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RESUMEN

En la actualidad los sistemas tienen cada vez un mayor tamafio y complejidad que
requiere la utilizacién de modelos que describan su comportamiento. La solucidn a es-
te problema consiste en la simulacion de sistemas para reproducir el comportamiento
de un sistema dindmico mediante la interpretacion de un modelo. En este trabajo se
utilizan sistemas de eventos discretos que se caracterizan porque su estado de funcio-
namiento se ve alterado en instantes puntuales de tiempo.

Sin embargo, para poder simular sistemas de gran tamafio y complejidad es necesa-
rio que la simulacién y las herramientas que se utilicen sean escalables. Para lograrlo
se realiza el desarrollo e implementacion de un simulador distribuido de sistemas de
eventos discretos modelados por redes de Petri. El simulador utiliza el método de sin-
cronizacién conservativo mediante el uso de los mensajes de lookahead.

Debido a que los modelos a simular tienen un gran tamafo el simulador debe tener unas
prestaciones adecuadas al realizar simulaciones de alta escala. El principal mecanismo
del que dependen sus prestaciones es del lookahead, el cual es de vital importancia
y depende del modelo a simular. En el trabajo se realiza un andlisis profundo de la
gestion del lookahead, tanto de su calculo como de cuidndo y de qué forma se debe
realizar la transmision del mismo. Se utilizan dos métodos diferentes: cdlculo dindmico
de lookahead con envio al terminar de simular y célculo con vector de lookahead con
solicitud de lookahead. En los dos casos se analiza para qué tipos de simulaciones son
mas adecuados y se realizan pruebas en un entorno on premise de la Universidad de
Zaragoza.

Con la mejora del rendimiento que se consigue con los métodos anteriores se pueden
simular modelos de mayor tamafio. No obstante, no es suficiente para modelos de gran
escala que necesiten el uso de un nimero elevado de maquinas. Para solucionarlo se
propone una solucién innovadora en este campo que se ha llamado simulacién a nivel
de regiones. Consiste en dividir la simulacién en regiones y propagar de una forma
rapida la informacion de una regidn a otra para acelerar la simulacion en modelos de
alta escala. Una region seria un agrupamiento de procesos de simulacion, los cuales se
ejecutan cada uno en una maquina.

En conclusién, el simulador distribuido desarrollado es una siguiente version al que
habia antes del trabajo, realizado por el grupo de investigacion COSMOS. Con es-
te trabajo se ha logrado mejorar las prestaciones del simulador distribuido ofreciendo
diferentes mecanismos de gestion del lookahead que presentan un mayor o menor ren-
dimiento en funcién del modelo a simular. También se ha presentado el disefio de un
método para permitir simulaciones de alta escala que tengan un coste temporal acep-
table. Ademas, se ha colaborado en la publicacién de un articulo de investigacion que
ha sido elegido como mejor articulo de la conferencia en la GECON.
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1. Introduccion

1.1. Motivacion

En la actualidad los sistemas tienen una alta complejidad lo que requiere la utilizacién
de modelos que describan su comportamiento. Como herramienta para el disefio y de-
sarrollo de estos sistemas se utiliza la simulacion de sistemas de eventos discretos de
grandes dimensiones modelados con redes de Petri. La simulacion no es posible reali-
zarla de forma centralizada por el gran tamafio de estos modelos, haciendo necesario la
utilizacién de motores de simulacién distribuidos para comprender y analizar su com-
portamiento. Asi se consiguen mejores prestaciones al aprovechar la concurrencia real
del procesamiento.

La simulacion distribuida de sistemas de eventos discretos es una estrategia conocida
pero la gestion de eventos con estampillas temporales que viajan por la red introdu-
ce dificultades ante el retraso de eventos o la llegada desordenada de eventos. Es un
problema de sincronizacién en el que la simulacién distribuida se debe realizar en
un orden correcto de tiempo. Se pueden diferenciar dos estrategias de sincronizacion:
conservadora y optimista. Estd claro que la optimista limita mucho por la gestion del
almacenamiento de las historias de la simulacion hasta el estado en el que se detecta
un evento perdido de cara a recuperar un estado pasado seguro. Sobre todo penaliza
o impide completamente la introduccién de mecanismos de balanceo de carga en la
arquitectura distribuida y el balanceo de las partes de modelo a simular en cada uno
de los procesos de simulacion (SP). Esto hace que a priori se descarten las técnicas
optimistas y se adopte como estrategia la simulacion conservadora.

1.2. Objetivos y alcance

El objetivo del proyecto es la construccién de un simulador distribuido con estrategia
de gestion de los eventos conservadora, explotando los mecanismos de mejora de las
prestaciones de la simulacion conservadora. La estrategia conservadora requiere que
no existan eventos etiquetados para un tiempo anterior al tiempo al que se quiere avan-
zar el reloj en un proceso de simulacién o simbot. Esta tactica de aseguramiento estd
basada en el intercambio de informacién entre los procesos de simulacién acerca de
hasta qué valor de tiempo se pueden avanzar los relojes teniendo en cuenta los eventos
que producirdn y enviaran en un futuro los distintos procesos de simulacion.

El cédlculo de estas predicciones se puede hacer porque de una manera implicita o
explicita podemos referirnos al modelo de redes de Petri para obtener esta informa-
cién. La obtencién de esta informacion es lo que se llamard célculo del lookahead.
Este cdlculo es crucial para introducir paralelismo en la simulacién, cuyo rendimiento
depende principalmente del lookahead. En modelos de gran tamafio el lookahead es la
clave para que su simulacion se pueda realizar en un tiempo razonable.

En este proyecto se analizan algunas de las estrategias de calculo y envio de lookahead



y se aporta una solucién innovadora para la simulacion de alta escala, que se ha llamado
simulacion a nivel de regiones.

1.3. Contexto

Este proyecto ha recibido una de las becas “Practicas con TFM del I3A” y se ha rea-
lizado en el grupo de investigaciéon Computer Science for Complex System Modeling
(COSMOS), cuya labor se centra en el desarrollo de sistemas distribuidos complejos.
El contexto y antecedentes de este trabajo parte de los articulos de investigacion pre-
sentados por los profesores Unai Arronategui, José Angel Baiiares y José Manuel Co-
lom de la Universidad de Zaragoza [2,4]]. En estos articulos se propone una metodo-
logia dirigida por el modelo para la simulacién distribuida de eventos discretos basada
en redes de Petri. Se propone un lenguaje jerarquico o basado en componentes de mo-
delado, el proceso de elaboracion de redes de Petri sin jerarquia y un compilador que
genera cddigo eficiente para la simulacion de redes de Petri.

Mediante diferentes proyectos de varios estudiantes como el Trabajo de Fin de Grado
de Sergio Herrero Barco [5]] de la Universidad de Zaragoza, se realiz6 una primera im-
plementacion del compilador y los servicios bésicos para la simulacion distribuida en
Java. En este punto se disponia de una solucion ad hoc para una simulacion distribuida
para una red especifica utilizada para comenzar a probar el sistema.

Después en las practicas del master que hice antes de este trabajo realicé un simula-
dor distribuido en Java mas completo, permitiendo simular redes de Petri de grafos
marcados. Este simulador estaba disefiado para redes de Petri de pequefio tamafio, y
la gestion del lookahead era muy bésica y de bajo rendimiento ya que no se habia
analizado.

Una vez situados los antecedentes, este trabajo consiste en el desarrollo e implemen-
tacion de un simulador distribuido en el lenguaje de programacién Rust [6]], con un
analisis profundo de la gestion del lookahead con el objetivo de simular redes de alta
escala.

Ademds, este trabajo ha sido realizado en paralelo al Trabajo de Fin de Grado de Alvaro
Santamaria [7]], del cudl se ha utilizado una parte de su simulador implementado en
Rust como cédigo base.

1.4. Herramientas y tecnologias usadas en el proyecto

El simulador distribuido ha sido implementado en el lenguaje de programacion Rust.
El uso de este lenguaje era un requisito impuesto por el grupo de investigacién en el que
se realizd el trabajo. El motivo por el que en su momento se selecciond este lenguaje de
programacion es debido a que permite obtener unas elevadas prestaciones, similares a
las que se obtienen en otros lenguajes como C++. Sin embargo, Rust tiene un modelo
mas seguro de gestion de memoria y concurrencia lo que favorece el desarrollo del
simulador distribuido.

Como entorno de desarrollo se ha utilizado Visual Studio Code [8]] con la extensién de
Rust [9]].



Se ha utilizado GitHub para el control de versiones y compartir el c6digo mediante una
organizacion que se cred llamada simbots-swarm. En esta organizacion hay multiples
repositorios para mantener separadas distintas versiones del simulador, junto a otros
trabajos del grupo de investigacion relacionados con el simulador distribuido.

1.5. Estructura del documento

La estructura de la memoria se basa en las fases en las que se ha dividido el desarrollo
del proyecto, empezando por las secciones de introduccion y estado del arte donde
se explica el contexto del problema a resolver, los principales objetivos y la situacién
actual.

El capitulo [3| trata sobre el andlisis y el disefio del sistema, explicando las diferentes
posibilidades que hay y las decisiones tomadas.

El capitulo 4] es sobre la implementacién realizada y el capitulo [5| explica como se ha
validado el sistema y los resultados obtenidos.

Por tltimo, el capitulo [ contiene las conclusiones, el posible trabajo futuro que puede
realizarse y una valoracion personal sobre el trabajo realizado.

En el anexo de este documento aparecen algunos aspectos més detallados y otras op-
ciones de disefio que se analizaron y fueron descartadas por determinados motivos.



2. Simulacion distribuida de sistemas
de eventos discretos

2.1. Los principios de la simulacion distribuida y los
problemas fundamentales

La simulaciéon computacional es el funcionamiento de un programa computacional
(simulador) que representa el comportamiento a lo largo del tiempo de otro sistema.
Utiliza modelos matematicos como sistema de representacion para estudiar la evolu-
cion temporal de determinados elementos y sus relaciones. En este trabajo se utilizan
redes de Petri para modelar el comportamiento del sistema.

Segun la forma en que cambien las variables de estado a lo largo del tiempo se puede
diferenciar entre simulacién de tiempo continuo y discreto. Si es de tiempo continuo
puede haber cambios en todos los puntos durante la simulacién mientras que si es
de tiempo discreto solo ocurren en tiempos discretos de tiempo. En este tltimo caso
el tiempo puede avanzar de forma escalonada con incrementos fijos de tiempo o de
manera no regular si la simulacion esta dirigida por eventos.

En este trabajo se utiliza la simulacién de sistemas de eventos discretos, donde un
evento es un suceso que provoca una modificaciéon de las variables de estado que re-
presentan el estado actual del sistema. Estos eventos estin etiquetados con una marca
temporal que permite identificar el tiempo en que es procesado.

La simulacion distribuida es la ejecuciéon de simulaciones sobre computadores que
no comparten reloj y se comunican a través de una red de comunicacién de datos.
En este trabajo cada computador que simula una parte del modelo se llama proceso de
simulacién (SP) 0 simbot, y lo que simulan es una subred. Para lograr una simulacién
global correcta del modelo cada SP debe procesar los eventos en el orden correcto de
estampilla de tiempo global, por lo que debe actuar de forma sincronizada respetando
la causalidad global.

La decision de realizar simulaciones distribuidas en lugar de centralizadas se debe a
que para modelos de gran tamaifio no es posible realizarlo en una sola maquina por
el tamafio en memoria requerido, necesario para representar el estado. Otro aspecto
es el tiempo de la simulaciéon que al utilizar multiples maquinas permite reducirlo
obteniendo mejores prestaciones.

Al utilizar la red de comunicacion los mensajes con eventos pueden llegar desorde-
nados o no llegar en el tiempo esperado. La simulacién distribuida debe garantizar la
restriccion de causalidad local para que la ejecucion sea equivalente a la correspon-
diente simulacion centralizada en un solo computador. Los eventos contenidos en los

I'Utilizamos en la memoria SP en lugar del tradicional LP (Proceso 16gico), porque SP implica un
motor de simulacién y la particion del cédigo. La diferencia principal es que un LP es compilado y por
lo tanto sélo es posible balancear la carga moviendo todo el LP.
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mensajes entrantes deben ser procesados en el orden correcto de estampillas de tiempo
globales de eventos, pudiendo utilizar dos estrategias:

= Sincronizacién conservadora: Evitar violar la restricciéon de causalidad local.
Se espera hasta que sea seguro que no van a llegar eventos con tiempo menor
para no procesar eventos con estampilla de tiempo fuera de orden.

= Sincronizacion optimista: El tiempo avanza permitiendo violaciones de causa-
lidad local. Durante la ejecucion al detectar eventos procesados fuera de orden

se recupera el estado del sistema hasta ese evento mediante un mecanismo de
rollback.

En este trabajo se opta por la sincronizacion conservadora debido a que se van a utilizar
modelos de gran tamafio. Se ha descartado utilizar la sincronizacién optimista por el
elevado consumo de memoria que puede tener al guardar la evolucion del estado del
sistema, necesario para recuperar un estado si se detecta un evento procesado fuera
de orden. Ademas, en otros trabajos del grupo de investigacion también se utiliza la
sincronizacion conservadora para aspectos como el balanceo de carga.

La sincronizacion conservadora tiene distintas soluciones como la evitacion de bloqueo
con mensajes vacios o nulos, la deteccién de bloqueos y recuperacion, o algoritmos
sincronos. La solucién mds conocida es la utilizacion de mensajes nulos que es la que
se utiliza en este trabajo.

2.2. Sincronizacion conservadora con evitacion de blo-
queo (lookahead)

En la sincronizacién conservadora un SP solo puede procesar eventos seguros, es decir,
eventos hasta un tiempo de simulacion para los cuales se ha garantizado que el SP no
recibird eventos externos con marca de tiempo menor al tiempo de simulacion actual
(reloj local, LVT). Ademas, todos los eventos (internos y externos) deben ser proce-
sados en orden cronoldgico. Esto garantiza que el flujo de mensajes producido por un
SP esté en orden cronoldgico. También es necesario preservar el orden de los mensajes
enviados entre los SP (estructura FIFO) para garantizar que no puedan llegar mensajes
fuera de orden cronoldgico [1].

La solucién consiste en que un SP antes de simular hasta un cierto tiempo debe tener
informacién de los SPs que tengan relacion con él. Para ello debe esperar un mensaje
de estos SPs que tengan informacién del siguiente evento que le van a enviar y en qué
tiempo. Se puede producir un problema de bloqueo mutuo si un SP estd esperando a
que llegue un mensaje de otro SP pero este SP ya esta bloqueado porque también esta
esperando alglin mensaje. La figura[I] muestra este problema en el caso de 3 SPs.

Para solucionar este problema se utilizan mensajes nulos que son mensajes que envian
los SPs y no llevan contenido pero tienen una marca de tiempo que indica el tiempo
minimo hasta el cual ese SP no va a enviar ningtin evento. Estos mensajes son los va-
lores de lookahead (L), que se caracterizan por ser mensajes de control que transmiten
informacion temporal.
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Figura 1: Bloqueo mutuo en simulacién conservadora (extraida de [1])

Existen diferentes estrategias para reducir la sobrecarga causada por la transmision de
mensajes nulos [3], ya que la comunicacién SP a SP en simulacion distribuida tiene
un coste importante. Estas estrategias consisten en que o los SP envian los mensajes
nulos en un determinado momento o los SP solicitan mensajes nulos (On-demand Null-
Message Sending, REQ).

