
Trabajo Fin de Máster

Localización, mapeo y seguimiento de objetos en
escenas dinámicas

Localization, mapping and object tracking in
dynamic scenes

Autor

Javier Tirado Gaŕın

Director

Javier Civera Sancho

ESCUELA DE INGENIERÍA Y ARQUITECTURA
2021

DECLARACIÓN DE
AUTORÍA Y ORIGINALIDAD

TR
AB

A
JO
S
D
E
FI
N
D
E
G
RA

D
O
/
FI
N
D
E
M
ÁS
TE
R

()

D./Dª.

aplicación de lo dispuesto en el art. 14 (Derechos de autor) del Acuerdo de

de septiembre de 2014, del Consejo de Gobierno, por el que se

aprueba el Reglamento de los TFG y TFM de la Universidad de Zaragoza,

ítulo del Trabajo)

es de mi autoría y es original, no habiéndose utilizado fuente sin ser

citada debidamente.

Zaragoza,

Fdo:

Javier Tirado Garín

Máster Universitario en Ingeniería Industrial

Localización, Mapeo y seguimiento de objetos en escenas dinámicas

24 de Noviembre de 2021

Javier Tirado Garín

I

Agradecimientos

En primer lugar, me gustaŕıa agradecer a mi tutor, muchas gracias Javier por per-
mitirme aprender un año más bajo su gúıa, por todo el tiempo que ha dedicado en
ayudarme,

Muchas gracias a mis padres y a mi hermana. Por su apoyo continuo, ayuda y con-
sejos. Me siento muy afortunado de teneros,

Gracias también a todas las personas que directa o indirectamente me han influido
a lo largo de este tiempo, en especial a mis amigos y a aquellos profesores que han sido
fuente de motivación, y muchas otras personas que seguro me dejo por nombrar.

Muchas gracias.

II

Resumen

El SLAM (Localización y Mapeo Simultáneo) y SfM (Estructura a partir de Movi-
miento), son dos de las técnicas de mayor importancia actual que permiten, a través
de información visual y entre otras funciones, localizar a un agente en el entorno que
éste atraviesa. Una de las asunciones principales que es común en muchas de sus im-
plementaciones, es que el entorno en el que los sensores capturan la información es
predominantemente estático. En la práctica, la mayoŕıa de estos sistemas, implemen-
tan técnicas que robustecen las estimaciones ante entidades dinámicas hasta cierto
punto. Sin embargo, si la componente dinámica de la escena se vuelve significativa,
tanto la localización como la geometŕıa del entorno se vuelven erróneas.

En este TFM se aborda este problema. En concreto, se incorpora la estimación del
movimiento, de 6 grados de libertad, que experimentan los objetos dinámicos presentes
en la escena. Para ello, nos centramos en objetos ŕıgidos, ajustando sus trayectorias a
curvas B-Spline Cumulativas, las cuales presentan, entre otras propiedades, la ventaja
de ofrecer estimaciones continuas en el tiempo de posición, orientación, velocidad y
aceleración. Diferenciándonos aśı de los trabajos del estado del arte. Aśı mismo, se
plantean estrategias que reducen el coste computacional de manera significativa, siendo
aplicables a cualquier proyecto que emplee este tipo de curvas.

La evaluación de la propuesta muestra las ventajas de nuestro acercamiento: A pesar
de estar imponiendo un modelo de trayectoria, tanto con datos sintéticos, como con una
base datos pública, se obtienen resultados similares en precisión en cuanto a localización
y orientación de los objetos dinámicos, a la vez que mejorando las estimaciones de la
velocidad que éstos experimentan, en comparación con las estimaciones en tiempo
discreto del estado del arte.

III

Abstract

SLAM (Simultaneous Localization and Mapping) and SfM (Structure from Motion)
are two of the most relevant techniques that, among other use cases, allow the localiza-
tion of an agent in the environment it traverses. Most of the current implementations
assume that the environment where the data was captured remained static during the
whole process. In practice, as long as this assumption is not serverely violated, current
implementations can handle some amount of scene dynamism thanks to robustification
techniques. Otherwise, both the estimated localization and geometry estimation of the
surroundings get corrupted.

In this thesis we dive into this problem. Concretely, we take into account the mo-
tion of the dynamic objects that may be present in a scene and we estimate their
6 degrees of freedom. To do this, we focus on rigid objects, fitting their trajectories
to cubic Cumulative B-Spline curves. This type of curve, among other poperties, has
the advantage of offering continuous-time estimations of position, orientation, velocity
and acceleration. This work thus, differ from the related works. Moreover, we propose
estrategies which significantly reduce the computational cost, being applicable to any
topic-related work that makes use of these kind of curves.

The evaluation shows the advantages of our approach: In spite of imposing a trajec-
tory model, and in terms of precision in the estimation of localization and orientation
of the objects, we obtain similar results than the state of the art in both public and
synthetic data. Showing also better estimations in angular and linear velocity than the
current discrete-time estimation works.

IV

Índice general

1. Introducción 1

1.1. Motivación . 3

1.2. Trabajo relacionado . 4

1.3. Objetivos . 7

1.4. Estructura . 7

2. Sistema propuesto 9

2.1. Bloques fundamentales . 10

2.2. Modelo de cámara . 10

2.3. Segmentación de objetos dinámicos . 12

2.4. Estimación del movimiento de la cámara 14

3. Formulación 19

3.1. Grupo de Lie, SE(3) . 19

3.1.1. Cinemática . 23

3.1.2. Mapeo exponencial y logaŕıtmico 27

3.1.3. Jacobianos derecho e izquierdo de SE(3) 29

3.2. B-Splines cumulativos en SE(3) . 30

3.2.1. Cinemática . 33

4. Optimización 35

4.1. Estado del sistema y funciones de coste: SplineBA, LocalBA 35

V

Índice general

4.1.1. Punto de vista probabiĺıstico . 38

4.2. Optimización mediante Gauss-Newton en SE(3) 40

4.2.1. Robustificación . 42

4.2.2. Parametrización . 43

4.3. Matrices Jacobianas . 44

4.3.1. Derivación independiente del error 45

4.3.2. Derivación aprovechando la definición del error 49

5. Seguimiento 51

5.1. Detección y seguimiento de caracteŕısticas 52

5.1.1. Pre-procesamiento y filtrado de espúreos 53

5.2. Clasificación . 56

6. Experimentos y Resultados 57

6.1. COLMAP en entorno dinámico . 57

6.2. Tiempo de cómputo de las matrices Jacobianas 60

6.3. Estimación en tiempo continuo vs discreto 61

6.4. Evaluación en base de datos pública . 66

7. Conclusiones 69

7.1. Trabajo futuro . 70

Bibliograf́ıa 71

Lista de Figuras 79

Lista de Tablas 81

Anexos 82

A. Anexo matrices Jacobianas 85

VI

Caṕıtulo 1

Introducción

Imaginemos que un robot tiene que realizar una tarea en un entorno desconocido
para él, como por ejemplo recoger ropa del suelo tal y como aparece en la Figura 1.1a.
Para poder llevar a cabo esta tarea con éxito, el robot debe ser capaz no solo de conocer
el sitio en el que se encuentra, sino también localizarse en él, para aśı evitar posibles
modos de fallo como equivocarse de objeto de interés (ropa en este caso), o colisionar
con otros elementos presentes en la escena (muebles).

La mayoŕıa de las tareas a realizar por robots móviles, como el ejemplo menciona-
do en el párrafo anterior, necesitan un mapa del entorno para que los agentes que lo
atraviesen puedan navegar de manera autónoma en él. En este caso, si se realiza con-
juntamente la localización del robot con la creación del mapa del entorno y de forma
secuencial (conforme el robot recibe datos sensoriales), este acercamiento al problema se
conoce como Localización y Mapeo Simultáneo (o SLAM, de sus siglas en inglés).
El SLAM ha experimentado un gran progreso en los últimos 30 años, convirtiéndose en
una base fundamental de muchas aplicaciones en las que intervienen robots autónomos,
o incluso realidad aumentada y realidad virtual [Cadena et al., 2016] (Figura 1.1b).

2https://www.bostondynamics.com/spot
2https://www.bbc.co.uk/taster/pilots/civilisations-ar

(a) (b) (c)

Figura 1.1: (a) Robot Spot de la empresa Boston Dynamics1. (b) Aplicación de realidad
aumentada Civilisations2que permite proyectar objetos virtuales relacionados con la historia
y el arte. (c) Reconstrucción del Coliseo Romano obtenida aplicando técnicas de SfM [Agarwal
et al., 2011]

1

https://www.bostondynamics.com/spot
https://www.bbc.co.uk/taster/pilots/civilisations-ar

En cambio, si la estimación del mapa se realiza con datos sin ordenación temporal ni
restricciones de ejecución en tiempo real, este acercamiento se conoce como Estructura
a partir de Movimiento (o SfM de sus siglas en inglés), a partir del cual, además
del objetivo mencionado anteriormente, se pueden llevar a cabo reconstrucciones tan
impresionantes como las de la Figura 1.1c.

En cuanto a los sensores que se pueden emplear para este fin, en el campo de SLAM,
los principales son los siguientes3:

Cámaras monoculares (RGB) [Mur-Artal et al., 2015, Engel et al., 2017]: El
sensor principal es una única cámara, a partir de la cual se estima la geometŕıa
y la localización del sensor, pero sujetas a una escala arbitraria (para obtener
medidas reales hace falta multiplicar las mediciones realizadas por dicho factor
de escala desconocido a priori),
Cámaras estéreo [Mur-Artal and Tardós, 2017, Pire et al., 2017]: Los sensores
principales son dos cámaras cuya posición y orientación relativas son conocidas.
Es gracias a esto por lo que si un punto en el espacio es detectado y emparejado
por ambas cámaras, es posible conocer su profundidad mediante triangulación, de
una forma similar a cómo las personas somos capaces de percibir la profundidad
de nuestro entorno cercano a través de nuestros ojos.

(a) (b)

Figura 1.2: (a) SfM: Nube de puntos obtenida de una parte de la ciudad de Roma, tras
haber usado 75.000 imágenes (los puntos rojos se corresponden con los lugares desde los que se
capturaron) [Schonberger and Frahm, 2016]. (b) SLAM: Nube de puntos obtenida mediante
una cámara monocular. Además, debido a que las imágenes se capturaron secuencialmente, es
posible recuperar la trayectoria que trazó el sensor (representada como una ĺınea roja) [Engel
et al., 2017].

Sensores inerciales [Forster et al., 2016, Concha et al., 2016]: Constan de uni-
dades de medición inercial (velocidad, orientación y aceleración), que combinados
con información visual proveniente de los anteriores tipos de cámaras, dan lugar
a estimaciones que actualmente son las más precisas en cuanto a la localización
de los sensores en el entorno [Campos et al., 2021].
Cámaras RGB-D [Newcombe et al., 2011, Schops et al., 2019]: Combinan la
información visual de una cámara monocular con la información aportada por

3Parte de los trabajos citados combinan varios sensores, sin embargo, es dominante el sensor con
el que se les ha relacionado. Aśı mismo, destacar que otros tipos de sensores muy presentes también
en trabajos de SLAM como las cámaras de eventos [Kim et al., 2016a] o sensores de rango como el
radar o el LIDAR [Wang et al., 2021] no se han incluido por su menor relación con este trabajo.

2

Caṕıtulo 1. Introducción

un sensor de profundidad (basado por ejemplo en la deformación de un patrón
conocido de luz infrarroja proyectado en la escena), a partir del cual se obtiene
la distancia relativa de la cámara con respecto al entorno visible.

Por otro lado en el campo de SfM, el sensor predominante es la cámara monocular
[Schonberger and Frahm, 2016, Agarwal et al., 2011, Wu et al., 2011] son algunos
ejemplos.

En la Figura 1.2 se muestran ejemplos de resultados obtenidos por trabajos men-
cionados anteriormente. En concreto, en este TFM se hace uso de datos provenientes
de una cámara RGB-D. Los motivos de esta decisión están estrechamente ligados con
los objetivos que se persiguen, los cuales se identifican y exponen en §1.1 - §1.3.

1.1. Motivación

Una de las asunciones principales que es común en muchos de los algoritmos de
SLAM y SfM, es que el entorno en el que los sensores capturaron la información es pre-
dominantemente estático. Es decir, se asume que en dichos lugares, todas las entidades
que aparecen en una escena y que perciben los sensores (estructuras, objetos, personas
etc.) siempre se mantienen en el mismo sitio.

(a) (b)

Figura 1.3: (a) Gracias a observar identidades estáticas desde diferentes puntos de vista,
podemos recuperar información como el movimiento de la cámara o la profundidad de lo
observado. (b) En cambio, en escenas con entidades dinámicas (en este caso manteniendo
constante la posición relativa entre cámara - objeto), al asumir erróneamente que la escena es
estática, esto implicaŕıa que, o bien, la cámara no se ha movido, o que el objeto se encuentra
a una distancia → ∞ y que por tanto al movernos, su proyección no cambia con respecto a

la cámara (representada por:).

Es gracias a esta asunción por la que, midiendo la localización de ciertas entidades
en la referencia del sensor, es posible usar dicha información para mejorar localización

3

1.2. Trabajo relacionado

de los sensores y de dichas entidades. Un ejemplo de esto que pretende ser intuitivo,
se muestra en la Fig. 1.3a. Sin embargo, si dichas entidades comienzan a moverse,
puede dar lugar a un empeoramiento significativo en la localización del sensor, o en la
estimación del mapa (Fig. 1.3b).

En la práctica, la mayoŕıa de sistemas de SLAM [Cadena et al., 2016] y de SfM
[Schonberger and Frahm, 2016], implementan técnicas que robustecen las estimaciones
ante entidades dinámicas hasta cierto punto. Sin embargo, si la componente dinámica
de la escena se vuelve significativa, tanto la localización como la geometŕıa del entorno
se vuelven erróneas. Dos ejemplos reales de esto se muestran en la Figura 1.4.

En este TFM el objetivo es abordar este problema. En concreto, en incorporar
la estimación del movimiento que experimentan los objetos dinámicos pre-
sentes en la escena. Para ello, nos centramos en objetos ŕıgidos, es decir, aquellos
cuya deformación a lo largo del tiempo es despreciable, por lo que la distancia entre
los puntos que los conforman es constante.

(a) (b)

Figura 1.4: (a, izda) Par de instantes del dataset [Sturm et al., 2012a], en el que dos
personas se mueven por el lugar en el que los sensores están captando información. (a, dcha)
Mapa estimado mediante SLAM [Bescos et al., 2018]. Debido a la asunción de estaticidad,
las personas aparecen repetidas veces en él. (b, izda) Par de instantes del dataset [Judd and
Gammell, 2019] en el que aparen cajas moviéndose mediante un mecanismo de poleas. (b,
dcha) Mapa estimado (visto de frente y de perfil) mediante SfM. En este caso, el movimiento
de los objetos provoca la aparición de una estela de puntos que erróneamente se atribuye a
entidades estáticas.

1.2. Trabajo relacionado

Abordar este problema mediante la incorporación del movimiento de los objetos
ŕıgidos presentes en la escena, ha sido tratado desde diferentes puntos de vista en
la literatura. Por ello, en esta sección se realiza un análisis del estado del arte, con el
objetivo de detectar cuestiones que hasta la fecha no han sido estudiadas y que podŕıan
suponer contribuciones al estado del arte.

Uno de los primeros trabajos que trató de estimar el movimiento de las entidades

4

Caṕıtulo 1. Introducción

(a) (b)

Figura 1.5: Resultados obtenidos por el estado del arte. (a) DynaSLAM II [Bescos
et al., 2021]. Obsérvese la estimación conjunta del mapa estático (puntos negros), aśı como
las trayectorias de los objetos dinámicos (coches). (b) ClusterVO [Huang et al., 2020]. Se
muestra como este sistema es capaz de seguir la trayectoria de dos botellas que intercambian
sus posiciones.

dinámicas presentes en la escena fue [Tomasi and Kanade, 1992], en el que se introdujo
la técnica de factorización, permitiéndoles llevar a cabo conjuntamente la detección
del movimiento del objeto, aśı como su reconstrucción. Para ello, se asumı́a la presencia
de un único objeto, aśı como un modelo de cámara ortográfica, la cual permite sim-
plificar los cálculos pero introduce error al no poder modelar la proyección perspectiva
de una cámara real [Hartley and Zisserman, 2004].

Sucesivos trabajos hicieron frente a estas limitaciones, incorporando la estimación
del movimiento de múltiples objetos [Han and Kanade, 2004, Zappella et al., 2013],
aśı como el uso de modelos de cámara perspectiva [Sturm and Triggs, 1996], o incluso
ambas mejoras [Sabzevari and Scaramuzza, 2014]. Sin embargo, la mayoŕıa de estos
métodos presentan inconvenientes como no poder trabajar de manera secuencial, asu-
mir de antemano tipos concretos de movimiento, o tener un alto coste computacional
[Saputra et al., 2018].

Otro tipo de trabajos se centran en lo que se conoce como triangulación de una
trayectoria [Avidan and Shashua, 2000]. Éstos tratan de ajustar la trayectoria que
siguen puntos que no son estáticos mediante distintas entidades geométricas predefi-
nidas, tales como ĺıneas y secciones cónicas [Avidan and Shashua, 2000, Park et al.,
2010], o superficies más complejas que permiten linealizar la trayectoria [Kaminski and
Teicher, 2004]. Sin embargo, estos trabajos se enfocan en estimar la trayectoria de pun-
tos por separado, en vez de asociarla a un objeto, por lo que la rotación que podŕıa
experimentar un cuerpo no es considerada.

En el campo de SLAM, uno de los primeros trabajos en estimar el movimiento de
los objetos fue [Wang et al., 2003] (extendido en [Wang et al., 2007]), en el que dieron
un enfoque probabiĺıstico permitiendo incorporar la utilización de filtros Gaussianos.
Sus resultados mostraron mejoras con respecto a únicamente estimar la localización
del sensor en entornos dinámicos. A la misma conclusión se llega en [Bibby and Reid,
2007], en el que se estima la localización de los puntos dinámicos de la escena. En estos
trabajos, aśı como otros [Bibby and Reid, 2010, Li et al., 2018, Yang and Scherer, 2019]
más recientes, los objetos estudiados se mueven en un plano, los cuales son comunes
en entornos como los de la conducción autónoma. También nos encontramos con estas

5

1.2. Trabajo relacionado

asunciones en el campo de SfM [Kundu et al., 2011].

Trabajos más recientes permiten estimar movimientos generales de los objetos.
En concreto, [Zhang et al., 2020, Bescos et al., 2021] proponen detectar en una primera
fase los objetos dinámicos presentes en una escena mediante técnicas de deep learning
como [He et al., 2017], para a continuación estimar su movimiento y combinarlo con
el cálculo de la localización del sensor. En [Huang et al., 2020] añaden un criterio
probabiĺıstico para la detección de los objetos. Por otro lado, [Judd et al., 2018, Judd
and Gammell, 2020] proponen refinar la detección y seguimiento de la trayectoria de
manera conjunta, haciendo uso para ello de optimizadores de modelos geométricos
[Amayo et al., 2018]. Estos sistemas han sido evaluados en bases de datos públicas
[Judd and Gammell, 2019, Geiger et al., 2012] obteniendo resultados prometedores (en
la Figura 1.5 se muestran ejemplos de resultados).

En estos últimos trabajos, los sensores empleados son cámaras estéreo o RGB-
D, los cuales evitan la dificultad de tener que triangular puntos en movimiento en
diferentes instantes de tiempo al poder inferir la profundidad con tan solo una imagen.
En este TFM seguimos esta tendencia haciendo uso de datos provenientes de cámaras
RGB-D.

Algo que tienen en común la práctica totalidad de los trabajos anteriores es que
éstos operan en tiempo discreto; es decir, estiman su ubicación en el espacio para
cada instante del que se dispone una imagen del mismo. De esta forma, las trayectorias
que siguen no tienen por qué presentar continuidad en su velocidad y aceleración. En
la Figura 1.6a se muestra un ejemplo simple de esto.

(a)

(b)

Figura 1.6: (a) Trayectoria definida en tiempo discreto: En la trayectoria recuperada,
al estar definida por tramos, aparecen puntos donde la velocidad estimada (pendiente) cambia
bruscamente de dirección, provocando que no esté definida en dichos puntos. (b) Trayectoria
definida en tiempo continuo: En este caso, la trayectoria estimada nos permite obtener
un valor de posición y velocidad (y aceleración, como se verá más adelante) para cualquier
instante temporal, no solo en aquellos donde el objeto fue observado.

Por ello, se pensó que pod́ıa ser interesante que las trayectorias estimadas de los

6

Caṕıtulo 1. Introducción

objetos presentasen continuidad temporal tanto en su velocidad como en la acele-
ración (Figura 1.6b). De los trabajos anteriores, únicamente [Bibby and Reid, 2010]
trató este tema, pero en él se centraron en objetos que siguen un movimiento plano y
por tanto no general (de 6 grados de libertad), además de usar radares como sensor,
cuya disponibilidad hoy en d́ıa es menor que la de una cámara RGB-D.

En una ĺınea similar, [Lovegrove et al., 2013] propuso ajustar la trayectoria del
sensor a una curva continua haciendo uso de B-Splines Cumulativos. Debido a sus
propiedades (secuencialidad, continuidad en la velocidad y aceleración, entre otras)
presentan una opción muy interesante. Trabajos posteriores extendieron sus aplicacio-
nes a diferentes clases de sensores [Kerl et al., 2015, Mueggler et al., 2015, Yang et al.,
2021, Droeschel and Behnke, 2018], pero su uso para interpolar los 6 grados de liber-
tad de movimientos ŕıgidos de objetos capturados por sensores visuales queda aún por
explorar.

1.3. Objetivos

En base al análisis previo, se proponen los siguientes objetivos a cumplir:

1. Cuantificar el error en la construcción del mapa, aśı como en la localización
del sensor, derivado de no considerar los objetos dinámicos presentes en la escena.
Usaremos para ello el software COLMAP [Schonberger and Frahm, 2016], uno de
los sistemas de SfM con mayor precisión del estado del arte.

2. Proponer un sistema secuencial que permita estimar en tiempo continuo
el movimiento general de los objetos presentes en una escena, haciendo
uso para ello de B-Splines Cumulativos. Aśı mismo, proponer estrategias que
permitan la reducción del coste computacional.

3. Evaluar la propuesta, haciendo uso de bases de datos públicas, aśı como datos
sintéticos, que nos permitan comparar los resultados obtenidos con los del resto
del estado del arte reciente.

1.4. Estructura

Con los anteriores objetivos en mente, este TFM está estructurado de la siguiente
forma:

Caṕıtulo 2: Presentación del sistema propuesto (partes fundamentales del mis-
mo).

Caṕıtulo 3: Formulación matemática de la propuesta. En concreto, se presenta
la teoŕıa básica del grupo de Lie de SE(3), empleado para la estimación de
trayectorias en 3D (orientación y traslación), relacionándola a continuación con
la estimación en tiempo continuo mediante B-Splines.

7

1.4. Estructura

Caṕıtulo 4: Explicación de 1) variables asociadas a la trayectoria que se opti-
mizan en nuestra propuesta y cómo se relacionan, 2) método de optimización y
3) derivación de las matrices Jacobianas con el objetivo de reducir el tiempo de
cómputo.

Caṕıtulo 5: Técnicas usadas para asociar los objetos en distintas imágenes,
además de extraer la información geométrica necesaria e introducida en el bloque
de optimización.

Caṕıtulo 6: Experimentos realizados, aśı como los resultados obtenidos, haciendo
uso de datos generados artificialmente, aśı como de una base de datos pública.

Caṕıtulo 7: Conclusiones del trabajo realizado y trabajo futuro.

8

Caṕıtulo 2

Sistema propuesto

En este caṕıtulo se realiza un visionado general del sistema propuesto, y de cómo
se obtienen sus entradas. Se relega a los siguientes caṕıtulos la explicación en detalle
de las partes que lo conforman. En la Figura 2.1 se muestra un esquema del mismo.

Optimización

Loc. 3D
Cámara

Spline BA

Local BA

Seguimiento

KLT por objeto

filtrado de outliers

nuevas características

KLT

(R, t)

Figura 2.1: Sistema propuesto. Esta constituido por dos partes fundamentales: 1) El blo-
que de seguimiento se encarga de emparejar los datos de entrada a objetos cuya trayectoria
ya está siendo seguida, o en su defecto inicializar las trayectorias, y 2) El bloque de optimi-
zación, encargado de ajustar la trayectoria en tiempo continuo de cada objeto a los datos de
entrada.

Las entradas consideradas son: 1) una imagen RGB-D -y el instante temporal en
el que se capturó-, 2) una estimación de la localización 3D del sensor que capturó dicha
imagen (obtenida de forma offline) y 3) una estimación del lugar en la imagen en el
que se encuentran los objetos a los que hay que realizar el seguimiento (obtenida de
forma offline). Como salidas se obtienen las trayectorias en tiempo continuo (B-Spline
cumulativos) para cada objeto presente en la escena.

9

2.1. Bloques fundamentales

2.1. Bloques fundamentales

El sistema consta de dos partes fundamentales: seguimiento y optimización. La parte
del seguimiento es la encargada de asociar los objetos contenidos en las máscaras de
entrada a objetos que ya estaban siendo seguidos, o en su defecto, detectar que un
objeto es nuevo, y por tanto inicializar una nueva trayectoria (decisión marcada como

1○ en la Figura 2.1).

La inicialización de una trayectoria se realiza a través de la detección de caracteŕısti-
cas salientes [Shi et al., 1994] en la zona de la imagen en la que se encuentra el objeto
de interés. Como se verá más adelante, es necesario al menos disponer de 4 instantes
en los que el objeto ha sido capturado por el sensor. Por ello, como inicialmente no
se cumple esta condición (representada por 3○), se espera a la llegada de la siguiente
imagen en la que aparezca el objeto.

Cuando llega una nueva imagen que contiene a un objeto con una trayectoria ini-
cializada, se calcula el flujo óptico [Lucas et al., 1981] de las caracteŕısticas salientes
detectadas en el frame (imagen) anterior. Las caracteŕısticas cuyo flujo ha sido calcu-
lado con éxito, se someten a un filtrado para evitar que puntos que no pertenezcan al
objeto se traten como tal, lo que empeoraŕıa la estimación de su trayectoria. A estos
puntos se les conoce como outliers.

