
Trabajo Fin de Máster

Diseño e implementación de un simulador
distribuido de alta escala de sistemas de eventos

discretos

Design and Implementation of a Large Scale
Simulator of Discrete Event Systems

Autor

Fidel Reviriego Navarro

Director
Unai Arronategui Arribalzaga

Codirector
José Ángel Bañares Bañares

Universidad de Zaragoza / Escuela de Ingenierı́a y Arquitectura
Máster Universitario en Ingenierı́a Informática

2021

RESUMEN
En la actualidad los sistemas tienen cada vez un mayor tamaño y complejidad que
requiere la utilización de modelos que describan su comportamiento. La solución a es-
te problema consiste en la simulación de sistemas para reproducir el comportamiento
de un sistema dinámico mediante la interpretación de un modelo. En este trabajo se
utilizan sistemas de eventos discretos que se caracterizan porque su estado de funcio-
namiento se ve alterado en instantes puntuales de tiempo.

Sin embargo, para poder simular sistemas de gran tamaño y complejidad es necesa-
rio que la simulación y las herramientas que se utilicen sean escalables. Para lograrlo
se realiza el desarrollo e implementación de un simulador distribuido de sistemas de
eventos discretos modelados por redes de Petri. El simulador utiliza el método de sin-
cronización conservativo mediante el uso de los mensajes de lookahead.

Debido a que los modelos a simular tienen un gran tamaño el simulador debe tener unas
prestaciones adecuadas al realizar simulaciones de alta escala. El principal mecanismo
del que dependen sus prestaciones es del lookahead, el cual es de vital importancia
y depende del modelo a simular. En el trabajo se realiza un análisis profundo de la
gestión del lookahead, tanto de su cálculo como de cuándo y de qué forma se debe
realizar la transmisión del mismo. Se utilizan dos métodos diferentes: cálculo dinámico
de lookahead con envı́o al terminar de simular y cálculo con vector de lookahead con
solicitud de lookahead. En los dos casos se analiza para qué tipos de simulaciones son
más adecuados y se realizan pruebas en un entorno on premise de la Universidad de
Zaragoza.

Con la mejora del rendimiento que se consigue con los métodos anteriores se pueden
simular modelos de mayor tamaño. No obstante, no es suficiente para modelos de gran
escala que necesiten el uso de un número elevado de máquinas. Para solucionarlo se
propone una solución innovadora en este campo que se ha llamado simulación a nivel
de regiones. Consiste en dividir la simulación en regiones y propagar de una forma
rápida la información de una región a otra para acelerar la simulación en modelos de
alta escala. Una región serı́a un agrupamiento de procesos de simulación, los cuales se
ejecutan cada uno en una máquina.

En conclusión, el simulador distribuido desarrollado es una siguiente versión al que
habı́a antes del trabajo, realizado por el grupo de investigación COSMOS. Con es-
te trabajo se ha logrado mejorar las prestaciones del simulador distribuido ofreciendo
diferentes mecanismos de gestión del lookahead que presentan un mayor o menor ren-
dimiento en función del modelo a simular. También se ha presentado el diseño de un
método para permitir simulaciones de alta escala que tengan un coste temporal acep-
table. Además, se ha colaborado en la publicación de un artı́culo de investigación que
ha sido elegido como mejor artı́culo de la conferencia en la GECON.

2

Índice

Índice de figuras 5

Índice de tablas 6

1. Introducción 7
1.1. Motivación . 7
1.2. Objetivos y alcance . 7
1.3. Contexto . 8
1.4. Herramientas y tecnologı́as usadas en el proyecto 8
1.5. Estructura del documento . 9

2. Simulación distribuida de sistemas de eventos discretos 10
2.1. Los principios de la simulación distribuida y los problemas fundamen-

tales . 10
2.2. Sincronización conservadora con evitación de bloqueo (lookahead) . . 11
2.3. Modelo basado en redes de Petri . 12

3. Análisis y diseño de un simulador distribuido que incorpore mecanismos
de lookahead 17
3.1. Proceso de simulación (SP) de subredes de Petri 17

3.1.1. Algoritmo de simulación . 19
3.2. Mejora del lookahead explotando el modelo 22
3.3. Métodos de cálculo de lookahead . 25

3.3.1. Cálculo en compilación . 25
3.3.2. Cálculo en simulación . 27

3.3.2.1. Método 1: cálculo dinámico de lookahead 27
3.3.2.2. Método 2: cálculo con vector de lookahead 34

3.4. Modificaciones para escalabilidad 37

4. Implementación de los mecanismos de lookahead a incorporar al SP 41

5. Metodologı́a para la prueba del prototipo y resultados experimentales 43
5.1. Proceso de despliegue . 43

5.1.1. Compilación del modelo . 43
5.1.2. Ejecución del simulador distribuido 43

5.2. Entorno de pruebas . 44
5.3. Experimentos y resultados . 44

6. Conclusiones 49
6.1. Trabajo futuro . 49
6.2. Esfuerzos dedicados . 50
6.3. Evaluación personal . 50

3

7. Bibliografı́a 52

8. Anexos 54
I. Función lineal de sensibilización de una transición (Linear Enabling

Function, LEF) . 54
II. Ejemplo de traza de la simulación 55
III. Algoritmo lookahead para redes simples (versión anterior) 56

III.1. Cálculo en simulación . 56
IV. Implementación del algoritmo de simulación distribuida 60
V. Implementación del cálculo de lookahead en compilación (tiempos de

marca) . 61
VI. Implementación del cálculo dinámico de lookahead en simulación . . 62

4

Índice de figuras

1. Bloqueo mutuo en simulación conservadora (extraı́da de [1]) 12
2. Red de Petri (izquierda) y su división en tres subredes (derecha). . . . 14
3. Red de Petri de ramas sincronizadas. 15

4. Descripción de un simbot y sus componentes (extraı́da de [2]). 17
5. Arquitectura SP (extraı́da de [3]) . 19
6. Esquema de algoritmo genérico de simulación distribuida (extraı́da de

[2]) . 20
7. Algoritmo de simulación distribuida con envı́o de lookahead al finali-

zar un intervalo seguro de simulación. 21
8. Algoritmo de simulación distribuida con solicitud de lookahead. . . . 23
9. Cálculo del tiempo de marca en la fase de compilación de la red de Petri. 26
10. Subred de Petri con cálculo de tiempos de marca (TM). 27
11. Cálculo del lookahead del método dinámico. 29
12. Cálculo del lookahead del método dinámico: fase inicial. 32
13. Subred de Petri con una transición de salida (t3), dos de entrada (t0 y

t1) y una interna (t2). 33
14. Subred de Petri con un ciclo. 35
15. Subred de Petri con cálculo de vector de lookahead en diferentes esta-

dos de simulación. 36
16. Red de Petri de ramas secuenciales (izquierda) y los SPs que se utili-

zarı́an para simular una de las ramas con un gran número de transicio-
nes (derecha). 38

17. Arquitectura de simulación a nivel de regiones para una rama de una
red de Petri de ramas secuenciales. 39

18. Diagramas de secuencia de solicitud y comunicación de lookahead en-
tre los diferentes SPs de una simulación a nivel de regiones. 40

19. Red de Petri (extraı́da de [4]). 54
20. Traza de simulación distribuida en una red de Petri de dos ramas de

dos transiciones cada una. 55
21. Cálculo de la segunda parte del lookahead en la simulación de la red. . 57
22. Cálculo de la segunda parte del lookahead en la simulación de la red:

fase inicial. 59
23. Implementación en Rust del algoritmo de simulación distribuida (ver-

sión con solicitud de lookahead). 60
24. Implementación en Java del cálculo de lookahead en compilación (tiem-

pos de marca). 61
25. Implementación en Rust del cálculo dinámico de lookahead en simu-

lación (parte 1). 62
26. Implementación en Rust del cálculo dinámico de lookahead en simu-

lación (parte 2). 63

5

Índice de tablas

1. Simulación distribuida vs simulación centralizada con diferentes car-
gas de trabajo por SP implementados en Rust. Lookahead: cálculo
dinámico y envı́o al finalizar de simular. 45

2. Simulación distribuida vs simulación centralizada con diferentes car-
gas de trabajo por SP implementados en Rust. Lookaehad: cálculo con
vector de lookahead y solicitud de lookahead. 46

3. Dedicación de horas. 51

6

1. Introducción

1.1. Motivación
En la actualidad los sistemas tienen una alta complejidad lo que requiere la utilización
de modelos que describan su comportamiento. Como herramienta para el diseño y de-
sarrollo de estos sistemas se utiliza la simulación de sistemas de eventos discretos de
grandes dimensiones modelados con redes de Petri. La simulación no es posible reali-
zarla de forma centralizada por el gran tamaño de estos modelos, haciendo necesario la
utilización de motores de simulación distribuidos para comprender y analizar su com-
portamiento. Ası́ se consiguen mejores prestaciones al aprovechar la concurrencia real
del procesamiento.
La simulación distribuida de sistemas de eventos discretos es una estrategia conocida
pero la gestión de eventos con estampillas temporales que viajan por la red introdu-
ce dificultades ante el retraso de eventos o la llegada desordenada de eventos. Es un
problema de sincronización en el que la simulación distribuida se debe realizar en
un orden correcto de tiempo. Se pueden diferenciar dos estrategias de sincronización:
conservadora y optimista. Está claro que la optimista limita mucho por la gestión del
almacenamiento de las historias de la simulación hasta el estado en el que se detecta
un evento perdido de cara a recuperar un estado pasado seguro. Sobre todo penaliza
o impide completamente la introducción de mecanismos de balanceo de carga en la
arquitectura distribuida y el balanceo de las partes de modelo a simular en cada uno
de los procesos de simulación (SP). Esto hace que a priori se descarten las técnicas
optimistas y se adopte como estrategia la simulación conservadora.

1.2. Objetivos y alcance
El objetivo del proyecto es la construcción de un simulador distribuido con estrategia
de gestión de los eventos conservadora, explotando los mecanismos de mejora de las
prestaciones de la simulación conservadora. La estrategia conservadora requiere que
no existan eventos etiquetados para un tiempo anterior al tiempo al que se quiere avan-
zar el reloj en un proceso de simulación o simbot. Esta táctica de aseguramiento está
basada en el intercambio de información entre los procesos de simulación acerca de
hasta qué valor de tiempo se pueden avanzar los relojes teniendo en cuenta los eventos
que producirán y enviarán en un futuro los distintos procesos de simulación.
El cálculo de estas predicciones se puede hacer porque de una manera implı́cita o
explı́cita podemos referirnos al modelo de redes de Petri para obtener esta informa-
ción. La obtención de esta información es lo que se llamará cálculo del lookahead.
Este cálculo es crucial para introducir paralelismo en la simulación, cuyo rendimiento
depende principalmente del lookahead. En modelos de gran tamaño el lookahead es la
clave para que su simulación se pueda realizar en un tiempo razonable.

En este proyecto se analizan algunas de las estrategias de cálculo y envı́o de lookahead

7

y se aporta una solución innovadora para la simulación de alta escala, que se ha llamado
simulación a nivel de regiones.

1.3. Contexto
Este proyecto ha recibido una de las becas “Prácticas con TFM del I3A” y se ha rea-
lizado en el grupo de investigación Computer Science for Complex System Modeling
(COSMOS), cuya labor se centra en el desarrollo de sistemas distribuidos complejos.
El contexto y antecedentes de este trabajo parte de los artı́culos de investigación pre-
sentados por los profesores Unai Arronategui, José Ángel Bañares y José Manuel Co-
lom de la Universidad de Zaragoza [2, 4]. En estos artı́culos se propone una metodo-
logı́a dirigida por el modelo para la simulación distribuida de eventos discretos basada
en redes de Petri. Se propone un lenguaje jerárquico o basado en componentes de mo-
delado, el proceso de elaboración de redes de Petri sin jerarquı́a y un compilador que
genera código eficiente para la simulación de redes de Petri.
Mediante diferentes proyectos de varios estudiantes como el Trabajo de Fin de Grado
de Sergio Herrero Barco [5] de la Universidad de Zaragoza, se realizó una primera im-
plementación del compilador y los servicios básicos para la simulación distribuida en
Java. En este punto se disponı́a de una solución ad hoc para una simulación distribuida
para una red especı́fica utilizada para comenzar a probar el sistema.
Después en las prácticas del máster que hice antes de este trabajo realicé un simula-
dor distribuido en Java más completo, permitiendo simular redes de Petri de grafos
marcados. Este simulador estaba diseñado para redes de Petri de pequeño tamaño, y
la gestión del lookahead era muy básica y de bajo rendimiento ya que no se habı́a
analizado.
Una vez situados los antecedentes, este trabajo consiste en el desarrollo e implemen-
tación de un simulador distribuido en el lenguaje de programación Rust [6], con un
análisis profundo de la gestión del lookahead con el objetivo de simular redes de alta
escala.
Además, este trabajo ha sido realizado en paralelo al Trabajo de Fin de Grado de Álvaro
Santamarı́a [7], del cuál se ha utilizado una parte de su simulador implementado en
Rust como código base.

1.4. Herramientas y tecnologı́as usadas en el proyecto
El simulador distribuido ha sido implementado en el lenguaje de programación Rust.
El uso de este lenguaje era un requisito impuesto por el grupo de investigación en el que
se realizó el trabajo. El motivo por el que en su momento se seleccionó este lenguaje de
programación es debido a que permite obtener unas elevadas prestaciones, similares a
las que se obtienen en otros lenguajes como C++. Sin embargo, Rust tiene un modelo
más seguro de gestión de memoria y concurrencia lo que favorece el desarrollo del
simulador distribuido.
Como entorno de desarrollo se ha utilizado Visual Studio Code [8] con la extensión de
Rust [9].

8

Se ha utilizado GitHub para el control de versiones y compartir el código mediante una
organización que se creó llamada simbots-swarm. En esta organización hay múltiples
repositorios para mantener separadas distintas versiones del simulador, junto a otros
trabajos del grupo de investigación relacionados con el simulador distribuido.

1.5. Estructura del documento
La estructura de la memoria se basa en las fases en las que se ha dividido el desarrollo
del proyecto, empezando por las secciones de introducción y estado del arte donde
se explica el contexto del problema a resolver, los principales objetivos y la situación
actual.
El capı́tulo 3 trata sobre el análisis y el diseño del sistema, explicando las diferentes
posibilidades que hay y las decisiones tomadas.
El capı́tulo 4 es sobre la implementación realizada y el capı́tulo 5 explica cómo se ha
validado el sistema y los resultados obtenidos.
Por último, el capı́tulo 6 contiene las conclusiones, el posible trabajo futuro que puede
realizarse y una valoración personal sobre el trabajo realizado.

En el anexo de este documento aparecen algunos aspectos más detallados y otras op-
ciones de diseño que se analizaron y fueron descartadas por determinados motivos.

