “smart” (in the sense of intelligent) has many different
perspectives. In general, something is said to be intelligent
when is proactive in applying innovative ideas to achieve a
solution of a complex problem.

In Sect. 4 of this paper we show two examples of what
we are saying. The example 1. Is a virtual exhibition stand
design based on generative modeling and visual scripting.
The example 2 show soap bubbles based on a textual algo-
rithm.

This last example, quite complex to implement, has been
chosen because, is not obtainable by currently existing gen-
erative modeling tools. The algorithm is general, in the sense
that it can generate any resulting soap bubbles shape. The
algorithm is very concise and only collects the three exper-
imentally geometric conditions introduced by Plateau [31].
The final result will depend on the initial data.

The two examples show that using general techniques it is
possible to generate families in different ways. With genera-
tive techniques, such as those shown, the potential for work
is very large. And with the same example algorithm, any
bubble soup could be modeled. Indeed, the examples seem
to support the fact that the proposed methods require ad hoc
solutions for each general design problem, which is the case
with all the current existing design approaches.

The reason is that, from a theoretical point of view, prob-
lem solving is considered themost complex of all intellectual
functions. Problem solving has been defined as a higher level
cognitive process that requires modulation and control of
more routine or fundamental skills. Although problem solv-
ing has existed since the beginning of human evolution, the
nature of human problem solving processes and methods
have led to the fact that, for the time being, no successful
attempts have beenmade to derive a comprehensive theory of
general problem solving. Therefore, to solve concrete shape
modeling problems, we have to settle for approximations to
bound sets of shapes that have someway of expressing them-
selves in common.

In the Sect. 5 we reflect about the future of shape model-
ing taxonomy. But at this point, we just reflect on algorithms
that have not yet been used in a general way to model shapes:
neuronal networks, deep learning, convolutional neuronal
networks, recurrent neuronal networks, genetic algorithms,
cellular automata, ...

4 Examples

4.1 Example 1. A virtual exhibition stand design
based on generative modeling and visual
scripting

The idea of this example is to show a suggestive applica-
tion. Therefore, we decided to design a virtual exhibition
stand based on algorithmic modeling and generative strate-
gies which took into account fabrication capabilities that
are offered by a fab lab (fabrication laboratory) [32]. Fab
labs are small-scale workshops providing a (personal) dig-
ital fabrication service. They are generally equipped with
a variety of flexible computer-controlled tools for several
length scales and materials, with the aim of making almost
anything. Their main feature is that they are strongly linked
to society. Developing and disseminating this exploration of
algorithmic design and digital fabrication were, therefore,
central objectives of this example [33,34].

Digital fabrication techniques generally fit into four main
categories: Cutting, Subtraction, Addition and Formation,
and the modeling techniques implemented to generate the
designs are: contouring, folding, forming, sectioning and
tiling [35].

– Contouring: much of the material used to produce shapes
is processed in or from a sheet format. Contouring
changes this physical materiality by using an incremen-
tal subtractive technique to provide intricately patterned
three-dimensional features through a series of contours.
Specifically, the use of CNCmilling can quickly produce
non-standard or repetitive elements. We have used three

123

International Journal on Interactive Design and Manufacturing (IJIDeM)

different algorithms in the design of the stand modules.
The first is based on the concept of fields and attractor
points, the second on contours and the last on Voronoi
mesh.

– Folding: a much more familiar process of developing
two-dimensional surfaces into three-dimensional forms
is folding. By folding, sheetmaterial rigidity can increase
substantially.While the material operationmay seem rel-
atively finite, digital technologies enable the calculation
and setting out of complex fold patterns, furnishing the
practitioner with a greater spectrum of design options.

– Tiling: this process, also referred to as tessellating,
involves developing figures or shapes that when assem-
bled together form a coherent plane without any gaps or
overlaps. One of the many advantages of digital design
and fabrication methods is that they can effectively over-
come the previous investment of time and also provide
ways in which patterns may be generated and optimized
to gain maximum impact both visually and materially
especially to reduce waste.

We used tiling and folding techniques for the stand to design
a complex surface. We designed a collection of individual
pieces of cut and folded sheet to act as tesserae. These tiles
are joined by bolts.