A continuación, si se dispone de un número suficiente de caracteŕısticas se procede
a la optimización de la trayectoria del objeto. Si esta condición no se cumple (repre-
sentada por 2○ en la Fig. 2.1), se procede a detectar nuevas caracteŕısticas salientes,
imponiendo uniformidad en su detección para que aśı éstas no se concentren únicamente
en zonas concretas.

El bloque de optimización recibe la ubicación de la cámara, aśı como la ubicación
relativa a ella de los puntos que han sido inicializados/ seguidos en una ventana de
los N últimos frames en los que el objeto ha aparecido. El objetivo de este bloque es
estimar/ actualizar la curva en tiempo continuo (B-Spline Cumulativo) que mejor se
ajusta a estos datos. Para ello se emplean técnicas de optimización no lineal de segundo
orden.

En función del número de puntos recibido (condición 3○) se lleva a cabo una opti-
mización de tipo Spline BA (solo se optimiza la trayectoria) o Local BA (se optimiza
además la localización de los puntos del objeto). La formulación matemática de este
bloque se explica en §3.

2.2. Modelo de cámara

Un modelo de cámara determina cómo la realidad 3D se proyecta en las imágenes
2D. En este TFM se considera un modelo de cámara pinhole, el cual es uno de los más
extendidos en el campo de visión por computador [Corke, 2011]. Este modelo, asume
que los rayos de luz provenientes de los puntos que observa una cámara convergen en

10

Caṕıtulo 2. Sistema propuesto

un único punto, el centro óptico C ∈ R3, y que éstos se proyectan en un plano (plano
imagen) formando aśı la imagen que nosotros observamos.

Figura 2.2: Modelo de cámara pinhole. Al converger en el centro óptico C el rayo de luz
que proviene de un punto p, éste aparece proyectado en el plano imagen en las coordenadas
x. Los ejes (X,Y, Z) definen, por convención, el sistema de coordenadas de la cámara. El
plano imagen es perpendicular al eje Z (su intersección define la ubicación del centro óptico
c) y está situado a una distancia f (distancia focal) de C.

Por convención [Hartley and Zisserman, 2004, Corke, 2011], para localizar en el
espacio a la cámara, el sistema de coordenadas que lo determina es el representado en
la Figura 2.2, es decir, el origen se encuentra en el centro óptico, C, el eje Z (denominado
como eje óptico) es perpendicular al plano imagen y apunta hacia él, y los ejes X e
Y son paralelos a los bordes de la imagen. El corte del eje óptico con el plano imagen
determina la ubicación del punto principal : c = [cx, cy]

T , y la distancia que los separa
se denomina distancia focal : f = [fx, fy]

T (ambas en unidades de ṕıxeles)1.

Por otro lado, para representar un punto, x ∈ R2, en la imagen, se utiliza un
sistema de referencia de dos dimensiones cuyo origen se encuentra en el centro del ṕıxel
superior izquierdo, con ambos ejes paralelos a los bordes de la imagen. De esta forma:
x = [u, v]T .

Reuniendo todo lo anterior, la proyección de un punto en el espacio, p ∈ R3, viene
dada por la Ec. 2.1.

λx̃ = K
[
Rcw tcw

]
p̃w (2.1)

Donde Rcw ∈ SO(3) y tcw ∈ R3 representan la matriz de rotación y vector de traslación
que transforman puntos desde un sistema de coordenadas w (mundo) al sistema de
coordenadas de la cámara c. La tilde (̃·) sirve para expresar un punto en coordenadas
homogéneas: p ∈ R3 → p̃ ∈ P3, por lo que λ representa un factor de escala arbitrario.
Finalmente, K es la matriz de calibración de la cámara, la cual viene dada por:

K =



fx 0 cx
0 fy cy
0 0 1


 (2.2)

1En realidad solo hay una distancia focal, f (dada en mm por ej.), sin embargo las dos componentes
fx, fy surgen de expresarla en unidades de ṕıxeles. Se usa de esta última versión, ya que la proyección
de un punto consiste en una transformación de coord. métricas a coord. ṕıxel. La conversión viene
dada por: fx = f/ρw, fy = f/ρh, donde ρw y ρh son la anchura y altura de cada ṕıxel.

11

2.3. Segmentación de objetos dinámicos

Para expresar la Ec. 2.1 en coordenadas cartesianas, se utiliza la función de proyección
π(·):

x = π(
[
Rcw tcw

]
,p) = π(Tcw,pw) (2.3)

Donde Tcw ∈ SE(3) representa la matriz de transformación que igualmente permite
transformar puntos desde la referencia mundo w, a la referencia cámara c:

Tcw =

[
Rcw tcw
01×3 1

]
(2.4)

2.3. Segmentación de objetos dinámicos

Figura 2.3: Arquitectura propuesta en SiamMask [Wang et al., 2019]. Las entradas
se corresponden con una imagen ejemplar (más pequeña), z, y una imagen de búsqueda, x.
Ambas son procesadas por la misma red neuronal, obteniendo los tensores fθ(x) y fθ(z).
A continuación se calcula la correlación entre cada par de canales: fθ(x) ? fθ(z). El tensor
resultante es procesado por separado en 3 redes convolucionales: hφ, bσ y sφ. La red hφ ofrece
múltiples predicciones de posibles máscaras, y sφ puntúa cada una de ellas. La predicción final
de la arquitectura se corresponde con la máscara de mayor puntuación.

Tal y como se ha comentado en la sección anterior, una de las entradas al sistema
se corresponde con máscaras que estiman la posición en la imagen de los objetos que
queremos estimar su movimiento. En nuestro caso, estas máscaras las obtenemos a
partir de la arquitectura propuesta en [Wang et al., 2019], conocida como SiamMask
(ver Figura 2.3). En concreto la implementación ofrecida en la libreŕıa pysot2.

La razón principal por la que se eligió esta arquitectura se debe a que puede de-
tectar/ seguir objetos de cualquier clase. Es decir, no está limitada a detectar objetos
espećıficos tales como: silla, coche, gato etc. pudiendo ser, por tanto, utilizada en obje-
tos que son dif́ıciles de categorizar, como los de la Figura 2.4c. Gracias a esto es posible
ahorrar el tiempo necesario que requiere re-entrenar redes que śı dependen de las clases
de los objetos ([He et al., 2017] es un ejemplo de este otro tipo de arquitecturas).

Para tener una ligera intuición de cómo SiamMask consigue esta versatilidad, a con-
tinuación se expone brevemente su funcionamiento. Tal y como se ve en su arquitectura

2https://github.com/STVIR/pysot

12

https://github.com/STVIR/pysot

Caṕıtulo 2. Sistema propuesto

(Figura 2.3), se utilizan dos entradas: una imagen que contiene el objeto a encontrar
(dado por el usuario en el primer frame), z, y una imagen más grande, x, en la que hay
que encontrar el objeto contenido en z.

Ante esto, una posible opción seŕıa comparar directamente la imagen z sobre dis-
tintas zonas de la imagen x e ir calculando cómo de similares son ambas, basándonos
en su correlación. Valores más altos de correlación indicaŕıan zonas que presentan una
mayor relación lineal y que por tanto podŕıamos pensar que son más similares. En este
caso, z actúa como filtro (o kernel).

Sin embargo, esta comparación algunos autores [Bolme et al., 2010] la denominan
como ingenua ya que puede generar valores altos de correlación no solo en la zona
correcta, sino también en diferentes zonas de la imagen. Para hacer frente esto, lo que se
propone en SiamMask, es aprender este filtro a través de una red siamesa convolucional
[Bertinetto et al., 2016] que transforma las imágenes x y z en dos representaciones
fθ(x) y fθ(z) tales que su correlación (representada en la Fig. 2.3 como ?d) discrimine
únicamente al objeto de interés.

(a) (b) (c)

Figura 2.4: Resultados obtenidos con SiamMask [Wang et al., 2019]. El sistema es
capaz de seguir correctamente a los objetos en la mayor parte de la secuencia, incluso en
situaciones donde el punto de vista de los mismos es diferente - por ej. ver (a). Sin embargo,
en ciertas imágenes, la presencia de outliers puede ser significativa - ver (c). Nuestro sistema
deberá ser robusto ante este tipo de situaciones. links3

A continuación, el resultado de esta correlación es propagado a través de 3 redes
convolucionales [Goodfellow et al., 2016] que vienen representadas en la Fig. 2.3 por:
hφ, bσ y sφ. hφ da como resultado múltiples estimaciones de la máscara del objeto, y

3Links a los v́ıdeos sobre los que se les a aplicado SiamMask: Vı́deo (a), Vı́deo (b), Vı́deo (c).

13

https://www.youtube.com/c/AutoAddictionMedia
https://www.youtube.com/watch?v=thYuSdMjKxQ&ab_channel=7mlc
https://www.youtube.com/watch?v=24V-K6UC9u4&ab_channel=RoboticESP

2.4. Estimación del movimiento de la cámara

sφ la puntuación de cada una de ellas, eligiendo finalmente como predicción, aquella
que presenta una mayor puntuación.

En la Figura 2.4 se muestran ejemplos de resultados obtenidos tras aplicar Siam-
Mask en diferentes secuencias. Destacar que la breve explicación anterior solo tiene
como objetivo dar una ligera intuición sobre cómo estos datos de entrada de nuestro
sistema son obtenidos. Detalles como las propiedades de la arquitectura o su forma de
entrenarla han sido omitidas, referimos al lector al excelente art́ıculo original [Wang
et al., 2019] para más información.

2.4. Estimación del movimiento de la cámara

La otra de las entradas a nuestro sistema que debemos obtener a partir de las
imágenes del sensor RGB-D, consiste en la localización en el espacio que teńıa la cámara
para cada uno de los instantes de los que disponemos una imagen. Esta estimación se
realiza a partir del software de SfM COLMAP [Schonberger and Frahm, 2016]. Las
razones principales detrás de esta elección son su mayor precisión en comparación con
el resto del estado del arte, además de ser de código abierto4.

Al igual que en la sección anterior, con el objetivo de ganar intuición acerca de
cómo estos datos de entrada son estimados, se va explicar brevemente las partes fun-
damentales del software. Para más detalles del mismo, referimos al lector al excelente
art́ıculo original.

Correspondence Search Incremental ReconstructionImages Reconstruction

Initialization

Bundle AdjustmentTriangulation

Feature Extraction

Matching

Geometric Verification

Image Registration Outlier Filtering

Figure 2. Incremental Structure-from-Motion pipeline.

Matching. Next, SfM discovers images that see the same
scene part by leveraging the features Fi as an appearance
description of the images. The naı̈ve approach tests every
image pair for scene overlap; it searches for feature cor-
respondences by finding the most similar feature in image
Ia for every feature in image Ib, using a similarity met-
ric comparing the appearance fj of the features. This ap-
proach has computational complexity O(N2

IN
2
Fi
) and is

prohibitive for large image collections. A variety of ap-
proaches tackle the problem of scalable and efficient match-
ing [1, 20, 37, 62, 28, 49, 30]. The output is a set of poten-
tially overlapping image pairs C = {{Ia, Ib} | Ia, Ib ∈
I, a < b} and their associated feature correspondences
Mab ∈ Fa ×Fb.
Geometric Verification. The third stage verifies the po-
tentially overlapping image pairs C. Since matching is
based solely on appearance, it is not guaranteed that cor-
responding features actually map to the same scene point.
Therefore, SfM verifies the matches by trying to estimate a
transformation that maps feature points between images us-
ing projective geometry. Depending on the spatial config-
uration of an image pair, different mappings describe their
geometric relation. A homography H describes the trans-
formation of a purely rotating or a moving camera capturing
a planar scene [26]. Epipolar geometry [26] describes the
relation for a moving camera through the essential matrix
E (calibrated) or the fundamental matrix F (uncalibrated),
and can be extended to three views using the trifocal ten-
sor [26]. If a valid transformation maps a sufficient number
of features between the images, they are considered geo-
metrically verified. Since the correspondences from match-
ing are often outlier-contaminated, robust estimation tech-
niques, such as RANSAC [18], are required. The output
of this stage is a set of geometrically verified image pairs C̄,
their associated inlier correspondences M̄ab, and optionally
a description of their geometric relation Gab. To decide on
the appropriate relation, decision criterions like GRIC [57]
or methods like QDEGSAC [21] can be used. The output
of this stage is a so-called scene graph [54, 37, 48, 30] with
images as nodes and verified pairs of images as edges.

2.2. Incremental Reconstruction

The input to the reconstruction stage is the scene graph.
The outputs are pose estimates P = {Pc ∈ SE(3) | c =
1...NP } for registered images and the reconstructed scene
structure as a set of points X = {Xk ∈ R3 | k = 1...NX}.
Initialization. SfM initializes the model with a carefully

selected two-view reconstruction [7, 52]. Choosing a suit-
able initial pair is critical, since the reconstruction may
never recover from a bad initialization. Moreover, the ro-
bustness, accuracy, and performance of the reconstruction
depends on the seed location of the incremental process.
Initializing from a dense location in the image graph with
many overlapping cameras typically results in a more robust
and accurate reconstruction due to increased redundancy. In
contrast, initializing from a sparser location results in lower
runtimes, since BAs deal with overall sparser problems ac-
cumulated over the reconstruction process.
Image Registration. Starting from a metric reconstruc-
tion, new images can be registered to the current model by
solving the Perspective-n-Point (PnP) problem [18] using
feature correspondences to triangulated points in already
registered images (2D-3D correspondences). The PnP prob-
lem involves estimating the pose Pc and, for uncalibrated
cameras, its intrinsic parameters. The set P is thus ex-
tended by the pose Pc of the newly registered image. Since
the 2D-3D correspondences are often outlier-contaminated,
the pose for calibrated cameras is usually estimated using
RANSAC and a minimal pose solver, e.g. [22, 34]. For un-
calibrated cameras, various minimal solvers, e.g. [10], or
sampling-based approaches, e.g. [31], exist. We propose a
novel robust next best image selection method for accurate
pose estimation and reliable triangulation in Sec. 4.2.
Triangulation. A newly registered image must observe
existing scene points. In addition, it may also increase scene
coverage by extending the set of points X through triangu-
lation. A new scene point Xk can be triangulated and added
to X as soon as at least one more image, also covering the
new scene part but from a different viewpoint, is registered.
Triangulation is a crucial step in SfM, as it increases the sta-
bility of the existing model through redundancy [58] and it
enables registration of new images by providing additional
2D-3D correspondences. A large number of methods for
multi-view triangulation exist [27, 5, 25, 35, 40, 3, 44, 32].
These methods suffer from limited robustness or high com-
putational cost for use in SfM, which we address by propos-
ing a robust and efficient triangulation method in Sec. 4.3.
Bundle Adjustment. Image registration and triangula-
tion are separate procedures, even though their products are
highly correlated – uncertainties in the camera pose propa-
gate to triangulated points and vice versa, and additional tri-
angulations may improve the initial camera pose through in-
creased redundancy. Without further refinement, SfM usu-
ally drifts quickly to a non-recoverable state. BA [58] is the
joint non-linear refinement of camera parameters Pc and
point parameters Xk that minimizes the reprojection error

E =
∑

j
ρj

(
‖π (Pc,Xk)− xj‖22

)
(1)

using a function π that projects scene points to image space

4105

Figura 2.5: Secuencia de bloques que conforman la estructura de COLMAP. Fi-
gura extráıda del propio art́ıculo [Schonberger and Frahm, 2016].

La estructura de COLMAP (o del SfM incremental) viene dada por la secuencia de
bloques que aparecen en la Figura 2.5. El primero de ellos (Feature Extraction) consiste
en la extracción de caracteŕısticas salientes en la imagen.
Éstas son puntos (ṕıxeles) que satisfacen determinadas condiciones
dependiendo del algoritmo usado. En concreto, COLMAP emplea
caracteŕısticas SIFT [Lowe, 2004b], las cuales seleccionan puntos
cuyo entorno (ṕıxeles vecinos) presentan unas propiedades ∼ cons-
tantes (en color o brillo) que difieren del resto de ṕıxeles que los
rodean. Estas zonas son conocidas como “blobs”. A la derecha se
muestra un ejemplo intuitivo extráıdo de [Lowe, 2004a], en el que
los “blobs” detectados aparecen rodeados por ćırculos amarillos.

4https://github.com/colmap/colmap

14

https://github.com/colmap/colmap

Caṕıtulo 2. Sistema propuesto

Estas caracteŕısticas son extráıdas para toda la secuencia, con el objetivo de pro-
ducir detecciones de un mismo punto en distintas imágenes. Estas redundancias se
detectan, o mejor dicho, se emparejan, mediante el segundo bloque (Matching) en el
cual se comparan los descriptores de cada caracteŕıstica SIFT detectada en imágenes
diferentes [Arandjelović and Zisserman, 2012] (para disminuir el tiempo de cómputo,
solo se consideran las imágenes más similares visualmente, de acuerdo a un criterio de
vocabulario visual [Nister and Stewenius, 2006]).

Un emparejamiento entre dos caracteŕısticas (de dos imágenes distintas) se obtiene
si mutuamente sus descriptores son los más próximos entre śı -cuantificados por la suma
de sus diferencias cuadráticas). En la Figura 2.6 se muestra un ejemplo de detección y
emparejamiento de caracteŕısticas SIFT entre dos imágenes.

(a) (b)

Figura 2.6: Ejemplo de detección y emparejamiento de caracteŕısticas SIFT. (a)
Detecciones en ambas vistas. Notar que aquellas zonas que se asemejan a “blobs” (letras
del teclado, iconos de la pantalla etc.) son detectados. (b) Emparejamientos. En verde se
muestran aquellos verificados geométricamente mediante la matriz fundamental que relaciona
ambas vistas.

Como los emparejamientos realizados anteriormente solamente se basan en infor-
mación visual, es posible que dos puntos diferentes sean emparejados si sus entornos
son similares (por ejemplo zonas con patrones repetitivos como el panel de corcho de la
Figura 2.6a). Por ello, éstos se verifican en el siguiente bloque (Geometric Verification),
atendiendo a información geométrica de la escena.

Esta verificación consiste en calcular la geometŕıa epipolar existente entre las dos
vistas (imágenes) a través de la matriz fundamental, F, que la define [Hartley and
Zisserman, 2004]. Esta verificación se puede entender visualmente a través de la Figura
2.7. En ella, un punto, p ∈ R3 es proyectado en dos vistas, obteniendo sus coordenadas
xa,xb ∈ P2. En esta situación genérica, el plano que contiene a estos puntos, contiene
además a los centros ópticos, c1, c2, de las dos vistas, lo que obliga a que xb deba
encontrarse en la ĺınea definida por el corte de este plano con la segunda vista, lb (en
coordenadas homogéneas), y viceversa. Estas ĺıneas se denominan epipolares.

En esta situación, la matriz fundamental (estimada de manera robusta [Hartley and
Zisserman, 2004]) es la que define la transformación de un punto xi cualquiera de una

15

2.4. Estimación del movimiento de la cámara

Figura 2.7: El plano que contiene a un punto p y a sus proyecciones en dos vistas di-
ferentes xa,xb, contiene además los centros ópticos correspondientes a ambas vistas c1, c2,
obligando a que xa y xb se encuentren en las ĺıneas la y lb (intersecciones del plano con las
vistas). La matriz fundamental F, define la transformación de un punto en la imagen xi a la
correspondiente ĺınea epipolar.

imagen, a su ĺınea epipolar correspondiente en la otra imagen. En el caso de la Figura
2.7:

lb = F21xa, la = F12xb (2.5)

Para que un emparejamiento entre imágenes sea verificado geométricamente, debe ha-
ber un mı́nimo número de puntos que cumplan esta condición (dentro de un margen de
error). A modo de ejemplo, en la Figura 2.6b se muestran en rojo, los emparejamientos
que no cumplen esta condición, coincidiendo con aquellos que son incorrectos.

Finalmente, para cada par de imágenes emparejado que ha sido verificado geométri-
camente, COLMAP, calcula las matrices esencial y de homograf́ıa [Hartley and Zis-
serman, 2004] que las relaciona, permitiendo, entre otras funciones, discernir si el mo-
vimiento relativo entre las dos vistas ha sido únicamente de rotación, o si la escena
observada es predominante plana (por ejemplo, si se está observando una pared).

Esta información es aprovechada en el siguiente bloque, Initialization, el cual tiene
como objetivo la inicialización del mapa. Para ello, COLMAP elige un par de imágenes
verificado que presenta un alto número de caracteŕısticas emparejadas, y una traslación
suficiente entre las mismas favoreciendo aśı la triangulación de los puntos observados
por ambas vistas5. Esto se realiza a través de las matrices esenciales, siguiendo el
procedimiento explicado en [Nistér, 2004, Hartley and Zisserman, 2004]. Un ejemplo
de inicialización se muestra en la Fig. 2.8.

De aqúı en adelante, COLMAP trata de aumentar el número de puntos del mapa,
aśı como el número de cámaras (la estimación de su localización). Para ello, en primer
lugar, el bloque de Image Registration, se encarga de estimar (registrar) la ubicación de
una nueva cámara. Esta estimación se realiza a partir del mapa ya creado, de manera
robusta haciendo uso de P3P [Gao et al., 2003] . Para elegir, qué cámara registrar, COL-
MAP impone un doble criterio: un número suficiente de sus caracteŕısticas SIFT verifi-
cadas deben haber sido ya trianguladas,

5De manera intuitiva, si dos imágenes están tomadas desde un mismo sitio, los rayos asociados a
los puntos observados seŕıan coincidentes en ambas imágenes ⇒ No habŕıa un único punto de corte
y por tanto seŕıa imposible triangular. Por ello se fija un traslación entre cámaras (o ángulo entre los
rayos) mı́nima para favorecer la triangulación.

16

Caṕıtulo 2. Sistema propuesto

Figura 2.8: Ejemplo simplificado de inicialización. Partiendo de dos imágenes toma-
das con suficiente separación y caracteŕısticas emparejadas: 1) Se extrae la matriz esencial
que relaciona las vistas, 2) se extrae la posición y orientación relativa de ambas cámaras,
y 3) se triangulan las caracteŕısticas emparejadas, obteniendo aśı un mapa inicial (nube de
puntos) sobre el que se irán añadiendo más cámaras/ puntos. En este ejemplo también se
muestran el par de rayos () proveniente de un punto triangulado.

Score = 66

Score = 80

Score = 146

Score = 200

Figure 3. Scores for different number of points (left and right) with
different distributions (top and bottom) in the image for L = 3.

late from panoramic image pairs to avoid degenerate points
and thereby improve robustness of triangulation and subse-
quent image registrations.

4.2. Next Best View Selection

Next best view planning has been studied in the fields
of computer vision, photogrammetry, and robotics [12].
Choosing the next best view in robust SfM aims to mini-
mize the reconstruction error [17, 24]. Here, we propose an
efficient next best view strategy following an uncertainty-
driven approach that maximizes reconstruction robustness.

Choosing the next best view is critical, as every decision
impacts the remaining reconstruction. A single bad deci-
sion may lead to a cascade of camera mis-registrations and
faulty triangulations. In addition, choosing the next best
view greatly impacts both the quality of pose estimates and
the completeness and accuracy of triangulation. An accu-
rate pose estimate is essential for robust SfM, as point tri-
angulations may fail if the pose is inaccurate. The decision
about choosing the next best view is challenging, since for
Internet photo collections there is usually no a priori infor-
mation about scene coverage and camera parameters, and
therefore the decision is based entirely on information de-
rived from appearance [17], two-view correspondences, and
the incrementally reconstructed scene [53, 24].

A popular strategy is to choose the image that sees most
triangulated points [52] with the aim of minimizing the un-
certainty in camera resection. Haner et al. [24] propose an
uncertainty-driven approach that minimizes the reconstruc-
tion error. Usually, the camera that sees the largest number
of triangulated points is chosen, except when the configu-
ration of observations is not well-conditioned. To this end,
Lepetit et al. [34] experimentally show that the accuracy of
the camera pose using PnP depends on the number of ob-
servations and their distribution in the image. For Internet
photos, the standard PnP problem is extended to the estima-
tion of intrinsic parameters in the case of missing or inac-
curate prior calibration. A large number of 2D-3D corre-
spondences provides this estimation with redundancy [34],
while a uniform distribution of points avoids bad configura-
tions and enables reliable estimation of intrinsics [41].

The candidates for the next best view are not the yet
registered images that see at least Nt > 0 triangulated

points. Keeping track of this statistic can be efficiently
implemented using a graph of feature tracks. For Internet
datasets, this graph can be very dense, since many images
may see the same structure. Hence, there are many candi-
date views to choose from at each step in the reconstruction.
Exhaustive covariance propagation as proposed by Haner et
al. is not feasible, as the covariance would need to be com-
puted and analyzed for each candidate at each step. Our
proposed method approximates their uncertainty-driven ap-
proach using an efficient multi-resolution analysis.

We must simultaneously keep track of the number of
visible points and their distribution in each candidate im-
age. More visible points and a more uniform distribution
of these points should result in a higher score S [31], such
that images with a better-conditioned configuration of visi-
ble points are registered first. To achieve this goal, we dis-
cretize the image into a fixed-size grid with Kl bins in both
dimensions. Each cell takes two different states: empty and
full. Whenever a point within an empty cell becomes vis-
ible during the reconstruction, the cell’s state changes to
full and the score Si of the image is increased by a weight
wl. With this scheme, we quantify the number of visible
points. Since cells only contribute to the overall score once,
we favor a more uniform distribution over the case when
the points are clustered in one part of the image (i.e. only a
few cells contain all visible points). However, if the number
of visible points is Nt � K2

l , this scheme may not cap-
ture the distribution of points well as every point is likely to
fall into a separate cell. Consequently, we extend the pre-
viously described approach to a multi-resolution pyramid
with l = 1...L levels by partitioning the image using higher
resolutions Kl = 2l at each successive level. The score
is accumulated over all levels with a resolution-dependent
weight wl = K2

l . This data structure and its score can be
efficiently updated online. Fig. 3 shows scores for differ-
ent configurations, and Sec. 5 demonstrates improved re-
construction robustness and accuracy using this strategy.

4.3. Robust and Efficient Triangulation

Especially for sparsely matched image collections, ex-
ploiting transitive correspondences boosts triangulation
completeness and accuracy, and hence improves subsequent
image registrations. Approximate matching techniques usu-
ally favor image pairs similar in appearance, and as a re-
sult two-view correspondences often stem from image pairs
with a small baseline. Leveraging transitivity establishes
correspondences between images with larger baselines and
thus enables more accurate triangulation. Hence, we form
feature tracks by concatenating two-view correspondences.

