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Resumen

El SLAM (Localizacién y Mapeo Simultaneo) y SfM (Estructura a partir de Movi-
miento), son dos de las técnicas de mayor importancia actual que permiten, a través
de informacién visual y entre otras funciones, localizar a un agente en el entorno que
éste atraviesa. Una de las asunciones principales que es comin en muchas de sus im-
plementaciones, es que el entorno en el que los sensores capturan la informacion es
predominantemente estatico. En la practica, la mayoria de estos sistemas, implemen-
tan técnicas que robustecen las estimaciones ante entidades dinamicas hasta cierto
punto. Sin embargo, si la componente dinamica de la escena se vuelve significativa,
tanto la localizacién como la geometria del entorno se vuelven erréneas.

En este TFM se aborda este problema. En concreto, se incorpora la estimacion del
movimiento, de 6 grados de libertad, que experimentan los objetos dinamicos presentes
en la escena. Para ello, nos centramos en objetos rigidos, ajustando sus trayectorias a
curvas B-Spline Cumulativas, las cuales presentan, entre otras propiedades, la ventaja
de ofrecer estimaciones continuas en el tiempo de posicion, orientacion, velocidad y
aceleracion. Diferenciandonos asi de los trabajos del estado del arte. Asi mismo, se
plantean estrategias que reducen el coste computacional de manera significativa, siendo
aplicables a cualquier proyecto que emplee este tipo de curvas.

La evaluacion de la propuesta muestra las ventajas de nuestro acercamiento: A pesar
de estar imponiendo un modelo de trayectoria, tanto con datos sintéticos, como con una
base datos publica, se obtienen resultados similares en precision en cuanto a localizacién
y orientacion de los objetos dindmicos, a la vez que mejorando las estimaciones de la
velocidad que éstos experimentan, en comparacion con las estimaciones en tiempo
discreto del estado del arte.
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Abstract

SLAM (Simultaneous Localization and Mapping) and SfM (Structure from Motion)
are two of the most relevant techniques that, among other use cases, allow the localiza-
tion of an agent in the environment it traverses. Most of the current implementations
assume that the environment where the data was captured remained static during the
whole process. In practice, as long as this assumption is not serverely violated, current
implementations can handle some amount of scene dynamism thanks to robustification
techniques. Otherwise, both the estimated localization and geometry estimation of the
surroundings get corrupted.

In this thesis we dive into this problem. Concretely, we take into account the mo-
tion of the dynamic objects that may be present in a scene and we estimate their
6 degrees of freedom. To do this, we focus on rigid objects, fitting their trajectories
to cubic Cumulative B-Spline curves. This type of curve, among other poperties, has
the advantage of offering continuous-time estimations of position, orientation, velocity
and acceleration. This work thus, differ from the related works. Moreover, we propose
estrategies which significantly reduce the computational cost, being applicable to any
topic-related work that makes use of these kind of curves.

The evaluation shows the advantages of our approach: In spite of imposing a trajec-
tory model, and in terms of precision in the estimation of localization and orientation
of the objects, we obtain similar results than the state of the art in both public and
synthetic data. Showing also better estimations in angular and linear velocity than the
current discrete-time estimation works.
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Capitulo 1

Introduccion

Imaginemos que un robot tiene que realizar una tarea en un entorno desconocido
para él, como por ejemplo recoger ropa del suelo tal y como aparece en la Figura 1.1a.
Para poder llevar a cabo esta tarea con éxito, el robot debe ser capaz no solo de conocer
el sitio en el que se encuentra, sino también localizarse en él, para asi evitar posibles
modos de fallo como equivocarse de objeto de interés (ropa en este caso), o colisionar
con otros elementos presentes en la escena (muebles).

La mayoria de las tareas a realizar por robots mdviles, como el ejemplo menciona-
do en el parrafo anterior, necesitan un mapa del entorno para que los agentes que lo
atraviesen puedan navegar de manera auténoma en ¢él. En este caso, si se realiza con-
juntamente la localizacion del robot con la creacion del mapa del entorno y de forma
secuencial (conforme el robot recibe datos sensoriales), este acercamiento al problema se
conoce como Localizacién y Mapeo Simultaneo (o SLAM, de sus siglas en inglés).
El SLAM ha experimentado un gran progreso en los tltimos 30 anos, convirtiéndose en
una base fundamental de muchas aplicaciones en las que intervienen robots auténomos,
o incluso realidad aumentada y realidad virtual [Cadena et al., 2016] (Figura 1.1b).

’https://www.bostondynamics.com/spot
2https://www.bbc.co.uk/taster/pilots/civilisations-ar
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Figura 1.1: (a) Robot Spot de la empresa Boston Dynamics'. (b) Aplicacién de realidad
aumentada Civilisations® que permite proyectar objetos virtuales relacionados con la historia
y el arte. (¢c) Reconstruccion del Coliseo Romano obtenida aplicando técnicas de SfM [Agarwal
et al., 2011}


https://www.bostondynamics.com/spot
https://www.bbc.co.uk/taster/pilots/civilisations-ar

En cambio, si la estimacién del mapa se realiza con datos sin ordenacién temporal ni
restricciones de ejecucion en tiempo real, este acercamiento se conoce como Estructura
a partir de Movimiento (o SfM de sus siglas en inglés), a partir del cual, ademas
del objetivo mencionado anteriormente, se pueden llevar a cabo reconstrucciones tan
impresionantes como las de la Figura 1.1c.

En cuanto a los sensores que se pueden emplear para este fin, en el campo de SLAM,
los principales son los siguientes®:

» Camaras monoculares (RGB) [Mur-Artal et al., 2015, Engel et al., 2017]: El
sensor principal es una unica camara, a partir de la cual se estima la geometria
y la localizacién del sensor, pero sujetas a una escala arbitraria (para obtener
medidas reales hace falta multiplicar las mediciones realizadas por dicho factor
de escala desconocido a priori),

» Camaras estéreo [Mur-Artal and Tardds, 2017, Pire et al., 2017]: Los sensores
principales son dos camaras cuya posicion y orientacion relativas son conocidas.
Es gracias a esto por lo que si un punto en el espacio es detectado y emparejado
por ambas camaras, es posible conocer su profundidad mediante triangulacion, de
una forma similar a cémo las personas somos capaces de percibir la profundidad
de nuestro entorno cercano a través de nuestros ojos.

Figura 1.2: (a) SfM: Nube de puntos obtenida de una parte de la ciudad de Roma, tras
haber usado 75.000 imdgenes (los puntos rojos se corresponden con los lugares desde los que se
capturaron) [Schonberger and Frahm, 2016]. (b) SLAM: Nube de puntos obtenida mediante
una cdmara monocular. Ademds, debido a que las imdgenes se capturaron secuencialmente, es
posible recuperar la trayectoria que trazo el sensor (representada como una linea roja) [Engel
et al., 2017].

» Sensores inerciales [Forster et al., 2016, Concha et al., 2016]: Constan de uni-
dades de medicién inercial (velocidad, orientacién y aceleracién), que combinados
con informacion visual proveniente de los anteriores tipos de camaras, dan lugar
a estimaciones que actualmente son las mas precisas en cuanto a la localizacion
de los sensores en el entorno [Campos et al., 2021].

» Camaras RGB-D [Newcombe et al., 2011, Schops et al., 2019]: Combinan la
informacion visual de una cdmara monocular con la informacién aportada por

3Parte de los trabajos citados combinan varios sensores, sin embargo, es dominante el sensor con
el que se les ha relacionado. Asi mismo, destacar que otros tipos de sensores muy presentes también
en trabajos de SLAM como las cdmaras de eventos [Kim et al., 2016a] o sensores de rango como el
radar o el LIDAR [Wang et al., 2021] no se han incluido por su menor relacién con este trabajo.



Capitulo 1. Introduccion

un sensor de profundidad (basado por ejemplo en la deformacién de un patrén
conocido de luz infrarroja proyectado en la escena), a partir del cual se obtiene
la distancia relativa de la camara con respecto al entorno visible.

Por otro lado en el campo de SfM, el sensor predominante es la camara monocular
[Schonberger and Frahm, 2016, Agarwal et al., 2011, Wu et al., 2011] son algunos
ejemplos.

En la Figura 1.2 se muestran ejemplos de resultados obtenidos por trabajos men-
cionados anteriormente. En concreto, en este TFM se hace uso de datos provenientes
de una camara RGB-D. Los motivos de esta decisién estan estrechamente ligados con
los objetivos que se persiguen, los cuales se identifican y exponen en §1.1 - §1.3.

1.1. Motivaciéon

Una de las asunciones principales que es comin en muchos de los algoritmos de
SLAM y SfM, es que el entorno en el que los sensores capturaron la informacion es pre-
dominantemente estatico. Es decir, se asume que en dichos lugares, todas las entidades
que aparecen en una escena y que perciben los sensores (estructuras, objetos, personas
etc.) siempre se mantienen en el mismo sitio.

Entidad estatica « Entidad dindmica X

Figura 1.3: (a) Gracias a observar identidades estdticas desde diferentes puntos de vista,
podemos recuperar informacion como el movimiento de la cdmara o la profundidad de lo
observado. (b) En cambio, en escenas con entidades dindmicas (en este caso manteniendo
constante la posicion relativa entre camara - objeto), al asumir erréneamente que la escena es
estdtica, esto implicaria que, o bien, la camara no se ha movido, o que el objeto se encuentra
a una distancia — oo y que por tanto al movernos, su proyeccion no cambia con respecto a

la camara (representada por: )

Es gracias a esta asuncién por la que, midiendo la localizacién de ciertas entidades
en la referencia del sensor, es posible usar dicha informacién para mejorar localizacion



1.2. Trabajo relacionado

de los sensores y de dichas entidades. Un ejemplo de esto que pretende ser intuitivo,
se muestra en la Fig. 1.3a. Sin embargo, si dichas entidades comienzan a moverse,
puede dar lugar a un empeoramiento significativo en la localizacion del sensor, o en la
estimacién del mapa (Fig. 1.3b).

En la practica, la mayoria de sistemas de SLAM [Cadena et al., 2016] y de SfM
[Schonberger and Frahm, 2016], implementan técnicas que robustecen las estimaciones
ante entidades dindmicas hasta cierto punto. Sin embargo, si la componente dindmica
de la escena se vuelve significativa, tanto la localizacién como la geometria del entorno
se vuelven erréneas. Dos ejemplos reales de esto se muestran en la Figura 1.4.

En este TFM el objetivo es abordar este problema. En concreto, en incorporar
la estimacion del movimiento que experimentan los objetos dinamicos pre-
sentes en la escena. Para ello, nos centramos en objetos rigidos, es decir, aquellos
cuya deformacién a lo largo del tiempo es despreciable, por lo que la distancia entre
los puntos que los conforman es constante.

Figura 1.4: (a, izda) Par de instantes del dataset [Sturm et al., 2012a], en el que dos
personas se mueven por el lugar en el que los sensores estdn captando informacion. (a, dcha)
Mapa estimado mediante SLAM [Bescos et al., 2018]. Debido a la asuncién de estaticidad,
las personas aparecen repetidas veces en €l. (b, izda) Par de instantes del dataset [Judd and
Gammell, 2019] en el que aparen cajas moviéndose mediante un mecanismo de poleas. (b,
dcha) Mapa estimado (visto de frente y de perfil) mediante SfM. En este caso, el movimiento
de los objetos provoca la aparicion de una estela de puntos que errdoneamente se atribuye a
entidades estdticas.

1.2. Trabajo relacionado

Abordar este problema mediante la incorporacion del movimiento de los objetos
rigidos presentes en la escena, ha sido tratado desde diferentes puntos de vista en
la literatura. Por ello, en esta seccién se realiza un andlisis del estado del arte, con el
objetivo de detectar cuestiones que hasta la fecha no han sido estudiadas y que podrian
suponer contribuciones al estado del arte.

Uno de los primeros trabajos que traté de estimar el movimiento de las entidades

4



Capitulo 1. Introduccion

Figura 1.5: Resultados obtenidos por el estado del arte. (o) DynaSLAM II [Bescos
et al., 2021]. Obsérvese la estimacion conjunta del mapa estdtico (puntos negros), asi como
las trayectorias de los objetos dindmicos (coches). (b) ClusterVO [Huang et al., 2020]. Se
muestra como este sistema es capaz de sequir la trayectoria de dos botellas que intercambian
SUS POSICIONES.

dindmicas presentes en la escena fue [Tomasi and Kanade, 1992], en el que se introdujo
la técnica de factorizacion, permitiéndoles llevar a cabo conjuntamente la deteccién
del movimiento del objeto, asi como su reconstruccion. Para ello, se asumia la presencia
de un 1nico objeto, asi como un modelo de camara ortografica, la cual permite sim-
plificar los calculos pero introduce error al no poder modelar la proyeccion perspectiva
de una cdmara real [Hartley and Zisserman, 2004].

Sucesivos trabajos hicieron frente a estas limitaciones, incorporando la estimacion
del movimiento de multiples objetos [Han and Kanade, 2004, Zappella et al., 2013],
asi como el uso de modelos de cdmara perspectiva [Sturm and Triggs, 1996], o incluso
ambas mejoras [Sabzevari and Scaramuzza, 2014]. Sin embargo, la mayoria de estos
métodos presentan inconvenientes como no poder trabajar de manera secuencial, asu-
mir de antemano tipos concretos de movimiento, o tener un alto coste computacional
[Saputra et al., 2018].

Otro tipo de trabajos se centran en lo que se conoce como triangulacién de una
trayectoria [Avidan and Shashua, 2000]. Estos tratan de ajustar la trayectoria que
siguen puntos que no son estaticos mediante distintas entidades geométricas predefi-
nidas, tales como lineas y secciones conicas [Avidan and Shashua, 2000, Park et al.,
2010], o superficies mas complejas que permiten linealizar la trayectoria [KKaminski and
Teicher, 2004]. Sin embargo, estos trabajos se enfocan en estimar la trayectoria de pun-
tos por separado, en vez de asociarla a un objeto, por lo que la rotaciéon que podria
experimentar un cuerpo no es considerada.

En el campo de SLAM, uno de los primeros trabajos en estimar el movimiento de
los objetos fue [Wang et al., 2003] (extendido en [Wang et al., 2007]), en el que dieron
un enfoque probabilistico permitiendo incorporar la utilizacion de filtros Gaussianos.
Sus resultados mostraron mejoras con respecto a unicamente estimar la localizacion
del sensor en entornos dindmicos. A la misma conclusion se llega en [Bibby and Reid,
2007], en el que se estima la localizacién de los puntos dindmicos de la escena. En estos
trabajos, asi como otros [Bibby and Reid, 2010, Li et al., 2018, Yang and Scherer, 2019]
mas recientes, los objetos estudiados se mueven en un plano, los cuales son comunes
en entornos como los de la conducciéon auténoma. También nos encontramos con estas



1.2. Trabajo relacionado

asunciones en el campo de SfM [Kundu et al., 2011].

Trabajos mas recientes permiten estimar movimientos generales de los objetos.
En concreto, [Zhang et al., 2020, Bescos et al., 2021] proponen detectar en una primera
fase los objetos dindamicos presentes en una escena mediante técnicas de deep learning
como [He et al., 2017], para a continuacién estimar su movimiento y combinarlo con
el célculo de la localizacién del sensor. En [Huang et al., 2020] anaden un criterio
probabilistico para la deteccién de los objetos. Por otro lado, [Judd et al., 2018, Judd
and Gammell, 2020] proponen refinar la deteccién y seguimiento de la trayectoria de
manera conjunta, haciendo uso para ello de optimizadores de modelos geométricos
[Amayo et al., 2018]. Estos sistemas han sido evaluados en bases de datos publicas
[Judd and Gammell, 2019, Geiger et al., 2012] obteniendo resultados prometedores (en
la Figura 1.5 se muestran ejemplos de resultados).

En estos ultimos trabajos, los sensores empleados son camaras estéreo o RGB-
D, los cuales evitan la dificultad de tener que triangular puntos en movimiento en
diferentes instantes de tiempo al poder inferir la profundidad con tan solo una imagen.
En este TFM seguimos esta tendencia haciendo uso de datos provenientes de camaras

RGB-D.

Algo que tienen en comun la practica totalidad de los trabajos anteriores es que
éstos operan en tiempo discreto; es decir, estiman su ubicacion en el espacio para
cada instante del que se dispone una imagen del mismo. De esta forma, las trayectorias
que siguen no tienen por qué presentar continuidad en su velocidad y aceleracion. En
la Figura 1.6a se muestra un ejemplo simple de esto.

o —
» s W
—t S o - -) ?W
2 y= - .ﬁ'

@ = Velocidad indefinida

= % 2 - M—ﬁ___’,,,,y?e;?.;f’
B L T

(b)

Figura 1.6: (a) Trayectoria definida en tiempo discreto: En la trayectoria recuperada,
al estar definida por tramos, aparecen puntos donde la velocidad estimada (pendiente) cambia
bruscamente de direccion, provocando que no esté definida en dichos puntos. (b) Trayectoria
definida en tiempo continuo: En este caso, la trayectoria estimada nos permite obtener
un valor de posicion y velocidad (y aceleracion, como se verd mds adelante) para cualquier
instante temporal, no solo en aquellos donde el objeto fue observado.

Por ello, se pens6é que podia ser interesante que las trayectorias estimadas de los

6



Capitulo 1. Introduccion

objetos presentasen continuidad temporal tanto en su velocidad como en la acele-
racién (Figura 1.6b). De los trabajos anteriores, inicamente [Bibby and Reid, 2010]
trato este tema, pero en él se centraron en objetos que siguen un movimiento plano y
por tanto no general (de 6 grados de libertad), ademéds de usar radares como sensor,
cuya disponibilidad hoy en dia es menor que la de una camara RGB-D.

En una linea similar, [Lovegrove et al., 2013] propuso ajustar la trayectoria del
sensor a una curva continua haciendo uso de B-Splines Cumulativos. Debido a sus
propiedades (secuencialidad, continuidad en la velocidad y aceleracion, entre otras)
presentan una opcién muy interesante. Trabajos posteriores extendieron sus aplicacio-
nes a diferentes clases de sensores [Kerl et al., 2015, Mueggler et al., 2015, Yang et al.,
2021, Droeschel and Behnke, 2018], pero su uso para interpolar los 6 grados de liber-
tad de movimientos rigidos de objetos capturados por sensores visuales queda atin por
explorar.

1.3. Objetivos

En base al andlisis previo, se proponen los siguientes objetivos a cumplir:

1. Cuantificar el error en la construccion del mapa, asi como en la localizacién
del sensor, derivado de no considerar los objetos dindmicos presentes en la escena.
Usaremos para ello el software COLMAP [Schonberger and Frahm, 2016], uno de
los sistemas de SfM con mayor precision del estado del arte.

2. Proponer un sistema secuencial que permita estimar en tiempo continuo
el movimiento general de los objetos presentes en una escena, haciendo
uso para ello de B-Splines Cumulativos. Asi mismo, proponer estrategias que
permitan la reduccion del coste computacional.

3. Evaluar la propuesta, haciendo uso de bases de datos publicas, asi como datos
sintéticos, que nos permitan comparar los resultados obtenidos con los del resto
del estado del arte reciente.

1.4. Estructura

Con los anteriores objetivos en mente, este TFM esta estructurado de la siguiente
forma:

» Capitulo 2: Presentacion del sistema propuesto (partes fundamentales del mis-
mo).

» Capitulo 3: Formulaciéon matematica de la propuesta. En concreto, se presenta
la teoria bésica del grupo de Lie de SE(3), empleado para la estimaciéon de
trayectorias en 3D (orientacién y traslacion), relaciondndola a continuacién con
la estimacién en tiempo continuo mediante B-Splines.

7



1.4. FEstructura

Capitulo 4: Explicacién de 1) variables asociadas a la trayectoria que se opti-
mizan en nuestra propuesta y cémo se relacionan, 2) método de optimizacién y
3) derivacion de las matrices Jacobianas con el objetivo de reducir el tiempo de
coOmputo.

Capitulo 5: Técnicas usadas para asociar los objetos en distintas iméagenes,
ademas de extraer la informacién geométrica necesaria e introducida en el bloque
de optimizacién.

Capitulo 6: Experimentos realizados, asi como los resultados obtenidos, haciendo
uso de datos generados artificialmente, asi como de una base de datos publica.

Capitulo 7: Conclusiones del trabajo realizado y trabajo futuro.



Capitulo 2

Sistema propuesto

En este capitulo se realiza un visionado general del sistema propuesto, y de cémo
se obtienen sus entradas. Se relega a los siguientes capitulos la explicacion en detalle
de las partes que lo conforman. En la Figura 2.1 se muestra un esquema del mismo.

