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Abstract

In this Master Thesis, we propose an efficient method for rendering complex luminaires based on
neural networks. We reduce the geometric complexity of the luminaires by using a simple proxy
geometry, and encode the visually-complex emitted light field by using a neural radiance field
(NeRF). We tackle the multiple challenges of using NeRFs for representing luminaires, including
their extreme dynamic range, their high-frequency content on the spatio temporal domain, and
the spherical coverage, as well as the required modifications for seamlessly integrating our NeRF
in synthetic enviroments. For that, we use a combination of non-exponential transmittance
functions, and a novel loss that accounts for the HDR content as well as alpha blending for
integration. We implement our model into a modern deep learning framework, and demonstrate
high-quality neural rendering of such luminaires. Then, we integrate our model into the rendering
software Mitsuba, and demonstrate renders with much less variance with a given sample count,
simultaneously achieving a high visual quality. Finally, we propose several avenues for future
work where our neural implicit luminaires could be used for importance sampling and drastically
reduce rendering times.
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1. Introduction

Rendering techniques based on Monte Carlo methods have replaced rasterized graphics in the
majority of applications where generating realistic computer images is required [I]. This is
due to the simplicity of its implementation and its capacity to simulate most light interactions
within a scene. These techniques are based on generating a random set of light paths from the
different light sources in the scene to statistically estimate the total incident radiance on the
virtual camera. However, these algorithms carry a high computational cost, which significantly
increases as the light transport effects in the scene we are simulating become more complex
[2]: as the complexity of the simulated light paths increases, so does the stochastic error of the
Monte Carlo estimate (its variance), requiring larger sample counts for obtaining a tolerable
error.

A particularly challenging scenario results when scenes are illuminated with a relatively
complex artificial light source. The illumination from simple area lights or distant illumination
from e.g. the sky can be solved by using advanced sampling routines [3| 4, 5] or even computed
analytically using approximations [6]. However, as the light source increases in complexity these
approaches become unfeasible: the complex light paths connecting the (potentially multiple)
individual light sources in the luminaire, and the surfaces being illuminated by simply random
chance is unlikely in the best of cases (impossible in a worst-case scenario of perfect reflectors
and refractors). Thus, computing the illumination from a complex luminaire would require many
thousands of samples to converge, even using complex Markov-Chain Monte Carlo methods [7]
that are not suited for most production renderers due to its complexity and unpredictable
convergence.

It is worth noting that complex luminaires are ubiquitous in real-world scenes, from simple
light bulbs with tiny coils as light sources, to complex chandeliers made by a myriad of small
glass pieces scattering the light of the (potentially many) emitters within. Thus, improving
over the brute-force approach would enable increasing the complexity of the luminaires used
in films or videogames, and in the market of architectural visualization and interior design [8].
Precomputing the radiance field of the luminaires is an effective approach for avoiding the
sampling of difficult paths in run time [9, 10]. It allows to encode all light paths exiting the
luminaire as a five-dimensional proxy function, which is fast to access during rendering, and
avoid complex paths: to determine the illumination at a point, it is only needed to integrate
over the proxy 5D function. Unfortunately, accurately precomputing a luminaire requires a very
dense storage of the five-dimensional function, which might become unfeasible due to memory
constraints, or to combine the precomputed proxy with the real complex geometry of the scene.

In this work we tackle this problem by leveraging the potential of recent advances on deep



1. Introduction

learning [I1]. In particular, deep learning has already demonstrated to be very effective for
improving traditional rendering techniques in several applications including image supersampling
[12]; state-of-the-art Monte Carlo denoising [13]; neural networks-guided importance sampling
[14, 15]; accurate physically-based materials [16l 17, [I8] 19]; or faster rendering of scattering
media [20]. Inspired by the success of these approaches, we transform our complex luminaire
into a neural radiance field (NeRF) [2I]. NeRFs have emerged as a suitable representation
of very complex three-dimensional scenes reconstructed from a (relatively) sparse set of views,
by encoding the scene as a lightweight volumetric function, modeled using a neural network.
It allows to compactly encode highly complex spatio-directional representations of 3D scenes,
which can be efficiently rendered by standard ray-marching through the volumetric proxy (see
Chapter [3| for details).

Unfortunately, off-the-shelf NeRF's are not adequate for our particular task, and modeling
a luminaire using a NeRF, and integrating it into a Monte Carlo rendering engine, introduces
several challenges, including: 1) luminaires have high dynamic range (HDR), as opposed to the
usual low dynamic range (LDR) targeted by NeRFs, and 2) exhibit high angular frequency; 3)
they require handling both opaque and transparent elements for integration in synthetic scenes;
and 4) as opposed to most image-based NeRF-based rendering, luminaires must be represented
over the full sphere of directions, increasing the amount of required samples to reconstruct the
NeRF. We solve these challenges using a combination of a linear volumetric representation of the
NeRF inspired in correlated media [22, 23], a training loss designed for handling HDR content
and the introduction of an orthographic camera model for the training phase.

We integrate our model in the academic renderer MITSUBA, and demonstrate high quality
rendering of complex luminaires using our method. In particular, the contributions of this
work are:

e We pose the problem of high-quality representation of the emission of complex luminaries
using NeRFs.

e We develop a NeRF adapted to representing the emission of luminaires, tackling prob-
lems such as their high dynamic range, and their combination of opaque and transparent
surfaces.

e We integrate NeRF rendering into the physically-based renderer Mitsuba as an Emitter
plugin with an special BSDF, that can be used for rendering any scene with NERF-based
luminaires.

10



2. Related Work

2.1 Volumetric representations of appearance

Lately, volumetric approaches have been successfully deployed to approximate the appearance
of complex geometries in a wide array of different applications, from trees [24] 25], cloth and
hair [26] 27, 28, 29], or even participating media, as an aggregate of particles (sugar, salt,
etc) [30, BI, B2]. More recently, based on previous work on non-exponential media [23], 33],
Vicini et al. [22] improved the accuracy and quality of these volumetric representations of surfaces
by introducing a non-exponential, parametric transmittance model, which extends beyond the
traditional exponential transmittance model used by previous methods and is able to model a
higher amount of different media (correlated or otherwise) with a higher level of detail. Our work
builds upon these ideas, using a volumetric representation for approximating the appearance of
complex luminaries.

2.2 Neural Radiance Fields (NeRFs)

Light fields are vector functions representing the amount of light flowing in every direction
through every point in space. There’s been an increasing amount of interest in using neural
networks in the last few years for learning light fields of scenes from a set of sparse views
[34, 35, [36], in order to be able to generate novel view points.

Neural Radiance Fields (NeRF) [21] is one of these methods. From a set of sparse views
of a scene and known camera poses, it can learn the complete light field of the scene, enabling
the generation of views that were not contained in the original dataset. Their combination
of volume rendering techniques and positional encoding allowed them to largely outperform
previous methods (see Chapter [3|for more information).

In the last 2 years, NeRF has seen an explosion in popularity, opening many possibilities in
a wide range of applications spanning the fields of computer vision, robotics and graphics, such
as novel SLAM algorithms that jointly optimize pose and scene reconstruction [37], handling of
transparent materials by robotic arms [38], rendering of large scenes from unconstrained sets
of images [39], better multi-view dense depth estimations [40], novel pose estimation methods
[411, [42], better generative models from audio cues [43]; furthermore, NeRFs themselves have
been extended to work in the temporal domain and in deformable scenarios [44] 45] 46], render
and train faster [47, 48,49, 50, [51] and even generalize to other geometries [52] 53,64, [55] 56, 57],

11



2. Related Work

among many, many other.