9

2. Simulación distribuida de sistemas
de eventos discretos

2.1. Los principios de la simulación distribuida y los
problemas fundamentales

La simulación computacional es el funcionamiento de un programa computacional
(simulador) que representa el comportamiento a lo largo del tiempo de otro sistema.
Utiliza modelos matemáticos como sistema de representación para estudiar la evolu-
ción temporal de determinados elementos y sus relaciones. En este trabajo se utilizan
redes de Petri para modelar el comportamiento del sistema.
Según la forma en que cambien las variables de estado a lo largo del tiempo se puede
diferenciar entre simulación de tiempo continuo y discreto. Si es de tiempo continuo
puede haber cambios en todos los puntos durante la simulación mientras que si es
de tiempo discreto solo ocurren en tiempos discretos de tiempo. En este último caso
el tiempo puede avanzar de forma escalonada con incrementos fijos de tiempo o de
manera no regular si la simulación está dirigida por eventos.
En este trabajo se utiliza la simulación de sistemas de eventos discretos, donde un
evento es un suceso que provoca una modificación de las variables de estado que re-
presentan el estado actual del sistema. Estos eventos están etiquetados con una marca
temporal que permite identificar el tiempo en que es procesado.

La simulación distribuida es la ejecución de simulaciones sobre computadores que
no comparten reloj y se comunican a través de una red de comunicación de datos.
En este trabajo cada computador que simula una parte del modelo se llama proceso de
simulación (SP) 1 o simbot, y lo que simulan es una subred. Para lograr una simulación
global correcta del modelo cada SP debe procesar los eventos en el orden correcto de
estampilla de tiempo global, por lo que debe actuar de forma sincronizada respetando
la causalidad global.
La decisión de realizar simulaciones distribuidas en lugar de centralizadas se debe a
que para modelos de gran tamaño no es posible realizarlo en una sola máquina por
el tamaño en memoria requerido, necesario para representar el estado. Otro aspecto
es el tiempo de la simulación que al utilizar múltiples máquinas permite reducirlo
obteniendo mejores prestaciones.

Al utilizar la red de comunicación los mensajes con eventos pueden llegar desorde-
nados o no llegar en el tiempo esperado. La simulación distribuida debe garantizar la
restricción de causalidad local para que la ejecución sea equivalente a la correspon-
diente simulación centralizada en un solo computador. Los eventos contenidos en los

1Utilizamos en la memoria SP en lugar del tradicional LP (Proceso lógico), porque SP implica un
motor de simulación y la partición del código. La diferencia principal es que un LP es compilado y por
lo tanto sólo es posible balancear la carga moviendo todo el LP.

10

mensajes entrantes deben ser procesados en el orden correcto de estampillas de tiempo
globales de eventos, pudiendo utilizar dos estrategias:

Sincronización conservadora: Evitar violar la restricción de causalidad local.
Se espera hasta que sea seguro que no van a llegar eventos con tiempo menor
para no procesar eventos con estampilla de tiempo fuera de orden.

Sincronización optimista: El tiempo avanza permitiendo violaciones de causa-
lidad local. Durante la ejecución al detectar eventos procesados fuera de orden
se recupera el estado del sistema hasta ese evento mediante un mecanismo de
rollback.

En este trabajo se opta por la sincronización conservadora debido a que se van a utilizar
modelos de gran tamaño. Se ha descartado utilizar la sincronización optimista por el
elevado consumo de memoria que puede tener al guardar la evolución del estado del
sistema, necesario para recuperar un estado si se detecta un evento procesado fuera
de orden. Además, en otros trabajos del grupo de investigación también se utiliza la
sincronización conservadora para aspectos como el balanceo de carga.
La sincronización conservadora tiene distintas soluciones como la evitación de bloqueo
con mensajes vacı́os o nulos, la detección de bloqueos y recuperación, o algoritmos
sı́ncronos. La solución más conocida es la utilización de mensajes nulos que es la que
se utiliza en este trabajo.

2.2. Sincronización conservadora con evitación de blo-
queo (lookahead)

En la sincronización conservadora un SP solo puede procesar eventos seguros, es decir,
eventos hasta un tiempo de simulación para los cuales se ha garantizado que el SP no
recibirá eventos externos con marca de tiempo menor al tiempo de simulación actual
(reloj local, LVT). Además, todos los eventos (internos y externos) deben ser proce-
sados en orden cronológico. Esto garantiza que el flujo de mensajes producido por un
SP esté en orden cronológico. También es necesario preservar el orden de los mensajes
enviados entre los SP (estructura FIFO) para garantizar que no puedan llegar mensajes
fuera de orden cronológico [1].
La solución consiste en que un SP antes de simular hasta un cierto tiempo debe tener
información de los SPs que tengan relación con él. Para ello debe esperar un mensaje
de estos SPs que tengan información del siguiente evento que le van a enviar y en qué
tiempo. Se puede producir un problema de bloqueo mutuo si un SP está esperando a
que llegue un mensaje de otro SP pero este SP ya está bloqueado porque también está
esperando algún mensaje. La figura 1 muestra este problema en el caso de 3 SPs.

Para solucionar este problema se utilizan mensajes nulos que son mensajes que envı́an
los SPs y no llevan contenido pero tienen una marca de tiempo que indica el tiempo
mı́nimo hasta el cual ese SP no va a enviar ningún evento. Estos mensajes son los va-
lores de lookahead (L), que se caracterizan por ser mensajes de control que transmiten
información temporal.

11

Figura 1: Bloqueo mutuo en simulación conservadora (extraı́da de [1])

Existen diferentes estrategias para reducir la sobrecarga causada por la transmisión de
mensajes nulos [3], ya que la comunicación SP a SP en simulación distribuida tiene
un coste importante. Estas estrategias consisten en que o los SP envı́an los mensajes
nulos en un determinado momento o los SP solicitan mensajes nulos (On-demand Null-
Message Sending, REQ).
En el primer caso, se pueden enviar los mensajes nulos cada vez que se avanza el tiem-
po (Standard Chandy-Misra-Bryant protocol, STD), cuando expire un cierto tempori-
zador (Timeout-based Null-message Sending, TIM) o cuando un SP no tenga nada pa-
ra simular y vaya a entrar en un estado de parada (Deadlock Avoidance Null-Message
Sending, BLO), entre otros casos. En el artı́culo citado se analizan otras opciones aun-
que existen otras alternativas que son menos habituales.
La variedad de alternativas se debe a la búsqueda de un equilibrio entre tener valores
actualizados de los otros SP sin sobrecargar la red con mensajes nulos que provoquen
una pérdida de prestaciones.
Otra opción es el protocolo de simulación ideal (Ideal Simulation Protocol, ISP) que
utiliza una traza de una ejecución de simulación previa para determinar si un SP puede
avanzar con seguridad. Es la ejecución ideal al no tener sobrecarga de sincronización
por lo que sirve como referencia para comparar simuladores.

2.3. Modelo basado en redes de Petri
Hay una gran variedad de tipos de redes de Petri según su aplicación en problemas
especı́ficos. Existen distintas clasificaciones para ellas pudiendo diferenciar a alto nivel
entre redes de Petri clásicas y las extensiones que se han ido creando. Las redes de Petri
clásicas son un grafo dirigido con dos tipos de nodos: lugares y transiciones. Entre los
nodos están los arcos dirigidos que unen las transiciones con los lugares y viceversa.
Los lugares tienen asociados elementos llamados tokens o marcas que definen el estado
de la red y sirven para establecer las condiciones de disparo de una transición. Dentro
de estas redes hay distintas variantes según las restricciones que se apliquen a la red.
Estas redes de Petri no se pueden aplicar en algunos problemas por lo que fueron sur-
giendo extensiones. La más común es la de tiempo aunque hay otras como las jerárqui-

12

cas y las coloreadas. Con las redes de Petri clásicas no es posible manejar tiempo por lo
que se agrega al modelo el concepto de tiempo para poder describir el comportamiento
temporal del sistema. Dos de las clases de redes de Petri temporizadas más habituales
son las redes de Petri de tiempo determinista y redes de Petri de tiempo estocástico.
Estos tiempos hacen referencia al tiempo de disparo de las transiciones.

En este trabajo las redes de Petri que se van a utilizar son binarias y grafos marcados
en los que cada lugar tiene exactamente un arco de entrada y un arco de salida. Por
tanto no tienen conflictos en el disparo de transiciones. En este tipo de redes solo hay
un tipo de ejecución con unas ciertas proporciones. El motivo de usar grafos marcados
es porque hay un campo lo suficientemente amplio de workflows que utilizan grafos
marcados, junto a que el cálculo del lookahead es más sencillo, y en una primera apro-
ximación al problema se ha elegido esta restricción. Como trabajo futuro se podrı́a
ampliar las redes de Petri permitidas incluyendo tiempos estocásticos o conflictos, en-
tre otros aspectos.

La utilización de redes de Petri para representar el modelo a simular [2] permite me-
jorar el rendimiento al utilizar un mecanismo basado en la caracterización de la sensi-
bilización de una transición mediante una única función, denominada Linear Enabling
Function (LEF) [10]. En el anexo I se explica este mecanismo. De esta manera en la
simulación se utiliza una representación basada en LEFs en lugar de la especificación
clásica de lugar/transición.
El uso de LEFs se debe a que el coste computacional teórico de una simulación cen-
tralizada es lineal respecto al tamaño de la red, mientras que con la representación
lugar/transición el coste es exponencial. Por tanto el uso de redes de Petri con LEFs es
vital para poder simular redes de gran tamaño.

En una simulación distribuida, una red de Petri se divide en subredes que se simulan en
diferentes SPs. Estos SPs están conectados a otros SPs según las subredes que simu-
lan, de forma que las salidas de transiciones de una subred pueden estar conectadas a
transiciones de otros SPs. La transición que tenga algún lugar de salida externo, hacia
otro SP, se denomina transición de salida mientras que la transición que tenga ese lugar
como entrada, una entrada que venga del exterior, se llama transición de entrada.
Por ejemplo en la figura 2 se puede ver una red de Petri y la red equivalente en tres
subredes. En la subred 0 (central) la transición t0 serı́a una transición de salida porque
tiene dos lugares de salida que son lugares de entrada de la transición t1 de la subred
1 (izquierda) y de la transición t2 de la subred 2 (derecha), que son transiciones de
entrada.

El concepto de lookahead en redes de Petri es el mı́nimo tiempo en que una transición
de salida va a generar una marca. Esto quiere decir el tiempo en que como mı́nimo
los lugares de salida de una transición de salida van a tener una marca, y por tanto el
tiempo en que los correspondientes lugares de entrada de los SP destino van a recibir
una marca.

Para ilustrar los algoritmos propuestos, utilizaremos la red de Petri de la figura 3, que
es una red formada por un número de subredes secuenciales que tienen sincronizado el

13

Figura 2: Red de Petri (izquierda) y su división en tres subredes (derecha).

principio y final de su ejecución. Esta red está formada por múltiples ramas secuencia-
les que en la simulación distribuida se dividen en subredes de forma que cada proceso
simula una de estas subredes. Además una de las subredes está compuesta por las dos
transiciones de sincronización que son la primera y la última de la figura. En la figura
se muestra una red con h ramas que serán subredes, con v transiciones en cada una de
las ramas.
Se utiliza este tipo de red de Petri porque es un grafo marcado que tiene una fácil
distribución en subredes y permite detectar de una forma rápida posibles fallos en la
simulación.

Sin embargo, si se utilizan otras redes de Petri su análisis es más complejo. Respecto a
las transiciones de entrada, se deben tener en cuenta todas de la subred puesto que su
comportamiento depende de esos factores. Si hay varias transiciones de entrada, algo
común es tener varios posibles caminos (secuencias de disparos de transiciones) en vez
de un solo camino. Se deben analizar todos los caminos para determinar cual es que se
debe tener en cuenta a la hora de obtener información precisa del valor de lookahead.
En este caso, al analizar una subred de Petri se deben valorar los caminos posibles y
según el valor del LEF de las transiciones que se analicen, determinar cuál es el camino
que se debe elegir. Si una transición Ti tiene X entradas, tiene por tanto X caminos que
se deben analizar. Analizar un camino consiste en calcular el tiempo en que como
mı́nimo generará una marca en su lugar final, el que está conectado a la transición Ti.
Una vez analizados los X caminos, en función del valor de LEF se elegirá cual es el
camino que se debe tener en cuenta. Si el valor de la estructura LEF es Z, es decir
precisa de Z marcas, el camino que se toma como referencia es el Z-ésimo camino,
teniendo todos los caminos ordenados de menor a mayor tiempo.
Por ejemplo, si una transición tiene tres caminos posibles (tres lugares de entrada) de
tiempos [2,3,5], si el valor de su estructura LEF es dos (precisa de dos marcas), el
tiempo a considerar es 3. Se debe a que al necesitar dos marcas en el tiempo 2 como

14

Figura 3: Red de Petri de ramas sincronizadas.

mucho habrá recibido una marca lo que es insuficiente, mientras que en el tiempo
5 podrı́a haber recibido tres marcas que son más de las necesarias. Por tanto hasta
el tiempo 3 como mı́nimo no habrá recibido las marcas suficientes como para estar
sensibilizada.
El objetivo de este cálculo es obtener el lookahead de una transición de salida pero
puede requerir el cálculo del tiempo para otras transiciones dado que dentro de un
camino pueden surgir otros caminos.
Incluso aunque solo haya una transición de entrada, por lo que solo hay un camino en
la subred, si esta tiene varios lugares de entrada pertenecientes al interfaz de la subred
se deben tener en cuenta todos ellos puesto que es información que se recibe de otras
subredes.

Otro caso es si la subred de Petri tiene varias transiciones de salida, lo que afecta

15

al cálculo de lookahead ya que es necesario calcular el valor para cada transición de
salida. De esta manera esos valores se enviaran a las subredes destino. Esto es que para
una cierta transición el lookahead es para un tiempo X pero para la otra transición el
tiempo puede ser diferente y es necesario calcular el tiempo mı́nimo en el que cada
una de esas transiciones generarán una marca. Si tiene varias transiciones de salida, al
realizar el cálculo el coste computacional es mayor pero es necesario para obtener una
información precisa.

16

3. Análisis y diseño de un simulador
distribuido que incorpore mecanis-
mos de lookahead

3.1. Proceso de simulación (SP) de subredes de Petri
Un proceso de simulación simula una partición del modelo y también se le denomina
simbot, que es como se le llamó en trabajos anteriores a este proyecto. Estos SPs o
simbots interactúan entre sı́ mediante el paso de mensajes con marcas temporales. En la
figura 4 se presentan los componentes de un simbot y las interacciones que se producen
entre ellos.

Figura 4: Descripción de un simbot y sus componentes (extraı́da de [2]).

El motor de simulación se asegura de que los eventos generados localmente y los re-
cibidos de otros simbots son procesados en el orden correcto según sus marcas tempo-
rales, garantizando que el resultado es correcto. Se ejecuta como un hilo y sus tareas
principales son: interpretación del modelo con las estructuras LEFs, avance del tiem-
po simulado mediante un reloj virtual local para cada simbot (LVT) y tratamiento de
los eventos almacenados en la lista de eventos futuros (FUL), que pueden ser eventos
internos o externos recibidos de otros simbots adyacentes.
Cada simbot tiene otro hilo de ejecución, denominado Mailbox, que gestiona la comu-
nicación de forma que envı́a y recibe mensajes de otros simbots. Además se encarga
de comunicar los mensajes recibidos al hilo del motor de simulación.