Seguimiento Optimizacion
e N
/" KLTporobjeto g

Spline BA

\
N , J - —@"\
4 filtrado de outliers N
KT S5 ©)
/7
\(Rv H ‘ Local BA

o g
. @ nuevas caracteristicas ‘.. a \
e -
. J )

\
T_Q_I

Figura 2.1: Sistema propuesto. Esta constituido por dos partes fundamentales: 1) El blo-
que de sequimiento se encarga de emparejar los datos de entrada a objetos cuya trayectoria
ya estd siendo sequida, o en su defecto inicializar las trayectorias, y 2) El bloque de optimi-
zacion, encargado de ajustar la trayectoria en tiempo continuo de cada objeto a los datos de
entrada.

Las entradas consideradas son: 1) una imagen RGB-D -y el instante temporal en
el que se capturé-, 2) una estimacién de la localizacién 3D del sensor que capturé dicha
imagen (obtenida de forma offline) y 3) una estimacién del lugar en la imagen en el
que se encuentran los objetos a los que hay que realizar el seguimiento (obtenida de
forma offline). Como salidas se obtienen las trayectorias en tiempo continuo (B-Spline
cumulativos) para cada objeto presente en la escena.
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2.1. Bloques fundamentales

2.1. Bloques fundamentales

El sistema consta de dos partes fundamentales: seguimiento y optimizaciéon. La parte
del seguimiento es la encargada de asociar los objetos contenidos en las méascaras de
entrada a objetos que ya estaban siendo seguidos, o en su defecto, detectar que un
objeto es nuevo, y por tanto inicializar una nueva trayectoria (decisién marcada como
(D en la Figura 2.1).

La inicializacién de una trayectoria se realiza a través de la deteccién de caracteristi-
cas salientes [Shi et al., 1994] en la zona de la imagen en la que se encuentra el objeto
de interés. Como se vera mas adelante, es necesario al menos disponer de 4 instantes
en los que el objeto ha sido capturado por el sensor. Por ello, como inicialmente no
se cumple esta condicién (representada por (3)), se espera a la llegada de la siguiente
imagen en la que aparezca el objeto.

Cuando llega una nueva imagen que contiene a un objeto con una trayectoria ini-
cializada, se calcula el flujo dptico [Lucas et al., 1981] de las caracteristicas salientes
detectadas en el frame (imagen) anterior. Las caracteristicas cuyo flujo ha sido calcu-
lado con éxito, se someten a un filtrado para evitar que puntos que no pertenezcan al
objeto se traten como tal, lo que empeoraria la estimacion de su trayectoria. A estos
puntos se les conoce como outliers.

A continuacion, si se dispone de un nimero suficiente de caracteristicas se procede
a la optimizacién de la trayectoria del objeto. Si esta condicién no se cumple (repre-
sentada por (2) en la Fig. 2.1), se procede a detectar nuevas caracteristicas salientes,
imponiendo uniformidad en su deteccién para que asi éstas no se concentren inicamente
en zonas concretas.

El bloque de optimizacion recibe la ubicacién de la camara, asi como la ubicacion
relativa a ella de los puntos que han sido inicializados/ seguidos en una ventana de
los N tltimos frames en los que el objeto ha aparecido. El objetivo de este bloque es
estimar/ actualizar la curva en tiempo continuo (B-Spline Cumulativo) que mejor se
ajusta a estos datos. Para ello se emplean técnicas de optimizacién no lineal de segundo
orden.

En funcién del nimero de puntos recibido (condicién (3)) se lleva a cabo una opti-
mizacién de tipo Spline BA (solo se optimiza la trayectoria) o Local BA (se optimiza
ademds la localizacién de los puntos del objeto). La formulaciéon matemética de este
bloque se explica en §3.

2.2. Modelo de camara

Un modelo de cdmara determina cémo la realidad 3D se proyecta en las imagenes
2D. En este TFM se considera un modelo de cAmara pinhole, el cual es uno de los mas
extendidos en el campo de vision por computador [Corke, 2011]. Este modelo, asume
que los rayos de luz provenientes de los puntos que observa una camara convergen en

10



Capitulo 2. Sistema propuesto

un tnico punto, el centro dptico C' € R?, y que éstos se proyectan en un plano (plano
imagen) formando asi la imagen que nosotros observamos.

/;

centro 6ptico C'

...... ® >

eje ptico, Z

distancia focal, f

Figura 2.2: Modelo de camara pinhole. Al converger en el centro éptico C' el rayo de luz
que proviene de un punto p, éste aparece proyectado en el plano imagen en las coordenadas
x. Los ejes (X,Y,Z) definen, por convencion, el sistema de coordenadas de la camara. El
plano imagen es perpendicular al eje Z (su interseccion define la ubicacion del centro dptico
c) y estd situado a una distancia f (distancia focal) de C.

Por convencién [Hartley and Zisserman, 2004, Corke, 2011], para localizar en el
espacio a la camara, el sistema de coordenadas que lo determina es el representado en
la Figura 2.2, es decir, el origen se encuentra en el centro éptico, C, el eje Z (denominado
como eje 6ptico) es perpendicular al plano imagen y apunta hacia él, y los ejes X e
Y son paralelos a los bordes de la imagen. El corte del eje 6ptico con el plano imagen
determina la ubicacién del punto principal: ¢ = [c,,c,|”, y la distancia que los separa
se denomina distancia focal: f = [f., f,]7 (ambas en unidades de pixeles)'.

Por otro lado, para representar un punto, x € R2 en la imagen, se utiliza un
sistema de referencia de dos dimensiones cuyo origen se encuentra en el centro del pixel
superior izquierdo, con ambos ejes paralelos a los bordes de la imagen. De esta forma:
x = [u,v]T.

Reuniendo todo lo anterior, la proyeccién de un punto en el espacio, p € R?, viene
dada por la Ec. 2.1.
Ax =K Ry tew] Pu (2.1)

Donde R, € SO3) y tey € R3 representan la matriz de rotacién y vector de traslacién
que transforman puntos desde un sistema de coordenadas w (mundo) al sistema de
coordenadas de la cdmara c. La tilde () sirve para expresar un punto en coordenadas
homogéneas: p € R?* — p € P3, por lo que \ representa un factor de escala arbitrario.
Finalmente, K es la matriz de calibracion de la camara, la cual viene dada por:

fe 0 ¢,
K=|0 f ¢ (2.2)
0O 0 1

'En realidad solo hay una distancia focal, f (dada en mm por ej.), sin embargo las dos componentes
fx, fy surgen de expresarla en unidades de pixeles. Se usa de esta tltima versién, ya que la proyeccion
de un punto consiste en una transformaciéon de coord. métricas a coord. pizel. La conversién viene
dada por: fy = f/pw, fy = f/pn, donde p,, y pp, son la anchura y altura de cada pixel.
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2.3. Segmentacion de objetos dindmicos

Para expresar la Ec. 2.1 en coordenadas cartesianas, se utiliza la funcién de proyeccién
()
X = 7T< [Rcw tcw} 7p) = 7T<Tcw7 pw) (23)

Donde T,, € SE(3) representa la matriz de transformacion que igualmente permite
transformar puntos desde la referencia mundo w, a la referencia camara c:

Re, t
Tew= |, 2.4
[ 01x3 1 } ( )

2.3. Segmentacion de objetos dinamicos

7*17%(63%63))

— A

15%15*256) l

127%127*1
1%1*(63%63) mask

v 17*17*256
w— gl
A

f
v

RoW: 1¥1*256

31*31*256) _. 17%17* 2k score

(a) three-branch  variant architecture

255*255*3

Figura 2.3: Arquitectura propuesta en SiamMask [Wang et al., 2019]. Las entradas
se corresponden con una imagen ejemplar (mds pequena), z, y una imagen de busqueda, x.
Ambas son procesadas por la misma red neuronal, obteniendo los tensores fo(x) y fo(z).
A continuacion se calcula la correlacion entre cada par de canales: fg(x) x fo(z). El tensor
resultante es procesado por separado en 3 redes convolucionales: hg, by y 54. La red hy ofrece
mailtiples predicciones de posibles mdscaras, y sy puntia cada una de ellas. La prediccidn final
de la arquitectura se corresponde con la mdscara de mayor puntuacion.

Tal y como se ha comentado en la seccién anterior, una de las entradas al sistema
se corresponde con mdscaras que estiman la posicién en la imagen de los objetos que
queremos estimar su movimiento. En nuestro caso, estas mascaras las obtenemos a
partir de la arquitectura propuesta en [Wang et al., 2019], conocida como SiamMask
(ver Figura 2.3). En concreto la implementacién ofrecida en la librerfa pysot?.

La razén principal por la que se eligio esta arquitectura se debe a que puede de-
tectar/ seguir objetos de cualquier clase. Es decir, no estd limitada a detectar objetos
especificos tales como: silla, coche, gato etc. pudiendo ser, por tanto, utilizada en obje-
tos que son dificiles de categorizar, como los de la Figura 2.4c. Gracias a esto es posible
ahorrar el tiempo necesario que requiere re-entrenar redes que si dependen de las clases
de los objetos ([He et al., 2017] es un ejemplo de este otro tipo de arquitecturas).

Para tener una ligera intuicién de como SiamMask consigue esta versatilidad, a con-
tinuacion se expone brevemente su funcionamiento. Tal y como se ve en su arquitectura

’https://github.com/STVIR/pysot
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(Figura 2.3), se utilizan dos entradas: una imagen que contiene el objeto a encontrar
(dado por el usuario en el primer frame), z, y una imagen mas grande, x, en la que hay
que encontrar el objeto contenido en z.

Ante esto, una posible opcién seria comparar directamente la imagen z sobre dis-
tintas zonas de la imagen x e ir calculando como de similares son ambas, basandonos
en su correlacion. Valores més altos de correlacion indicarian zonas que presentan una
mayor relaciéon lineal y que por tanto podriamos pensar que son mas similares. En este
caso, z actia como filtro (o kernel).

Sin embargo, esta comparacién algunos autores [Bolme et al., 2010] la denominan
como ingenua ya que puede generar valores altos de correlacion no solo en la zona
correcta, sino también en diferentes zonas de la imagen. Para hacer frente esto, lo que se
propone en SiamMask, es aprender este filtro a través de una red siamesa convolucional
[Bertinetto et al., 2016] que transforma las imdgenes = y z en dos representaciones
fo(x) y fo(z) tales que su correlacién (representada en la Fig. 2.3 como *d) discrimine
unicamente al objeto de interés.

Figura 2.4: Resultados obtenidos con SiamMask [Wang et al., 2019]. El sistema es
capaz de sequir correctamente a los objetos en la mayor parte de la secuencia, incluso en
situaciones donde el punto de vista de los mismos es diferente - por ej. ver (a). Sin embargo,
en ciertas imdgenes, la presencia de outliers puede ser significativa - ver (c). Nuestro sistema
deberd ser robusto ante este tipo de situaciones. inks®

A continuacién, el resultado de esta correlacién es propagado a través de 3 redes
convolucionales [Goodfellow et al., 2016] que vienen representadas en la Fig. 2.3 por:
hg, by y S4. hg da como resultado multiples estimaciones de la mascara del objeto, y

3Links a los videos sobre los que se les a aplicado SiamMask: Video (a), Video (b), Video (c).
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2.4. FEstimacion del movimiento de la cdmara

54 la puntuaciéon de cada una de ellas, eligiendo finalmente como prediccién, aquella
que presenta una mayor puntuacion.

En la Figura 2.4 se muestran ejemplos de resultados obtenidos tras aplicar Siam-
Mask en diferentes secuencias. Destacar que la breve explicacién anterior solo tiene
como objetivo dar una ligera intuicién sobre cémo estos datos de entrada de nuestro
sistema son obtenidos. Detalles como las propiedades de la arquitectura o su forma de
entrenarla han sido omitidas, referimos al lector al excelente articulo original [Wang
et al., 2019] para més informacion.

2.4. Estimacion del movimiento de la camara

La otra de las entradas a nuestro sistema que debemos obtener a partir de las
imégenes del sensor RGB-D, consiste en la localizacién en el espacio que tenia la cAmara
para cada uno de los instantes de los que disponemos una imagen. Esta estimacién se
realiza a partir del software de SEM COLMAP [Schonberger and Frahm, 2016]. Las
razones principales detras de esta eleccién son su mayor precisién en comparacién con
el resto del estado del arte, ademds de ser de cédigo abierto®.

Al igual que en la seccién anterior, con el objetivo de ganar intuiciéon acerca de
cémo estos datos de entrada son estimados, se va explicar brevemente las partes fun-
damentales del software. Para mas detalles del mismo, referimos al lector al excelente
articulo original.

Images Correspondence Search Incremental Reconstruction Reconstruction

-..[ - Initialization -
1

]
¢ Image Registration Ouitlier Filtering

Geometric Verification gag Triangulation Bundle Adjustment

B w =

Figura 2.5: Secuencia de bloques que conforman la estructura de COLMAP. Fi-
gura extraida del propio articulo [Schonberger and Frahm, 2016].

La estructura de COLMAP (o del StM incremental) viene dada por la secuencia de
bloques que aparecen en la Figura 2.5. El primero de ellos (Feature Extraction) consiste
en la extraccién de caracteristicas salientes en la imagen.
Estas son puntos (pixeles) que satisfacen determinadas condiciones
dependiendo del algoritmo usado. En concreto, COLMAP emplea
caracteristicas SIFT [Lowe, 2004b], las cuales seleccionan puntos
cuyo entorno (pixeles vecinos) presentan unas propiedades ~ cons-
tantes (en color o brillo) que difieren del resto de pixeles que los
rodean. Estas zonas son conocidas como “blobs”. A la derecha se
muestra un ejemplo intuitivo extraido de [Lowe, 2004a], en el que
los “blobs” detectados aparecen rodeados por circulos amarillos.

‘https://github.com/colmap/colmap
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Estas caracteristicas son extraidas para toda la secuencia, con el objetivo de pro-
ducir detecciones de un mismo punto en distintas imédgenes. Estas redundancias se
detectan, o mejor dicho, se emparejan, mediante el segundo bloque (Matching) en el
cual se comparan los descriptores de cada caracteristica SIF'T detectada en imagenes
diferentes [Arandjelovi¢ and Zisserman, 2012] (para disminuir el tiempo de cémputo,
solo se consideran las imégenes mas similares visualmente, de acuerdo a un criterio de
vocabulario visual [Nister and Stewenius, 2006]).

Un emparejamiento entre dos caracteristicas (de dos imagenes distintas) se obtiene
si mutuamente sus descriptores son los mas proximos entre si -cuantificados por la suma
de sus diferencias cuadriticas). En la Figura 2.6 se muestra un ejemplo de deteccién y
emparejamiento de caracteristicas SIF'T entre dos imagenes.

Figura 2.6: Ejemplo de deteccion y emparejamiento de caracteristicas SIFT. (a)
Detecciones en ambas vistas. Notar que aquellas zonas que se asemejan a “blobs” (letras
del teclado, iconos de la pantalla etc.) son detectados. (b) Emparejamientos. En verde se
muestran aquellos verificados geométricamente mediante la matriz fundamental que relaciona
ambas vistas.

Como los emparejamientos realizados anteriormente solamente se basan en infor-
macion visual, es posible que dos puntos diferentes sean emparejados si sus entornos
son similares (por ejemplo zonas con patrones repetitivos como el panel de corcho de la
Figura 2.6a). Por ello, éstos se verifican en el siguiente bloque (Geometric Verification),
atendiendo a informacién geométrica de la escena.

Esta verificacion consiste en calcular la geometria epipolar existente entre las dos
vistas (imagenes) a través de la matriz fundamental, F, que la define [Hartley and
Zisserman, 2004]. Esta verificacién se puede entender visualmente a través de la Figura
2.7. En ella, un punto, p € R3 es proyectado en dos vistas, obteniendo sus coordenadas
X4, Xp € P2. En esta situacién genérica, el plano que contiene a estos puntos, contiene
ademas a los centros opticos, ci,cy, de las dos vistas, lo que obliga a que x;, deba
encontrarse en la linea definida por el corte de este plano con la segunda vista, 1, (en
coordenadas homogéneas), y viceversa. Estas lineas se denominan epipolares.

En esta situacién, la matriz fundamental (estimada de manera robusta [Hartley and
Zisserman, 2004]) es la que define la transformacién de un punto x; cualquiera de una
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Figura 2.7: El plano que contiene a un punto p y a sus proyecciones en dos vistas di-
ferentes x4, Xy, contiene ademds los centros opticos correspondientes a ambas vistas c1, Ca,
obligando a que x, y Xp se encuentren en las lineas 1, y 1y (intersecciones del plano con las
vistas). La matriz fundamental F, define la transformacion de un punto en la imagen X; a la
correspondiente linea epipolar.

imagen, a su linea epipolar correspondiente en la otra imagen. En el caso de la Figura
2.7

lb = F21Xa, la == F12Xb (25)

Para que un emparejamiento entre iméagenes sea verificado geométricamente, debe ha-
ber un minimo nimero de puntos que cumplan esta condicién (dentro de un margen de
error). A modo de ejemplo, en la Figura 2.6b se muestran en rojo, los emparejamientos
que no cumplen esta condicion, coincidiendo con aquellos que son incorrectos.

Finalmente, para cada par de imagenes emparejado que ha sido verificado geométri-
camente, COLMAP, calcula las matrices esencial y de homografia [Hartley and Zis-
serman, 2004] que las relaciona, permitiendo, entre otras funciones, discernir si el mo-
vimiento relativo entre las dos vistas ha sido tnicamente de rotacién, o si la escena
observada es predominante plana (por ejemplo, si se estd observando una pared).

Esta informacion es aprovechada en el siguiente bloque, Initialization, el cual tiene
como objetivo la inicializacion del mapa. Para ello, COLMAP elige un par de imégenes
verificado que presenta un alto niimero de caracteristicas emparejadas, y una traslacion
suficiente entre las mismas favoreciendo asi la triangulacion de los puntos observados
por ambas vistas®. Esto se realiza a través de las matrices esenciales, siguiendo el
procedimiento explicado en [Nistér, 2004, Hartley and Zisserman, 2004]. Un ejemplo
de inicializacién se muestra en la Fig. 2.8.

De aqui en adelante, COLMAP trata de aumentar el nimero de puntos del mapa,
asi como el nimero de camaras (la estimacién de su localizacién). Para ello, en primer
lugar, el bloque de Image Registration, se encarga de estimar (registrar) la ubicacién de
una nueva camara. Esta estimacién se realiza a partir del mapa ya creado, de manera
robusta haciendo uso de P3P [Gao et al., 2003] . Para elegir, qué cAmara registrar, COL-
MAP impone un doble criterio: un niimero suficiente de sus caracteristicas SIF'T verifi-
cadas deben haber sido ya trianguladas,

5De manera intuitiva, si dos im4genes estdn tomadas desde un mismo sitio, los rayos asociados a
los puntos observados serian coincidentes en ambas imégenes = No habria un tnico punto de corte
y por tanto serfa imposible triangular. Por ello se fija un traslacién entre cdmaras (o dngulo entre los
rayos) minima para favorecer la triangulacion.
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Figura 2.8: Ejemplo simplificado de inicializacion. Partiendo de dos imdgenes toma-
das con suficiente separacion y caracteristicas emparejadas: 1) Se extrae la matriz esencial
que relaciona las vistas, 2) se extrae la posicion y orientacion relativa de ambas cdmaras,
y 3) se triangulan las caracteristicas emparejadas, obteniendo asi un mapa inicial (nube de
puntos) sobre el que se irdn anadiendo mds cdmaras/ puntos. En este ejemplo también se
muestran el par de 1ayos (== ==) proveniente de un punto triangulado.

y éstas deben presentar una distribucién uniforme en su imagen. Por ello, de
las dos “imagenes” de la derecha, la inferior seria elegida antes para registrar
(Figura extraida del articulo original).

Al haber estimado la localizacion de mas camaras, es posible que nuevos
puntos sean triangulados (bloque Triangulation), aumentando asi el mapa
reconstruido. Para ello, COLMAP impone que un punto candidato a ser
triangulado debe ser observado por al menos tres imagenes, y ademads presentar un
angulo de triangulacion suficiente para asegurar su fiabilidad. Esto se realiza de manera
robusta mediante DLT [Hartley and Zisserman, 2004].