A variety of approaches have been proposed for multi-
view triangulation from noisy image observations [27, 40,
5]. While some of the proposed methods are robust to a
certain degree of outlier contamination [25, 35, 3, 44, 32],

y éstas deben presentar una distribución uniforme en su imagen. Por ello, de
las dos “imágenes” de la derecha, la inferior seŕıa elegida antes para registrar
(Figura extráıda del art́ıculo original).

Al haber estimado la localización de más cámaras, es posible que nuevos
puntos sean triangulados (bloque Triangulation), aumentando aśı el mapa
reconstruido. Para ello, COLMAP impone que un punto candidato a ser
triangulado debe ser observado por al menos tres imágenes, y además presentar un
ángulo de triangulación suficiente para asegurar su fiabilidad. Esto se realiza de manera
robusta mediante DLT [Hartley and Zisserman, 2004].

Para refinar las estimaciones realizadas en los dos bloques anteriores, COLMAP
utiliza Ajuste de haces o Bundle Adjustment (BA) [Triggs et al., 1999]. BA es un
método de optimización no lineal a partir del cual el error de reproyección es mini-
mizado, optimizando aśı tanto la localización de las cámaras como la de los puntos
triangulados. En este caso, COLMAP lo aplica localmente, es decir, solamente sobre
el conjunto de imágenes que comparten información visual. Este tipo de optimización
también se utiliza en nuestra propuesta por lo que se explicará con más detalle más
adelante (§4).

17

2.4. Estimación del movimiento de la cámara

Este tipo de optimización se repite de manera global (BA global) cada vez que
el mapa ha crecido un determinado porcentaje, refinando aśı todos los parámetros
(localizaciones de los puntos y cámaras) estimados hasta el momento. Si tras cualquiera
de estas optimizaciones, hay puntos que presentan un error de reproyección elevado (o
un ángulo de triangulación pequeño en cualquiera de sus emparejamientos), éstos son
filtrados y no intervienen más en la reconstrucción6.

Estos últimos cuatro bloques se repiten hasta que no quedan imágenes que cumplan
las condiciones para ser incluidas en la reconstrucción, finalizando aśı las estimaciones.
Un ejemplo de reconstrucción realizado por COLMAP se muestra en la Figura 2.9.

Figura 2.9: Ejemplo de reconstrucción mediante COLMAP. La ĺınea roja representa
la trayectoria estimada que siguió la cámara que capturó las fotos usadas en la reconstrucción
3D de la escena (3 de ellas se muestran en la parte inferior). Destacar como el software es
capaz de reconstruir tanto la estructura global de la escena como pequeños detalles (p.ej.
teclas).

6Esto no es del todo cierto, ya que COLMAP aplica un proceso de re-triangulación [Wu, 2013]
antes y después de aplicar BA global, con el objetivo de triangular puntos que quizás no han podido
ser triangulados con éxito anteriormente por no disponer de unas poses de la cámara estabilizadas.

18

Caṕıtulo 3

Formulación

Una vez introducidos los aspectos principales de la propuesta, en este caṕıtulo se
formalizan las herramientas matemáticas necesarias para cumplir los objetivos plan-
teados. En primer lugar, se presenta el Grupo de Lie de SE(3) (Espacio Eucĺıdeo
Especial) aśı como sus propiedades que atañen a nuestro problema, ya que éste repre-
senta el núcleo del bloque de optimización (Figura 2.1). A continuación se introducen
los B-Splines Cumulativos, utilizados para interpolar los elementos de SE(3) para aśı
modelar la trayectoria de los objetos en tiempo continuo.

3.1. Grupo de Lie, SE(3)

Una de las formas de localizar un objeto en el espacio consiste en definir un sistema
de coordenadas (o de referencia) “pegado” a él, {o}, y expresar cuál es su orientación y
posición con respecto a un sistema de referencia fijo (mundo), {w}. En la Figura 3.1 se
muestra un esquema con lo que nos referimos. Los sistemas de referencia usados siguen
la regla de la mano derecha y están formados por 3 ejes unitarios y ortogonales entre
śı {x̂, ŷ, ẑ}, por lo que:

x̂× ŷ = ẑ, ‖x̂‖= ‖ŷ‖= ‖ẑ‖= 1 (3.1)

Donde ‖·‖, × representan la norma eucĺıdea y el producto vectorial respectivamente.

Siguiendo la notación de la Fig. 3.1, t, representa la localización del objeto (origen
de su sistema de referencia). Expresándolo desde el sistema de referencia mundo:

t = t1x̂w + t2ŷw + t3ẑw (3.2)

Ahora, para definir la orientación del objeto, expresamos los ejes de su sistema de
coordenadas en términos del sistema de coordenadas fijo (mundo):

x̂o = r11x̂w + r21ŷw + r31ẑw (3.3)

ŷo = r12x̂w + r22ŷw + r32ẑw (3.4)

ẑo = r13x̂w + r23ŷw + r33ẑw (3.5)

19

3.1. Grupo de Lie, SE(3)

Figura 3.1: Posición y orientación del sistema de referencia, {o} de un objeto con respecto
a un sistema de referencia fijo, {w}.

De forma matricial:

two =



t1
t2
t3


 , Rwo =



r11 r12 r13

r21 r22 r23

r31 r32 r33


 (3.6)

Donde se han usado los sub́ındices (wo) para especificar que se está expresando el
sistema de referencia {o} con respecto a {w}. De esta forma, Rwo es la matriz de
rotación cuyas columnas son los ejes {x̂o, ŷo, ẑo} expresados desde {w}1, y two es el
vector de traslación que define la posición del origen de {o} expresado desde {w}.

Sabiendo esto, podemos transformar un punto que inicialmente está definido en la
referencia {o}, po ∈ R3, a su equivalente en {w} mediante:

pw = Rwopo + two (3.7)

Ya que Rwopo son las proyecciones del punto p en cada uno de los ejes del sistema de
referencia mundo, a las que se les añade two para tener en cuenta que los oŕıgenes de
ambas referencias no son coincidentes.

De manera equivalente, si expresamos po en coordenadas homogéneas: p̃ = [pT , 1]T ,
este cambio de coordenadas viene dado por la matriz de transformación Two:

p̃w = Twop̃o, Two =

[
Rwo two
01×3 1

]
(3.8)

Algo que también se puede aplicar a otras matrices de transformación:

Tac = TabTbc =

[
Rab tab
01×3 1

] [
Rbc tbc
01×3 1

]
=

[
RabRbc Rabtbc + tab
01×3 1

]
(3.9)

Para cualesquiera sistemas de referencia {a}, {b} y {c}. Como se verá más adelante,
otro de los usos de las matrices de transformación es el de aplicar una rotación seguida
de una traslación a un vector o a un sistema de coordenadas.

1Equivalentemente, sus filas son los ejes {x̂w, ŷw, ẑw} expresados en {o}.

20

Caṕıtulo 3. Formulación

A partir de las ecuaciones anteriores, vemos que para definir la localización de un
objeto, se están empleando 12 parámetros (los 9 elementos de Rwo + los 3 elementos
de two), sin embargo, los cuerpos ŕıgidos tienen 6 grados de libertad [Lynch and Park,
2017] y no el doble, por lo que esta representación es redundante. Por ello, deben existir
6 restricciones independientes en esta representación.

Estas restricciones se encuentran en la matriz de rotación R, ya que como se ha
comentado antes, sus columnas (o filas) se corresponden con ejes de coordenadas, por
lo que éstas deben ser de norma unidad y ortogonales entre śı, y por tanto cumplir:

RTR = I3×3 (3.10)

Donde I3×3 representa la matriz identidad de 3 × 3 dimensiones. Estas restricciones
implican que2 det(R) = ±1, pero al estar utilizando sistemas de referencia que siguen
la regla de la mano derecha (Ec. 3.1), esto obliga que det(R) = rT1 (r2×r3) = rT1 r1 = +1,
donde ri representa la columna i ∈ {1, 2, 3} de R.

Estas restricciones sirven para comprobar que las matrices de transformación, T,
con la multiplicación como operación interna, cumplen los axiomas de grupo. Es decir,
considerando 3 matrices de transformación TA,TB,TC cualesquiera (elementos del
grupo), se cumplen [Sola et al., 2018, Lynch and Park, 2017]:

◦ Existe un elemento identidad perteneciente al grupo, TI tal que TATI =
TITA = TA. Se satisface, ya que TI = I4×4 pertenece al grupo:

TI = I4×4 ⇒ RI = I3×3 ⇒ satisface

{
RT
I RI = I3×3

det(RI) = 1

y además cumple este axioma, al ser una propiedad de la matrices identidad.

◦ Clausura, o cierre: TATB pertenece al grupo. Se cumple, pues:

(RARB)TRARB = RT
B(RT

ARA)RB = RT
BRB = I3×3

det(RARB) = det(RA) det(RB) = 1 · 1 = 1

y a partir de la Ec. 3.9, vemos que éstas son las condiciones suficientes al ser
RARB la matriz de rotación resultante de la multiplicación de elementos del
grupo.

◦ Existencia de un elemento inverso, T−1
A perteneciente al grupo, tal que

T−1
A TA = TAT−1

A = TI . Existe, y viene dado por:

T−1
A =

[
RT
A −RT

AtA
01×3 1

]
→ T−1

A TA = TAT−1
A

(3.9)
= I4×4

Pertenece al grupo, puesto que se satisface que RT
ARA = I3×3 y det(RT

A) =
det(RA) = 1.

◦ Asociatividad: (TATB)TC = TA(TBTC). Se cumple por las propias propieda-
des de la multiplicación de matrices.

2det(·) representa el determinante de una matriz.

21

3.1. Grupo de Lie, SE(3)

Este grupo es conocido como el Grupo Eucĺıdeo Especial o SE(3), siendo
además un Grupo de Lie al no solo cumplir los anteriores axiomas, sino también
ser una variedad diferencial/ suave (smooth manifold) [Sola et al., 2018].

Esto tiene gran importancia, ya que a pesar de que el espacio al que pertenecen las
matrices de transformación no sea globalmente un espacio vectorial, śı que es posible
aproximarlo locamente como tal, facilitando aśı la optimización de las estimaciones de
SE(3) a través de su plano tangente, pues al ser éste un espacio vectorial, podemos
llevar a cabo cálculo de manera más directa en él [Sola et al., 2018, Strasdat, 2012].

Figura 3.2: Ejemplo de variedad suave (smooth manifold). Localmente se puede apro-
ximar como un espacio vectorial (su plano tangente), pero globalmente es una estructura no
Eucĺıdea.

Un ejemplo intuitivo de este tipo de variedad que se puede visualizar, es la de una
esfera (Fig. 3.2). Localmente puede ser representada como un plano, en el que por
ejemplo, nos podemos mover en direcciones perpendiculares (aśı como en la superficie
de la Tierra), pero sin embargo su estructura global dista de serlo [Strasdat, 2012].

El (hiper)plano tangente de una matriz de transformación, dT(t)/dt = Ṫ lo pode-
mos definir mediante la diferenciación de la condición que cumplen todos los elementos
del grupo:

TT−1 = I ⇒ ṪT−1 + TṪ−1 = 04×4 (3.11)

⇒
[
Ṙ ṫ
0 0

] [
RT −RT t
0 1

]
+

[
R t
0 1

] [
ṘT −ṘT t−RT ṫ
0 0

]
= 04×4

(3.12)

Fijándonos en las matrices de rotación, se deriva la siguiente condición:

ṘRT + RṘT = 03×3 ⇒ ṘRT = −(ṘRT)T (3.13)

Es decir, ṘRT es el negativo de su traspuesta, lo que implica que es una matriz anti-
simétrica, ω∧:

ω∧ =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 ,

{
ṘRT = ω∧

Ṙ = ω∧R
(3.14)

22

Caṕıtulo 3. Formulación

De esta forma los (hiper)planos tangentes a la variedad diferenciable SE(3) cumplen es-
ta condición. En la Ec. 3.14 se ha introducido además el operador “sombrero” (·)∧, para
indicar que se está expresando el vector ω = [ω1, ω2, ω3]T como matriz antisimétrica.

3.1.1. Cinemática

El vector que acabamos de definir, ω, carga con un sentido f́ısico relevante, pues
representa la velocidad angular que experimenta el objeto, indicando de esta forma,
el cambio de orientación (medida angular) por unidad de tiempo de los ejes del sistema
de coordenadas sujeto a él.

(a) (b)

Figura 3.3: Velocidad angular. (a) Giro relativo que experimenta el eje x̂o de un sistema
de coordenadas al experimentar éste una velocidad angular ω. (b) Rotación de un objeto (y
el sistema de coordenadas sujeto a él) por acción de ω.

Para visualizar esto, consideremos un objeto moviéndose con una determinada ve-
locidad angular, como en la Fig. 3.3b. Si elegimos como punto de referencia el origen
de su sistema de coordenadas, la velocidad relativa del resto de puntos del objeto, se
puede calcular por composición de movimientos:

˙̂p = ω × p̂ (3.15)

Donde p̂ representa el vector que parte del origen (punto de referencia) y va hasta el
punto, y ˙̂p por tanto representa la velocidad relativa lineal de la punta de este vector,
debida únicamente al cambio de orientación que experimenta conforme pasa el tiempo3.

3Al estar considerando un sólido ŕıgido, la distancia entre los puntos que lo conforman es constante
en el tiempo, por lo que solo puede variar la orientación del vector.

23

3.1. Grupo de Lie, SE(3)

Aplicándolo a los ejes del sistema de coordenadas:

˙̂x = ω × x̂ (3.16)

˙̂y = ω × ŷ (3.17)

˙̂z = ω × ẑ (3.18)

Describiendo de manera relativa, una circunferencia como la mostrada en la Figura
3.3a4.

Hasta ahora, no se ha considerado expresar la velocidad angular o los ejes en ningún
sistema de referencia en concreto. Si elegimos el sistema de referencia mundo {w}, las
direcciones de los ejes del sistema de coordenadas objeto, se corresponden con las
columnas de Rwo (Ecs. 3.3-3.6). Por ello, Ṙwo (variación temporal de los elementos de
Rwo), se puede expresar como:

Ṙwo =
[
ωw × r1 ωw × r2 ωw × r3

]
= ωw ×Rwo = ω∧w Rwo (3.19)

Donde ωw es la velocidad angular expresada en la referencia {w}, y ri representa la
columna i de Rwo. La última igualdad se debe a que un producto vectorial entre dos
vectores, a× b, es equivalente a a∧ b (es decir, con el vector a expresado como matriz
antisimétrica). Llegando aśı al mismo resultado que en la Ec. 3.14.

De igual forma, si queremos expresar la velocidad angular que experimenta el objeto
en otro sistema de referencia, como en el suyo propio: ωo, al ser un vector (y no un
punto en el espacio) recurrimos a la matriz de rotación que relaciona ambos sistemas:

ωo = RT
woωw, (3.20)

que en forma de matriz antisimétrica [Lynch and Park, 2017] viene dada por la Ec.
3.21:

ω∧o = RT
wo Ṙwo (3.21)

Algo importante a aclarar es que ωo no es la velocidad angular relativa al sistema
de coordenadas del objeto en movimiento, sino que representa la velocidad angular
relativa a un sistema de coordenadas fijo que instantáneamente es coincidente con el
sistema sujeto al objeto.

Por lo que, a modo de resumen, si Rwo define la orientación de los ejes del sistema
de referencia sujeto al objeto con respecto a la referencia mundo, la velocidad angular
que está experimentando el mismo, viene dada por:

ω∧w = ṘwoR
T
wo, (3.22)

ω∧o = RT
wo Ṙwo, (3.23)

en función de si queremos representarla en el sistema de referencia mundo, o en un
sistema de referencia (también fijo), que es instantáneamente coincidente con el sujeto
al objeto. La aceleración angular se puede obtener por tanto diferenciando las anteriores
expresiones con la regla del producto.

4Dicha figura está inspirada en la Fig. 3.10 (p. 74) de [Lynch and Park, 2017].

24

Caṕıtulo 3. Formulación

Tras haber comprobado el significado f́ısico de pre- y post-multiplicar Ṙwo por RT
wo,

nos podemos plantear lo mismo con Ṫwo. Las conclusiones son similares e involucran
a la velocidad lineal que experimenta el objeto. En primer lugar, si pre-multiplicamos
por T−1

wo:

T−1
wo Ṫwo =

[
RT
wo −RT

wo two
0 1

] [
Ṙwo ṫwo
0 0

]
(3.24)

=

[
RT
woṘwo RT

woṫwo
0 0

]
(3.25)

=

[
ω∧o vo
0 0

]
(3.26)

Es decir, T−1
wo Ṫwo contiene la velocidad angular del objeto expresada en el sistema de

referencia estacionario e instantáneamente coincidente con su sistema de coordenadas
(ω∧o), aśı como la velocidad lineal del mismo, ṫ, expresada en dicho sistema: RT

woṫwo =
vo.

Ahora, analizando el caso de la post-multiplicación de Ṫwo por T−1
wo,

Ṫwo T−1
wo =

[
Ṙwo ṫwo
0 0

] [
RT
wo −RT

wo two
0 1

]
(3.27)

=

[
ṘwoR

T
wo ṫwo − ṘwoR

T
wo two

0 0

]
(3.28)

=

[
ω∧w vw
0 0

]
(3.29)

nuevamente se obtiene la velocidad angular (expresada en el sistema de referencia
mundo, ωw). Sin embargo, no se obtiene la velocidad lineal del objeto expresada en
dicho sistema, ṫwo, sino que se obtiene vw = ṫwo − ωw × two (ya que ṘwoR

T
wo = ω∧w),

representando por tanto, la velocidad que tendŕıa un punto del objeto ubicado en el
origen del sistema de referencia mundo {w}.

Por otro lado, al igual que con la velocidad angular, se usa el operador (·)∧ para
pasar de su representación en R3 a su representación como matriz antisimétrica, po-
demos aplicarlo igualmente para pasar de una representación τ = [v,ω]T ∈ R6 a la
estructura de las Ecs. 3.26, 3.29:

τ∧ =

[
v
ω

]∧
=

[
ω∧ v
0 0

]
∈ se(3), (3.30)

Los elementos de esta forma pertenecen al álgebra de Lie de SE(3), denominado
se(3), los cuales conforman el plano tangente a SE(3) en la identidad (sustituyendo
T = I por ej. en la Ec. 3.26, obtenemos que Ṫ = τ∧), los cuales se pueden definir
localmente -en un punto cualquiera T ∈ SE(3)-, o globalmente -en I [Sola et al., 2018].
Un ejemplo visual se muestra en la Fig. 3.4.

En este caso, para expresar τw en la referencia del objeto, o τ o en la referencia
global, no podemos recurrir a la propia matriz de transformación que los relaciona.

25

3.1. Grupo de Lie, SE(3)

(a) (b)

Figura 3.4: Visualización simple planos tangentes en diferentes puntos de SE(3).
(a) Elemento identidad I y matriz de transformación Ti ∈ SE(3) (representada de manera
simple como una esfera). (b) Álgebras de Lie, definidas en la identidad, con coordenadas τw,
y en el punto tangente de Ti, con coordenadas locales τ o.

Una evidencia clara de esto es que T ∈ SE(3) tiene dimensiones de 4×4, mientras que
τ es un vector ∈ R6. Es decir, necesitamos a priori una matriz de dimensiones 6× 6.

Dicha matriz recibe el nombre de matriz adjunta de SE(3), y es la que define la
transformación de τ o a τw; es decir, transforma los elementos del plano tangente defi-
nido localmente en T ∈ SE(3) al elemento del álgebra de Lie definido en la identidad
I [Sola et al., 2018]. Es común representarla como AdT [Lynch and Park, 2017, Sola
et al., 2018], para aśı denotar que el punto de SE(3) asociado a la transformación es
T:

τw =

[
vw
ωw

]
= AdTwo

[
vo
ωo

]
= AdTwo τ o (3.31)

La matriz adjunta de SE(3) la podemos obtener sabiendo que se debe cumplir la Ec.
3.31, por lo que partiendo de las Ecs. 3.26 y 3.29:

vw = Rwovo + t∧Rwo (3.32)

ωw = Rwoωo (3.33)

significa que AdTwo viene dada por:

AdTwo =

[
Rwo t∧Rwo

0 Rwo

]
(3.34)

A partir de esto, y recordando la Ec. 3.29, se cumple que: Ṫwo T−1
wo = (AdTwoτ o)

∧.
En §3.1.2, con la introducción del mapeo exponencial y logaŕıtmico, se presenta otro
significado f́ısico de AdT, que además es de utilidad en el bloque de optimización.

Antes de finalizar esta parte, conviene mencionar que también existe un operador,
llamado vee, (·)∨, utilizado para expresar un elemento del álgebra de Lie como un vector

26

Caṕıtulo 3. Formulación

τ ∈ R6: ([
ω∧ v
0 0

])∨
=

[
v
ω

]
= τ (3.35)

3.1.2. Mapeo exponencial y logaŕıtmico

En la sección anterior se ha analizado cómo se traduce la velocidad lineal y angular
que experimenta un objeto a los elementos, definidos de manera global y local, del
álgebra de Lie se(3). En esta sección se analiza el efecto que éstos tienen sobre el
sistema de coordenadas (o matriz de transformación que la define), derivando aśı los
mapeos exponencial y logaŕıtmico, como forma de relacionar los elementos de estos
planos tangentes a los elementos de la variedad y viceversa.

Para ello, partimos de la ecuación diferencial definida anteriormente:

Ṫwo = τ∧w Two(t) (3.36)

La solución a esta ecuación, que explica la evolución temporal de Two(t) bajo el efecto
de las velocidades lineal y angular que definen a τ∧w, viene dada por (asumiendo como
condición inicial Two(0) = Two) [Sola et al., 2018, Lynch and Park, 2017]5:

Two(t) = exp(τ∧w t)Two (3.37)

Donde exp(·) representa la exponencial de una matriz. Como Two(t) ∈ SE(3) ∀t, esto
implica que exp(τ∧w t) ∈ SE(3) también. Es decir, nos permite transferir elementos del
álgebra de Lie (τ∧w t), definido en la identidad I, a la variedad.

De esta forma, la velocidad, expresada en la referencia mundo {w}, que experimenta
el sistema de coordenadas sujeto al objeto se traduce en un movimiento ŕıgido (rotación
y traslación) por medio del mapeo exponencial. Si en su lugar, las velocidades son
expresadas en la referencia del objeto, llegamos a la misma conclusión:

Ṫwo = Two(t) τ
∧
o (3.38)

Two(t) = Two exp(τ∧o t), (3.39)

solo que en esta situación, el incremento exp(τ∧o t) está definido con respecto al sistema
de coordenadas {o}, por lo que transferencia se realiza desde el plano tangente a Two

a la variedad.

Intuitivamente [Sola et al., 2018], la exponencial de un elemento τ∧ ∈ se(3), lo
proyecta en la variedad siguiendo una geodésica (ver Fig. 3.5). Aśı mismo, para invertir
dicha proyección -transferencia de SE(3) a se(3)-, se utiliza el logaritmo de una matriz
o mapeo logaŕıtmico log(·). Es decir:

exp : se(3) 7→ SE(3) ; τ∧ 7→ T = exp(τ∧) (3.40)

log : SE(3) 7→ se(3) ; T 7→ τ∧ = log(T) (3.41)

5Para comprobar que en efecto es la solución, podemos diferenciarla con respecto a t. Sabiendo que
∂ exp(τ∧ t)/∂t = τ∧ exp(τ∧ t), se obtiene: τ∧ exp(τ∧ t)Two, y como Two(t) = exp(τ∧ t)Two, significa
que Ṫwo = τ∧Two(t), coincidiendo aśı con la Ec. 3.36.

27

3.1. Grupo de Lie, SE(3)

Por comodidad, para poder expresarlos con los elementos del álgebra de Lie en forma
de vector τ ∈ R6, es habitual [Sola et al., 2018, Forster et al., 2016] definirse una versión
alternativa de los anteriores mapeos, indicándolo con la primera letra mayúscula:

Exp : R6 7→ SE(3) ; τ 7→ T = Exp(τ) (3.42)

Log : SE(3) 7→ R6 ; T 7→ τ = Log(T) (3.43)

Cumpliéndose por tanto:

T = Exp(τ) = exp(τ∧) (3.44)

τ = Log(T) = (log(T))∨ (3.45)

(a) (b)

Figura 3.5: Mapeo exponencial y logaŕıtmico. (a) Un incremento τ∧ ∈ se(3) definido
en el álgebra de Lie local al punto T ∈ SE(3) se transfiere a la variedad por medio de exp(τ∧).
(b) Un incremento local ∆T ∈ SE(3) se transfiere al plano tangente (álgebra de Lie) local
por medio de log(∆T).

En el caso de SE(3) existen expresiones cerradas para ambos mapeos [Blanco,
2010, Barfoot, 2017], derivándose a partir del desarrollo en serie de potencias de ambas
funciones. En el caso de la matriz exponencial:

exp(τ∧) = exp

([
v
ω

]∧)
=

[
exp(ω∧) Vv

0 1

]
, (3.46)

donde

{
exp(ω∧) = I3 + sin θ

θ
ω∧ + 1−cos θ

θ2
(ω∧)2

V = I3 + 1−cos θ
θ2

ω∧ + θ−sin θ
θ3

(ω∧)2
, con θ = ‖ω‖ (3.47)

Y del mapeo logaŕıtmico6:

log(T) = log

([
R t
0 1

])
=

[
log(R) V−1t

0 0

]
, (3.48)

donde log(R) =
θ

2 sin θ
(R−RT), con θ = arc cos

(
tr(R)− 1

2

)
(3.49)

Juntando estas definiciones con la de la matriz adjunta (Ec. 3.31), significa que los
incrementos en la variedad, exp(τ), definidos a través de las álgebras de Lie local y
global se relacionan por:

Two exp(τ o) = exp(AdTwoτ o)Two = exp(τw)Two (3.50)

6La operación tr(R) expresa la traza de la matriz R (la suma de los elementos de su diagonal).