Antes de iniciar la simulación se realiza una fase de compilación con el compilador

17

creado en trabajos anteriores. Su tarea consiste en transformar la red de Petri a simular
en el modelo que necesita el simulador, aplicando una serie de transformaciones como
la obtención de las funciones LEF y sus valores iniciales.

Para la sincronización conservativa cada SP contiene una cola FIFO de mensajes en-
trantes para cada uno de los SP que le envı́an eventos, llamados predecesores. Cada
cola de entrada Qi tiene una marca de tiempo T (Qi) que contiene el tiempo del último
mensaje recibido. El mı́nimo de estas colas mini(T (Qi)) es el horizonte de tiempo vir-
tual lógico (Local Horizon Virtual Time, LHVT), también llamado marca de tiempo de
lı́mite inferior (Lower Bound Time Stamp, LBTS) en [3], hasta el cual se puede simular
de forma segura, disparando eventos generados por el propio SP y aquellos recibidos
de otros SP cuyo tiempo sea menor o igual a LHVT. Simular hasta LHVT se considera
realizar un intervalo seguro de simulación, el cual se compone de diferentes pasos de
simulación.
Un intervalo seguro de simulación consiste en realizar la simulación desde el ciclo
actual de reloj LVT hasta el horizonte de tiempo LHVT. En cada ciclo, se realiza un
paso de simulación en el que se disparan las transiciones que estén sensibilizadas y se
procesan los eventos etiquetados con el tiempo de simulación en curso (LVT). Cuando
no hay nada que simular, ese paso de simulación termina y se actualiza LVT con el
tiempo del primer evento en la lista de eventos futuros (FUL) y se repite el proceso.
Cuando LVT es mayor que LHVT se termina el intervalo seguro de simulación.

Para realizar un intervalo seguro de simulación, se debe tener información de todos
los SP predecesores. Para cada predecesor se debe tener algún evento en Qi y si no se
tiene, el SP debe esperar a recibir evento en Qi o el valor de lookahead.
En este trabajo se utilizan dos técnicas de envı́o de lookahead: al finalizar el intervalo
seguro de simulación y solicitar el lookahead. Para la primera, al acabar el intervalo
seguro de simulación se calcula el valor del lookahead y se envı́a a los SP sucesores,
que son aquellos a los que le envı́a eventos. Tras ello se vuelve al inicio del bucle de
simulación, comprobando el estado de las colas Qi. La otra opción es que en lugar de
que un SP envı́e el lookahead cuando termine de simular un intervalo seguro de simula-
ción, sea necesario hacer una solicitud/respuesta. Un SP cuando necesite información
de otro SP le envı́a una petición tras la cual el SP destino obtendrá su lookahead y lo
enviará al SP que lo solicitó.
Se utilizan estos dos algoritmos (que se explican en la siguiente sección) para poder
comparar el rendimiento en ambos casos y ser capaces de determinar cual es más
apropiado. Además, al principio se realizó el envı́o de lookahead al acabar de simular
porque su diseño es más sencillo pero al pensar en simulaciones de gran tamaño se
optó por la solicitud de lookahead. Se debe a que se reduce el número de mensajes
transmitidos ya que aunque para cada lookahead se envı́an dos mensajes (solicitud y
respuesta), solamente se envı́an cuando es necesario, mientras que en el otro caso se
enviaba independientemente de si se necesitaba o no. La reducción de mensajes que
circulan por la red de comunicación es vital especialmente en simulaciones de alta
escala para evitar sobrecargar la red empeorando las prestaciones.

En la figura 5 se muestra una descripción general de la arquitectura SP.

18

Figura 5: Arquitectura SP (extraı́da de [3])

3.1.1. Algoritmo de simulación
El algoritmo de simulación distribuido utilizado está basado en el publicado en [2] que
se muestra en la figura 6.

En la figura 7 se muestra con mayor detalle el algoritmo implementado en el que el
envı́o de lookahead se produce al final de un intervalo seguro de simulación.

En el algoritmo se cambia ligeramente la notación utilizada con los siguientes térmi-
nos: enabled tr (lista de transiciones sensibilizadas), SPpre (SP predecesores) y SPpost
(SP sucesores).
Entre los cambios realizados está que para cada SPpre además de poner a cero el tiempo
recibido en adj, se marca que no hay evento en una nueva estructura de datos llamada
adj new, que indica si hay evento sin procesar (1) o no (0) (lı́neas 7-9). Se realiza una
barrera entre los SP para que todos estén preparados antes de empezar a simular (lı́nea
10). Finalmente para cada SP en SPpost se calcula y envı́a su lookahead (lı́neas 11-13).

Después ya comienza la simulación hasta el ciclo final que se quiera simular (lı́nea
16). En este bucle primero se recibe un evento de otro SP (operación bloqueante) y
se actualiza adj con el tiempo recibido y adj new indicando que hay evento (lı́neas
17-18). Si es un evento y no un mensaje nulo se añade el evento a FUL (lı́neas 19-20).
Luego se comprueba si se ha recibido evento de todos los SPpre, esto es que para cada
adj su marca de tiempo sea mayor que el reloj local LVT, o que sea igual pero adj new

19

Figura 6: Esquema de algoritmo genérico de simulación distribuida (extraı́da de [2])

indique que hay evento sin procesar (lı́nea 21). Si se cumple, se obtiene el mı́nimo de
los valores de adj y se guarda en LHVT (lı́nea 22), que es el horizonte de tiempo hasta
el que se puede simular.
Ahora se cambia el valor de adj new a cero para los valores de adj que sean iguales a
LHVT para indicar que esos eventos se van a procesar (lı́neas 23-26).
Se hace una comprobación de que el horizonte de tiempo no supere al tiempo máximo
a simular (lı́neas 27-28), y si lo supera se modifica con el tiempo máximo y tras acabar
la siguiente simulación terminará.
Realiza un intervalo seguro de simulación hasta el horizonte de tiempo (lı́nea 29) y
después envı́a los eventos a los SPpost (lı́nea 30). Esto consiste en enviar todos los
eventos exteriores generados en el intervalo seguro de simulación anterior. Además, si
alguno de los SPpost no tenı́an ningún evento exterior, se calcula y envı́a su lookahead.
Como alternativa se puede enviar siempre el lookahead en este caso, tanto si se envı́a
evento exterior como si no. Esta versión tendrı́a una mayor información a costa de
transmitir un mayor número de mensajes, obteniendo una red con más carga. Ambas
versiones son correctas y pueden obtener mejor resultado que la otra en función de
la red de Petri que se simule, aunque en este proyecto se ha optado por la primera
alternativa la cual es más simple y tiene menor número de mensajes transmitidos.

Por último, finaliza la simulación (lı́nea 33) sincronizando los SP y agrupando los logs
en el SP principal.

20

Figura 7: Algoritmo de simulación distribuida con envı́o de lookahead al finalizar un intervalo
seguro de simulación.

El intervalo seguro de simulación (lı́nea 29) consiste en una serie de pasos de simula-
ción, siendo un paso un ciclo. En cada paso se disparan las transición sensibilizadas,
se comprueba si se puede avanzar el tiempo y se procesan los eventos. El avance de
tiempo consiste:

Si no hay eventos en FUL: LVT = LHVT y acaba el intervalo seguro de simula-
ción.

Si el primer evento en FUL tiene tiempo t > LVT:

• t > LHVT: LVT = LHVT y acaba el intervalo seguro de simulación.

• t ≤ LHVT: LVT = t, acaba ese paso y comienza otro paso de simulación.

21

Es necesario utilizar las estructuras adj y adj new ya que solo con adj no es suficiente.
Con adj se almacena la información del último tiempo recibido de los SPpre. Sin embar-
go, si no se utiliza adj new para indicar cuando hay eventos sin procesar, el algoritmo
podrı́a no funcionar.
Por ejemplo, dado SPi que solo tiene a SPj como predecesor, SPi podrı́a recibir un men-
saje nulo con el valor de lookahead 10, asignando adj[j]=10. Obtendrı́a que LHVT=10,
y realizarı́a un intervalo seguro de simulación. Al acabar, esperarı́a a recibir otro men-
saje de SPj, que podrı́a ser un mensaje nulo con un tiempo mayor al último recibido o
un evento. En caso de que fuese un evento, su etiqueta de tiempo podrı́a ser 10 porque
ese es el valor de lookahead que previamente envió SPj. Al tener tiempo 10, el valor de
adj[j] no cambia, por lo que en ese caso con adj no se conoce si hay información que se
puede procesar o no. Por tanto, es necesario la estructura adj new para indicar que en
esos casos hay información a tratar y poder obtener LHVT para realizar un intervalo
seguro de simulación.

En el anexo II se muestra la traza de una simulación distribuida para una red de Petri
con tres SPs.

El algoritmo de simulación distribuida con solicitud de lookahead es similar al an-
terior. En la figura 8 se puede ver el algoritmo. La diferencia está en que al final del
intervalo seguro de simulación no se envı́a el lookahead sino que es el hilo de Mailbox
el que al recibir una petición de lookahead calcula el valor y lo envı́a. Además, antes
de realizar un intervalo seguro de simulación se verifica que se dispone de información
para calcular el nuevo LHVT (lı́nea 17). En caso de no tener información suficiente
para algún SP vecino, se solicita su lookahead y se espera la respuesta. En esta función
también se comprueba si hay eventos recibidos del exterior y se guardan en la lista de
eventos.
La condición de información suficiente para un SP vecino se satisface si se dispone de
un último tiempo de ese SP mayor estricto a LVT. También es válido un tiempo igual
a LVT siempre que haya pendiente por procesar un evento de ese SP para el tiempo
LVT, ya que permitirı́a continuar con la simulación aunque el nuevo LHVT seguirı́a
siendo el mismo, igual a LVT. Este serı́a un caso similar al explicado antes en el otro
algoritmo con el uso de las estructuras adj y adj new, que aquı́ no son necesarias.

3.2. Mejora del lookahead explotando el modelo
El lookahead aporta la información de hasta qué ciclo de simulación como mı́nimo no
se va a enviar ningún evento. Es una información imprescindible en la simulación ya
que cuando un SP quiere calcular un nuevo LHVT, al recibir un mensaje nulo puede
utilizar esa información para extender su valor de LHVT y ası́ eliminar el bloqueo.
De esta manera conoce hasta cuando puede avanzar su reloj de simulación, mediante
la gestión de las colas Qi. Al extraer estos mensajes de las colas en caso de que sean
nulos no se guardan en la lista de eventos FUL ya que no tienen información.
Al poder obtener el horizonte temporal, es posible realizar un intervalo seguro de si-
mulación en el cual se va avanzando el reloj. El incremento del reloj local es seguro

22

Figura 8: Algoritmo de simulación distribuida con solicitud de lookahead.

siempre que LVT ≤ LHVT, en caso contrario se establece que LVT = LHVT, ya que
solo se puede avanzar hasta LHVT como máximo. De este modo se garantiza que no
habrá eventos que lleguen fuera de orden temporal y por tanto la simulación es correc-
ta, al respetar la restricción de causalidad local.

El lookahead se calcula utilizando la red de Petri del modelo a simular estimando el
tiempo mı́nimo en el que enviará un evento. Su cálculo se puede dividir en dos fases:
compilación y simulación. En la primera fase se obtiene un precálculo del modelo de
red de Petri y en la segunda fase se utiliza esa información junto al estado de la red de
Petri para obtener el valor de lookahead. El cálculo se explica en la siguiente sección.

El tráfico de lookahead está determinado por las relaciones de vecindad entre los SP.
Un SP envı́a estos valores únicamente a aquellos SP que sean sus sucesores ya que
dependen de su información del estado de la red. Los sucesores son aquellos que tienen
lugares cuyo marcado los determina el SP predecesor. Del mismo modo, un SP solo

23

recibe tráfico de lookahead de sus SP predecesores, ya que no requiere información del
resto de SP.

Es importante destacar que el lookahead depende del modelo y es crucial para introdu-
cir paralelismo en la ejecución de la simulación. La falta de información para extraer
lookahead de forma precisa es una de las mayores dificultades de los algoritmos con-
servativos. Una de las caracterı́sticas más importante de este trabajo es explotar la
información estructural del modelo para poder obtener información de los lookahead.
Cuanto mayor sea el valor del lookahead mejores prestaciones se conseguirán en la
simulación ya que un punto crı́tico es la espera de un SP a recibir mensajes de otros
para continuar la simulación. Ası́ cuando un SP consulta la información de sus prede-
cesores, si le falta al menos la información de uno de ellos debe parar la simulación
hasta recibir ese dato, reduciendo las prestaciones.
De esta forma si el valor del lookahead es pequeño, el intervalo seguro de simulación
acabará antes y se comprobará con mayor frecuencia el estado de los predecesores, con
un mayor número de paradas. Sin embargo, si el valor es grande, se simulará un mayor
número de ciclos en el intervalo seguro de simulación. Ası́ se obtiene un menor número
de comprobaciones del estado de los vecinos y por tanto menos puntos de parada de la
simulación.

Dada una subred simulándose en un SP, la obtención del mayor valor de lookahead
que enviar a los sucesores dependerá de la información estructural de la subred de
Petri en el SP y de los eventos recibidos por los predecesores. Esto quiere decir que
el tiempo mı́nimo en el que puede enviar un evento está en función del tiempo en el
que un predecesor le enviará un evento al SP. Tras producirse este envı́o, se dispararán
las transiciones correspondientes en la subred de Petri para al final enviar un evento
exterior en un determinado ciclo, estimado con el valor de lookahead. Este es mejor
valor ya que si depende de alguna transición de la propia subred, el lookahead será
menor.

La vigencia del valor de lookahead es hasta ese intervalo seguro de simulación ya que
solo se puede incrementar. Es cierto que el verdadero lookahead podrı́a cambiar de
un ciclo a otro, en el caso de que dependa de la información de algún predecesor. Por
ejemplo, en un ciclo T se podrı́a obtener un cierto valor de lookahead que depende de
la información de mensajes nulos de algún predecesor. En el ciclo T+1 esa información
se podrı́a actualizar incrementándose por lo que el valor real del lookahead serı́a mayor.
En este proyecto se ha optado por mantener vigente el valor de lookahead hasta el inter-
valo seguro de simulación porque es la solución más simple y además en principio en
otro caso se generarı́a un mayor número de mensajes que podrı́a terminar reduciendo
las prestaciones de la simulación.
Otras posibles opciones a valorar serı́an tener un equilibrio entre tener un lookahead
muy actualizado sin sobrecargar el tráfico de red de mensajes. En el caso extremo es-
tarı́a calcular y enviar el lookahead en cada disparo de transición consiguiendo un valor
actualizado a costa de sobrecargar la red de comunicación, con el coste implicado. Co-
mo trabajo futuro serı́a adecuado realizar un análisis de este problema para encontrar
el equilibrio entre valor actualizado y tráfico de red que permita tener mejores presta-
ciones.