– Forming and Interlocking: Forming method is an effec-
tive and relatively economical way of making a signifi-
cant number of equal components that are usually created
using CNC-milled mold but occasionally uses additive
manufacturing o vacuum-forming techniques. In the case
of this stand we have used the Forming technique to
design a sculpture formed by the union (Interlocking)
of equal regular pentagonal elements, in turn generating
a sculpture formed by dodecagons joined together.

– Sectioning: this technique is a method of profiling com-
ponents in relation to surface geometry. By taking a series
of sectional cuts through a digital model, it offers a quick
and effective way of gathering the necessary data to
inform a CAD/CAM process. The stand structure was
designed using the Sectioning technique. Areas where
the sections are either separated or combined together
were differentiated during construction. In each case, we
considered the manufacturing, assembly, formal devel-
opment and aesthetic appearance of the stand itself.

Figure 2 shows the full stand and Fig. 3 explains the digital
fabrication techniques used.

Fig. 2 The stand

Fig. 3 Digital fabrication techniques used: 1 sectioning, 2 interlocking,
3 contouring, 4 folding

Fig. 4 Soap bubbles

4.2 Example 2. 2D and 3D shapes of soap bubbles
based on a textual algorithm

The idea of this example is to design something that would
show what we found practically impossible to model accu-
rately applying any of the techniques presented so far, unless
an algorithm is used. Therefore, we decided to design a gen-
eral algorithmic modeling of soap bubbles, inspired by the
external walls of Beijing National Aquatic Center.

123

International Journal on Interactive Design and Manufacturing (IJIDeM)

For centuries, soap bubbles (see Fig. 4) have captivated
biologists (Thompson with coalescence patterns [36], physi-
cists (Plateau [31], Boys [37], and Isenberg [38] with soap
films), mathematicians (Euler with area minima [39]) and
architects (Frei Otto and his experiments with real bubbles
[40], the consortium of Beijing’s Box of Bubbles [41], and
so on).

Bubbles seek an arrangement that minimizes surface area
and energy.After Plateau’swork on this, the topicwas studied
mathematically bySophieGermain, and it is currently an area
of great development in molecular biology and chemistry.
The fact that bubbles must meet in the way they do was only
proved in the 1970s.

This principle can be seen not only in soap bubbles but
more generally in nature. A dragonfly’s wings are a good
example, as are bee hives.

The theoretical workwas introduced by Plateau, who used
wire frames to explain soap bubble interfaces. Plateau [31]
concluded experimentally that soap bubble interfaces always
meet three geometric conditions (see Fig. 5):

– Only three interfaces canmeet at a point, creating Plateau
borders. The amount a border can curve inwards or out-
wards is determined by the difference in pressure on
either side (Young–Laplace equation).

– The tangential angles between the Plateau borders is
120◦(2π/3).

– Four Plateau borders, each formed by the intersection of
three surfaces, are joined at vertices creating an angle
equal to 109◦28′16′′(arcs[−1/3]), called the tetrahedral
angle or Maraldi angle. When three or more bubbles
meet, they arrange themselves so that no more than three
bubbles share a wall, and no more than four share an
intersection. At these intersections, each bubble meets
the shared wall at a 120◦ angle and meets every other
bubble with an angle of 109.5◦.

These elegant rules can be used to explain the interactions
among clustered soapbubbles. Fromageometric perspective,
these interactions can be described quantitatively using three
equations (A, B, and C represent centers of the bubbles and
rA, rB and rC are their respective radii):

1

rB
= 1

rA
+ 1

rC
|AB|2 = r2A + r2B − 2 · rA · rB · cos(π/3) (2)

|AC |2 = r2A + r2C − 2 · rA · rC · cos(2π/3)

Equation (2) can be derived from theYoung-Laplace equa-
tion, whereby excess pressure, surface tension (which is
constant for all soap bubbles at an interface) and the prin-
cipal radii of curvature (which in soap bubbles are equal)

relate to each other. The physical phenomenon indicates that
pressure is inversely proportional to the radius of curvature.
This means that large bubbles contain low excess pressure,
while small bubbles contain high excess pressure. Coalescing
bubbles are surrounded by three different pressures: inside
bubble A, inside bubble B and inside bubble C. The excess
pressure between bubblesAandCmust be equal to the excess
pressures between the two other regions, bubblesB andC and
bubbles A and B.