28

Caṕıtulo 3. Formulación

Siendo además una propiedad algebraica útil, al poder expresar el mismo incremento
“transfiriendo” su multiplicación del lado derecho, al izquierdo. De la misma forma,
esta transferencia se puede invertir haciendo uso de la inversa de la matriz adjunta
(AdTwo)

−1 = Ad(Two)−1 [Sola et al., 2018]:

exp(τw)Two = Two exp(Ad(Two)−1τw) = Two exp(τ o) (3.51)

Otra propiedad de interés del mapeo exponencial de cara a la siguiente sección, es
la derivada temporal de una matriz de transformación7 cuyo elemento asociado en el
álgebra de Lie vaŕıa de forma lineal en el tiempo, t [Strasdat, 2012]:

∂

∂t
exp(tτ∧) = τ∧ exp(tτ∧) = exp(tτ∧)τ∧ (3.52)

3.1.3. Jacobianos derecho e izquierdo de SE(3)

Antes de introducir cómo se lleva a cabo la optimización de los elementos ∈ SE(3),
conviene introducir el jacobiano derecho e izquierdo de SE(3) debido al uso de los
mismos en nuestra propuesta.

Estos jacobianos representan cómo afecta de forma infinitesimal una perturbación,
δτ , en el elemento del álgebra de Lie τ = Log(T) con la perturbación Exp(δφ) que
ocasiona en la variedad8. Es decir, se definen como ∂δφ/∂δτ , difiriendo la definición
de cada jacobiano según el plano tangente sobre el que se representa la perturbación
Exp(δφ) [Sola et al., 2018, Sola, 2017b].

Para el jacobiano derecho, Jr(τ), se considera la perturbación Exp(δφ) en el plano
tangente al punto T, mientras que el jacobiano izquierdo considera el plano tangente
a la identidad:

Exp(τ)Exp(δφ) = Exp(τ + δτ), para Jr(τ), (3.53)

Exp(δφ)Exp(τ) = Exp(τ + δτ), para Jl(τ), (3.54)

De esta forma, despejando δφ de las anteriores ecuaciones para aśı poder representar
su variación infinitesimal, se obtiene:

Jr(τ) =
Log(Exp(τ)−1Exp(τ + δτ))

δτ

∣∣∣∣
δτ=0

(3.55)

Jl(τ) =
Log(Exp(τ + δτ)Exp(τ)−1)

δτ

∣∣∣∣
δτ=0

(3.56)

Ambos jacobianos cuentan con soluciones cerradas [Barfoot, 2017]. Cumpliéndose para

7Esta propiedad no se restringe solo a elementos de SE(3), la cumplen todos los grupo de Lie.
8Esta es la aplicación de los jacobianos derecho e izquierdo a la variedad de SE(3). Su aplicaciones

se extienden de manera general al resto de grupos de Lie, que en este TFM no son presentados. La
definición formal de estos jacobianos se encuentra en [Sola et al., 2018].

29

3.2. B-Splines cumulativos en SE(3)

pequeñas perturbaciones de δτ [Sola et al., 2018, Barfoot, 2017]:

Exp(τ + δτ) ≈ Exp(τ)Exp(Jr(τ)δτ) (3.57)

Exp(τ + δτ) ≈ Exp(Jl(τ)δτ)Exp(τ) (3.58)

Log(Exp(τ)Exp(δτ)) ≈ τ + J−1
r (τ)δτ (3.59)

Log(Exp(δτ)Exp(τ)) ≈ τ + J−1
l (τ)δτ (3.60)

3.2. B-Splines cumulativos en SE(3)

Uno de los objetivos de este TFM es el de estimar las trayectorias (constituidas por
elementos de SE(3)) de los objetos a través de curvas continuas en el tiempo. Para este
fin, el tipo de curva elegida es recomendable que cumpla las siguientes caracteŕısticas
[Haarbach et al., 2018, Patron-Perez et al., 2015]:

Control local → Cambios locales en la curva no afectan globalmente a la tra-
yectoria, permitiendo trabajar tanto de manera online como offline.

Continuidad C2 → Estimaciones de velocidad y aceleración continuas.

Libre de singularidades → Cualquier movimiento puede ser interpolado.

Derivadas temporales anaĺıticas → Posibilidad de estimar la velocidad y
aceleración en cualquier instante de tiempo.

Uno de los tipos de curvas más populares que se ajusta a estas necesidades son
los B-splines [Kim et al., 1995, Haarbach et al., 2018]. En su definición base, cada
punto de una curva B-Spline es una combinación lineal de k funciones base B-Spline
Bi,k(t), las cuales son polinomios de grado k − 1, por lo que la continuidad resultante
es de Ck−2 [Kim et al., 1995]. Cada Bi,k(t) tiene asociada un punto de control pi ∈ Rn,
ponderándolo aśı a lo largo del tiempo. La suma de todas las ponderaciones da lugar
la curva B-Spline:

p(t) =
n∑

i=0

piBi,k(t) (3.61)

Donde n es el número de puntos de control y cada Bi,k(t) se define según la fórmula
recursiva de De Boor-Cox [De Boor, 1972, Cox, 1972]:

Bi,1(t) =

{
1 si t ∈ [ti, ti+1)

0 en otro caso,
(3.62)

Bi,k(t) =
t− ti

ti+k−1 − ti
Bi,k−1(t) +

ti+k − t
ti+k − ti+1

Bi+1,k−1(t) (3.63)

Los términos ti se denominan nudos. A partir de las Ecs. 3.62-3.63 se infiere que cada
Bi,k(t) solamente es no nula cuando t ∈ [ti, ti+k).

En concreto, como estamos interesados en una curva que tenga continuidad C2,
necesitamos k = 4, es decir, funciones B-Spline con dependencia cúbica en el tiempo.
Sustituyéndolo en las Ecs. 3.61-3.63 se deriva que para un instante t ∈ [ti, ti+1), el

30

Caṕıtulo 3. Formulación

valor de la curva p(t) está influida por: [Bi−3(t), Bi−2(t), Bi−1(t), Bi(t)], siendo el resto
nulas9.

A partir del trabajo [Qin, 2000], el cálculo de estas funciones se puede realizar de
forma matricial según la Ec. 3.64.

B =
[
Bi−3(t) Bi−2(t) Bi−1(t) Bi(t)

]T
= Cu (3.64)

Donde u =
[
1 u u2 u3

]T
, con u = t−ti

ti+1−ti ∈ [0, 1), y la matriz C (demostración en

[Qin, 2000]), viene dada por:

C =




(ti+1−ti)2
(ti+1−ti−1)(ti+1−ti−2)

−3c00 3c00 −c00

1− c00 − c20 3c00 − c21 −3c00 − c22 c00 − c23 − c33

(ti−ti−1)2

(ti+2−ti−1)(ti+1−ti−1)
3(ti+1−ti)(ti−ti−1)

(ti+2−ti−1)(ti+1−ti−1)
3(ti+1−ti)2

(ti+2−ti−1)(ti+1−ti−1)
c23

0 0 0 (ti+1−ti)2
(ti+3−ti)(ti+2−ti)




(3.65)
Donde los términos cij hacen referencia a términos ya definidos de la matriz en la fila
i y columna j. Un ejemplo de interpolación en R2 se muestra en la Fig. 3.6.

(a) (b)

Figura 3.6: Muestra de funciones base B-Spline cúbicas e interpolación. (a) Fun-
ciones originales (sup.) y su versión cumulativa (inf.), (k = 4). (b) Interpolación resultante
para 4 puntos de control pj ∈ R2, j ∈ {i − 3, . . . , i} para t ∈ [ti, ti+1). Los colores relacionan
a cada función base con su punto de control asociado (en la versión cumulativa, la relación
es con el punto de control cuyo signo no es invertido).

Sin embargo, la formulación anterior no es directamente aplicable a SE(3). Fijándo-
nos en la Ec. 3.61, al sustituir los puntos de control pi por matrices de transformación

9Para favorecer la claridad, se ha eliminado el valor de k de cada Bi,k(t). De aqúı en adelante, si
no se indica, se asume que siempre es 4.

31

3.2. B-Splines cumulativos en SE(3)

Ti, el resultado no tiene porque pertenecer a SE(3), ya sea por la operación suma,
o por la multiplicación de un escalar Bi,k; es decir, en su forma base, no es posible
interpolar matrices de transformación mediante una curva B-Spline.

Para hacer frente a esto, en [Kim et al., 1995], se propuso la versión cumulativa:

p(t) = p0(t)B̃0,k +
n∑

i=1

(pi − pi−1)B̃i,k(t) (3.66)

que śı permite trabajar con grupos de Lie. Particularizando a SE(3), el incremento
entre dos puntos de control Ti−1 y Ti expresado en el plano tangente de Ti−1 viene
dado por Ωi = log(T−1

i−1Ti). Es en este espacio Eucĺıdeo en el que este incremento
se pondera por la función base cumulativa. El último ingrediente para concatenar los
incrementos es el mapeo exponencial visto en §3.1.2. Llegando finalmente a la versión
equivalente en SE(3) [Kim et al., 1995, Lovegrove et al., 2013]:

T(t) = exp(B̃0,k log(T0))
n∏

i=1

exp(B̃i,k(t)Ωi) (3.67)

En [Kim et al., 1995] se demostró que las funciones base B-Spline cumulativas B̃i,k(t)
(asociadas al nudo ti) se obtienen a través de la ecuación 3.68:

B̃i,k(t) =
n∑

j=i

Bj,k(t) =





∑i+k
j=i Bj,k(t) si ti < t < ti+k−1

1 si t ≥ ti+k−1

0 si t ≤ ti

(3.68)

Las condiciones anteriores para k = 4 se pueden observar de manera visual en la Fig.
3.6a.

Para trasladar esta versión a su forma matricial, con k = 4, (la que se utilizó en
este trabajo), basta por tanto con sumar los elementos de la misma columna de C en
la Ec. 3.65, ya que éstos son multiplicados por términos del polinomio temporal del
mismo grado (por ej., los elementos de la última columna son multiplicados por u3) y
por tanto se les puede aplicar factor común. Es decir:

B̃ =
[
B̃i−3(t) B̃i−2(t) B̃i−1(t) B̃i(t)

]T
= C̃u (3.69)

C̃ =




∑3
f=0 cf0

∑3
f=0 cf1

∑3
f=0 cf2

∑3
f=0 cf3∑3

f=1 cf0

∑3
f=1 cf1

∑3
f=1 cf2

∑3
f=1 cf3∑3

f=2 cf0

∑3
f=2 cf1

∑3
f=2 cf2

∑3
f=2 cf3∑3

f=3 cf0

∑3
f=3 cf1

∑3
f=3 cf2

∑3
f=3 cf3




=




1 0 0 0
1− c00 3c00 −3c00 c00

c20 c21 c22 c23 + c33

0 0 0 c33




(3.70)

Donde el sub́ındice f expresa la fila de la matriz C. Los términos cij se corresponden
con los de la Ec. 3.64.

Algo a destacar es que B̃i−3 = 1, ∀t > ti. De esta observación se deriva que podemos
expresar la Ec. 3.67 de forma equivalente para un instante t ∈ [ti, ti+1) partir de la Ec.

32

Caṕıtulo 3. Formulación

3.71:

T(t) = Ti−3

3∏

j=1

exp(B̃i−3+j(t)Ωi−3+j) (3.71)

Un ejemplo visual de interpolación en SE(3) se muestra en la Fig. 3.7. Las funciones
base cumulativas empleadas son las de la Fig. 3.6a.

Juntando lo anterior con el modelo de proyección de una cámara pinhole (Ec. 2.3),
significa que un punto po (expresado en la referencia del objeto), es proyectado en un
punto x ∈ R2 de la imagen según la Ec. 3.72.

x = π(T−1
wc Two(t),po) (3.72)

Donde Two(t) es la matriz de transformación interpolada en el instante t (Ec. 3.71),

Figura 3.7: Ejemplo de interpolación en SE(3). Los 4 puntos de control, Tj ∈
SE(3), j ∈ {i − 3, . . . , i}, son los sistemas de coordenadas de mayor tamaño, el resto son
sistemas de coordenadas interpolados para un tiempo t ∈ [ti, ti+1). Las funciones base cumu-
lativas empleadas son las de la Fig. 3.6a.

que expresa el sistema de coordenadas del objeto con respecto a la referencia mundo
{w}, y Twc expresa la referencia de la cámara con respecto a {w} en dicho instante (la
cual es obtenida mediante COLMAP, §2.4).

3.2.1. Cinemática

Una de las ventajas de trabajar con trayectorias interpoladas con B-Splines es que
éstas facilitan el cálculo de las derivadas temporales de una matriz de transforma-
ción Two(t) [Lovegrove et al., 2013]. Por ejemplo, si abstraemos cada incremento local

exp
(
B̃j(t)Ωj

)
de la Ec. 3.71 como Aj con j ∈ {i− 3, . . . , i}:

Two(t) = Ti−3 exp
(
B̃i−2(t)Ωi−2

)
exp

(
B̃i−1(t)Ωi−1

)
exp

(
B̃i(t)Ωi

)
(3.73)

Two(t) = Ti−3Ai−2(t)Ai−1(t)Ai(t) (3.74)

33

3.2. B-Splines cumulativos en SE(3)

Significa que aplicando la regla del producto10:

Ṫwo = Ti−3

(
Ȧi−2Ai−1Ai + Ai−2Ȧi−1Ai + Ai−2Ai−1Ȧi

)
(3.75)

T̈wo = Ti−3

(
Äi−2Ai−1Ai + Ai−2Äi−1Ai + Ai−2Ai−1Äi +

2(Ȧi−2Ȧi−1Ai + Ai−2Ȧi−1Ȧi + Ȧi−2Ai−1Ȧi)

)
(3.76)

Cada término Ȧj = ∂/∂t(exp(B̃j(t)Ω)) es calculado través de la propiedad 3.52 y la
regla de la cadena:

Ȧj =
∂

∂t
exp(B̃j(t)Ωj) =

∂Aj

∂B̃j

∂B̃j

∂t

3,52
= Ω exp(B̃j(t)Ω)

∂B̃j

∂t
(3.77)

donde el término ∂B̃j/∂t proviene de acceder con el ı́ndice correspondiente a la derivada

temporal ˙̃B, definida como:

˙̃B
3,69
= C̃u̇, u̇ =

1

tj+1 − tj
[
0 1 2u 3u2

]T
(3.78)

Finalmente, los términos Äj se obtienen diferenciando con respecto al tiempo cada
Ȧj, y aplicando nuevamente la propiedad 3.52 y la regla del producto:

Äj = ȦjΩj
˙̃Bj(t) + AjΩj

¨̃Bj(t), con (3.79)

¨̃B = C̃ü, ü =
1

(tj+1 − tj)2

[
0 0 2 6u

]T
(3.80)

De esta forma, gracias a los B-Splines somos capaces de conocer en cualquier ins-
tante de tiempo Ṫwo, T̈wo, y por tanto, la velocidad y aceleración lineal del objeto (a
través de las derivadas temporales del vector de translación) y la velocidad y acelera-
ción angular (a través de las derivadas temporales de la matriz de rotación y de la Ec.
3.22).

10Por mayor claridad la dependencia temporal de los términos no ha sido añadida.

34

Caṕıtulo 4

Optimización

En este caṕıtulo nos centramos en cómo nuestra propuesta optimiza las estimaciones
de los puntos de control Ti ∈ SE(3) de la trayectoria del objeto en tiempo continuo
(introducidos en §3.2), aśı como los puntos propios del objeto po ∈ R3 en su referencia.

En la primera parte se formalizan los parámetros que son optimizados, aśı como la
función de coste empleada. A continuación, se hace hincapié en el método de optimiza-
ción elegido (Gauss-Newton), para finalmente explicar la derivación de los jacobianos
necesarios en el cómputo de las actualizaciones de los parámetros que son optimizados.

4.1. Estado del sistema y funciones de coste: Spli-

neBA, LocalBA

El conjunto de parámetros a optimizar se conoce formalmente como vector de
estado, X . En nuestro caso, las variables/ parámetros contenidos en dicho vector, son
los puntos de control de las trayectorias de los objetos (§3.2), y los puntos de cada objeto
que han sido seleccionados po. Para aliviar la notación, y sin pérdida de generalidad
(al no existir parámetros comunes entre objetos), se hace referencia a un único objeto
o. Por ello, la formulación explicada en esta sección es igual e independiente para cada
objeto.

Al conjunto de imágenes o frames usados para seguir a un objeto hasta un instante
t lo denominamos como It = {a, a + 1, . . . , n}, con a, n ∈ N, representando respecti-
vamente el número del primer y último frame de la secuencia que han sido empleados
en la estimación de la trayectoria del objeto. Siguiendo esto, al conjunto de instantes
temporales asociados a cada imagen lo representamos como Kt = {ta, . . . , tn}.

Nuestro sistema incluye un punto de control nuevo por cada nueva imagen o frame
que recibe. La motivación de esto reside en ser capaces de estimar no solo movimientos
suaves, sino también movimientos significativos ocurridos en un número de frames
reducido. De esta decisión se deriva que en la Ec. 3.71 t = ti durante la optimización, por
lo que el punto de control Ti no influye en ésta, reduciéndose aśı la carga computacional.

35

4.1. Estado del sistema y funciones de coste: SplineBA, LocalBA

No incrementamos más el número de puntos de control dado que se perdeŕıa una
significativa capacidad de interpolación entre frames. Por ej. si duplicásemos los puntos
de control, por cada par de imágenes, habŕıa uno que estaŕıa influido únicamente por
las observaciones de un frame, mientras que con nuestro planteamiento, cada punto de
control está influenciado por información más rica, al provenir ésta de 3 imágenes.

A partir de este protocolo, y asumiendo un tiempo entre frames cuasi-constante,
para un instante ti el punto de control Ti−2 es el que tiene una mayor influencia en
la interpolación. Esto se observa en la Fig. 3.6a donde las funciones base asociadas al
primer y segundo incremento reciben una mayor ponderación.

Por esta observación, en cada imagen recibida en el instante ti inicializamos el vec-
tor de traslación del punto de control Ti−2 al centro de masas de la nube de puntos
segmentada del objeto. La matriz de rotación la inicializamos con la de Ti−3, excep-
tuando al primer punto de control de todos, Ta−2, que se inicializa con las direcciones
principales [Géron, 2019] de la nube de puntos del objeto. De esta forma, el conjunto
de puntos de control de la trayectoria viene dado por Tt = {Ta−2, . . . ,Tn−2}.

Por otro lado, por cada nueva imagen recibida, se extraen un conjunto de observacio-
nes Pz = {Pa, . . . ,Pn}. Cada subconjunto Pk (extráıdo en un frame k) esta constituido
por la localización 3D en la referencia de la cámara de cada uno de los puntos, pc, del
objeto que se han extráıdo/ seguido en dicho frame.

Un mismo punto del objeto po puede ser seguido en imágenes consecutivas, dando
lugar a distintas observaciones pc. Solo aquellos po de los que se disponga más de una
observación pc son considerados como parámetros a optimizar. La motivación de esto
reside en utilizar puntos que han superado el filtrado de espúreos (explicado en §5) y
que por tanto consideramos como estables.

Además, al compartirse estos puntos entre frames, se genera una mayor correlación
con los puntos de control, aportando aśı información valiosa de cara a la interpolación.
A este subconjunto lo denominamos Pt = {po0 , . . . ,pom−1}, con m el número de puntos
en la referencia objeto que se han considerado para optimizar.

Para impedir que el coste computacional crezca de forma indefinida, la optimización
no siempre se lleva a cabo con la totalidad de Tt y Pt. En su lugar, consideramos una
ventana temporal en la que los parámetros contenidos en ella son los optimizados. En
concreto, en nuestros experimentos dicha ventana se corresponde con las últimas 20
imágenes. A este subconjunto de observaciones lo denominamos Pzo ⊆ Pz, y de él se
derivan los subconjuntos de parámetros a optimizar: Tto ⊆ Tt y Pto ⊆ Pt.

El refinamiento de las estimaciones se realiza a través de la minimización de una
versión robusta del error cuadrático, E(X), en la estimación de la localización 3D de
los puntos :

E(X) =
1

2

∑

pc∈Pzo

ρ
(
‖pc − proj

(
T−1
wc Two(t) p̃o

)
‖2

Σ−1
pc

)
(4.1)

Donde Twc, po y t ∈ Kt son respectivamente la matriz de transformación de la ref.
cámara a la ref. mundo, el punto del objeto y el instante temporal asociados a la
observación pc. El significado de la matriz Σ−1

pc
se presenta en §4.1.1. ρ : R→ R, es la

36

Caṕıtulo 4. Optimización

función robusta de Huber [Huber, 2004], explicada en §4.2.1. Por último, proj : P3 → R3

transforma un punto de coordenadas homogéneas a cartesianas.

A modo de abstracción, para representar el error (o residuo) en cada observación,
definimos:

rpc = pc − proj
(
T−1
wc Two(t) p̃o

)
(4.2)

Por lo que:

E(X) =
1

2

∑

pc∈Pzo

ρ
(
‖rpc‖2

Σ−1
pc

)
=

1

2

∑

pc∈Pzo

ρ
(
rTpc

Σ−1
pc

rpc

)
(4.3)

Haremos referencia a spline BA si la Ec. 4.1 es usada para optimizar únicamente
los puntos de control (X = Tto) y local BA cuando se optimizan tanto puntos de
control como puntos del objeto (X = {Tto,Pto}). Los nombres provienen de la técnica
Bundle Adjustment (BA) [Triggs et al., 1999], utilizada para optimizar variables de
estado minimizando el error cuadrático de reproyección de las observaciones.

Figura 4.1: Grafo simple asociado a spline BA, en el que se considera una observación
nueva por cada frame (-) y una ventana temporal de 6 frames. (a) Se necesitan 4 puntos
de control para comenzar. Con la primera observación (frame 1), se optimiza T−1 por tener
mayor influencia. (b) Al añadir más observaciones, se optimizan más puntos de control. (c)
Solo se optimizan los puntos de control situados en la ventana temporal.

Con el objetivo de clarificar la relación entre los parámetros a optimizar y las obser-
vaciones, en las Figs. 4.1 y 4.2 se muestran los esquemas asociados a las optimizaciones
spline BA y local BA respectivamente. A modo de simplificación, en ambas, se considera
una ventana temporal de 6 imágenes y una única observación por frame. Formalmente

37

4.1. Estado del sistema y funciones de coste: SplineBA, LocalBA

Figura 4.2: Grafo simple asociado a local BA, en el que se considera una observación
nueva por cada frame (-), una ventana temporal de 6 frames y un único punto del objeto
a optimizad po1. El punto de control más antiguo es fijado para evitar grados de libertad en
la optimización [Triggs et al., 1999], por ello no presenta relaciones con las observaciones.

este tipo de gráficas se denominan como grafos de factores1 [Dellaert et al., 2017].

En el caso de spline BA, ésta es utilizada en el inicio de la trayectoria y en cual-
quier momento en el que no se dispone de observaciones suficientes en Pzo como para
optimizar la localización de los puntos del objeto. Para su ejecución, es necesario haber
inicializado al menos 4 puntos control (Ec. 3.71).

Además, por cada conjunto de observaciones de un frame, solo se optimiza un nuevo
punto de control, si no, la optimización presentaŕıa gauge freedom (grados de libertad)
al estar empleando más de una matriz de transformación para modelar una sola (la del
objeto) [Triggs et al., 1999, Strasdat, 2012].

Es por esto que en la Fig. 4.1 solo existe un “eje” uniendo la observación inicial.
Con el aumento de observaciones de distintos frames, es posible aumentar la cantidad
de estas relaciones. En el caso de local BA, para evitar de nuevo grados de libertad en
la optimización conjunta de Tto y Pto, se fija el punto de control más antiguo, por lo
que éste no presenta relaciones con las observaciones (Fig. 4.2).

4.1.1. Punto de vista probabiĺıstico

Al problema de optimización anterior le podemos dar un enfoque probabiĺıstico
derivado de que las observaciones consideradas para optimizar, Pzo, no son perfectas y
presentan incertidumbre. Esto es debido a que éstas pueden presentar cierto ruido que
ocasione, en nuestro caso, que una medición pc no se corresponda exactamente con el
punto po al que estamos asociándolo.

Por ello, no podemos pretender obtener con absoluta precisión el valor verdadero
del conjunto de variables de estado X de interés, pero śı una estimación de las mismas

1Un estudio de los grafos de factores queda fuera del alcance de este TFM. En caso de que el lector
esté interesado en los mismos, se recomienda el trabajo realizado en [Dellaert et al., 2017].

38

Caṕıtulo 4. Optimización

que se ajuste a un modelo estad́ıstico elegido por nosotros [Dellaert et al., 2017]. Es
decir, una estimación que maximize la probabilidad de obtenerse dado el conjunto de
observaciones del que disponemos:

XMAP = arg máx p(X | Pzo) (4.4)

La estimación de X que maximiza dicha probabilidad se denomina como estimación de
Maximum A Posteriori o MAP . Aplicando la regla de Bayes, obtenemos una expresión
equivalente que facilita su derivación:

XMAP = arg máx
p(Pzo | X)p(X)

p(Pzo)
, (4.5)

donde el término p(Pzo), al no depender de X , no lo podemos aprovechar para maxi-
mizar la Ec. 4.4 y por tanto lo podemos ignorar. Lo contrario ocurre con p(Pzo | X),
conocido como verosimilitud, y que expresa la probabilidad de las observaciones dado
el estado (también expresado como L(X | Pzo)), y con el término p(X), conocido como
prior e indica la probabilidad del estado dado un modelo o asunción del mismo.

En este trabajo, no consideramos ningún prior acerca de X , o dicho de otra forma,
asumimos que todos los estados presentan igual probabilidad, por lo que p(X) es una
constante que no influye en la maximización. Este acercamiento es común en la lite-
ratura [Mur-Artal et al., 2015, Mueggler et al., 2018, Triggs et al., 1999]. Por ello. en
nuestro caso, la estimación MAP coincide con la de máxima verosimilitud (MLE):

XMAP = XMLE = arg máx p(Pzo | X) = arg máxL(X | Pzo) (4.6)

Otras asunciones extendidas en la literatura [Dellaert et al., 2017, Triggs et al., 1999],
consisten en asumir independencia en las observaciones, y que cada observación pc está
perturbada por un ruido Gaussiano de media nula, N (0,Σpc), con Σpc su matriz de
covarianza. De esta forma, en la Ec. 4.2, rpc ∼ N (0,Σpc), y además se cumple:

XMLE = arg máx
∏

pc∈Pzo

p(pc | X) (4.7)

= arg máx
∏

pc∈Pzo

1

(2π)3/2|Σpc|1/2
exp

(
−1

2
rTpc

Σ−1
pc

rpc

)
(4.8)

= arg máx log
∏

pc∈Pzo

1

(2π)3/2|Σpc|1/2
exp

(
−1

2
rTpc

Σ−1
pc

rpc

)
(4.9)

= arg máx
∑

pc∈Pzo

log

[
1

(2π)3/2|Σpc |1/2
exp

(
−1

2
rTpc

Σ−1
pc

rpc

)]
(4.10)

= arg máx
∑

pc∈Pzo

(
Kpc −

1

2
rTpc

Σ−1
pc

rpc

)
, Kpc = log

(
1

(2π)3/2|Σpc |1/2
)

(4.11)

= arg mı́n
1

2

∑

pc∈Pzo

rTpc
Σ−1

pc
rpc (4.12)

= arg mı́n
1

2

∑

pc∈Pzo

‖rpc‖2
Σ−1

pc
(4.13)

39

4.2. Optimización mediante Gauss-Newton en SE(3)

Por lo que hemos llegado a la conclusión de que minimizar el error cuadrático
en la estimación de la localización 3D de los puntos, es equivalente a maximizar la
verosimilitud de la distribución de las observaciones si asumimos que el ruido al que
están sometidas sigue una distribución N (0,Σpc).