En el primer caso, se pueden enviar los mensajes nulos cada vez que se avanza el tiem-
po (Standard Chandy-Misra-Bryant protocol, STD), cuando expire un cierto tempori-
zador (Timeout-based Null-message Sending, TIM) o cuando un SP no tenga nada pa-
ra simular y vaya a entrar en un estado de parada (Deadlock Avoidance Null-Message
Sending, BLO), entre otros casos. En el articulo citado se analizan otras opciones aun-
que existen otras alternativas que son menos habituales.

La variedad de alternativas se debe a la busqueda de un equilibrio entre tener valores
actualizados de los otros SP sin sobrecargar la red con mensajes nulos que provoquen
una pérdida de prestaciones.

Otra opcioén es el protocolo de simulacién ideal (Ideal Simulation Protocol, ISP) que
utiliza una traza de una ejecucion de simulacion previa para determinar si un SP puede
avanzar con seguridad. Es la ejecucion ideal al no tener sobrecarga de sincronizacion
por lo que sirve como referencia para comparar simuladores.

2.3. Modelo basado en redes de Petri

Hay una gran variedad de tipos de redes de Petri segtn su aplicaciéon en problemas
especificos. Existen distintas clasificaciones para ellas pudiendo diferenciar a alto nivel
entre redes de Petri cldsicas y las extensiones que se han ido creando. Las redes de Petri
cldsicas son un grafo dirigido con dos tipos de nodos: lugares y transiciones. Entre los
nodos estan los arcos dirigidos que unen las transiciones con los lugares y viceversa.
Los lugares tienen asociados elementos llamados tokens o marcas que definen el estado
de la red y sirven para establecer las condiciones de disparo de una transicion. Dentro
de estas redes hay distintas variantes segun las restricciones que se apliquen a la red.

Estas redes de Petri no se pueden aplicar en algunos problemas por lo que fueron sur-
giendo extensiones. L.a mas comun es la de tiempo aunque hay otras como las jerarqui-
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cas y las coloreadas. Con las redes de Petri clasicas no es posible manejar tiempo por lo
que se agrega al modelo el concepto de tiempo para poder describir el comportamiento
temporal del sistema. Dos de las clases de redes de Petri temporizadas mds habituales
son las redes de Petri de tiempo determinista y redes de Petri de tiempo estocéstico.
Estos tiempos hacen referencia al tiempo de disparo de las transiciones.

En este trabajo las redes de Petri que se van a utilizar son binarias y grafos marcados
en los que cada lugar tiene exactamente un arco de entrada y un arco de salida. Por
tanto no tienen conflictos en el disparo de transiciones. En este tipo de redes solo hay
un tipo de ejecucion con unas ciertas proporciones. El motivo de usar grafos marcados
es porque hay un campo lo suficientemente amplio de workflows que utilizan grafos
marcados, junto a que el calculo del lookahead es mas sencillo, y en una primera apro-
ximacion al problema se ha elegido esta restriccion. Como trabajo futuro se podria
ampliar las redes de Petri permitidas incluyendo tiempos estocdsticos o conflictos, en-
tre otros aspectos.

La utilizacion de redes de Petri para representar el modelo a simular [2]] permite me-
jorar el rendimiento al utilizar un mecanismo basado en la caracterizacion de la sensi-
bilizacion de una transicion mediante una tunica funcién, denominada Linear Enabling
Function (LEF) [10]. En el anexo [I| se explica este mecanismo. De esta manera en la
simulacion se utiliza una representacion basada en LEFs en lugar de la especificacion
clasica de lugar/transicion.

El uso de LEFs se debe a que el coste computacional tedrico de una simulacién cen-
tralizada es lineal respecto al tamafo de la red, mientras que con la representacion
lugar/transicion el coste es exponencial. Por tanto el uso de redes de Petri con LEFs es
vital para poder simular redes de gran tamano.

En una simulacién distribuida, una red de Petri se divide en subredes que se simulan en
diferentes SPs. Estos SPs estdn conectados a otros SPs segtn las subredes que simu-
lan, de forma que las salidas de transiciones de una subred pueden estar conectadas a
transiciones de otros SPs. La transicion que tenga algun lugar de salida externo, hacia
otro SP, se denomina transicion de salida mientras que la transicion que tenga ese lugar
como entrada, una entrada que venga del exterior, se llama transicion de entrada.

Por ejemplo en la figura 2] se puede ver una red de Petri y la red equivalente en tres
subredes. En la subred O (central) la transicién t0 seria una transicién de salida porque
tiene dos lugares de salida que son lugares de entrada de la transicion t1 de la subred
1 (izquierda) y de la transicion t2 de la subred 2 (derecha), que son transiciones de
entrada.

El concepto de lookahead en redes de Petri es el minimo tiempo en que una transicion
de salida va a generar una marca. Esto quiere decir el tiempo en que como minimo
los lugares de salida de una transicién de salida van a tener una marca, y por tanto el
tiempo en que los correspondientes lugares de entrada de los SP destino van a recibir
una marca.

Para ilustrar los algoritmos propuestos, utilizaremos la red de Petri de la figura (3| que
es una red formada por un niimero de subredes secuenciales que tienen sincronizado el

13



subnet 1 subnet O subret 2

P5£ p5 po 6
e
3 td
t5
p3
? " P
to
1 t2

Figura 2: Red de Petri (izquierda) y su division en tres subredes (derecha).

principio y final de su ejecucion. Esta red estd formada por multiples ramas secuencia-
les que en la simulacion distribuida se dividen en subredes de forma que cada proceso
simula una de estas subredes. Ademds una de las subredes estd compuesta por las dos
transiciones de sincronizacion que son la primera y la ultima de la figura. En la figura
se muestra una red con h ramas que serdn subredes, con v transiciones en cada una de
las ramas.

Se utiliza este tipo de red de Petri porque es un grafo marcado que tiene una fécil
distribucion en subredes y permite detectar de una forma rapida posibles fallos en la
simulacion.

Sin embargo, si se utilizan otras redes de Petri su analisis es mas complejo. Respecto a
las transiciones de entrada, se deben tener en cuenta todas de la subred puesto que su
comportamiento depende de esos factores. Si hay varias transiciones de entrada, algo
comun es tener varios posibles caminos (secuencias de disparos de transiciones) en vez
de un solo camino. Se deben analizar todos los caminos para determinar cual es que se
debe tener en cuenta a la hora de obtener informacion precisa del valor de lookahead.

En este caso, al analizar una subred de Petri se deben valorar los caminos posibles y
segtn el valor del LEF de las transiciones que se analicen, determinar cudl es el camino
que se debe elegir. Si una transicion 7; tiene X entradas, tiene por tanto X caminos que
se deben analizar. Analizar un camino consiste en calcular el tiempo en que como
minimo generard una marca en su lugar final, el que esta conectado a la transicion 7;.
Una vez analizados los X caminos, en funcion del valor de LEF se elegira cual es el
camino que se debe tener en cuenta. Si el valor de la estructura LEF es Z, es decir
precisa de Z marcas, el camino que se toma como referencia es el Z-ésimo camino,
teniendo todos los caminos ordenados de menor a mayor tiempo.

Por ejemplo, si una transicion tiene tres caminos posibles (tres lugares de entrada) de
tiempos [2,3,5], si el valor de su estructura LEF es dos (precisa de dos marcas), el
tiempo a considerar es 3. Se debe a que al necesitar dos marcas en el tiempo 2 como
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Figura 3: Red de Petri de ramas sincronizadas.

mucho habrd recibido una marca lo que es insuficiente, mientras que en el tiempo
5 podria haber recibido tres marcas que son mas de las necesarias. Por tanto hasta
el tiempo 3 como minimo no habré recibido las marcas suficientes como para estar
sensibilizada.

El objetivo de este cdlculo es obtener el lookahead de una transicién de salida pero
puede requerir el cdlculo del tiempo para otras transiciones dado que dentro de un
camino pueden surgir otros caminos.

Incluso aunque solo haya una transicion de entrada, por lo que solo hay un camino en
la subred, si esta tiene varios lugares de entrada pertenecientes al interfaz de la subred
se deben tener en cuenta todos ellos puesto que es informacion que se recibe de otras
subredes.

Otro caso es si la subred de Petri tiene varias transiciones de salida, lo que afecta
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al célculo de lookahead ya que es necesario calcular el valor para cada transicion de
salida. De esta manera esos valores se enviaran a las subredes destino. Esto es que para
una cierta transicion el lookahead es para un tiempo X pero para la otra transicion el
tiempo puede ser diferente y es necesario calcular el tiempo minimo en el que cada
una de esas transiciones generardn una marca. Si tiene varias transiciones de salida, al
realizar el calculo el coste computacional es mayor pero es necesario para obtener una
informacién precisa.
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3. Analisis y diseno de un simulador
distribuido que incorpore mecanis-
mos de lookahead

3.1. Proceso de simulacion (SP) de subredes de Petri

Un proceso de simulacién simula una particiéon del modelo y también se le denomina
simbot, que es como se le llamoé en trabajos anteriores a este proyecto. Estos SPs o
simbots interactian entre si mediante el paso de mensajes con marcas temporales. En la
figura[d]se presentan los componentes de un simbot y las interacciones que se producen
entre ellos.

o o
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Figura 4: Descripcion de un simbot y sus componentes (extraida de ).

El motor de simulacion se asegura de que los eventos generados localmente y los re-
cibidos de otros simbots son procesados en el orden correcto segun sus marcas tempo-
rales, garantizando que el resultado es correcto. Se ejecuta como un hilo y sus tareas
principales son: interpretacion del modelo con las estructuras LEFs, avance del tiem-
po simulado mediante un reloj virtual local para cada simbot (LVT) y tratamiento de
los eventos almacenados en la lista de eventos futuros (FUL), que pueden ser eventos
internos o externos recibidos de otros simbots adyacentes.

Cada simbot tiene otro hilo de ejecucion, denominado Mailbox, que gestiona la comu-
nicacion de forma que envia y recibe mensajes de otros simbots. Ademds se encarga
de comunicar los mensajes recibidos al hilo del motor de simulacién.

Antes de iniciar la simulacién se realiza una fase de compilacioén con el compilador
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creado en trabajos anteriores. Su tarea consiste en transformar la red de Petri a simular
en el modelo que necesita el simulador, aplicando una serie de transformaciones como
la obtencidn de las funciones LEF y sus valores iniciales.

Para la sincronizacién conservativa cada SP contiene una cola FIFO de mensajes en-
trantes para cada uno de los SP que le envian eventos, llamados predecesores. Cada
cola de entrada Q; tiene una marca de tiempo 7' (Q;) que contiene el tiempo del dltimo
mensaje recibido. El minimo de estas colas min;(T(Q;)) es el horizonte de tiempo vir-
tual 16gico (Local Horizon Virtual Time, LHVT), también llamado marca de tiempo de
limite inferior (Lower Bound Time Stamp, LBTS) en [3], hasta el cual se puede simular
de forma segura, disparando eventos generados por el propio SP y aquellos recibidos
de otros SP cuyo tiempo sea menor o igual a LHVT. Simular hasta LHVT se considera
realizar un intervalo seguro de simulacion, el cual se compone de diferentes pasos de
simulacion.

Un intervalo seguro de simulacién consiste en realizar la simulacion desde el ciclo
actual de reloj LVT hasta el horizonte de tiempo LHVT. En cada ciclo, se realiza un
paso de simulacion en el que se disparan las transiciones que estén sensibilizadas y se
procesan los eventos etiquetados con el tiempo de simulacién en curso (LVT). Cuando
no hay nada que simular, ese paso de simulacion termina y se actualiza LVT con el
tiempo del primer evento en la lista de eventos futuros (FUL) y se repite el proceso.
Cuando LVT es mayor que LHVT se termina el intervalo seguro de simulacion.

Para realizar un intervalo seguro de simulacién, se debe tener informacién de todos
los SP predecesores. Para cada predecesor se debe tener algin evento en Q; y si no se
tiene, el SP debe esperar a recibir evento en Q; o el valor de lookahead.

En este trabajo se utilizan dos técnicas de envio de lookahead: al finalizar el intervalo
seguro de simulacion y solicitar el lookahead. Para la primera, al acabar el intervalo
seguro de simulacién se calcula el valor del lookahead y se envia a los SP sucesores,
que son aquellos a los que le envia eventos. Tras ello se vuelve al inicio del bucle de
simulacién, comprobando el estado de las colas Q;. La otra opcién es que en lugar de
que un SP envie el lookahead cuando termine de simular un intervalo seguro de simula-
cion, sea necesario hacer una solicitud/respuesta. Un SP cuando necesite informacion
de otro SP le envia una peticion tras la cual el SP destino obtendrd su lookahead y lo
enviard al SP que lo solicito.

Se utilizan estos dos algoritmos (que se explican en la siguiente seccidn) para poder
comparar el rendimiento en ambos casos y ser capaces de determinar cual es mas
apropiado. Ademds, al principio se realiz6 el envio de lookahead al acabar de simular
porque su disefio es mds sencillo pero al pensar en simulaciones de gran tamafio se
opt6 por la solicitud de lookahead. Se debe a que se reduce el nimero de mensajes
transmitidos ya que aunque para cada lookahead se envian dos mensajes (solicitud y
respuesta), solamente se envian cuando es necesario, mientras que en el otro caso se
enviaba independientemente de si se necesitaba o no. La reducciéon de mensajes que
circulan por la red de comunicacién es vital especialmente en simulaciones de alta
escala para evitar sobrecargar la red empeorando las prestaciones.

En la figura |5|se muestra una descripcion general de la arquitectura SP.
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Figura 5: Arquitectura SP (extraida de [3|])

3.1.1. Algoritmo de simulacion

El algoritmo de simulacion distribuido utilizado est4 basado en el publicado en [2]] que
se muestra en la figura[6]

En la figura [/| se muestra con mayor detalle el algoritmo implementado en el que el
envio de lookahead se produce al final de un intervalo seguro de simulacion.

En el algoritmo se cambia ligeramente la notacion utilizada con los siguientes térmi-
nos: enabled_tr (lista de transiciones sensibilizadas), SPy,. (SP predecesores) y SPpy
(SP sucesores).

Entre los cambios realizados estd que para cada SP,,, ademds de poner a cero el tiempo
recibido en adj, se marca que no hay evento en una nueva estructura de datos llamada
adj_new, que indica si hay evento sin procesar (1) o no (0) (lineas 7-9). Se realiza una
barrera entre los SP para que todos estén preparados antes de empezar a simular (linea
10). Finalmente para cada SP en SP,, se calcula y envia su lookahead (lineas 11-13).