Two cases are considered, one with equal-sized bubbles
and one with different-sized bubbles. When equal-sized bub-
bles meet, no differential is produced, so the Plateau border
will be flat. In this case the radius of curvature will be infi-
nite. When unequal-sized bubbles meet, the smaller bubble,
which has higher pressure, will push into the larger bubble.
The boundary between the bubbles created by the radius of
curvature rC will be curved, with the concave side toward the
larger bubble.

4.2.1 2D soap bubble film algorithm

The geometric model that describes the structure of soap
films in foams is based on Plateau’s laws. The 2D model can
be described from a set of simple geometrical routines, which
are all detailed in the basic literature of plane geometry. The
original geometric functions we used are:

– CircleCircleIntersection(C1,C2): given two
circles C1, C2, the function returns the two intersection
points between them (if the entities do not intersect, the
returned value is null).

– CircleLineIntersection(C,L): given circle C
and line L, the function returns the two intersection points
between them (if the entities do not intersect, the returned
value is null).

– ParameterValueOfPointInSegment(p,p0p1):
given point p and the segment defined by points p0 and
p1, the function returns the value of the independent vari-
able (scalar) when point p is evaluated in the parametric
equation of segment p0p1.

– Point inside/outside circle. The test return if a point is
inside or outside a circumference.

– The basic equation of the polar coordinate system.

The first step is to compute the interface arc between two
circles. Given two intersected circles C0 and C1, the func-
tion ComputeInterfaceArc(C0,C1) (Algorithm 1 on
Fig. 6a) returns the interface arc B ′ between them. The two
input circles are converted to arcs C ′

0 and C ′
1, (see Fig. 6b).

The procedure works by building an auxiliary circle B with
radius according to Eq. (2) and center in one of two intersec-
tion points between auxiliary circles A0 and A1, which have
the same radius and respective centers in the intersection

123

International Journal on Interactive Design and Manufacturing (IJIDeM)

Fig. 5 Tetrahedral angle: a all surfaces in a bubble intersection are
spherical sectors with equal mean curvature across the entire area. b
All Plateau surfaces intersect three in 120◦ angles. In this case, there

are 4 internal intersections and 6 external borders, all respecting Plateau
Laws. cAll PlateauBorders intersect three by three in tetrahedral angles.
In this case, there are internal vertex and 4 external vertices

Fig. 6 Compute interface arc between two circles

points between C0 and C1. Here, the circumference arcs are
described by three consecutive points over the circumference
(initial, middle, final).

The next elementary step is to compute coalescent bub-
bles among three circles. This procedure is based on similar
geometrical principles to the previous step but here an appro-
priate adjustment of the generated geometrical entities is
required. Given three circles C0, C1 and C2 intersected
among them.

The function ComputeCoalescentBubbleAmong
3Circles(...) (Algorithm 2 on Fig. 7a) returns the
interface arcs B ′

01, B
′
02 and B ′

12 between them. The three
input circles are also converted to arcs C ′

0 , C ′
1 and C ′

2, see
Fig. 7b.

Based on the same constructive principles, the rou-
tine that computes the coalescent bubble among four cir-
cles (ComputeCoalescentBubbleAmong4Circles
(...)) can easily be defined. These three geometric rou-
tines are enough to generate a bubble field, as we will
demonstrate below.

The algorithm to generate a bubble field is based on a smart
random generation of circles following a spiral path until
the stop condition is reached. By agreement, the proposed
procedure follows a counter-clockwise path. Figure 8 shows
the first six iterations of the process.

In step 1, a circle only has to be generated with a ran-
dom radius (r ∈ [minRadius,maxRadius]) and position
(x, y ∈ [−viewport Limit, viewport Limit]).