4.2. Optimización mediante Gauss-Newton en SE(3)

Para llevar a cabo la minimización de E(X), en este trabajo se utiliza el método
de optimización de mı́nimos cuadrados no lineales de Gauss-Newton. Más con-
cretamente, se emplea su versión robustificada mediante la función robusta de Huber
[Triggs et al., 1999, Huber, 2004], expresada mediante ρ(·) en la Ec. 4.3.

En la explicación de esta parte, se asume que X está expresado en su forma vec-
torizada, es decir, con todos sus elementos apilados en un único vector x. Además
para facilitar la explicación, inicialmente se considera que a E(x) no se le aplica ρ(·).
Su contribución se añade más adelante. Juntando estas consideraciones, la Ec. 4.3 se
re-expresa de la siguiente forma:

E(x) =
1

2

∑

pc∈Pzo

rTpc
Σ−1

pc
rpc (4.14)

Al utilizar este método de optimización, estamos asumiendo que el error rpc se
comporta localmente de manera lineal con respecto a x, por lo que E(x) (Ec. 4.14) lo
hace de forma cuadrática. Por tanto, localmente, podemos aproximarla por su desarrollo
de Taylor de segundo orden [Triggs et al., 1999, Kümmerle et al., 2011]:

E(x + δx) ≈ E(x) +
∂E(x)

∂x
δx +

1

2
δxT

∂2E(x)

∂x2
δx (4.15)

= E(x) + gδx +
1

2
δxTHδx (4.16)

Partiendo de la Ec. 4.14, se derivan su gradiente g y matriz Hessiana H:

g =
∂E(x)

∂x
=
∑

pc∈Pzo

rTpc
Σ−1

pc

∂rpc

∂x
=
∑

pc∈Pzo

rTpc
Σ−1

pc
Jpc , (4.17)

H =
∂2E(x)

∂x2
≈
∑

pc∈Pzo

JTpc
Σ−1

pc
Jpc (4.18)

Donde Jpc = ∂rpc/∂x se conoce como la matriz Jacobiana de rpc evaluada en x.
La matriz Hessiana es una aproximación (propia del método de Gauss-Newton), ya
que se están ignorando los términos de segundo orden ∂2rpc/∂x2 al considerar un
comportamiento localmente lineal.

Como nuestro objetivo es minimizar E(x + δx) a través del incremento de las
variables de estado δx, diferenciamos la Ec. 4.16 respecto a δx, e igualamos a 0 para
obtener los puntos cŕıticos de esta aproximación:

g + Hδx = 0 ⇒ δx = −H−1g (4.19)

40

Caṕıtulo 4. Optimización

Repetir de manera iterativa la actualización del vector de estado según la Ec. 4.19
da lugar al método de optimización de Gauss-Newton. En nuestra implementación, en
vez de invertir directamente H, y aprovechando que es definida positiva, resolvemos el
sistema de ecuaciones mediante su descomposición de Cholesky2 [Golub and Van Loan,
].

Algo a destacar, es que, salvo en situaciones donde las matrices Jacobianas no sean
de rango completo, o la aproximación de H no sea buena (por ejemplo cuando valor
actual de x es próximo al de un punto de silla) [Triggs et al., 1999, Sola, 2017a], δx es
una dirección descendente de la función E(x), es decir, una en la que se decrementa su
valor, lo que resulta una caracteŕıstica atractiva de este método.

La justificación reside en que la aproximación de H de la Ec. 4.18 hace que ésta
sea una matriz definida positiva, por lo que H−1 también lo es3. De esta forma se
cumple que gTH−1g > 0, implicando que −H−1g presenta un ángulo inferior a 90º con
respecto al negativo del vector gradiente −g (dirección local en la que E(x) disminuye
más rápidamente con respecto a x), justificando aśı el descenso del valor de la función
siempre que la Ec. 4.16 sea una aproximación válida.

La justificación de por qué H es positiva definida, se deriva de la definición de las
matrices Σpc de la Ec. 4.18. Como se ha comentado en §4.1.1, cada una de ellas se
corresponde con la matriz de covarianza asociada a cada observación pc, las cuales son
semi-definidas positivas por definición, y que, por construcción (se eligen a priori) se
asegura que sean positivas definidas [Triggs et al., 1999, Sola, 2017a]. Ahora bien, la
Ec. 4.18 de forma matricial se puede expresar de forma equivalente según la Ec. 4.20.

H ≈ JTΣ−1J, J =




Jpc1

Jpc2
...


 , Σ−1 = diag(Σ−1

pc1
,Σ−1

pc2
, . . .), (4.20)

donde Σ−1 es definida positiva al ser una matriz diagonal por bloques donde cada
bloque Σ−1

pci
es una matriz definida positiva. De esta forma:

uTHu = uTJTΣ−1Ju = (Ju)TΣ−1(Ju) = yTΣ−1y > 0, (4.21)

Para cualquier par de vectores u ∈ Rn,y ∈ Rm, con J ∈ Rm×n, y como además es
simétrica: HT = (JTΣJ)T = JTΣTJ = JTΣJ = H, se concluye que esta aproximación
de la matriz Hessiana resulta en una matriz definida positiva.

2En concreto, usamos la implementación de scipy. Solucionar el sistema de ecuaciones con este
tipo de descomposición requiere un menor coste computacional que directamente invertir H [Golub
and Van Loan,].

3Una matriz real, Hn×n, es definida positiva si es simétrica y todos sus valores propios son positivos.
H−1 es simétrica ya que para cualquier matriz invertible: (H−1)T = (HT)−1, y sabiendo que HT =
H ⇒ (H−1)T = (HT)−1 = H−1. Además todos sus valores propios son positivos también dado que
son los inversos (rećıprocos) de H: Hv = λv⇒ 1

λv = H−1v. Por lo tanto H−1 es definida positiva.

41

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve.html

4.2. Optimización mediante Gauss-Newton en SE(3)

4.2.1. Robustificación

Hasta ahora, el problema de optimización que se ha visto, trata de minimizar los
errores cuadráticos asociados a cada observación ‖rpc‖2

Σpc
. Sin embargo, esto supone

asumir que no existen observaciones erróneas o espúreas, es decir, que todas pertenecen
al modelo que se está tratando de estimar.

Sin embargo, esto en la realidad no tiene por qué ser aśı (por ej. puede producirse
un emparejamiento erróneo entre ṕıxeles de imágenes diferentes). En situaciones en
las que está asunción no es válida (hay datos espúreos o outliers), la optimización
mediante mı́nimos cuadrados se vuelve susceptible a dar resultados insatisfactorios (ver
ejemplo intuitivo de la Fig. 4.3b). Una forma de enfrentar este problema consiste en
hacer uso de funciones robustas [Concha and Civera, 2015]. En este TFM se hace uso
de la función robusta de Huber [Huber, 2004].

De esta forma, el problema de optimización de la Ec. 4.14 se modifica, minimizando
en su lugar el error E(x) de la Ec. 4.22.

E(x) =
1

2

∑

pc∈Pzo

ρ(rTpc
Σ−1

pc
rpc︸ ︷︷ ︸

Lpc

), ρ(Lpc) =

{
Lpc si Lpc < k2

2k
√
Lpc − k2 si Lpc ≥ k2

(4.22)

Es decir, ρ(·) es cuadrática (con respecto al error) para valores pequeños de ‖rpc‖2
Σpc

(por debajo de k ∈ R) y lineal para valores elevados, limitando aśı la influencia de
aquellas observaciones con un error asociado elevado y que presumiblemente pertene-
cen a observaciones espúreas (dada una inicialización lo suficientemente buena) [Eade,
2013]. El efecto intuitivo de esta función se muestra también en la Fig. 4.3.

Afortunadamente, la modificación anterior no afecta de forma significativa a las
derivaciones iniciales. A través de la regla de la cadena, y las derivadas de ρ(·), se
obtienen los nuevos gradiente y matriz Hessiana:

g =
∂E(x)

∂x
=

1

2

∑

pc∈Pzo

ρ′pc

∂Lpc

∂x
(4.23)

4,17
=

∑

pc∈Pzo

ρ′pc
rTpc

Σ−1
pc

Jpc , (4.24)

H =
∂2E(x)

∂x2
=

1

2

∑

pc∈Pzo

ρ′pc

∂2Lpc

∂x2
+ ρ′′pc

(
∂Lpc

∂x

)2

(4.25)

4,18≈
∑

pc∈Pzo

JTpc

(
ρ′Σ−1

pc
+ 2ρ′′pc

Σ−1
pc

rpcr
T
pc

Σ−Tpc

)
Jpc , (4.26)

con:

ρ′pc
=
∂ρ(Lpc)

∂Lpc

=

{
1 si Lpc < k2

k

L0,5
pc

si Lpc ≥ k2 , ρ′′pc
=
∂2ρ(Lpc)

∂L2
pc

=

{
0 si Lpc < k2

− k

2L1,5
pc

si Lpc ≥ k2 (4.27)

De esta forma, la robustificación tiene un doble efecto [Triggs et al., 1999]: 1) ponderar
g y H con ρ′, disminuyendo aśı la influencia de las observaciones espúreas en el cálculo

42

Caṕıtulo 4. Optimización

(a) (b)

Figura 4.3: (a) Función cuadrática (azul) con respecto al error, r, y función robusta de
Huber con k = 1 (verde). Se aprecia el comportamiento lineal de esta última conforme r
aumenta. (b) Estimación, en presencia de un dato espúreo, de los parámetros de una ĺınea
tal que se ajuste a los puntos , con y sin robustecimiento. Gracias a aplicar ρ(·), con una k
adecuada, el dato espúreo es ignorado.

de δx, y 2) corregir la curvatura de la matriz Hessiana aproximada mediante el término
asociado a ρ′′.

Esta última contribución puede llegar a ser negativa, ya que si ρ′+2ρ′′‖rpc‖2≤ 0, la
aproximación de la matriz Hessiana deja de ser definida positiva [Zach, 2014]. En nues-
tro caso, al usar la función de Huber, dicha cantidad es nula. Es por ello, que siguiendo
la tendencia de implementaciones populares [Agarwal and Mierle, 2012, Kümmerle
et al., 2011]4, se decidió implementar únicamente el primer efecto. Esta aplicación de
las funciones robustas también se conoce como mı́nimos cuadrados iterativamente re-
ponderados (IRLS) [Kerl et al., 2013].

4.2.2. Parametrización

Al tener como objetivo optimizar los puntos de control Ti y los puntos del objeto
po, puede parecer lógico que los elementos contenidos en el vector de estado X , sean
directamente Ti y po. Esto, en cuanto a po es la opción más prudente ya que pertenecen
a un espacio vectorial Eucĺıdeo (po ∈ R3), por lo que admiten actualizaciones del tipo
po + δpo.

Sin embargo, ésta no es una opción válida para los puntos de control. Actualizacio-
nes del tipo Ti + δTi pueden provocar que éstos dejen de pertenecer a SE(3), ya que
este espacio no presenta clausura con la operación suma. Afortunadamente, tal y como
se vio en §3.1, para una cinemática constante τ∧ (expresada en el sistema de referencia
mundo), la evolución temporal de una matriz de transformación T0 se puede expresar

4En nuestro caso, esas implementaciones no fueron empleadas ya que el lenguaje de programación
que elegimos fue Python, y el de las libreŕıas es C++.

43

4.3. Matrices Jacobianas

como:

T(t)
3,37
= exp(τ∧ t︸︷︷︸

ξ∧

)T0, (4.28)

por lo que una variación infinitesimal con respecto a este incremento (o perturbación)
ξ, de un punto de control Ti la podemos expresar como:

∂

∂ξi
Exp(ξi)Ti

∣∣∣∣
ξi=0

(4.29)

Resultando en una de las parametrizaciones más extendidas de la literatura reciente
[Blanco, 2010, Strasdat, 2012, Kümmerle et al., 2011]. Es decir, en nuestro vector de
estado X , no incluimos la matriz de transformación como tal, sino que incluimos el
elemento del álgebra de Lie asociado a la perturbación: ξi

5. Por ello, tras determinar
mediante el algoritmo de Gauss-Newton, qué valor de ξi minimiza E(X), podemos
actualizar el punto de control mediante exp(ξi)Ti, sin riesgo a que deje de pertenecer
a SE(3).

Esta parametrización de la matriz de transformación presenta ventajas sobre va-
rias alternativas [Kümmerle et al., 2011, Lynch and Park, 2017]. Por un lado, es una
parametrización mı́nima (sin restricciones) → ξ ∈ R6, que condensa los 6 grados de
libertad de un movimiento ŕıgido, y por otro, es una representación que, bajo magni-
tudes pequeñas de ξ, no presenta singularidades (a diferencia de los ángulos de Euler,
por ejemplo).

4.3. Matrices Jacobianas

Lo único restante para tener definido completamente el bloque de optimización (Fig.
2.1), es explicar cómo obtener las matrices Jacobianas introducidas en la Ec. 4.17,
y que representan la diferenciación de cada error rpc(x) con respecto a las variables de
estado x.

Por comodidad y buscando mayor claridad, en esta sección se relaja la notación
asociada a un error rpc :

r , rpc , (4.30)

es decir, se deja indicar expĺıcitamente que está asociado a una observación pc. De forma
general, denominándola como una función r(x) : Rn → Rm, su matriz Jacobiana, Jr(x),
viene dada por:

Jr(x) =




∂r1
∂x1

· · · ∂r1
∂xn

...
. . .

...
∂rm
∂x1

· · · ∂rm
∂xn


 (4.31)

5En este caso, hemos utilizado el plano tangente a la identidad para definir la perturbación.
Podŕıamos igualmente haberla definido en el plano tangente a T como: T exp(ξj). Es más, ambas
perturbaciones están relacionadas por la matriz adjunta de T: ξi = AdTξj .

44

Caṕıtulo 4. Optimización

Estas matrices Jacobianas, en problemas de tiempo discreto, han sido publicadas y
ampliamente tratadas [Strasdat, 2012, Blanco, 2010, Forster et al., 2016]. Sin embargo,
bajo nuestro conocimiento, en estimaciones de tiempo continuo como las que se tratan
en este TFM (B-Splines cumulativos), aún no han sido cubiertas para el caso particular
de estimación de una trayectoria en SE(3).

Recientemente, con el trabajo de [Sommer et al., 2020], se derivaron las matrices
Jacobianas para matrices de rotación estimadas con B-Splines. Sin embargo, su deri-
vación en SE(3) no fue tratada. Por ello, esta sección supone una de las principales
contribuciones de este trabajo. En §6.2, se realizan experimentos con dos versiones
distintas de cálculo de estas matrices, y se compara su eficiencia con los métodos de
cálculo (diferenciación automática y numérica) que emplean la mayoŕıa de trabajos que
han hecho uso de B-Splines. Mostrando aśı las ventajas del método propuesto.

Particularizando a nuestro caso la Ec. 4.31, como r ∈ R3 ⇒ m = 3. En cuanto al
vector de estado, su tamaño n viene determinado por el de la ventana temporal que
se esté considerando y de si se está empleando Spline BA (optimización de puntos de
control) o Local BA (optimización de puntos de control y puntos del objeto).

De esta forma, existen variables de estado que no guardan relación con un error r,
por lo que su derivada asociada es nula. En esta sección solo se hace referencia a los
elementos no nulos de Jr(x), ya que conociéndolos solo se necesita una reordenación
de los mismos para ajustarlos a las columnas de Jr(x).

Incluyendo las perturbaciones ξ ∈ R6 introducidas en §4.2.2 y la notación que se
emplea en esta sección, un error r en un instante t se expresa como:

r(t) = pc − proj (TcwTwo(t)p̃o) = pc − proj (Tco(t)p̃o) , R3,

Two(t) = Exp(a0)T0A1(t)A2(t)A3(t), SE(3),

Aj(t) = Exp(aj(t)), SE(3),

aj(t) = B̃j(t)Ωj, R6,

a0 = ξ0|ξ0=0 , R6

Ωj = Log
(
(Exp(ξj−1)Tj−1)−1Exp(ξj)Tj)

)∣∣
ξj−1= ξj= 0

, R6,

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

con j ∈ {1, 2, 3}.

4.3.1. Derivación independiente del error

Como primera forma de obtener la matriz jacobiana, en esta sección se propone
una versión general, independiente de la función de error elegida, facilitando de esta
forma su aplicación a otros problemas. Esto es aśı, ya que no se aprovecha ninguna
caracteŕıstica particular de r, al contrario de la derivación propuesta en §4.3.2.

En concreto, las diferenciaciones propuestas, derivadas de aplicar la regla de la

45

4.3. Matrices Jacobianas

cadena (multivariable), son:

Para ξj, j ∈ {0, 1, 2} :
∂r

∂ξj
=

∂r

∂Two

(
∂Two

∂aj

∂aj
∂ξj

+
∂Two

∂aj+1

∂aj+1

∂ξj

)
(4.38)

Para ξ3 :
∂r

∂ξ3

=
∂r

∂Two

∂Two

∂a3

∂a3

∂ξ3

(4.39)

Se aprecia la independencia con la función de error dado que se está diferenciando
Two(t) de manera directa con respecto a las perturbaciones ξ.

Derivación de ∂r/∂Two El primer término, ∂r/∂Two, supone la diferenciación de un
vector r con respecto a una matriz Two. Esto, directamente no se puede representar en
una matriz de 2 dimensiones como en la Ec. 4.31. Seŕıa necesario un tensor. En su lugar,
para facilitar los cálculos, en estas situaciones hacemos uso de la versión vectorizada,
vec(T), de la matriz:

T =

[
R t
0 1

]
=

[
Rc1 Rc2 Rc3 t
0 0 0 1

]
⇒ vec(T) =




Rc1

Rc2

Rc3

t


 ∈ R12 (4.40)

La última fila se ignora por ser términos constantes. Arrastrarlos supondŕıa operaciones
innecesarias. Es esta versión vectorizada la empleada en las Ecs. 4.38 y 4.39. Por otro
lado, Rci y Rri hacen referencia a la columna y fila i de R respectivamente, y Rij al
elemento ij (en vectores solo indicamos un ı́ndice).

Para derivar este término podemos recurrir a la regla de la cadena:

∂r

∂Two

=
∂r

∂Tco

∂Tco

∂Two

, (4.41)

a partir de los resultados detallados en las Ecs. A.4 y A.8 obtenemos:

∂r

∂Tco

= −
[
pTo 1

]
⊗ I3×3,

∂Tco

∂Two

= I4×4 ⊗Rcw, (4.42)

Donde ⊗ representa el producto de Kronecker [Van Loan, 2000], el cual condensa la
siguiente operación:

B⊗C =




B11C · · · B1nC
...

. . .
...

Bm1C · · · BmnC


 (4.43)

Para dos matrices Bm×n,Co×p cualesquiera. Por lo que B⊗C da como resultado una
matriz de tamaño (m · o) × (n · p). Por ello, concatenando ambas diferenciaciones,
finalmente obtenemos:

∂r

∂Two

= −
[
pTo 1

]
⊗Rcw (4.44)

46

Caṕıtulo 4. Optimización

Derivación de ∂Two/∂aj A partir de las definiciones de las Ecs. 4.32-4.37, y de la
propiedad de la Ec. 3.58, podemos re-escribir esta diferenciación como:

∂Two

∂aj
=

∂

∂aj
PjExp(aj)Nj (4.45)

=
∂

∂τ j
PjExp(aj + τ j)Nj

∣∣∣∣
τ j=0

(4.46)

3,58
=

∂

∂τ j
Pj Exp(Jl(aj)τ j)︸ ︷︷ ︸

C(τ j)

Exp(aj)Nj︸ ︷︷ ︸
N′j

∣∣∣∣
τ j=0

(4.47)

=
∂PjC(τ j)N

′
j

∂C(τ j)N′j

∣∣∣∣
τ j=0

∂C(τ j)N
′
j

∂C(τ j)

∣∣∣∣
τ j=0

∂Exp(Jl(aj)τ j)

∂Jl(aj)τ j

∣∣∣∣
τ j=0

∂Jl(aj)τ j
∂τ j

∣∣∣∣
τ j=0

(4.48)

donde:

j = 0 → P0 = I4×4, N′0 = Two (4.49)

j = 1 → P1 = T0, N′1 = A1A2A3 (4.50)

j = 2 → P2 = T0A1, N′2 = A2A3 (4.51)

j = 3 → P3 = T0A1A2, N′3 = A3 (4.52)

El último término de la Ec. 4.48 tiene la solución más directa:

∂Jl(aj)τ j
∂τ j

∣∣∣∣
τ j=0

= Jl(aj), (4.53)

el primer y segundo término se corresponden con la diferenciación de una matriz vecto-
rizada con respecto a otra. A partir de los resultados A.8 y A.10 conocemos su solución:

∂PjC(τ j)N
′
j

∂C(τ j)N′j

∣∣∣∣
τ j=0

=
∂PjC(τ j)N

′
j

∂C(τ j)N′j

∣∣∣∣
C(τ j)N′j=N′j

= I4×4 ⊗RPj
(4.54)

∂C(τ j)N
′
j

∂C(τ j)

∣∣∣∣
τ j=0

=
∂C(τ j)N

′
j

∂C(τ j)

∣∣∣∣
C(τ j)=I4×4

= NT
j ⊗ I3×3 (4.55)

Donde RPj
hace referencia a la matriz de rotación de de Pj. Juntando ambas derivadas:

∂PjC(τ j)N
′
j

∂C(τ j)

∣∣∣∣
τ j=0

= NT
j ⊗RPj

(4.56)

Por último, el tercer término de la Ec. 4.48, lo podemos calcular diferenciando la
Ec. 3.46 con respecto a τ . Evaluándola en τ = 0 y expresándola de forma vectorizada,
se obtiene (derivación detallada en §A):

∂Exp(Jl(aj)τ j)

∂Jl(aj)τ j

∣∣∣∣
τ j=0

=
∂Exp(Jl(aj)τ j)

∂Jl(aj)τ j

∣∣∣∣
Jl(aj)τ j=0

=




03×3 −G1

03×3 −G2

03×3 −G3

I3×3 −03×3


 (4.57)

47

4.3. Matrices Jacobianas

Donde los términos Gi, i ∈ {1, 2, 3}, representan los generadores de SO(3) [Strasdat,
2012] (vectores base del plano tangente a la identidad de SO(3)), los cuales vienen
dados por:

G1 =




0 0 0
0 0 −1
0 1 0


 , G2 =




0 0 1
0 0 0
−1 0 0


 , G3 =




0 −1 0
1 0 0
0 0 0


 (4.58)

A esta conclusión también se puede llegar a través de los generadores de SE(3), ya que
éstos son los vectores tangentes (en la identidad) de un camino (o path) perteneciente
a SE(3) que pasa por el elemento identidad [Strasdat, 2012]. Expresándolos de manera
vectorizada se llega igualmente a la Ec. 4.57.

Por lo que, el resultado final viene dado por:

∂Two

∂aj
= (NT

j ⊗RPj
)




03×3 −G1

03×3 −G2

03×3 −G3

I3×3 −03×3


Jl(aj) =




03×3 −RPj
(Rc1

Nj
)∧

03×3 −RPj
(Rc2

Nj
)∧

03×3 −RPj
(Rc3

Nj
)∧

RPj
−RPj

t∧Nj


Jl(aj)

(4.59)

Destacar que si j = 0, simplificaciones importantes ocurren: Jl(aj) = I6×6, Pj =
I4×4.

Derivación de ∂aj/∂ξj y de ∂aj+1/∂ξj Para estas derivaciones es posible realizar
una simplificación previa. En concreto, una parte de los términos de la Ec. 4.37 se
puede re-expresar de la siguiente forma:

(Exp(ξj−1)Tj−1)−1 = T−1
j−1Exp(ξj−1)−1 = T−1

j−1Exp(−ξj−1) (4.60)

Por lo que la Ec. 4.37 se puede re-escribir de acuerdo con lo anterior:

Ωj = Log
(
T−1
j−1Exp(−ξj−1)Exp(ξj)Tj)

)∣∣
ξj−1= ξj= 0

(4.61)

Lo que implica las siguientes relaciones:

∂Ωj

∂ξj−1

= −∂Ωj

∂ξj
,

∂aj
∂ξj−1

= −∂aj
∂ξj

, (4.62)

Gracias a esto, únicamente necesitamos calcular (∂aj/∂ξj)|ξj=0. A partir de esta con-
sideración y de las propiedades de la matriz Adjunta y Jacobiano izquierdo vistas en
las Ecs. 3.50 y 3.60 respectivamente, cada término (∂aj/∂ξj)|ξj=0 para j ∈ {1, 2, 3},

48

Caṕıtulo 4. Optimización

puede calcularse de la siguiente forma:

∂aj
∂ξj

∣∣∣∣
ξj=0

=
∂

∂ξj
B̃j(t)Log

(
T−1
j−1Exp(ξj)Tj)

)∣∣∣∣
ξj= 0

(4.63)

3,50
=

∂

∂ξj
B̃j(t)Log

(
Exp(AdT−1

j−1
ξj)T

−1
j−1Tj)

)∣∣∣∣
ξj= 0

(4.64)

3,60
=

∂

∂ξj
B̃j(t)

(
Log

(
T−1
j−1Tj

)
+ J−1

l

(
Log(T−1

j−1Tj)
)

AdT−1
j−1
ξj

)∣∣∣∣
ξj= 0

(4.65)

=
∂

∂ξj
B̃j(t) J−1

l

(
Log(T−1

j−1Tj)
)

AdT−1
j−1
ξj

∣∣∣∣
ξj= 0

(4.66)

= B̃j(t) J−1
l

(
Log(T−1

j−1Tj)
)

AdT−1
j−1

(4.67)

Solamente falta derivar (∂a0/∂ξ0)|ξ0=0. Afortunadamente esta derivación es trivial,
pues hab́ıamos definido a0 = ξ0|ξ0=0 (Ec. 4.36) ⇒ (∂a0/∂ξ0)|ξ0=0 = I3×3. Recopilando
estos resultados:

∂aj
∂ξj

∣∣∣∣
ξj=0

= B̃j(t) J−1
l

(
Log(T−1

j−1Tj)
)

AdT−1
j−1
, j ∈ {1, 2, 3}

∂a0

∂ξ0

∣∣∣∣
ξ0=0

= I3×3

(4.68)

(4.69)

Completando aśı la derivación de todos los términos de las Ecs. 4.38 y 4.39.