Después ya comienza la simulacion hasta el ciclo final que se quiera simular (linea
16). En este bucle primero se recibe un evento de otro SP (operacién bloqueante) y
se actualiza adj con el tiempo recibido y adj_new indicando que hay evento (lineas
17-18). Si es un evento y no un mensaje nulo se afiade el evento a FUL (lineas 19-20).
Luego se comprueba si se ha recibido evento de todos los SP,., esto es que para cada
adj su marca de tiempo sea mayor que el reloj local LVT, o que sea igual pero adj_new
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when Start() is received
VT « 0; FUL « {};
for all (t € PUL.,;) do

Adj[t] + 0;
t ! < 0,lookahead(t) >
end for

for all (t € LEFs) do
if (ft(M) <0) then insert(EL, t);
end if

. end for

: when Event(t,UF,ts) is received
1 Adjlt] + ts;

: insert-FUL (¢, UF, ts);

15: if allReceived(Adj) then

16: LVTH=min(Adj);

17: Simulate(ts);

18: for all (t € PUL..:) do

= ot o 000 T U WD

19: if (t € FUL) then

20: t! < UF,ts >; remove-FUL(t);
21: else

22: t | < 0,lookahead(t) >;

23: end if

24: end for

25: end if

Figura 6: Esquema de algoritmo genérico de simulacién distribuida (extraida de [2])

indique que hay evento sin procesar (linea 21). Si se cumple, se obtiene el minimo de
los valores de adj y se guarda en LHVT (linea 22), que es el horizonte de tiempo hasta
el que se puede simular.

Ahora se cambia el valor de adj_new a cero para los valores de adj que sean iguales a
LHVT para indicar que esos eventos se van a procesar (lineas 23-26).

Se hace una comprobacion de que el horizonte de tiempo no supere al tiempo maximo
a simular (lineas 27-28), y si lo supera se modifica con el tiempo maximo y tras acabar
la siguiente simulacién terminard.

Realiza un intervalo seguro de simulacién hasta el horizonte de tiempo (linea 29) y
después envia los eventos a los SPy,; (linea 30). Esto consiste en enviar todos los
eventos exteriores generados en el intervalo seguro de simulacion anterior. Ademas, si
alguno de los SP,,s no tenian ninglin evento exterior, se calcula y envia su lookahead.
Como alternativa se puede enviar siempre el lookahead en este caso, tanto si se envia
evento exterior como si no. Esta version tendria una mayor informacion a costa de
transmitir un mayor nimero de mensajes, obteniendo una red con mas carga. Ambas
versiones son correctas y pueden obtener mejor resultado que la otra en funcién de
la red de Petri que se simule, aunque en este proyecto se ha optado por la primera
alternativa la cual es més simple y tiene menor niimero de mensajes transmitidos.

Por dltimo, finaliza la simulacién (linea 33) sincronizando los SP y agrupando los logs
en el SP principal.
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. # When the SP starts
enabled_tr — {}; FUL — {}:
for all (t € LEFs) do
if (f(M) = 0) then insert(enabled_tr, t);
end if
end for
forall (t € SP,) do
adj[t] —~ 0; adj_new][t] — 0;
end for
10: barriersimbots();
11: for all (t € SP,,.,) do
12: t!=0, lookahead(t) =
13: end for
14:
15: # Simulation algorithm
16: while (LVT <= final_time) do
17:  receive_eventi();
18:  adj[t] - ts; adj_new[t] — 1;
19:  if (is_event()) then insert-FUL(t, UF, ts);
20: endif
21: if (allReceived()) then
22 LHVT=minAdj();
23 for all (t € adj) do

oMo RN E

24 if (adj[t] == LHVT) then adj]_new(t] — 0;

25; end if

26: end for

27 if (LHVT = ai_final_time) then LHVT=ai_final_time;
28: end if

29 simulate_interval();

30 send_events();

31: endif

32: end while

33: finish_simulation();

Figura 7: Algoritmo de simulacién distribuida con envio de lookahead al finalizar un intervalo
seguro de simulacién.

El intervalo seguro de simulacion (linea 29) consiste en una serie de pasos de simula-
cién, siendo un paso un ciclo. En cada paso se disparan las transicion sensibilizadas,
se comprueba si se puede avanzar el tiempo y se procesan los eventos. El avance de
tiempo consiste:

= Sino hay eventos en FUL: LVT = LHVT y acaba el intervalo seguro de simula-
cion.

= Si el primer evento en FUL tiene tiempo t > LVT:

* t > LHVT: LVT = LHVT y acaba el intervalo seguro de simulacion.

* t <LHVT: LVT =t, acaba ese paso y comienza otro paso de simulacion.
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Es necesario utilizar las estructuras adj y adj_new ya que solo con adj no es suficiente.
Con adj se almacena la informacion del dltimo tiempo recibido de los SP,.. Sin embar-
g0, si no se utiliza adj_new para indicar cuando hay eventos sin procesar, el algoritmo
podria no funcionar.

Por ejemplo, dado SP; que solo tiene a SP; como predecesor, SP; podria recibir un men-
saje nulo con el valor de lookahead 10, asignando adj[j]=10. Obtendria que LHVT=10,
y realizaria un intervalo seguro de simulacion. Al acabar, esperaria a recibir otro men-
saje de SP;, que podria ser un mensaje nulo con un tiempo mayor al ultimo recibido o
un evento. En caso de que fuese un evento, su etiqueta de tiempo podria ser 10 porque
ese es el valor de lookahead que previamente envid SP;. Al tener tiempo 10, el valor de
adj[j] no cambia, por lo que en ese caso con adj no se conoce si hay informacion que se
puede procesar o no. Por tanto, es necesario la estructura adj_new para indicar que en
esos casos hay informacién a tratar y poder obtener LHVT para realizar un intervalo
seguro de simulacion.

En el anexo [ll| se muestra la traza de una simulacién distribuida para una red de Petri
con tres SPs.

El algoritmo de simulacion distribuida con solicitud de lookahead es similar al an-
terior. En la figura [§] se puede ver el algoritmo. La diferencia estd en que al final del
intervalo seguro de simulacién no se envia el lookahead sino que es el hilo de Mailbox
el que al recibir una peticion de lookahead calcula el valor y lo envia. Ademas, antes
de realizar un intervalo seguro de simulacidn se verifica que se dispone de informacién
para calcular el nuevo LHVT (linea 17). En caso de no tener informacion suficiente
para algin SP vecino, se solicita su lookahead y se espera la respuesta. En esta funcién
también se comprueba si hay eventos recibidos del exterior y se guardan en la lista de
eventos.

La condicion de informacion suficiente para un SP vecino se satisface si se dispone de
un dltimo tiempo de ese SP mayor estricto a LVT. También es valido un tiempo igual
a LVT siempre que haya pendiente por procesar un evento de ese SP para el tiempo
LVT, ya que permitiria continuar con la simulacién aunque el nuevo LHVT seguiria
siendo el mismo, igual a LVT. Este seria un caso similar al explicado antes en el otro
algoritmo con el uso de las estructuras adj y adj_new, que aqui no son necesarias.

3.2. Mejora del lookahead explotando el modelo

El lookahead aporta la informacién de hasta qué ciclo de simulacién como minimo no
se va a enviar ningin evento. Es una informacién imprescindible en la simulacién ya
que cuando un SP quiere calcular un nuevo LHVT, al recibir un mensaje nulo puede
utilizar esa informacion para extender su valor de LHVT y asi eliminar el bloqueo.
De esta manera conoce hasta cuando puede avanzar su reloj de simulacién, mediante
la gestion de las colas Q;. Al extraer estos mensajes de las colas en caso de que sean
nulos no se guardan en la lista de eventos FUL ya que no tienen informacion.

Al poder obtener el horizonte temporal, es posible realizar un intervalo seguro de si-
mulacién en el cual se va avanzando el reloj. El incremento del reloj local es seguro
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1: # When the SP starts

2: enabled tr — {}; FUL — {};

3: forall (t = LEFs) do

- if (f (M) = 0) then insert{enabled_tr, t);
B end if

6: end for

7i forallt € 5P ) do

8 adj[t] — 0; adj_new(t] — O;
9: end for

10: barrierSimbots();

1 forall (t = 5P ) do

12: t! <0, lookahead(t) =

13: end for

14:

15: # Simulation algorithm

16: while (LVT <= final_time) do
17: check_neighbours(),

18: LHVT=minAdij();

19: for all (t € adj) do

20: if (adj[t] == LHVT) then adj_new(t] — 0;

21: end if

22:  end for

23:  if (LHVT = ai_final_time) then LHVT=ai_final_time;
24:  endif

25. simulate_interval();

26 end while

27: finish_simulation();

Figura 8: Algoritmo de simulacién distribuida con solicitud de lookahead.

siempre que LVT < LHVT, en caso contrario se establece que LVT = LHVT, ya que
solo se puede avanzar hasta LHVT como médximo. De este modo se garantiza que no
habré eventos que lleguen fuera de orden temporal y por tanto la simulacién es correc-
ta, al respetar la restriccion de causalidad local.

El lookahead se calcula utilizando la red de Petri del modelo a simular estimando el
tiempo minimo en el que enviard un evento. Su célculo se puede dividir en dos fases:
compilacién y simulacién. En la primera fase se obtiene un precdlculo del modelo de
red de Petri y en la segunda fase se utiliza esa informacion junto al estado de la red de
Petri para obtener el valor de lookahead. El célculo se explica en la siguiente seccion.

El trafico de lookahead estd determinado por las relaciones de vecindad entre los SP.
Un SP envia estos valores tnicamente a aquellos SP que sean sus sucesores ya que
dependen de su informacion del estado de la red. Los sucesores son aquellos que tienen
lugares cuyo marcado los determina el SP predecesor. Del mismo modo, un SP solo

23



recibe trafico de lookahead de sus SP predecesores, ya que no requiere informacion del
resto de SP.

Es importante destacar que el lookahead depende del modelo y es crucial para introdu-
cir paralelismo en la ejecucion de la simulacién. La falta de informacién para extraer
lookahead de forma precisa es una de las mayores dificultades de los algoritmos con-
servativos. Una de las caracteristicas mds importante de este trabajo es explotar la
informacion estructural del modelo para poder obtener informacion de los lookahead.
Cuanto mayor sea el valor del lookahead mejores prestaciones se conseguiran en la
simulacién ya que un punto critico es la espera de un SP a recibir mensajes de otros
para continuar la simulacién. Asi cuando un SP consulta la informacion de sus prede-
cesores, si le falta al menos la informacion de uno de ellos debe parar la simulacién
hasta recibir ese dato, reduciendo las prestaciones.

De esta forma si el valor del lookahead es pequefio, el intervalo seguro de simulacion
acabard antes y se comprobarad con mayor frecuencia el estado de los predecesores, con
un mayor nimero de paradas. Sin embargo, si el valor es grande, se simulard un mayor
ndmero de ciclos en el intervalo seguro de simulacién. Asi se obtiene un menor niimero
de comprobaciones del estado de los vecinos y por tanto menos puntos de parada de la
simulacion.

Dada una subred simuldndose en un SP, la obtencion del mayor valor de lookahead
que enviar a los sucesores dependera de la informacién estructural de la subred de
Petri en el SP y de los eventos recibidos por los predecesores. Esto quiere decir que
el tiempo minimo en el que puede enviar un evento estd en funcion del tiempo en el
que un predecesor le enviard un evento al SP. Tras producirse este envio, se dispararan
las transiciones correspondientes en la subred de Petri para al final enviar un evento
exterior en un determinado ciclo, estimado con el valor de lookahead. Este es mejor
valor ya que si depende de alguna transicion de la propia subred, el lookahead serd
menor.

La vigencia del valor de lookahead es hasta ese intervalo seguro de simulacién ya que
solo se puede incrementar. Es cierto que el verdadero lookahead podria cambiar de
un ciclo a otro, en el caso de que dependa de la informacion de algun predecesor. Por
ejemplo, en un ciclo T se podria obtener un cierto valor de lookahead que depende de
la informacién de mensajes nulos de algtin predecesor. En el ciclo T+1 esa informacion
se podria actualizar incrementandose por lo que el valor real del lookahead seria mayor.
En este proyecto se ha optado por mantener vigente el valor de lookahead hasta el inter-
valo seguro de simulacion porque es la solucion mds simple y ademds en principio en
otro caso se generaria un mayor nimero de mensajes que podria terminar reduciendo
las prestaciones de la simulacion.

Otras posibles opciones a valorar serian tener un equilibrio entre tener un lookahead
muy actualizado sin sobrecargar el trafico de red de mensajes. En el caso extremo es-
tarfa calcular y enviar el lookahead en cada disparo de transicion consiguiendo un valor
actualizado a costa de sobrecargar la red de comunicacion, con el coste implicado. Co-
mo trabajo futuro seria adecuado realizar un andlisis de este problema para encontrar
el equilibrio entre valor actualizado y trafico de red que permita tener mejores presta-
ciones.
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En relacion a lo anterior, la actualizacion del lookahead puede no ser necesaria en redes
de Petri deterministas, al menos hasta que el reloj local alcance el valor del lookahead
recibido.

En el caso de redes con conflictos, que se permitirdn en versiones posteriores de este
proyecto, cuando se produzca un conflicto habria que actualizar la informacién de loo-
kahead con los nuevos valores obtenidos segun el resultado del conflicto. Ademads, en
estas redes ya no se puede explotar la informacion del modelo en la fase de compila-
cién como en las redes deterministas. En caso de hacerlo el resultado seria demasiado
pesimista ya que se tomaria la cota minima que seria el camino més largo, dado que
en compilacion no se conoce el resultado del conflicto y para asegurar la simulacién
tomaria el de mayor tiempo.

Existen multiples estrategias para el envio de mensajes nulos como se explica en el
capitulo2| En este proyecto se comparan dos de ellas: el envio de mensajes nulos cada
vez que finaliza un intervalo seguro de simulacion (similar al protocolo Chandy-Misra-
Bryant con ligeros cambios) y la solicitud de lookahead.

La eleccion final es la solicitud de lookahead porque como se explica en el capitulo
[5]1as prestaciones obtenidas son mejores para las redes utilizadas, que estdn pensadas
para simulaciones de gran tamafo.

3.3. Meétodos de calculo de lookahead

El célculo de lookahead tiene dos fases: compilacion y simulacion. En la primera fase
se obtiene un precélculo del modelo de la red de Petri que se utiliza en la segunda fase
de simulacion junto al estado de la red de Petri en ese momento para obtener el valor
del lookahead. En la fase de simulacion se han disefiado e implementado dos formas
diferentes de calcular el lookahead. Cada variante tiene sus ventajas y desventajas que
después se explicaran.

3.3.1. Calculo en compilacion

En la fase de compilacién se obtiene para todas las transiciones de salida el tiempo que
va a costar llegar una marca desde cada transicion, llamado tiempo de marca (TM). El
pseudocddigo se puede ver en la figura[9]

Se propuso una implementacién recursiva inicial, pero los tiempos de ejecucion hicie-
ron necesario replantear el algoritmo de forma iterativa. Para cada transicion de salida
se calculan los tiempos de marca. Para ello se lleva un registro de las transiciones que
hay que consultar junto a sus valores de tiempo de marca hasta esas transiciones (linea
7) y de las transiciones que ya se han visto (linea 8).