Para refinar las estimaciones realizadas en los dos bloques anteriores, COLMAP
utiliza Ajuste de haces o Bundle Adjustment (BA) [Triggs et al., 1999]. BA es un
método de optimizacion no lineal a partir del cual el error de reproyecciéon es mini-
mizado, optimizando asi tanto la localizacién de las camaras como la de los puntos
triangulados. En este caso, COLMAP lo aplica localmente, es decir, solamente sobre
el conjunto de imagenes que comparten informacion visual. Este tipo de optimizacién
también se utiliza en nuestra propuesta por lo que se explicara con mas detalle mas
adelante (§4).
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Este tipo de optimizacién se repite de manera global (BA global) cada vez que
el mapa ha crecido un determinado porcentaje, refinando asi todos los parametros
(localizaciones de los puntos y camaras) estimados hasta el momento. Si tras cualquiera
de estas optimizaciones, hay puntos que presentan un error de reproyeccién elevado (o
un 4dngulo de triangulacién pequeno en cualquiera de sus emparejamientos), éstos son

filtrados y no intervienen més en la reconstruccion®.

Estos tltimos cuatro bloques se repiten hasta que no quedan imagenes que cumplan
las condiciones para ser incluidas en la reconstruccion, finalizando asi las estimaciones.
Un ejemplo de reconstrucciéon realizado por COLMAP se muestra en la Figura 2.9.

Figura 2.9: Ejemplo de reconstruccion mediante COLMAP. La linea roja representa
la trayectoria estimada que siguid la cdmara que capturo las fotos usadas en la reconstruccion
3D de la escena (3 de ellas se muestran en la parte inferior). Destacar como el software es
capaz de reconstruir tanto la estructura global de la escena como pequerios detalles (p.ej.
teclas).

6Esto no es del todo cierto, ya que COLMAP aplica un proceso de re-triangulacion [Wu, 2013]
antes y después de aplicar BA global, con el objetivo de triangular puntos que quizas no han podido
ser triangulados con éxito anteriormente por no disponer de unas poses de la camara estabilizadas.
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Capitulo 3

Formulacion

Una vez introducidos los aspectos principales de la propuesta, en este capitulo se
formalizan las herramientas matematicas necesarias para cumplir los objetivos plan-
teados. En primer lugar, se presenta el Grupo de Lie de SFE(3) (Espacio Euclideo
Especial) asi como sus propiedades que atanen a nuestro problema, ya que éste repre-
senta el nicleo del bloque de optimizacion (Figura 2.1). A continuacién se introducen
los B-Splines Cumulativos, utilizados para interpolar los elementos de SE(3) para asi
modelar la trayectoria de los objetos en tiempo continuo.

3.1. Grupo de Lie, SE(3)

Una de las formas de localizar un objeto en el espacio consiste en definir un sistema
de coordenadas (o de referencia) “pegado” a él, {0}, y expresar cudl es su orientacién y
posicién con respecto a un sistema de referencia fijo (mundo), {w}. En la Figura 3.1 se
muestra un esquema con lo que nos referimos. Los sistemas de referencia usados siguen
la regla de la mano derecha y estan formados por 3 ejes unitarios y ortogonales entre
st {Z, 9, 2}, por lo que:

txg=2 |zll=lgl=Ilzl=1 (3.1)
Donde |||, x representan la norma euclidea y el producto vectorial respectivamente.

Siguiendo la notacién de la Fig. 3.1, t, representa la localizacién del objeto (origen
de su sistema de referencia). Expresandolo desde el sistema de referencia mundo:

t =112 + 20w + 1320 (3.2)

Ahora, para definir la orientacién del objeto, expresamos los ejes de su sistema de
coordenadas en términos del sistema de coordenadas fijo (mundo):

To = T11T0y + T21Yw + 73120 (3.3)
Yo = T128w + 220w + 73220 3.4)
Zo = T13T0y + T30 + 73320 (3.5)
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Loy

Figura 3.1: Posicion y orientacion del sistema de referencia, {o} de un objeto con respecto
a un sistema de referencia fijo, {w}.

De forma matricial:

t ri1 T2 713
two = |2, Ryo= |121 722 723 (3.6)
l3 r31 T3z 133

Donde se han usado los subindices (wo) para especificar que se esta expresando el
sistema de referencia {o} con respecto a {w}. De esta forma, R, es la matriz de
rotacién cuyas columnas son los ejes {Z,, o, 20} expresados desde {w}', y t,, es el
vector de traslacién que define la posicién del origen de {o} expresado desde {w}.

Sabiendo esto, podemos transformar un punto que inicialmente esta definido en la
referencia {o}, p, € R?, a su equivalente en {w} mediante:

Pw = Rwopo + two (37)

Ya que R, p, son las proyecciones del punto p en cada uno de los ejes del sistema de
referencia mundo, a las que se les anade t,,, para tener en cuenta que los origenes de
ambas referencias no son coincidentes.

De manera equivalente, si expresamos p, en coordenadas homogéneas: p = [p?, 1]7,
este cambio de coordenadas viene dado por la matriz de transformacion T.,,:

R t
~w = Two~ou Two = e e 3.8
p p [ 0 1 } (3.8)
Algo que también se puede aplicar a otras matrices de transformacién:
_ . Rab t‘Jab Rbc tbc . RabRbc Rabtbc + tab
Foe =t = { Oy 1 } { Ors 1]~ | Ong I (39)

Para cualesquiera sistemas de referencia {a}, {b} y {c}. Como se verda més adelante,
otro de los usos de las matrices de transformacion es el de aplicar una rotacion seguida
de una traslacién a un vector o a un sistema de coordenadas.

'Equivalentemente, sus filas son los ejes {#, Juw, 2w} expresados en {o}.
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Capitulo 3. Formulacion

A partir de las ecuaciones anteriores, vemos que para definir la localizaciéon de un
objeto, se estdan empleando 12 pardmetros (los 9 elementos de R, + los 3 elementos
de t,,), sin embargo, los cuerpos rigidos tienen 6 grados de libertad [Lynch and Park,
2017] y no el doble, por lo que esta representacion es redundante. Por ello, deben existir
6 restricciones independientes en esta representacion.

Estas restricciones se encuentran en la matriz de rotaciéon R, ya que como se ha
comentado antes, sus columnas (o filas) se corresponden con ejes de coordenadas, por
lo que éstas deben ser de norma unidad y ortogonales entre si, y por tanto cumplir:

R'R =153 (3.10)

Donde I5y3 representa la matriz identidad de 3 x 3 dimensiones. Estas restricciones
implican que? det(R) = 41, pero al estar utilizando sistemas de referencia que siguen
la regla de la mano derecha (Ec. 3.1), esto obliga que det(R) = 77 (ro xr3) = riry = +1,
donde r; representa la columna ¢ € {1,2,3} de R.

Estas restricciones sirven para comprobar que las matrices de transformacién, T,
con la multiplicaciéon como operacion interna, cumplen los axiomas de grupo. Es decir,
considerando 3 matrices de transformacién T4, T'g, T¢ cualesquiera (elementos del
grupo), se cumplen [Sola et al., 2018, Lynch and Park, 2017]:

o Existe un elemento identidad perteneciente al grupo, T; tal que T,T; =
T, T4 = Ta. Se satisface, ya que T; = I;.4 pertenece al grupo:

RIR; = I3.3

T; =1 =>R;=1 = satisface
I 4x4 I 3x3 {det(RI) _

y ademas cumple este axioma, al ser una propiedad de la matrices identidad.
o Clausura, o cierre: T,Tpg pertenece al grupo. Se cumple, pues:

(RaR3)"R4Rp = RLE(RIR4)Rp = RERp = I35
det(RaRp) = det(Ra)det(Rp) =1-1=1

y a partir de la Ec. 3.9, vemos que éstas son las condiciones suficientes al ser
R Rp la matriz de rotacién resultante de la multiplicacion de elementos del

grupo.

o FExistencia de un elemento inverso, TATl perteneciente al grupo, tal que
T,'T4=T4T,' = T;. Existe, y viene dado por:

T _RT
T;ll _ RA RAtA - TleA _ TAT;‘l (3:9) I4><4
01><3 1

Pertenece al grupo, puesto que se satisface que RIR4 = I3x3 y det(RY) =
det(RA) =1.

o Asociatividad: (T ,Tp)Tc = T4(TpT¢). Se cumple por las propias propieda-
des de la multiplicacion de matrices.

2det(+) representa el determinante de una matriz.
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3.1. Grupo de Lie, SE(3)

Este grupo es conocido como el Grupo Euclideo Especial o SE(3), siendo
ademas un Grupo de Lie al no solo cumplir los anteriores axiomas, sino también
ser una variedad diferencial/ suave (smooth manifold) [Sola et al., 2018].

Esto tiene gran importancia, ya que a pesar de que el espacio al que pertenecen las
matrices de transformacion no sea globalmente un espacio vectorial, si que es posible
aproximarlo locamente como tal, facilitando asi la optimizacion de las estimaciones de
SE(3) a través de su plano tangente, pues al ser éste un espacio vectorial, podemos
llevar a cabo cdlculo de manera mas directa en él [Sola et al., 2018, Strasdat, 2012].

Figura 3.2: Ejemplo de variedad suave (smooth manifold). Localmente se puede apro-
zimar como un espacio vectorial (su plano tangente), pero globalmente es una estructura no
FEuclidea.

Un ejemplo intuitivo de este tipo de variedad que se puede visualizar, es la de una
esfera (Fig. 3.2). Localmente puede ser representada como un plano, en el que por
ejemplo, nos podemos mover en direcciones perpendiculares (asi como en la superficie
de la Tierra), pero sin embargo su estructura global dista de serlo [Strasdat, 2012].

El (hiper)plano tangente de una matriz de transformacién, dT(t)/dt = T lo pode-
mos definir mediante la diferenciacion de la condicion que cumplen todos los elementos
del grupo:

TT'=1 = TT'4+TT =044 (3.11)
N R t] [RT —R"t LRt R” —R”Tt-R"¢ 0
0 0[]0 1 0 1|0 0 oo
(3.12)

Fijandonos en las matrices de rotacion, se deriva la siguiente condicion:
RR?” + RR" = 05,5 = RR!”=—(RR")" (3.13)

Es decir, RR” es el negativo de su traspuesta, lo que implica que es una matriz anti-
simétrica, w’:

0 —w3 ws ST A
RR” =
W =lw 0 —wl, { v (3.14)
—wy w1 O R = W R
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De esta forma los (hiper)planos tangentes a la variedad diferenciable SFE(3) cumplen es-
ta condicién. En la Ec. 3.14 se ha introducido ademads el operador “sombrero” (-)", para
indicar que se esté expresando el vector w = [wy, wo, OJ3]T como matriz antisimétrica.

3.1.1. Cinematica

El vector que acabamos de definir, w, carga con un sentido fisico relevante, pues
representa la velocidad angular que experimenta el objeto, indicando de esta forma,
el cambio de orientacién (medida angular) por unidad de tiempo de los ejes del sistema
de coordenadas sujeto a él.

Figura 3.3: Velocidad angular. (a) Giro relativo que experimenta el eje &, de un sistema
de coordenadas al experimentar éste una velocidad angular w. (b) Rotacion de un objeto (y
el sistema de coordenadas sujeto a €l) por accion de w.

Para visualizar esto, consideremos un objeto moviéndose con una determinada ve-
locidad angular, como en la Fig. 3.3b. Si elegimos como punto de referencia el origen
de su sistema de coordenadas, la velocidad relativa del resto de puntos del objeto, se
puede calcular por composicién de movimientos:

p=wxp (3.15)

Donde p representa el vector que parte del origen (punto de referencia) y va hasta el
punto, y p por tanto representa la velocidad relativa lineal de la punta de este vector,
debida tinicamente al cambio de orientacién que experimenta conforme pasa el tiempo?.

3 Al estar considerando un sélido rigido, la distancia entre los puntos que lo conforman es constante
en el tiempo, por lo que solo puede variar la orientacién del vector.
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3.1. Grupo de Lie, SE(3)

Aplicandolo a los ejes del sistema de coordenadas:

I=wxi (3.16)
J=wx{ (3.17)
F=wx 2 (3.18)

Describiendo de manera relativa, una circunferencia como la mostrada en la Figura
3.3a%.

Hasta ahora, no se ha considerado expresar la velocidad angular o los ejes en ningiin
sistema de referencia en concreto. Si elegimos el sistema de referencia mundo {w}, las
direcciones de los ejes del sistema de coordenadas objeto, se corresponden con las
columnas de Ry, (Ecs. 3.3-3.6). Por ello, Ry, (variacién temporal de los elementos de
R..), se puede expresar como:

R, = [Wo X 11 Wy X T2 Wy X 13] = wy X Ry = wiy Ry (3.19)

Donde w,, es la velocidad angular expresada en la referencia {w}, y r; representa la
columna ¢ de R,,. La ultima igualdad se debe a que un producto vectorial entre dos
vectores, a X b, es equivalente a a”" b (es decir, con el vector a expresado como matriz
antisimétrica). Llegando asi al mismo resultado que en la Ec. 3.14.

De igual forma, si queremos expresar la velocidad angular que experimenta el objeto
en otro sistema de referencia, como en el suyo propio: w,, al ser un vector (y no un
punto en el espacio) recurrimos a la matriz de rotacién que relaciona ambos sistemas:

w, = RL w,, (3.20)

que en forma de matriz antisimétrica [Lynch and Park, 2017] viene dada por la Ec.
3.21: '
w) =RI Ry, (3.21)

Algo importante a aclarar es que w, no es la velocidad angular relativa al sistema
de coordenadas del objeto en movimiento, sino que representa la velocidad angular
relativa a un sistema de coordenadas fijo que instantaneamente es coincidente con el
sistema sujeto al objeto.

Por lo que, a modo de resumen, si R,,, define la orientaciéon de los ejes del sistema
de referencia sujeto al objeto con respecto a la referencia mundo, la velocidad angular
que esta experimentando el mismo, viene dada por:

= R,.R” (3.22)

w Wo?

A
w
A
o

w? =RL Ry, (3.23)

en funcion de si queremos representarla en el sistema de referencia mundo, o en un
sistema de referencia (también fijo), que es instantdneamente coincidente con el sujeto
al objeto. La aceleraciéon angular se puede obtener por tanto diferenciando las anteriores
expresiones con la regla del producto.

4Dicha figura est4 inspirada en la Fig. 3.10 (p. 74) de [Lynch and Park, 2017].
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Capitulo 3. Formulacion

Tras haber comprobado el significado fisico de pre- y post-multiplicar R.,, por RL

nos podemos plantear lo mismo con T,,. Las conclusiones son similares e involucran
a la velocidad lineal que experimenta el objeto. En primer lugar, si pre-multiplicamos
por T L

: RT —RT tu,,] [Ryo t
-1 o wo wo YWo wWo wo
-Rgono Rgo{:wo
-1™% ’ } (3.25)
(W) v,
= 1% 0} (3.26)

Es decir, T;;! T, contiene la velocidad angular del objeto expresada en el sistema de
referencia estacionario e instantaneamente coincidente con su sistema de coordenadas
(w?), asi como la velocidad lineal del mismo, t, expresada en dicho sistema: R t,, =
V.

-1

Ahora, analizando el caso de la post-multiplicacién de T, por T,.,

' C. . T _RT
Tuo T, = R(;UO tgﬂ] [Réw Ruiot“’”} (3.27)
-RwoRT {:wo - RwoRT two
= | o } (3.28)
(W) vy,
=1 0} (3.29)

nuevamente se obtiene la velocidad angular (expresada en el sistema de referencia
mundo, w,,). Sin embargo, no se obtiene la velocidad lineal del objeto expresada en
dicho sistema, t,, sino que se obtiene v, = ty, — Wy X tw, (ya que RwoRgo = w)),
representando por tanto, la velocidad que tendria un punto del objeto ubicado en el
origen del sistema de referencia mundo {w}.

Por otro lado, al igual que con la velocidad angular, se usa el operador (-)" para
pasar de su representacién en R? a su representaciéon como matriz antisimétrica, po-
demos aplicarlo igualmente para pasar de una representaciéon 7 = [v,w]? € R® a la
estructura de las Ecs. 3.26, 3.29:

" m _ ﬁf ‘O’} € 5¢(3) (3.30)

Los elementos de esta forma pertenecen al dlgebra de Lie de SFE(3), denominado
se(3), los cuales conforman el plano tangente a SE(3) en la identidad (sustituyendo
T = I por ¢j. en la Ec. 3.26, obtenemos que T = 7"), los cuales se pueden definir
localmente -en un punto cualquiera T € SE(3)-, o globalmente -en I [Sola et al., 2018].
Un ejemplo visual se muestra en la Fig. 3.4.

En este caso, para expresar 7, en la referencia del objeto, o T, en la referencia
global, no podemos recurrir a la propia matriz de transformacién que los relaciona.
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3.1. Grupo de Lie, SE(3)

(a)

Figura 3.4: Visualizacion simple planos tangentes en diferentes puntos de SE(3).
(a) Elemento identidad I y matriz de transformacion T; € SE(3) (representada de manera
simple como una esfera). (b) /flgebms de Lie, definidas en la identidad, con coordenadas T,
y en el punto tangente de T;, con coordenadas locales T,.

Una evidencia clara de esto es que T € SE(3) tiene dimensiones de 4 X 4, mientras que
7 es un vector € R°. Es decir, necesitamos a priori una matriz de dimensiones 6 x 6.

Dicha matriz recibe el nombre de matriz adjunta de SE(3), y es la que define la
transformacién de 7, a 7,,; es decir, transforma los elementos del plano tangente defi-
nido localmente en T € SE(3) al elemento del dlgebra de Lie definido en la identidad
I [Sola et al., 2018]. Es comtn representarla como Adr [Lynch and Park, 2017, Sola
et al., 2018], para asi denotar que el punto de SFE(3) asociado a la transformacién es

o

Ty = {V“f} = Adr,, [Z’J} = Adr,, T (3.31)

La matriz adjunta de SFE(3) la podemos obtener sabiendo que se debe cumplir la Ec.
3.31, por lo que partiendo de las Ecs. 3.26 y 3.29:

Vo = RuoVe + t" Ruo (3.32)
Wy = Ry w, (3.33)

significa que Adr,, viene dada por:

N
Rwo t Rwo:| (334)

T

A partir de esto, y recordando la Ec. 3.29, se cumple que: Ty, T, = (Ady,,T,)".
En §3.1.2, con la introduccién del mapeo exponencial y logaritmico, se presenta otro
significado fisico de Adr, que ademas es de utilidad en el bloque de optimizacién.

Antes de finalizar esta parte, conviene mencionar que también existe un operador,
llamado vee, (-)¥, utilizado para expresar un elemento del dlgebra de Lie como un vector
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Capitulo 3. Formulacion

T € RS:

([ 30 =2l =

3.1.2. Mapeo exponencial y logaritmico

En la seccion anterior se ha analizado como se traduce la velocidad lineal y angular
que experimenta un objeto a los elementos, definidos de manera global y local, del
algebra de Lie se(3). En esta seccién se analiza el efecto que éstos tienen sobre el
sistema de coordenadas (o matriz de transformacién que la define), derivando asi los
mapeos exponencial y logaritmico, como forma de relacionar los elementos de estos
planos tangentes a los elementos de la variedad y viceversa.

Para ello, partimos de la ecuacién diferencial definida anteriormente:
Two = Tq/l\} Two(t) (336)

La solucién a esta ecuacién, que explica la evolucién temporal de T, () bajo el efecto
de las velocidades lineal y angular que definen a 77, viene dada por (asumiendo como
condicién inicial T\, (0) = Ty,) [Sola et al., 2018, Lynch and Park, 2017)°:

Touo(t) = exp(72 t) Two (3.37)

Donde exp(-) representa la exponencial de una matriz. Como T.,,(t) € SE(3) Vt, esto
implica que exp(7, t) € SE(3) también. Es decir, nos permite transferir elementos del
algebra de Lie (7)) t), definido en la identidad I, a la variedad.

De esta forma, la velocidad, expresada en la referencia mundo {w}, que experimenta
el sistema de coordenadas sujeto al objeto se traduce en un movimiento rigido (rotacién
y traslacién) por medio del mapeo exponencial. Si en su lugar, las velocidades son
expresadas en la referencia del objeto, llegamos a la misma conclusion:

Two = Two<t) T/\ (338)

o

Tyo(t) = Tuoexp(T) 1), (3.39)

solo que en esta situacién, el incremento exp(77, t) estd definido con respecto al sistema
de coordenadas {o}, por lo que transferencia se realiza desde el plano tangente a T,
a la variedad.