We adapt the NeRF pipeline to work with complex luminaries, which poses several challenges
due to the need of blending them with a synthetic scene, their large dynamic range, their
spherical coverage and the presence of diffractive materials.

2.3 Complex Luminaries

The previous body of work focusing on approximating the light distributed by a luminaire
to accelerate its rendering mainly draws from the concept of light fields. The earliest works
using light fields in the context of luminaire rendering attempted to measure their light field
by enclosing them in virtual surfaces, a proxy, decoupling their emission from the underlying
geometry [58,[59]. While our approach is similar to theirs in essence, the quality of their results
heavily depended on the number of samples used to approximate the light field, which made it
impractical for achieving high quality results. In a similar line, canned light sources [60] not
only measured the light field of the luminaire, but stored it in a format that could be used by
rendering engines. This approach, however, suffered from low quality results and immense data
storage needs.

A different approach also involving some kind of light field precomputation is the usage of
near-field raysets, which in essence are a set of light field samples parameterized in a suitable
manner [61) [62]. The raysets approach can record the energy leaving the luminaire in the form
of rays captured on the virtual proxy. These methods, and other derivations of them to support
importance sampling and data compression [63] work well in the context of small and localized
emmitters such as light bulbs, but scale badly to more complex luminaires.

More recent approaches include those by Lu et al. [64] and Veldzquez et al. [9] also pre-
compute the light field of the luminaire in order to accelerate its rendering. The former is able
to importance sample a discretized light field, but it requires an uncompressed light field of
the luminaire to do so, suffering from storage issues. The latter uses less storage, reducing the
luminaire to a set of anisotropic point lights (APLs), capable of approximating the light coming
from the luminaire and encoding it in a set of tabulated directional distributions; however, it
hasn’t been possible to date to integrate it into a multiple importance sampling strategy, which
makes it very inconvenient for its usage in regular path tracing-based rendering engines.

The closest method to ours is that of Zhu et al. [10]. Instead of attempting to reduce the
luminaire to a set of APLs, it uses a set of 3 multilayer perceptrons (MLPs) to not only learn
the complete light field of the luminaire, but to perform importance sampling and blending with
the rest of the scene. The models receive ray queries with the origin and direction as input, and
output color (evaluation), transparency or a small image of the luminaire as seen from the ray
origin, which gets transformed into a PDF to guide an importance sampling scheme. It does,
however, suffer from several issues: 1) it requires hundreds of thousands of images of every single
luminaire in order to be able to train each of their 3 networks (200k-350k for the evaluation
and blending/transparency network, 1M for the sampling one), which account for thousands or
millions of core compute hours; 2) the appearance of the luminaires is overly smoothed, and 3)
it still needs to query the networks several times per ray, which is slow and requires a dedicated
GPU for rendering. We feel we can improve on top of this brute-force learning approach by

12
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making use of the recent advances in neural implicit representations, in particular NeRF.

Our method extends NeRF, enabling it to work on higher dynamic ranges, and requires
only a 100 images to learn a high quality representation of the full light field of the luminaire.
Unlike Zhu’s method, which directly predicts final color for each input ray, we use a volume-
rendering approach, which is effectively able to implicitly learn a correct 5D representation of the
luminarie’s radiance field and produce higher quality results, with finer detail. We also make use
of spherical functions, so that our ray predictions are view-independent. This allows us to distill
our model into an octree data structure, reducing the volume-rendering to a simple querying of
stored values. This is much faster than using MLPs for inference, and can be perfectly integrated
into a rendering engine without the need of GPUs. Alternatively, if data storage is critical, we
can perform inference of our model during rendering; this is much slower, but we achieve a
4x storage reduction when compared with Zhu. Finally, our method does not require neither
the original geometry nor a different network for transparency, as we can obtain alpha masks
directly from our neural volume representation in order to blend the luminaire with the rest of
the scene.

13



3. Background

3.1 Monte Carlo Direct Illumination

The rendering equation [65] is the basis of all current realistic rendering techniques; it defines
the total amount of energy emitted from a point in the scene along a particular viewing direction
L, as a function of the incoming light L; and a bidirectional reflectance distribution function f,
(BRDF) modeling the angular distribution of scattered light as

Lo(x,w,) = Le(x,w,) + /Q fr(x,wi,wo) Li(x, w;) (w; - nx)dw;, (3.1)

with L.(x,w,) the emission at x, and nyx the normal at x. Note that the rendering equation is
recursive, since L; is the result of the outgoing radiance at other point in the surface.

Monte Carlo (MC) integration has dominated computer graphics ever since their introduction
in ray tracing algorithms [66]. Generally, MC methods stochastically estimate the expected
value F' of a function f(z) so that F' = [ f(z)dz by averaging a number N of random samples,
as

N .
Fr(F) = % ; ]J;Ei)) (3.2)

with (F') the MC estimate of F, z; a random sample, and p(z;) the probability density function
(pdf) of generating sample x;. Monte Carlo methods are unbiased, and their error is solely
characterized by the variance of the estimate. This variance vanishes as a rate of O(N _%), and
it is proportional to how well the probability function p(z) fits f(x).

Thus, MC integration can be used to estimate radiance at every point of a scene. To compute
Ly(x,w,) we use the MC estimate defined as

Li(x, wi)(wi . nx)
p(wi) ’

N W
Lo(3t.0) = (Lo, 100)) = L) + 3 o) (33)
=1

where p(w;) defines the probability of sampling the direction w;. Thus, in order to maximize
the variance reduction of the MC estimate, we would need to find a pdf such that p(w;) o
fr(x,wi,wo) Li(x,w;)(w; - ng). However, sampling proportionally to the product of the BSDF
and the incoming radiance is almost impossible for most scenarios. A more feasible approach
would be to use two or more pdfs, proportional to each of the terms (e.g. p(w;) x L;(w;)), and
combine them using some combination strategy (e.g. multiple importance sampling [2]).

14



3. Background

However, when light sources are occluded in most directions, or are hidden behind several
layers of refractive materials, it is very hard to estimate where the actual light is coming from,
and it is almost impossible to find a good p(w;). The reason is that the light incoming at x
from direction w; is the result of potentially many bounces of high-frequency, difficult-to-sample,
signals. Therefore, it is extremely unlikely to find a good sampling direction w;, and the scene
requires many samples to be rendered with low amounts of noise. This is exactly why rendering
complex luminaires is so challenging: these luminaires contain many layers and small pieces of
crystal, and even ornamental pieces of plastic, brass or cloth, that further scatter or block light
in many directions. Thus, if we were to know in advance where the final radiance from the
luminaire comes from we could implement efficient importance sampling techniques, leading to
immense reductions of variance when rendering with low samples.