4.3.2. Derivación aprovechando la definición del error

Aśı mismo también se propone el siguiente cálculo de la matriz Jacobiana que a
primera vista puede parecer más directo:

Para ξj, j ∈ {0, 1, 2} :
∂r

∂ξj
=

∂r

∂aj

∂aj
∂ξj

+
∂r

∂aj+1

∂aj+1

∂ξj
(4.70)

Para ξ3 :
∂r

∂ξ3

=
∂r

∂a3

∂a3

∂ξ3

(4.71)

La diferencia con la propuesta anterior reside en que los términos ∂r/∂aj, dependen
del punto po correspondiente. Algo que solo suced́ıa antes con el término ∂r/∂Two.

Esto tiene consecuencias de cara a la implementación de la matriz Jacobiana para
múltiples puntos po. Para agilizar su cómputo, es conveniente vectorizar las opera-
ciones, evitando aśı un cálculo particular para cada punto po (evitando bucles for).
En la primera versión por tanto, se vectoriza ∂r/∂Two, mientras que en la segunda se
vectoriza ∂r/∂aj, lo que puede resultar en eficiencias diferentes, analizadas en §6.2.

El único término de las Ecs. 4.70 y 4.71 que resulta nuevo, es el de ∂r/∂aj. El resto
ya han sido calculados en §4.3.1. Su cálculo se puede descomponer aplicando la regla

49

4.3. Matrices Jacobianas

de la cadena:

∂r

∂aj
= − ∂

∂aj
proj (PjExp(aj)p̃j) (4.72)

= − ∂

∂τ j
proj (PjExp(aj + τ j)p̃j)

∣∣∣∣
τ j=0

(4.73)

3,58
= − ∂

∂τ j
proj(Pj Exp(Jl(aj)τ j)︸ ︷︷ ︸

C(τ j)

Exp(aj)p̃j︸ ︷︷ ︸
p̃′j

)

∣∣∣∣
τ j=0

(4.74)

= −∂proj(PjC(τ j)p̃
′
j)

∂proj(C(τ j)p̃′j)

∣∣∣∣
τ j=0

∂proj(C(τ j)p̃
′
j)

∂C(τ j)

∣∣∣∣
τ j=0

∂Exp(Jl(aj)τ j)

∂Jl(aj)τ j

∣∣∣∣
τ j=0

∂Jl(aj)τ j
τ j

∣∣∣∣
τ j=0

(4.75)

donde:

j = 0 → P0 = Tcw, p̃′0 = Twop̃o (4.76)

j = 1 → P1 = TcwT0, p̃′1 = A1A2A3p̃o (4.77)

j = 2 → P2 = TcwT0A1, p̃′2 = A2A3p̃o (4.78)

j = 3 → P3 = TcwT0A1A2, p̃′3 = A3p̃o (4.79)

Los dos últimos términos de la Ec. 4.75 son exactamente iguales a los derivados en
las Ecs. 4.57 y 4.53. Por otro lado, el segundo término se obtiene mediante el resultado
A.4:

∂proj(C(τ j)p̃
′
j)

∂C(τ j)

∣∣∣∣
τ j=0

=
[
p′j 1

]
⊗ I3×3 (4.80)

Finalmente, el primer término de la Ec. 4.75, viene dado por:

∂proj(PjC(τ j)p̃
′
j)

∂proj(C(τ j)p̃′j)

∣∣∣∣
τ j=0

= RPj
(4.81)

Por lo que, juntando todo, llegamos al resultado final:

∂r

∂aj
= −RPj

([
p′j 1

]
⊗ I3×3

)



03×3 −G1

03×3 −G2

03×3 −G3

I3×3 −03×3


Jl(aj) (4.82)

Desarrollando los términos se llega a la siguiente versión más simplificada:

∂r

∂aj
= −

[
RPj

−RPj
(p′j)

∧]Jl(aj) (4.83)

Con este cálculo se da por concluida la derivación de ambas versiones de la matriz
Jacobiana. Tal y como se ha comentado anteriormente, en §6.2 se realiza un análisis
de su eficiencia de cómputo.

50

Caṕıtulo 5

Seguimiento

En este caṕıtulo se detalla el bloque del sistema encargado de realizar el seguimien-
to de los objetos y que permite suministrar las variables a optimizar explicadas en §4.
Los datos necesarios son una secuencia RGB-D, las máscaras donde se han detectado
objetos, sin asociamiento1 (en nuestro caso obtenidas mediante SiamMask), y una esti-
mación de la localización 3D de las cámara en cada imagen (en nuestro caso extráıdas
con COLMAP). En la Figura 5.1 se muestran las partes fundamentales.

objeto
inicializado KLT obj.? Sí

No

obj.
perdido

Filtrado de
espúreos

car.< N?

preproc. +
detección

clasificación

obj.
perdido

spline BA
local BA
en espera

objeto nuevo preproc. +
detección

inicialización

en esperainicialización
ref. {o}

sí

no

clasificaciónspline BA
local BA
en espera

Loc. 3D
Cámara

y

Figura 5.1: Esquema general del bloque de seguimiento y datos de entrada.

En primer lugar, en caso de que los haya, se procesan los objetos ya inicializados
(aquellos que han sido seguidos en imágenes previas), asociándolos a máscaras válidas
de los datos de entrada. Una máscara se considera válida si tiene un tamaño lo suficien-
temente grande2. A continuación, si quedan máscaras sin asociar (libres), se inicializan
nuevos objetos basados en éstas. Las técnicas empleadas se detallan a continuación.

1Es decir, sin relación con las detecciones de objetos en imágenes previas. Solo se utiliza la informa-
ción de que en la zona de la imagen con máscara, es probable que se encuentre un objeto cualquiera.

2En nuestros experimentos: si cubre más de 1.000 ṕıxeles.

51

5.1. Detección y seguimiento de caracteŕısticas

5.1. Detección y seguimiento de caracteŕısticas

Para inicializar un objeto, se extraen caracteŕısticas Shi-Tomasi [Shi et al., 1994]
en la zona cubierta por una de las máscaras libres. En la Figura 5.2 se muestra un
ejemplo de extracción, donde los ćırculos se corresponden con las caracteŕısticas. Éstas
se corresponden principalmente con esquinas. En cada objeto, se detectan inicialmente
N (N = 100 en nuestros experimentos) y se trata de mantener este número constante
a lo largo de la secuencia. Para la detección, solo se consideran ṕıxeles de los que se
dispone de información de profundidad.

Si la posición en la imagen de una caracteŕıstica viene dada por x ∈ R2, su locali-
zación 3D, pc ∈ R3, con respecto al sistema de referencia de la cámara, viene dada por
pc = D(x)K−1x̃, donde D(x) indica su profundidad medida sobre el eje Z y proviene
de las imágenes de profundidad de la entrada.

A partir de la localización 3D de todos los puntos detectados, se inicializa el sis-
tema de referencia del objeto con respecto a la cámara, Tco, situando su origen en el
centro de masas de la nube de puntos y la orientación de sus ejes según sus direcciones
principales [Géron, 2019]. Dicho sistema se expresa en la referencia mundo mediante:
Two = TwcTco, y los puntos en la referencia objeto mediante p̃o = T−1

co p̃c.

Figura 5.2: Detección y seguimiento mediante flujo óptico de caracteŕısticas Shi-
Tomasi mediante KLT. Los ćırculos representan la posición actual de las caracteŕısticas
detectadas. Las ĺıneas representan la trayectoria que han seguido en la imagen.

El seguimiento de las caracteŕısticas Shi-Tomasi en imágenes consecutivas se lleva

52

Caṕıtulo 5. Seguimiento

a cabo mediante la implementación piramidal del método iterativo de Lucas-Kanade
[Lucas et al., 1981, Bouguet et al., 2001], conocido como KLT. En la Figura 5.2 este
seguimiento se muestra mediante ĺıneas que indican su trayectoria en la imagen. Una
máscara se deja de considerar libre si un determinado porcentaje de caracteŕısticas del
objeto (50 % en nuestros experimentos) pertenece a ella. Si ninguna máscara cumple
este criterio, el objeto se considera perdido.

Cada vez que una caracteŕıstica deja de ser seguida con éxito en la imagen i actual,
se realiza una nueva detección en la misma. Para tener una estimación de po (localiza-
ción 3D en referencia objeto), aplicamos flujo óptico hasta una imagen previa de la que
se dispone una estimación de Two. Si el número de frames en los que se ha seguido el
objeto es superior a 3, entonces es necesario aplicar flujo óptico hasta la imagen i− 3,
en otro caso solamente hace falta llegar a la primera imagen.

La zona considerada para la detección, es aquella cubierta por la máscara asociada
con información de profundidad. Además, se impone que no se detecten caracteŕısticas
en un radio de ṕıxeles alrededor de las seguidas con éxito hasta el momento, evitando
aśı caracteŕısticas repetidas/ concentradas en una misma zona.

5.1.1. Pre-procesamiento y filtrado de espúreos

El método de seguimiento explicado anteriormente es susceptible a fallar conforme
la secuencia avanza. Por ejemplo, dos situaciones problemáticas son las siguientes:

Cámara y objeto presentan giro relativo de cierta magnitud → La trayectoria de
las caracteŕısticas que están siendo seguidas se aproximan al borde visible del ob-
jeto. Esto provoca una pérdida de información significativa, pues la caracteŕıstica,
al dejar de estar rodeada de puntos del objeto, tiende a permanecer en dicho bor-
de, ya que visualmente es la zona más parecida al presentar puntos comunes de
la escena estática. Un ejemplo de esto se muestra en la Fig. 5.3.

(a) caracteŕısticas iniciales. (b) caracteŕısticas seguidas.

Figura 5.3: Seguimiento de caracteŕısticas fallido. Las caracteŕısticas permanecen en
el borde visible de los objetos de la derecha al haber experimentado éstos un giro relativo
significativo con respecto a la cámara.

53

5.1. Detección y seguimiento de caracteŕısticas

Máscaras imperfectas → Las máscaras de entrada no se ajustan perfectamente
a la forma del objeto (ver ejemplos en la Fig. 2.4c), por lo que pueden cubrir
zonas que se corresponden con otras entidades, como las de la escena estática.
Nuestro sistema podŕıa detectarlas, por tanto, en zonas con textura saliente ajena
al objeto. Un ejemplo de esto se muestra en la Fig. 5.4a.

(a) Detección de caracteŕısticas espúreas debido a una máscara de entrada imperfecta.

(b) Al rechazar ṕıxeles con valores de profundidad cuya MAD es significativamente alta, se consigue
reducir la detección de caracteŕısticas espúreas.

Figura 5.4: Efectos del pre-procesar, o no, las máscaras de entrada.

Ante la presencia significativa de estos datos espúreos, necesitamos robustecer a
nuestro sistema con el objetivo de evitar considerarlos. Para ello, no podemos recurrir
a técnicas habituales como la comprobación de la geometŕıa epipolar (ver Fig. 2.7),
ya que los puntos de los objetos no son estáticos. En su lugar, como primera medida
comprobamos si el flujo óptico es simétrico, calculándolo de una imagen a la siguiente
y de vuelta. Si ambas localizaciones no coinciden (dentro de un margen de error de 0,1
ṕıxeles) la caracteŕıstica se descarta.

Como segunda medida, antes de utilizar una máscara, ésta es pre-procesada: Se ex-
trae la profundidad de todos los ṕıxeles que cubre, y se estima su desviación estándar
mediante la desviación absoluta de la mediana (MAD)3. Si denominamos a este con-
junto de profundidades como M = {D(x1), . . . , D(xn)}, el estimador viene dado por:

MAD = med (|D(xi)−med(M)|) , con xi ∈M (5.1)

donde med : Rn 7→ R es la función que calcula la mediana (valor que separa la mitad
superior de los datos con la inferior) de un conjunto de n muestras, y | · | expresa el
valor absoluto.

3MAD es considerado como el estimador más útil de la escala de una muestra, por aspectos como
su alto punto de quiebre (50 %) [Leys et al., 2013, Huber, 2004].

54

Caṕıtulo 5. Seguimiento

Para ser restrictivos con los valores extremos, se asume que la distribución de la
profundidad es Gaussiana. Con esto, el criterio para rechazar ṕıxeles viene dado por:

σ̂M ≈ 1,4826 MAD, → ṕıxel i rechazado si |D(xi)−med(M)| > 2,5 σ̂M (5.2)

Un ejemplo de pre-procesado de la máscara se muestra en la Fig. 5.4b. Apreciándose
mejoŕıa con respecto a la situación anterior. Una comparación general en el seguimiento
tras incluir las anteriores técnicas se muestra en la Fig. 5.5.

(a) Antes de incorporar las medidas (b) Tras incorporar las medidas

Figura 5.5: Seguimiento de las caracteŕısticas tras 200 imágenes de la secuencia.
En (a) se ha rodeado en rojo caracteŕısticas detectadas en el fondo que en (b) no aparecen.
Además, el problema de las caracteŕısticas acumuladas en el borde visible del objeto se deja
de apreciar en (b).

Figura 5.6: Resultado simu-
lado de aplicar MSAC. los
puntos estáticos son rechaza-
dos (en rojo), al no ajustarse
al modelo R, t estimado.

Como última medida para robustecer la propuesta,
estimamos, mediante un método basado en MSAC4 [Torr
and Zisserman, 2000], un modelo de rotación, R, y trasla-
ción, t, que mejor explica el movimiento experimentado
por la nube de puntos del objeto en dos frames conse-
cutivos. Los puntos que no se ajusten a ese modelo son
rechazados.

De esta forma, si denominamos a las coordenadas de
un punto del objeto expresado en la referencia mundo en
el frame i como yj ∈ R3 y en el i − 1 como xj ∈ R3,
entonces se selecciona el modelo que presenta un menor
valor de C asociado:

C =
∑

j

φ
(
‖ej‖2

)
, con ej = yj − (Rxj + t), (5.3)

φ
(
‖ej‖2

)
=

{
‖ej‖2 si ‖ej‖2< T 2,

T 2 si ‖ej‖2≥ T 2
(5.4)

4MSAC [Torr and Zisserman, 2000], es una mejora sobre RANSAC [Fischler and Bolles, 1981],
propuesta para no solo penalizar modelos que a priori han sido corrompidos por datos espúreos, sino
también estimar cómo de bien un modelo se ajusta a los datos.

55

5.2. Clasificación

donde, asumiendo que ej ∼ N (0, σI3), fijamos T 2 = 7,81σ2 para solo fallar en la
predicción de un dato espúreo el 5 % de las veces [Hartley and Zisserman, 2004].

Cada modelo se estima mediante minimización de ‖ej‖2, utilizando para ello 3
parejas de puntos, {yj,xj}, seleccionadas aleatoriamente. Este es el mı́nimo número que
permite una estimación de R y t, la cual obtenemos mediante el método de alineamiento
por mı́nimos cuadrados de [Umeyama, 1991]. Dado que la presencia de espúreos es
esperable que no sea alta tras las medidas tomadas anteriormente, consideramos un
total de ∼ 30 modelos diferentes. Un resultado simple de aplicar este método se muestra
en la Fig. 5.6.

5.2. Clasificación

Como última parte, se clasifica cada objeto para determinar qué acción realizar
sobre él. Esta decisión se basa en el número de observaciones disponibles sobre las
que realizar la optimización. Como éstas determinan el número de filas de la matriz
Jacobiana explicada en §4.2, es necesario disponer de observaciones suficientes para
evitar que la matriz Hessiana se vuelva singular y por tanto no se pueda realizar la
optimización mediante el algoritmo de Gauss-Newton.

En concreto, cada observación pc ∈ R3 aporta 3 filas (al tener 3 dimensiones) a
la matriz Jacobiana. Por otro lado, si solo se están optimizando puntos de control
(spline BA), cada uno aporta 6 variables a optimizar. Si además se optimizan puntos
del objeto (local BA), se añaden 3 variables más por cada uno. Aśı mismo, tal y como se
comentó en §4.1, necesitamos que un objeto haya sido observado en al menos 4 frames
consecutivos para llevar a cabo la optimización.

Por ello, en la ventana temporal explicada en §4.1, si denominamos al número de
observaciones pc como k, al número de puntos de control a optimizar como m, y al
número de puntos del objeto a optimizar como n, la clasificación de un objeto cuando
se ha seguido por un número de frames, f , mayor o igual que 4, se realiza de la siguiente
forma:

clasificación
f ≥ 4





objeto perdido si 3k ≤ 6n

optimizar con spline BA si 6n < 3k ≤ 6n+ 3m

optimizar con local BA si 3k > 6n+ 3m

(5.5)

En cambio, si f < 4, el objeto entra en espera → Su optimización no empieza hasta la
llegada de nuevas imágenes. Tras llevar a cabo la clasificación, salvo que el objeto haya
sido clasificado como perdido, se inicializa el siguiente punto de control Ti−2 según lo
explicado en §4.1.

56

Caṕıtulo 6

Experimentos y Resultados

En este caṕıtulo se presentan los experimentos que ponen a prueba la propuesta
y que sirven de motivación de la misma. En primer lugar se cuantifica cuantitativa y
visualmente la importancia de tener en cuenta los objetos dinámicos en la estimación
de la localización del sensor. A continuación, se evalúa el coste computacional del
cálculo de las matrices Jacobianas de las alternativas empleadas en la literatura y
de nuestra propuesta. Tras esto, se compara el error en la estimación de localización
y velocidad de un objeto, según si su estimación es en tiempo discreto o en tiempo
continuo (nuestra propuesta). Finalmente, evaluamos este trabajo en una base de datos
pública y comparamos los resultados obtenidos con el estado del arte.

6.1. COLMAP en entorno dinámico

En este primer experimento evaluamos el impacto de considerar, o no, los objetos
dinámicos en la estimación de la localización y orientación (pose) del sensor. En ambas
situaciones, para estimarla empleamos COLMAP, un software del estado del arte en
SfM, presentado más en detalle en §2.4.

La secuencia RGB-D empleada es swinging 4 unconstrained de la base de datos
pública OMD (Oxford Multimotion Dataset) [Judd and Gammell, 2019]. La compo-
nente dinámica de esta secuencia, grabada en una habitación, la aportan 4 cajas que
se balancean mediante un mecanismo de poleas (ejemplos de imágenes se encuentran
en las Figs. 5.2 - 5.5). El movimiento de la cámara que las graba es libre (presenta
rotación y traslación), y es calculado mediante un sistema de captura de movimiento
(Vicon)1.

El error en la estimación se calcula tomando el movimiento capturado por la Vicon
como el verdadero. De esta forma comparamos las estimaciones dadas por COLMAP
Ecolmap = {T1, . . . ,Tn} en cada instante, con las del instante más próximo de la Vicon,

1En concreto los autores hacen uso de un producto de la marca Vicon, contando con múltiples
cámaras infra-rojas colocadas en puntos estratégicos de la habitación para detectar marcadores colo-
cados sobre las cajas..

57

https://robotic-esp.com/datasets/omd/#:~:text=swinging_4_unconstrained
https://www.vicon.com/

6.1. COLMAP en entorno dinámico

Evicon = {P1, . . . ,Pn}, al tener este último una frecuencia de captura elevada (∼ 7 veces
más alta que el sensor RGB-D). En esta sección se asume que las poses ∈ Ecolmap, Evicon

transforman puntos de la referencia cámara a su referencia global.

Antes de cuantificar el error, es necesario alinear la trayectoria estimada con la
verdadera. Esto es debido a que, a pesar de que ambas expresan la pose del sistema
de referencia de la cámara (con origen en el centro óptico y ejes según la Fig. 2.2),
éstas están expresadas en sistemas de referencia globales diferentes. Por un lado, la
trayectoria estimada está expresada con respecto al sistema de referencia de la cámara
en la primera imagen, mientras que la verdadera está expresada en nuestro caso en el
sistema de referencia de la Vicon.

Este alineamiento de trayectorias es común realizarlo con el método de Umeyama
[Umeyama, 1991], mediante el cual se minimiza la diferencia cuadrática de la compo-
nente translacional. Es decir, es la transformación (s,R, t) que minimiza la siguiente
cantidad:

1

n

n∑

i=1

(transl(Pi)− sR transl(Ti) + t)2 (6.1)

Donde transl(·) lo utilizamos para expresar que solo tenemos en cuenta la componente
translacional de la matriz de transformación. De aqúı en adelante, en esta sección,
consideramos que Ecolmap, Evicon han sido alineadas según este método.

Para cuantificar el error en una trayectoria, en la literatura es común emplear
2 tipos de métricas diferentes. La primera de ellas es el Error Absoluto en la Pose
(APE) [Sturm et al., 2012b, Zhang and Scaramuzza, 2018], la cual está basada en la
pose relativa (error) entre la estimada y la verdadera. Para un instante i ésta viene
dada por:

Ei = P−1
i Ti (6.2)

Dicha pose relativa se calcula para todos los instantes y comúnmente [Sturm et al.,
2012b], se calcula el error cuadrático medio (RMSE) de la parte translacional:

APE =

(
1

n

n∑

i=1

‖transl(Ei)‖2

)0,5

(6.3)

Al emplear los valores absolutos de las poses, APE sirve para evaluar la consistencia
global de la trayectoria estimada. Para evaluar la consistencia local se emplea el Error
Relativo en la Pose (RPE), el cual esta basado en la diferencia del incremento entre
poses de las trayectorias. Para un instante i, esta diferencia viene dada por:

Fi = (P−1
i Pi+∆)−1 (T−1

i Ti+∆), (6.4)

donde ∆ ∈ N+ expresa el número de imágenes de diferencia entre las que se calcula la
pose relativa en cada trayectoria. En esta evaluación, usamos ∆ = 1. Igualmente, es
común emplear el RMSE para cuantificar el error, no solo aplicándolo a la translación,
sino también a la rotación:

RPEtransl =

(
1

n

n∑

i=1

‖transl(Fi)‖2

)0,5

, RPErot =

(
1

n

n∑

i=1

‖Log (rot(Fi)) ‖2

)0,5

(6.5)

58

Caṕıtulo 6. Experimentos y Resultados

Sin tener en cuenta a los objetos dinámicos Teniendo en cuenta a los objetos dinámicos
APE [m] RPE [m/im.] RPE [◦/im.] APE [m] RPE [m/im.] RPE [◦/im.]

0.202 0.063 0.775 0.033 0.026 0.693

Tabla 6.1: Valores de APE y RPE teniendo en cuenta o no a los objetos dinámi-
cos para estimar la pose del sensor. Se observa mejoŕıa en todas las métricas si se impone
que en la zona de la imagen en la que se encuentran los objetos dinámicos no se extraigan
caracteŕısticas salientes.

−1.0 −0.5 0.0 0.5 1.0

x [m]

−5.50

−5.25

−5.00

−4.75

−4.50

−4.25

−4.00

−3.75

y
[m

]

referencia

estimada

0.011

0.497

0.983

(a) Sin tener en cuenta los objetos dinámicos

−0.5 0.0 0.5 1.0

x [m]

−5.50

−5.25

−5.00

−4.75

−4.50

−4.25

−4.00

−3.75

y
[m

]

referencia

estimada

0.003

0.105

0.208

(b) Teniendo en cuenta los objetos dinámicos

Figura 6.1: Comparación visual de trayectorias estimadas teniendo en cuenta o
no a los objetos dinámicos. Se observa como en (b) la trayectoria estimada es significa-
tivamente más próxima a la de referencia (verdadera). El color indica el valor de APE [m]
en cada punto de la trayectoria según el código de colores de la derecha.

En la tabla 6.1 se muestran los valores de las anteriores métricas obtenidos tras em-
plear 1.000 frames imágenes de la secuencia. El método que tiene en cuenta los objetos
dinámicos, consiste en no extraer caracteŕısticas salientes en las zonas de la imagen en
la que éstos se encuentran (determinadas mediante SiamMask, §2.3). Además, en la Fig.
6.1 se realiza una comparación visual de las trayectorias estimadas con la trayectoria
verdadera2.

A partir de estas comparaciones, concluimos que el tener en cuenta a los objetos
dinámicos marca una diferencia significativa en la precisión de la localización del sensor
en aquellas secuencias donde la componente dinámica es significativa.

Finalmente, en la Fig. 6.2 se muestran los mapas de puntos estáticos creados con
ambos métodos. A través de éstos se entiende la pérdida de precisión, ya que si no
se tienen en cuenta a los objetos dinámicos puede que las caracteŕısticas asociadas
a éstos no pasen el filtrado de espúreos, quedando reflejados en el mapa a la vez
que corrompiendo las estimaciones de la pose de la cámara al romper la asunción
de estaticidad del mapa.

2Ambos resultados han sido obtenidos utilizando el paquete de Python comparación de trayectorias
evo.

59

https://github.com/MichaelGrupp/evo

6.2. Tiempo de cómputo de las matrices Jacobianas

(a) (b) (c)

Figura 6.2: Comparación visual del mapa estático creado teniendo en cuenta, o
no, los objetos dinámicos. (a) 2 imágenes de la secuencia. (b) Mapa estático reconstruido
sin tener en cuenta a los objetos dinámicos. Es posible apreciar como parte de estos aparecen
en la reconstrucción final (especialmente en las zonas rodeadas). (c) Mapa estático recons-
truido teniendo en cuenta los objetos dinámicos. Al no extraer caracteŕısticas de la zona en
la que se éstos se encuentran, aspectos de la reconstrucción mejoran: por ejemplo, se aprecian
detalles más finos en el candelabro, o menos puntos situados en donde no debeŕıa haber nada.

6.2. Tiempo de cómputo de las matrices Jacobianas

En este segundo experimento, realizamos un análisis comparativo del tiempo de
cómputo necesario para calcular las matrices Jacobianas derivadas en §4.3 y lo com-
paramos con el que necesitan las técnicas habituales empleadas en la literatura. Para
el cálculo de tiempos se emplea perfplot, un paquete de Python especializado en este
tipo de análisis.