Mientras que haya transiciones por calcular (lineas 9-19), se obtiene una transicién
(linea 10), se marca como vista (linea 11) y se calcula y almacena su tiempo como el
tiempo hasta esa transicion mas su duracion de disparo (linea 12-13).

Después se obtienen las transiciones correspondientes a sus lugares de entrada, es decir
las transiciones anteriores (lineas 14-18). Si esas transiciones no se han visto ya y
ademads pertenecen a la subred (linea 15) se guardan para visitarlas después.
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1: # For each output transition:

2: # Iterative function that calculates the time from the

3: # transition given to all the previous subnet transitions.

4: func time_to_marks(trans_output):

5 marks_time — {}

6: # List of {transition, time to mark} of transitions to watch
T trans_pending -~ {trans_output,0}

a: trans_seen — {}

9: while (trans_pending not empty) do

10: {trans, time} ~ trans_pending

11: trans_seen -— {trans}

12: TM ~ time + trans.time

13: marks_time -~ {trans, TM}

14: for all (trans_pre & prev_transitions(trans)) do

15: if (is_in_subnet(trans_pre) and (trans_pre not in trans_seen)) then
16: trans_pending — {trans_pre ,mark_time}

17: end if

1a: end for

19:  end while

200 return marks_time
21: end func

Figura 9: Calculo del tiempo de marca en la fase de compilacion de la red de Petri.

Asi se repite este procedimiento hasta que no hay mas transiciones anteriores, es decir,
se llega a los lugares de entrada de la subred cuyas marcas provienen de otras subredes.
Estos tiempos se almacenan en un mapa con el identificador local de la transicién como
clave y el tiempo como valor. Tras calcular los tiempos se devuelven para guardarlos
para esa transicion (linea 20).

En esta fase se realizan otros calculos para utilizarlos en la fase de simulacién. Uno
de ellos es la obtencidn de la lista de transiciones de entrada que se consigue mirando
qué transiciones de la subred de Petri son de entrada. El otro es la lista de transiciones
predecesoras para cada una de las transiciones. Para ello se mira todas las transiciones
y en cada una se obtiene cuales son las transiciones siguientes (Projected Updating
List, PUL). Después para cada transicion sucesora de la lista PUL se actualiza esa
transicion estableciendo la transicién actual como su predecesora.

Esta informacion se utiliza en la siguiente fase del cdlculo de lookahead.

Ejemplo

En la figura [I0] hay una subred de Petri que tiene una transicion de salida (t3) y dos
transiciones de entrada (t0 y tl). Ademas, (2 tiene dos lugares de entrada (pl y p3),
ambos internos.

La duracion de disparo de t1 es de 5 unidades de tiempo y de 1 unidad de tiempo para
t0, t2 y t3.
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Los tiempos de marca obtenidos en compilacion para la transicion de salida t3 aparecen
marcados en la figura en color azul y son: {t3: 1, t2: 2, t1: 7, t0: 3}.

Figura 10: Subred de Petri con célculo de tiempos de marca (TM).

3.3.2. Calculo en simulacion

Se han desarrollado dos métodos para el calculo del lookahead en simulacion. Primero
se realiz6 un método que se ha llamado cédlculo dindmico del lookahead cuya principal
ventaja es que se puede utilizar aunque las subredes de Petri de los SPs cambien du-
rante la ejecucion. De este modo es posible utilizar mecanismos de balanceo de carga
como los propuestos en [7]], consiguiendo un simulador mas completo. El otro método
es mediante el calculo de un vector de lookahead que no permite el balanceo de carga
pero a cambio es mas rapido, permitiendo simulaciones con mejor rendimiento.

Hay otras posibles soluciones, cada una con sus ventajas y desventajas, como la que se
propuso en un inicio que se explica en el anexo |lIll Esta solucién tiene un rendimiento
intermedio entre los otros dos métodos pero se descartd porque tiene mas restricciones
en los modelos a simular.

3.3.2.1. Msétodo 1: calculo dinamico de lookahead

Este método esta disefiado para que se utilice enviando el lookahead al final del in-
tervalo seguro de simulacién. Para utilizar la solicitud de lookahead seria necesario
realizar ciertos cambios, aunque se podria hacer sin excesivo trabajo.

Es importante destacar que este método, en la version actual, tiene la limitacion de
que las redes de Petri utilizadas deben ser redes binarias sin conflicto. Ademas, las
transiciones de entrada solo pueden tener un lugar de entrada, es decir, no se permiten
varios lugares de entrada de la subred en la misma transiciéon. Tampoco se permite
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que una transicion tenga un lugar de entrada de la subred y otros lugares de entrada
internos.

Este método consiste en el algoritmo de la figura [T1] cuyo objetivo es encontrar la
transicion que tras simular un determinado nimero de ciclos pueda hacer que la transicion
de salida genere un evento, y por tanto se envie al SP destino. Para ello se realiza un
recorrido de la subred de Petri empezando por la transicion de salida y continuando
por las transiciones anteriores, las predecesoras.

Primero se inicializan las variables (lineas 2-3) para llevar un registro de las transicio-
nes que se han visto (trans_seen), las que estan por mirar (trans_pending), los tiempos
desde cada transicion (trans_times), las transiciones pendientes de obtener su tiempo
(trans_pending time) y si la subred solo tiene un camino o no (one_way). Los tiempos
desde cada transicion (trans_times) consiste en que para cada una de las transiciones
de la subred que se consultan se almacena el tiempo minimo que costaria que esa
transicidon enviase una marca a la siguiente (o siguientes) transicion. Este tiempo esta
compuesto por el tiempo que tardaria la propia transicion en estar sensibilizada con el
estado de la red actual, sumado al valor de su duracion de disparo.

Se utiliza dos listas de transiciones pendientes porque la primera es para mirar todas
las transiciones (trans_pending) pero para la mayoria de ellas no se obtendra su tiempo
porque hard falta informacion de otras transiciones. Por tanto hace falta otra lista de
transiciones que no se han obtenido su tiempo (trans_pending_time) para calcular su
tiempo después.

Ademads, se utiliza una variable para conocer si en toda la subred de Petri solo exis-
te un camino (one_way) ya que en caso afirmativo se aplican algunas optimizaciones
para mejorar las prestaciones del algoritmo. Estas optimizaciones, que se explicaran
después, estan pensadas para las redes que se utilizan en el proyecto de ramas secuen-
ciales.

La primera optimizacion que se aplica (lineas 4-6) consiste en que si no hay eventos
en FUL y solo hay una transicion de entrada el tiempo es el de la transicion de entrada.
Este tiempo seria el ultimo valor recibido para esa transicion, que es cuando podria
estar sensibilizada, sumado a su tiempo de marca. Este dltimo valor se ha obtenido en
la fase de compilacién y es el tiempo desde que esa transicion se dispara y hasta que
se genera una marca en la transicion de salida.

Esta mejora estd enfocada para las redes simples usadas en el proyecto de ramas se-
cuenciales de manera que para esos casos no es necesario recorrer las transiciones de
la subred de Petri.

Mientras que haya transiciones por calcular (lineas 7-32), se obtiene una transicion y
se marca como vista (linea 8) y se trata la transicion:

= La transicion es de entrada (lineas 9-13): hay que utilizar la informacién de
lookahead recibida para esa transicion. El tiempo de ese camino hasta esa transicion
seria el dltimo valor de lookahead recibido para esa transiciéon sumado a su du-
racion de disparo (linea 13). Ese tiempo se guarda para utilizarlo después. Este
tiempo es la estimacion del ciclo en el que como minimo la transiciéon podria
estar sensibilizada, en caso de que reciba un evento del correspondiente SP, mas
la duracién de su disparo.
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1: func get_lookahead(trans_output):

2 trans_seen — {}; rans_pending -~ trans_output; trans times — {}
3 trans_pending_time ~ {}; one_way = true

4: if (no_events(} and num_transition_input{) = 1) then // Optimization
LY return get_ext_time(trans) + time_mark()

6! end if

7 while (trans_pending not empty) do

8 {trans} — trans_pending; trans_seen — {trans}

9: if (is_entry(trans)) then

10: if (one_way) then [/ Optimization

n: return get_ext_time(trans) + time_mark()

12: end if

13: trans_times[trans] — get_ext_time(trans) + trans.firing_time
14: else then

15: lef val — get_lef value(trans)

18: if (num_events_FUL{trans) == lef_val) then

17 if (one_way) then /f Optimization

1a: return time_event_FUL(trans, lef_val) + time_mark()

19 end if

20: trans_times[trans] - time_event FUL{trans, lef_wval) + trans.firing_time
21: else then

22 trans_pending_time — trans; one_way = (len({trans.pre) == 1)
23: for all (trans_pre & trans.pre) do

24: if (trans_pre not in trans_seen) then

25: trans_pending ~ trans_pre

26: else if (trans_pre not in trans_times) then /f Cycle

2T trans_times[trans_pre] — VT + trans_pre.firing_time
28: end if

29: end for

30: end if

31 end if

32:  end while
33:  while (trans_pending_time not empty) do

34: {trans} - trans_pending_time; times_pre — {}
35: for all (trans_pre < trans.pre) do

36 if (trans_pre in trans_times) then

ar: times_pre — trans_times[trans_pre]

38: else then

39: break

40: end if

41: end for

42: if (len(times_pre) = len({trans.pre)) then

43: sort(times_pre); trans_times[trans] = times_preftrans.lef-1] + trans.firing_time
44 else then

45: trans_pending_time — trans

A6: end if

47:  end while
43:  return trans_times[trans_output]
49 end func

Figura 11: Célculo del lookahead del método dindmico.
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Si la subred solo tiene un camino (lineas 10-12), se aplica la optimizacion y
directamente se devuelve el tiempo como el ultimo valor de lookahead recibido
para la transicion junto a su tiempo de marca. En otro caso (la red tiene varios
caminos) no se puede devolver el tiempo y acabar el cdlculo porque puede ser
necesario otras acciones para obtener un tiempo preciso.

La transicion estara sensibilizada en un tiempo futuro (lineas 15-20): si la
transicion no es de entrada hay que comprobar si con los eventos pendientes en
FUL estara sensibilizada en un ciclo futuro. Primero se obtiene cuantas marcas
necesita para estar sensibilizada, es decir, su valor de LEF (linea 15). Después se
comprueba si con los eventos en FUL se puede sensibilizar la transicion (linea
16). Al ser redes binarias cada evento dirigido a la transicion quita una marca al
LEF (en redes de Petri seria afiadir una marca a un lugar de entrada).

Si hay tantos eventos como el valor de LEF, se obtiene y se guarda su tiempo
(Iinea 20) y en otro caso se hace otra comprobacion para transiciones que no
estaran sensibilizadas con los eventos en FUL. Se admite que haya mas eventos
que el valor de LEF, para permitir redes con multiples disparos de una transicion
en distintos tiempos. Por ejemplo, una transicion #; con tiempo de disparo de 3
unidades de tiempo podria dispararse en el tiempo T=1 y T=3. En T=3, en FUL
habria dos eventos generados por esa transicidn, uno para T=4 y otro para T=6.

El tiempo que se guarda es el valor de la duracién de disparo més el tiempo
del evento que sensibilice la transicién que se consulta. Esto es el evento que al
procesar permita que se pueda disparar la transicion. Por ejemplo, si LEF=2 se
toma el tiempo del evento de la segunda marca, es decir, el segundo evento de
FUL dirigido a la transicion. Estos eventos estan ordenados de menor a mayor
tiempo.

Igual que en el caso anterior se aplica una optimizacion (lineas 17-19) de manera
que si la subred solo tiene un camino se devuelve el tiempo del evento que sen-
sibiliza la transiciéon sumado a su tiempo de marca. Asi se mejora el rendimiento
al juntar el calculo estéatico obtenido en compilacion para el tiempo de marca con
el calculo dindmico que mira el estado de la red.

La transicion no estara sensibilizada en un tiempo futuro (lineas 21-30): en
este caso es necesario obtener la informacién de las transicion predecesoras. Pri-
mero se guarda la referencia a la transicion para completar su informacion mas
adelante y se actualiza la variable one_way en funcion de si solo hay un camino
(solo hay una transicion predecesora) o no (linea 21). Después se obtienen las
transiciones correspondientes a sus lugares de entrada, es decir, las transiciones
anteriores (lineas 23-29). Si esas transiciones no se han visto ya (linea 24) se
guardan para visitarlas después (linea 25).

Si ya se han visto, si todavia no se ha obtenido su tiempo (linea 26) se calcula su
tiempo obteniendo la cota minima (linea 27). Al obtener las transiciones prede-
cesoras, si ya se han visto entonces hay un ciclo en la red de Petri de forma que
hay un camino de transiciones que empiezan y acaban en un mismo lugar. Otra
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posibilidad es que sea un conflicto de forma que dos 0 més transiciones compar-
ten un mismo lugar, aunque en este trabajo no se permiten redes con conflictos.

En el caso de un ciclo, hay que guardar el tiempo de ese camino obteniendo su
cota minima, que es el valor LVT mas el tiempo de disparo de la transicion. De
esta manera lo que se estd haciendo es eliminar los ciclos para poder calcular el
valor del lookahead, ya que en caso de no hacerlo se produciria un bloqueo. Este
calculo solo se realiza si el valor del camino de esa transicidn no se ha obtenido
ya, porque si ya lo tiene se puede utilizar ese tiempo.

En este punto ya se han tratado todas las transiciones pero solo tienen informacion
completa aquellas que son de entrada o que con los eventos en FUL se conoce que
estardn sensibilizadas. Cabe decir que no es necesario consultar todas las transiciones
de la subred, ya que se van mirando las transiciones anteriores y en el caso de que se
encuentra una transicion sensibilizada en un tiempo futuro no se tratan sus transiciones
predecesoras.

Ahora se completa la informacién de las transiciones pendientes (lineas 33-47). Mien-
tras que haya transiciones pendientes se obtiene una transicion y se inicializa un re-
gistro de los tiempos de sus predecesoras (linea 34). Este registro puede tener un solo
tiempo (si solo tiene una transicidn anterior) o varios tiempos.

Para cada transicion predecesora (lineas 35-41) se guardan sus correspondientes tiem-
pos. Si alguna predecesora no tiene informacion, se sale del bucle (linea 39).

Si se tiene toda la informacion disponible (linea 42), entonces se ordenan los tiempos
de las predecesoras de menor a mayor tiempo y se obtiene y almacena su tiempo (linea
43). Este tiempo es la duracién de su disparo sumado al valor de la predecesora que
podria sensibilizar la transicion. Para obtenerlo se utiliza su valor de LEF actual menos
uno debido a que el indice empieza en cero. Por ejemplo, si LEF=2 el tiempo es el de
la predecesora que quite la segunda marca.

Si no se tiene la informacién de todas las predecesoras, se marca la transicién que se
estd consultando como pendiente (linea 45), para completarla mas adelante. Esto puede
ocurrir al consultar una transicion #; si tiene una predecesora f; cuya informacion atn
no esta disponible.

Finalmente se devuelve el valor obtenido correspondiente a la transicion de salida
(linea 48).