3.2 Neural Radiance Fields (NeRFs)

Neural Radiance Fields (NeRF) [21] is a method for learning light fields of arbitrarily complex
scenes from a set of sparse views and known camera poses, enabling the generation of views that
were not contained in the original dataset. The essence of their approach can be summed in

Figure [3.]]
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Figure 3.1: NeRF pipeline overview. First, (a) it feeds positional and directional ray data to the model, which (b)
uses an MLP to estimate color and density at a given location along the ray, and (¢) volume rendering techniques
to output a final color prediction. The MLP is then supervised by computing a (d) MSE rendering loss between
the estimated and ground truth color. Image courtesy of [21]

The key behind why NeRF performs so well when compared with previous methods lies in
three main innovations:

Volume Rendering. NeRF represents the scene’s 5D radiance (light) field as the volume den-
sity and directional emitted radiance at any point in space. Consequentially, it uses traditional
volume rendering techniques to estimate the color C(r) of every ray r(¢) = x + tw traced across
its volume as

ty

C(r) = T(t)o (x(s)) c(x(s), —w) dt, where T (t) = exp (—/t o (r(s)) ds> , (3.4)

ln

with near and far bounds of the volume t,, and ty, respectively, and o (x) and ¢ (x,w) are the
density and color at point x towards direction w, respectively. Finally, 7 (¢) is the accumulated

15



3. Background

transmittance along the ray; once this value saturates, it means it has reached a surface in
the scene, and its accumulated color along the ray is the resulting pixel value. Since volume
rendering is differentiable, this allows them to learn the full 5D light field of the scene from only
a set of views.

Positional Encoding. NeRF is able to learn high frequency functions thanks to its mapping
of input coordinates (position and viewing direction) into a higher dimensional space using a set
of periodic functions (Fourier features [67]). Given that networks are naturally biased towards
learning lower frequency functions first [68], by reformulating the input as a higher dimensional
function they enable the network to learn higher frequency functions more easily.

In essence, they map the three coordinate values in x and the three components of the
Cartesian viewing direction unit vector w into a higher dimensional space, from R to R? L, using
a function v defined as

v(p) = (sin(2°7p), cos(207p), ..., sin(2F " Lap), cos(2L " Lrp)). (3.5)
The parameter L is empirically set.

Coarse-to-fine Optimization. NeRFs employ 2 different MLPs: a coarse model, and a fine
model. This is done in order to avoid wasting a high amount of samples on empty space and
occluded regions. The coarse model uses stratified sampling to sample a first set of N, locations
along the ray, while the fine model uses this to make a more informed sampling, sampling a
second set of Ny locations on the most relevant parts of the volume, using a form of hierarchical
sampling.

More specifically, in order to bias the sample placement of the fine network towards the
more relevant parts of the volume as detected by the coarse network, they rewrite the alpha
composited color from the coarse network, as a weighted sum of all sampled colors ¢; along the

ray
Ne

Ce(r) = Zwici, where w; = T;(1 — exp(—0;;)) (3.6)
i=1
with 7; being the transmittance until that point in the ray; essentially the cumulative sum of
densities. If these weights are normalized, we obtain a piece-wise constant PDF along the ray.
Now, sampling the second set of locations from this distribution can be performed by using
inverse transform sampling, finally evaluating the fine network at the union between both sets
of samples to compute the final rendered color of the ray.

16



4. Modelling Luminaire Appearance

Our goal is to evaluate a complex luminaire as efficiently as possible within any given scene.
In order to achieve that, we start by following previous works on luminaire modeling [9, [10]:
these works partially (or totally) remove the geometric complexity, precomputing the complex
light-matter interactions within the luminaire.

In order to model our luminaire, we first make the assumption that it will always be rendered
from the outside; this is a reasonable assumption for most applications, even for close-up shots.
This allows us to contain our luminaire inside a simple bounding box, acting as a geometric
proxy. Then, the radiance field from the luminaire can be encoded in a per-ray basis as a 5D
function f relating a position x; in the proxy and a direction w, with the accumulated radiance
exiting the proxy at x; in direction w,, as

f:R3xR?> 5 R; (x7,wo) — f(x1,wo)- (4.1)

This approach has been used by previous works [60} [10], and it is illustrated in Figure Thus,
the key problem is how to model the function f, such that a) it can be efficiently evaluated in
rendering time, b) it is compact from a storage perspective, ¢) it preserves the spatio-directional
high frequency of f, and d) can deal with the potentially large dynamic range of the luminaires.

This mapping is exactly the same problem present in image-based rendering [69], where
neural radiance fields (NeRFs, see Section have demonstrated to excel at representing
complex scenes. Thus, it is natural to pose our problem by using a neural representation of the
luminaire radiance field. However, directly applying a state-of-the-art NeRF to model synthetic
complex luminaires for rendering does not provide good results, and there are several challenges
that need to be addressed. We will first discuss these challenges; then, describe our model and
how it overcomes such challenges.

4.1 Main challenges

There are many challenges associated with attempting to fit the radiance field of a complex lu-
minaire with a neural network. We have identified the following as the most important problems
we will need to tackle throughout this project:

High Dynamic Range Implicit representations of neural radiance fields have only focused on
capturing LDR content, with outputs bounded between 0 and 1, and colors mapped to the sSRGB

17



4. Modelling Luminaire Appearance

1\

l
9
c

u = (z,y,2)

A
;
[

SN
N

/

Note: calculation in black background

Figure 4.1: The light field model relates positions in the bounding box and ray directions with the accumulated
radiance exiting the bounding box at that specific direction and direction. Figure courtesy of Zhu et al. [I0]

non-linear curve. However, in a physically-based rendering engine, it is detrimental to sample
from the full dynamic range of the luminaire, as the magnitude of the radiance coming from
every point of it is lost when using a compressed sRGB representation. It is also problematic to
optimize non-linear color curves, as the render is again tone-mapped at the end and this could
lead to incorrect color reproduction; we need to optimize linear RGB. Extending these methods
to work on HDR content is very challenging, as due to the nature of neural networks, the areas
with the highest radiance will dominate the gradient and thus the training, at the expense of
fitting the parts with lower radiance.

Null Emission Since we are modeling isolated objects that will be integrated into synthetic
scenes, we need to account for rays that carry no radiance. In natural scenes, these absolute-
black areas are uncommon as it would indicate the image has not been exposed correctly. Noise
usually accompanies these areas as well, making it difficult for the network to actually be forced
to optimize for 0 values. In a general machine learning context, dark pixels generate very small
gradients during training, which makes them a difficult training target as the error is dominated
by the more radiant parts.

Matting In order to blend our luminaire with the rest of the scene, we will need to let through
the proxy those rays that actually hit the convex geometry but not the underlying light source.
This requires us to incorporate not only the emission from a ray, but also the amount of light
that passes through the luminaire (i.e. the transparency).

Noisy training data Rendering noise is inherent to path tracing. Due to the complex nature
of our luminaires, this noise will be present unless we dedicate hours of compute to each of the

18



4. Modelling Luminaire Appearance

views rendered, which is unfeasible. Furthermore, we cannot filter over our renders, as bias
would be introduced and view consistency would be lost. The most problematic kind of noise,
however, are the so-called fireflies: bright pixels resulting from randomly finding low-probability
high-contributing paths, which result into very large variance, aggravating the issue of learning
a high dynamic range radiance field.