En la literatura encontramos dos métodos alternativos que evitan el cómputo anaĺıti-
co de las matrices Jacobianas. En primer lugar, el más utilizado es el de la dife-
renciación automática empleada por [Lovegrove et al., 2013, Patron-Perez et al.,
2015, Mueggler et al., 2015, Kim et al., 2016b, Mueggler et al., 2018, Yang et al., 2021]
entre otros. El otro método, consiste en hacer uso de diferenciación numérica, la
cual se empleó en [Kerl et al., 2013].

A modo de breve explicación de ambos métodos, con la diferenciación numérica se
obtiene una aproximación de la matriz Jacobiana (de dimensiones m × n), pues cada
elemento de la fila i y columna j es calculado según:

Jri(xj) =
∂ri(x)

∂xj
≈ ri(x + hej)− ri(x− hej)

2h
(6.6)

Donde ej es el j-ésimo vector unitario (de n dimensiones) que indica la variable de
estado que se incrementa (y decrementa) por una magnitud pequeña h > 0. Este

60

https://github.com/nschloe/perfplot

Caṕıtulo 6. Experimentos y Resultados

método es considerado como inestable y mal condicionado por la introducción de errores
de truncamiento y redondeo [Baydin et al., 2018].

Figura 6.3: Análisis de tiempo de cómputo de una matriz Jacobiana. Se aprecia
como las versiones propuestas en §4.3, necesitan una cantidad de tiempo significativamen-
te menor que las alternativas (diferenciación numérica y automática). En este análisis se
consideran las derivadas con respecto a 3 puntos de control.

Por otro lado, la diferenciación automática calcula las derivadas parciales de cada
elemento o nodo de un grafo computacional que representa a la función de interés (en
nuestro caso rpc(x)) con respecto a las entradas (ξ). Aplicando la regla de la cadena, el
valor de la derivada se propaga a través de los nodos que conforman el grafo. Un análisis
detallado de la técnica se encuentra en [Baydin et al., 2018]. A diferencia del método
anterior, la diferenciación automática ofrece resultados exactos. Para este análisis se
usó la implementación de Autograd [Maclaurin et al., 2015].

Los resultados se muestran en la Figura 6.3. Se aprecia como el cálculo anaĺıtico
de las matrices Jacobianas ofrece ventajas en tiempo de cómputo con respecto a las
alternativas. En nuestro caso de interés, el número de observaciones se suele situar
en ∼ 103, suponiendo por tanto, de forma aproximada, 1 y 3 órdenes de magnitud
menos de tiempo que la diferenciación numérica y automática, a la vez que ofreciendo
resultados exactos (sujetos a la precisión numérica del ordenador). Aśı mismo se aprecia
como la primera versión de las propuestas en §4.3 escala mejor conforme el número de
observaciones aumenta.

6.3. Estimación en tiempo continuo vs discreto

En este experimento, a partir de datos sintéticos, se compara la precisión de la
estimación de la localización y orientación (pose) y velocidad de un objeto según si su

61

https://github.com/HIPS/autograd

6.3. Estimación en tiempo continuo vs discreto

estimación se realiza en tiempo discreto, o si ajustamos su trayectoria a una curva en
tiempo continuo con B-Splines cumulativos (nuestra propuesta).

Para la comparación de la precisión en la estimación de las poses del objeto, se
crearon tres tipos de trayectorias que involucran diferentes grados de libertad: lineal,
circular y en espiral (ver Fig 6.5). En la trayectoria circular el objeto experimenta una
rotación alrededor su eje x̂o y otra alrededor del eje ẑw global (completando 2 giros).
En las trayectorias lineal y en espiral, el objeto experimenta rotación en sus tres ejes.
El sensor RGB-D simulado sigue una trayectoria lineal o circular.

Las estimaciones en tiempo discreto de las poses del objeto se obtienen igualmente
a través de la minimización de la ecuación 4.1, solo que en este caso se optimiza
directamente la pose Two del objeto (en lugar de optimizar los puntos de control de la
trayectoria interpolada Two(t)). Al igual que con la estimación en tiempo continuo, se
optimizan los puntos del objeto cuando existen suficientes observaciones en la ventana
temporal.

(a) Sensor con trayectoria circular.

(b) Sensor con trayectoria lineal.

Figura 6.4: Diagramas de caja con los valores de APE y RPE. Verde: estimación
en tiempo continuo. Amarillo: estimación en tiempo discreto. El eje horizontal indica el tipo
de trayectoria seguida por el objeto.

Cada secuencia artificial creada es de 100 imágenes. Para simular unos datos reales,
se introduce un ruido Gaussiano de varianza σ2

px = 1 ṕıxel2 en las coordenadas en la
imagen de las caracteŕısticas salientes y otro ruido Gaussiano con σ2

d = 10 mm2 en los
valores de profundidad de los puntos observados por el sensor RGB-D.

En la Figura 6.4 se muestran los diagramas de caja de los valores obtenidos de

62

Caṕıtulo 6. Experimentos y Resultados

APE y RPE en cada imagen (cada término de los sumatorios de las definiciones dadas
en §6.1), según la trayectoria del sensor y del objeto. En ellos se observa como la
consistencia global y local son similares, es decir, a pesar de estar imponiendo un
modelo de trayectoria capaz de ofrecer estimaciones de velocidad y aceleración (y pose)
continuas para cualquier instante temporal, ésta converge a una solución con error en
posición y orientación similar.

(a) Cámara y objeto: ambos trayectoria circular.

(b) Cámara: trayectoria circular. Objeto: trayectoria lineal.

(c) Cámara: trayectoria lineal. Objeto: trayectoria espiral.

Figura 6.5: Ejemplos de trayectorias evaluadas en este experimento. Solo se repre-
senta la nube de puntos asociada al objeto. Su color indica el instante temporal asociado al
mismo: un color más oscuro indica más antigüedad. Solo se representan parte de las cámaras/
objetos para evitar que las cámaras y los ejes del objeto se mezclen.

63

6.3. Estimación en tiempo continuo vs discreto

La comparación de la precisión de las estimaciones de velocidad (lineal y angular)
en tiempo discreto vs continuo, se realizó a través de múltiples trayectorias en las
que el objeto gira alrededor del eje ẑw global (describiendo un ćırculo), a la vez que
experimenta un giro sobre su propio eje x̂o, dependiendo de dos grados de libertad :
θtranls, θrot.

Ambos parámetros determinan magnitudes angulares entre 2 instantes consecutivos
de los que se conoce la pose del objeto: El primero, θtransl, determina el incremento sobre
ẑw, mientras que θrot determina el incremento en x̂o (ver Figura 6.6). La motivación
de esta elección reside en evaluar la robustez de las estimaciones tanto en movimientos
suaves (θtransl, θrot bajos) como bruscos (θtransl, θrot altos).

Figura 6.6: Definición de los grados de libertad de las trayectorias generadas.
θtransl y θrot, representan respectivamente: el incremento angular medido sobre el eje ẑw global
y el medido sobre el eje ẑo del objeto, entre dos poses consecutivas.

Al solo estar interesados en evaluar las estimaciones de velocidad, la localización y
orientación de los sistemas de coordenadas del objeto se consideran conocidos: En el
caso discreto coinciden con los verdaderos, y en el caso continuo se define cada punto
de control asociado a un instante i, Ti, con la pose del objeto en el instante i+ 23.

El cálculo de las velocidades asociadas la curva B-Spline cumulativa se realiza a
través de las Ecs. 3.75 y 3.22 para cualquier instante temporal t. En el caso discre-
to, asumimos que la velocidad es constante entre dos poses consecutivas, pudiéndose
calcular de dos formas (ambas son evaluadas):

Considerar acoplamiento en la traslación y rotación: En este caso, tal y como se
vio en las Ecs. 3.39 y 3.26, sabemos que el incremento entre dos poses consecutivas

3Siguiendo aśı la intuición comentada en §4.1 y visualizada en la Fig. 3.6 de que en el cálculo de
la pose del objeto en instante i, el punto de control de mayor peso es Ti−2.

64

Caṕıtulo 6. Experimentos y Resultados

Two1, Two2, viene dado por:

Two2 = Two1 exp(τ∧o∆t) ⇒ τ∧o =
1

∆t
log(T−1

wo1Two2) (6.7)

Donde τ o = [vo,ωo]
T contiene la velocidad lineal vo y angular ωo, constantes y

en la referencia del objeto, que éste experimenta durante el incremento temporal
entre poses ∆t (con t1 ≤ t < t2 = t1 + ∆t)4.

Considerar traslación y rotación desacopladas : En este caso, la velocidad angular
coincide con el cálculo anterior:

ω∧o =
1

∆t
log(RT

wo1Rwo2) (6.8)

Mientras que para vo, se considera interpolación lineal:

vo =
1

∆t
RT
wo1

(two2 − two1) (6.9)

Este acercamiento es el seguido por trabajos del estado del arte como [Zhang
et al., 2020, Bescos et al., 2021].

Figura 6.7: MSE en función de θtransl y θrot. Col. izquierda: Estimación en tiempo
discreto con rotación y translación acopladas. Col. central: Estimación en tiempo continuo.
Col. derecha: Estimación en tiempo discreto con rotación y translación desacopladas.

Para evaluar las estimaciones, empleamos el error cuadrático medio (MSE), es decir,
denominando a cada una de las n estimaciones en un instante i como vest,i, ωest,i y a
los valores verdaderos (calculados anaĺıticamente) como vgt,i, ωgt,i, entonces:

MSEv =
1

n

n∑

i=1

‖vest,i − vgt,i‖2, MSEω =
1

n

n∑

i=1

‖ωest,i − ωgt,i‖2 (6.10)

4Si se quiere expresar dichas velocidades en la referencia mundo, basta con aplicarles la transfor-
mación: Rwovo, Rwoωo.

65

6.4. Evaluación en base de datos pública

Los resultados para las diferentes estrategias se muestran en la Figura 6.7. Se aprecia
como, a pesar de la aproximación realizada en la colocación de los puntos de control, la
estimación en tiempo continuo ofrece errores más bajos en todo el rango de valores de
θrot y θtransl evaluados. Esto tiene sentido ya que con la estimación mediante B-Splines
Cumulativos cúbicos no tenemos la restricción de asumir velocidades constantes entre
poses consecutivas del objeto.

6.4. Evaluación en base de datos pública

En este último experimento evaluamos el sistema propuesto completo y nos compa-
ramos con el estado del arte en la secuencia swinging 4 unconstrained de la base de
datos OMD [Judd and Gammell, 2019], utilizada en §6.1 para destacar la necesidad de
tener en cuenta a los objetos dinámicos en la estimación de la localización del sensor y
creación del mapa estático. En este caso, nos centramos en el error de las trayectorias
estimadas de los objetos.

Siguiendo el protocolo de los trabajos del estado del arte [Judd et al., 2018, Zhang
et al., 2020, Huang et al., 2020, Bescos et al., 2021], empleamos los primeros 500 frames
de la secuencia. En cuanto a las métricas para comparar las trayectorias estimadas con
las verdaderas, empleamos nuevamente el APE y RPE introducidos en §6.1, y además
los errores máximos de la componente translacional.

En este caso, el alineamiento necesario para las trayectorias difiere del explicado en
§6.1. Esto es debido a que el origen del sistema de referencia escogido para cada objeto
puede diferir arbitrariamente del utilizado en la trayectoria verdadera, al no emplearse
ninguna convención como con los sistemas de referencia de una cámara (Fig. 2.2). Esta
diferencia, de manera visual aparece en la Figura 6.8.

De esta forma, contamos con dos trayectorias de dos sistemas de referencia distintos
{o1, o2}, expresadas en dos sistemas de referencia globales diferentes {w1, w2}. Para
subsanar este inconveniente, y siguiendo las recomendaciones de los autores de la base
de datos5 llevamos a cabo dos transformaciones:

1er Alineamiento: Imponemos que la primera pose de la trayectoria estimada
y la verdadera coincidan. Es decir, si el conjunto de poses estimadas de un objeto
vienen dadas por Eest = {T1

w1o1
, . . . ,Tn

w1o1
}, y el conjunto de poses verdaderas

asociadas viene dada por Egt = {T1
w2o2

, . . . ,Tn
w2o2
}, a cada pose, Ti

w1o1
∈ Eest le

aplicamos la siguiente transformación:

T1
w2w1

Ti
w1o1

(6.11)

donde T1
w2w1

es la pose de la cámara en la imagen i = 1 desde la referencia de la
Vicon, ya que ésta se toma como sistema de referencia mundo de la trayectoria
estimada.

2o Alineamiento: La anterior transformación sirve de alineamiento de las refe-
rencias globales. Falta alinear las referencias de los objetos. Para ello, llevamos a

5https://github.com/robotic-esp/dataset_tools/issues/3

66

https://robotic-esp.com/datasets/omd/#:~:text=swinging_4_unconstrained
https://github.com/robotic-esp/dataset_tools/issues/3

Caṕıtulo 6. Experimentos y Resultados

Figura 6.8: Esquema de referencias de la trayectoria estimada - verdadera. Debido
a que no existe una convención para definir el sistema de referencia de un objeto, contamos
con un par de trayectorias de dos sistemas de referencia distintos, tanto en localización co-
mo en orientación: {o1, o2}, expresadas desde dos sistemas de referencia globales diferentes
{w1, w2}.

cabo la siguiente optimización:

To1o2 = arg mı́n
To1o2

n∑

i=1

[
Log

(
Ti
w2o1

To1o2(T
i
w2o2

)−1
)]2

(6.12)

Por lo que para alinear finalmente cada pose, Ti
w2o1

, aplicamos la siguiente trans-
formación:

Ti
w2o1

To1o2 (6.13)

Con las poses de la trayectoria estimada alineadas con la trayectoria verdadera
calculamos las métricas comentadas anteriormente. En las Tablas 6.3 y 6.2 se muestran
los resultados obtenidos por nuestra propuesta, aśı como los reportados por los trabajos
del estado del arte en sus respectivas publicaciones.

Sistema Caja 1 Caja 2 Caja 3 Caja 4

[Judd et al., 2018] 0,36 0,64 0,45 5,94
[Judd et al., 2018] (act.) 0,44 0,27 0,99 0,39
[Huang et al., 2020] 0,24 0,45 0,24 4,69
Nuestro con Local BA 0,39 0,30 0,77 0,47
Nuestro sin Local BA 0,29 0,38 0,27 0,32

Tabla 6.2: Comparación con MVO [Judd et al., 2018] y ClusterVO [Huang et al.,
2020] de los errores de translación máximos en la trayectoria [m]. Los mejores resultados
son marcados en negrita. De MVO se reportan dos versiones, la aceptada en la revista RA-L,
y una versión actualizada en la que los autores reportan ciertas mejoras. Se observa como
nuestro sistema ofrece resultados similares, siendo el mejor para una de las cajas.

67

6.4. Evaluación en base de datos pública

De nuestra propuesta se reportan los resultados de emplear Spline BA + Local BA
(según la clasificación 5.5) y de emplear tan solo Spline BA. Esta última opción, es
atractiva por su menor coste computacional (menos variables a optimizar), teniendo
como desventaja el no poder corregir el error en la localización de los puntos. Sin
embargo, esta opción presenta además menor error en algunas de las trayectorias, es
decir, optimizar la localización de los puntos del objeto puede conllevar un mayor error
en la estimación de la trayectoria. Por esta razón, seŕıa interesante investigar más
medidas para la detección de datos espúreos.

Sistema
Caja 1 Caja 2 Caja 3 Caja 4

APE (m) RPE (m/f) RPE (º/f) APE (m) RPE (m/f) RPE (º/f) APE (m) RPE (m/f) RPE (º/f) APE (m) RPE (m/f) RPE (º/f)

[Zhang et al., 2020] - 0,030 1,01 - 0,023 1,36 - 0,029 1,64 - 0,026 1,75
[Bescos et al., 2021] 0,41 - - 0,37 - - 1,09 - - 0,28 - -
Nuestro con Local BA 0,16 0,061 6,01 0,18 0,038 5,00 0,37 0,041 4,59 0,38 0,040 3,19
Nuestro sin Local BA 0,12 0,051 6,29 0,19 0,043 5,90 0,12 0,051 6,05 0,21 0,043 4,25

Tabla 6.3: Comparación con VDO-SLAM [Zhang et al., 2020] y DynaSLAM II
[Bescos et al., 2021]. Los mejores resultados son marcados en negrita. Nuestra propuesta
presenta mejores resultados en cuanto a APE, mientras que VDO-SLAM presenta mejores
valores de RPE.

68

Caṕıtulo 7

Conclusiones

En este TFM se ha presentado un sistema para estimar el movimiento de los objetos
dinámicos presentes en una escena a través de un sensor RGB-D y en tiempo continuo.
En concreto, se ha propuesto ajustar las trayectorias seguidas por los objetos a curvas
B-Spline Cumulativas cúbicas, un tipo de curva que entre otras propiedades, presenta
la ventaja de ofrecer estimaciones continuas de posición y orientación, velocidad y
aceleración para cualquier instante temporal.

Bajo nuestro conocimiento, tras repasar los trabajos relacionados, este acercamiento
no hab́ıa sido explorado a través de sensores visuales antes en la literatura, diferen-
ciándonos aśı de los trabajos anteriores, los cuales realizan estimaciones en tiempo
discreto (solo para los instantes de los que se disponen de datos sensoriales).

Especial atención se ha prestado a la derivación anaĺıtica de las matrices Jacobianas
necesarias para la optimización. Hasta la fecha, los trabajos relacionados de la literatura
emplean técnicas computacionalmente costosas (diferenciación automática) y/o apro-
ximadas (diferenciación numérica). De esta forma, esperamos que esta contribución
pueda servir de ayuda para futuros trabajos que usen este tipo de curvas.

Nuestro sistema se ha evaluado de diferentes formas. En primer lugar, se ha mos-
trado de manera cuantitativa y cualitativa la necesidad de tener en cuenta a los objetos
dinámicos en aquellas escenas donde su presencia es dominante.

A continuación, se han comparado las estimaciones en tiempo discreto y continuo:
Por un lado, a pesar de estar imponiendo un modelo de trayectoria, se ha comprobado
que para distintos tipos de movimientos de cámara y objetos, esto no supone una
reducción en la precisión de la estimación de la orientación y posición. Por otro, al no
estar asumiendo un modelo de velocidad constante entre imágenes consecutivas, esto
ha conllevado a unos mejores resultados en cuanto a estimación de la velocidad lineal
y angular experimentadas.

Para finalizar, se evaluado nuestro trabajo en una base de datos pública, diseñada
espećıficamente para evaluar este tipo de sistemas, obteniendo resultados similares al
estado del arte, y en algunos casos, ofreciendo mejores resultados, validando aśı la
propuesta.

69

7.1. Trabajo futuro

7.1. Trabajo futuro

Existen varias direcciones de trabajo futuro de las que nuestro trabajo se podŕıa
beneficiar. En primer lugar, se podŕıa incluir un método para volver a reconocer un
objeto después de que éste se haya dado como perdido. Con una adecuada colocación
de los puntos de control esto permitiŕıa interpolar la trayectoria que hasta ese momento
hab́ıa sido perdida. Para ello, podŕıan emplearse descriptores visuales de los objetos,
por ejemplo a través de la creación de bolsas de palabras [Gálvez-López and Tardos,
2012], o a través de técnicas de aprendizaje profundo como [Wojke et al., 2017].

Otro paso interesante a realizar seŕıa el de optimizar no solo la localización de los
puntos de control y de los puntos del objeto, sino también las matrices de transfor-
mación de las cámaras y los puntos del mapa estático. Contando con un modelado
adecuado del ruido en las observaciones, esto podŕıa beneficiar al conjunto global de
los parámetros al poder incrementar el número de términos relacionados en la matriz
de información (H). Otro detalle de cara a la optimización, seŕıa el de llevar a cabo
la marginalización de las variables de estado que dejan de optimizarse en la ventana
temporal, según la propuesta de [Leutenegger et al., 2015].

Aśı mismo, para obtener mayores prestaciones de cara a la ejecución, podŕıa plan-
tearse cambiar el lenguaje de programación a C++. Esto permitiŕıa además emplear
paquetes espećıficos de programación relacionados con la optimización de grafos de
factores, como [Dellaert, 2012, Kümmerle et al., 2011].

70

Bibliograf́ıa

[Agarwal et al., 2011] Agarwal, S., Furukawa, Y., Snavely, N., Simon, I., Curless, B.,
Seitz, S. M., and Szeliski, R. (2011). Building rome in a day. Communications of
the ACM, 54(10):105–112.

[Agarwal and Mierle, 2012] Agarwal, S. and Mierle, K. (2012). Ceres solver: Tutorial
& reference. Google Inc, 2(72):8.

[Amayo et al., 2018] Amayo, P., Piniés, P., Paz, L. M., and Newman, P. (2018). Geo-
metric multi-model fitting with a convex relaxation algorithm. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 8138–8146.

[Arandjelović and Zisserman, 2012] Arandjelović, R. and Zisserman, A. (2012). Three
things everyone should know to improve object retrieval. In 2012 IEEE Conference
on Computer Vision and Pattern Recognition, pages 2911–2918. IEEE.

[Avidan and Shashua, 2000] Avidan, S. and Shashua, A. (2000). Trajectory triangu-
lation: 3d reconstruction of moving points from a monocular image sequence. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(4):348–357.

[Barfoot, 2017] Barfoot, T. D. (2017). State estimation for robotics. Cambridge Uni-
versity Press.

[Baydin et al., 2018] Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind,
J. M. (2018). Automatic differentiation in machine learning: a survey. Journal of
machine learning research, 18.

[Bertinetto et al., 2016] Bertinetto, L., Valmadre, J., Henriques, J. F., Vedaldi, A.,
and Torr, P. H. (2016). Fully-convolutional siamese networks for object tracking. In
European conference on computer vision, pages 850–865. Springer.

[Bescos et al., 2021] Bescos, B., Campos, C., Tardós, J. D., and Neira, J. (2021). Dy-
naslam ii: Tightly-coupled multi-object tracking and slam. IEEE Robotics and Au-
tomation Letters, 6(3):5191–5198.

[Bescos et al., 2018] Bescos, B., Fácil, J. M., Civera, J., and Neira, J. (2018). Dy-
naslam: Tracking, mapping, and inpainting in dynamic scenes. IEEE Robotics and
Automation Letters, 3(4):4076–4083.

[Bibby and Reid, 2007] Bibby, C. and Reid, I. (2007). Simultaneous localisation and
mapping in dynamic environments (slamide) with reversible data association. In
Proceedings of Robotics: Science and Systems, volume 66, page 81.

71

Bibliograf́ıa

[Bibby and Reid, 2010] Bibby, C. and Reid, I. (2010). A hybrid slam representation for
dynamic marine environments. In 2010 IEEE International Conference on Robotics
and Automation, pages 257–264. IEEE.

[Blanco, 2010] Blanco, J.-L. (2010). A tutorial on se (3) transformation parameteriza-
tions and on-manifold optimization. University of Malaga, Tech. Rep, 3:6.

[Bolme et al., 2010] Bolme, D. S., Beveridge, J. R., Draper, B. A., and Lui, Y. M.
(2010). Visual object tracking using adaptive correlation filters. In 2010 IEEE
computer society conference on computer vision and pattern recognition, pages 2544–
2550. IEEE.

[Bouguet et al., 2001] Bouguet, J.-Y. et al. (2001). Pyramidal implementation of the
affine lucas kanade feature tracker description of the algorithm. Intel corporation,
5(1-10):4.

[Cadena et al., 2016] Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D.,
Neira, J., Reid, I., and Leonard, J. J. (2016). Past, present, and future of simultaneo-
us localization and mapping: Toward the robust-perception age. IEEE Transactions
on robotics, 32(6):1309–1332.

[Campos et al., 2021] Campos, C., Elvira, R., Rodŕıguez, J. J. G., Montiel, J. M., and
Tardós, J. D. (2021). Orb-slam3: An accurate open-source library for visual, visual–
inertial, and multimap slam. IEEE Transactions on Robotics.

[Concha and Civera, 2015] Concha, A. and Civera, J. (2015). An evaluation of robust
cost functions for rgb direct mapping. In 2015 European Conference on Mobile
Robots (ECMR), pages 1–8. IEEE.

[Concha et al., 2016] Concha, A., Loianno, G., Kumar, V., and Civera, J. (2016).
Visual-inertial direct slam. In 2016 IEEE international conference on robotics and
automation (ICRA), pages 1331–1338. IEEE.

[Corke, 2011] Corke, P. I. (2011). Robotics, vision and control: fundamental algorithms
in MATLAB, volume 73. Springer.

[Cox, 1972] Cox, M. G. (1972). The numerical evaluation of b-splines. IMA Journal
of Applied mathematics, 10(2):134–149.

[De Boor, 1972] De Boor, C. (1972). On calculating with b-splines. Journal of Appro-
ximation theory, 6(1):50–62.

[Dellaert, 2012] Dellaert, F. (2012). Factor graphs and gtsam: A hands-on introduction.
Technical report, Georgia Institute of Technology.

[Dellaert et al., 2017] Dellaert, F., Kaess, M., et al. (2017). Factor graphs for robot
perception. Foundations and Trends® in Robotics, 6(1-2):1–139.

[Droeschel and Behnke, 2018] Droeschel, D. and Behnke, S. (2018). Efficient
continuous-time slam for 3d lidar-based online mapping. In 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 5000–5007. IEEE.

72

Bibliograf́ıa

[Eade, 2013] Eade, E. (2013). Gauss-newton/levenberg-marquardt optimization. Tech.
Rep.

[Engel et al., 2017] Engel, J., Koltun, V., and Cremers, D. (2017). Direct sparse odo-
metry. IEEE transactions on pattern analysis and machine intelligence, 40(3):611–
625.

[Fischler and Bolles, 1981] Fischler, M. A. and Bolles, R. C. (1981). Random sample
consensus: a paradigm for model fitting with applications to image analysis and
automated cartography. Communications of the ACM, 24(6):381–395.

[Forster et al., 2016] Forster, C., Carlone, L., Dellaert, F., and Scaramuzza, D. (2016).
On-manifold preintegration for real-time visual–inertial odometry. IEEE Transac-
tions on Robotics, 33(1):1–21.

[Gálvez-López and Tardos, 2012] Gálvez-López, D. and Tardos, J. D. (2012). Bags of
binary words for fast place recognition in image sequences. IEEE Transactions on
Robotics, 28(5):1188–1197.