In step 2, the second circle is generated at a random dis-
tance d (d ∈ [r0, r0 + r1]) from the center of the existing
circle and the random position is computed generating a ran-
dom angle α(α ∈ [0, 2π]) and using the polar coordinate
system equations. Once the new circle is defined, the routine

123

International Journal on Interactive Design and Manufacturing (IJIDeM)

Fig. 7 Compute coalescent bubble among three circles

Fig. 8 Initial demonstration steps to generate a bubble field

Fig. 9 Reference sector to generate the random circle

Fig. 10 Algorithm 3: generate a bubble field

ComputeInterfaceArc(...) is applied to fuse both
circles.

Steps 3–5 have in common that the new random cir-
cle intersects two existing circles; therefore, the func-
tion ComputeCoalescentBubbleAmong3Circles
(...) is used to obtain the resulting arcs. Each of the new
circles is generated counter-clockwise from the intersection
point of the last placed circle and its adjoining circle (see
Fig. 9). The random parameters are generated as in step 2,
but the random angle α remains within the sector defined by
the tangent vectors to the radius of two concerned circles in
the convergence point (see Fig. 9).

In step 6, the new random circle intersects three exist-
ing circles. Therefore, the functionComputeCoalescent
BubbleAmong4Circles(...) is used to obtain the
resulting arcs. Here, the reference point to generate the ran-

123

International Journal on Interactive Design and Manufacturing (IJIDeM)

Fig. 11 Example of bubble field

Fig. 12 Future shape modeling taxonomy

dom parameters of the next circle can be the center point of
the external arc that will disappear after the fusion operation.

In the successive iterations, the counter-clockwise path is
followed with the last convergence point as a reference to fix
the random values. If a smart method of generating the next
circles is maintained, then some of the last two situations will
have to be applied until the stop condition is reached. The
ranges andmethods for generating the random values in each
case can be sophisticated for different visual results.

The pseudocode of this process is shown in Algorithm 3
on Fig. 10. Figure 11 shows an example of a bubble field
generated with this method.

5 Conclusions and possible future

Entering general 3D shapes into the computer remains a dif-
ficult and time-consuming task. Why do humans find it so
hard to specify 3D shapes? What constitutes a good geo-
metric modeling system? What, if anything, is wrong with
the current approach to shape modeling? And how can it be
improved?

Currently, a designer has multiple strategies to respond
to a Shape Design Project. We understand that they must be
ordered and presented to the user in a categorized way. Fur-
thermore, this classificationmust be done during the learning
process: It is not just about knowing what tools and proce-
dures are available. It is about understanding in depth its
characteristics, establishing a hierarchical organization and
choosing the right one for each design.

We have presented a complete and extended taxonomy on
shape specification modeling techniques; (see Fig. 1), based
on two principles: principle 1, when the modeling system is
based on mathematical descriptions; and principle 2, when
the modeling system is based on an algorithm description.

This taxonomy has these characteristics: its structure is
novel, it establishes “smartness” as a classification criterion
and it includes a geometric modeling of forms based on
the use of the expression of a textual algorithm (algorith-
mic generic shape), which opens the way to advance the line
of smarter modeling systems.

With this approach, a user (shape designer, students,
engineer or architect) can be characterized in terms of the
knowledge relationship that the user has established with the
system modeling used to generate a shape.

– Awareness (or Opacity) for the user about the underly-
ing mathematical and algorithmic descriptions and their
properties.

– The user’s ability to construct:

– A new mathematical description.
– A new mental algorithm.

As original examples, we present and analyze two shape
design procedures. The first example is supposed to be acces-
sible to designers used to the generative modeling dataflow
type.

The second example shows a shape design that can only
be achieved by building an ad-hoc algorithm implemented
by pure programming. Based on our knowledge, this algo-
rithm is the first complete implementation published on this
subject. This example illustrates a newcategory, called “algo-
rithmic generic shape” included in the proposed taxonomy.
This category covers algorithmic procedures that include
paradigms typical of computer sciences (AI, etc.)

123

International Journal on Interactive Design and Manufacturing (IJIDeM)

Consequently, it is proposed that designer’s usual train-
ing (i.e. approach to geometry and algorithm learning and
thinking) may need to be modified: The focus of algorithmic
thinking goes beyond basic knowledge of computing to treat
algorithmic science as an independent body of thought that is
an essential part ofwhat itmeans to be educated today. Think-
ing algorithmically is uniquely important just as scientific
investigation, artistic creativity, or proof theory in mathe-
matics are, and yet computational thinking is a distinct form
of thought, separate from these other academic disciplines
[42].