Intuitivamente [Sola et al., 2018], la exponencial de un elemento 7" € se(3), lo
proyecta en la variedad siguiendo una geodésica (ver Fig. 3.5). Asi mismo, para invertir
dicha proyeccién -transferencia de SE(3) a se(3)-, se utiliza el logaritmo de una matriz
o mapeo logaritmico log(-). Es decir:

exp : se(3) —»SEQ) ; =T =exp(™") (3.40)
log : SEB)~—se3) ; T 1" =1log(T) (3.41)

5Para comprobar que en efecto es la solucién, podemos diferenciarla con respecto a t. Sabiendo que
dexp(T"t)/0t = T/ exp(7" t), se obtiene: 7" exp(7" t)Two, ¥ como Ty (t) = exp(7" t) Ty, significa
que Tyo = 7" Tyo(t), coincidiendo asf con la Ec. 3.36.
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3.1. Grupo de Lie, SE(3)

Por comodidad, para poder expresarlos con los elementos del algebra de Lie en forma

de vector 7 € R, es habitual [Sola et al., 2018, Forster et al., 2016] definirse una versién

alternativa de los anteriores mapeos, indicandolo con la primera letra mayiscula:
Exp : R® —SEB) ; 7+ T=Exp(T) (3.42)
Log : SEB3)—R° ; T+ 7 =Log(T) (3.43)

Cumpliéndose por tanto:

T = Exp(7) = exp(7") (3.44)
(log(T))" (3.45)

Figura 3.5: Mapeo exponencial y logaritmico. (a) Un incremento 7" € se(3) definido
en el dlgebra de Lie local al punto T € SE(3) se transfiere a la variedad por medio de exp(T").
(b) Un incremento local AT € SE(3) se transfiere al plano tangente (dlgebra de Lie) local
por medio de log(AT).

En el caso de SE(3) existen expresiones cerradas para ambos mapeos [Blanco,
2010, Barfoot, 2017], derivdndose a partir del desarrollo en serie de potencias de ambas
funciones. En el caso de la matriz exponencial:

exp(T") = exp <m A) = [eXpé“’A) \ﬂ , (3.46)

A -1 sinf, JA 1—cosf(, J,A\2
donde exp(w’) 3 110‘:6 —iA_ 992_515(: )/\ 5 con 0= |wl| (3.47)
= I3 + =2 tw" 4 8 (W)
Y del mapeo logaritmico®:
B R t]\ [log(R) V't
log(T) = log ({O 1}) = [ 0 o | (3.48)
tr(R) — 1
_ _RT - B S
donde log(R) = QSin0<R R"), con 6 = arccos ( 5 ) (3.49)

Juntando estas definiciones con la de la matriz adjunta (Ec. 3.31), significa que los
incrementos en la variedad, exp(7), definidos a través de las dlgebras de Lie local y
global se relacionan por:

Ty exp(T,) = exp(Adr,, 7o) Two = exp(Tw) Two (3.50)

6La operacién tr(R) expresa la traza de la matriz R (la suma de los elementos de su diagonal).
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Siendo adema&s una propiedad algebraica 1til, al poder expresar el mismo incremento
“transfiriendo” su multiplicacion del lado derecho, al izquierdo. De la misma forma,
esta transferencia se puede invertir haciendo uso de la inversa de la matriz adjunta
(Adr,,) " = Ad(r,,)-1 [Sola et al., 2018]:

exp(Tw)Two = Two exp(Ad(r,,)-1Tw) = Twoexp(T,) (3.51)

Otra propiedad de interés del mapeo exponencial de cara a la siguiente seccion, es
la derivada temporal de una matriz de transformacién’ cuyo elemento asociado en el
algebra de Lie varfa de forma lineal en el tiempo, t [Strasdat, 2012]:

%exp(h'/\) =1 exp(tT") = exp(tT")T" (3.52)

3.1.3. Jacobianos derecho e izquierdo de SE(3)

Antes de introducir como se lleva a cabo la optimizacién de los elementos € SE(3),
conviene introducir el jacobiano derecho e izquierdo de SFE(3) debido al uso de los
mismos en nuestra propuesta.

Estos jacobianos representan cémo afecta de forma infinitesimal una perturbacion,
o7, en el elemento del dlgebra de Lie 7 = Log(T) con la perturbacién Exp(d¢) que
ocasiona en la variedad®. Es decir, se definen como 9d¢/ddT, difiriendo la definicién
de cada jacobiano segun el plano tangente sobre el que se representa la perturbacién
Exp(d¢) [Sola et al., 2018, Sola, 2017h].

Para el jacobiano derecho, J,.(7), se considera la perturbacién Exp(d¢) en el plano
tangente al punto T, mientras que el jacobiano izquierdo considera el plano tangente
a la identidad:

Exp(7)Exp(d¢) = Exp(T + 07), para J,.(7), (3.53)
Exp(d¢p)Exp(T) = Exp(T + 1), para J;(7), (3.54)

De esta forma, despejando d¢ de las anteriores ecuaciones para asi poder representar
su variaciéon infinitesimal, se obtiene:

J.(r) = Log(Exp(T)_(;fxp(T +071)) N (3.55)
T(r) = Log(Exp(r J;iT)Exp(T)‘l) N (3.56)

Ambos jacobianos cuentan con soluciones cerradas [Barfoot, 2017]. Cumpliéndose para

"Esta propiedad no se restringe solo a elementos de SFE(3), la cumplen todos los grupo de Lie.

8Esta es la aplicacién de los jacobianos derecho e izquierdo a la variedad de SE(3). Su aplicaciones
se extienden de manera general al resto de grupos de Lie, que en este TFM no son presentados. La
definicién formal de estos jacobianos se encuentra en [Sola et al., 2018].
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3.2. B-Splines cumulativos en SE(3)

pequenas perturbaciones de d7 [Sola et al., 2018, Barfoot, 2017]:

Exp(7T + 07) =~ Exp(7)Exp(J,.(7)0T) (3.57)
Exp(T + d1) ~ Exp(J;(7)07)Exp(T) (3.58)
Log(Exp(T)Exp(0T)) ~ 7 + J*(1)6T (3.59)
Log(Exp(07)Exp(7)) ~ 7 + J, ' (1)o7 (3.60)

3.2. B-Splines cumulativos en SE(3)

Uno de los objetivos de este TFM es el de estimar las trayectorias (constituidas por
elementos de SE(3)) de los objetos a través de curvas continuas en el tiempo. Para este
fin, el tipo de curva elegida es recomendable que cumpla las siguientes caracteristicas
[Haarbach et al., 2018, Patron-Perez et al., 2015]:

= Control local — Cambios locales en la curva no afectan globalmente a la tra-
yectoria, permitiendo trabajar tanto de manera online como offline.

» Continuidad C? — Estimaciones de velocidad y aceleracién continuas.
» Libre de singularidades — Cualquier movimiento puede ser interpolado.

= Derivadas temporales analiticas — Posibilidad de estimar la velocidad y
aceleracion en cualquier instante de tiempo.

Uno de los tipos de curvas mas populares que se ajusta a estas necesidades son
los B-splines [Kim et al., 1995, Haarbach et al., 2018]. En su definicién base, cada
punto de una curva B-Spline es una combinacion lineal de k& funciones base B-Spline
B; (t), las cuales son polinomios de grado k — 1, por lo que la continuidad resultante
es de CF=2 [Kim et al., 1995]. Cada B, x(t) tiene asociada un punto de control p; € R",
ponderandolo asi a lo largo del tiempo. La suma de todas las ponderaciones da lugar
la curva B-Spline:

p(t) = > PiBis(t) (3.61)

Donde n es el numero de puntos de control y cada B;x(t) se define segin la férmula
recursiva de De Boor-Cox [De Boor, 1972, Cox, 1972]:

Bo(t) 1 site [titiv) (3.62)
" 0 en otro caso,
t—t, tig —t
Bix(t) = ————Bip 1 (t) + — = Biy s a(t) (3.63)
livk—1 — ti Livk — lita

Los términos t; se denominan nudos. A partir de las Ecs. 3.62-3.63 se infiere que cada
B; () solamente es no nula cuando t € [t;, t;i).

En concreto, como estamos interesados en una curva que tenga continuidad C?,
necesitamos k = 4, es decir, funciones B-Spline con dependencia ctibica en el tiempo.
Sustituyéndolo en las Ecs. 3.61-3.63 se deriva que para un instante ¢ € [t;,t;11), el
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valor de la curva p(t) estd influida por: [B;_3(t), B;_o(t), B;_1(t), B;(t)], siendo el resto
nulas’.

A partir del trabajo [Qin, 2000], el calculo de estas funciones se puede realizar de
forma matricial segin la Ec. 3.64.

B = [B,s(t) Bis(t) Bii(t) Bi(t)]' =Cu (3.64)
Donde u = [1 u u? u3]T, con u = ti% € [0,1), y la matriz C (demostracién en

[Qin, 2000]), viene dada por:

(tit1—t:)* ]

(tit1—ti—1)(tit1—ti—2) —3coo 3coo —Coo
C 1 —cpo — 20 3co0 — €21 —3C0 — C22 Coo — C23 — €33
o (ti—ti—1)? B(tip1—ti)(ti—ti—1) 3(tig1—ti)? c
(tig2—ti—1)(tig1—ti—1)  (tigo—ti—1)(tip1—ti—1)  (tig2—ti—1)(tiv1—ti—1) 23
(tig1—t:)?
- 0 0 0 (tig3—ts)(tixa—t;)

(3.65)
Donde los términos c;; hacen referencia a términos ya definidos de la matriz en la fila
i y columna j. Un ejemplo de interpolacién en R? se muestra en la Fig. 3.6.

Ei‘—‘% Interpolated segment at t € [t;,t;41)
Bii_‘ 2.00 ‘
Pi-1

0.3 1.75 1

i 1.50 -
0.1
0.0 \ =

1.25 A

i—-3i—-2 i—1 i i+1 i+2 i+3i+4
time [knot index]

1.00 A ’
10

0.75 1

0.50

0.25 1

i—3
00 ] ¢

cumulative . ; . - . -

i—3i—2 i—1 i i+1 i+2 i+3i+4
time [knot index]

(a) (b)

Figura 3.6: Muestra de funciones base B-Spline cibicas e interpolacion. (a) Fun-
ciones originales (sup.) y su version cumulativa (inf.), (k = 4). (b) Interpolacion resultante
para 4 puntos de control pj € R? j € {i —3,...,i} para t € [t;,tiy1). Los colores relacionan
a cada funcion base con su punto de control asociado (en la version cumulativa, la relacion
es con el punto de control cuyo signo no es invertido).

0.0

Sin embargo, la formulacién anterior no es directamente aplicable a SFE(3). Fijando-
nos en la Ec. 3.61, al sustituir los puntos de control p; por matrices de transformacion

9Para favorecer la claridad, se ha eliminado el valor de k de cada B; x(t). De aqui en adelante, si
no se indica, se asume que siempre es 4.
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3.2. B-Splines cumulativos en SE(3)

T;, el resultado no tiene porque pertenecer a SE(3), ya sea por la operacién suma,
o por la multiplicacién de un escalar B;; es decir, en su forma base, no es posible
interpolar matrices de transformacion mediante una curva B-Spline.

Para hacer frente a esto, en [Kim et al., 1995], se propuso la versién cumulativa:

p(t) = po(t BOk+Z — pi1)Bix(t) (3.66)

que si permite trabajar con grupos de Lie. Particularizando a SE(3), el incremento
entre dos puntos de control T;_; y T; expresado en el plano tangente de T;_; viene
dado por ©; = log(T; !}, T;). Es en este espacio Euclideo en el que este incremento
se pondera por la funcién base cumulativa. El dltimo ingrediente para concatenar los
incrementos es el mapeo exponencial visto en §3.1.2. Llegando finalmente a la version
equivalente en SE(3) [Kim et al., 1995, Lovegrove et al., 2013]:

T(t) = exp(Box log(To)) | [ exp(Bin(t)S2) (3.67)

i=1

En [Kim et al., 1995] se demostré que las funciones base B-Spline cumulativas B; ()
(asociadas al nudo t;) se obtienen a través de la ecuacion 3.68:

n Zéilj B]JC(t) sit; <t< tivk—1
= Bi(t) =11 Sit >tk (3.68)
=i 0 sit <t

Las condiciones anteriores para k = 4 se pueden observar de manera visual en la Fig.
3.6a.

Para trasladar esta versién a su forma matricial, con k£ = 4, (la que se utiliz6 en
este trabajo), basta por tanto con sumar los elementos de la misma columna de C en
la Ec. 3.65, ya que éstos son multiplicados por términos del polinomio temporal del
mismo grado (por ej., los elementos de la ultima columna son multiplicados por u?) y
por tanto se les puede aplicar factor comin. Es decir:

B = [Bis(t) Bia(t) Bi(t) Bi(t)]' =Cu (3.69)
S io0Cr0 D j—0Crt Y j—oCr2 O 4—oCr ] 0 0 0
¢ _ Z?}zl €fo 23:1 Cr1 Zi:l Cr2 Z?”:l €3] _ |1 —coo 3coo —3coo €00
Z;ZQ Cfo Z;ZQ cr Z;ZQ Cro Z;ZQ Cr3 C0 €1 Cp  Ca3tC3
Siacn Sien Sieem Siaen) -0 0w
(3.70)

Donde el subindice f expresa la fila de la matriz C. Los términos ¢;; se corresponden
con los de la Ec. 3.64.

Algo a destacar es que B;_5 = 1, V¢ > t;. De esta observacion se deriva que podemos
expresar la Ec. 3.67 de forma equivalente para un instante ¢ € [t;, ;1) partir de la Ec.
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Capitulo 3. Formulacion

3.71: \
T(t) =T H exp(Bi_sj(t)Qi_3+) (3.71)
=1

Un ejemplo visual de interpolacién en SE(3) se muestra en la Fig. 3.7. Las funciones
base cumulativas empleadas son las de la Fig. 3.6a.

Juntando lo anterior con el modelo de proyeccién de una camara pinhole (Ec. 2.3),
significa que un punto p, (expresado en la referencia del objeto), es proyectado en un
punto x € R? de la imagen segtin la Ec. 3.72.

X = W(T;:} Two(t)7 po) (372)

Donde T,,(t) es la matriz de transformacién interpolada en el instante ¢ (Ec. 3.71),

1.5 V:[\z_2

ad 24 N ~ ~

|
X

¢
¥
c,

Figura 3.7: Ejemplo de interpolacion en SE(3). Los 4 puntos de control, T; €
SE(3),j € {i —3,...,i}, son los sistemas de coordenadas de mayor tamano, el resto son
sistemas de coordenadas interpolados para un tiempo t € [t;,t;+1). Las funciones base cumu-
lativas empleadas son las de la Fig. 3.6a.

que expresa el sistema de coordenadas del objeto con respecto a la referencia mundo
{w}, y Ty expresa la referencia de la camara con respecto a {w} en dicho instante (la
cual es obtenida mediante COLMAP, §2.4).

3.2.1. Cinematica

Una de las ventajas de trabajar con trayectorias interpoladas con B-Splines es que
éstas facilitan el calculo de las derivadas temporales de una matriz de transforma-
cién Ty, (t) [Lovegrove et al., 2013]. Por ejemplo, si abstraemos cada incremento local

exp <§j(t)ﬂj> de la Ec. 3.71 como A con j € {i —3,...,i}:

T.o(t) = T;_zexp (Bi,Q(t)Qi,2> exp (Bi,l(t)ﬂi,1> exp (Bl(t)ﬂl> (3.73)
Tuwo(t) = TisA; 2(t)A;_1(t)A;(t) (3.74)
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3.2. B-Splines cumulativos en SE(3)

Significa que aplicando la regla del producto®’:

Two =T;_3 (Ai—ZAi—lAi + Ai—2Ai—1Ai + Ai—2Ai—1Ai> (3.75)

o Al oA A+ A A A A LA A+

Tyo=T;_3 . : . ) . : (3.76)
2(A; A 1A+ A oA A+ A LA A))

Cada término A; = 0/0t(exp(B;(t)2)) es calculado través de la propiedad 3.52 y la

regla de la cadena:

j = 2o oexp(By(1)9) = =L L Qexp(By (1)) 2 (3.77)

donde el término 83]- /Ot proviene de acceder con el indice correspondiente a la derivada

temporal B, definida como:

B

2 a0 ~ 1
e, a=——[0 1 20 32" (3.78)
tj+1 — U

_ Finalmente, los términos A; se obtienen diferenciando con respecto al tiempo cada
A;, y aplicando nuevamente la propiedad 3.52 y la regla del producto:

Aj = AJQ]BJ@) + A]QJB](t)7 con (379)

s ; 1 T
B = Ciu, i=———10 0 2 6u (3.80
(i1 —t5)? | | )

De esta forma, gracias a los B-Splines somos capaces de conocer en cualquier ins-
tante de tiempo Tyo, Two, v por tanto, la velocidad y aceleracién lineal del objeto (a
través de las derivadas temporales del vector de translacién) y la velocidad y acelera-
cién angular (a través de las derivadas temporales de la matriz de rotacién y de la Ec.
3.22).

0Por mayor claridad la dependencia temporal de los términos no ha sido anadida.
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Capitulo 4
Optimizacion

En este capitulo nos centramos en como nuestra propuesta optimiza las estimaciones
de los puntos de control T; € SE(3) de la trayectoria del objeto en tiempo continuo
(introducidos en §3.2), asi como los puntos propios del objeto p, € R? en su referencia.

En la primera parte se formalizan los parametros que son optimizados, asi como la
funcién de coste empleada. A continuacion, se hace hincapié en el método de optimiza-
cion elegido (Gauss-Newton), para finalmente explicar la derivacién de los jacobianos
necesarios en el computo de las actualizaciones de los parametros que son optimizados.

4.1. Estado del sistema y funciones de coste: Spli-
neBA, LocalBA

El conjunto de pardmetros a optimizar se conoce formalmente como vector de
estado, X'. En nuestro caso, las variables/ parametros contenidos en dicho vector, son
los puntos de control de las trayectorias de los objetos (§3.2), y los puntos de cada objeto
que han sido seleccionados p,. Para aliviar la notacién, y sin pérdida de generalidad
(al no existir parametros comunes entre objetos), se hace referencia a un tnico objeto
o. Por ello, la formulacion explicada en esta seccién es igual e independiente para cada
objeto.

Al conjunto de imagenes o frames usados para seguir a un objeto hasta un instante
t lo denominamos como Z; = {a,a + 1,...,n}, con a,n € N, representando respecti-
vamente el nimero del primer y tltimo frame de la secuencia que han sido empleados
en la estimacién de la trayectoria del objeto. Siguiendo esto, al conjunto de instantes
temporales asociados a cada imagen lo representamos como Ky = {t,,...,t,}.

Nuestro sistema incluye un punto de control nuevo por cada nueva imagen o frame
que recibe. La motivacion de esto reside en ser capaces de estimar no solo movimientos
suaves, sino también movimientos significativos ocurridos en un numero de frames
reducido. De esta decision se deriva que en la Ec. 3.71 t = ¢; durante la optimizacién, por
lo que el punto de control T; no influye en ésta, reduciéndose asi la carga computacional.
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4.1. Estado del sistema y funciones de coste: SplineBA, LocalBA

No incrementamos mas el nimero de puntos de control dado que se perderia una
significativa capacidad de interpolacién entre frames. Por e€j. si duplicdsemos los puntos
de control, por cada par de imagenes, habria uno que estaria influido tinicamente por
las observaciones de un frame, mientras que con nuestro planteamiento, cada punto de
control estd influenciado por informacién mas rica, al provenir ésta de 3 imagenes.

A partir de este protocolo, y asumiendo un tiempo entre frames cuasi-constante,
para un instante t; el punto de control T; 5 es el que tiene una mayor influencia en
la interpolacion. Esto se observa en la Fig. 3.6a donde las funciones base asociadas al
primer y segundo incremento reciben una mayor ponderacion.

Por esta observacion, en cada imagen recibida en el instante ¢; inicializamos el vec-
tor de traslacion del punto de control T;_5 al centro de masas de la nube de puntos
segmentada del objeto. La matriz de rotaciéon la inicializamos con la de T;_3, excep-
tuando al primer punto de control de todos, T,_s, que se inicializa con las direcciones
principales [Géron, 2019] de la nube de puntos del objeto. De esta forma, el conjunto
de puntos de control de la trayectoria viene dado por Ty = {Ty_o,..., T, _2}.