24

En relación a lo anterior, la actualización del lookahead puede no ser necesaria en redes
de Petri deterministas, al menos hasta que el reloj local alcance el valor del lookahead
recibido.
En el caso de redes con conflictos, que se permitirán en versiones posteriores de este
proyecto, cuando se produzca un conflicto habrı́a que actualizar la información de loo-
kahead con los nuevos valores obtenidos según el resultado del conflicto. Además, en
estas redes ya no se puede explotar la información del modelo en la fase de compila-
ción como en las redes deterministas. En caso de hacerlo el resultado serı́a demasiado
pesimista ya que se tomarı́a la cota mı́nima que serı́a el camino más largo, dado que
en compilación no se conoce el resultado del conflicto y para asegurar la simulación
tomarı́a el de mayor tiempo.

Existen múltiples estrategias para el envı́o de mensajes nulos como se explica en el
capı́tulo 2. En este proyecto se comparan dos de ellas: el envı́o de mensajes nulos cada
vez que finaliza un intervalo seguro de simulación (similar al protocolo Chandy-Misra-
Bryant con ligeros cambios) y la solicitud de lookahead.
La elección final es la solicitud de lookahead porque como se explica en el capı́tulo
5 las prestaciones obtenidas son mejores para las redes utilizadas, que están pensadas
para simulaciones de gran tamaño.

3.3. Métodos de cálculo de lookahead
El cálculo de lookahead tiene dos fases: compilación y simulación. En la primera fase
se obtiene un precálculo del modelo de la red de Petri que se utiliza en la segunda fase
de simulación junto al estado de la red de Petri en ese momento para obtener el valor
del lookahead. En la fase de simulación se han diseñado e implementado dos formas
diferentes de calcular el lookahead. Cada variante tiene sus ventajas y desventajas que
después se explicarán.

3.3.1. Cálculo en compilación
En la fase de compilación se obtiene para todas las transiciones de salida el tiempo que
va a costar llegar una marca desde cada transición, llamado tiempo de marca (TM). El
pseudocódigo se puede ver en la figura 9.
Se propuso una implementación recursiva inicial, pero los tiempos de ejecución hicie-
ron necesario replantear el algoritmo de forma iterativa. Para cada transición de salida
se calculan los tiempos de marca. Para ello se lleva un registro de las transiciones que
hay que consultar junto a sus valores de tiempo de marca hasta esas transiciones (lı́nea
7) y de las transiciones que ya se han visto (lı́nea 8).
Mientras que haya transiciones por calcular (lı́neas 9-19), se obtiene una transición
(lı́nea 10), se marca como vista (lı́nea 11) y se calcula y almacena su tiempo como el
tiempo hasta esa transición más su duración de disparo (lı́nea 12-13).
Después se obtienen las transiciones correspondientes a sus lugares de entrada, es decir
las transiciones anteriores (lı́neas 14-18). Si esas transiciones no se han visto ya y
además pertenecen a la subred (lı́nea 15) se guardan para visitarlas después.

25

Figura 9: Cálculo del tiempo de marca en la fase de compilación de la red de Petri.

Ası́ se repite este procedimiento hasta que no hay más transiciones anteriores, es decir,
se llega a los lugares de entrada de la subred cuyas marcas provienen de otras subredes.
Estos tiempos se almacenan en un mapa con el identificador local de la transición como
clave y el tiempo como valor. Tras calcular los tiempos se devuelven para guardarlos
para esa transición (lı́nea 20).

En esta fase se realizan otros cálculos para utilizarlos en la fase de simulación. Uno
de ellos es la obtención de la lista de transiciones de entrada que se consigue mirando
qué transiciones de la subred de Petri son de entrada. El otro es la lista de transiciones
predecesoras para cada una de las transiciones. Para ello se mira todas las transiciones
y en cada una se obtiene cuales son las transiciones siguientes (Projected Updating
List, PUL). Después para cada transición sucesora de la lista PUL se actualiza esa
transición estableciendo la transición actual como su predecesora.
Esta información se utiliza en la siguiente fase del cálculo de lookahead.

Ejemplo
En la figura 10 hay una subred de Petri que tiene una transición de salida (t3) y dos
transiciones de entrada (t0 y t1). Además, t2 tiene dos lugares de entrada (p1 y p3),
ambos internos.
La duración de disparo de t1 es de 5 unidades de tiempo y de 1 unidad de tiempo para
t0, t2 y t3.

26

Los tiempos de marca obtenidos en compilación para la transición de salida t3 aparecen
marcados en la figura en color azul y son: {t3: 1, t2: 2, t1: 7, t0: 3}.

Figura 10: Subred de Petri con cálculo de tiempos de marca (TM).

3.3.2. Cálculo en simulación
Se han desarrollado dos métodos para el cálculo del lookahead en simulación. Primero
se realizó un método que se ha llamado cálculo dinámico del lookahead cuya principal
ventaja es que se puede utilizar aunque las subredes de Petri de los SPs cambien du-
rante la ejecución. De este modo es posible utilizar mecanismos de balanceo de carga
como los propuestos en [7], consiguiendo un simulador más completo. El otro método
es mediante el cálculo de un vector de lookahead que no permite el balanceo de carga
pero a cambio es más rápido, permitiendo simulaciones con mejor rendimiento.
Hay otras posibles soluciones, cada una con sus ventajas y desventajas, como la que se
propuso en un inicio que se explica en el anexo III. Esta solución tiene un rendimiento
intermedio entre los otros dos métodos pero se descartó porque tiene más restricciones
en los modelos a simular.

3.3.2.1. Método 1: cálculo dinámico de lookahead

Este método esta diseñado para que se utilice enviando el lookahead al final del in-
tervalo seguro de simulación. Para utilizar la solicitud de lookahead serı́a necesario
realizar ciertos cambios, aunque se podrı́a hacer sin excesivo trabajo.
Es importante destacar que este método, en la versión actual, tiene la limitación de
que las redes de Petri utilizadas deben ser redes binarias sin conflicto. Además, las
transiciones de entrada solo pueden tener un lugar de entrada, es decir, no se permiten
varios lugares de entrada de la subred en la misma transición. Tampoco se permite

27

que una transición tenga un lugar de entrada de la subred y otros lugares de entrada
internos.

Este método consiste en el algoritmo de la figura 11 cuyo objetivo es encontrar la
transición que tras simular un determinado número de ciclos pueda hacer que la transición
de salida genere un evento, y por tanto se envı́e al SP destino. Para ello se realiza un
recorrido de la subred de Petri empezando por la transición de salida y continuando
por las transiciones anteriores, las predecesoras.
Primero se inicializan las variables (lı́neas 2-3) para llevar un registro de las transicio-
nes que se han visto (trans seen), las que están por mirar (trans pending), los tiempos
desde cada transición (trans times), las transiciones pendientes de obtener su tiempo
(trans pending time) y si la subred solo tiene un camino o no (one way). Los tiempos
desde cada transición (trans times) consiste en que para cada una de las transiciones
de la subred que se consultan se almacena el tiempo mı́nimo que costarı́a que esa
transición enviase una marca a la siguiente (o siguientes) transición. Este tiempo está
compuesto por el tiempo que tardarı́a la propia transición en estar sensibilizada con el
estado de la red actual, sumado al valor de su duración de disparo.
Se utiliza dos listas de transiciones pendientes porque la primera es para mirar todas
las transiciones (trans pending) pero para la mayorı́a de ellas no se obtendrá su tiempo
porque hará falta información de otras transiciones. Por tanto hace falta otra lista de
transiciones que no se han obtenido su tiempo (trans pending time) para calcular su
tiempo después.
Además, se utiliza una variable para conocer si en toda la subred de Petri solo exis-
te un camino (one way) ya que en caso afirmativo se aplican algunas optimizaciones
para mejorar las prestaciones del algoritmo. Estas optimizaciones, que se explicarán
después, están pensadas para las redes que se utilizan en el proyecto de ramas secuen-
ciales.

La primera optimización que se aplica (lı́neas 4-6) consiste en que si no hay eventos
en FUL y solo hay una transición de entrada el tiempo es el de la transición de entrada.
Este tiempo serı́a el último valor recibido para esa transición, que es cuando podrı́a
estar sensibilizada, sumado a su tiempo de marca. Este último valor se ha obtenido en
la fase de compilación y es el tiempo desde que esa transición se dispara y hasta que
se genera una marca en la transición de salida.
Esta mejora está enfocada para las redes simples usadas en el proyecto de ramas se-
cuenciales de manera que para esos casos no es necesario recorrer las transiciones de
la subred de Petri.

Mientras que haya transiciones por calcular (lı́neas 7-32), se obtiene una transición y
se marca como vista (lı́nea 8) y se trata la transición:

La transición es de entrada (lı́neas 9-13): hay que utilizar la información de
lookahead recibida para esa transición. El tiempo de ese camino hasta esa transición
serı́a el último valor de lookahead recibido para esa transición sumado a su du-
ración de disparo (lı́nea 13). Ese tiempo se guarda para utilizarlo después. Este
tiempo es la estimación del ciclo en el que como mı́nimo la transición podrı́a
estar sensibilizada, en caso de que reciba un evento del correspondiente SP, más
la duración de su disparo.

28

Figura 11: Cálculo del lookahead del método dinámico.

29

Si la subred solo tiene un camino (lı́neas 10-12), se aplica la optimización y
directamente se devuelve el tiempo como el último valor de lookahead recibido
para la transición junto a su tiempo de marca. En otro caso (la red tiene varios
caminos) no se puede devolver el tiempo y acabar el cálculo porque puede ser
necesario otras acciones para obtener un tiempo preciso.

La transición estará sensibilizada en un tiempo futuro (lı́neas 15-20): si la
transición no es de entrada hay que comprobar si con los eventos pendientes en
FUL estará sensibilizada en un ciclo futuro. Primero se obtiene cuantas marcas
necesita para estar sensibilizada, es decir, su valor de LEF (lı́nea 15). Después se
comprueba si con los eventos en FUL se puede sensibilizar la transición (lı́nea
16). Al ser redes binarias cada evento dirigido a la transición quita una marca al
LEF (en redes de Petri serı́a añadir una marca a un lugar de entrada).

Si hay tantos eventos como el valor de LEF, se obtiene y se guarda su tiempo
(lı́nea 20) y en otro caso se hace otra comprobación para transiciones que no
estarán sensibilizadas con los eventos en FUL. Se admite que haya más eventos
que el valor de LEF, para permitir redes con múltiples disparos de una transición
en distintos tiempos. Por ejemplo, una transición ti con tiempo de disparo de 3
unidades de tiempo podrı́a dispararse en el tiempo T=1 y T=3. En T=3, en FUL
habrı́a dos eventos generados por esa transición, uno para T=4 y otro para T=6.

El tiempo que se guarda es el valor de la duración de disparo más el tiempo
del evento que sensibilice la transición que se consulta. Esto es el evento que al
procesar permita que se pueda disparar la transición. Por ejemplo, si LEF=2 se
toma el tiempo del evento de la segunda marca, es decir, el segundo evento de
FUL dirigido a la transición. Estos eventos están ordenados de menor a mayor
tiempo.

Igual que en el caso anterior se aplica una optimización (lı́neas 17-19) de manera
que si la subred solo tiene un camino se devuelve el tiempo del evento que sen-
sibiliza la transición sumado a su tiempo de marca. Ası́ se mejora el rendimiento
al juntar el cálculo estático obtenido en compilación para el tiempo de marca con
el cálculo dinámico que mira el estado de la red.

La transición no estará sensibilizada en un tiempo futuro (lı́neas 21-30): en
este caso es necesario obtener la información de las transición predecesoras. Pri-
mero se guarda la referencia a la transición para completar su información más
adelante y se actualiza la variable one way en función de si solo hay un camino
(solo hay una transición predecesora) o no (lı́nea 21). Después se obtienen las
transiciones correspondientes a sus lugares de entrada, es decir, las transiciones
anteriores (lı́neas 23-29). Si esas transiciones no se han visto ya (lı́nea 24) se
guardan para visitarlas después (lı́nea 25).

Si ya se han visto, si todavı́a no se ha obtenido su tiempo (lı́nea 26) se calcula su
tiempo obteniendo la cota mı́nima (lı́nea 27). Al obtener las transiciones prede-
cesoras, si ya se han visto entonces hay un ciclo en la red de Petri de forma que
hay un camino de transiciones que empiezan y acaban en un mismo lugar. Otra

30

posibilidad es que sea un conflicto de forma que dos o más transiciones compar-
ten un mismo lugar, aunque en este trabajo no se permiten redes con conflictos.

En el caso de un ciclo, hay que guardar el tiempo de ese camino obteniendo su
cota mı́nima, que es el valor LVT más el tiempo de disparo de la transición. De
esta manera lo que se está haciendo es eliminar los ciclos para poder calcular el
valor del lookahead, ya que en caso de no hacerlo se producirı́a un bloqueo. Este
cálculo solo se realiza si el valor del camino de esa transición no se ha obtenido
ya, porque si ya lo tiene se puede utilizar ese tiempo.

En este punto ya se han tratado todas las transiciones pero solo tienen información
completa aquellas que son de entrada o que con los eventos en FUL se conoce que
estarán sensibilizadas. Cabe decir que no es necesario consultar todas las transiciones
de la subred, ya que se van mirando las transiciones anteriores y en el caso de que se
encuentra una transición sensibilizada en un tiempo futuro no se tratan sus transiciones
predecesoras.
Ahora se completa la información de las transiciones pendientes (lı́neas 33-47). Mien-
tras que haya transiciones pendientes se obtiene una transición y se inicializa un re-
gistro de los tiempos de sus predecesoras (lı́nea 34). Este registro puede tener un solo
tiempo (si solo tiene una transición anterior) o varios tiempos.
Para cada transición predecesora (lı́neas 35-41) se guardan sus correspondientes tiem-
pos. Si alguna predecesora no tiene información, se sale del bucle (lı́nea 39).
Si se tiene toda la información disponible (lı́nea 42), entonces se ordenan los tiempos
de las predecesoras de menor a mayor tiempo y se obtiene y almacena su tiempo (lı́nea
43). Este tiempo es la duración de su disparo sumado al valor de la predecesora que
podrı́a sensibilizar la transición. Para obtenerlo se utiliza su valor de LEF actual menos
uno debido a que el ı́ndice empieza en cero. Por ejemplo, si LEF=2 el tiempo es el de
la predecesora que quite la segunda marca.
Si no se tiene la información de todas las predecesoras, se marca la transición que se
está consultando como pendiente (lı́nea 45), para completarla más adelante. Esto puede
ocurrir al consultar una transición ti si tiene una predecesora t j cuya información aún
no está disponible.

Finalmente se devuelve el valor obtenido correspondiente a la transición de salida
(lı́nea 48).