The increasingly important role of shape modeling has
opened a variety of challenging problems centered on accu-
rate geometric modeling computation. The most general
algorithmicmodeling technique offers an attractive approach
to represent the complex shapes and broad shape variability
of general shapes. The continued development and refine-
ment of designer training in algorithmic knowledge should
remain an important area of research in the foreseeable future
of shape modeling.

Algorithm generic shapes opens the way to future design
systems defined more accurately as smart ones. The concept
of “smart” (in the sense of intelligent) has many different
perspectives. In general, something is said to be intelligent
when is proactive in applying innovative ideas to achieve a
solution of a complex problem.

The effort to create smart shape modeling techniques will
require ideas capable to make use of already accessible tech-
nologies as; digital connectivity, access to human knowledge
for eventually find intelligent solutions in collaboration with
others, artificial intelligence, 3D technologies, big data sup-
port, cloud computing... in such away that can face numerous
complex problems of the future shape modeling design will
require difficult decisions. Based on them, Fig. 12 shows the
desired taxonomy evolution. It is presented only the first level
and includes both, the proactive procedural and geometrical
modeling. Designers daily work and students learning pro-
cess will inevitably be affected.

Finally, we need to ask when a shape modeling system
should be qualified as intelligent/smart. In our opinion, it
should take place when it can be proactive, which means that
it will perceive information and retain it as knowledge to be
applied adaptively within a given environment and when a
small set of design principles can be built with useful ways
that can reasonably be called intelligent, to be more precise,
when the algorithms underlying shapemodeling systems can
perceive what to design and act accordingly. In general, such
software will make a decision at a given time depending on
the complete sequence of insights gained so far.

This may seem like science fiction, but bear in mind arti-
ficial intelligence (AI) and cognitive systems (CS), whose
fields of study are how to create computers and computer
software that are capable of intelligent behavior, or as John

McCarthy, who coined the term AI in 1955, said, ”the sci-
ence and engineering of making intelligent machines”, or as
we like to say, “at least the systems seemed intelligent”.

Acknowledgements This work is partially supported by Gobierno
de Aragón. Departamento de Ciencia, Universidad y Sociedad del
Conocimiento. Grant T33_20D.

Funding Open Access funding provided thanks to the CRUE-CSIC
agreement with Springer Nature. Work partially supported by Gob-
ierno de Aragón. Departamento de Ciencia, Universidad y Sociedad
del Conocimiento. Grant T33_20D.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. C.M.U.S. ofArchitecture. sg2020—smartgeometry (2020). https://
www.smartgeometry.org/sg2020

2. Aish, R.: in Inside Smartgeometry: Expanding the Architec-
tural Possibilities of Computational Design, vol. 9781118522,
pp. 36–49. Wiley Blackwell (2013). https://doi.org/10.1002/
9781118653074.ch2

3. Bloomenthal, J.: The Geometry of Implicit Surfaces, pp. 1–51.
Morgan Kaufmann Publishers Inc. (1997)

4. Hoffmann, C.M.: Implicit Curves and Surfaces in CAGD. IEEE
Computer Graphics and Applications, vol. 13-1, p. 460 (1993).
https://doi.org/10.1109/38.180121

5. Iskovskikh, V.: Encyclopedia of Mathematics, chap. Quadric.
Springer (2001)

6. Salomon, D.D.: Curves and Surfaces for Computer Graphics.
Springer (2006)

7. Velho, L., Gomes, J., de Figueiredo, L.H.: Implicit Objects in
Computer Graphics. Springer, New York (2002). https://doi.org/
10.1007/b97350

8. Mäntylä, M.: An Introduction to Solid Modeling. Computer Sci-
ence Press Inc, USA (1987)

9. Gross, M., Pfister, H.: Point-Based Graphics. Morgan Kaufmann
(2007)

10. Quan, L.: Image-Based Modeling. Springer (2010)
11. Scheurer, F.: in Inside Smartgeometry: Expanding the Architec-

tural Possibilities of Computational Design, vol. 9781118522479,
pp. 186–195. Wiley Blackwell (2013). https://doi.org/10.1002/
9781118653074.ch16