Full 360-degrees viewing freedom Most neural implicit representations require dozens of
images of a scene in order to correctly learn it. As an intelligent interpolation scheme, these
neural networks still require cameras placed relatively close to each other; otherwise, its ability
to generate novel views is significantly degraded [54]. In our case, however, we need to model
the full sphere around the luminaire, as radiance can come from any section of it. Without
assuming any symmetries, we would need a larger amount of training data to model such a wide
viewing range. This poses several other issues, from training times (more time to fit the data is
required when the pool is larger), to data generation times (more time rendering training data);
and most importantly, fitting more data, in essence a more complex and constrained function,
may require bigger networks or more complex approaches.

4.2 QOur Approach

Following a NeRF-like approach, we model our 5D function f(x;,w,) by integrating the
emitted radiance along a ray r(¢) defined with origin at x; and direction w,, following Equa-
tion . Furthermore, to integrate our luminaire in a scene, we need to also account for the
light that passes through from behind our proxy. Thus, our luminaires are modeled following

f(x1,wo) =C(r) + a(r) L (x(ts), —wo) , (4.2)

where alpha(r) = (1 — T (t)) models the transparency along the ray, and £ (r(ty), —w,) is the
radiance from the synthetic scene arriving at the intersection of the ray at the far bound of the
proxy, which is computed by the renderer.

Distance o Distance

-1.0

Linear

 Volume

Transmittance

T

Opaque Surface ?

Distance

Transmittance

2D Scene Transmittance plot oo Transmittance plot

Figure 4.2: The function that models transmittance varies depending on the surface rays intersect with: tracing
a batch of rays as in the picture above against a scene, we can see that solid surfaces have a distinct linearly
decaying transmittance function, while foliage shows an exponentially decaying behavior. Our luminaires are
mostly opaque and are formed by many solid pieces of metal and diffuse crystal: in theory, a linear model should
fit them better than an exponential one. Image courtesy of Vicini et al. [22]
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4. Modelling Luminaire Appearance

In order to compute C(r) and 7 (tf) we need to integrate the transmittance: most works
in NeRF use an exponential form of the attenuation following the Beer-Lambert law of classic
radiative transfer [70]. However, this builds on the assumption that the volumetric media is
formed by uncorrelated scatterers, which is not true for surfaces where a negative correlation
of the differential points in the surfaces exists (i.e. they block all light, and do not shadow
each other) [23] (see Figure [£.2), resulting into a linear, and faster-than-exponential, decay.
Since we are interested on solid surfaces, we follow Vicini et al. [22] and implement such linear
transmittance model in the volumetric definition of our NeRF, as

T(r) = max <0, - /t :f o (x(s)) ds> (4.3)

Computing o(x) and ¢(x,w). While we could use any encoding for computing o(x) and
c(x,w), a key characteristic of NeRFs is that they encode them using a neural network, which
are queried in run-time for each sample in Equations and . We query the directionally-
invariant density o(x) directly from the neural network.

For the estimation of the directional color ¢(x,w), however, we slightly diverge from tradi-
tional NeRF. Following recent work on accelerating NeRF’s rendering [47], we do not directly
obtain the color at a given direction, but a set of spherical harmonic (SH) coefficients instead.
SH are a set of orthogonal basis defined on the sphere, that allow representing any spherical
function as an infinite sum of terms (for more information on spherical harmonics, see the ap-
pendix of [47]). This gives us a low-dimensional, view-independent representation of the color
function ¢(x,w).

An even more important difference of color ¢(x,w) in our work is the range: While NeRFs
are normalized in the interval [0, 1] (low dynamic range), in our case we need to retain the
full dynamic range of the light source. This introduces several practical problems in terms of
encoding and specially training, where we need to adapt our training loss by introducing a
regularizer to cope with extreme contrast ratios in HDR content. Finally, unlike NeRF, we also
directly supervise the opacity 1 — T (t;) (the alpha mask) of our rays. In the following, we
describe the architecture of our neural network (Section [4.3)), our custom loss function (Section
, our choice of camera model during training (Section and some details regarding the
training procedure itself (Section [4.6).

4.3 Architecture

In Figure we present our architecture. It is a slightly modified version of the one used by
Mildenhall et al. [2I] and Yu et al. [47]. Overall, we use the same twin-network structure
that NeRF uses (coarse and fine models, see Section . Each network is a densely connected,
8-layered 256-neurons-wide multilayer perceptron (MLP), with an extra output layer of 128
neurons. We use ReLU as the activation function between the inner layers. It is, all in all, the
same architecture used in DeepSDF [71], with the inclusion of positional encoding for the inputs
(see Section ; we use L = 10 for the positions, and L = 4 for the directions.

Following Yu et al. [47], our network inputs a position x and a w and returns the density
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4. Modelling Luminaire Appearance

o(x) and the SH expansion of the color ¢(x,w) (the SH coefficients for each RGB channel) . In
practice, it means that we have (I 4 1)2 output neurons for each color channel, with [ being the
spherical harmonics degree used (in our case, we use a 4th degree SH expansion). Note that
we also apply a non-linear transformation over the SH expansion to obtain the final color. The
final color is then estimated as

Ilmax 1
e(x,w) = (Z S () Yl’”(w)) , (4.4)

=0 m=—1

with k" (x) the SH coefficients returned by the neural network for each channel, ¥, (w) the SH
basis projected in direction w, and S(-) a non-linear activation function. Our differences with Yu
et al.’s model, at the architectural level, reside in the output activations used: Instead of using
ReLU for the density (o) estimation, we use a Softplus function [72], whereas for the final RGB
estimation, we used an extended range sigmoid (that is, a sigmoid multiplied by the maximum
scene radiance, which is known to us as we are only working with synthetic luminaires).

Unlike both NeRF and NeRF-SH, we do not learn a low dynamic range, sSRGB tonemapped
color function; instead we learn the full dynamic range of the linear color function. The model
is thus optimized to learn linear color divided by its maximum scene radiance, and is then
expanded back in the output. This way, we can compute losses in a bounded [0,1] range and
still recover the full extent of the dynamic range. This proved much more stable than using
unbounded activation functions such as the exponential, with the error committed by the loss of
information by the division being negligible when training with full precision (float32) linear
values. We tested various different approaches to unbound the output; we refer to the Appendix
[A] for details on other explored activation functions.
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Figure 4.3: Our architecture
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4. Modelling Luminaire Appearance

4.4 Loss function

As in NeRF, we supervise color in both the coarse and fine models with a mean squared error

loss (MSE)
1
ﬁ = — E
|R| reR |:

where C | (r),(f{(r) are the color predictions by the coarse and fine networks respectively, C(r)
the color ground truth, and R is the set of |R| sampled rays. However, using just MSE with
the kind of wide dynamic range present in our luminaires produces wrong color reproductions,
darkening low radiance areas or outright not converging to a result, as the error is dominated
by the exposed light sources, strong specular reflections and other highly radiant areas.