Por otro lado, por cada nueva imagen recibida, se extraen un conjunto de observacio-
nes P, = {Pa,...,P,}. Cada subconjunto Pj (extraido en un frame k) esta constituido
por la localizacién 3D en la referencia de la cdmara de cada uno de los puntos, p., del
objeto que se han extraido/ seguido en dicho frame.

Un mismo punto del objeto p, puede ser seguido en imagenes consecutivas, dando
lugar a distintas observaciones p.. Solo aquellos p, de los que se disponga mas de una
observacion p. son considerados como parametros a optimizar. La motivacion de esto
reside en utilizar puntos que han superado el filtrado de espireos (explicado en §5) y
que por tanto consideramos como estables.

Ademas, al compartirse estos puntos entre frames, se genera una mayor correlacion
con los puntos de control, aportando asi informacién valiosa de cara a la interpolacién.
A este subconjunto lo denominamos P; = {po,, - - - , Po,,_; }, con m el nimero de puntos
en la referencia objeto que se han considerado para optimizar.

Para impedir que el coste computacional crezca de forma indefinida, la optimizacion
no siempre se lleva a cabo con la totalidad de 7; y P;. En su lugar, consideramos una
ventana temporal en la que los parametros contenidos en ella son los optimizados. En
concreto, en nuestros experimentos dicha ventana se corresponde con las ultimas 20
imagenes. A este subconjunto de observaciones lo denominamos P,, C P,, y de él se
derivan los subconjuntos de parametros a optimizar: T, C T; v Pio C Py

El refinamiento de las estimaciones se realiza a través de la minimizacién de una
version robusta del error cuadrdtico, E(X), en la estimacion de la localizacion 3D de
los puntos:

Bx) =5 > p(lIpe = proj (Tl Tuot) o) 12, ) (4.1)
pCEPZO

Donde T, po vy t € K; son respectivamente la matriz de transformacién de la ref.
camara a la ref. mundo, el punto del objeto y el instante temporal asociados a la
observacion p.. El significado de la matriz Egcl se presenta en §4.1.1. p: R — R, es la
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Capitulo 4. Optimizacion
funcién robusta de Huber [Huber, 2004], explicada en §4.2.1. Por tltimo, proj : P? — R3
transforma un punto de coordenadas homogéneas a cartesianas.

A modo de abstraccién, para representar el error (o residuo) en cada observacion,
definimos:

Ip. = Pe — Proj (Ty! Tuwolt) Po) (4.2)
Por lo que:
1 1 _
By =5 % p(lnlia) =5 > » (5T (4.3)
pCEPZO ] pCEPZO

Haremos referencia a spline BA si la Ec. 4.1 es usada para optimizar tinicamente
los puntos de control (X = T;,) y local BA cuando se optimizan tanto puntos de
control como puntos del objeto (X = {T;,, Pio}). Los nombres provienen de la técnica
Bundle Adjustment (BA) [Triggs et al., 1999], utilizada para optimizar variables de
estado minimizando el error cuadratico de reproyeccién de las observaciones.

Frame O 1 2 3 4 5) 6

(a)

%

(b) @
O\

© (@) () ©

Figura 4.1: Grafo simple asociado a spline BA, en el que se considera una observacion
nueva por cada frame (o - - ) y una ventana temporal de 6 frames. (a) Se necesitan 4 puntos
de control para comenzar. Con la primera observacion (frame 1), se optimiza T_1 por tener
mayor influencia. (b) Al anadir mds observaciones, se optimizan mds puntos de control. (c)
Solo se optimizan los puntos de control situados en la ventana temporal.

()
\
()

Con el objetivo de clarificar la relacion entre los parametros a optimizar y las obser-
vaciones, en las Figs. 4.1 y 4.2 se muestran los esquemas asociados a las optimizaciones
spline BA 'y local BA respectivamente. A modo de simplificacién, en ambas, se considera
una ventana temporal de 6 imagenes y una tnica observacién por frame. Formalmente
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4.1. Estado del sistema y funciones de coste: SplineBA, LocalBA

Frame 1 2 3 4 5 6

DOOOOO

Figura 4.2: Grafo simple asociado a local BA, en el que se considera una observacion
nueva por cada frame (o - - ), una ventana temporal de 6 frames y un unico punto del objeto
a optimizad Po,. El punto de control mas antiguo es fijado para evitar grados de libertad en
la optimizacion [Triggs et al., 1999], por ello no presenta relaciones con las observaciones.

este tipo de gréficas se denominan como grafos de factores' [Dellaert et al., 2017].

En el caso de spline BA, ésta es utilizada en el inicio de la trayectoria y en cual-
quier momento en el que no se dispone de observaciones suficientes en P,, como para
optimizar la localizacién de los puntos del objeto. Para su ejecucion, es necesario haber
inicializado al menos 4 puntos control (Ec. 3.71).

Ademas, por cada conjunto de observaciones de un frame, solo se optimiza un nuevo
punto de control, si no, la optimizacién presentaria gauge freedom (grados de libertad)
al estar empleando méas de una matriz de transformacién para modelar una sola (la del
objeto) [Triggs et al., 1999, Strasdat, 2012].

Es por esto que en la Fig. 4.1 solo existe un “eje” uniendo la observacién inicial.
Con el aumento de observaciones de distintos frames, es posible aumentar la cantidad
de estas relaciones. En el caso de local BA, para evitar de nuevo grados de libertad en
la optimizacion conjunta de T;, y Py, se fija el punto de control més antiguo, por lo
que éste no presenta relaciones con las observaciones (Fig. 4.2).

4.1.1. Punto de vista probabilistico

Al problema de optimizacién anterior le podemos dar un enfoque probabilistico
derivado de que las observaciones consideradas para optimizar, P,,, no son perfectas y
presentan incertidumbre. Esto es debido a que éstas pueden presentar cierto ruido que
ocasione, en nuestro caso, que una medicién p. no se corresponda exactamente con el
punto p, al que estamos asociandolo.

Por ello, no podemos pretender obtener con absoluta precision el valor verdadero
del conjunto de variables de estado X de interés, pero si una estimacién de las mismas

1'Un estudio de los grafos de factores queda fuera del alcance de este TFM. En caso de que el lector
esté interesado en los mismos, se recomienda el trabajo realizado en [Dellaert et al., 2017].
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que se ajuste a un modelo estadistico elegido por nosotros [Dellaert et al., 2017]. Es
decir, una estimacion que maximize la probabilidad de obtenerse dado el conjunto de
observaciones del que disponemos:

AMAP — arg méx p(X | Pao) (4.4)

La estimacion de X que maximiza dicha probabilidad se denomina como estimacién de
Maximum A Posteriori o M AP. Aplicando la regla de Bayes, obtenemos una expresion
equivalente que facilita su derivacion:

p(Pao | X)p(X)
p(Pw)

donde el término p(P,,), al no depender de X, no lo podemos aprovechar para maxi-
mizar la Ec. 4.4 y por tanto lo podemos ignorar. Lo contrario ocurre con p(P,, | X),
conocido como verosimilitud, y que expresa la probabilidad de las observaciones dado
el estado (también expresado como L(X | P,,)), y con el término p(X'), conocido como
prior e indica la probabilidad del estado dado un modelo o asuncién del mismo.

xMAP (4.5)

= arg max

En este trabajo, no consideramos ningin prior acerca de X', o dicho de otra forma,
asumimos que todos los estados presentan igual probabilidad, por lo que p(X) es una
constante que no influye en la maximizacion. Este acercamiento es comun en la lite-
ratura [Mur-Artal et al., 2015, Mueggler et al., 2018, Triggs et al., 1999]. Por ello. en
nuestro caso, la estimacién M AP coincide con la de maxima verosimilitud (M LE):

YMAP _ yMLE _ arg méXp(on | )() = arg max E(X | on) (4-6)

Otras asunciones extendidas en la literatura [Dellaert et al., 2017, Triggs et al., 1999],
consisten en asumir independencia en las observaciones, y que cada observacién p, esta
perturbada por un ruido Gaussiano de media nula, N'(0,X,.), con ¥, su matriz de
covarianza. De esta forma, en la Ec. 4.2, r,. ~ N (0,%,.), vy ademds se cumple:

XMLE — argméx H p(pe | X) (4.7)
pCePZO
, 1 1 7 s
= arg max H CEEONEE exp —51'13621901';,c (4.8)
pCePZO pc
. 1 L or
= arg méx log H CSEEEE exp —érchpc I'p. (4.9)
pCEPZO ¢
. 1 L r¢a
= arg max Z log CSEEDMEE exp —§rpc2pcrpc (4.10)
PcEP:o Pe
= i Ky — 051 Kp, =1 ! 411
= arg max Z pe = 5 pcpe Ipe | 5 pc — 108 (27)3/2|S,, |2 (4.11)
PcEPzo Pc
1
:argmin§ Z D dgs (4.12)
pCePZO
1
:argml'n§ Z ||I'ch2F_)Cl (4.13)
PcEP:0
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4.2. Optimizacion mediante Gauss-Newton en SE(3)

Por lo que hemos llegado a la conclusiéon de que minimizar el error cuadratico
en la estimacion de la localizacion 3D de los puntos, es equivalente a maximizar la
verosimilitud de la distribucién de las observaciones si asumimos que el ruido al que
estan sometidas sigue una distribucién N(0,%,,).

4.2. Optimizacion mediante Gauss-Newton en SE(3)

Para llevar a cabo la minimizacién de E(X), en este trabajo se utiliza el método
de optimizacion de minimos cuadrados no lineales de Gauss-Newton. Mas con-
cretamente, se emplea su version robustificada mediante la funciéon robusta de Huber
[Triggs et al., 1999, Huber, 2004], expresada mediante p(-) en la Ec. 4.3.

En la explicacion de esta parte, se asume que X esta expresado en su forma wec-
torizada, es decir, con todos sus elementos apilados en un tnico vector x. Ademds
para facilitar la explicacién, inicialmente se considera que a E(x) no se le aplica p(-).
Su contribucion se anade mas adelante. Juntando estas consideraciones, la Ec. 4.3 se
re-expresa de la siguiente forma:

E(x):% PR s (4.14)

PcEP:z0

Al utilizar este método de optimizacion, estamos asumiendo que el error r,, se
comporta localmente de manera lineal con respecto a x, por lo que E(x) (Ec. 4.14) lo
hace de forma cuadratica. Por tanto, localmente, podemos aproximarla por su desarrollo
de Taylor de segundo orden [Triggs et al., 1999, Kiimmerle et al., 2011]:

OE(x) . 1. 0E(x)

E(x+dx) =~ E(x) + I ox + §5XT o ox (4.15)
1
= E(x) + gix + §5XTH5X (4.16)
Partiendo de la Ec. 4.14, se derivan su gradiente gy matriz Hessiana H:
IE(x) T y-1 81'pc

g=—5— = Y .5, = Y N1, (4.17)

pCG’on ch’on

T y-1
H = 8X2 DY [y (4.18)
pCepZO

Donde J,, = Orp, /0x se conoce como la matriz Jacobiana de r,, evaluada en x.
La matriz Hessiana es una aproximacién (propia del método de Gauss-Newton), ya
que se estdn ignorando los términos de segundo orden 9?rp, /9x? al considerar un
comportamiento localmente lineal.

Como nuestro objetivo es minimizar E(x + 0x) a través del incremento de las
variables de estado dx, diferenciamos la Ec. 4.16 respecto a 6x, e igualamos a 0 para
obtener los puntos criticos de esta aproximacion:

g+Hx=0 = J0x=-H'g (4.19)
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Repetir de manera iterativa la actualizaciéon del vector de estado segun la Ec. 4.19
da lugar al método de optimizacion de Gauss-Newton. En nuestra implementacion, en
vez de invertir directamente H, y aprovechando que es definida positiva, resolvemos el
sistema de ecuaciones mediante su descomposicién de Cholesky? [Golub and Van Loan,

]

Algo a destacar, es que, salvo en situaciones donde las matrices Jacobianas no sean
de rango completo, o la aproximacién de H no sea buena (por ejemplo cuando valor
actual de x es préximo al de un punto de silla) [Triggs et al., 1999, Sola, 2017a], dx es
una direccién descendente de la funcién F(x), es decir, una en la que se decrementa su
valor, lo que resulta una caracteristica atractiva de este método.

La justificacion reside en que la aproximacion de H de la Ec. 4.18 hace que ésta
sea una matriz definida positiva, por lo que H™! también lo es®. De esta forma se
cumple que g’ H™'g > 0, implicando que —H'g presenta un angulo inferior a 90° con
respecto al negativo del vector gradiente —g (direccién local en la que E(x) disminuye
més rapidamente con respecto a x), justificando asi el descenso del valor de la funcién
siempre que la Ec. 4.16 sea una aproximacién valida.

La justificacion de por qué H es positiva definida, se deriva de la definicién de las
matrices ¥, de la Ec. 4.18. Como se ha comentado en §4.1.1, cada una de ellas se
corresponde con la matriz de covarianza asociada a cada observacién p.., las cuales son
semi-definidas positivas por definicién, y que, por construccion (se eligen a priori) se
asegura que sean positivas definidas [Triggs et al., 1999, Sola, 2017a]. Ahora bien, la
Ec. 4.18 de forma matricial se puede expresar de forma equivalente segtin la Ec. 4.20.

Jpq
H~J'S7J, J=|Jdp,|, Z7!'=diag(X;', 2, .. ), (4.20)

Pc;? T Pcy?

donde 7! es definida positiva al ser una matriz diagonal por bloques donde cada
bloque E;,Cl_ es una matriz definida positiva. De esta forma:

W Hu=u"J'2  Ju= Ju'='(Ju) =y'= 'y >0, (4.21)

Para cualquier par de vectores u € R",y € R™, con J € R™*"  y como ademés es
simétrica: HT = (JT2J)T = JT27J = JTSJ = H, se concluye que esta aproximacién
de la matriz Hessiana resulta en una matriz definida positiva.

2En concreto, usamos la implementacién de scipy. Solucionar el sistema de ecuaciones con este
tipo de descomposicién requiere un menor coste computacional que directamente invertir H [Golub
and Van Loan, |.

3Una matriz real, H,,»,,, es definida positiva si es simétrica y todos sus valores propios son positivos.
H™! es simétrica ya que para cualquier matriz invertible: (H=1)” = (H”)~!, y sabiendo que H? =
H= H1)T = (HT)"! = H!. Ademés todos sus valores propios son positivos también dado que
son los inversos (reciprocos) de H: Hv = Av = %v = H!v. Por lo tanto H™! es definida positiva.
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4.2. Optimizacion mediante Gauss-Newton en SE(3)

4.2.1. Robustificacion

Hasta ahora, el problema de optimizacién que se ha visto, trata de minimizar los
errores cuadriticos asociados a cada observacién ||rp,||3; . Sin embargo, esto supone
asumir que no existen observaciones erréneas o espureas, es decir, que todas pertenecen
al modelo que se esta tratando de estimar.

Sin embargo, esto en la realidad no tiene por qué ser asi (por ej. puede producirse
un emparejamiento erréneo entre pixeles de imégenes diferentes). En situaciones en
las que estd asuncion no es valida (hay datos esptreos o outliers), la optimizacién
mediante minimos cuadrados se vuelve susceptible a dar resultados insatisfactorios (ver
ejemplo intuitivo de la Fig. 4.3b). Una forma de enfrentar este problema consiste en
hacer uso de funciones robustas [Concha and Civera, 2015]. En este TFM se hace uso
de la funcién robusta de Huber [Huber, 2004].

De esta forma, el problema de optimizacién de la Ec. 4.14 se modifica, minimizando
en su lugar el error E(x) de la Ec. 4.22.

Ly si Lp, < k?
E(x) == E N L,)= Pe 4.22
(X) 2 p( Pc rpu) p( pc) {Qk\/_ k2 Sl L > k2 ( )

Pc€Pzo
ch

Es decir, p(+) es cuadratica (con respecto al error) para valores pequenos de ||rpc||2Epc
(por debajo de k € R) y lineal para valores elevados, limitando asi la influencia de
aquellas observaciones con un error asociado elevado y que presumiblemente pertene-
cen a observaciones espireas (dada una inicializacién lo suficientemente buena) [Eade,
2013]. El efecto intuitivo de esta funcién se muestra también en la Fig. 4.3.

Afortunadamente, la modificacién anterior no afecta de forma significativa a las
derivaciones iniciales. A través de la regla de la cadena, y las derivadas de p(-), se
obtienen los nuevos gradiente y matriz Hessiana:

0E(x) 1 , 0Ly
— - c 4.23
& ox QP; Ppe 0x ( )
417 DD <4 vgh A (4.24)
pCGPZO
PE(x) 1 Ly, Ly, \’
H="— "= S T + . (4.25)
pCePZO
4é8 Z ch (plzl_)cl _l_ ZP;/)CE;CII'I)CI'ZCZ;?) JPC’ (426)
pCePZO

con:

: 2 : 2
/ — 8[)(ch) — 1 St ch < k // — 82[)(ch) — 0 St ch < k (4 27)
T siLp, > k2" PP T o2 b i Ly, > k2

Pc

_k_
0,5
LPc

De esta forma, la robustificacién tiene un doble efecto [Triggs et al., 1999]: 1) ponderar
g v H con p/, disminuyendo asi la influencia de las observaciones esptreas en el célculo
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§ = az + b, hallar a y b, minimizando p(||y — 9||*)

. [ J
== sinp(-), k = o0
Um con p(-), k=1.0 /

espureo!

\
\
\
\ — conp(-), k=10
\
\
\
\

—10.0 —75 —5.0 —2.5 0.0 2.5 5.0 7.5 10.0

error, r

(a) (b)

Figura 4.3: (a) Funcidn cuadrdtica (azul) con respecto al error, r, y funcién robusta de
Huber con k = 1 (verde). Se aprecia el comportamiento lineal de esta 4ltima conforme r
aumenta. (b) Estimacion, en presencia de un dato espireo, de los pardmetros de una linea
tal que se ajuste a los puntos e, con y sin robustecimiento. Gracias a aplicar p(-), con una k
adecuada, el dato espireo es ignorado.

de 0%, y 2) corregir la curvatura de la matriz Hessiana aproximada mediante el término
asociado a p”.

Esta tltima contribucién puede llegar a ser negativa, ya que si p' +2p"||rp.[|?< 0, la
aproximacién de la matriz Hessiana deja de ser definida positiva [Zach, 2014]. En nues-
tro caso, al usar la funcién de Huber, dicha cantidad es nula. Es por ello, que siguiendo
la tendencia de implementaciones populares [Agarwal and Mierle, 2012, Kiimmerle
et al., 2011]%, se decidié implementar tinicamente el primer efecto. Esta aplicacién de
las funciones robustas también se conoce como minimos cuadrados iterativamente re-

ponderados (IRLS) [Kerl et al., 2013].

4.2.2. Parametrizacion

Al tener como objetivo optimizar los puntos de control T; y los puntos del objeto
Po, puede parecer logico que los elementos contenidos en el vector de estado X, sean
directamente T; y p,. Esto, en cuanto a p, es la opcién més prudente ya que pertenecen
a un espacio vectorial Euclideo (p, € R?), por lo que admiten actualizaciones del tipo

Po + 0Po.

Sin embargo, ésta no es una opcién valida para los puntos de control. Actualizacio-
nes del tipo T; 4+ 0T; pueden provocar que éstos dejen de pertenecer a SFE(3), ya que
este espacio no presenta clausura con la operacién suma. Afortunadamente, tal y como
se vio en §3.1, para una cinemdtica constante 7" (expresada en el sistema de referencia
mundo), la evolucién temporal de una matriz de transformacién T se puede expresar

4En nuestro caso, esas implementaciones no fueron empleadas ya que el lenguaje de programacién
que elegimos fue Python, y el de las librerfas es Ct+.
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como:
3,37
T(t) = " :
(1) = exp(z” 1) To, (4.28)
sA
por lo que una variacién infinitesimal con respecto a este incremento (o perturbacion)
&, de un punto de control T; la podemos expresar como:

0
a—siEXP(&)Ti co (4.29)

Resultando en una de las parametrizaciones mas extendidas de la literatura reciente
[Blanco, 2010, Strasdat, 2012, Kiimmerle et al., 2011]. Es decir, en nuestro vector de
estado X', no incluimos la matriz de transformacion como tal, sino que incluimos el
elemento del algebra de Lie asociado a la perturbacién: €,°. Por ello, tras determinar
mediante el algoritmo de Gauss-Newton, qué valor de &, minimiza F(X'), podemos
actualizar el punto de control mediante exp(&;)T;, sin riesgo a que deje de pertenecer

a SE(3).