Es necesario mirar si hay eventos pendientes de procesar en FUL porque cuando se
calcula el lookahead ya se ha simulado hasta el horizonte temporal. Por tanto no hay
transiciones sensibilizadas ya que en caso de haberlas ya se habrı́an disparado, por lo
que hay que comprobar si hay eventos pendientes para tiempos de simulación mayores
a LVT.

Hay un caso especial que es al inicio de la simulación. En esta fase, antes de simular
se calculan y envı́an los valores de lookahead para los SP sucesores. En este punto no
hay ningún evento en FUL pero hay transiciones sensibilizadas por el marcado inicial.
El pseudocódigo de este cálculo se puede ver en la figura 12.
Su funcionamiento es similar al caso general, pero en vez de consultar FUL se mira si
está sensibilizada la transición (lı́nea 12). También se utiliza el valor de LVT en lugar

31

Figura 12: Cálculo del lookahead del método dinámico: fase inicial.

32

del evento en FUL (lı́nea 16) y del último valor de lookahead recibido (lı́nea 10), ya que
en esta fase aún no se ha obtenido información de lookahead de los SP predecesores.
Por tanto se asume que en el ciclo actual, LVT, podrı́a llegar algún evento.

En el algoritmo hay algunas optimizaciones enfocadas para redes simples que en un
futuro se podrı́an ampliar para otros casos. Ahora lo que se realiza es que si la subred de
Petri solo tiene un camino posible una parte del tiempo de lookahead se puede obtener
utilizando el tiempo de marca. Esta técnica se podrı́a aplicar en varios niveles con una
visión recursiva, desde una transición hasta otra transición posterior. El camino entre
estas dos transiciones debe ser único de forma que por ejemplo si entre una transición
t1 y t4 solo hay un camino y en t4 hay varias salidas, de t1 a t4 se puede utilizar el
tiempo precalculado en compilación. En t4 habrı́a que analizar en ejecución cual es
el camino que se debe tener en cuenta y después se podrı́a volver a utilizar el tiempo
obtenido en compilación si desde la siguiente transición a t4 hasta otra transición tX
solo hay un camino.
Esta técnica se podrı́a aplicar recursivamente hasta llegar a la transición de salida para
evitar cálculos innecesarios de las duraciones de disparo entre dos transiciones que
solo tienen un único camino.

Ejemplo: subred de Petri con dos caminos
En la figura 13 hay una subred de Petri que tiene una transición de salida (t3) y dos
transiciones de entrada (t0 y t1). Además, t2 tiene dos lugares de entrada (p1 y p3),
ambos internos.

Figura 13: Subred de Petri con una transición de salida (t3), dos de entrada (t0 y t1) y una
interna (t2).

33

La duración de disparo de t1 es de 5 unidades de tiempo y de 1 unidad de tiempo para
t0, t2 y t3.

Si en un determinado momento de la simulación se calculase el lookahead con esta red
en el estado que aparece en la figura (con todos los lugares sin marcas y sin eventos
en FUL), el valor que se obtendrı́a serı́a: L(t0)+3 o L(t1)+7. Dónde L(tX) es el último
valor de lookahead recibido para tX.
Este valor se obtiene mediante la aplicación del algoritmo. Primero se mirarı́a t3, que
no se podrı́a obtener su información por lo que se mirarı́a t2. Del mismo modo se
mirarı́a t0 y t1. Para t0 se obtendrı́a un tiempo de L(t0)+1, y para t1 L(t1)+5.
El siguiente paso serı́a completar la información de t2. Se tomarı́an los dos tiempos
anteriores y se ordenarı́an de menor a mayor tiempo. Si por ejemplo, L(t0)=2 y L(t1)=0
el resultado serı́a: 3, 5. Como el valor de LEF de t2 es 2, es decir, requiere dos marcas,
es la segunda marca la que podrı́a sensibilizar la transición. Por tanto se toma el valor
de 5 (que viene del camino de t1) porque en el tiempo 3 podrı́a recibir una marca pero
hasta que no reciba otra en el tiempo 5 no se podrı́a disparar. La transición t2 toma el
valor de 5+1 y lo guarda.
Finalmente, t3 recupera la información de su predecesor t2 que es 6. A este valor suma
su duración de disparo que es 1 y devuelve como lookahead el valor 7.

Otro posible caso serı́a si el valor de LEF de t2 fuese 1. El proceso serı́a el mismo pero
al requerir solo una marca tomarı́a el menor valor de sus predecesores, t0 y t1.

Ejemplo: subred de Petri con ciclo
En la figura 14 hay una subred de Petri similar a la del ejemplo anterior pero que
tiene un ciclo en las transiciones t1 y t2. El ciclo se produce si la transición t1 está
sensibilizada y se dispara. Después si la transición t2 está sensibilizada y se dispara,
como uno de sus lugares de salida es p10 que es entrada de t1, se vuelve a la transición
t1.
Al calcular el valor de lookahead, en la transición t2 se obtendrı́a que para el camino
de t0 su valor serı́a L(t0)+1. Respecto al camino de t1, como hay un ciclo habrı́a que
mirar las dos transiciones predecesoras de t1: t10 y t2. Para t10 su valor serı́a L(t10)+1,
mientras que para t2 como ya se ha visto antes porque es un ciclo, su tiempo serı́a
LVT+1.
Como t1 solo necesita una marca para estar sensibilizada, se toma el menor de los
tiempos anteriores: LVT+1. Este tiempo es la cota mı́nima ya que en la red de Petri se
puede observar que es el lugar p2 el que no tiene marca, y por tanto se deberı́a tomar el
valor de su camino L(t10)+1. Sin embargo, al utilizar LEF no se conoce, o al menos no
de una forma sencilla, qué lugares son los que ya tienen marca y cuales faltan. Por tanto
lo que se quiere saber es cual podrı́a enviar una marca en el menor tiempo, aunque el
tiempo que se obtenga sea una cota mı́nima que puede no ser igual al tiempo real.

3.3.2.2. Método 2: cálculo con vector de lookahead

Este método está diseñado para usarse junto a la solicitud de lookahead entre los SPs.
Consiste en que dada una transición de salida en una subred de Petri, se dispone de un

34

Figura 14: Subred de Petri con un ciclo.

vector de valores de lookahead con un valor para cada camino posible. Estos valores
indican el número de ciclos que va a tardar como mı́nimo en producirse una marca
siguiendo esos caminos.
Este vector va actualizando sus valores en cada disparo de transición, reduciendo el
tiempo de los valores según el tiempo que tarda el disparo de esa transición. Para co-
nocer la relación entre transiciones y caminos, cada transición tiene una variable para
indicar a qué camino o caminos pertenece. Estas relaciones se asignan en la fase de
compilación, iterando desde la transición de salida hacia sus transiciones anteriores. Si
no hay ninguna marca en el camino, su valor de lookahead es la suma de las transicio-
nes del camino.
Este método tiene un coste menor que el anterior, consiguiendo reducir el tiempo de
simulación, pero el otro método permite simular casos más genéricos.

Se utiliza junto a la solicitud de lookahead de forma que cuando un SP quiere obtener el
lookahead de otro SP, le envı́a un mensaje solicitándolo (request) y espera la respuesta.
Un SP al recibir un mensaje request, obtiene el valor actual del vector de lookahead
que ya está calculado y lo envı́a. De esta forma le comunica que como mı́nimo hasta
dentro de esos ciclos no le va a enviar nada.
Se envı́a de forma inmediata para que el SP solicitante no tenga que esperar más tiempo
del necesario, evitando que se retrase la simulación. Además, en caso de que el loo-
kahead a enviar sea igual al último enviado, no se envı́a hasta que tenga un nuevo valor.
Esto puede ocurrir ya que un SP puede ir más rápido que otro, o incluso por temas de
latencia de la red de comunicación, el valor de lookahead puede no estar actualizado
en el momento en que se recibe la solicitud. De esta forma se reduce el número de
mensajes ya que si se enviase el mismo valor se volverı́a a repetir la solicitud hasta la
obtención de un lookahead que permita continuar la simulación al solicitante.

35

Cuando un SP lee su vector de lookahead lo que hace es obtener el valor menor, el ca-
mino mı́nimo, para garantizar el tiempo mı́nimo en el que se podrı́a enviar una marca.

Ejemplo: subred de Petri con dos caminos
En la figura 15 se muestra la misma subred que en el ejemplo del método 1. Aparecen
tres estados diferentes de simulación y el vector de lookahead en cada caso. Estos
estados no representan un avance temporal (no ocurren uno después de otro), son tres
estados independientes para explicar el funcionamiento del método de cálculo.

Figura 15: Subred de Petri con cálculo de vector de lookahead en diferentes estados de simula-
ción.

La transición t2 tiene dos caminos dado que tiene como entradas dos lugares que son
lugares de salida de las transiciones t0 y t1. En el estado de la izquierda no hay nin-
guna marca en la subred y los valores son la suma de los tiempos de disparo de las
transiciones. El valor es [3,7] que serı́a el tiempo de marca de las transiciones de en-
trada. El primer valor corresponde al camino de la izquierda, que está formado por las
transiciones: t3, t2, t0. El segundo valor es del camino de la derecha formado por las
transiciones: t3, t2, t1.
Para el estado del centro de la figura el valor del vector de lookahead es [3,2] porque
el lugar p3 tiene una marca. El primer camino sigue igual por lo que su tiempo no
ha cambiado pero en el segundo sı́ que ha cambiado porque se ha restado al tiempo
anterior el disparo de la transición t1.
En el estado de la derecha el vector de lookahead es [1,1] porque p4 tiene una marca,
haciendo que para los dos caminos solo falte el disparo de la transición t3. Si en este
estado se disparase t3, el vector de lookahead se actualizarı́a con los valores iniciales
de la suma de tiempos ([3,7]) o con los valores correspondientes en caso de que hubiese
más marcas en los caminos. En este último caso se tendrı́a en cuenta el primer lugar

36

que tuviese marca, empezando a mirar transiciones desde la transición de salida hacia
sus predecesoras.

3.4. Modificaciones para escalabilidad
Las simulaciones de modelos de un gran tamaño pueden requerir el uso de un número
elevado de máquinas en las que se ejecuten los SPs de la simulación. Para simulaciones
de alta escala el número de SPs podrı́a ser de cientos o miles, utilizando entornos de
despliegue como cloud.
En este tipo de simulación no se pueden utilizar los mecanismos desarrollados hasta
la fecha porque no se diseñaron para funcionar en un entorno de gran tamaño. Cuando
surgió la idea de simulador distribuido no se disponı́a del mismo número de máquinas
que ahora ni de su potencia. Aunque se pueden cambiar algunas partes de los méto-
dos y aplicar ciertas optimizaciones, como las explicadas en las secciones anteriores
cambiando la gestión de lookahead, es necesario algún otro mecanismo para que la
simulación de alta escala pueda ser viable.
Hasta la realización de este trabajo no se ha aportado ninguna gran contribución en este
aspecto. En este proyecto se propone una solución para la simulación distribuida de
alta escala. A continuación se va a presentar el problema que se produce y la solución
propuesta.

Siguiendo el ejemplo de las redes de Petri de ramas secuenciales, si en cada rama hay
millones de transiciones pueden ser necesarios múltiples SPs que simulen cada uno
una parte de las transiciones de esa rama. Se debe a que podrı́a no caber en memoria
un número tan elevado de LEFs, haciendo necesaria su división en subredes. La figura
16 muestra una red de Petri de ramas secuenciales con un gran número de transiciones
en cada rama, junto a los SPs que se obtendrı́an en la simulación de cada una de las
ramas y como estarı́an conectados.
El problema que se muestra en la figura es que si se requieren X SPs para simular una
rama, siendo X un número elevado, el SP X no recibe la información de SPs anteriores
como SP 1 hasta que no ha pasado su información por todos los SPs, siguiendo un
orden secuencial. En la simulación distribuida cada SP recibe información de su SP
anterior, que es el que está conectado con él por el modelo obtenido con las subredes
de Petri. Sin embargo, el disponer de información de otros SPs que sean anteriores
aunque no tengan una relación directa puede ser útil para conocer si puede avanzar la
simulación aunque su SP anterior no se lo haya confirmado.

La solución que se propone está inspirada en el funcionamiento del protocolo BGP [11]
y se ha llamado simulación a nivel de regiones. Su objetivo es tener la información de
los SPs anteriores, de manera rápida para poder propagar de una región a otra región y
conseguir acelerar la simulación en modelos de alta escala con un número elevado de
SPs.
Una región es simplemente un agrupamiento de un cierto número de SPs, que pueden
ser de tres tipos:

SP entrada: SP que simula una subred y recibe información de otra región.

37

Figura 16: Red de Petri de ramas secuenciales (izquierda) y los SPs que se utilizarı́an para
simular una de las ramas con un gran número de transiciones (derecha).

SP intermedio: SP que simula una subred.

SP salida: SP que simula una subred y recopila información de su región para
transmitirla a otra región.

Ası́ una simulación tiene una estructura jerárquica con diferentes regiones, cada una
con varios SPs que se ejecutan en distintas máquinas. La gestión de lookahead es me-
diante solicitud, añadiendo una capa más para que el SP salida conozca los valores de
lookahead de los SPs de la región. El SP salida tiene un componente llamado tabla de
lookahead que consiste en una tabla con la información de lookahead de los SPs de
la región. Su formato es que para cada SP que es predecesor y pertenece a la región,
tiene la información de cuál es su SP anterior y su valor de lookahead, es decir hasta
dentro de cuántas unidades de tiempo no va a enviar una marca. Además, cada loo-
kahead tiene una etiqueta para saber si es un valor real (es el tiempo exacto en que se
va a producir una marca) o hipotético (ese es el tiempo suponiendo que ese SP reciba
una marca en su transición de entrada en ese ciclo de simulación).
La figura 17 muestra la arquitectura de esta solución.
De esta manera cuando por ejemplo el SP entrada tiene nueva información que puede
propagar a su siguiente SP (SP intermedio 1) el SP salida puede disponer también de
esa información. Si no se utiliza este método el SP salida tendrı́a que esperar a que
la información llegue a SP intermedio 1, se propague a SP intermedio 2 y finalmente
le llegue a él. En este caso tendrı́a que esperar más tiempo al sumarse los tiempos de
procesamiento de los SPs y las latencias de la red de comunicación, empeorando las
prestaciones de la simulación distribuida. En este ejemplo habrı́an sido necesarias tres
comunicaciones en la red para ir de SP entrada a SP salida pero según el modelo puede
ser mayor, mientras que con la solución propuesta solo se realiza una comunicación.

La figura 18 muestra el protocolo de comunicación de lookahead. Al igual que antes
un SP solicita el lookahead al SP anterior y este le responde. Además, ahora también

38

Figura 17: Arquitectura de simulación a nivel de regiones para una rama de una red de Petri de
ramas secuenciales.

envı́a ese valor al SP salida para que disponga de la misma información que los SPs de
la región.
Otra opción serı́a no enviarle el lookahead hasta que sea el SP salida el que realice una
solicitud. Esto se realizarı́a cuando le soliciten el lookahead a él desde un SP entrada
de otra región, cuya respuesta serı́a solicitar lookahead a su región y tras obtener todas
las respuestas responder a la otra región. Esta opción tendrı́a un tiempo más preciso
pero un mayor coste de tiempo en obtener la respuesta, por lo que se ha optado por la
primera opción.