~ 2
Co(r) —C(r)H2 n

&) - o] (4.5

In order to achieve an even learning across the full dynamic range, we needed to differ-
ently weight low and high radiant areas. We achieved this by regularizing MSE by the square
of the approximate luminance of the pixel, in the spirit of Lehtinen and colleagues [73]. In
essence, Lehtinen et al. proposed to use a mapping similar to Reinhard’s global tonemapping
operator [74]E However, unlike their approach, we also need to multiply the estimated pixel
luminance by the maximum scene radiance Ly, to compensate the fact that we are estimating
color in the (0,1) range; this results in the following HDR-aware loss

2 . 2
b Ce(r) —C(r) Cy(r) —C(r)
L= IR| 7;3 ‘ Aéc(r) +e€ AC}(T) +€ | ’ (4.6)

2

where € is a regularizing empirical term; we found that ¢ = 0.01 works well for all our tested
luminaires. In practice, we found that any decaying function can be used as a regularizer to
the MSE loss, balancing the supervision of low and high radiance areas. For example, we
found success with exponentially decaying functions of the type e #%, with 3 being a tunable
hyperparameter. However, these required manually setting the 3 for each scene, depending on
the contrast ratio and maximum radiances, making the previous regularization more convenient.

Finally, when we analyzed the original NeRF model in detail, we discovered that when
using NeRF with individual objects in empty space (empty backgrounds), training convergence
heavily depended on opacity supervision. This is not explicitly done through a direct alpha
mask supervision, but rather by ingeniously using white backgrounds. By changing the color
output of the model to

C'(r) =C'(x) + (1 — a(r)), (4.7)

NeRF performs an alpha mask supervision under the hood, as incorrectly predicting the opacity
of a pixel makes its target color unreachable (the sigmoid cannot output negative values to
compensate incorrect alpha predictions), producing high errors. This works for the original
NeRF due to the nature of their selected examples. In purely absorbing scenes white only
corresponds to the background and very uncommon high energy highlights. In contrast, in our
luminaires white can correspond to exposed light sources, and it can amount to a significant
number of pixels in the scene. Thus, using this kind of alpha supervision either destabilizes

'Reinhard’s global tonemapping has the form M(y) = % and derivative M’ (y) = W
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4. Modelling Luminaire Appearance

training or produces incorrect results in most luminaires. We alleviated this issue by combining
white backgrounds with a direct supervision of alpha masks through an MSE loss, as

é(r) - |’

~

) —a(r)|?] | .
Crir) + ¢ +lag(r) —alr)l; (4.8)

2 2

Note that we only need to supervise opacity in the fine model, as it is the one that will define the
final opacity of a ray. As all our data is synthetic, we have ground truth alpha masks available
for supervision.

4.5 Camera Model

NeRF uses a perspective camera model; this essentially means rays of each camera pose have
a common origin, and their direction is defined by the focal length of the virtual camera and
the resolution of the image. However, during our testing, we discovered that NeRF struggles
to learn correct volumes when using wide angles (i.e. small focal lengths; we tested with focal
lengths from 18 to 70mm). Every working example of NeRF already uses abnormally high focal
lengths (in the order of thousands of mm) or forward-facing scenes; both cases have in common
a much smaller variability in ray directions and almost parallel rays. Inspired by computational
tomography, which also attempts to learn volumetric representations of a mix of participating
media and opaque surfaces (bones, fatty tissue, muscle, etc) and where rays are traced completely
parallel to each other, we decided to implement an orthographic camera model in NeRF.

In an orthographic camera model, rays are perpendicular to the camera plane and parallel
to each other, with the origin being placed at the center of every pixel in the image. The lack of
foreshortening (i.e. objects do not become smaller when placed further from the camera) only
impacts the learning phase, and we can use our resulting neural radiance field with perspective
models during inference without any issues. In Figure we can see a comparison between
using NeRF’s perspective camera model with a focal length of 50mm and our orthographic
model. While when using the perspective model the neural network generates artifacts close to
the camera plane to justify many details in the training views, rapidly deteriorating its capacity
to generalize to novel views, the orthographic model is able to learn smooth surfaces and obtain
much better quality results. We also tested deactivating color supervision, supervising depth
only; the model was still not able to produce smooth surfaces with small focal lengths.

4.6 Training Details

We used JAX [75] and its machine learning API, FLAX [76] for training. We trained our models
with a batch size of 1024 rays, each of them sampled at N. = 64 positions in the coarse model,
and Ny = 128 additional coordinates in the fine one. We used d = 4 degrees of spherical
harmonics, and an ¢ = 0.01 for the color loss regularizer. Max scene radiances varied from the
A = 1.5 of the dallas dataset, to the 12.0 of the portica dataset. All three components of the
loss (coarse color supervision, fine color supervision, and alpha supervision) were given the same
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4. Modelling Luminaire Appearance

Figure 4.4: Comparison between using a perspective or an orthographic camera model during training, on the
Portica dataset. On the left we use a 50mm focal length perspective camera, while on the right an orthographic
camera model was used; in both cases, we show the ground truth on the right and the estimate on the left,
with the first row being the color prediction, the second its depth estimation and last the predicted alpha mask.
Notice the high frequency noise present in the left depth map, in contrast to the smooth surfaces learned by the
orthographic model.
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4. Modelling Luminaire Appearance

weight. We used Adam[77] combined with an exponentially decaying learning rate, starting at
Ir =5 x 10~ and decaying to I = 5 x 1075 by the end of training. Our models were trained
for 700k-1.1M iterations, which took between 1 and 2 days on an RTX 2080Ti.
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5. Integration into a Rendering Engine

We integrate our NERF-based complex luminaires in the physically-based open-source renderer
Mitsuba [78]. For that, we define a new Emitter plugin implementing our model (complexlum),
which is attached to the proxy geometry (in our case, a Sphere). This plugin has two main
functions: 1) an evaluation function eval that returns the radiance emitted in a given position
x; in direction w,; and 2) a sample function sample that samples the light source. In addition,
to account for the non-occluding areas of the light source (e.g. semi-transparent areas, or empty
space within the proxy), we assign to the proxy a null BSDF that allows us to handle such
transparency (nerf mask).

Emitter evaluation Once a ray hits the proxy geometry, we evaluate the contribution of the
ray by evaluating the NeRF encoding the luminaire. We first put the ray in the local coordinates
of the light source. Then, we simply evaluate Equation numerically. While there are a
number of unbiased approaches for volume rendering [79], we use the same procedure as in other
NeRF methods, based on ray marchingﬂ

Emitter sampling We currently only support a uniform sampling procedure; that is, our
complex luminaire is sampled uniformly over the surface of the proxy that contains it. However,
we acknowledge that directing samples towards the areas where energy is higher in the luminaire
would provide massive speedups and variance reductions with low sample renderings. Since
having the complete light field of our luminaire provides us with the final sources of radiance in
the luminaire, we can avoid the issue of having to connect light source and shading point, which
usually requires massive extra computational resources for some of these complex luminaires.
Sampling procedures based on these implicit light fields remain a very interesting avenue of
future work.

Transparency BSDF Blending is a fundamental component of our implementation. Our
luminaires don’t fill the entire bounding box that contains them in the scene, meaning that it is
necessary to let through transparent rays across the proxy. In Figure|5.1} we can see an example
of our dallas luminaire rendered without the blending component. As you can see, our entire
spherical proxy is opaque, and the luminaire is incorrectly blended with the scene.