[Gao et al., 2003] Gao, X.-S., Hou, X.-R., Tang, J., and Cheng, H.-F. (2003). Complete
solution classification for the perspective-three-point problem. IEEE transactions on
pattern analysis and machine intelligence, 25(8):930–943.

[Geiger et al., 2012] Geiger, A., Lenz, P., and Urtasun, R. (2012). Are we ready for
autonomous driving? the kitti vision benchmark suite. In 2012 IEEE conference on
computer vision and pattern recognition, pages 3354–3361. IEEE.

[Géron, 2019] Géron, A. (2019). Hands-on machine learning with Scikit-Learn, Ke-
ras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems.
O’Reilly Media.

[Golub and Van Loan,] Golub, G. H. and Van Loan, C. F. Matrix computations. johns
hopkins studies in the mathematical sciences.

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
learning. MIT press.

[Haarbach et al., 2018] Haarbach, A., Birdal, T., and Ilic, S. (2018). Survey of
higher order rigid body motion interpolation methods for keyframe animation and
continuous-time trajectory estimation. In 2018 International Conference on 3D Vi-
sion (3DV), pages 381–389. IEEE.

[Han and Kanade, 2004] Han, M. and Kanade, T. (2004). Reconstruction of a scene
with multiple linearly moving objects. International Journal of Computer Vision,
59(3):285–300.

[Hartley and Zisserman, 2004] Hartley, R. I. and Zisserman, A. (2004). Multiple View
Geometry in Computer Vision. Cambridge University Press, ISBN: 0521540518,
second edition.

[He et al., 2017] He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask r-
cnn. In Proceedings of the IEEE international conference on computer vision, pages
2961–2969.

73

Bibliograf́ıa

[Huang et al., 2020] Huang, J., Yang, S., Mu, T.-J., and Hu, S.-M. (2020). Clustervo:
Clustering moving instances and estimating visual odometry for self and surroun-
dings. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2168–2177.

[Huber, 2004] Huber, P. J. (2004). Robust statistics, volume 523. John Wiley & Sons.

[Judd and Gammell, 2019] Judd, K. M. and Gammell, J. D. (2019). The oxford mul-
timotion dataset: Multiple se (3) motions with ground truth. IEEE Robotics and
Automation Letters, 4(2):800–807.

[Judd and Gammell, 2020] Judd, K. M. and Gammell, J. D. (2020). Occlusion-
robust mvo: Multimotion estimation through occlusion via motion closure. In 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pa-
ges 5855–5862. IEEE.

[Judd et al., 2018] Judd, K. M., Gammell, J. D., and Newman, P. (2018). Multimo-
tion visual odometry (mvo): Simultaneous estimation of camera and third-party
motions. In 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 3949–3956. IEEE.

[Kaminski and Teicher, 2004] Kaminski, J. Y. and Teicher, M. (2004). A general fra-
mework for trajectory triangulation. Journal of Mathematical Imaging and Vision,
21(1):27–41.

[Kerl et al., 2015] Kerl, C., Stuckler, J., and Cremers, D. (2015). Dense continuous-
time tracking and mapping with rolling shutter rgb-d cameras. In Proceedings of the
IEEE international conference on computer vision, pages 2264–2272.

[Kerl et al., 2013] Kerl, C., Sturm, J., and Cremers, D. (2013). Robust odometry es-
timation for rgb-d cameras. In 2013 IEEE international conference on robotics and
automation, pages 3748–3754. IEEE.

[Kim et al., 2016a] Kim, H., Leutenegger, S., and Davison, A. J. (2016a). Real-time
3d reconstruction and 6-dof tracking with an event camera. In European Conference
on Computer Vision, pages 349–364. Springer.

[Kim et al., 2016b] Kim, J.-H., Cadena, C., and Reid, I. (2016b). Direct semi-dense
slam for rolling shutter cameras. In 2016 IEEE International Conference on Robotics
and Automation (ICRA), pages 1308–1315. IEEE.

[Kim et al., 1995] Kim, M.-J., Kim, M.-S., and Shin, S. Y. (1995). A general cons-
truction scheme for unit quaternion curves with simple high order derivatives. In
Proceedings of the 22nd annual conference on Computer graphics and interactive
techniques, pages 369–376.

[Kümmerle et al., 2011] Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., and
Burgard, W. (2011). g 2 o: A general framework for graph optimization. In
2011 IEEE International Conference on Robotics and Automation, pages 3607–3613.
IEEE.

74

Bibliograf́ıa

[Kundu et al., 2011] Kundu, A., Krishna, K. M., and Jawahar, C. (2011). Realtime
multibody visual slam with a smoothly moving monocular camera. In 2011 Inter-
national Conference on Computer Vision, pages 2080–2087. IEEE.

[Leutenegger et al., 2015] Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., and Fur-
gale, P. (2015). Keyframe-based visual–inertial odometry using nonlinear optimiza-
tion. The International Journal of Robotics Research, 34(3):314–334.

[Leys et al., 2013] Leys, C., Ley, C., Klein, O., Bernard, P., and Licata, L. (2013).
Detecting outliers: Do not use standard deviation around the mean, use absolute
deviation around the median. Journal of experimental social psychology, 49(4):764–
766.

[Li et al., 2018] Li, P., Qin, T., et al. (2018). Stereo vision-based semantic 3d object
and ego-motion tracking for autonomous driving. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 646–661.

[Lovegrove et al., 2013] Lovegrove, S., Patron-Perez, A., and Sibley, G. (2013). Spline
fusion: A continuous-time representation for visual-inertial fusion with application
to rolling shutter cameras. In BMVC, volume 2, page 8.

[Lowe, 2004a] Lowe, D. (2004a). Distinctive image features from scale-invariant
keypoints/ijcv.-vol. 60 (2).

[Lowe, 2004b] Lowe, D. G. (2004b). Distinctive image features from scale-invariant
keypoints. International journal of computer vision, 60(2):91–110.

[Lucas et al., 1981] Lucas, B. D., Kanade, T., et al. (1981). An iterative image regis-
tration technique with an application to stereo vision.

[Lynch and Park, 2017] Lynch, K. M. and Park, F. C. (2017). Modern robotics. Cam-
bridge University Press.

[Maclaurin et al., 2015] Maclaurin, D., Duvenaud, D., and Adams, R. P. (2015). Auto-
grad: Effortless gradients in numpy. In ICML 2015 AutoML workshop, volume 238,
page 5.

[Mueggler et al., 2018] Mueggler, E., Gallego, G., Rebecq, H., and Scaramuzza, D.
(2018). Continuous-time visual-inertial odometry for event cameras. IEEE Transac-
tions on Robotics, 34(6):1425–1440.

[Mueggler et al., 2015] Mueggler, E., Gallego, G., and Scaramuzza, D. (2015).
Continuous-time trajectory estimation for event-based vision sensors. Technical re-
port.

[Mur-Artal et al., 2015] Mur-Artal, R., Montiel, J. M. M., and Tardos, J. D. (2015).
Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on
robotics, 31(5):1147–1163.

[Mur-Artal and Tardós, 2017] Mur-Artal, R. and Tardós, J. D. (2017). Orb-slam2: An
open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transac-
tions on robotics, 33(5):1255–1262.

75

Bibliograf́ıa

[Newcombe et al., 2011] Newcombe, R. A., Lovegrove, S. J., and Davison, A. J. (2011).
Dtam: Dense tracking and mapping in real-time. In 2011 international conference
on computer vision, pages 2320–2327. IEEE.

[Nistér, 2004] Nistér, D. (2004). An efficient solution to the five-point relative pose
problem. IEEE transactions on pattern analysis and machine intelligence, 26(6):756–
770.

[Nister and Stewenius, 2006] Nister, D. and Stewenius, H. (2006). Scalable recognition
with a vocabulary tree. In 2006 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’06), volume 2, pages 2161–2168. Ieee.

[Park et al., 2010] Park, H. S., Shiratori, T., Matthews, I., and Sheikh, Y. (2010).
3d reconstruction of a moving point from a series of 2d projections. In European
conference on computer vision, pages 158–171. Springer.

[Patron-Perez et al., 2015] Patron-Perez, A., Lovegrove, S., and Sibley, G. (2015). A
spline-based trajectory representation for sensor fusion and rolling shutter cameras.
International Journal of Computer Vision, 113(3):208–219.

[Pire et al., 2017] Pire, T., Fischer, T., Castro, G., De Cristóforis, P., Civera, J., and
Berlles, J. J. (2017). S-ptam: Stereo parallel tracking and mapping. Robotics and
Autonomous Systems, 93:27–42.

[Qin, 2000] Qin, K. (2000). General matrix representations for b-splines. The Visual
Computer, 16(3-4):177–186.

[Sabzevari and Scaramuzza, 2014] Sabzevari, R. and Scaramuzza, D. (2014). Mono-
cular simultaneous multi-body motion segmentation and reconstruction from pers-
pective views. In 2014 IEEE International Conference on Robotics and Automation
(ICRA), pages 23–30. IEEE.

[Saputra et al., 2018] Saputra, M. R. U., Markham, A., and Trigoni, N. (2018). Vi-
sual slam and structure from motion in dynamic environments: A survey. ACM
Computing Surveys (CSUR), 51(2):1–36.

[Schonberger and Frahm, 2016] Schonberger, J. L. and Frahm, J.-M. (2016). Structure-
from-motion revisited. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4104–4113.

[Schops et al., 2019] Schops, T., Sattler, T., and Pollefeys, M. (2019). Bad slam: Bund-
le adjusted direct rgb-d slam. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 134–144.

[Shi et al., 1994] Shi, J. et al. (1994). Good features to track. In 1994 Proceedings of
IEEE conference on computer vision and pattern recognition, pages 593–600. IEEE.

[Sola, 2017a] Sola, J. (2017a). Course on slam. Technical report, Technical Report
IRI-TR-16-04, Institut de Robòtica i.

[Sola, 2017b] Sola, J. (2017b). Quaternion kinematics for the error-state kalman filter.
arXiv preprint arXiv:1711.02508.

76

Bibliograf́ıa

[Sola et al., 2018] Sola, J., Deray, J., and Atchuthan, D. (2018). A micro lie theory for
state estimation in robotics. arXiv preprint arXiv:1812.01537.

[Sommer et al., 2020] Sommer, C., Usenko, V., Schubert, D., Demmel, N., and Cre-
mers, D. (2020). Efficient derivative computation for cumulative b-splines on lie
groups. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 11148–11156.

[Strasdat, 2012] Strasdat, H. (2012). Local accuracy and global consistency for efficient
visual SLAM. PhD thesis, Department of Computing, Imperial College London.

[Sturm et al., 2012a] Sturm, J., Engelhard, N., Endres, F., Burgard, W., and Cremers,
D. (2012a). A benchmark for the evaluation of rgb-d slam systems. In Proc. of the
International Conference on Intelligent Robot Systems (IROS).

[Sturm et al., 2012b] Sturm, J., Engelhard, N., Endres, F., Burgard, W., and Cre-
mers, D. (2012b). A benchmark for the evaluation of rgb-d slam systems. In 2012
IEEE/RSJ international conference on intelligent robots and systems, pages 573–580.
IEEE.

[Sturm and Triggs, 1996] Sturm, P. and Triggs, B. (1996). A factorization based algo-
rithm for multi-image projective structure and motion. In European conference on
computer vision, pages 709–720. Springer.

[Tomasi and Kanade, 1992] Tomasi, C. and Kanade, T. (1992). Shape and motion from
image streams under orthography: a factorization method. International journal of
computer vision, 9(2):137–154.

[Torr and Zisserman, 2000] Torr, P. H. and Zisserman, A. (2000). Mlesac: A new robust
estimator with application to estimating image geometry. Computer vision and image
understanding, 78(1):138–156.

[Triggs et al., 1999] Triggs, B., McLauchlan, P. F., Hartley, R. I., and Fitzgibbon,
A. W. (1999). Bundle adjustment—a modern synthesis. In International workshop
on vision algorithms, pages 298–372. Springer.

[Umeyama, 1991] Umeyama, S. (1991). Least-squares estimation of transformation
parameters between two point patterns. IEEE Transactions on Pattern Analysis &
Machine Intelligence, 13(04):376–380.

[Van Loan, 2000] Van Loan, C. F. (2000). The ubiquitous kronecker product. Journal
of computational and applied mathematics, 123(1-2):85–100.

[Wang et al., 2003] Wang, C.-C., Thorpe, C., and Thrun, S. (2003). Online simultaneo-
us localization and mapping with detection and tracking of moving objects: Theory
and results from a ground vehicle in crowded urban areas. In 2003 IEEE Interna-
tional Conference on Robotics and Automation (Cat. No. 03CH37422), volume 1,
pages 842–849. IEEE.

[Wang et al., 2007] Wang, C.-C., Thorpe, C., Thrun, S., Hebert, M., and Durrant-
Whyte, H. (2007). Simultaneous localization, mapping and moving object tracking.
The International Journal of Robotics Research, 26(9):889–916.

77

Bibliograf́ıa

[Wang et al., 2021] Wang, H., Wang, C., Chen, C.-L., and Xie, L. (2021). F-loam: Fast
lidar odometry and mapping. arXiv preprint arXiv:2107.00822.

[Wang et al., 2019] Wang, Q., Zhang, L., Bertinetto, L., Hu, W., and Torr, P. H.
(2019). Fast online object tracking and segmentation: A unifying approach. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pages 1328–1338.

[Wojke et al., 2017] Wojke, N., Bewley, A., and Paulus, D. (2017). Simple online and
realtime tracking with a deep association metric. In 2017 IEEE international con-
ference on image processing (ICIP), pages 3645–3649. IEEE.

[Wu, 2013] Wu, C. (2013). Towards linear-time incremental structure from motion. In
2013 International Conference on 3D Vision-3DV 2013, pages 127–134. IEEE.

[Wu et al., 2011] Wu, C. et al. (2011). Visualsfm: A visual structure from motion
system.

[Yang et al., 2021] Yang, A. J., Cui, C., Bârsan, I. A., Urtasun, R., and Wang, S.
(2021). Asynchronous multi-view slam. arXiv preprint arXiv:2101.06562.

[Yang and Scherer, 2019] Yang, S. and Scherer, S. (2019). Cubeslam: Monocular 3-d
object slam. IEEE Transactions on Robotics, 35(4):925–938.

[Zach, 2014] Zach, C. (2014). Robust bundle adjustment revisited. In European Con-
ference on Computer Vision, pages 772–787. Springer.

[Zappella et al., 2013] Zappella, L., Del Bue, A., Lladó, X., and Salvi, J. (2013). Joint
estimation of segmentation and structure from motion. Computer Vision and Image
Understanding, 117(2):113–129.

[Zhang et al., 2020] Zhang, J., Henein, M., Mahony, R., and Ila, V. (2020). Vdo-slam:
a visual dynamic object-aware slam system. arXiv preprint arXiv:2005.11052.

[Zhang and Scaramuzza, 2018] Zhang, Z. and Scaramuzza, D. (2018). A tutorial on
quantitative trajectory evaluation for visual (-inertial) odometry. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 7244–
7251. IEEE.

78

Lista de Figuras

1.1. Aplicaciones de SLAM y SfM: Robot Spot y app Civilisations. 1

1.2. Ejemplos de reconstrucciones obtenidas mediante algoritmos de SfM y
SLAM . 2

1.3. Ejemplo simple de estimación errónea por objetos en movimiento . . . 3

1.4. Fallo en reconstrucción 3D debido a que la escena no es estática 4

1.5. Ejemplos del estado del arte: ClusterVO y DynaSLAM II 5

1.6. Trayectoria definida a trozos vs continua 6

2.1. Sistema propuesto . 9

2.2. Modelo de cámara pinhole . 11

2.3. Arquitectura de SiamMask . 12

2.4. Ejemplos de resultados con SiamMask 13

2.5. Secuencia de bloques que conforman la estructura de COLMAP 14

2.6. Ejemplo de detección y emparejamiento de caracteŕısticas SIFT 15

2.7. Geometŕıa epipolar . 16

2.8. Ejemplo de inicialización del mapa en SfM 17

2.9. Ejemplo de reconstrucción mediante COLMAP 18

3.1. Posición y orientación de un objeto con respecto a un sistema de refe-
rencia fijo. 20

3.2. Esfera como ejemplo de variedad suave 22

3.3. Visualizaciones de la velocidad angular que experimenta un sistema de
referencia . 23

79

Lista de Figuras

3.4. Visualización simple planos tangentes en diferentes puntos de SE(3) . . 26

3.5. Mapeo exponencial y logaŕıtmico . 28

3.6. Muestra de funciones base B-Spline e interpolación. 31

3.7. Muestra de interpolación en SE(3) . 33

4.1. SplineBA: relación entre observaciones y puntos de control durante la
optimización. 37

4.2. LocalBA: relación entre observaciones y puntos de control durante la
optimización. 38

4.3. Función robusta de Huber y ejemplo simple de aplicación. 43

5.1. Esquema general del bloque de seguimiento 51

5.2. Detección y seguimiento mediante flujo óptico de caracteŕısticas Shi-
Tomasi mediante KLT. 52

5.3. Seguimiento de caracteŕısticas fallido por giro relativo objeto - cámara. 53

5.4. Efectos del pre-procesar, o no, las máscaras de entrada 54

5.5. Comparación de antes y después de incorporar las mejoras en el segui-
miento . 55

5.6. Resultado simulado de aplicar MSAC. los puntos estáticos son rechaza-
dos (en rojo), al no ajustarse al modelo R, t estimado. 55

6.1. Comparación visual de trayectorias estimadas teniendo en cuenta o no
a los objetos dinámicos . 59

6.2. Comparación visual del mapa estático creado teniendo en cuenta, o no,
los objetos dinámicos . 60

6.3. Análisis de tiempo de cómputo de una matriz Jacobiana. 61

6.4. Diagramas de caja con los valores de APE y RPE 62

6.5. Ejemplos de trayectorias evaluadas en el experimento de §6.3 63

6.6. Definición de los grados de libertad de las trayectorias generadas 64

6.7. MSE en función de θtransl y θrot . 65

6.8. Esquema de referencias de la trayectoria estimada - verdadera 67

80

Lista de Tablas

6.1. Valores de APE y RPE teniendo en cuenta o no a los objetos dinámicos 59

6.2. Errores de translación máximos en la trayectoria (m) 67

6.3. Comparación con VDO-SLAM y DynaSLAM II 68

81

Lista de Tablas

82

Anexos

83

Apéndice A

Anexo matrices Jacobianas

En este Anexo se presentan algunos desarrollos utilizados en la derivación de las
matrices Jacobianas de §4.3. En primer lugar, un resultado que se empleó en la Ec.
4.44, fue la diferenciación de un vector con respecto a una matriz de trans-
formación vectorizada tal que:

¿
∂pa
∂T

?, sabiendo que: p̃a = Tp̃b ⇒ pa = Rpb + t =




Rr1pb + t1

Rr2pb + t2

Rr3pb + t3


 (A.1)

Donde recordemos que la notación Rci,Rfi, tj haćıan referencia a la columna y fila i
de R y al j−ésimo elemento de t, respectivamente. Ahora, recordando que la versión
vectorizada de una matriz de transformación viene dada por:

T =

[
R t
0 1

]
=

[
Rc1 Rc2 Rc3 t
0 0 0 1

]
⇒ vec(Two) =




Rc1

Rc2

Rc3

t


 ∈ R12 (A.2)

Significa que diferenciando cada elemento del vector pa con respecto a cada elemento
de la versión vectorizada de T, se obtiene:

∂p1

∂T
=




p1
b 0 0 p2

b 0 0 p3
b 0 0 1 0 0

0 p1
b 0 0 p2

b 0 0 p3
b 0 0 1 0

0 0 p1
b 0 0 p2

b 0 0 p3
b 0 0 1


 (A.3)

Que, afortunadamente se puede expresar de manera compacta a través del producto
de Kronecker ⊗ [Van Loan, 2000]:

∂pa
∂T

=
[
pTb 1

]
⊗ I3×3 (A.4)

Otra de las herramientas usadas en Ecs. como 4.54 y 4.55, es la diferenciación
entre matrices de transformación vectorizadas tales que:

¿
∂TaTb

∂Tb

?, ¿
∂TaTb

∂Ta

? (A.5)

85

El primer término de la Ec. A.5, lo podemos derivar desplegando TaTb en su versión
vectorizada:

∂TaTb

∂Tb

=
∂

∂Tb

([
RaRb Ratb + ta

0 1

])
=

∂

∂Tb







Rr1
a Rc1

b

Rr2
a Rc1

b

Rr3
a Rc1

b

Rr1
a Rc2

b
...

Rr1
a tb + t0

a

Rr2
a tb + t1

a

Rr3
a tb + t2

a







(A.6)

Centrándonos en un sub-bloque:

∂

∂Tci
b






Rr1
a Tci

b

Rr2
a Tci

b

Rr3
a Tci

b




 = Ra (A.7)

Implica que organizando los elementos según la columna i correspondiente, obtenemos:

∂TaTb

∂Tb

=




Ra 0 0 0
0 Ra 0 0
0 0 Ra 0
0 0 0 Ra


 = I4×4 ⊗Ra (A.8)

El segundo término de la Ec. A.5, lo podemos obtener basándonos igualmente en el
desarrollo de la Ec. A.6. Por ejemplo, si derivamos manualmente las 3 primeras filas:

∂

∂Ta






Rr1
a Rc1

b

Rr2
a Rc1

b

Rr3
a Rc1

b




 =




T11
b 0 0 T21

b 0 0 T31
b 0 0 T41

b 0 0
0 T11

b 0 0 T21
b 0 0 T31

b 0 0 T41
b 0

0 0 T11
b 0 0 T21

b 0 0 T31
b 0 0 T41

b




(A.9)
Siguiendo esta derivación manual, se obtiene finalmente:

∂TaTb

∂Ta

= TT
b ⊗ I3×3 (A.10)

Finalmente, el resultado empleado en la Ec. 4.57 se justifica a continuación. Éste
consiste en la siguiente diferenciación del mapeo exponencial evaluado en la
identidad:

∂Exp(τ)

∂τ

∣∣∣∣
τ=0

(A.11)

Tal y como se vio en la Ec. 3.46, el mapeo exponencial viene dado por:

exp(τ∧) = exp

([
v
ω

]∧)
=

[
exp(ω∧) Vv

0 1

]
, (A.12)

donde

{
exp(ω∧) = I3 + sin θ

θ
ω∧ + 1−cos θ

θ2
(ω∧)2

V = I3 + 1−cos θ
θ2

ω∧ + θ−sin θ
θ3

(ω∧)2
, con θ = ‖ω‖ (A.13)

86

Apéndice A. Anexo matrices Jacobianas

Las derivaciones correspondientes a v ∈ R3 son directas:

∂ exp(ω∧)

∂v
= 012×3, ∀v ∈ R3 (A.14)

∂Vv

∂v
= V, ∀v ∈ R3 ⇒ ∂Vv

∂v

∣∣∣∣
τ=0

= I3×3 (A.15)

Por otro lado, en cuanto a ω ∈ R3, se observa lo siguiente:

∂Vv

∂ω

∣∣∣∣
τ=0

=

�
�
�
�
��>

0
∂Vv

∂V

∣∣∣∣
τ=0

∂V

∂ω

∣∣∣∣
τ=0

+
∂Vv

∂v

∣∣∣∣
τ=0�

�
�
��>

0
∂v

∂ω

∣∣∣∣
τ=0

= 03×3 (A.16)

De manera directa ∂v/∂ω = 0. Para justificar por qué ∂Vv/∂V = 0, nos podemos
fijar en su resultado general:

∂Vv

∂V
= vT ⊗ I3×3 (A.17)

Por lo que si v = 0⇒ ∂Vv/∂V = 0

Por último, en cuanto a ∂ exp(ω∧)/∂ω evaluada en ω = 0, algunos resultados que
permiten simplificar su derivación son:

∂

∂ω
vec(I3) = 09×3 (A.18)

∂

∂ωk

sin θ

θ

∣∣∣∣
ω=0

= 0 (A.19)

∂

∂ωk

1− cos θ

θ2

∣∣∣∣
ω=0

= 0 (A.20)

∂

∂ωk
ω∧
∣∣∣∣
ω=0

= Gk (A.21)

∂

∂ωk
(ω∧)2

∣∣∣∣
ω=0

= ω∧Gk + Gkω
∧
∣∣∣∣
ω=0

= 03×3 (A.22)

ĺım
θ→0

sin θ

θ
= 1 (A.23)

Donde ωk es el elemento k-ésimo de ω = [ω1, ω2, ω3]T . Por tanto:

∂

∂ω1

exp(ω∧)

∣∣∣∣
ω=0

= G1,
∂

∂ω2

exp(ω∧)

∣∣∣∣
ω=0

= G2,
∂

∂ω3

exp(ω∧)

∣∣∣∣
ω=0

= G3, (A.24)

es decir, en su versión vectorizada pasa a ser:

∂

∂ω
exp(ω∧)

∣∣∣∣
ω=0

=



−G1

−G2

−G3


 (A.25)

Por lo que finalmente, juntando todo lo anterior:

∂Exp(τ)

∂τ

∣∣∣∣
τ=0

=




03×3 −G1

03×3 −G2

03×3 −G3

I3×3 −03×3


 (A.26)

87

	Introducción
	Motivación
	Trabajo relacionado
	Objetivos
	Estructura

	Sistema propuesto
	Bloques fundamentales
	Modelo de cámara
	Segmentación de objetos dinámicos
	Estimación del movimiento de la cámara

	Formulación
	Grupo de Lie, SE(3)
	Cinemática
	Mapeo exponencial y logarítmico
	Jacobianos derecho e izquierdo de SE(3)

	B-Splines cumulativos en SE(3)
	Cinemática

	Optimización
	Estado del sistema y funciones de coste: SplineBA, LocalBA
	Punto de vista probabilístico

	Optimización mediante Gauss-Newton en SE(3)
	Robustificación
	Parametrización

	Matrices Jacobianas
	Derivación independiente del error
	Derivación aprovechando la definición del error

	Seguimiento
	Detección y seguimiento de características
	Pre-procesamiento y filtrado de espúreos

	Clasificación

	Experimentos y Resultados
	COLMAP en entorno dinámico
	Tiempo de cómputo de las matrices Jacobianas
	Estimación en tiempo continuo vs discreto
	Evaluación en base de datos pública

	Conclusiones
	Trabajo futuro

	Bibliografía
	Lista de Figuras
	Lista de Tablas
	Anexos
	Anexo matrices Jacobianas