Los SPs de salida tienen que gestionar la información recibida de la región actuali-
zando la tabla de lookahead con los valores recibidos. Cuando reciben una petición de
lookahead (desde otra región) deben aplicar un algoritmo de selección de camino uti-
lizando la tabla lookahead. Este algoritmo consiste en iterar desde el propio SP salida
hacia los SP predecesores hasta encontrar un valor de lookahead real, es decir, un ca-
mino que tenga alguna marca. En el recorrido se va sumando los tiempos de lookahead
de cada unos de los SPs que sean hipotéticos, porque dependen de la información del
SP anterior por lo que se consulta después a ese SP anterior. Finalmente se envı́a el
tiempo obtenido al siguiente SP.
Además, en caso de que hubiese múltiples caminos (en las redes de Petri de ramas
secuenciales no hay pero en otras puede haber), se toma el camino mı́nimo para tener
el valor cuanto antes y continuar con la simulación.

La división en regiones y los roles de cada SP se deben realizar en la fase de com-
pilación, mediante estrategias que deben ser correctamente analizadas para hacer un
reparto adecuado que permita optimizar la simulación. Estas estrategias no se han de-
finido porque son un aspecto importante a la par que complicado de analizar, que se
podrı́a hacer en otro trabajo.

39

Figura 18: Diagramas de secuencia de solicitud y comunicación de lookahead entre los dife-
rentes SPs de una simulación a nivel de regiones.

40

4. Implementación de los mecanismos
de lookahead a incorporar al SP

La implementación del simulador distribuido desarrollado se realiza en el lenguaje
de programación Rust. Como código base se utiliza el simulador del trabajo de un
compañero del grupo de investigación, que se centra en mecanismos de balanceo de
carga [7].
Una gran parte de este código se mantiene intacto, añadiendo los nuevos aspectos
que se han realizado en este trabajo. Ahora se van a explicar las caracterı́sticas más
importantes de las cuales se hará hincapié en las novedades introducidas en el trabajo.
También se comentarán en un alto nivel los atributos más importantes que ya estaban,
los cuales se puede consultar más detalladamente en [7].

Cada SP tiene dos hilos de ejecución, hilo de simulación y Mailbox, que se comu-
nican entre ellos mediante canales bidireccionales, es decir, multi-productores multi-
consumidores utilizando la librerı́a de Rust crossbeam channel [12].
Al comienzo de la simulación el hilo Mailbox crea un servidor TCP y el hilo de simu-
lación inicia las conexiones TCP con el resto de SPs con los que tenga comunicación.
Estas conexiones están abiertas durante toda la simulación de forma que el servidor
TCP de cada SP comprueba si alguna de sus conexiones abiertas tiene algún mensaje
y realiza su tratamiento. La librerı́a utilizada es mio [13] porque la transmisión de los
mensajes es más rápida que con la librerı́a estándar que se utilizó en primer lugar.
Al recibir un mensaje el hilo Mailbox comprueba de qué tipo es y se lo envı́a al hilo
de simulación mediante los canales de comunicación. Los mensajes pueden ser de
diferentes tipos ya sea para iniciar, acabar o realizar la simulación. Los más importantes
son los de la simulación que pueden ser de los siguientes tipos:

Event: mensaje que contiene un evento externo.

RequestL: solicitud de lookahead.

ResponseL: envı́o del valor de lookahead en respuesta a una solicitud previa.

Para el segundo método de cálculo de lookahead en simulación (vector de lookahead)
se utilizan dos estructuras de datos adicionales para dar soporte a la gestión de loo-
kahead. Una es para almacenar el valor actualizado de lookahead y la otra para llevar
un registro de los últimos valores de lookahead enviados a los SPs adyacentes, y si
hay una petición de lookahead pendiente de ellos o no. Ambas están compartidas entre
los dos hilos en memoria compartida y su acceso es en exclusión mutua mediante el
mecanismo mutex.
La primera de ellas contiene el valor de lookahead relativo, es decir, cuántas unidades
de tiempo o ciclos de simulación va a tardar como mı́nimo en enviar una marca. Este
valor lo va actualizando el hilo de simulación cuando el lookahead va cambiando, que
es al disparar las transiciones o al recibir información del exterior.

41

La segunda estructura de datos es un mapa con el identificador del SP como clave y
una variable de tipo LookaheadRequest como valor. Esta variable tiene dos elementos:
el último tiempo (lookahead) enviado a ese SP, y si hay una petición pendiente o no.
El hilo Mailbox al recibir un mensaje de tipo RequestL obtiene el valor de lookahead
actual, mediante la variable compartida, y lo compara con el último valor enviado.
Este dato lo obtiene de la estructura de datos compartida consultando la variable Loo-
kaheadRequest. En caso de que sea mayor, envı́a el lookahead en un mensaje de tipo
ResponseL. En caso contrario, marca la petición como pendiente para que el hilo de
simulación la tenga en vigilancia y cuando disponga de un valor de lookahead mayor
responda a esa petición, y actualice esa petición como no pendiente.

En cuanto a los tiempos de marca obtenidos en compilación, se guardan en un mapa
con el identificador de la transición como clave y el tiempo de marca como valor. El
uso de mapas se debe a que se quiere consultar los valores con un coste temporal bajo,
que es O(1).
Además, también se ha modificado el compilador que está desarrollado en Java para
obtener la información de la lista de transiciones de entrada para cada SP, la lista de
transiciones predecesoras para cada una de las transiciones, y los tiempos de marca de
las transiciones de salida. Estos cambios se han realizado en Java porque el compilador
está desarrollado en ese lenguaje, aunque hay un compilador escrito en Rust realizado
por otros compañeros del grupo de investigación que estaba en desarrollo durante la
realización del trabajo.

En el anexo está el código implementado de los principales algoritmos. El código del
algoritmo de simulación distribuida está en el anexo IV, el cálculo de lookahead en
compilación en el anexo V y el cálculo dinámico de lookahead en simulación en el
anexo VI.

42

5. Metodologı́a para la prueba del pro-
totipo y resultados experimentales

En este capı́tulo se explica como se pone en ejecución una simulación distribuida indi-
cando los pasos que se realizan. Después se explica el entorno utilizado y las pruebas
realizadas junto a sus resultados.

5.1. Proceso de despliegue
El lanzamiento de una simulación requiere de dos tareas: compilación y ejecución de
la simulación. Primero se obtiene un modelo en la compilación que el SP carga en
memoria para comenzar a simular.

5.1.1. Compilación del modelo
El modelo debe tener un formato asumible por el simulador, el cual se obtiene en el
proceso de compilación. Este proceso utiliza el framework desarrollado en [5] y modi-
ficado en este trabajo con la adición para la implementación del cálculo de lookahead
en compilación.
Las redes de Petri que se simulan en este trabajo son de ramas secuenciales como las de
la figura 3 y se crean mediante un programa en Java. Este programa genera un fichero
textual con la red de Petri definida en sus parámetros. Estos parámetros son: nombre
del fichero de salida, número de ramas secuenciales (h) y número de transiciones en
cada rama (v).
Este fichero tiene definida la red de Petri mediante un lenguaje de descripción de redes
de Petri. Este lenguaje ya estaba en [5] para definir un modelo de red de Petri en
formato textual.
Una vez obtenida la red de Petri en formato textual, se ejecuta el compilador. Su salida
es una serie de ficheros que contienen las subredes en formato JSON con la informa-
ción de los LEFs. Estos ficheros después serán absorbidos por el simulador distribuido
en Rust.

5.1.2. Ejecución del simulador distribuido
Una vez obtenidas las subredes de Petri, ya se puede iniciar la simulación distribui-
da. Antes de la primera ejecución hay que compilar programa en Rust utilizando la
herramienta cargo [14], el gestor de paquetes de Rust. El comando ejecutado para la
compilación del código es:

c a r g o b u i l d −− r e l e a s e

La opción –release es para que utilice una configuración definida en el fichero de con-
figuración (cargo.toml). Esta configuración cuenta con optimizaciones como la opción

43

-o3 o lto=true, para aumentar el rendimiento del programa en binario que produce
como salida.

Después se deben iniciar todos los SPs en las diferentes máquinas en las que se ejecuten
de forma que el SP principal, el de ı́ndice cero por defecto definido en los ficheros de
red, envı́a los LEFs a los otros SPs. De esta manera solo es necesario que estén los
ficheros de las subredes en la máquina del SP principal. Este movimiento de LEFs se
desarrolló en [7].
El comando para iniciar la simulación de un SP es:

. / es imc <n o m b r e f i c h e r o m o d e l o><n u m c i c l o s>< l i s t a i p : p o r t S P s>

Siendo esimc el nombre del programa, num ciclos el número de ciclos a simular y
lista ip la lista de SPs que se simulan en las diferentes máquinas (un SP por máquina).

De este modo se realiza la simulación distribuida y una vez que finaliza se muestran
las trazas de la misma.

5.2. Entorno de pruebas
Para el estudio experimental se ha utilizado un entorno on premise de la Universidad
de Zaragoza. Este entorno está compuesto de 48 máquinas Raspberry Pi 4 situadas en
el laboratorio 1.03b de la Escuela de Ingenierı́a y Arquitectura. Sus caracterı́sticas son
las siguientes:

Sistema operativo: Ubuntu 20.04.2 LTS Focal Fossa

Procesador: ARM Cortex-172 con cuatro núcleos a 1,5 GHz

Memoria RAM: 8 GB

Red: 1Gbit/s

Se ha utilizado este entorno para realizar pruebas comparando las versiones de Java
y Rust, y en cada lenguaje también se ha comparado entre la versión de simulación
centralizada y distribuida. El número de máquinas utilizadas para la simulación distri-
buida ha ido variando según el modelo a simular y la etapa de desarrollo del proyecto.
El mayor número de máquinas utilizadas ha sido de 8.

Cabe destacar que se han ido realizando pruebas a lo largo de todo el desarrollo del
código. Sin embargo, solo se incluyen en esta memoria algunas de las principales que
se han realizado, para demostrar el funcionamiento y escalabilidad conseguida al au-
mentar el número de máquinas o el tamaño del modelo.

5.3. Experimentos y resultados
En los experimentos realizados uno de los objetivos es comprobar a partir de qué ta-
maño la simulación distribuida presenta mejor rendimiento que la centralizada. Otro
punto importante es comparar las versiones desarrolladas con diferentes algoritmos y
cómo se comportan al ir aumentando el tamaño del modelo y el número de SPs.

44

La Tabla 1 muestra los resultados del simulador implementado en Rust. Esta tabla se
publicó en la GECON 2021 [15], en un artı́culo en el que colaboré junto a otros miem-
bros del grupo de investigación, y sus datos sirven como referencia. En la tabla se
muestran los resultados al simular con una versión centralizada y distribuida un mode-
lo de red de Petri de ramas secuenciales (como la figura 3). El tiempo de simulación
para estas pruebas es de 10 millones de ciclos de simulación. La segunda columna
(#br.) indica el número de ramas del modelo, la tercera (trans/br.) el número de transi-
ciones que hay en cada una de las ramas, y la cuarta columna es el número de eventos
totales que se han procesado. La siguiente columna indica el número de SPs (nodos)
utilizados, ya que la red de Petri se divide en una subred para cada una de las ramas
y otra subred con las transiciones de sincronización de las ramas. Cada una de las su-
bredes se simula en un SP distinto, y cada SP se ejecuta en una máquina diferente.
Las últimas dos columnas indican el resultado obtenido: el número de eventos proce-
sados por segundo y el tiempo de ejecución de la simulación. El número de eventos
procesados por segundo es la suma de todos los SPs excepto el que simula la subred
de sincronización, ya que tiene un número despreciable de transiciones. Estos valores
se utilizan para comparar los resultados obtenidos.

SP Simulator #br. trans/br. Events Nodes Events / sec Exec. Time

Centr. 2 10 000 19 998 003 1 7 522 936 2.658s
Distr. 2 10 000 19 998 003 3 2 609 886 7.619s
Centr. 2 100 000 19 999 803 1 7 529 029 2.656s
Distr. 2 100 000 19 999 803 3 4 407 922 4.537s
Centr. 7 10 000 69 988 013 1 3 909 926 17.79s
Distr. 7 10 000 69 988 013 8 6 652 821 10.52s

Tabla 1: Simulación distribuida vs simulación centralizada con diferentes cargas de trabajo por
SP implementados en Rust. Lookahead: cálculo dinámico y envı́o al finalizar de simular.

Se han realizado tres simulaciones diferentes: red de Petri con dos ramas de diez mil
transiciones por rama, red de Petri con dos ramas de cien mil transiciones por rama, y
red de Petri con siete ramas de diez mil transiciones por rama. En los tres casos se ha
ejecutado la versión centralizada y distribuida.
La primera observación que se puede hacer es que la versión centralizada presenta
mejores resultados que la distribuida para los dos primeros modelos. En estos casos los
modelos que se simulan en los SPs no tienen suficiente carga de trabajo y la sobrecarga
añadida a la simulación distribuida no merece la pena. De todos modos se aprecia una
mejora al pasar de una profundidad de rama de diez mil a cien mil transiciones. Para
el último modelo la versión distribuida es más rápida que la centralizada debido a
que tienen una mayor carga de trabajo en los SPs, obteniendo mejores resultados al
distribuir el trabajo en los SPs en lugar de hacerlo en una sola máquina.
Como conclusión se puede extraer que como se esperaba al comienzo del proyecto, al
aumentar el tamaño de los modelos la versión distribuida incrementa su rendimiento
mientras que la centralizada lo empeora. Por tanto en estos casos es preferible el uso
del simulador distribuido.

45

Otro dato a tener en cuenta es que el segundo modelo (cien mil transiciones por rama)
tarda menos tiempo en simular que el primer modelo (diez mil transiciones por rama).
Se debe a que el ciclo final de simulación es el mismo por lo que procesan el mismo
número de eventos totales. El segundo modelo al tener mayor tamaño de rama, puede
simular un mayor tiempo antes de tener que parar, transmitir mensajes por la red de
comunicación y esperar la respuesta. El primer modelo al tener un menor tamaño de
rama transmite un mayor número de mensajes haciendo que su simulación sea más
lenta.

Estos datos son utilizando la gestión de lookahead con el algoritmo de cálculo dinámi-
co y el envı́o cuando un SP no tiene nada que simular, es decir al final de un intervalo
seguro de simulación. Además, en estas pruebas se utilizó comunicación TCP entre los
SPs en la que para cada transmisión de un mensaje se creaba una nueva conexión TCP
y después se cerraba. Esto fue claramente un error, que hace que el rendimiento sea
algo peor.