Es necesario mirar si hay eventos pendientes de procesar en FUL porque cuando se
calcula el lookahead ya se ha simulado hasta el horizonte temporal. Por tanto no hay
transiciones sensibilizadas ya que en caso de haberlas ya se habrian disparado, por lo
que hay que comprobar si hay eventos pendientes para tiempos de simulacién mayores
aLVT.

Hay un caso especial que es al inicio de la simulacién. En esta fase, antes de simular
se calculan y envian los valores de lookahead para los SP sucesores. En este punto no
hay ningun evento en FUL pero hay transiciones sensibilizadas por el marcado inicial.
El pseudocédigo de este calculo se puede ver en la figura(l2]

Su funcionamiento es similar al caso general, pero en vez de consultar FUL se mira si
esta sensibilizada la transicion (linea 12). También se utiliza el valor de LVT en lugar
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func get_initial_lookahead(trans_output):
trans_seen - {}; wans_pending -~ trans_output; trans_times — {}
trans_pending_time ~ {}; one_way = true
while (trans_pending not empty) do
{trans} . trans_pending; trans_seen .~ {trans}
if (is_entry(trans)) then
if (one_way) then J/f Optimization
return LVWT + time_mark()
end if
trans_times[trans] — LVT + trans.firing_time
else then
if (is_enabled(trans)) then
if (one_way) then /f Optimization
return LYT + time_mark()
end if
trans_timesftrans] — LVT + trans.firing_time
else then
trans_pending_time — trans; one_way = (len(trans.pre) == 1)
for all (trans_pre < trans.pre) do
if (trans_pre not in trans_seen) then
trans_pending - trans_pre
else if (trans_pre not in trans_times) then i/ Cycle
trans_times[trans_pre] — VT + trans_pre.firing_time
end if
end for
end if
end if
end while
while (trans_pending_time not empty) do
{trans} — trans_pending_time; times_pre — {}
for all (trans_pre < trans.pre) do
if (trans_pre in trans_times) then
times_pre — trans_times[trans_pre]
else then
break
end if
end for
if (len{times_pre) = len(trans.pre)) then
sort{times_pre)
trans_times[trans] = times_preftrans.lef-1] + trans.firing_time
else then
trans_pending_time . trans
end if
end while
return trans_times[irans_output]
:end func

Figura 12: Célculo del lookahead del método dinamico: fase inicial.
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del evento en FUL (linea 16) y del ultimo valor de lookahead recibido (linea 10), ya que
en esta fase aun no se ha obtenido informacion de lookahead de los SP predecesores.
Por tanto se asume que en el ciclo actual, LVT, podria llegar algin evento.

En el algoritmo hay algunas optimizaciones enfocadas para redes simples que en un
futuro se podrian ampliar para otros casos. Ahora lo que se realiza es que si la subred de
Petri solo tiene un camino posible una parte del tiempo de lookahead se puede obtener
utilizando el tiempo de marca. Esta técnica se podria aplicar en varios niveles con una
vision recursiva, desde una transicion hasta otra transicion posterior. El camino entre
estas dos transiciones debe ser unico de forma que por ejemplo si entre una transicion
tl y t4 solo hay un camino y en t4 hay varias salidas, de tl a t4 se puede utilizar el
tiempo precalculado en compilacion. En t4 habria que analizar en ejecucion cual es
el camino que se debe tener en cuenta y después se podria volver a utilizar el tiempo
obtenido en compilacion si desde la siguiente transicion a t4 hasta otra transicion tX
solo hay un camino.

Esta técnica se podria aplicar recursivamente hasta llegar a la transicion de salida para
evitar cdlculos innecesarios de las duraciones de disparo entre dos transiciones que
solo tienen un Gnico camino.

Ejemplo: subred de Petri con dos caminos

En la figura |13| hay una subred de Petri que tiene una transicion de salida (t3) y dos
transiciones de entrada (t0 y t1). Ademas, t2 tiene dos lugares de entrada (pl y p3),
ambos internos.

Figura 13: Subred de Petri con una transicion de salida (t3), dos de entrada (t0 y t1) y una
interna (t2).
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La duracion de disparo de tl es de 5 unidades de tiempo y de 1 unidad de tiempo para
t0, t2 y t3.

Si en un determinado momento de la simulacion se calculase el lookahead con esta red
en el estado que aparece en la figura (con todos los lugares sin marcas y sin eventos
en FUL), el valor que se obtendria seria: L(t0)+3 o L(tl1)+7. Dénde L(tX) es el dltimo
valor de lookahead recibido para tX.

Este valor se obtiene mediante la aplicacion del algoritmo. Primero se miraria t3, que
no se podria obtener su informacion por lo que se miraria t2. Del mismo modo se
miraria t0 y t1. Para t0 se obtendria un tiempo de L(t0)+1, y para t1 L(t1)+5.

El siguiente paso seria completar la informacién de t2. Se tomarian los dos tiempos
anteriores y se ordenarian de menor a mayor tiempo. Si por ejemplo, L(t0)=2 y L(t1)=0
el resultado serfa: 3, 5. Como el valor de LEF de t2 es 2, es decir, requiere dos marcas,
es la segunda marca la que podria sensibilizar la transicion. Por tanto se toma el valor
de 5 (que viene del camino de t1) porque en el tiempo 3 podria recibir una marca pero
hasta que no reciba otra en el tiempo 5 no se podria disparar. La transicion t2 toma el
valor de 5+1 y lo guarda.

Finalmente, t3 recupera la informacién de su predecesor t2 que es 6. A este valor suma
su duracion de disparo que es 1 y devuelve como lookahead el valor 7.

Otro posible caso seria si el valor de LEF de t2 fuese 1. El proceso seria el mismo pero
al requerir solo una marca tomaria el menor valor de sus predecesores, t0 y t1.

Ejemplo: subred de Petri con ciclo

En la figura (14| hay una subred de Petri similar a la del ejemplo anterior pero que
tiene un ciclo en las transiciones tl y t2. El ciclo se produce si la transicion tl esta
sensibilizada y se dispara. Después si la transicion t2 estd sensibilizada y se dispara,
como uno de sus lugares de salida es p10 que es entrada de t1, se vuelve a la transicién
tl.

Al calcular el valor de lookahead, en la transicion t2 se obtendria que para el camino
de tO su valor seria L(t0)+1. Respecto al camino de t1, como hay un ciclo habria que
mirar las dos transiciones predecesoras de t1: t10 y t2. Para t10 su valor seria L(t10)+1,
mientras que para t2 como ya se ha visto antes porque es un ciclo, su tiempo seria
LVT+1.

Como tl solo necesita una marca para estar sensibilizada, se toma el menor de los
tiempos anteriores: LVT+1. Este tiempo es la cota minima ya que en la red de Petri se
puede observar que es el lugar p2 el que no tiene marca, y por tanto se deberia tomar el
valor de su camino L(t10)+1. Sin embargo, al utilizar LEF no se conoce, o al menos no
de una forma sencilla, qué lugares son los que ya tienen marca y cuales faltan. Por tanto
lo que se quiere saber es cual podria enviar una marca en el menor tiempo, aunque el
tiempo que se obtenga sea una cota minima que puede no ser igual al tiempo real.

3.3.2.2. Método 2: calculo con vector de lookahead

Este método esta disefiado para usarse junto a la solicitud de lookahead entre los SPs.
Consiste en que dada una transicion de salida en una subred de Petri, se dispone de un
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Figura 14: Subred de Petri con un ciclo.

vector de valores de lookahead con un valor para cada camino posible. Estos valores
indican el nimero de ciclos que va a tardar como minimo en producirse una marca
siguiendo esos caminos.

Este vector va actualizando sus valores en cada disparo de transicion, reduciendo el
tiempo de los valores segtn el tiempo que tarda el disparo de esa transicion. Para co-
nocer la relacion entre transiciones y caminos, cada transicion tiene una variable para
indicar a qué camino o caminos pertenece. Estas relaciones se asignan en la fase de
compilacion, iterando desde la transicion de salida hacia sus transiciones anteriores. Si
no hay ninguna marca en el camino, su valor de lookahead es la suma de las transicio-
nes del camino.

Este método tiene un coste menor que el anterior, consiguiendo reducir el tiempo de
simulacion, pero el otro método permite simular casos més genéricos.

Se utiliza junto a la solicitud de lookahead de forma que cuando un SP quiere obtener el
lookahead de otro SP, le envia un mensaje solicitdndolo (request) y espera la respuesta.
Un SP al recibir un mensaje request, obtiene el valor actual del vector de lookahead
que ya estd calculado y lo envia. De esta forma le comunica que como minimo hasta
dentro de esos ciclos no le va a enviar nada.

Se envia de forma inmediata para que el SP solicitante no tenga que esperar mas tiempo
del necesario, evitando que se retrase la simulacion. Ademads, en caso de que el loo-
kahead a enviar sea igual al dltimo enviado, no se envia hasta que tenga un nuevo valor.
Esto puede ocurrir ya que un SP puede ir més rapido que otro, o incluso por temas de
latencia de la red de comunicacién, el valor de lookahead puede no estar actualizado
en el momento en que se recibe la solicitud. De esta forma se reduce el numero de
mensajes ya que si se enviase el mismo valor se volveria a repetir la solicitud hasta la
obtencion de un lookahead que permita continuar la simulacion al solicitante.
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Cuando un SP lee su vector de lookahead lo que hace es obtener el valor menor, el ca-
mino minimo, para garantizar el tiempo minimo en el que se podria enviar una marca.

Ejemplo: subred de Petri con dos caminos

En la figura[I5]se muestra la misma subred que en el ejemplo del método 1. Aparecen
tres estados diferentes de simulacion y el vector de lookahead en cada caso. Estos
estados no representan un avance temporal (no ocurren uno después de otro), son tres
estados independientes para explicar el funcionamiento del método de calculo.

wectar Lt [3, 7] vector L [3, 2] Wector Lt [1, 1]

Figura 15: Subred de Petri con célculo de vector de lookahead en diferentes estados de simula-
cién.

La transicion t2 tiene dos caminos dado que tiene como entradas dos lugares que son
lugares de salida de las transiciones tO y tl. En el estado de la izquierda no hay nin-
guna marca en la subred y los valores son la suma de los tiempos de disparo de las
transiciones. El valor es [3,7] que seria el tiempo de marca de las transiciones de en-
trada. El primer valor corresponde al camino de la izquierda, que estd formado por las
transiciones: t3, t2, t0. El segundo valor es del camino de la derecha formado por las
transiciones: t3, t2, t1.

Para el estado del centro de la figura el valor del vector de lookahead es [3,2] porque
el lugar p3 tiene una marca. El primer camino sigue igual por lo que su tiempo no
ha cambiado pero en el segundo si que ha cambiado porque se ha restado al tiempo
anterior el disparo de la transicion tl.

En el estado de la derecha el vector de lookahead es [1,1] porque p4 tiene una marca,
haciendo que para los dos caminos solo falte el disparo de la transicion t3. Si en este
estado se disparase t3, el vector de lookahead se actualizaria con los valores iniciales
de la suma de tiempos ([3,7]) o con los valores correspondientes en caso de que hubiese
mads marcas en los caminos. En este ultimo caso se tendria en cuenta el primer lugar
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que tuviese marca, empezando a mirar transiciones desde la transicion de salida hacia
sus predecesoras.

3.4. Modificaciones para escalabilidad

Las simulaciones de modelos de un gran tamaiio pueden requerir el uso de un nimero
elevado de maquinas en las que se ejecuten los SPs de la simulacion. Para simulaciones
de alta escala el nimero de SPs podria ser de cientos o miles, utilizando entornos de
despliegue como cloud.

En este tipo de simulacion no se pueden utilizar los mecanismos desarrollados hasta
la fecha porque no se disefiaron para funcionar en un entorno de gran tamafio. Cuando
surgio la idea de simulador distribuido no se disponia del mismo nimero de maquinas
que ahora ni de su potencia. Aunque se pueden cambiar algunas partes de los méto-
dos y aplicar ciertas optimizaciones, como las explicadas en las secciones anteriores
cambiando la gestion de lookahead, es necesario algiin otro mecanismo para que la
simulacién de alta escala pueda ser viable.

Hasta la realizacion de este trabajo no se ha aportado ninguna gran contribucién en este
aspecto. En este proyecto se propone una solucién para la simulacion distribuida de
alta escala. A continuacion se va a presentar el problema que se produce y la solucién
propuesta.

Siguiendo el ejemplo de las redes de Petri de ramas secuenciales, si en cada rama hay
millones de transiciones pueden ser necesarios multiples SPs que simulen cada uno
una parte de las transiciones de esa rama. Se debe a que podria no caber en memoria
un nimero tan elevado de LEFs, haciendo necesaria su division en subredes. La figura
muestra una red de Petri de ramas secuenciales con un gran niumero de transiciones
en cada rama, junto a los SPs que se obtendrian en la simulacion de cada una de las
ramas y como estarian conectados.

El problema que se muestra en la figura es que si se requieren X SPs para simular una
rama, siendo X un numero elevado, el SP X no recibe la informacion de SPs anteriores
como SP 1 hasta que no ha pasado su informacién por todos los SPs, siguiendo un
orden secuencial. En la simulacion distribuida cada SP recibe informacion de su SP
anterior, que es el que estd conectado con €l por el modelo obtenido con las subredes
de Petri. Sin embargo, el disponer de informacién de otros SPs que sean anteriores
aunque no tengan una relacion directa puede ser ttil para conocer si puede avanzar la
simulacion aunque su SP anterior no se lo haya confirmado.

La solucidén que se propone estd inspirada en el funcionamiento del protocolo BGP [11]]
y se ha llamado simulacion a nivel de regiones. Su objetivo es tener la informacion de
los SPs anteriores, de manera rapida para poder propagar de una region a otra region y
conseguir acelerar la simulacién en modelos de alta escala con un nimero elevado de
SPs.

Una region es simplemente un agrupamiento de un cierto nimero de SPs, que pueden
ser de tres tipos:

= SP entrada: SP que simula una subred y recibe informacién de otra region.
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SPs para simular una rama

Figura 16: Red de Petri de ramas secuenciales (izquierda) y los SPs que se utilizarian para
simular una de las ramas con un gran ndmero de transiciones (derecha).

= SP intermedio: SP que simula una subred.

= SP salida: SP que simula una subred y recopila informacién de su regién para
transmitirla a otra region.

Asi una simulacion tiene una estructura jerarquica con diferentes regiones, cada una
con varios SPs que se ejecutan en distintas maquinas. La gestién de lookahead es me-
diante solicitud, anadiendo una capa mds para que el SP salida conozca los valores de
lookahead de los SPs de la region. El SP salida tiene un componente llamado tabla de
lookahead que consiste en una tabla con la informacion de lookahead de los SPs de
la region. Su formato es que para cada SP que es predecesor y pertenece a la region,
tiene la informacion de cudl es su SP anterior y su valor de lookahead, es decir hasta
dentro de cudntas unidades de tiempo no va a enviar una marca. Ademads, cada loo-
kahead tiene una etiqueta para saber si es un valor real (es el tiempo exacto en que se
va a producir una marca) o hipotético (ese es el tiempo suponiendo que ese SP reciba
una marca en su transicion de entrada en ese ciclo de simulacién).

La figura [I7| muestra la arquitectura de esta solucién.