Esta parametrizacion de la matriz de transformacién presenta ventajas sobre va-
rias alternativas [Kiimmerle et al., 2011, Lynch and Park, 2017]. Por un lado, es una
parametrizacion minima (sin restricciones) — & € R® que condensa los 6 grados de
libertad de un movimiento rigido, y por otro, es una representacién que, bajo magni-
tudes pequenas de &, no presenta singularidades (a diferencia de los éngulos de Euler,
por ejemplo).

4.3. Matrices Jacobianas

Lo tnico restante para tener definido completamente el bloque de optimizacién (Fig.
2.1), es explicar cémo obtener las matrices Jacobianas introducidas en la Ec. 4.17,
y que representan la diferenciacién de cada error rp, (x) con respecto a las variables de
estado x.

Por comodidad y buscando mayor claridad, en esta seccion se relaja la notacion
asociada a un error rp_:

rer,, (4.30)

es decir, se deja indicar explicitamente que estd asociado a una observacién p.. De forma
general, denomindndola como una funcién r(x) : R® — R™, su matriz Jacobiana, J,(x),
viene dada por:

o . Orp
ox1 Oxn
Tx)=]: . (431)
ory ., Orpy
ox1 Oxnp

5En este caso, hemos utilizado el plano tangente a la identidad para definir la perturbacién.
Podriamos igualmente haberla definido en el plano tangente a T como: Texp(éj). Es mas, ambas
perturbaciones estdn relacionadas por la matriz adjunta de T: §;, = Adr§;.
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Estas matrices Jacobianas, en problemas de tiempo discreto, han sido publicadas y
ampliamente tratadas [Strasdat, 2012, Blanco, 2010, Forster et al., 2016]. Sin embargo,
bajo nuestro conocimiento, en estimaciones de tiempo continuo como las que se tratan
en este TFM (B-Splines cumulativos), ain no han sido cubiertas para el caso particular
de estimacién de una trayectoria en SFE(3).

Recientemente, con el trabajo de [Sommer et al., 2020], se derivaron las matrices
Jacobianas para matrices de rotacion estimadas con B-Splines. Sin embargo, su deri-
vacion en SFE(3) no fue tratada. Por ello, esta seccién supone una de las principales
contribuciones de este trabajo. En §6.2, se realizan experimentos con dos versiones
distintas de calculo de estas matrices, y se compara su eficiencia con los métodos de
célculo (diferenciacién automatica y numérica) que emplean la mayoria de trabajos que
han hecho uso de B-Splines. Mostrando asi las ventajas del método propuesto.

Particularizando a nuestro caso la Ec. 4.31, como r € R* = m = 3. En cuanto al
vector de estado, su tamano n viene determinado por el de la ventana temporal que
se esté considerando y de si se estd empleando Spline BA (optimizacién de puntos de
control) o Local BA (optimizacién de puntos de control y puntos del objeto).

De esta forma, existen variables de estado que no guardan relaciéon con un error r,
por lo que su derivada asociada es nula. En esta seccién solo se hace referencia a los
elementos no nulos de J.(x), ya que conociéndolos solo se necesita una reordenacién
de los mismos para ajustarlos a las columnas de J,(x).

Incluyendo las perturbaciones & € RS introducidas en §4.2.2 y la notacién que se
emplea en esta seccién, un error r en un instante ¢ se expresa como:

r(t) = pe—proj (TewTuwo(t)Po) = Pe — P10j (Teo(t)Po),  R?, (4.32)
Tuo(t) = Exp(ag)ToAy(t)As(t)As(t), SE(3), | (4.33)
Aj(t) = Exp(a;(1)), SE(3), (4.34)
a;(t) = B;(1)%;, RS, (4.35)
ag = &ole, 0 R® (4.36)
Q= Log ((Bxp(&;-)Tj) ' Exp(§)T))) | o oo R (4.37)

con j € {1,2,3}.

4.3.1. Derivacion independiente del error

Como primera forma de obtener la matriz jacobiana, en esta seccién se propone
una version general, independiente de la funcién de error elegida, facilitando de esta
forma su aplicacién a otros problemas. Esto es asi, ya que no se aprovecha ninguna
caracteristica particular de r, al contrario de la derivacién propuesta en §4.3.2.

En concreto, las diferenciaciones propuestas, derivadas de aplicar la regla de la
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cadena (multivariable), son:

T . T )
Para‘ E]’ j E {Oa ]-; 2} ar 81‘ (8 — aaj 8 wo aa]+1

_ n 4.38
0f; 0Ty, \ Oa; 0€;  Oajy 8€j) 439

or or J0T,, Oas

Para &, 9, - JT,, Oaz 0&,

(4.39)

Se aprecia la independencia con la funcién de error dado que se esta diferenciando
To(t) de manera directa con respecto a las perturbaciones €.

Derivacién de 0r/0T,, El primer término, dr/9d7T,,,, supone la diferenciacién de un
vector r con respecto a una matriz T,,,. Esto, directamente no se puede representar en
una matriz de 2 dimensiones como en la Ec. 4.31. Seria necesario un tensor. En su lugar,
para facilitar los calculos, en estas situaciones hacemos uso de la version vectorizada,
vec(T), de la matriz:

Rcl
R t Rcl Rc2 RcS t RcQ 19
T—{O 1]—[0 o o0 1l = vec(T) = RS €eR (4.40)
t

La ultima fila se ignora por ser términos constantes. Arrastrarlos supondria operaciones
innecesarias. Es esta version vectorizada la empleada en las Ecs. 4.38 y 4.39. Por otro
lado, R® y R" hacen referencia a la columna y fila i de R respectivamente, y R¥ al
elemento ¢j (en vectores solo indicamos un indice).

Para derivar este término podemos recurrir a la regla de la cadena:

or or 0T,

= 4.41
OTws 0T 0T, 4
a partir de los resultados detallados en las Ecs. A.4 y A.8 obtenemos:
or ar]:‘co
oT., - [POT 1} ® I3x3, oT.. = Lixs ® Rew, (4.42)

Donde ® representa el producto de Kronecker [Van Loan, 2000], el cual condensa la
siguiente operacion:
B1C ... B!"C
B C= : . : (4.43)
B™C ... B™C
Para dos matrices B, x,, Cox, cualesquiera. Por lo que B ® C da como resultado una
matriz de tamano (m - o) x (n - p). Por ello, concatenando ambas diferenciaciones,
finalmente obtenemos:
or
0T,

= —[p! 1] ®Re (4.44)
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Derivacién de 0T,,/0a; A partir de las definiciones de las Ecs. 4.32-4.37, y de la
propiedad de la Ec. 3.58, podemos re-escribir esta diferenciaciéon como:

0T, 0
= —P.E AN 4.45
Da; Da; sExp(a;)N; ( )
0
= a—ﬁPJEXp(a] —+ ’T])N] o (446)
358 O
= 5. P Exp(Ji(a;)7;) Exp(a;)N; (4.47)
_ 9P;C(7))N] 0C(7;)N;; OExp(Ji(a;)T;) oJi(a)T;
9C(7;)N} ;=0 9C(t;) ;=0 di(a;)T; ;=0 ot ;=0
(4.48)
donde:
J=0 — Po=1ILuy, Ny = Tuo (4.49)
] = 1 — P, = To, Nll = A1A2A3 (450)
] = 2 — P2 = T()Ah N/2 = A2A3 (451)
j =3 — P3 = ToAlAg, N3 = A3 (452)
El dltimo término de la Ec. 4.48 tiene la solucion maés directas:
0Ji(a;)T;
_—r = Ji(a;), (4.53)
aTJ Tj:0 !

el primer y segundo término se corresponden con la diferenciacién de una matriz vecto-
rizada con respecto a otra. A partir de los resultados A.8 y A.10 conocemos su solucion:

aPJC(TJ)N; _8P]C(TJ)N; . I4 L ® RP (4 54)
L S a— = - = lyx ’ .
9C(7;)N; ;=0 9C(7;)N; C(7;)N/=N/
oC(r)N;|  9C(r;)N,  NToL. 55)
A = : x .
aC(T]) TjZO aC(T]> C(Tj):I4><4 ’

Donde Rp; hace referencia a la matriz de rotacion de de P;. Juntando ambas derivadas:

OP;C(1;)N/,

_ T
5 = N7 @ Rp, (4.56)

7;=0

Por 1ltimo, el tercer término de la Ec. 4.48, lo podemos calcular diferenciando la
Ec. 3.46 con respecto a 7. Evaluandola en 7 = 0 y expresandola de forma vectorizada,
se obtiene (derivacién detallada en §A):

033 —Gy
0Exp(J;(a;)T;) _ O0Exp(Ji(a;)T;) _ 05,3 —Goy (4.57)
0Ji(a;)T; 0J(aj)T;  |y@)rm0  |O3xs —Gs

IS><3 _03><3

7;=0
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Donde los términos G;, i € {1,2,3}, representan los generadores de SO(3) [Strasdat,
2012] (vectores base del plano tangente a la identidad de SO(3)), los cuales vienen
dados por:

0
0 (4.58)
0

A esta conclusién también se puede llegar a través de los generadores de SE(3), ya que
éstos son los vectores tangentes (en la identidad) de un camino (o path) perteneciente
a SFE(3) que pasa por el elemento identidad [Strasdat, 2012]. Expresandolos de manera
vectorizada se llega igualmente a la Ec. 4.57.

Por lo que, el resultado final viene dado por:

03«3 —Gy 033 _RPJ'(RCNlj)A
oT 0 -G 033 —Rp, (RG)"
wo NT Ro 3x3 2 J N — J J J X
Oa; ( i@ P,) 033 —Gg (ay) 0343 —].:{Pj(]-:{f\?j)A 2
I3z —03x3 Rp, —Rpty

(4.59)
Destacar que si j = 0, simplificaciones importantes ocurren: J;(a;) = Isxs, P; =
I4><4-

Derivacién de 0a;/0€; y de da;,,/0€; Para estas derivaciones es posible realizar
una simplificacién previa. En concreto, una parte de los términos de la Ec. 4.37 se
puede re-expresar de la siguiente forma:

(EXP(éjfl)Tj—l)_l = T]'_711EXP(£J'71)_1 = TJ'_711EXP(_€];1) (4.60)

Por lo que la Ec. 4.37 se puede re-escribir de acuerdo con lo anterior:
2, = Log (T} Bxp(~&, ) Exp(€)T) |, _, (4.61)

Lo que implica las siguientes relaciones:

89]‘ 0Qj 0aj 8aj
- %4 . 4.62
9€, . 0¢, 0&., 0 (4.62)

Gracias a esto, tinicamente necesitamos calcular (0a;/9§;)|¢,—o. A partir de esta con-
sideracion y de las propiedades de la matriz Adjunta y Jacobiano izquierdo vistas en
las Ecs. 3.50 y 3.60 respectivamente, cada término (da;/0§;)[¢,—0 para j € {1,2,3},
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puede calcularse de la siguiente forma:

02,

— 8 ~. -1 .
e, = ag B (T B T) L (4.63

50 0 4 _

. @Bj(t)LOg (EXP(AdT;Eﬁj)Tj31Tj)> L:O (4.64)

200 iéj(t) (Log (T;1,T;) + 37" (Log(T; 1, T;)) Adp— gj) (4.65)
8€j j—1 £j:0

= iBj(t) J; ' (Log(T; 1, T))) Adp—1 & (4.66)
08, ’ 7 g0

= B;(t) ;" (Log(T;1,T;)) Adp-1 (4.67)

Solamente falta derivar (Jag/0&;)|¢,—0. Afortunadamente esta derivacion es trivial,
pues habfamos definido ag = &gle,—0 (Ec. 4.36) = (0ag/0&;)|¢,—0 = I3x3. Recopilando
estos resultados:

02,

5 = B;(t) 37" (Log(T;1,T;)) Adp-, j€{1,2,3} (4.68)
Jlg;=0

8&0

— =1 4.69

Completando asi la derivacion de todos los términos de las Ecs. 4.38 y 4.39.

4.3.2. Derivaciéon aprovechando la definicion del error

Asi mismo también se propone el siguiente calculo de la matriz Jacobiana que a
primera vista puede parecer mas directo:

or . or 3aj or 3aj+1

P . ' 1,2 = N
ara §;, j€{0,1,2} 0¢;  0Oa; 0, * dajyy 0E; 1
or Jor Oag
b _ 4.71
ara &3 083 Odaz 0&; .

La diferencia con la propuesta anterior reside en que los términos dr/0a;, dependen
del punto p, correspondiente. Algo que solo sucedia antes con el término Or/97T .

Esto tiene consecuencias de cara a la implementacion de la matriz Jacobiana para
multiples puntos p,. Para agilizar su cémputo, es conveniente wvectorizar las opera-
ciones, evitando asi un célculo particular para cada punto p, (evitando bucles for).
En la primera versién por tanto, se vectoriza dr/JdT,,, mientras que en la segunda se
vectoriza Or/0a;, lo que puede resultar en eficiencias diferentes, analizadas en §6.2.

El tnico término de las Ecs. 4.70 y 4.71 que resulta nuevo, es el de dr/0a;. El resto
ya han sido calculados en §4.3.1. Su calculo se puede descomponer aplicando la regla
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de la cadena:

or 0 . -
(’)le = —afajPTOJ (P;Exp(a;)p;) (4.72)
0 i -
= — 5 PIoj (P;Exp(a; + 7;)pP;) (4.73)
Tj 7;=0
358 O ) .
= —a—pTOJ(Pj Exp(Ji(a;)7;) Exp(a;)p;) (4.74)
Tj ~ v~ - v~ ~ |r;=0
C(rj) P} ’
_ Oproj(P;C(7;)pj) | Oproj(C(7,)Pj)|  9Exp(Ji(ay)Ty)|  9Ji(a))T,
Oproj(C(1))P}) |r=0  0C(T)) |10 ONla)T; oo T =0
(4.75)
donde:
j =0 — PO = TcuM 136 = Twof)o (476)
== — Pl == TchOa 13/1 = A1A2A3I~)0 (477)
j =2 = Py= TchoAl, f)/2 = A2A3f)0 (478)
j=3 — P3=T,TiA Ay, I3f3 = Asp, (4.79)

Los dos ultimos términos de la Ec. 4.75 son exactamente iguales a los derivados en
las Ecs. 4.57 y 4.53. Por otro lado, el segundo término se obtiene mediante el resultado

A4
dproj(C(7;)P;) ,
=[p. 1l®I 4.80
oC(T;) ;=0 P 1] @ oo (4.80)
Finalmente, el primer término de la Ec. 4.75, viene dado por:
Oproj(P;C(7;)p’:
p J(. iC( J?PJ) ~ Rp, (4.81)
Ipro(C(T)B)) |, o
Por lo que, juntando todo, llegamos al resultado final:
0333 —Gy
or / 0313 —Go
8_21]' = —Rpj ([pj 1} (%9 I3><3> 03><3 —Gg Jl(aj) (482)
Isxs —03x3
Desarrollando los términos se llega a la siguiente version mas simplificada:
Or I\A
T% = = [Rpj —Rpj(pj) } Jl(aj) (483)

Con este céalculo se da por concluida la derivacién de ambas versiones de la matriz
Jacobiana. Tal y como se ha comentado anteriormente, en §6.2 se realiza un analisis
de su eficiencia de computo.
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Capitulo 5

Seguimiento

En este capitulo se detalla el bloque del sistema encargado de realizar el seguimien-
to de los objetos y que permite suministrar las variables a optimizar explicadas en §4.
Los datos necesarios son una secuencia RGB-D, las mascaras donde se han detectado
objetos, sin asociamiento! (en nuestro caso obtenidas mediante SiamMask), y una esti-
macion de la localizacién 3D de las cAmara en cada imagen (en nuestro caso extraidas
con COLMAP). En la Figura 5.1 se muestran las partes fundamentales.

obj.
perdido
No t

objeto ) .| Si rFiItrado dew
[ inicializado ]_b[ KLT _>[€ ObJ'?]_> esplreos

J

. ) F\
\“ spline BA +~— — 1o [A’:‘F_W]

4 o ) 4 )
clasificacion preproc. +

—
local BA < y T; , deteccion
en espera

7

\ 7

p
Loc. 3D inicializacié ,

’ . preproc. + inicializacion en espera
Cémara [Objeto nuevo] [detecoic')n] ref. {o} ] P

Figura 5.1: Esquema general del bloque de seguimiento y datos de entrada.

En primer lugar, en caso de que los haya, se procesan los objetos ya inicializados
(aquellos que han sido seguidos en imégenes previas), asociandolos a mascaras vdlidas
de los datos de entrada. Una mascara se considera valida si tiene un tamano lo suficien-
temente grande?. A continuacién, si quedan méscaras sin asociar (libres), se inicializan
nuevos objetos basados en éstas. Las técnicas empleadas se detallan a continuacién.

'Es decir, sin relacién con las detecciones de objetos en imégenes previas. Solo se utiliza la informa-
cién de que en la zona de la imagen con maéscara, es probable que se encuentre un objeto cualquiera.
2En nuestros experimentos: si cubre mas de 1.000 pixeles.
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5.1. Deteccion y sequimiento de caracteristicas

5.1. Deteccién y seguimiento de caracteristicas

Para inicializar un objeto, se extraen caracteristicas Shi-Tomasi [Shi et al., 1994]
en la zona cubierta por una de las méscaras libres. En la Figura 5.2 se muestra un
ejemplo de extraccién, donde los circulos se corresponden con las caracteristicas. Estas
se corresponden principalmente con esquinas. En cada objeto, se detectan inicialmente
N (N = 100 en nuestros experimentos) y se trata de mantener este nimero constante
a lo largo de la secuencia. Para la deteccion, solo se consideran pixeles de los que se
dispone de informacién de profundidad.

Si la posicién en la imagen de una caracteristica viene dada por x € R2, su locali-
zacion 3D, p. € R?, con respecto al sistema de referencia de la cdmara, viene dada por
p. = D(x)K™'x, donde D(x) indica su profundidad medida sobre el eje Z y proviene
de las imagenes de profundidad de la entrada.

A partir de la localizacién 3D de todos los puntos detectados, se inicializa el sis-
tema de referencia del objeto con respecto a la camara, T,,, situando su origen en el
centro de masas de la nube de puntos y la orientacion de sus ejes segtin sus direcciones
principales [Géron, 2019]. Dicho sistema se expresa en la referencia mundo mediante:

Two = TweTeo, ¥ los puntos en la referencia objeto mediante p, = T.'p..

Figura 5.2: Deteccion y seguimiento mediante flujo éptico de caracteristicas Shi-
Tomasi mediante KLT. Los circulos representan la posicion actual de las caracteristicas
detectadas. Las lineas representan la trayectoria que han sequido en la imagen.

El seguimiento de las caracteristicas Shi-Tomasi en imagenes consecutivas se lleva
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a cabo mediante la implementacién piramidal del método iterativo de Lucas-Kanade
[Lucas et al., 1981, Bouguet et al., 2001], conocido como KLT. En la Figura 5.2 este
seguimiento se muestra mediante lineas que indican su trayectoria en la imagen. Una
mascara se deja de considerar libre si un determinado porcentaje de caracteristicas del
objeto (50 % en nuestros experimentos) pertenece a ella. Si ninguna méscara cumple
este criterio, el objeto se considera perdido.

Cada vez que una caracteristica deja de ser seguida con éxito en la imagen ¢ actual,
se realiza una nueva deteccién en la misma. Para tener una estimacién de p, (localiza-
cién 3D en referencia objeto), aplicamos flujo éptico hasta una imagen previa de la que
se dispone una estimacion de T,,,. Si el nimero de frames en los que se ha seguido el
objeto es superior a 3, entonces es necesario aplicar flujo éptico hasta la imagen i — 3,
en otro caso solamente hace falta llegar a la primera imagen.

La zona considerada para la deteccién, es aquella cubierta por la mascara asociada
con informacién de profundidad. Ademads, se impone que no se detecten caracteristicas
en un radio de pixeles alrededor de las seguidas con éxito hasta el momento, evitando
asi caracteristicas repetidas/ concentradas en una misma zona.

5.1.1. Pre-procesamiento y filtrado de espureos

El método de seguimiento explicado anteriormente es susceptible a fallar conforme
la secuencia avanza. Por ejemplo, dos situaciones problematicas son las siguientes:

» Cdmara y objeto presentan giro relativo de cierta magnitud — La trayectoria de
las caracteristicas que estan siendo seguidas se aproximan al borde visible del ob-
jeto. Esto provoca una pérdida de informacion significativa, pues la caracteristica,
al dejar de estar rodeada de puntos del objeto, tiende a permanecer en dicho bor-
de, ya que visualmente es la zona mas parecida al presentar puntos comunes de
la escena estatica. Un ejemplo de esto se muestra en la Fig. 5.3.