Cabe decir que el cambio de lenguaje de programación de Java, que se usaba en el
simulador de trabajos anteriores, a Rust es fundamental. Por ejemplo, la simulación
del tercer modelo de siete ramas en Rust tarda 10.52s mientras que el mismo modelo
en Java 43.4s, un tiempo cuatro veces mayor. Los datos de experimentos en Java se
obtuvieron en las prácticas del máster.

En la Tabla 2 se muestran los resultados para la versión final del sistema. La comuni-
cación sigue siendo TCP pero cada SP utiliza una única conexión con otro SP para la
transmisión de mensajes que se cierra al finalizar la simulación. El algoritmo de cálcu-
lo de lookahead es el de vector de lookahead y su gestión es mediante solicitud cuando
un SP requiere el valor un SP vecino.

SP
Simulator

#br. trans/br. Events Nodes Events / sec Exec. Time Exec. Time
(GECON)

Centr. 2 10 000 19 998 003 1 7 522 936 2.658s 2.658s
Distr. 2 10 000 19 998 003 3 5 437 474 3.68s 7.619s
Centr. 2 100 000 19 999 803 1 7 529 029 2.656s 2.656s
Distr. 2 100 000 19 999 803 3 8 354 348 2.39s 4.537s
Centr. 7 10 000 69 988 013 1 3 909 926 17.79s 17.79s
Distr. 7 10 000 69 988 013 8 8 281 665 8.45s 10.52s

Tabla 2: Simulación distribuida vs simulación centralizada con diferentes cargas de trabajo
por SP implementados en Rust. Lookaehad: cálculo con vector de lookahead y solicitud de
lookahead.

El formato de la tabla es el mismo añadiendo una última columna con los tiempos de
ejecución anteriores. Los resultados del simulador centralizado son los mismos pero el
distribuido presenta una mejora notable. En el primer modelo su tiempo de ejecución
se ha reducido aproximadamente a la mitad, pasando de 7.62s a 3.68s.

46

El comportamiento es similar en el segundo modelo, pasando de 4.53s a 2.39s. Además,
con este nuevo tiempo ya se consigue mejorar el resultado que se obtiene en el centra-
lizado.
En el último modelo la ganancia es menor, consiguiendo una velocidad aproximada-
mente un 25% mayor. La ganancia es menor porque las siete ramas tienen una carga de
trabajo similar y al solicitar el lookahead lo hacen al mismo tiempo. El SP que simula
la subred de Petri que tiene las transiciones de sincronización tarda más tiempo al tener
que responder un mayor número de solicitudes, haciendo que los SP de las ramas estén
más tiempo esperando la respuesta.
En este caso se puede observar que modificando los cálculos que se aplican se puede
mejorar el rendimiento del simulador, pero depende en gran medida del modelo que se
simule. Con este modelo el SP que simula la subred de sincronización tiene el problema
de que es un “cuello de botella”. Para mejorar el rendimiento serı́a necesario intentar
modificar el modelo (cuando sea posible) para evitar estos problemas.

Además, se han utilizado más variables para lograr medir el rendimiento del simulador
distribuido, que son las siguientes:

P: rendimiento, eventos por segundo.

E: densidad de eventos, eventos por segundo simulado (ciclos de simulación,
valor máximo que alcanza LVT).

R: velocidad de avance de la simulación (tiempo de simulación en segundos /
tiempo real en segundos).

L: lookahead, calculado en cada intervalo seguro de simulación.

τ: latencia de comunicación entre los SPs.

Con estas variables se puede obtener el factor de acoplamiento (λ), con la siguiente
ecuación:

λ = LE/τP

El uso de esta métrica fue propuesto en [16] para medir el rendimiento del simulador
conservativo según la carga de trabajo de cada SP. En el artı́culo se indica que si λ es
menor que 10 es demasiado pequeño, mientras que si es mayor que 100 casi siempre
es suficiente.

En las pruebas realizadas para la segunda versión del simulador la latencia obtenida
es de 42 microsegundos, obteniendo un factor de acoplamiento de λ = 67.43 para el
primer modelo, de dos ramas con diez mil transiciones por rama. El segundo modelo
con dos ramas y cien mil transiciones por rama tiene λ = 665.49, y el tercer modelo
con siete ramas de diez mil transiciones λ = 226.11.
Los datos muestran que el primer modelo se acerca a tener un valor adecuado (mayor
a 100) pero no lo consigue, debido a que los SP no tienen suficiente carga de trabajo.
Los otros dos tienen valores mejores que indican que tienen una carga de trabajo ade-
cuada. Cabe decir que el valor λ puede ser útil para la interpretación de los resultados
pero requiere otros análisis para evaluar de una forma más global el rendimiento del
simulador.

47

Con estos resultados se puede concluir que ha merecido la pena el desarrollo de la
segunda versión del simulador con la solicitud de lookahead entre otros aspectos. Gra-
cias a esta versión se han mejorado los resultados de la primera versión que se publicó
en GECON en 2021.
Respecto a la escalabilidad, con la última versión se ha dado un paso más para permitir
la simulación de modelos de mayor tamaño. La principal aportación es la reducción del
número de mensajes transmitidos por la red de comunicación, mediante la solicitud de
lookahead cuando un SP necesite esa información. De este modo se evita saturar la
red, que podrı́a ocurrir con la primera versión del simulador para un modelo de gran
escala, haciendo posible el planteamiento de la simulación a nivel de regiones. Este
planteamiento añade una capa de complejidad más al simulador, haciendo que aumente
el número de mensajes que se transmiten.
Por último, habrı́a sido apropiado verificar el funcionamiento de las regiones y com-
probar hasta qué punto permiten la simulación a alta escala. Por la falta de tiempo al
realizar el proyecto, queda como trabajo futuro.

48

6. Conclusiones

El objetivo que tenı́a este trabajo era el desarrollo de un simulador distribuido que
permitiera simular modelos de alta escala manteniendo unas prestaciones adecuadas.
Con los resultados obtenidos, cabe decir que se ha obtenido un simulador más eficien-
te que el que habı́a antes del trabajo. Gracias al exhaustivo análisis del problema de
la gestión del lookahead, se ha conseguido profundizar en su problemática pudiendo
desarrollar diferentes algoritmos que presentan un mayor o menor rendimiento en fun-
ción del modelo a simular. Se debe a que la gestión del lookahead es el punto clave en
la simulación distribuida para conseguir buenas prestaciones.
Además, se ha presentado el diseño de una mejora para la simulación de alta escala
mediante la simulación a nivel de regiones. De este modo se podrı́an simular modelos
más grandes con un mayor número de SPs con un coste menor que en las simulaciones
distribuidas tradicionales. Este aspecto es importante ya que cuando diversos autores
desarrollaron las simulaciones distribuidas, sus algoritmos no estaban pensados pa-
ra modelos de alta escala, debido a las limitaciones de máquinas que habı́a entonces
pudiendo utilizar un menor número de máquinas.

Por tanto, en este trabajo se ha logrado dar un paso más en el desarrollo de un si-
mulador distribuido completo y exhaustivo que el grupo de investigación COSMOS
trabaja para conseguir. Además, en el trabajo se ha colaborado en un artı́culo de inves-
tigación publicado en GECON [15] que ha sido elegido como el mejor artı́culo de la
conferencia.

6.1. Trabajo futuro
Este trabajo proporciona una base para que en proyectos posteriores se pueda desarro-
llar un sistema completo de simulación. Algunas de las tareas que se podrı́an realizar
en el futuro son:

Implementar y realizar pruebas de la simulación a nivel de regiones. En este
trabajo se ha realizado el diseño de este aspecto enfocado a la simulación de alta
escala pero por falta de tiempo no se ha llegado a implementar. El siguiente paso
serı́a añadir su implementación al código desarrollado y hacer experimentos para
comprobar su validez y comparar el rendimiento obtenido respecto a no usarlo.

Permitir la simulación de modelos más complejos. Se podrı́an ampliar las re-
des de Petri permitidas con aspectos como el uso de tiempos estocásticos, los
cuales no se utilizan ahora ya que los tiempos usados son deterministas. Los
tiempos estocásticos requieren un mayor análisis ya que al contrario que ahora
no se puede utilizar la información de tiempos de marca obtenida en la fase de
compilación. De este modo al obtener el lookahead habrı́a que obtener una cota
mı́nima, impidiendo encontrar un tiempo preciso como se consigue ahora.

También se podrı́an incluir los conflictos, cuyo tratamiento requiere un mayor
análisis que el que se ha realizado en el trabajo. En la versión actual se puede

49

conocer el camino que se va a seguir y por tanto es posible obtener el tiempo uti-
lizando información de compilación. Sin embargo, si la red de Petri tiene algún
conflicto no se conoce su resolución en tiempo estático. Es necesario conocer la
resolución del conflicto en tiempo de ejecución que dependerá de la polı́tica de
resolución de conflictos, las cuales existen múltiples alternativas. Por ejemplo,
una de las polı́ticas más sencillas es disparar la transición que más tiempo lleve
sin ser disparada. Cabe destacar que con el algoritmo desarrollado de cálculo
de lookahead dinámico en tiempo de simulación se proporciona una base para
permitir la gestión de los conflictos. Por tanto con ligeras modificaciones ya se
podrı́an incluir los conflictos, mientras que con otros algoritmos como el otro
desarrollado de vector de lookahead no es posible y habrı́a que replantear el
algoritmo.

Otro punto serı́a realizar un análisis de la frecuencia con la que se deberı́a actua-
lizar el lookahead. Consistirı́a en encontrar el equilibrio entre valor actualizado
y tráfico de red de comunicación que permita tener mejores prestaciones, para
conseguir simulaciones más eficientes.

Un aspecto muy importante serı́a añadir un depurador de redes de Petri en la si-
mulación. Al simular redes de Petri de cada vez un tamaño mayor, su verificación
es un tema que puede ser complejo y requerir bastante tiempo. Un depurador fa-
cilitarı́a el trabajo, con opciones como pueden ser el simular hasta un cierto ciclo
de simulación y mostrar los valores de las variables.

Otros aspectos de mayor ambición con un objetivo a más largo plazo, como
la tolerancia a fallos y extensiones de otros trabajos del grupo de investigación
como los que se explican en las secciones de trabajo futuro en [7, 17].

6.2. Esfuerzos dedicados
En la Tabla 3 se muestra el tiempo invertido en las diferentes partes del proyecto.
Este TFM se inició en junio de 2021 aunque los dos meses anteriores (abril y mayo
de 2021) fueron de prácticas académicas en la misma lı́nea de trabajo, realizando el
simulador distribuido en Java. Estas prácticas duraron en torno a 225 horas, que con
las de este trabajo hacen un total de aproximadamente 675 horas dedicadas al ámbito
de la simulación distribuida.

6.3. Evaluación personal
Tras haber concluido el proyecto y evaluando el trabajo realizado, valoro este proyecto
como una experiencia positiva. En mi formación durante los años del grado y el tiempo
del máster he estudiado varios sistemas distribuidos y me he enfrentado a trabajos de
un cierto tamaño y complejidad. Sin embargo, este trabajo ha supuesto un reto mayor
de lo que me esperaba debido a que las simulaciones distribuidas tienen una dificultad
de una escala mayor a lo que habı́a estudiado y trabajado hasta ahora.

50

Tarea Horas

Revisión de la bibliografı́a publicada y trabajos previos 15
Aprendizaje del lenguaje Rust 30
Familiarización con el código base 10
Diseño e implementación de los mecanismos de lookahead 100
Diseño de la simulación a nivel de regiones 50
Depuración y pruebas 100
Reuniones 55
Memoria 90

Total 450

Tabla 3: Dedicación de horas.

En general estoy satisfecho con el trabajo realizado a pesar de que he tenido momentos
de cierta dificultad, especialmente con la problemática del lookahead que me llevó más
tiempo del esperado.

El trabajo que se proponen en el grupo de investigación es ambicioso y me alegro de
haber podido aportar una parte, para dar un paso más hacia su objetivo. Sin duda reco-
mendarı́a a otros estudiantes que realicen algún trabajo en algún grupo de investigación
durante el grado o máster porque es una experiencia diferente que todos los estudiantes
deberı́amos adquirir.

51

7. Bibliografı́a

[1] Ferscha, A.: Parallel and Distributed Simulation of Discrete Event Systems.
Handbook of Parallel and Distributed Computing, McGraw-Hill (1995).

[2] Arronategui, U., Bañares, J.Á., Colom, J.M.: Towards an architecture proposal
for federation of distributed DES simulators. In: GECON 2019 - International
Conference on the Economics of Grids, Clouds, Systems, and Services. pp. 197-
110. Springer (2019).

[3] Vanmechelen, K., De Munck, S., Broeckhove, J.: Conservative distributed
discrete-event simulation on the amazon ec2 cloud: An evaluation of time syn-
chronization protocol performance and cost efficiency. Simulation Modelling
Practice and Theory 34, 126–143 (2013).

[4] Bañares, J.Á., Colom, J.M.: Model and simulation engines for distributed simu-
lation of discrete event systems. In: International Conference on the Economics
of Grids, Clouds, Systems, and Services. pp. 77-91. Springer (2018).

[5] Herrero Barco, S.: Desarrollo de un Framework de Simulación de Sistemas de
Eventos Discretos Complejos. Trabajo Fin de Grado Ingenierı́a Informática, Za-
ragoza (2020).

[6] Lenguaje de programación Rust. https://www.rust-lang.org/es. Accessed: 2021-
11-26.

[7] Santamarı́a de la Fuente, A.: Diseño e Implementación de un Simulador Distri-
buido de Eventos Discretos con Mecanismos de Balanceo de Carga. Trabajo Fin
de Grado Ingenierı́a Informática, Zaragoza (2021).

[8] Entorno de desarrollo Visual Studio Code. https://code.visualstudio.com/. Acces-
sed: 2021-11-26.

[9] Extensión de Visual Studio Code para el lenguaje de programación Rust.
https://marketplace.visualstudio.com/items?itemName=rust-lang.rust. Accessed:
2021-11-26.

[10] Briz, J.L., Colom, J.M.: Implementation of weighted place/transition nets ba-
sed on linear enabling functions. In:International Conference on Application and
Theory of Petri Nets, pp. 99–118. Springer (1994).

[11] Protocolo BGP. https://www.techtarget.com/searchnetworking/feature/BGP-
tutorial-The-routing-protocol-that-makes-the-Internet-work. Accessed: 2021-11-
26.

[12] Librerı́a crossbeam channel de canales multiproductor-multiconsumidor.
https://docs.rs/crossbeam-channel/0.5.1/crossbeam channel/. Accessed: 2021-
11-26.

52

[13] Librerı́a mio de comunicación de red rápida y de bajo nivel.
https://docs.rs/mio/0.8.0/mio/. Accessed: 2021-11-26.

[14] Cargo: Gestor de paquetes de Rust. https://crates.io/. Accessed: 2021-11-26.

[15] Hodgetts, P., Kocharyan, H., Reviriego, F., Santamarı́a, Á., Arronategui, U.,
Bañares, J.Á., Colom, J.M.: Workload Evaluation in Distributed Simulation of
DESs. In: GECON 2021.