For this reason, we create a custom bidirectional scattering distribution function (BSDF),

'Ray marching estimates the integral along the ray by using simple piece-wise constant quadrature, i.e. by
taking small steps along the path and sample on each step.
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5. Integration into a Rendering Engine

Figure 5.1: Results of rendering our dallas luminaire with our blending mechanic deactivated (left), just computing
the product of opacity by estimated color (centre) and our full blending scheme (right)

which allows us to perform BSDF sampling of our luminaire and combine it with multiple
importance sampling (MIS) methods. The new BSDF exploits the predicted alpha channel of
our models for each ray to let through rays across the bounding sphere of the luminaire that
intersect empty areas, where no radiance is being emitted, allowing us to blend the NERF with
the rest of the scene. MITSUBA is extended accordingly to enable emitters to have indexed
values, which it naturally wouldn’t allow. Blending the radiance field with the rest of the scene
in this way enables us to still compute bounces from the luminaire in areas where no radiance
is being emitted (some brass parts, for example). While having null radiance, rays still saturate
the density in these areas, as they are recognized as surfaces by the model.

5.1 Implementation details

Our model is trained with JAX, which allows for faster training and inference than other frame-
works. However, it comes with a major caveat for our particular application: JAX does not have
a C++ APL In order to avoid re-implementing NeRF in C++4, we exported our JAX functions
into a TensorFlow frozen graph using JAX2TF [75]. This disables the posibility of computing
gradients (which we do not need as we are not re-training our models outside of JAX) and is not
very memory efficient (as the graph explicitely describes every basic function performed in the
order it is used), but allows us to rapidly obtain an end-to-end model that inputs ray queries
and outputs final RGB and density values. Once we obtained the exported model, we used
TensorFlow’s C API to perform inference of our frozen graph within Mitsuba.

Note that, as some authors [16] have previously suggested, launching inference queries to
TensorFlow when using purely fully connected MLP models results in a heavy overhead. Given
that we are essentially performing matrix multiplications with pre-trained weights, we could
obtain huge performance gains by implementing a vectorized version of our neural network
using e.g. Eigen [80]. This could significantly improve the performance of our implementation.

Another avenue for further performance gains is to perform volume rendering natively in
C++, instead of freezing the volume rendering equations along with the model graph. Finally,
exploiting the fact that we are optimizing spherical harmonics instead of direct RGB values
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5. Integration into a Rendering Engine

allows us to extract a representation of our neural radiance field into an octree, a data structure
that would enable much faster rendering, as no matrix multiplication would be needed, just
accessing stored data values [47]. We demonstrate the potential of these methods for improving
the performance of our approach in Section [7}, though we could not implement them in due time
and remain lines of future work.
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6. Evaluation and Results

Finally, we will evaluate the performance of our appearance model, its integration in Mitsuba
and show some renders in realistic scenarios. But first, we will talk about the different datasets
we generated and our intentions with them. Extra renders, videos and other results are stored
in a public Google Drive folderﬂ

6.1 Data Generation and Dataset Properties

In order to generate our datasets, we used Blender for the modelling part and Mitsuba for
rendering. We obtained 3D models from a variety of sources [81] [82], 83] and also created some
of our own. We sample cameras in a 360-degree sphere surrounding our luminaires using a 2D
Halton low-discrepancy sequence warped to the surface of the sphere. Using a pseudo-random
camera placement scheme allows us to ensure cameras are not placed either too close or too far
from each other, evenly sampling the full area surrounding the target geometry, while allowing
us to easily increase or decrease the amount of views used during training while ensuring this
property is still maintained at any moment. For extensive details into the generation of poses,
rendering and the adaptation of the datasets to NeRF/NSVF data conventions, we refer to

Appendix [A]

In order to test our method, we rendered and used 4 different datasets, which can be seen
in Figures We include the raw color histogram of each view, to better visualize the extreme
contrast ratios our method has to model. We sum our intentions with each dataset in Table [6.1l
The datasets were rendered with a resolution of 800x800 using an orthographic camera model.

"https://drive.google.com/drive/folders/1S40S3fkwX UjSakcxgoigJt5pbF dfNt6W ?usp=sharing|

Geometry | Description and Intention

Dallas Classic chandelier with many different light sources, crystal components and view-dependent metallic reflections
Shard Test the limits of the model to learn highly refractive luminaires
Portica Very Complex geometry and exposed light sources. Test a combination of extreme dynamic range curves and intricate geometry

Neoclassical | Test our capacity to model luminaires with a significant amount of non-emissive areas

Table 6.1: Purposes of our different datasets
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Figure 6.1: Random views of the different datasets we rendered, and their respective raw color histograms for
reference. From left to right: dallas, shard, portica, neoclassical

6.2 Evaluation of our appearance model

We rendered some test poses using models trained on our datasets in Figure In Table
we evaluate the performance of these luminaires on their respective test dataset. It must be
said, however, that due to how we place cameras and select test poses, these are placed at the
maximum parallax point between 2 train poses; effectively making them the worst case possible.
We encourage the reader to see our videos E| to visualize real-world performance. Training time
oscillated between 1 and 2 days for each scene, and in all cases we used a 100 images as training
input.

PSNR | SSIM
dallas 32.1973 | 0.9541
portica 20.9595 | 0.7859
shard 17.8199 | 0.7412
neoclassic | 25.6657 | 0.8974

Table 6.2: Measured results for the different datasets used

Loss ablation Additionally, in Figure[6.3] we present an ablation study comparing the results
obtained when using the different components of our loss function in the shard dataset. This
is a very challenging dataset, due to the numerous refractive shields, complex light paths and
extreme contrast ratio. We compare them against each other and against the results obtained
by training a normal, LDR sRGB NeRF on our luminaire dataset, which we can be used as
a baseline, providing further proof of the difficulty of the dataset even when trained with a
compressed low dynamic range. We also evaluate the whole test dataset on different metrics
(PSNR, SSIM) and compute their averages in Table We include the result for training the

‘1https: //drive.google.com/drive/folders/ 1S4OS3fkaUjSakcxgoith5prdit6W?usp:sharingl
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Figure 6.2: Random test views rendered with our approach
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same luminaire on with a traditional NeRF (that is, with a low dynamic range, MSE and sRGB
colors) for reference.

Figure 6.3: Test renders for the ablation study. First row corresponds to color renders, second to predicted depth,

and third to predicted alpha. From left to right: Groundtruth test view from the shard dataset; MSE+whiteBKG;
MSE+WhiteBKG+regularization; MSE+WhiteBKG+regularization+Opacity loss

PSNR SSIM
] sRGB LDR MSE 19.1936 0.7659
Linear HDR MSE (collapses) | (collapses)
Linear HDR MSE 4 White BKG 16.1787 0.7095
Linear HDR MSE+WhiteBKG+regularization 16.6968 0.7183
Linear HDR MSE+WhiteBKG+regularization+Opacity loss | 17.8199 0.7412

Table 6.3: Ablation study for the different components of our loss function

Transmittance model ablation We also compared the impact of using our linear transmis-
sion model vs the exponential model traditionally used in NeRF (Table [6.4). As you can see,
our linear model outperforms the exponential one on the test dataset of our dallas luminaire.
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Transmittance model | PSNR SSIM
Exponential 31.0389 | 0.9432
Linear 32.1973 | 0.9541

Table 6.4: Comparison between the two different transmittance models implemented, training on the dallas
dataset

Performance We did not finish the Mitsuba integration of the luminaire octree rendering
method in time, but we can analyze the performance of the different methods for generating a
view of a luminaire outside of the path tracer. In Figure we can compare the ground truth
render with the NeRF and Octree renders, together with their respective rendering times. We
used 4 spherical harmonics degrees to train all our models, and achieve a speedup of x10000
when compared with NeRF. However, on difficult scenes such as dallas, with a full sphere of
possible viewing angles, this extraction process requires tweaking several hyperparameters in
order to work best, such as the density threshold for considering a voxel empty, the number
of cells to create, etc. Otherwise, it can lead to results with a clearer, whiter appearance, due
to considering some voxels in front of the camera solid instead of empty. This can be slightly
noticed in Figure a more careful choice of hyperparameters is required to correctly extract
this scene.