De esta manera cuando por ejemplo el SP entrada tiene nueva informacién que puede
propagar a su siguiente SP (SP intermedio 1) el SP salida puede disponer también de
esa informacion. Si no se utiliza este método el SP salida tendria que esperar a que
la informacion llegue a SP intermedio 1, se propague a SP intermedio 2 y finalmente
le llegue a él. En este caso tendria que esperar més tiempo al sumarse los tiempos de
procesamiento de los SPs y las latencias de la red de comunicacién, empeorando las
prestaciones de la simulacidn distribuida. En este ejemplo habrian sido necesarias tres
comunicaciones en la red para ir de SP entrada a SP salida pero segtin el modelo puede
ser mayor, mientras que con la solucién propuesta solo se realiza una comunicacion.

La figura |1 8| muestra el protocolo de comunicacién de lookahead. Al igual que antes
un SP solicita el lookahead al SP anterior y este le responde. Ademads, ahora también
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Figura 17: Arquitectura de simulacién a nivel de regiones para una rama de una red de Petri de
ramas secuenciales.

envia ese valor al SP salida para que disponga de la misma informacién que los SPs de
la region.

Otra opcion seria no enviarle el lookahead hasta que sea el SP salida el que realice una
solicitud. Esto se realizaria cuando le soliciten el lookahead a él desde un SP entrada
de otra region, cuya respuesta seria solicitar lookahead a su region y tras obtener todas
las respuestas responder a la otra region. Esta opcion tendria un tiempo mds preciso
pero un mayor coste de tiempo en obtener la respuesta, por lo que se ha optado por la
primera opcion.

Los SPs de salida tienen que gestionar la informacion recibida de la region actuali-
zando la tabla de lookahead con los valores recibidos. Cuando reciben una peticion de
lookahead (desde otra regién) deben aplicar un algoritmo de seleccion de camino uti-
lizando la tabla lookahead. Este algoritmo consiste en iterar desde el propio SP salida
hacia los SP predecesores hasta encontrar un valor de lookahead real, es decir, un ca-
mino que tenga alguna marca. En el recorrido se va sumando los tiempos de lookahead
de cada unos de los SPs que sean hipotéticos, porque dependen de la informacion del
SP anterior por lo que se consulta después a ese SP anterior. Finalmente se envia el
tiempo obtenido al siguiente SP.

Ademads, en caso de que hubiese multiples caminos (en las redes de Petri de ramas
secuenciales no hay pero en otras puede haber), se toma el camino minimo para tener
el valor cuanto antes y continuar con la simulacion.

La division en regiones y los roles de cada SP se deben realizar en la fase de com-
pilacién, mediante estrategias que deben ser correctamente analizadas para hacer un
reparto adecuado que permita optimizar la simulacion. Estas estrategias no se han de-
finido porque son un aspecto importante a la par que complicado de analizar, que se
podria hacer en otro trabajo.
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Figura 18: Diagramas de secuencia de solicitud y comunicacién de lookahead entre los dife-
rentes SPs de una simulacién a nivel de regiones.
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4. Implementacion de los mecanismos
de lookahead a incorporar al SP

La implementacion del simulador distribuido desarrollado se realiza en el lenguaje
de programacion Rust. Como cddigo base se utiliza el simulador del trabajo de un
compaiiero del grupo de investigacion, que se centra en mecanismos de balanceo de
carga [[7].

Una gran parte de este codigo se mantiene intacto, afiadiendo los nuevos aspectos
que se han realizado en este trabajo. Ahora se van a explicar las caracteristicas mas
importantes de las cuales se hara hincapié en las novedades introducidas en el trabajo.
También se comentardn en un alto nivel los atributos mas importantes que ya estaban,
los cuales se puede consultar mas detalladamente en [7].

Cada SP tiene dos hilos de ejecucion, hilo de simulacién y Mailbox, que se comu-
nican entre ellos mediante canales bidireccionales, es decir, multi-productores multi-
consumidores utilizando la libreria de Rust crossbeam_channel [12].

Al comienzo de la simulacién el hilo Mailbox crea un servidor TCP y el hilo de simu-
lacion inicia las conexiones TCP con el resto de SPs con los que tenga comunicacion.
Estas conexiones estdn abiertas durante toda la simulacién de forma que el servidor
TCP de cada SP comprueba si alguna de sus conexiones abiertas tiene algin mensaje
y realiza su tratamiento. La libreria utilizada es mio [13]] porque la transmision de los
mensajes es mas rapida que con la libreria estandar que se utilizé en primer lugar.

Al recibir un mensaje el hilo Mailbox comprueba de qué tipo es y se lo envia al hilo
de simulacién mediante los canales de comunicacidon. Los mensajes pueden ser de
diferentes tipos ya sea para iniciar, acabar o realizar la simulacion. Los mas importantes
son los de la simulacion que pueden ser de los siguientes tipos:

= Event: mensaje que contiene un evento externo.
= RequestL: solicitud de lookahead.

= ResponseL: envio del valor de lookahead en respuesta a una solicitud previa.

Para el segundo método de calculo de lookahead en simulacién (vector de lookahead)
se utilizan dos estructuras de datos adicionales para dar soporte a la gestiéon de loo-
kahead. Una es para almacenar el valor actualizado de lookahead y la otra para llevar
un registro de los dltimos valores de lookahead enviados a los SPs adyacentes, y si
hay una peticion de lookahead pendiente de ellos 0 no. Ambas estdn compartidas entre
los dos hilos en memoria compartida y su acceso es en exclusion mutua mediante el
mecanismo mutex.

La primera de ellas contiene el valor de lookahead relativo, es decir, cudntas unidades
de tiempo o ciclos de simulacién va a tardar como minimo en enviar una marca. Este
valor lo va actualizando el hilo de simulacién cuando el lookahead va cambiando, que
es al disparar las transiciones o al recibir informacion del exterior.
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La segunda estructura de datos es un mapa con el identificador del SP como clave y
una variable de tipo LookaheadRequest como valor. Esta variable tiene dos elementos:
el dltimo tiempo (lookahead) enviado a ese SP, y si hay una peticién pendiente o no.
El hilo Mailbox al recibir un mensaje de tipo RequestL obtiene el valor de lookahead
actual, mediante la variable compartida, y lo compara con el dltimo valor enviado.
Este dato lo obtiene de la estructura de datos compartida consultando la variable Loo-
kaheadRequest. En caso de que sea mayor, envia el lookahead en un mensaje de tipo
ResponseL. En caso contrario, marca la peticiéon como pendiente para que el hilo de
simulacién la tenga en vigilancia y cuando disponga de un valor de lookahead mayor
responda a esa peticion, y actualice esa peticién como no pendiente.

En cuanto a los tiempos de marca obtenidos en compilacién, se guardan en un mapa
con el identificador de la transicién como clave y el tiempo de marca como valor. El
uso de mapas se debe a que se quiere consultar los valores con un coste temporal bajo,
que es O(1).

Ademads, también se ha modificado el compilador que estd desarrollado en Java para
obtener la informacién de la lista de transiciones de entrada para cada SP, la lista de
transiciones predecesoras para cada una de las transiciones, y los tiempos de marca de
las transiciones de salida. Estos cambios se han realizado en Java porque el compilador
estd desarrollado en ese lenguaje, aunque hay un compilador escrito en Rust realizado
por otros compaieros del grupo de investigacion que estaba en desarrollo durante la
realizacion del trabajo.

En el anexo estd el codigo implementado de los principales algoritmos. El cédigo del
algoritmo de simulacidén distribuida estd en el anexo el calculo de lookahead en
compilacién en el anexo |V|y el célculo dindmico de lookahead en simulacién en el

anexo V1
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5. Metodologia para la prueba del pro-
totipo y resultados experimentales

En este capitulo se explica como se pone en ejecucion una simulacién distribuida indi-
cando los pasos que se realizan. Después se explica el entorno utilizado y las pruebas
realizadas junto a sus resultados.

5.1. Proceso de despliegue

El lanzamiento de una simulacion requiere de dos tareas: compilacion y ejecucion de
la simulacién. Primero se obtiene un modelo en la compilacién que el SP carga en
memoria para comenzar a simular.

5.1.1. Compilacion del modelo

El modelo debe tener un formato asumible por el simulador, el cual se obtiene en el
proceso de compilacion. Este proceso utiliza el framework desarrollado en [S]] y modi-
ficado en este trabajo con la adicién para la implementacion del célculo de lookahead
en compilacion.

Las redes de Petri que se simulan en este trabajo son de ramas secuenciales como las de
la figura 3|y se crean mediante un programa en Java. Este programa genera un fichero
textual con la red de Petri definida en sus pardmetros. Estos pardmetros son: nombre
del fichero de salida, nimero de ramas secuenciales (h) y nimero de transiciones en
cada rama (v).

Este fichero tiene definida la red de Petri mediante un lenguaje de descripcion de redes
de Petri. Este lenguaje ya estaba en [5] para definir un modelo de red de Petri en
formato textual.

Una vez obtenida la red de Petri en formato textual, se ejecuta el compilador. Su salida
es una serie de ficheros que contienen las subredes en formato JSON con la informa-
cion de los LEFs. Estos ficheros después seran absorbidos por el simulador distribuido
en Rust.

5.1.2. Ejecucion del simulador distribuido

Una vez obtenidas las subredes de Petri, ya se puede iniciar la simulacion distribui-
da. Antes de la primera ejecucion hay que compilar programa en Rust utilizando la
herramienta cargo [14], el gestor de paquetes de Rust. El comando ejecutado para la
compilacion del cédigo es:

cargo build —-release

La opcidn —release es para que utilice una configuracion definida en el fichero de con-
figuracion (cargo.toml). Esta configuracion cuenta con optimizaciones como la opcion
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-03 o lto=true, para aumentar el rendimiento del programa en binario que produce
como salida.

Después se deben iniciar todos los SPs en las diferentes médquinas en las que se ejecuten
de forma que el SP principal, el de indice cero por defecto definido en los ficheros de
red, envia los LEFs a los otros SPs. De esta manera solo es necesario que estén los
ficheros de las subredes en la maquina del SP principal. Este movimiento de LEFs se
desarrollé en [7]].

El comando para iniciar la simulacién de un SP es:

./esimc <nombre_fichero_modelo><num_ciclos><lista_ip :port_-SPs>

Siendo esimc el nombre del programa, num_ciclos el nimero de ciclos a simular y
lista_ip la lista de SPs que se simulan en las diferentes maquinas (un SP por maquina).

De este modo se realiza la simulacién distribuida y una vez que finaliza se muestran
las trazas de la misma.

5.2. Entorno de pruebas

Para el estudio experimental se ha utilizado un entorno on premise de la Universidad
de Zaragoza. Este entorno estd compuesto de 48 maquinas Raspberry Pi 4 situadas en
el laboratorio 1.03b de la Escuela de Ingenieria y Arquitectura. Sus caracteristicas son
las siguientes:

= Sistema operativo: Ubuntu 20.04.2 LTS Focal Fossa

» Procesador: ARM Cortex-172 con cuatro nucleos a 1,5 GHz
= Memoria RAM: 8 GB

= Red: 1Gbit/s

Se ha utilizado este entorno para realizar pruebas comparando las versiones de Java
y Rust, y en cada lenguaje también se ha comparado entre la versiéon de simulacién
centralizada y distribuida. El nimero de maquinas utilizadas para la simulacién distri-
buida ha ido variando segin el modelo a simular y la etapa de desarrollo del proyecto.
El mayor nimero de méaquinas utilizadas ha sido de 8.

Cabe destacar que se han ido realizando pruebas a lo largo de todo el desarrollo del
codigo. Sin embargo, solo se incluyen en esta memoria algunas de las principales que
se han realizado, para demostrar el funcionamiento y escalabilidad conseguida al au-
mentar el niimero de maquinas o el tamafio del modelo.

5.3. Experimentos y resultados

En los experimentos realizados uno de los objetivos es comprobar a partir de qué ta-
mafio la simulacion distribuida presenta mejor rendimiento que la centralizada. Otro
punto importante es comparar las versiones desarrolladas con diferentes algoritmos y
como se comportan al ir aumentando el tamafio del modelo y el nimero de SPs.
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La([Tabla 1| muestra los resultados del simulador implementado en Rust. Esta tabla se
publico en la GECON 2021 [15]], en un articulo en el que colaboré junto a otros miem-
bros del grupo de investigacion, y sus datos sirven como referencia. En la tabla se
muestran los resultados al simular con una version centralizada y distribuida un mode-
lo de red de Petri de ramas secuenciales (como la figura [3)). El tiempo de simulacién
para estas pruebas es de 10 millones de ciclos de simulacion. La segunda columna
(#br.) indica el nimero de ramas del modelo, la tercera (trans/br.) el niimero de transi-
ciones que hay en cada una de las ramas, y la cuarta columna es el nimero de eventos
totales que se han procesado. La siguiente columna indica el nimero de SPs (nodos)
utilizados, ya que la red de Petri se divide en una subred para cada una de las ramas
y otra subred con las transiciones de sincronizacion de las ramas. Cada una de las su-
bredes se simula en un SP distinto, y cada SP se ejecuta en una maquina diferente.
Las altimas dos columnas indican el resultado obtenido: el nimero de eventos proce-
sados por segundo y el tiempo de ejecucion de la simulacion. El nimero de eventos
procesados por segundo es la suma de todos los SPs excepto el que simula la subred
de sincronizacion, ya que tiene un nimero despreciable de transiciones. Estos valores
se utilizan para comparar los resultados obtenidos.

SP Simulator | #br. | trans/br. Events | Nodes | Events / sec | Exec. Time
Centr. 2| 10000 | 19998 003 1 7522 936 2.658s
Distr. 2| 10000 | 19998 003 3 2 609 886 7.619s
Centr. 2 | 100 000 | 19999 803 1 7529 029 2.656s
Distr. 2 | 100 000 | 19999 803 3 4 407 922 4.537s
Centr. 71 10000 | 69988 013 1 3909 926 17.79s
Distr. 71 10000 | 69988 013 8 6 652 821 10.52s

Tabla 1: Simulacién distribuida vs simulacion centralizada con diferentes cargas de trabajo por
SP implementados en Rust. Lookahead: calculo dindmico y envio al finalizar de simular.

Se han realizado tres simulaciones diferentes: red de Petri con dos ramas de diez mil
transiciones por rama, red de Petri con dos ramas de cien mil transiciones por rama, y
red de Petri con siete ramas de diez mil transiciones por rama. En los tres casos se ha
ejecutado la version centralizada y distribuida.

La primera observacion que se puede hacer es que la versién centralizada presenta
mejores resultados que la distribuida para los dos primeros modelos. En estos casos los
modelos que se simulan en los SPs no tienen suficiente carga de trabajo y la sobrecarga
afladida a la simulacion distribuida no merece la pena. De todos modos se aprecia una
mejora al pasar de una profundidad de rama de diez mil a cien mil transiciones. Para
el dltimo modelo la version distribuida es mds rdpida que la centralizada debido a
que tienen una mayor carga de trabajo en los SPs, obteniendo mejores resultados al
distribuir el trabajo en los SPs en lugar de hacerlo en una sola maquina.