[16] Andras Varga, Yasar Ahmet Sekercioglu, and Gregory K Egan. A practical effi-
ciency criterion for the null message algorithm. In A Verbraeck and V Hlupic,
editors, Simulation in Industry: Proceedings of the 15th European Simulation
Symposium (ESS 2003), pages 81 – 92, 2003.

[17] Kocharyan, H.: Automatización del despliegue de simulaciones distribuidas en
cloud hı́brido. Trabajo Fin de Grado Ingenierı́a Informática, Zaragoza (2021).

53

8. Anexos

I. Función lineal de sensibilización de una transición
(Linear Enabling Function, LEF)

Las funciones lineales de sensibilización de una transición o LEFs (Linear Enabling
Function of a Transition) permiten caracterizar cuando una transición está sensibilizada
con una simple función lineal dependiente del marcado.
Una LEF de una transición t es una función ft :R(N,m0)→ Z que hace corresponder a
cada marcado alcanzable de la red de Petri, m ∈ R(N,m0) , un entero de manera que
la transición t está sensibilizada si y solo si ft(m) ≤ 0. Por ejemplo, para la transición
T2 de la red de la figura 19 su LEF es: fT 2(m) = 2− (m[A]+m[D]),∀m ∈ R(N,m0),
donde m0 es el marcado inicial. Por tanto, fT 2(m0) = 2−(m0[A]+m0[D]) = 2−1 = 1,
es decir, la transición T2 no está sensibilizada en el marcado inicial. Si observamos
la transición T1, su LEF es: fT 1(m) = 1− (m[A]), con fT 1(m0) = 0, por lo que está
sensibilizada en el marcado inicial.

Figura 19: Red de Petri (extraı́da de [4]).

Para una información más detallada consultar [2, 4]

54

II. Ejemplo de traza de la simulación
En la figura 20 se muestra la traza de la simulación de una red de Petri compuesta por
dos ramas de dos transiciones cada una (s1 y s2). La simulación tendrı́a tres SPs, uno
para cada rama y otro para la parte de sincronización de ramas (s0). Los tiempos de
disparo de todas las transiciones son de una unidad de tiempo.
IB (Input Buffer) son los mensajes recibidos, OB (Output Buffer) son los mensajes que
se envı́an y external evs son los eventos generados cuyo destino es otro SP pero que
aún no se han enviado.
No se muestra la traza de la subred 2 porque es idéntica a la de la subred 1, con los
nombres de transiciones y SP destino correspondientes. Además, se muestra la traza
hasta que finaliza un ciclo. El último intervalo (5) es idéntico al primer intervalo pero
con mayores tiempos.

Figura 20: Traza de simulación distribuida en una red de Petri de dos ramas de dos transiciones
cada una.

55

III. Algoritmo lookahead para redes simples (versión
anterior)

La primera versión del algoritmo de lookahead que se diseño e implementó estaba
enfocada para redes simples, concretamente para redes de ramas secuenciales. Este
algoritmo es más sencillo y sus prestaciones son ligeramente mejores al algoritmo uti-
lizado en el proyecto para las redes muy simples. Sin embargo, tiene más restricciones
ya que no permite la existencia de ciclos en la red de Petri a simular. Además, en caso
de redes con varios caminos posibles, este algoritmo no es eficiente dado que toma el
camino de peor tiempo sin considerar el estado de la red.
El problema de este algoritmo es que no explota la información de la estructura del
modelo para conocer de que transiciones depende otra transición. Esto ocurre cuando
una transición tiene más de un lugar de entrada, ya que con este algoritmo se calcula
el tiempo menor, es decir, si hay dos caminos para llegar a una transición, aquı́ se
devolverı́a siempre el de menor tiempo.
Esto es mejorable ya que se debe explotar la información de la estructura del modelo
para conocer cual es el camino a tener en cuenta. Por ejemplo, si una transición tiene
dos caminos, uno que tarda 4 unidades de tiempo en quitar una marca al LEF y otro
que tarda 6 unidades tiempo, solo se tomará el de 4 unidade cuando LEF=1. Si LEF=2,
hay que tomar el camino de 6 unidades porque en 4 unidades de tiempo al LEF se le
quitará una marca pero aún necesita otra, que llegará más tarde.
Por tanto hay que tener en cuenta cual es el estado de la red para poder obtener infor-
mación precisa de lookahead.

Cabe destacar que el cálculo en compilación es similar en ambos algoritmos salvo que
en la versión anterior se obtienen los tiempos de marca ordenados de menor a mayor
tiempo. En cambio el algoritmo de simulación es muy diferente.
El cálculo en dos fases es el siguiente.

III.1. Cálculo en simulación
El lookahead se calcula en el algoritmo de simulación distribuida tras finalizar el in-
tervalo seguro de simulación. Una vez que acaba de simular para un horizonte LHVT
dado, se produce el envı́o de los eventos exteriores, y para los SPs a los que no se envı́a
evento, se calcula y envı́a su lookahead.

El pseudocódigo se puede ver en la figura 21.

Esta versión tiene la limitación de que las redes de Petri utilizadas deben ser redes
binarias sin conflicto. Además, las transiciones de entrada solo pueden tener un lugar
de entrada, es decir, no se permiten varios lugares de entrada de la subred en la misma
transición. Tampoco se permite que una transición tenga un lugar de entrada de la
subred y otros lugares de entrada internos.

Para obtener el valor del lookahead de una transición de salida, tomando como valor
inicial un valor elevado MAX (lı́nea 2), se recorre la lista de tiempos de esa transición
de salida (lı́neas 3-22). La lista contiene relaciones de identificador de transición y

56

Figura 21: Cálculo de la segunda parte del lookahead en la simulación de la red.

tiempo. Esa lista se calculó en compilación y está ordenada de menor a mayor tiempo.
Para cada valor en la lista, hace las siguientes tareas:

Comprobar obtención del camino mı́nimo (lı́neas 4-6): mientras que el candi-
dato a valor mı́nimo encontrado hasta el momento sea mayor que el tiempo que
se podrı́a obtener con otra transición (min > LVT + TM), se debe seguir iterando
para encontrar el valor mı́nimo real. Por tanto, en el momento en que LVT su-
mado al valor de TM de la transición a mirar sea igual o mayor que el candidato
mı́nimo actual (min≤ LVT + TM), no es necesario seguir iterando. Esto se debe
a que los valores de TM aumentan por iterar las transiciones en orden de tiempo,
obteniendo unos valores de tiempo finales mayores que el que ya se ha obtenido.

La comparación se realiza tomando el menor tiempo posible que se podrı́a ob-
tener en la transición actual: LVT + TM. Este tiempo podrı́a ser mayor, ya que
para tomar el valor de LVT deberı́a ser una transición de entrada cuya última
información recibida de lookahead fuese igual a LVT. En cualquier otro caso, el
tiempo que se obtendrı́a serı́a X + TM, donde X > LVT.

Esta comprobación de parada se realiza al principio del bucle, que es cuando
es necesaria. En caso de hacerla al final, serı́a menos eficiente porque harı́a las

57

comprobaciones de esa transición aunque no aportan información relevante.

Tratamiento de la transición (lı́neas 8-21): la transición tiene un tratamiento
especial para el caso de que sea de entrada (tiene un lugar de entrada que es
interfaz de entrada de la subred), y en caso contrario tiene otro procedimiento.

La transición es de entrada (lı́neas 8-12): hay que utilizar la información de
lookahead recibida para esa transición. El tiempo de ese camino serı́a el último
valor de lookahead recibido para esa transición sumado a TM (lı́nea 9). En caso
de que sea el menor encontrado hasta el momento, se guarda su valor (lı́neas 10-
12). Este tiempo es la estimación del ciclo en el que como mı́nimo la transición
podrı́a estar sensibilizada, en caso de que reciba un evento del correspondiente
SP, más el valor de TM.

La transición estará sensibilizada en un tiempo futuro (lı́neas 13-21): si la
transición no es de entrada hay que comprobar si con los eventos pendientes en
FUL estará sensibilizada en un ciclo futuro. Primero se obtiene cuantas marcas
necesita para estar sensibilizada, es decir, su valor de LEF (lı́nea 14). Después se
comprueba si con los eventos en FUL se puede sensibilizar la transición (lı́nea
15). Al ser redes binarias cada evento dirigido a la transición quita una marca al
LEF (en redes de Petri serı́a añadir una marca a un lugar de entrada).

Si hay tantos eventos como el valor de LEF, se obtiene su tiempo y en otro caso
se deja de mirar esa transición y se consulta la siguiente. Se admite que haya
más eventos que el valor de LEF, para permitir redes con múltiples disparos de
una transición en distintos tiempos. Por ejemplo, una transición ti con tiempo de
disparo de 3 unidades de tiempo podrı́a dispararse en el tiempo T=1 y T=3. En
T=3, en FUL habrı́a dos eventos generados por esa transición, uno para T=4 y
otro para T=6.

Si la transición estará sensibilizada con los eventos en FUL, se obtiene su tiempo
(lı́nea 16) y si es el menor encontrado se guarda su valor (lı́neas 17-19). El tiempo
es el valor de TM más el tiempo del evento que sensibilice la transición que se
consulta. Esto es el evento que al procesar permita que se pueda disparar la
transición. Por ejemplo, si LEF=2 se toma el tiempo del evento de la segunda
marca, es decir, el segundo evento de FUL dirigido a la transición. Estos eventos
están ordenados de menor a mayor tiempo.

Finalmente se devuelve el valor mı́nimo obtenido (lı́nea 23).

Al estar ordenada la lista de tiempos e iterar hasta tener garantı́a de encontrar el ca-
mino mı́nimo, siempre se devuelve el tiempo mı́nimo, garantizando la simulación
conservadora.

Es necesario mirar si hay eventos pendientes de procesar en FUL porque cuando se
calcula el lookahead ya se ha simulado hasta el horizonte temporal. Por tanto no hay
transiciones sensibilizadas ya que en caso de haberlas ya se habrı́an disparado, por lo
que hay que comprobar si hay eventos pendientes para tiempos de simulación mayores
a LVT.

58

Hay un caso especial que es al inicio de la simulación. En esta fase, antes de simular
se calculan y envı́an los valores de lookahead para los SPs sucesores. En este punto no
hay ningún evento en FUL pero hay transiciones sensibilizadas por el marcado inicial.
El pseudocódigo de este cálculo se puede ver en la figura 22.

Figura 22: Cálculo de la segunda parte del lookahead en la simulación de la red: fase inicial.

Su funcionamiento consiste en iterar la lista de tiempos de marca, mirando si la transición
que se comprueba está sensibilizada o es de entrada (lı́nea 3). Si se cumple alguna con-
dición, ese es el valor mı́nimo (lı́nea 4).
Este cálculo se debe a que las siguientes transiciones que se miren tendrán un tiempo
de marca igual o mayor, por lo que el camino mı́nimo ya se ha obtenido. En esta fase
aún no se ha obtenido información de lookahead de los SPs predecesores por lo que se
asume que en el ciclo actual, LVT, podrı́a llegar algún evento.

Ejemplo
Siguiendo el ejemplo de compilación de la figura 10, en ese caso en el que no hay
ninguna marca, el valor de lookahead que se obtendrı́a serı́a: lookahead(t0) + 3. Este
valor es el último valor de lookahead recibido para la transición t0 más su tiempo de
marca, que es 3 unidades de tiempo. Su obtención se debe a que al aplicar el algoritmo
no hay ninguna transición sensibilizada con los eventos en FUL. Al seguir iterando se
obtiene que t0 es de entrada por lo que se guarda su tiempo como el mı́nimo hasta el
momento. Después se comprueba t1 (como su TM es mayor se comprueba después),
se obtiene su tiempo porque es de entrada pero como no es el menor encontrado no se
guarda.

En este ejemplo se aprecia que el resultado no es óptimo ya que el verdadero valor
de lookahead deberı́a ser el de t1: lookahead(t1)+7. Excepto que lookahead(t0)+3 sea
mayor que ese valor, en cuyo caso serı́a el de t0.
No se obtiene ese valor porque con este algoritmo no se tratan los valores de LEF para
conocer cuantas marcas requiere, por lo que se toma el camino mı́nimo para garantizar
su ejecución, aunque en casos como este es demasiado pesimista.

59

IV. Implementación del algoritmo de simulación distri-
buida

En la figura 23 se puede ver el código en Rust del algoritmo de simulación distribuida
utilizando la solicitud de lookahead.

Figura 23: Implementación en Rust del algoritmo de simulación distribuida (versión con soli-
citud de lookahead).

60

V. Implementación del cálculo de lookahead en compi-
lación (tiempos de marca)

La obtención de los tiempos de marca para el cálculo de lookahead en la fase de com-
pilación está implementado en el lenguaje de programación Java. En la figura 24 se
puede ver el código. Se realiza en Java porque el compilador está desarrollado en este
lenguaje.

Figura 24: Implementación en Java del cálculo de lookahead en compilación (tiempos de mar-
ca).

61

VI. Implementación del cálculo dinámico de lookahead
en simulación

En la figura 25 y 26 se puede ver el código en Rust del cálculo dinámico de lookahead
en simulación.

Figura 25: Implementación en Rust del cálculo dinámico de lookahead en simulación (parte 1).

62

Figura 26: Implementación en Rust del cálculo dinámico de lookahead en simulación (parte 2).

63

	Índice de figuras
	Índice de tablas
	Introducción
	Motivación
	Objetivos y alcance
	Contexto
	Herramientas y tecnologías usadas en el proyecto
	Estructura del documento

	Simulación distribuida de sistemas de eventos discretos
	Los principios de la simulación distribuida y los problemas fundamentales
	Sincronización conservadora con evitación de bloqueo (lookahead)
	Modelo basado en redes de Petri

	Análisis y diseño de un simulador distribuido que incorpore mecanismos de lookahead
	Proceso de simulación (SP) de subredes de Petri
	Algoritmo de simulación

	Mejora del lookahead explotando el modelo
	Métodos de cálculo de lookahead
	Cálculo en compilación
	Cálculo en simulación
	Método 1: cálculo dinámico de lookahead
	Método 2: cálculo con vector de lookahead

	Modificaciones para escalabilidad

	Implementación de los mecanismos de lookahead a incorporar al SP
	Metodología para la prueba del prototipo y resultados experimentales
	Proceso de despliegue
	Compilación del modelo
	Ejecución del simulador distribuido

	Entorno de pruebas
	Experimentos y resultados

	Conclusiones
	Trabajo futuro
	Esfuerzos dedicados
	Evaluación personal

	Bibliografía
	Anexos
	Función lineal de sensibilización de una transición (Linear Enabling Function, LEF)
	Ejemplo de traza de la simulación
	Algoritmo lookahead para redes simples (versión anterior)
	Cálculo en simulación

	Implementación del algoritmo de simulación distribuida
	Implementación del cálculo de lookahead en compilación (tiempos de marca)
	Implementación del cálculo dinámico de lookahead en simulación