Figure 6.4: From left to right: path-traced ground truth (630 seconds), NeRF render (16 seconds) and Octree
render (1.456ms) for a random test view

6.3 Evaluation of our Mitsuba integration

In Figure [6.5] we can see the result of rendering our portica luminaire within a Cornell Box.
We compare it against the same scene, but using a traditional path tracer and the original
geometry. As we can see, at the same number of samples, our method thoroughly outperforms
the traditional path tracer. Even with a uniform sampling scheme, variance in the scene is
much smaller. Rendering times, however, paint a different picture: our method takes 54.5m to
render, while the normal path tracer takes just 7 seconds. This is mainly due to using single-
ray batches, and our CPU-only test implementation. Batch inference on GPU, or using the
proposed luminaire octree, could certainly bring performance up by several orders of magnitude;
this remains a promising avenue for future work.
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Figure 6.5: Mitsuba renders for the portica luminaire in a Cornell Box. Left is our method; right, the same scene
rendered with a traditional path tracer and the original geometry. Both scenes rendered with 16 samples per
pixel.

We can also render a close-up of our luminaires, as in Figure As we can see, the quality
of the rendered luminaires is generally quite high (with perhaps the exception of shard, our
most challenging dataset); however, we can notice the presence of small light leaks in the alpha
blending due to the slightly imperfect alpha estimation around the borders, as well as small
artifacts on the edge of the bounding box for some of the luminaires. We believe these artifacts
are caused due to the periodic nature of the functions used to map our inputs (Fourier features):
when querying the edges of the bounding box, due to how we raymarch from the intersection
point along the ray for a fixed distance, it is possible to access previously unseen spaces. Our
theory is that the network propagates the luminaire in space periodically, generating these small
portions of the opposing side of the luminaire when accessing these unseen areas. This is however
uncommon and properly adjusting the spatial scaling of the luminaire fixes the issue. For this
reason, octrees, which avoid the process of querying the MLPs, do not suffer from this issue.
We highlight these limitations by rendering up-close; nevertheless, as we can see in Figure [6.5
in normal scenes these are hardly perceivable. Also, rendering at higher resolutions mitigates
the issue as well.

Our implementation is not limited to HDR luminaires, but to any pre-trained neural volumet-
ric representation, as long as they are exported to a graph and their weights frozen. Figure
shows the Lego dataset from [2I] rendered inside a Cornell Box-style scene in Mitsuba. As you
can see, we can also combine our neural luminaires with other traditional light sources.

In Figure we can observe that our implementation performs well when tested at different
levels of detail (LOD); rendering the volume at different camera distances provides consistent
results, but it suffers a bit from aliasing. Recent work has successfully reduced NeRF’s aliasing
issue [72]; however their approach of rendering using conical frustums instead of rays would not
be suitable for a path tracer.
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Figure 6.6: Mitsuba renders for all 4 of our datasets in a Cornell Box-style scene. For every pair, left is our
method; right, the same scene rendered with a traditional path tracer and the original geometry. Both scenes
rendered with 16 samples per pixel.

Figure 6.7: The Lego scene rendered in Mitsuba, within a Cornell Box-style scene. The model was originally
trained in LDR. On the right, the same model has been rendered along with another light source. Of course, with
the Lego being modelled as a light source itself, it does not interact with the other one.
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Figure 6.8: Lego model rendered at different distances.

Finally, we showcase the potential of our method with a realistic bedroom scene [?] in Figure
Artifacts on the sides of the luminaire can be easily eliminated by correctly adjusting the
bounding box scaling; however, we lacked the time to repeat the renderings. In any case, we
demonstrate high quality renderings of realistic scenes, with very low amounts of noise for the
samples used. This demonstrates the enormous potential using neural light fields currently has
in traditional rendering pipelines.

36



6. Evaluation and Results

Figure 6.9: We showcase the potential of our method rendering a realistic bedroom scene with one of our lumi-
naires, (dallas). Top used 128 samples per pixel and extra light sources in the windows, while bottom used only
2 samples per pixel and no extra light sources. A third, cleaner image without light sources can be found in our
Drive Folder.
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7.1 Future work

While it’s only the beginning for neural radiance fields in traditional rendering engines, we have
already demonstrated that not only it is possible to integrate them, but rather to obtain high
levels of quality. Ultimately, what will make this a more appealing proposal is via accelerating
the querying process of these luminaires. Throughout this work we have suggested several paths
to accelerate the rendering process of these luminaires within Mitsuba: from Eigen-based MLPs,
through TensorRT batch inference and finally the proposed octree-based data structure for the
luminaire.

We also believe in the potential of developing novel sampling techniques that take advantage
of implicit light field representations: as we do not need to path trace through complicated
geometries, and we already know how light flows out of the luminaire, we can use this knowledge
to direct samples accordingly.

Another avenue for future work is modelling the light transport within the luminaire. While
our method is able to capture the radiance field of the luminaire, it does not, for example, take
into account the effect other light sources in the scene have on the appearance and emitted radi-
ance of our luminaire: that is, light coming from the scene reflecting or refracting from/through
the luminaire. This is different from current relighting methods [84], where diffuse and absorbing-
only surfaces are assumed, and no light transport within the object is explicitly modelled. It
remains an interesting line of future work to obtain neural implicit representations that not only
model the radiance field in a given scenario (i.e. void in our case), but rather be able to estimate
properties of the learned luminaire, so that it is possible to blend them in a more physically
accurate way, and even edit these properties without having to re-train the luminaire.

Regarding our transmittance model, we reckon that for geometrically more complex lumi-
naires, composed of mixed correlated and uncorrelated media, this model could also be replaced
with a parametric non-exponential model [23], B3], 22], capable of fitting both. We did not have
a rendered dataset that could benefit from such a model so it remains as future work to test it.

7.2 Conclusions

In this work we have presented a method to successfully extend NeRF to work in the HDR
domain, demonstrating its good performance in the context of rendering complex luminaires.
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Furthermore, we have successfully integrated our neural luminaires into a traditional rendering
engine, opening many avenues for future work to dramatically reduce rendering times and vari-
ance, developing novel rendering and sampling techniques that take advantage of implicit light
field representations. We believe our solution shows great promise and should ignite interest
in combining state-of-the-art computer vision techniques such as these neural light fields with
traditional physically-based rendering.
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Appendix A. Project management, tools, other
tests and further implementation
details

A.1 Project management

Table shows a detailed breakdown of time spent in each section of the project.