Como conclusion se puede extraer que como se esperaba al comienzo del proyecto, al
aumentar el tamafio de los modelos la version distribuida incrementa su rendimiento
mientras que la centralizada lo empeora. Por tanto en estos casos es preferible el uso
del simulador distribuido.
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Otro dato a tener en cuenta es que el segundo modelo (cien mil transiciones por rama)
tarda menos tiempo en simular que el primer modelo (diez mil transiciones por rama).
Se debe a que el ciclo final de simulacion es el mismo por lo que procesan el mismo
nimero de eventos totales. El segundo modelo al tener mayor tamafio de rama, puede
simular un mayor tiempo antes de tener que parar, transmitir mensajes por la red de
comunicacion y esperar la respuesta. El primer modelo al tener un menor tamafio de
rama transmite un mayor nimero de mensajes haciendo que su simulacién sea mds
lenta.

Estos datos son utilizando la gestion de lookahead con el algoritmo de célculo dindmi-
co y el envio cuando un SP no tiene nada que simular, es decir al final de un intervalo
seguro de simulacién. Ademads, en estas pruebas se utilizé comunicacién TCP entre los
SPs en la que para cada transmision de un mensaje se creaba una nueva conexion TCP
y después se cerraba. Esto fue claramente un error, que hace que el rendimiento sea
algo peor.

Cabe decir que el cambio de lenguaje de programacion de Java, que se usaba en el
simulador de trabajos anteriores, a Rust es fundamental. Por ejemplo, la simulacién
del tercer modelo de siete ramas en Rust tarda 10.52s mientras que el mismo modelo
en Java 43.4s, un tiempo cuatro veces mayor. Los datos de experimentos en Java se
obtuvieron en las practicas del master.

Enla se muestran los resultados para la version final del sistema. La comuni-
cacion sigue siendo TCP pero cada SP utiliza una tnica conexion con otro SP para la
transmision de mensajes que se cierra al finalizar la simulacidn. El algoritmo de célcu-
lo de lookahead es el de vector de lookahead y su gestién es mediante solicitud cuando
un SP requiere el valor un SP vecino.

gfmulator #br. | trans/br. Events | Nodes | Events / sec | Exec. Time ](Eégé ;)F;rlr)le
Centr. 2| 10000 | 19998 003 1 7 522 936 2.658s 2.658s
Distr. 2| 10000 | 19998 003 3 5437 474 3.68s 7.619s
Centr. 2 | 100000 | 19999 803 1 7 529 029 2.656s 2.656s
Distr. 2 | 100000 | 19999 803 3 8 354 348 2.39s 4.537s
Centr. 71 10000 | 69988 013 1 3909 926 17.79s 17.79s
Distr. 71 10000 | 69988 013 8 8281 665 8.45s 10.52s

Tabla 2: Simulacién distribuida vs simulacion centralizada con diferentes cargas de trabajo
por SP implementados en Rust. Lookaehad: cdlculo con vector de lookahead y solicitud de
lookahead.

El formato de la tabla es el mismo afiadiendo una tltima columna con los tiempos de
ejecucion anteriores. Los resultados del simulador centralizado son los mismos pero el
distribuido presenta una mejora notable. En el primer modelo su tiempo de ejecucion
se ha reducido aproximadamente a la mitad, pasando de 7.62s a 3.68s.
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El comportamiento es similar en el segundo modelo, pasando de 4.53s a 2.39s. Ademas,
con este nuevo tiempo ya se consigue mejorar el resultado que se obtiene en el centra-
lizado.

En el dltimo modelo la ganancia es menor, consiguiendo una velocidad aproximada-
mente un 25 % mayor. La ganancia es menor porque las siete ramas tienen una carga de
trabajo similar y al solicitar el lookahead lo hacen al mismo tiempo. El SP que simula
la subred de Petri que tiene las transiciones de sincronizacion tarda méas tiempo al tener
que responder un mayor numero de solicitudes, haciendo que los SP de las ramas estén
mas tiempo esperando la respuesta.

En este caso se puede observar que modificando los célculos que se aplican se puede
mejorar el rendimiento del simulador, pero depende en gran medida del modelo que se
simule. Con este modelo el SP que simula la subred de sincronizacion tiene el problema
de que es un “cuello de botella”. Para mejorar el rendimiento seria necesario intentar
modificar el modelo (cuando sea posible) para evitar estos problemas.

Ademas, se han utilizado mas variables para lograr medir el rendimiento del simulador
distribuido, que son las siguientes:

= P: rendimiento, eventos por segundo.

E: densidad de eventos, eventos por segundo simulado (ciclos de simulacion,
valor mdximo que alcanza LVT).

R: velocidad de avance de la simulacién (tiempo de simulacién en segundos /
tiempo real en segundos).

L: lookahead, calculado en cada intervalo seguro de simulacion.
m 7: latencia de comunicacion entre los SPs.

Con estas variables se puede obtener el factor de acoplamiento (4), con la siguiente
ecuacion:
A =LE/tP

El uso de esta métrica fue propuesto en [[16] para medir el rendimiento del simulador
conservativo segin la carga de trabajo de cada SP. En el articulo se indica que si A es
menor que 10 es demasiado pequeio, mientras que si es mayor que 100 casi siempre
es suficiente.

En las pruebas realizadas para la segunda version del simulador la latencia obtenida
es de 42 microsegundos, obteniendo un factor de acoplamiento de A = 67.43 para el
primer modelo, de dos ramas con diez mil transiciones por rama. El segundo modelo
con dos ramas y cien mil transiciones por rama tiene A = 665.49, y el tercer modelo
con siete ramas de diez mil transiciones A = 226.11.

Los datos muestran que el primer modelo se acerca a tener un valor adecuado (mayor
a 100) pero no lo consigue, debido a que los SP no tienen suficiente carga de trabajo.
Los otros dos tienen valores mejores que indican que tienen una carga de trabajo ade-
cuada. Cabe decir que el valor A puede ser ttil para la interpretacion de los resultados
pero requiere otros andlisis para evaluar de una forma mas global el rendimiento del
simulador.
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Con estos resultados se puede concluir que ha merecido la pena el desarrollo de la
segunda version del simulador con la solicitud de lookahead entre otros aspectos. Gra-
cias a esta version se han mejorado los resultados de la primera version que se public
en GECON en 2021.

Respecto a la escalabilidad, con la tltima version se ha dado un paso mas para permitir
la simulacién de modelos de mayor tamafio. La principal aportacion es la reduccion del
nimero de mensajes transmitidos por la red de comunicacién, mediante la solicitud de
lookahead cuando un SP necesite esa informacion. De este modo se evita saturar la
red, que podria ocurrir con la primera version del simulador para un modelo de gran
escala, haciendo posible el planteamiento de la simulacién a nivel de regiones. Este
planteamiento afiade una capa de complejidad més al simulador, haciendo que aumente
el nimero de mensajes que se transmiten.

Por ultimo, habria sido apropiado verificar el funcionamiento de las regiones y com-
probar hasta qué punto permiten la simulacién a alta escala. Por la falta de tiempo al
realizar el proyecto, queda como trabajo futuro.
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6. Conclusiones

El objetivo que tenia este trabajo era el desarrollo de un simulador distribuido que
permitiera simular modelos de alta escala manteniendo unas prestaciones adecuadas.
Con los resultados obtenidos, cabe decir que se ha obtenido un simulador més eficien-
te que el que habia antes del trabajo. Gracias al exhaustivo anélisis del problema de
la gestion del lookahead, se ha conseguido profundizar en su problemética pudiendo
desarrollar diferentes algoritmos que presentan un mayor o menor rendimiento en fun-
cion del modelo a simular. Se debe a que la gestion del lookahead es el punto clave en
la simulacién distribuida para conseguir buenas prestaciones.

Ademads, se ha presentado el disefio de una mejora para la simulacion de alta escala
mediante la simulacion a nivel de regiones. De este modo se podrian simular modelos
mads grandes con un mayor nimero de SPs con un coste menor que en las simulaciones
distribuidas tradicionales. Este aspecto es importante ya que cuando diversos autores
desarrollaron las simulaciones distribuidas, sus algoritmos no estaban pensados pa-
ra modelos de alta escala, debido a las limitaciones de maquinas que habia entonces
pudiendo utilizar un menor nimero de maquinas.

Por tanto, en este trabajo se ha logrado dar un paso mas en el desarrollo de un si-
mulador distribuido completo y exhaustivo que el grupo de investigacion COSMOS
trabaja para conseguir. Ademads, en el trabajo se ha colaborado en un articulo de inves-
tigacion publicado en GECON [15]] que ha sido elegido como el mejor articulo de la
conferencia.

6.1. Trabajo futuro

Este trabajo proporciona una base para que en proyectos posteriores se pueda desarro-
llar un sistema completo de simulacion. Algunas de las tareas que se podrian realizar
en el futuro son:

= Implementar y realizar pruebas de la simulacidén a nivel de regiones. En este
trabajo se ha realizado el disefio de este aspecto enfocado a la simulacién de alta
escala pero por falta de tiempo no se ha llegado a implementar. El siguiente paso
seria afadir su implementacion al codigo desarrollado y hacer experimentos para
comprobar su validez y comparar el rendimiento obtenido respecto a no usarlo.

= Permitir la simulacién de modelos mas complejos. Se podrian ampliar las re-
des de Petri permitidas con aspectos como el uso de tiempos estocdsticos, los
cuales no se utilizan ahora ya que los tiempos usados son deterministas. Los
tiempos estocdsticos requieren un mayor andlisis ya que al contrario que ahora
no se puede utilizar la informacién de tiempos de marca obtenida en la fase de
compilacion. De este modo al obtener el lookahead habria que obtener una cota
minima, impidiendo encontrar un tiempo preciso como se consigue ahora.

También se podrian incluir los conflictos, cuyo tratamiento requiere un mayor
andlisis que el que se ha realizado en el trabajo. En la version actual se puede
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conocer el camino que se va a seguir y por tanto es posible obtener el tiempo uti-
lizando informacion de compilacion. Sin embargo, si la red de Petri tiene algun
conflicto no se conoce su resolucion en tiempo estédtico. Es necesario conocer la
resolucion del conflicto en tiempo de ejecucion que dependerd de la politica de
resolucion de conflictos, las cuales existen multiples alternativas. Por ejemplo,
una de las politicas mas sencillas es disparar la transicién que mas tiempo lleve
sin ser disparada. Cabe destacar que con el algoritmo desarrollado de célculo
de lookahead dinamico en tiempo de simulacién se proporciona una base para
permitir la gestién de los conflictos. Por tanto con ligeras modificaciones ya se
podrian incluir los conflictos, mientras que con otros algoritmos como el otro
desarrollado de vector de lookahead no es posible y habria que replantear el
algoritmo.

= Otro punto seria realizar un anélisis de la frecuencia con la que se deberia actua-
lizar el lookahead. Consistiria en encontrar el equilibrio entre valor actualizado
y tréfico de red de comunicacidén que permita tener mejores prestaciones, para
conseguir simulaciones mds eficientes.

= Un aspecto muy importante seria anadir un depurador de redes de Petri en la si-
mulacién. Al simular redes de Petri de cada vez un tamafo mayor, su verificacion
es un tema que puede ser complejo y requerir bastante tiempo. Un depurador fa-
cilitaria el trabajo, con opciones como pueden ser el simular hasta un cierto ciclo
de simulacién y mostrar los valores de las variables.

= Otros aspectos de mayor ambicién con un objetivo a mdas largo plazo, como
la tolerancia a fallos y extensiones de otros trabajos del grupo de investigacién
como los que se explican en las secciones de trabajo futuro en [7,/17]].

6.2. Esfuerzos dedicados

En la se muestra el tiempo invertido en las diferentes partes del proyecto.
Este TFM se inici6 en junio de 2021 aunque los dos meses anteriores (abril y mayo
de 2021) fueron de précticas académicas en la misma linea de trabajo, realizando el
simulador distribuido en Java. Estas practicas duraron en torno a 225 horas, que con
las de este trabajo hacen un total de aproximadamente 675 horas dedicadas al 4mbito
de la simulacion distribuida.

6.3. Evaluacion personal

Tras haber concluido el proyecto y evaluando el trabajo realizado, valoro este proyecto
como una experiencia positiva. En mi formacién durante los afios del grado y el tiempo
del master he estudiado varios sistemas distribuidos y me he enfrentado a trabajos de
un cierto tamafio y complejidad. Sin embargo, este trabajo ha supuesto un reto mayor
de lo que me esperaba debido a que las simulaciones distribuidas tienen una dificultad
de una escala mayor a lo que habia estudiado y trabajado hasta ahora.
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Tarea Horas

Revision de la bibliografia publicada y trabajos previos 15
Aprendizaje del lenguaje Rust 30
Familiarizacién con el cédigo base 10
Disefio e implementacion de los mecanismos de lookahead 100
Disefio de la simulacion a nivel de regiones 50
Depuracion y pruebas 100
Reuniones 55
Memoria 90
Total 450

Tabla 3: Dedicacién de horas.

En general estoy satisfecho con el trabajo realizado a pesar de que he tenido momentos
de cierta dificultad, especialmente con la problemética del lookahead que me llevé més
tiempo del esperado.

El trabajo que se proponen en el grupo de investigacion es ambicioso y me alegro de
haber podido aportar una parte, para dar un paso mas hacia su objetivo. Sin duda reco-
mendaria a otros estudiantes que realicen algin trabajo en algun grupo de investigacion
durante el grado o master porque es una experiencia diferente que todos los estudiantes
deberiamos adquirir.
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8. Anexos

I. Funcion lineal de sensibilizacion de una transicion
(Linear Enabling Function, LEF)

Las funciones lineales de sensibilizacion de una transicién o LEFs (Linear Enabling
Function of a Transition) permiten caracterizar cuando una transicion estd sensibilizada
con una simple funcidn lineal dependiente del marcado.

Una LEF de una transicién t es una funcién f;:R(N,mgy) — Z que hace corresponder a
cada marcado alcanzable de la red de Petri, m € R(N,myg) , un entero de manera que
la transicion t esta sensibilizada si y solo si f;(m) < 0. Por ejemplo, para la transicion
T2 de la red de la figura[19] su LEF es: fr,(m) =2 — (m[A] + m[D]),Vm € R(N,my),
donde my es el marcado inicial. Por tanto, fra(mo) =2 — (mo[A] +mp[D]) =2—-1=1,
es decir, la transicion T2 no esta sensibilizada en el marcado inicial. Si observamos
la transicién T1, su LEF es: fri(m) = 1 — (m[A]), con fri(mgy) = 0, por lo que estd
sensibilizada en el marcado inicial.

Figura 19: Red de Petri (extraida de [4]]).

Para una informacion mas detallada consultar [2],4]]
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IL.

En la figura[20| se muestra la traza de la simulacion de una red de Petri compuesta por
dos ramas de dos transiciones cada una (sl y s2). La simulacién tendria tres SPs, uno
para cada rama y otro para la parte de sincronizacion de ramas (s0). Los tiempos de
disparo de todas las transiciones son de una unidad de tiempo.