(a) caracteristicas iniciales. (b) caracteristicas sequidas.

Figura 5.3: Seguimiento de caracteristicas fallido. Las caracteristicas permanecen en
el borde wvisible de los objetos de la derecha al haber experimentado éstos un giro relativo
significativo con respecto a la camara.
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5.1. Deteccion y sequimiento de caracteristicas

= Mdascaras imperfectas — Las mascaras de entrada no se ajustan perfectamente
a la forma del objeto (ver ejemplos en la Fig. 2.4c), por lo que pueden cubrir
zonas que se corresponden con otras entidades, como las de la escena estatica.
Nuestro sistema podria detectarlas, por tanto, en zonas con textura saliente ajena
al objeto. Un ejemplo de esto se muestra en la Fig. 5.4a.

Deteccwn de caracteristicas espureas debido a una mdscara de entrada imperfecta.

Al rechazar pizeles con valores de profundidad cuya MAD es significativamente alta, se consigue
reduczr la deteccion de caracteristicas espireas.

Figura 5.4: Efectos del pre-procesar, o no, las mdscaras de entrada.

Ante la presencia significativa de estos datos espiireos, necesitamos robustecer a
nuestro sistema con el objetivo de evitar considerarlos. Para ello, no podemos recurrir
a técnicas habituales como la comprobacién de la geometria epipolar (ver Fig. 2.7),
ya que los puntos de los objetos no son estaticos. En su lugar, como primera medida
comprobamos si el flujo 6ptico es simétrico, calculandolo de una imagen a la siguiente
y de vuelta. Si ambas localizaciones no coinciden (dentro de un margen de error de 0,1
pixeles) la caracteristica se descarta.

Como segunda medida, antes de utilizar una mascara, ésta es pre-procesada: Se ex-
trae la profundidad de todos los pixeles que cubre, y se estima su desviacién estandar
mediante la desviacidn absoluta de la mediana (MAD)?. Si denominamos a este con-
junto de profundidades como M = {D(x;),...,D(x,)}, el estimador viene dado por:

MAD = med (|D(x;) — med(M)]), con x; € M (5.1)
donde med : R" — R es la funcién que calcula la mediana (valor que separa la mitad

superior de los datos con la inferior) de un conjunto de n muestras, y | - | expresa el
valor absoluto.

3MAD es considerado como el estimador més ttil de la escala de una muestra, por aspectos como
su alto punto de quiebre (50 %) [Leys et al., 2013, Huber, 2004].
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Para ser restrictivos con los valores extremos, se asume que la distribucién de la
profundidad es Gaussiana. Con esto, el criterio para rechazar pixeles viene dado por:

om ~ 1,4826 MAD, —  pixel i rechazado si |D(x;) — med(M)| > 2,560 (5.2)

Un ejemplo de pre-procesado de la mascara se muestra en la Fig. 5.4b. Apreciandose
mejoria con respecto a la situacion anterior. Una comparacion general en el seguimiento
tras incluir las anteriores técnicas se muestra en la Fig. 5.5.

(a) Antes de incorporar las medidas (b) Tras incorporar las medidas

Figura 5.5: Seguimiento de las caracteristicas tras 200 imdgenes de la secuencia.
En (a) se ha rodeado en rojo caracteristicas detectadas en el fondo que en (b) no aparecen.
Ademds, el problema de las caracteristicas acumuladas en el borde visible del objeto se deja
de apreciar en (b).

Como tltima medida para robustecer la propuesta, Figura 5.6: Resultado simu-
estimamos, mediante un método basado en MSAC* [Torr lado de aplicar MSAC. los
and Zisserman, 2000], un modelo de rotacién, R, y trasla- puntos estdticos son rechaza-
cién, t, que mejor explica el movimiento experimentado dos (en rojo), al no ajustarse
por la nube de puntos del objeto en dos frames conse- al modelo R, t estimado.
cutivos. Los puntos que no se ajusten a ese modelo son
rechazados. ®

De esta forma, si denominamos a las coordenadas de ®
un punto del objeto expresado en la referencia mundo en

el frame ¢ como y; € R* y en el i —1 como x; € R?, Rt o ©
entonces se selecciona el modelo que presenta un menor .punt o5
valor de C' asociado: estéticos
[
C=> ¢(lejl?), conej=y;—(Rx;+t), (53)
J
e s lleylP< T2, S
¢ (llesl?) =< 5 e e 54) o
T s fel2T

4MSAC [Torr and Zisserman, 2000], es una mejora sobre RANSAC [Fischler and Bolles, 1981],
propuesta para no solo penalizar modelos que a priori han sido corrompidos por datos esptreos, sino
también estimar cémo de bien un modelo se ajusta a los datos.
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5.2. Clasificacion

donde, asumiendo que e; ~ N(0,0l3), fijamos T? = 7,810 para solo fallar en la
prediccién de un dato espureo el 5% de las veces [Hartley and Zisserman, 2004].

Cada modelo se estima mediante minimizacién de ||e;||?, utilizando para ello 3
parejas de puntos, {y;, X, }, seleccionadas aleatoriamente. Este es el minimo ntimero que
permite una estimacion de R y t, la cual obtenemos mediante el método de alineamiento
por minimos cuadrados de [Umeyama, 1991]. Dado que la presencia de esptreos es
esperable que no sea alta tras las medidas tomadas anteriormente, consideramos un
total de ~ 30 modelos diferentes. Un resultado simple de aplicar este método se muestra
en la Fig. 5.6.

5.2. Clasificacion

Como ultima parte, se clasifica cada objeto para determinar qué accién realizar
sobre él. Esta decision se basa en el nimero de observaciones disponibles sobre las
que realizar la optimizacion. Como éstas determinan el nimero de filas de la matriz
Jacobiana explicada en §4.2, es necesario disponer de observaciones suficientes para
evitar que la matriz Hessiana se vuelva singular y por tanto no se pueda realizar la
optimizacién mediante el algoritmo de Gauss-Newton.

En concreto, cada observacién p, € R? aporta 3 filas (al tener 3 dimensiones) a
la matriz Jacobiana. Por otro lado, si solo se estan optimizando puntos de control
(spline BA), cada uno aporta 6 variables a optimizar. Si ademds se optimizan puntos
del objeto (local BA), se anaden 3 variables mdas por cada uno. Asi mismo, tal y como se
comenté en §4.1, necesitamos que un objeto haya sido observado en al menos 4 frames
consecutivos para llevar a cabo la optimizacion.

Por ello, en la ventana temporal explicada en §4.1, si denominamos al nimero de
observaciones p. como k, al nimero de puntos de control a optimizar como m, y al
nimero de puntos del objeto a optimizar como n, la clasificacion de un objeto cuando
se ha seguido por un ntimero de frames, f, mayor o igual que 4, se realiza de la siguiente
forma:

objeto perdido si 3k < 6n

lasificacid
clastlicacion optimizar con spline BA si 6n < 3k < 6n+ 3m (5.5)

f>4
optimizar con local BA  si 3k > 6n+ 3m

En cambio, si f < 4, el objeto entra en espera — Su optimizacién no empieza hasta la
llegada de nuevas imagenes. Tras llevar a cabo la clasificacion, salvo que el objeto haya
sido clasificado como perdido, se inicializa el siguiente punto de control T; 5 segun lo
explicado en §4.1.
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Capitulo 6

Experimentos y Resultados

En este capitulo se presentan los experimentos que ponen a prueba la propuesta
y que sirven de motivacion de la misma. En primer lugar se cuantifica cuantitativa y
visualmente la importancia de tener en cuenta los objetos dinamicos en la estimacion
de la localizacion del sensor. A continuacién, se evalia el coste computacional del
calculo de las matrices Jacobianas de las alternativas empleadas en la literatura y
de nuestra propuesta. Tras esto, se compara el error en la estimacién de localizacién
y velocidad de un objeto, segiin si su estimacion es en tiempo discreto o en tiempo
continuo (nuestra propuesta). Finalmente, evaluamos este trabajo en una base de datos
publica y comparamos los resultados obtenidos con el estado del arte.

6.1. COLMAP en entorno dinamico

En este primer experimento evaluamos el impacto de considerar, o no, los objetos
dindmicos en la estimacién de la localizacién y orientacién (pose) del sensor. En ambas
situaciones, para estimarla empleamos COLMAP, un software del estado del arte en
StM, presentado més en detalle en §2.4.

La secuencia RGB-D empleada es swinging 4 unconstrained de la base de datos
piblica OMD (Ozford Multimotion Dataset) [Judd and Gammell, 2019]. La compo-
nente dinamica de esta secuencia, grabada en una habitacion, la aportan 4 cajas que
se balancean mediante un mecanismo de poleas (ejemplos de imagenes se encuentran
en las Figs. 5.2 - 5.5). El movimiento de la cdmara que las graba es libre (presenta
rotacién y traslacion), y es calculado mediante un sistema de captura de movimiento
(Vicon)'.

El error en la estimacion se calcula tomando el movimiento capturado por la Vicon
como el verdadero. De esta forma comparamos las estimaciones dadas por COLMAP
Ecotmap = {T1, ..., Ty} en cada instante, con las del instante més préximo de la Vicon,

'En concreto los autores hacen uso de un producto de la marca Vicon, contando con multiples
camaras infra-rojas colocadas en puntos estratégicos de la habitacién para detectar marcadores colo-
cados sobre las cajas..
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6.1. COLMAP en entorno dindmico

Evicon = {P1, ..., P,}, al tener este tiltimo una frecuencia de captura elevada (~ 7 veces
mds alta que el sensor RGB-D). En esta seccion se asume que las poses € Ecoimap; Evicon
transforman puntos de la referencia camara a su referencia global.

Antes de cuantificar el error, es necesario alinear la trayectoria estimada con la
verdadera. Esto es debido a que, a pesar de que ambas expresan la pose del sistema
de referencia de la cdmara (con origen en el centro dptico y ejes segun la Fig. 2.2),
éstas estan expresadas en sistemas de referencia globales diferentes. Por un lado, la
trayectoria estimada estd expresada con respecto al sistema de referencia de la caAmara
en la primera imagen, mientras que la verdadera estd expresada en nuestro caso en el
sistema de referencia de la Vicon.

Este alineamiento de trayectorias es comun realizarlo con el método de Umeyama
[Umeyama, 1991], mediante el cual se minimiza la diferencia cuadratica de la compo-
nente translacional. Es decir, es la transformacién (s, R, t) que minimiza la siguiente
cantidad:

% i (transl(P;) — s R transl(T;) + t)? (6.1)

Donde transl(-) lo utilizamos para expresar que solo tenemos en cuenta la componente
translacional de la matriz de transformacion. De aqui en adelante, en esta seccion,
consideramos que Egolmap, Evicon han sido alineadas segin este método.

Para cuantificar el error en una trayectoria, en la literatura es comun emplear
2 tipos de métricas diferentes. La primera de ellas es el Error Absoluto en la Pose
(APE) [Sturm et al., 2012b, Zhang and Scaramuzza, 2018], la cual estd basada en la
pose relativa (error) entre la estimada y la verdadera. Para un instante i ésta viene
dada por:
E,=P;'T,; (6.2)
Dicha pose relativa se calcula para todos los instantes y comunmente [Sturm et al.,
2012b], se calcula el error cuadratico medio (RMSE) de la parte translacional:

0,5
APEz( ZHtransl H’Z) (6.3)

Al emplear los valores absolutos de las poses, APE sirve para evaluar la consistencia
global de la trayectoria estimada. Para evaluar la consistencia local se emplea el Error
Relativo en la Pose (RPE), el cual esta basado en la diferencia del incremento entre
poses de las trayectorias. Para un instante ¢, esta diferencia viene dada por:

F; = (P7'Pia)” (T; ' Tiza), (6.4)

donde A € NT expresa el nimero de imdgenes de diferencia entre las que se calcula la
pose relativa en cada trayectoria. En esta evaluacion, usamos A = 1. Igualmente, es
comun emplear el RMSE para cuantificar el error, no solo aplicandolo a la translacion,
sino también a la rotacion:

0,5

0,5
RPEtranSlz< ZHtransl ||2) , RPErot:< ZHLog rot(F )||2> (6.5)
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Sin tener en cuenta a los objetos dindmicos | Teniendo en cuenta a los objetos dindmicos
APE [m|] RPE [m/im.] RPE [°/im.] | APE [m] RPE [m/im.] RPE [°/im.]

0.202 0.063 0.775 ‘ 0.033 0.026 0.693

Tabla 6.1: Valores de APE y RPE teniendo en cuenta o no a los objetos dindmi-
cos para estimar la pose del sensor. Se observa mejoria en todas las métricas si se impone
que en la zona de la imagen en la que se encuentran los objetos dindmicos no se extraigan
caracteristicas salientes.

= 0.983 = 0.208

_375 ~~7~ referencia —-3.75 | ———- referencia

—— estimada

estimada

=0.105

—5.00 ' - —5.00 |
-5.25 h —-5.25
—5.50 ~5.50
=0.011 = 0.003
0

~1.0 —05 0.0 0.5 1.0 —0.5 0.0 0.5 1
2 [m] 2 [m)]

-0497 =
=

(a) Sin tener en cuenta los objetos dindmicos (b) Teniendo en cuenta los objetos dindmicos

Figura 6.1: Comparacion visual de trayectorias estimadas teniendo en cuenta o
no a los objetos dindmicos. Se observa como en (b) la trayectoria estimada es significa-
tivamente mds proxima a la de referencia (verdadera). El color indica el valor de APE [m]
en cada punto de la trayectoria sequn el codigo de colores de la derecha.

En la tabla 6.1 se muestran los valores de las anteriores métricas obtenidos tras em-
plear 1.000 frames imagenes de la secuencia. El método que tiene en cuenta los objetos
dinamicos, consiste en no extraer caracteristicas salientes en las zonas de la imagen en
la que éstos se encuentran (determinadas mediante SiamMask, §2.3). Ademads, en la Fig.
6.1 se realiza una comparaciéon visual de las trayectorias estimadas con la trayectoria
verdadera?.

A partir de estas comparaciones, concluimos que el tener en cuenta a los objetos
dindmicos marca una diferencia significativa en la precision de la localizacion del sensor
en aquellas secuencias donde la componente dinamica es significativa.

Finalmente, en la Fig. 6.2 se muestran los mapas de puntos estaticos creados con
ambos métodos. A través de éstos se entiende la pérdida de precisién, ya que si no
se tienen en cuenta a los objetos dinamicos puede que las caracteristicas asociadas
a éstos no pasen el filtrado de espureos, quedando reflejados en el mapa a la vez
que corrompiendo las estimaciones de la pose de la camara al romper la asuncién
de estaticidad del mapa.

2 Ambos resultados han sido obtenidos utilizando el paquete de Python comparacién de trayectorias
evo.
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6.2. Tiempo de computo de las matrices Jacobianas

(b)

Figura 6.2: Comparacion visual del mapa estdtico creado teniendo en cuenta, o
no, los objetos dindmicos. (a) 2 imdgenes de la secuencia. (b) Mapa estdtico reconstruido
sin tener en cuenta a los objetos dindmicos. Es posible apreciar como parte de estos aparecen
en la reconstruccion final (especialmente en las zonas rodeadas). (c) Mapa estdtico recons-
truido teniendo en cuenta los objetos dindmicos. Al no extraer caracteristicas de la zona en
la que se éstos se encuentran, aspectos de la reconstruccion mejoran: por ejemplo, se aprecian
detalles mds finos en el candelabro, o menos puntos situados en donde no deberia haber nada.

6.2. Tiempo de computo de las matrices Jacobianas

En este segundo experimento, realizamos un analisis comparativo del tiempo de
cémputo necesario para calcular las matrices Jacobianas derivadas en §4.3 y lo com-
paramos con el que necesitan las técnicas habituales empleadas en la literatura. Para
el calculo de tiempos se emplea perfplot, un paquete de Python especializado en este
tipo de analisis.

En la literatura encontramos dos métodos alternativos que evitan el computo analiti-
co de las matrices Jacobianas. En primer lugar, el més utilizado es el de la dife-
renciacién automadtica empleada por [Lovegrove et al., 2013, Patron-Perez et al.,
2015, Mueggler et al., 2015, Kim et al., 2016b, Mueggler et al., 2018, Yang et al., 2021]
entre otros. El otro método, consiste en hacer uso de diferenciaciéon numérica, la
cual se empleé en [Kerl et al., 2013].

A modo de breve explicacién de ambos métodos, con la diferenciaciéon numérica se
obtiene una aprozimacién de la matriz Jacobiana (de dimensiones m x n), pues cada
elemento de la fila ¢ y columna j es calculado segun:

or;(x) r;(x+ he;) —r;(x — hej)

Jri(xj) = 8Xj ~ 9% (66)

Donde e; es el j-ésimo vector unitario (de n dimensiones) que indica la variable de
estado que se incrementa (y decrementa) por una magnitud pequena h > 0. Este
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método es considerado como inestable y mal condicionado por la introduccion de errores
de truncamiento y redondeo [Baydin et al., 2018].

X = puntos de control

—&— la version propuesta

2 .
10 —e— 2a versién propuesta
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)
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Figura 6.3: Andlisis de tiempo de computo de una matriz Jacobiana. Se aprecia
como las versiones propuestas en §4.3, necesitan una cantidad de tiempo significativamen-
te menor que las alternativas (diferenciacion numérica y automdtica). En este andlisis se
consideran las derivadas con respecto a 3 puntos de control.

Por otro lado, la diferenciacién automaética calcula las derivadas parciales de cada
elemento o nodo de un grafo computacional que representa a la funcién de interés (en
nuestro caso rp, (X)) con respecto a las entradas (§). Aplicando la regla de la cadena, el
valor de la derivada se propaga a través de los nodos que conforman el grafo. Un anélisis
detallado de la técnica se encuentra en [Baydin et al., 2018]. A diferencia del método
anterior, la diferenciacién automatica ofrece resultados exactos. Para este andlisis se
us6 la implementacién de Autograd [Maclaurin et al., 2015].

Los resultados se muestran en la Figura 6.3. Se aprecia como el cédlculo analitico
de las matrices Jacobianas ofrece ventajas en tiempo de cémputo con respecto a las
alternativas. En nuestro caso de interés, el niimero de observaciones se suele situar
en ~ 102, suponiendo por tanto, de forma aproximada, 1 y 3 dérdenes de magnitud
menos de tiempo que la diferenciacion numérica y automatica, a la vez que ofreciendo
resultados exactos (sujetos a la precisién numérica del ordenador). Asi mismo se aprecia
como la primera versién de las propuestas en §4.3 escala mejor conforme el niimero de
observaciones aumenta.

6.3. Estimacién en tiempo continuo vs discreto

En este experimento, a partir de datos sintéticos, se compara la precisién de la
estimacién de la localizacion y orientacién (pose) y velocidad de un objeto segun si su
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6.3. FEstimacion en tiempo continuo vs discreto

estimacion se realiza en tiempo discreto, o si ajustamos su trayectoria a una curva en
tiempo continuo con B-Splines cumulativos (nuestra propuesta).

Para la comparacién de la precision en la estimacion de las poses del objeto, se
crearon tres tipos de trayectorias que involucran diferentes grados de libertad: lineal,
circular y en espiral (ver Fig 6.5). En la trayectoria circular el objeto experimenta una
rotacién alrededor su eje Z, y otra alrededor del eje Z,, global (completando 2 giros).
En las trayectorias lineal y en espiral, el objeto experimenta rotacion en sus tres ejes.
El sensor RGB-D simulado sigue una trayectoria lineal o circular.

Las estimaciones en tiempo discreto de las poses del objeto se obtienen igualmente
a través de la minimizacion de la ecuacién 4.1, solo que en este caso se optimiza
directamente la pose T, del objeto (en lugar de optimizar los puntos de control de la
trayectoria interpolada T,,(t)). Al igual que con la estimacién en tiempo continuo, se
optimizan los puntos del objeto cuando existen suficientes observaciones en la ventana
temporal.
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(a) Sensor con trayectoria circular.
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(b) Sensor con trayectoria lineal.

Figura 6.4: Diagramas de caja con los valores de APE y RPE. Verde: estimacion
en tiempo continuo. Amarillo: estimacion en tiempo discreto. El eje horizontal indica el tipo
de trayectoria sequida por el objeto.

Cada secuencia artificial creada es de 100 imagenes. Para simular unos datos reales,
se introduce un ruido Gaussiano de varianza agx = 1 pixel® en las coordenadas en la
imagen de las caracterfsticas salientes y otro ruido Gaussiano con o3 = 10 mm? en los
valores de profundidad de los puntos observados por el sensor RGB-D.