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.smartgeometry.org/sg2020
https://www.smartgeometry.org/sg2020
https://doi.org/10.1002/9781118653074.ch2
https://doi.org/10.1002/9781118653074.ch2
https://doi.org/10.1109/38.180121
https://doi.org/10.1007/b97350
https://doi.org/10.1007/b97350
https://doi.org/10.1002/9781118653074.ch16
https://doi.org/10.1002/9781118653074.ch16

International Journal on Interactive Design and Manufacturing (IJIDeM)

12. Snyder, J.M.: Generative Modeling for Computer Graphics and
CAD: Symbolic Shape Design using Interval Analysis. Elsevier
Science (2014)

13. Pottmann, H., Asperl, A., Hofer, M., Kilian, A., Bentley, D.: Archi-
tectural Geometry. Bentley Institute Press (2007)

14. Hutchinson, J.: Fractals and self-similarity. Indiana Univ. Math. J.
30, 713–747 (1981)

15. Barnsley, M.F., Devaney, R.L., Mandelbrot, B.B., Peitgen, H.O.,
Saupe, D., Voss, R.F.: The Science of Fractal Images. Springer,
New York (1988). https://doi.org/10.1007/978-1-4612-3784-6

16. Warren, J., Weimer, H.: Subdivision Methods for Geometric
Design: A Constructive Approach, 1st edn. Morgan Kaufmann
Publishers Inc., San Francisco (2001)

17. Subdivision Surface—Wikipedia. https://en.wikipedia.org/wiki/
Subdivisionsurface

18. Stiny,G., Gips, J.: Shape grammars and the generative specification
of painting and sculpture. In: IFIP Congress (2), vol. 3, pp. 1460–
1465. North-Holland (1972)

19. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit
Surfaces, AppliedMathematical Sciences, vol. 153. Springer, New
York (2003). https://doi.org/10.1007/b98879

20. Peitgen, H.O., Jürgens, H., Saupe, D.: How randomness creates
deterministic shapes, the chaos game. In: Chaos and Fractals, pp.
297–352. Springer (1992)

21. Barnsley, M.F., Devaney, R.L., Mandelbrot, B.B., Peitgen, H.O.,
Saupe, D., Voss, R.F., Fisher, Y., McGuire, M.: The Science of
Fractal Images, vol. 1. Springer (1988)

22. Mandelbrot, B.B., Mandelbrot, B.B.: The Fractal Geometry of
Nature, vol. 1. W.H. Freeman, New York (1982)

23. Rani, M., Verma, D.K., Sodhi, J.: 3D Fractal Modeling. 2nd Inter-
national Conference on Issues and Challenges in Networking,
Intelligence and Computing Technologies (ICNICT-2012), vol. 1
(2012)

24. Maurer, H.: New Results and New Trends in Computer Science:
Graz, Austria, June 20–21, 1991 Proceedings, vol. 555. Springer
(1991)

25. Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of
Plants. The Virtual Laboratory. Springer, NewYork (1990). https://
doi.org/10.1007/978-1-4613-8476-2

26. Stiny, G.: Introduction to Shape and Shape Grammars. Environ.
Plann. B. Plann. Des. 7(3), 343 (1980)

27. Cagan, J.: Engineering Shape Grammars: Where We Have Been
andWhereWeAre Going, pp. 65–92. Cambridge University Press,
USA (2001)

28. Peters, B., Peters, T.: Inside Smartgeometry, vol. 9781118522479.
Wiley, Chichester (2013). https://doi.org/10.1002/9781118653074

29. Harel, D., Feldman, Y.: Algorithmics: The Spirit of Comput-
ing. Pearson Education Ltd. (2004). https://doi.org/10.1007/978-
3-642-27266-0

30. Tedeschi, A.: AAD Algorithms-Aided Designed. Le Penseur
(2018)

31. Plateau, J.A.F.: Statique Expérimentale et Théorique des Liquides
Soumis aux Seules Forces Moléculaires, vol. 2. Gauthier-Villars
(1873)