Project Task Estimated Time Spent
Literature review: neural implicit geometry,
importance sampling, complex luminaires, 85h
neural rendering, neural radiance fields
Datasets: modeling, generation and transformation 50h
code
NeRF-SH: varied tests, HDR extension and

. . . 350h
significantly expanded evaluation suite
Ablation studies, model performance evaluations 40h
NeRF-SH to Octree conversion 40h
Mitsuba NeRF expansion code 140h
Mitsuba tests 60h
Thesis Document 70h
TOTAL 835h

Table A.1: Project management

A.2 Tools

Throughout this project I used the following tools:

1. Python. General scripting, test development, and language used throughout most of the
project.

2. C+4++4. Used in Mitsuba in order to extend its functionality.
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3. Mitsuba. Academic physically based renderer we extended for NeRF inference in our
project.

4. JAX. GPU Numpy and ML framework.

5. FLAX. ML API for JAX.

6. Tensorflow. We used its C API for model inference within Mitsuba.

7. Github. Git tool used.

8. Pytorch. NeRF-SH to Octree conversion.

9. WSL2. Training and rendering in Linux within a Windows environment.
10. SSH. Deploying workloads on the Lab workstations.

11. BTgX. Writing this document.

A.3 Data generation

In order to obtain an implicit representation of our luminaires, we first need some fine-quality
renders. We modelled the different luminaires using Blender, using models and parts both orig-
inal and taken from various sources [81), 82, 83]. For the rendering part, we used Mitsuba.
Mitsuba is an open-source, research-oriented rendering engine with plenty of features and par-
allelization in CPU. The fully accessible source code makes it suitable to our application, where
we look to alter the how light sources are defined and queried inside Mitsuba.

A.3.1 Blender and Scene Composition

We use Blender [?] to compose our luminaires. We designed a variety of different luminaires with
different attributes to test our method. These attributes can be summed up in low-high frequency
geometry, low-high frequency appearance, intensity of the specular highlights, dynamic range of
the luminaire and low-high amounts of dark/non-emissive areas. In Section we include an
analysis of our selected scenes and their properties.

In order to facilitate camera placement for the bulk generation of renders later on, the
geometrical center of the luminaires was placed in the center of the scene. We used Blender
2.79 in order to take advantage of the Mitsuba scene exporter plugin. This plugin allows us
to model our scenes in Blender and conveniently export the result into a Blender-style format,
which uses a combination of .obj elements for the geometry and a HTML-style format for the
scene description, which includes camera definition, geometry placement, light sources definition,
material properties, etc.
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A.3.2 Generation of the set of cameras

Traditional NeRF, which is the base of our approach, fails when its cameras are placed at very
different distances from the target geometry [72]. More recent works, such as Mip-NeRF [72],
account for this fact and enable a correct, anti-aliased representation of the target geometry
at different distances and levels of detail, but it is not suitable to our application due to how
rendering is carried out, using conical frustums instead of individual rays, which we need to
be able to integrate properly into an overarching rendering engine. Therefore, we place all our
cameras in a sphere surrounding our luminaire, at a distance which varies depending on the size
of the luminaire.

It has been thoroughly demonstrated that NeRF representations fail when cameras are
placed too far from each other, as the ability of the neural network to interpolate rapidly
deteriorates [54]. In order to avoid this issue, we generate camera positions using a Halton
Low-Discrepancy Sequence, a pseudo-random number generation approach which is also used in
path tracing samplers in rendering engines [?]. Once we generate a 2D sequence of the required
size (squared number of cameras), we geometrically warp it to the surface of a sphere, which
yields the final unitary camera positions in XYZ coordinates. If required, we can scale them by
any float number to account for luminaires of different sizes.

A.3.3 Rendering

In order to extend our testing capabilities during training and explore possible improvements
to the network based on easily accessible ground truth data (given that our work full utilizes
synthesized luminaires) we rendered 3 different representations of every luminaire: its appear-
ance, stored as an HDR linear RGB image; its normal map; and its depth map (distance to the
camera of every pixel in the luminaire. Every render carries its own alpha channel as well, and
everything is stored as a multi-channel EXR file that we will later decompose into its different
elements to adapt our dataset to the NeRF/NSVF dataset style and simplify our code.

Rendering properties such as samples per pixel, integrator used, resolution, clipping planes
distance and camera properties depended on the characteristics of each luminaire or the test
objective of the dataset. In general, luminaires featuring volumetric components, such as tinted
glasses, required a volumetric path tracer; while more difficult luminaires, featuring very small
light sources, like single coils inside various layers of glass, required a bidirectional path tracer.
Otherwise, we used a standard path tracer. Similarly, samples per pixel depended on luminaire
complexity, while other camera characteristics were defined by luminaire size or other specific
objectives of the dataset.

Camera transformation matrix was computed using a look-at matrix scheme, which is easily
defined by the generated XYZ positions in space of our cameras, an up vector (a constant vector
0,0,1) and a target XYZ position (fixed to 0,0,0)

In order to launch our complete set of renders at once and change the HTML scene file for
each one to account for the varying camera positions, we use a Python interface to the Mitsuba
rendering API integrated in Mitsuba 0.6.

Rendering was performed on a workstation featuring 2x Intel Xeon Gold (72 total threads),
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and rendering times varied drastically depending on the number of available threads at any
given time, and luminaire complexity, but most datasets took around 2 or 3 days to generate.

A.3.4 Adapting to NeRF/NSVF dataset conventions

Finally, we have our renders completed and we only need to adapt the dataset to the NeR-
F/NSVF format style. This allows us to recycle a good amount of code from the original NeRF
implementation, which we later on expanded to accomodate all our changes. We implemented a
Python script to separate the individual channels of our multi-channel EXR into RGB, normal
and depth maps, generate the camera transformation matrices and store them in txt files, split
between train, validation and test, normalize normal maps and depth maps, the latter using the
near-far clipping plane distances used during rendering, and store each map, including both an
EXR linear RGB map and PNG sRGB one, normal PNG and depth PNG into their own folders
using the NSVF naming convention (files starting with 0_, 1_, and 2_ correspond to training,
validation and test splits, respectively).

A.4 Other explored activation functions

A.4.1 Exponential activation function

The most straightforward way of unbounding the RGB output was using an exponential activa-
tion function, going from (0,1) to (0,inf). The function can be seen in Equation However,
we found that in scenes where geometry had a large amount of black pixels, or exposed light
sources with radiance peaks at specific values, the activation function was largely unstable.

color = e* (A1)

A.4.2 Softly-bounded log-sigmoid activation function

In order to overcome the shortcomings of exponential activations, we tested with functions that
would slightly bound the output. We did this by extending the range of the sigmoid function
with a log(xz + 1) function, which resulted in Equation One of the advantages of working
with synthetic luminaires is that the maximum radiance that they output is known to us. By
selecting the e parameter, we could set the minimum and maximum range of our outputs: for
example, for the portica dataset, with a maximum radiance of 12, we selected = 1076, which
results in an output range of (107%,13.8155). This activation function proved much more stable;
however, it does not solve by itself the problem of extending to HDR: many of our luminaires
have extreme dynamic ranges, and the most radiant areas in the luminaire dominate the error
gradients, making an even learning of the radiance field difficult, with balance completely skewed
towards exposed light sources and susceptible to high energy rendering noise. We further develop
this issue when talking about our loss functions in Section [4.4
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color = —log(1 — +¢€) (A.2)
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