En la Figura 6.4 se muestran los diagramas de caja de los valores obtenidos de
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APE y RPE en cada imagen (cada término de los sumatorios de las definiciones dadas
en §6.1), segin la trayectoria del sensor y del objeto. En ellos se observa como la
consistencia global y local son similares, es decir, a pesar de estar imponiendo un
modelo de trayectoria capaz de ofrecer estimaciones de velocidad y aceleracién (y pose)
continuas para cualquier instante temporal, ésta converge a una solucién con error en
posicion y orientaciéon similar.
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(b) Cdmara: trayectoria circular. Objeto: trayectoria lineal.

(C) Cdamara: trayectoria lineal. Objeto: trayectoria espiral.

Figura 6.5: Ejemplos de trayectorias evaluadas en este experimento. Solo se repre-
senta la nube de puntos asociada al objeto. Su color indica el instante temporal asociado al
mismo: un color mds oscuro indica mds antigiiedad. Solo se representan parte de las camaras/
objetos para evitar que las camaras y los ejes del objeto se mezclen.

63



6.3. FEstimacion en tiempo continuo vs discreto

La comparacién de la precisién de las estimaciones de velocidad (lineal y angular)
en tiempo discreto vs continuo, se realizé a través de multiples trayectorias en las
que el objeto gira alrededor del eje Z, global (describiendo un circulo), a la vez que
experimenta un giro sobre su propio eje Z,, dependiendo de dos grados de libertad:

etranls ) erot .

Ambos parametros determinan magnitudes angulares entre 2 instantes consecutivos
de los que se conoce la pose del objeto: El primero, 6;,.,5, determina el incremento sobre
Zw, mientras que 6., determina el incremento en z, (ver Figura 6.6). La motivacion
de esta eleccion reside en evaluar la robustez de las estimaciones tanto en movimientos
suaves (Oganst; Orot bajos) como bruscos (Giransi, Gror altos).
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Figura 6.6: Definicion de los grados de libertad de las trayectorias generadas.
Otranst Y Orot, TEpTESENtan respectivamente: el incremento angular medido sobre el eje Z,, global
y el medido sobre el eje 2, del objeto, entre dos poses consecutivas.

Al solo estar interesados en evaluar las estimaciones de velocidad, la localizacién y
orientacion de los sistemas de coordenadas del objeto se consideran conocidos: En el
caso discreto coinciden con los verdaderos, y en el caso continuo se define cada punto
de control asociado a un instante 7, T;, con la pose del objeto en el instante i + 2°.

El célculo de las velocidades asociadas la curva B-Spline cumulativa se realiza a
través de las Ecs. 3.75 y 3.22 para cualquier instante temporal ¢. En el caso discre-
to, asumimos que la velocidad es constante entre dos poses consecutivas, pudiéndose
calcular de dos formas (ambas son evaluadas):

» Considerar acoplamiento en la traslacion y rotacion: En este caso, tal y como se
vio en las Ecs. 3.39 y 3.26, sabemos que el incremento entre dos poses consecutivas

3Siguiendo asi la intuicién comentada en §4.1 y visualizada en la Fig. 3.6 de que en el calculo de
la pose del objeto en instante i, el punto de control de mayor peso es T;_o.
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T o1, Twoez, viene dado por:
AN A 1 —1
Tuoe = Tyorexp(T)AL) = 70 = N log(T,,,; Two2) (6.7)

Donde 7, = [v,,w,]T contiene la velocidad lineal v, y angular w,, constantes y
en la referencia del objeto, que éste experimenta durante el incremento temporal
entre poses At (con t; <t <ty =t; + At)".

s Considerar traslacion y rotacion desacopladas: En este caso, la velocidad angular
coincide con el calculo anterior:

1
wh = ~ log(RE 1 Ruvoz) (6.8)
Mientras que para v,, se considera interpolacion lineal:
L o
Vo = ERwol (two2 — twol) (69)

Este acercamiento es el seguido por trabajos del estado del arte como [Zhang
et al., 2020, Bescos et al., 2021].
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Figura 6.7: MSE en funcién de Oyanst Y Orot. Col. izquierda: Estimacion en tiempo
discreto con rotacion y translacion acopladas. Col. central: Estimacion en tiempo continuo.
Col. derecha: Estimacion en tiempo discreto con rotacion y translacion desacopladas.
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Para evaluar las estimaciones, empleamos el error cuadratico medio (MSE), es decir,
denominando a cada una de las n estimaciones en un instante i cOmo Vegt i, Westi ¥ @
los valores verdaderos (calculados analiticamente) como Vgt ;, Weti, entonces:

1o 1o
MSE, = ;uvest,i ~Vail®,  MSE, = ;Hwest,i — gl (6.10)

4Si se quiere expresar dichas velocidades en la referencia mundo, basta con aplicarles la transfor-

macién: Ryove, Ryows.
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Los resultados para las diferentes estrategias se muestran en la Figura 6.7. Se aprecia
como, a pesar de la aproximacion realizada en la colocacién de los puntos de control, la
estimacion en tiempo continuo ofrece errores mas bajos en todo el rango de valores de
Orot v Oiranst €valuados. Esto tiene sentido ya que con la estimacién mediante B-Splines
Cumulativos ctibicos no tenemos la restriccién de asumir velocidades constantes entre
poses consecutivas del objeto.

6.4. Evaluacion en base de datos piblica

En este ultimo experimento evaluamos el sistema propuesto completo y nos compa-
ramos con el estado del arte en la secuencia swinging 4 unconstrained de la base de
datos OMD [Judd and Gammell, 2019], utilizada en §6.1 para destacar la necesidad de
tener en cuenta a los objetos dindmicos en la estimacion de la localizacion del sensor y
creaciéon del mapa estatico. En este caso, nos centramos en el error de las trayectorias
estimadas de los objetos.

Siguiendo el protocolo de los trabajos del estado del arte [Judd et al., 2018, Zhang
et al., 2020, Huang et al., 2020, Bescos et al., 2021], empleamos los primeros 500 frames
de la secuencia. En cuanto a las métricas para comparar las trayectorias estimadas con
las verdaderas, empleamos nuevamente el APE y RPE introducidos en §6.1, y ademas
los errores maximos de la componente translacional.

En este caso, el alineamiento necesario para las trayectorias difiere del explicado en
§6.1. Esto es debido a que el origen del sistema de referencia escogido para cada objeto
puede diferir arbitrariamente del utilizado en la trayectoria verdadera, al no emplearse
ninguna convencién como con los sistemas de referencia de una camara (Fig. 2.2). Esta
diferencia, de manera visual aparece en la Figura 6.8.

De esta forma, contamos con dos trayectorias de dos sistemas de referencia distintos
{01,092}, expresadas en dos sistemas de referencia globales diferentes {ws,wy}. Para
subsanar este inconveniente, y siguiendo las recomendaciones de los autores de la base
de datos® llevamos a cabo dos transformaciones:

= ler Alineamiento: Imponemos que la primera pose de la trayectoria estimada
y la verdadera coincidan. Es decir, si el conjunto de poses estimadas de un objeto
vienen dadas por et = {Ty,,5,---» Ty}, v €l conjunto de poses verdaderas
asociadas viene dada por &y = {T,,,,,---,Th,.,} a cada pose, T., , € Ext le

aplicamos la siguiente transformacion:

T, .. T (6.11)

w2w1 w101

donde T,,,,,, esla pose de la cdmara en la imagen i = 1 desde la referencia de la
Vicon, ya que ésta se toma como sistema de referencia mundo de la trayectoria

estimada.

= 20 Alineamiento: La anterior transformacion sirve de alineamiento de las refe-
rencias globales. Falta alinear las referencias de los objetos. Para ello, llevamos a

Shttps://github.com/robotic-esp/dataset_tools/issues/3
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imagen ¢ imagen 7 + 1

-

w1

wWo

Referencia global

Referencia global trayectoria verdadera

L}
trayectoria estimada 4

Figura 6.8: Esquema de referencias de la trayectoria estimada - verdadera. Debido
a que no existe una convencidn para definir el sistema de referencia de un objeto, contamos
con un par de trayectorias de dos sistemas de referencia distintos, tanto en localizacion co-
mo en orientacion: {01,092}, expresadas desde dos sistemas de referencia globales diferentes

{wr, wa}.
cabo la siguiente optimizacion:

T,,,, = arg min Z [Log (Ti T,,0, (T )_1)]2

w201 w202
010 )
102 i=1

. Z . . .
Por lo que para alinear finalmente cada pose, T, , , aplicamos la siguiente trans-
formacion:
i
Tw201 T0102

Con las poses de la trayectoria estimada alineadas con la trayectoria verdadera
calculamos las métricas comentadas anteriormente. En las Tablas 6.3 y 6.2 se muestran
los resultados obtenidos por nuestra propuesta, asi como los reportados por los trabajos

del estado del arte en sus respectivas publicaciones.

Sistema ‘ Cajal Caja2 Caja3 Caja4
[Judd et al., 2018] 0,36 0,64 0,45 5,94
[Judd et al., 2018] (act.) 0,44 0,27 0,99 0,39
[Huang et al., 2020] 024 045 024 4,69

Nuestro con Local BA | 0,39 0,30 0,77 0,47
Nuestro sin Local BA 0,29 0,38 0,27 0,32

Tabla 6.2: Comparacion con MVO [Judd et al., 2018] y Cluster VO [Huang et al.,
2020] de los errores de translacion mdximos en la trayectoria [m]. Los mejores resultados
son marcados en negrita. De MVO se reportan dos versiones, la aceptada en la revista RA-L,
y una version actualizada en la que los autores reportan ciertas mejoras. Se observa como

nuestro sistema ofrece resultados similares, siendo el mejor para una de las cajas.
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6.4. FEvaluacion en base de datos publica

De nuestra propuesta se reportan los resultados de emplear Spline BA + Local BA
(segun la clasificacién 5.5) y de emplear tan solo Spline BA. Esta tltima opcién, es
atractiva por su menor coste computacional (menos variables a optimizar), teniendo
como desventaja el no poder corregir el error en la localizacién de los puntos. Sin
embargo, esta opcion presenta ademas menor error en algunas de las trayectorias, es
decir, optimizar la localizacion de los puntos del objeto puede conllevar un mayor error
en la estimacién de la trayectoria. Por esta razén, seria interesante investigar mas
medidas para la deteccién de datos esptireos.

Sistema ‘ Caja 1l ‘ Caja 2 ‘ Caja 3 ‘ Caja 4
‘ APE (m) RPE (m/f) RPE (°/f) ‘ APE (m) RPE (m/f) RPE (°/f) ‘ APE (m) RPE (m/f) RPE (°/f) ‘ APE (m) RPE (m/f) RPE (°/f)
[Zhang et al., 2020] - 0,030 1,01 - 0,023 1,36 - 0,029 1,64 - 0,026 1,75
[Bescos et al., 2021] 0,41 - - 0,37 - - 1,09 - - 0,28 - -
Nuestro con Local BA 0,16 0,061 6,01 0,18 0,038 5,00 0,37 0,041 4,59 0,38 0,040 3,19
Nuestro sin Local BA 0,12 0,051 6,29 0,19 0,043 5,90 0,12 0,051 6,05 0,21 0,043 4,25

Tabla 6.3: Comparacion con VDO-SLAM [Zhang et al., 2020] y DynaSLAM IT
[Bescos et al., 2021]. Los mejores resultados son marcados en negrita. Nuestra propuesta

presenta mejores resultados en cuanto a APE, mientras que VDO-SLAM presenta mejores
valores de RPE.
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Capitulo 7

Conclusiones

En este TFM se ha presentado un sistema para estimar el movimiento de los objetos
dindmicos presentes en una escena a través de un sensor RGB-D y en tiempo continuo.
En concreto, se ha propuesto ajustar las trayectorias seguidas por los objetos a curvas
B-Spline Cumulativas ctbicas, un tipo de curva que entre otras propiedades, presenta
la ventaja de ofrecer estimaciones continuas de posicién y orientacion, velocidad y
aceleracion para cualquier instante temporal.

Bajo nuestro conocimiento, tras repasar los trabajos relacionados, este acercamiento
no habia sido explorado a través de sensores visuales antes en la literatura, diferen-
ciandonos asi de los trabajos anteriores, los cuales realizan estimaciones en tiempo
discreto (solo para los instantes de los que se disponen de datos sensoriales).

Especial atencién se ha prestado a la derivacion analitica de las matrices Jacobianas
necesarias para la optimizacién. Hasta la fecha, los trabajos relacionados de la literatura
emplean técnicas computacionalmente costosas (diferenciacién automadtica) y/o apro-
ximadas (diferenciacion numérica). De esta forma, esperamos que esta contribucién
pueda servir de ayuda para futuros trabajos que usen este tipo de curvas.

Nuestro sistema se ha evaluado de diferentes formas. En primer lugar, se ha mos-
trado de manera cuantitativa y cualitativa la necesidad de tener en cuenta a los objetos
dindmicos en aquellas escenas donde su presencia es dominante.

A continuacién, se han comparado las estimaciones en tiempo discreto y continuo:
Por un lado, a pesar de estar imponiendo un modelo de trayectoria, se ha comprobado
que para distintos tipos de movimientos de camara y objetos, esto no supone una
reduccion en la precision de la estimacion de la orientacion y posicion. Por otro, al no
estar asumiendo un modelo de velocidad constante entre imégenes consecutivas, esto
ha conllevado a unos mejores resultados en cuanto a estimacion de la velocidad lineal
y angular experimentadas.

Para finalizar, se evaluado nuestro trabajo en una base de datos ptblica, disenada
especificamente para evaluar este tipo de sistemas, obteniendo resultados similares al
estado del arte, y en algunos casos, ofreciendo mejores resultados, validando asi la
propuesta.
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7.1. Trabajo futuro

7.1. Trabajo futuro

Existen varias direcciones de trabajo futuro de las que nuestro trabajo se podria
beneficiar. En primer lugar, se podria incluir un método para volver a reconocer un
objeto después de que éste se haya dado como perdido. Con una adecuada colocacion
de los puntos de control esto permitiria interpolar la trayectoria que hasta ese momento
habia sido perdida. Para ello, podrian emplearse descriptores visuales de los objetos,
por ejemplo a través de la creacién de bolsas de palabras [Géalvez-Lépez and Tardos,
2012], o a través de técnicas de aprendizaje profundo como [Wojke et al., 2017].

Otro paso interesante a realizar seria el de optimizar no solo la localizacion de los
puntos de control y de los puntos del objeto, sino también las matrices de transfor-
macién de las camaras y los puntos del mapa estatico. Contando con un modelado
adecuado del ruido en las observaciones, esto podria beneficiar al conjunto global de
los parametros al poder incrementar el nimero de términos relacionados en la matriz
de informacién (H). Otro detalle de cara a la optimizacién, seria el de llevar a cabo
la marginalizacién de las variables de estado que dejan de optimizarse en la ventana
temporal, segin la propuesta de [Leutenegger et al., 2015].

Asi mismo, para obtener mayores prestaciones de cara a la ejecucion, podria plan-
tearse cambiar el lenguaje de programacion a CT*. Esto permitirfa ademds emplear
paquetes especificos de programacién relacionados con la optimizacion de grafos de
factores, como [Dellaert, 2012, Kiimmerle et al., 2011].
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Apéndice A
Anexo matrices Jacobianas

En este Anexo se presentan algunos desarrollos utilizados en la derivacién de las
matrices Jacobianas de §4.3. En primer lugar, un resultado que se empled en la Ec.
4.44, fue la diferenciacién de un vector con respecto a una matriz de trans-
formacion vectorizada tal que:

L 8’1(‘1 7, sabiendo que: P, =Tpy, = pa=Rp,+t= |R?p,+t> (A.1)
Rr3pb + t3

Donde recordemos que la notacién R, R/?, t/ hacian referencia a la columna y fila i
de R y al j—ésimo elemento de t, respectivamente. Ahora, recordando que la version
vectorizada de una matriz de transformacion viene dada por:

Rcl
R t Rcl RC2 RC3 t Rc2 19
T_{O 1}—{0 o o 1l = vec(Tyo) = R eR (A.2)
t

Significa que diferenciando cada elemento del vector p, con respecto a cada elemento
de la version vectorizada de T, se obtiene:

5 pb 0 0 p> 0 0 pl O 0O 100
%: 0 pL 0 0 p2 0 0 pdP 0 010 (A.3)
0 0 p. 0 0 p> 0 0 pd oo 1

Que, afortunadamente se puede expresar de manera compacta a través del producto
de Kronecker ® [Van Loan, 2000]:

0P,
oT

= [pr 1} ® I3x3 (A4)

Otra de las herramientas usadas en Ecs. como 4.54 y 4.55, es la diferenciacién
entre matrices de transformacion vectorizadas tales que:

T, Ty, 0T, T,

{?
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El primer término de la Ec. A.5, lo podemos derivar desplegando T, T} en su version
vectorizada:

RI'R§! ]
R?R;!
R°R;!
0T, T, 0 ([R.Ry Ruty+t,]\ 9 || RI/RY (A6)
oT, 0T, 0 1 T OT, : :
Rty + t0
Rty + t}
Rty 4t |
Centrandonos en un sub-bloque:
9 R/ITY!
oTs RITH | | =R, (A7)
b\ |RPTY

Implica que organizando los elementos segin la columna ¢ correspondiente, obtenemos:

R, 0 0 0O

0T, T, 0 R, 0 0]

9T, |0 o R, 0 =L ®R, (A.8)
0 0 0 R

S|

El segundo término de la Ec. A.5, lo podemos obtener basdandonos igualmente en el
desarrollo de la Ec. A.6. Por ejemplo, si derivamos manualmente las 3 primeras filas:

P RI'RY T 0 0o T 0 0o T 0 0o T 0
R2RY =10 T 0 0o T 0 0o T 0 0 T
oT 41
@ RPRE! 0 0 T8 0 0 T 0 0 T 0 0 T,
(A.9)
Siguiendo esta derivacién manual, se obtiene finalmente:
oT, T,
T, =T @ Isxs (A.10)

Finalmente, el resultado empleado en la Ec. 4.57 se justifica a continuacion. Este
consiste en la siguiente diferenciacién del mapeo exponencial evaluado en la

identidad:
OExp(T)

or =0

Tal y como se vio en la Ec. 3.46, el mapeo exponencial viene dado por:

exp(r") = exp <H A) _ {epr)“’A) Vl"} , (A12)

(A.11)

w

A -1 sinf, A 1—cosf(, JA\2
donde {exp(w ) 3 5w = (W) con 0 = |jwl| (A.13)

_ 1—cosf, ,A O—sinf (, ,A\2
=I; + =W + = (Wh)
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Apéndice A. Anexo matrices Jacobianas

Las derivaciones correspondientes a v € R? son directas:

A
%LM = 012><3, Vv € RS <A14)
ov
oVv oVv
— =V, V R? = — =1 A.15

Por otro lado, en cuanto a w € R3, se observa lo siguiente:

0 0
ov
@TA/ = a5 (A.16)
=0 =0

oVv A%
9) ow

De manera directa 0v/0w = 0. Para justificar por qué 0Vv/9V = 0, nos podemos

fijar en su resultado general:

oVv
Ow

N oVv
ov

=0 =0 =0

Vv
ov
Por lo que siv=0= 0Vv/0V =0

= VT X IS><3 (Al?)

Por tltimo, en cuanto a dexp(w”)/0dw evaluada en w = 0, algunos resultados que
permiten simplificar su derivacién son:

0
8—wV€C<Ig) = 09><3 (A]'S)
0 siné
i — Al
(%}k 0 w=0 0 ( 9)
0 1—cosb
iw/\ =G (A.21)
8wk w=0 B ’ ‘
i(c.u/\)2 = w'"Gj + G’ = 03,3 (A.22)
awk w=0 w=0
. sind B
élir(l) 7 =1 (A.23)

Donde wy, es el elemento k-ésimo de w = [wy,ws,ws|T. Por tanto:

0 A 0 0
80)1 eXp(UJ ) o 1, 8w2 exp(w ) oo 2 80.}3 eXp(w ) oo 3 ( )
es decir, en su version vectorizada pasa a ser:
9 &
% exp(w”) = |-Gy (A.25)
w w=0 _G3
Por lo que finalmente, juntando todo lo anterior:
033 —Gy
OExp(T) 033 —Go
AN — A.26
or | _o |Osxs —Gs (A.26)

Isi3  —03x3
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