32. Gershenfeld, N.A.: Fab: The Coming Revolution on your
Desktop—From Personal Computers to Personal Fabrication.
Basic Books (2007)

33. Martínez, H., Serón, F.D.: Estrategias de modelado y fabricación
digital basadas en sistemas paramétricos. Caso de un stand. Tech.
Rep., Universidad de Zaragoza, Zaragoza (2013). http://zaguan.
unizar.es/record/11965

34. Martinez, H., Bruscato, U., Seron, F.J.: Modeling and manufactur-
ing strategies based on smart geometry. Example of a stand. In:
Geometrias’14 Proceedings (2014)

35. Dunn, N.: Digital Fabrication in Architecture. Laurence King
(2012)

36. Thompson,D.:OnGrowth andForm,An abridged. Press Syndicate
of the University of Cambridge, UK (1961)

37. Boys, C.V. : Soap Bubbles, their Colours and the Forces which
Mold Them, vol. 542. Courier Corporation (1959)

38. Isenberg, C.: The Science of Soap Films and Soap Bubbles. Cleve-
don (Avon), Tieto (1978)

39. Hildebrandt, S., Tromba, A.J.: Mathematics and Optimal Form.
ScientificAmerican Library Series, vol. 13.W.H. Freeman&Com-
pany (1984)

40. Frei Otto, experimentando con pompas de jabón. https://
www.plataformaarquitectura.cl/cl/763573/video-frei-otto-
experimentando-con-pompas-de-jabon

41. “Water Cube” designers delight in box of bubbles.
https://www.reuters.com/article/us-olympics-beijing-cube-
idUSPEK27470620080131

42. Riley, D.D., Hunt, K.A.: Computational Thinking for the Modern
Problem Solver. CRC Press (2014)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/978-1-4612-3784-6
https://en.wikipedia.org/wiki/Subdivision surface
https://en.wikipedia.org/wiki/Subdivision surface
https://doi.org/10.1007/b98879
https://doi.org/10.1007/978-1-4613-8476-2
https://doi.org/10.1007/978-1-4613-8476-2
https://doi.org/10.1002/9781118653074
https://doi.org/10.1007/978-3-642-27266-0
https://doi.org/10.1007/978-3-642-27266-0
http://zaguan.unizar.es/record/11965
http://zaguan.unizar.es/record/11965
https://www.plataformaarquitectura.cl/cl/763573/video-frei-otto-experimentando-con-pompas-de-jabon
https://www.plataformaarquitectura.cl/cl/763573/video-frei-otto-experimentando-con-pompas-de-jabon
https://www.plataformaarquitectura.cl/cl/763573/video-frei-otto-experimentando-con-pompas-de-jabon
https://www.reuters.com/article/us-olympics-beijing-cube-idUSPEK27470620080131
https://www.reuters.com/article/us-olympics-beijing-cube-idUSPEK27470620080131

	A theoretical reflection on smart shape modeling
	Abstract
	1 Introduction
	1.1 Shape specification

	2 Shape modeling and its associated specification taxonomy
	2.1 Geometric modeling (GM) shape specification based on mathematical functions
	2.1.1 Geometric modeling (GM) surface shape specification based on algebraic functions
	2.1.2 Geometric modeling (GM) volume shape specification based on mathematical functions
	2.1.3 Geometric modeling (GM) surface shape specification based on discrete samples

	2.2 Procedural modeling (PM) shape specification based on algorithms
	2.2.1 Generative modeling
	2.2.2 Generative modeling. Parametric/implicit functions
	2.2.3 The deterministic fractal shapes based on iterated function systems (IFS) as a special case of generative modeling
	2.2.4 Subdivision surfaces as another special case of generative modeling
	2.2.5 Grammars as another special case of generative modeling
	2.2.6 Fractal shapes in general
	2.2.7 Generic shapes = algorithms + data structures

	3 A suggestion for a possible methodology
	4 Examples
	4.1 Example 1. A virtual exhibition stand design based on generative modeling and visual scripting
	4.2 Example 2. 2D and 3D shapes of soap bubbles based on a textual algorithm
	4.2.1 2D soap bubble film algorithm

	5 Conclusions and possible future
	Acknowledgements
	References