IB (Input Buffer) son los mensajes recibidos, OB (Output Buffer) son los mensajes que
se envian y external_evs son los eventos generados cuyo destino es otro SP pero que
aun no se han enviado.

No se muestra la traza de la subred 2 porque es idéntica a la de la subred 1, con los
nombres de transiciones y SP destino correspondientes. Ademas, se muestra la traza
hasta que finaliza un ciclo. El dltimo intervalo (5) es idéntico al primer intervalo pero

Ejemplo de traza de la simulacion

con mayores tiempos.

subnetl (s1)

subnetd (s0)

pzl p3.0
111
t1.0
pl1
{1
t0_0
101
po_1 pl.o
intervalo Subredd lef lef
disparo |18 0 0] t1_0 enabled_tr [FUL 08 11 FUL o8
Paso stenull;1>
iicial o] 2|w o@o s2null;1> 1 s0<null;2>
slenull;2>
recibir i s2<null;2> of 2w om0 1
LHVT ol 2|1 0@ 1
simula ol 2/ 0@ 1
dispara 10_0,0 1 2 1
siat0_1-1;1>
Envio 2 i 2 s2a0 2131 1 s0<null;3>
stanull;3>
recibir 2 s2enull;3> 2 2| 1] 2 1 1| af 1
LHVT 3 2| 1] 2 1 1] of 1 <0_1-1;1>
simula 3| 3] 1] 2 1 1| of 1
disparo a3 1] 2 1 1 af 1 <l 1-1;2>
si<null;5>
Envio 1 2 s2=null;5> 1 1 <tl 1;-1;2> sO=null;3=
slenull;3>
recibir 3 s2<null 3> 3 3| 1] 2 1 1| af 1 <t 11,2
LHVT 3| 3] 1 2 5| 1 1 1 <tl_1,-1;2>
simula a 3| 1] 2 5| 2| 1 o
disparo a3 1] 2 s| 2| af 1
si<null;s>
Envio i 2 s2enull;s> 1 s0<tl_0;-1;35
<t1_0-1;
3vetl O-1;
recibir 4 3> 1 2 1
<1 0;-1;3>
LHVT 1 2 <ti_0i-1:3> 1
simula 1] oju o@3 1)
dispara .03 1 2 <t0_0,-14> 1
sLenull;5>
Envia 1 2 <t0_0,-1,4> s2<null;s> 1 sOsnull; 7>
st<null;7>
recibir 5 s2<null;7> i 2 <t0_0,-14> 1
LHVT 1 2 <10 0,-1,4> 1
simula o] 2w oms 1.
disparo 0_04 1 2 1
s1e1D_1;-15%
Envio i 2 s2<t0_2-1:5> 1 =null;7>

Figura 20: Traza de simulacién distribuida en una red de Petri de dos ramas de dos transiciones

cada una.
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III. Algoritmo lookahead para redes simples (version
anterior)

La primera version del algoritmo de lookahead que se disefio e implemento estaba
enfocada para redes simples, concretamente para redes de ramas secuenciales. Este
algoritmo es mds sencillo y sus prestaciones son ligeramente mejores al algoritmo uti-
lizado en el proyecto para las redes muy simples. Sin embargo, tiene mds restricciones
ya que no permite la existencia de ciclos en la red de Petri a simular. Ademads, en caso
de redes con varios caminos posibles, este algoritmo no es eficiente dado que toma el
camino de peor tiempo sin considerar el estado de la red.

El problema de este algoritmo es que no explota la informacién de la estructura del
modelo para conocer de que transiciones depende otra transicion. Esto ocurre cuando
una transicion tiene mds de un lugar de entrada, ya que con este algoritmo se calcula
el tiempo menor, es decir, si hay dos caminos para llegar a una transicion, aqui se
devolveria siempre el de menor tiempo.

Esto es mejorable ya que se debe explotar la informacion de la estructura del modelo
para conocer cual es el camino a tener en cuenta. Por ejemplo, si una transicion tiene
dos caminos, uno que tarda 4 unidades de tiempo en quitar una marca al LEF y otro
que tarda 6 unidades tiempo, solo se tomard el de 4 unidade cuando LEF=1. Si LEF=2,
hay que tomar el camino de 6 unidades porque en 4 unidades de tiempo al LEF se le
quitard una marca pero adin necesita otra, que llegard mas tarde.

Por tanto hay que tener en cuenta cual es el estado de la red para poder obtener infor-
macidn precisa de lookahead.

Cabe destacar que el cdlculo en compilacion es similar en ambos algoritmos salvo que
en la version anterior se obtienen los tiempos de marca ordenados de menor a mayor
tiempo. En cambio el algoritmo de simulacién es muy diferente.

El calculo en dos fases es el siguiente.

II1.1. Calculo en simulacion

El lookahead se calcula en el algoritmo de simulacion distribuida tras finalizar el in-
tervalo seguro de simulacion. Una vez que acaba de simular para un horizonte LHVT
dado, se produce el envio de los eventos exteriores, y para los SPs a los que no se envia
evento, se calcula y envia su lookahead.

El pseudocddigo se puede ver en la figura

Esta version tiene la limitacion de que las redes de Petri utilizadas deben ser redes
binarias sin conflicto. Ademads, las transiciones de entrada solo pueden tener un lugar
de entrada, es decir, no se permiten varios lugares de entrada de la subred en la misma
transicién. Tampoco se permite que una transicién tenga un lugar de entrada de la
subred y otros lugares de entrada internos.

Para obtener el valor del lookahead de una transicion de salida, tomando como valor
inicial un valor elevado MAX (linea 2), se recorre la lista de tiempos de esa transicién
de salida (lineas 3-22). La lista contiene relaciones de identificador de transicién y
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1: func get_lookahead(trans):

2 min — MAX

3 for all ([trans_id, TM] € trans.times) do
4 if (min <= (LVT + TM)) then

5: break

6: end if

2

8 if (is_entry(trans_id)) then

9 time — get ext time(trans _id) + TM
10: if (time < min) then

11: min — time

12 end if

13: else then

14: lef_val — get_lef value(trans_id)
15: if (num_events_FUL(trans_id) == lef_val) then
16: time — time_event_FUL(trans_id, lef_val) + TM
17: if (time < min) then

18: min — time

19: end if

20: end if

21 end if

22.  end for

23:  return min

24 end func

Figura 21: Célculo de la segunda parte del lookahead en la simulacién de la red.

tiempo. Esa lista se calcul6 en compilacién y estd ordenada de menor a mayor tiempo.
Para cada valor en la lista, hace las siguientes tareas:

= Comprobar obtencion del camino minimo (lineas 4-6): mientras que el candi-
dato a valor minimo encontrado hasta el momento sea mayor que el tiempo que
se podria obtener con otra transicién (min > LVT + TM), se debe seguir iterando
para encontrar el valor minimo real. Por tanto, en el momento en que LVT su-
mado al valor de TM de la transicién a mirar sea igual o mayor que el candidato
minimo actual (min < LVT + TM), no es necesario seguir iterando. Esto se debe
a que los valores de TM aumentan por iterar las transiciones en orden de tiempo,
obteniendo unos valores de tiempo finales mayores que el que ya se ha obtenido.

La comparacion se realiza tomando el menor tiempo posible que se podria ob-
tener en la transicion actual: LVT + TM. Este tiempo podria ser mayor, ya que
para tomar el valor de LVT deberia ser una transicion de entrada cuya ultima
informacion recibida de lookahead fuese igual a LVT. En cualquier otro caso, el
tiempo que se obtendria seria X + TM, donde X > LVT.

Esta comprobacion de parada se realiza al principio del bucle, que es cuando
es necesaria. En caso de hacerla al final, seria menos eficiente porque haria las
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comprobaciones de esa transicién aunque no aportan informacion relevante.

Tratamiento de la transicion (lineas 8-21): la transicion tiene un tratamiento
especial para el caso de que sea de entrada (tiene un lugar de entrada que es
interfaz de entrada de la subred), y en caso contrario tiene otro procedimiento.

La transicion es de entrada (lineas 8-12): hay que utilizar la informacién de
lookahead recibida para esa transicion. El tiempo de ese camino seria el tltimo
valor de lookahead recibido para esa transicion sumado a TM (linea 9). En caso
de que sea el menor encontrado hasta el momento, se guarda su valor (lineas 10-
12). Este tiempo es la estimacion del ciclo en el que como minimo la transicién
podria estar sensibilizada, en caso de que reciba un evento del correspondiente
SP, mas el valor de TM.

La transicion estara sensibilizada en un tiempo futuro (lineas 13-21): si la
transicion no es de entrada hay que comprobar si con los eventos pendientes en
FUL estara sensibilizada en un ciclo futuro. Primero se obtiene cuantas marcas
necesita para estar sensibilizada, es decir, su valor de LEF (linea 14). Después se
comprueba si con los eventos en FUL se puede sensibilizar la transicién (linea
15). Al ser redes binarias cada evento dirigido a la transicién quita una marca al
LEF (en redes de Petri seria afiadir una marca a un lugar de entrada).

Si hay tantos eventos como el valor de LEF, se obtiene su tiempo y en otro caso
se deja de mirar esa transicidon y se consulta la siguiente. Se admite que haya
mas eventos que el valor de LEF, para permitir redes con multiples disparos de
una transicion en distintos tiempos. Por ejemplo, una transicion #; con tiempo de
disparo de 3 unidades de tiempo podria dispararse en el tiempo T=1 y T=3. En
T=3, en FUL habria dos eventos generados por esa transicion, uno para T=4 y
otro para T=6.

Si la transicion estard sensibilizada con los eventos en FUL, se obtiene su tiempo
(linea 16) y si es el menor encontrado se guarda su valor (lineas 17-19). El tiempo
es el valor de TM mas el tiempo del evento que sensibilice la transicion que se
consulta. Esto es el evento que al procesar permita que se pueda disparar la
transicion. Por ejemplo, si LEF=2 se toma el tiempo del evento de la segunda
marca, es decir, el segundo evento de FUL dirigido a la transicion. Estos eventos
estan ordenados de menor a mayor tiempo.

Finalmente se devuelve el valor minimo obtenido (linea 23).

Al estar ordenada la lista de tiempos e iterar hasta tener garantia de encontrar el ca-
mino minimo, siempre se devuelve el tiempo minimo, garantizando la simulacion
conservadora.

Es necesario mirar si hay eventos pendientes de procesar en FUL porque cuando se
calcula el lookahead ya se ha simulado hasta el horizonte temporal. Por tanto no hay
transiciones sensibilizadas ya que en caso de haberlas ya se habrian disparado, por lo
que hay que comprobar si hay eventos pendientes para tiempos de simulacién mayores
aLVT.
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Hay un caso especial que es al inicio de la simulacién. En esta fase, antes de simular
se calculan y envian los valores de lookahead para los SPs sucesores. En este punto no
hay ningun evento en FUL pero hay transiciones sensibilizadas por el marcado inicial.
El pseudocédigo de este célculo se puede ver en la figura22]

func get_loockahead _initial({trans):
for all ([trans_id,TM] € trans.times) do
if (is_enabled(trans_id) or is_entry(trans_id)) then
return LVT + TM;
end if
end for
end func

NeagkwhpE

Figura 22: Célculo de la segunda parte del lookahead en la simulacién de la red: fase inicial.

Su funcionamiento consiste en iterar la lista de tiempos de marca, mirando si la transicion
que se comprueba esta sensibilizada o es de entrada (linea 3). Si se cumple alguna con-
dicidn, ese es el valor minimo (linea 4).

Este cdlculo se debe a que las siguientes transiciones que se miren tendran un tiempo
de marca igual o mayor, por lo que el camino minimo ya se ha obtenido. En esta fase
aun no se ha obtenido informacion de lookahead de los SPs predecesores por lo que se
asume que en el ciclo actual, LVT, podria llegar algtn evento.

Ejemplo

Siguiendo el ejemplo de compilacién de la figura 10} en ese caso en el que no hay
ninguna marca, el valor de lookahead que se obtendria seria: lookahead(t0) + 3. Este
valor es el dltimo valor de lookahead recibido para la transicién t0 més su tiempo de
marca, que es 3 unidades de tiempo. Su obtencion se debe a que al aplicar el algoritmo
no hay ninguna transicion sensibilizada con los eventos en FUL. Al seguir iterando se
obtiene que t0 es de entrada por lo que se guarda su tiempo como el minimo hasta el
momento. Después se comprueba t1 (como su TM es mayor se comprueba después),
se obtiene su tiempo porque es de entrada pero como no es el menor encontrado no se
guarda.

En este ejemplo se aprecia que el resultado no es 6ptimo ya que el verdadero valor
de lookahead deberia ser el de t1: lookahead(t1)+7. Excepto que lookahead(t0)+3 sea
mayor que ese valor, en cuyo caso seria el de t0.

No se obtiene ese valor porque con este algoritmo no se tratan los valores de LEF para
conocer cuantas marcas requiere, por lo que se toma el camino minimo para garantizar
su ejecucion, aunque en casos como este es demasiado pesimista.
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IV. Implementacion del algoritmo de simulacion distri-
buida

En la figura 23] se puede ver el c6digo en Rust del algoritmo de simulacion distribuida
utilizando la solicitud de lookahead.

update_initial_ lockahead(
.initialize_ t¢

.initialize sim

barrier s
printin!(

printin!(
printin!(

now = 1
. L C

old fired t = . transitions.len();
old LVHT =

LVHT = check_neighbours(

printiln! ("VT:

if LVHT g final
LVHT = final

.simulate o

if LVHT == final

Figura 23: Implementacion en Rust del algoritmo de simulacion distribuida (versién con soli-
citud de lookahead).
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V. Implementacion del calculo de lookahead en compi-
lacion (tiempos de marca)

La obtencién de los tiempos de marca para el cdlculo de lookahead en la fase de com-
pilacién estd implementado en el lenguaje de programacién Java. En la figura [24] se
puede ver el cédigo. Se realiza en Java porque el compilador estd desarrollado en este
lenguaje.

05 dame_tiempoha
new Listatiem

ar[]> trans_pendientes

2> trans_vistas

lugar,li trar
isEmpty(

ns_pendientes.iterator()

. add (codtrans);

timeMark = timeToMark + ia transicione
codtranssu = dame cod trans subred

].ia
on=1ia lugares[li cod_lugar].ia

tains(1i tr n)) {
2r[1{1i_transicion,timeMark});

Figura 24: Implementacién en Java del célculo de lookahead en compilacién (tiempos de mar-
ca).
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VI. Implementacion del calculo dinamico de lookahead
en simulacion

En la figura[25|y 26| se puede ver el cddigo en Rust del cédlculo dindmico de lookahead
en simulacion.

e = Vec::inew();

.0].times.il_tie

.transition_list[trans.0].lef_value.®

ful(trans, event_ lis

5.11_tiempos;

Figura 25: Implementacién en Rust del cdlculo dindmico de lookahead en simulacion (parte 1).
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t(trans.@, event time + .transi L .firing_time.

n_list[t 5 .0].firing_time

st[tr .6 1size - 1).unwr
.Tiring_tim )

1 SimulatedC

Figura 26: Implementacion en Rust del célculo dindmico de lookahead en simulacién (parte 2).
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