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Resumen

En una gran mayoria de los productos industriales, éstos se encuentran inevitablemente sujetos a una
variabilidad de defectos debido a su disefio, condiciones del entorno o manipulacién. Especialmente en
los productos expuestos a la vista del consumidor la calidad es un aspecto especialmente critico. Un
defecto puede suponer el deshecho de la pieza con la consiguiente pérdida de recursos e impacto
medioambiental.

Los sistemas de inspeccion de defectos modernos se basan en la generacion de un barrido de
iluminacién para producir sobre la superficie del defecto el lamado ‘efecto amplificacién’ como
consecuencia de las sombras generadas en los alrededores del defecto aumentando el tamaiio del
reflejo en la superficie.

Sin embargo, las piezas de salpicadero y de revestimiento interior de automdviles presentan una serie
de dificultades que dificultan su deteccidn por este método. Presentan defectos con una alta
variabilidad en sus caracteristicas junto con una superficie mate oscura con huella impresa que llegan a
resultar dificil su inspeccion incluso al ojo humano.

A modo de solucionar este problema, este trabajo presenta método de estudio de la viabilidad de la
deteccidn de defectos sobre la linea de produccién de salpicaderos del modelo Opel Corsa que se
produce en las instalaciones de Mddulos de Ribera alta (MRA) en Figueruelas (Espafia).

Este método propone un estudio previo en un banco de ensayos de las mejores configuraciones y
condiciones para la implementacion de un sistema de captura de defectos en la linea de produccion.
Mediante la captura masiva de imagenes de piezas en linea se ha creado un conjunto de 2160 imagenes
consistentes en arrugas, gap, manchas y piezas sin defecto.

Como es habitual, en problemas de reconocimiento de imagenes, la falta de imagenes ocasiona
problemas de sobreajuste y datos desbalanceados. Se han usado técnicas de data augmentation y redes
GAN para la generacidn de datos y de regularizacion para corregir el sobreajuste. Usando la
transferencia de aprendizaje se han entrenado cuatro modelos de redes convolucionales preentrenadas:
AlexNet, GoogleNet-ImageNet; GoogleNet-Places365 y ResNet-50 obteniendo los resultados de
precision sobre la validacion de 99,22%, 99,34%, 99,54% y 98, 54% respectivamente; y 41.58%,56.44%,
41.58%, 52.48% sobre el conjunto de test.

El modelo de mejor rendimiento ha sido usado como red de extraccién para entrenamiento de
detectores de objetos YOLOv2 y Faster R-CNN obteniendo un resultado maximo de mAP de 0,935.

Keywords: deep learning, transferencia de aprendizaje, redes GAN, data augmentation, mAP
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1. Introduccidon

1.1. Motivacion

El sector de los sistemas de inspeccién automatizados estuvo valorado en 17,6 mil millones de délares
en 2018.Se estima que para 2028 su valoracion incremente un 160% hasta 45,8 mil millones de ddlares.
Las busquedas de servicios relacionados con este sector se han incrementado un 34% de afio a afioy
solo un 133% en el primer cuatrimestre de 2020. [1]

Entre sus principales aplicaciones industriales, el sector automovilistico es el que ha adoptado
enormemente estos sistemas debido a que este sector requiere de un amplio abanico de procesos de
alta calidad, repetibles y automatizados para el ensamblaje de las piezas. También en el sector de la
alimentacién ha ganado gran popularidad debido al procesamiento de un flujo elevado de productos. [1]

Estas industrias se caracterizan por presentar altos tiempos de ciclo durante largas jornadas de trabajo.
A lo que el esfuerzo fisico de los empleados y la exposicion reiterada a tareas de concentracion visual
ocasionan la aparicién de fatiga fisica y mental. La inspeccién humana aumenta el error de clasificacion
con el cansancio y la fatiga, y ademas tienen la tendencia de cambiar el criterio de deteccién con el
tiempo dando lugar a una falta de consistencia en la clasificacion de los datos. [1]

Para disminuir estos erroresde tipo sistematico, muchas empresas se ven obligadas a buscar una
solucién mediante la contratacién de mas personal destinado a las tareas de inspeccién, asumiendo los
costes fijos asociados y de riesgo laboral.

A diferencia de éstos, los sistemas de vision artificial presentan una precisidn constante a lo largo del
tiempo y son capaces de superar la prediccién del cerebro humano (ResNet consiguié un errorde 3,2%
en 2015). Para conseguir esta eficiencia, las tareas de procesamiento de imdgenes han pasado por varios
hitos: clasificacion; localizacion y deteccidn de objetos; deteccion por segmentacion.

A partir de las primeras aspiraciones de los cientificos por emular el cerebro humano nacieron los
primeros modelos simples como la neurona de McCulloch-Pitts y sus derivados. Las influencias en el
campo de la neurologia (Hebbs, 1949)y la biologia se han conformado el modelo de perceptréon simple
(F. Rosenblatt, 1958) y ADALINE (Wirow, Hoff, 1959) que demuestran su capacidad para representar
funciones logicas y despiertan admiracién por su capacidad de reconocimiento de patrones.

Sin embargo, el libro ‘Perceptrons’ (Minsky, Papert, 1969) demuestra que las redes monocapa no son
capaces de resolver problemas no lineales simples como XOR y supuso el abandono de muchos
cientificos en la investigacion de las redes neuronales. Las redes de varias capas como el perceptréon
multicapa (1965) no tenian esta limitacién sin embargo los célculos eran hechosa mano y el célculo con
muchas capas profundas era inviable.

En 1986 se abrid un nuevo panorama con el redescubrimiento del algoritmo de propagacion hacia atras
o ‘backpropagation’ (Rumelhart, 1986) que soluciona la limitacién del célculo no lineal.

En 1989, Yan LeCun utilizé6 campos receptivos para el reconocimiento de cédigos postales y afios mas
tarde cred LeNet5 marcando la estructura de las redes neuronales convolucionales (CNN) que
conocemos.

A partir de 2010, investigadores compiten en el ‘lmage Net Large Scale Visual Recognition Challenge’
(ILSVRC) para crear la mejor red neuronal convolucional. No fue importante hasta que elganador de
2012, ‘AlexNet’ (A. Krizhevsky, 2012) bajo la tasa de errorde 25% a 17%, con mas de 10.8 puntos por



debajo del siguiente competidor. Introdujo las funciones de activacidon ReLU que redujo el tiempo de
entrenamiento sin la pérdida de precision. [3]

1.2. Objetivos

Este trabajo tiene como propdsito final el entrenamiento y validacion de modelos basados en redes
neuronales profundas para la clasificacidon de imdgenes de un problema real.

Para llevar a cabo este propdsito se discretizan en los siguientes objetivos simples:

- Revisién del estado del arte de los métodos de clasificacion de imagenes, detecciény
segmentacién de objetos.

- Estudio de las caracteristicas y condiciones de los defectos de la pieza.

- Estudio y seleccién de las posibles configuraciones de captacién de imagenes enlinea de la
pieza.

- Adquisicion de un conjunto de imagenes para entrenamiento, validacién vy test.

- Estudio y seleccion de las mejores configuraciones de clasificacion de defectos.

- Desarrollo de deteccidn de objetos

1.3. Estructura de la memoria
Este trabajo se estructura de la siguiente manera:

- Capitulo 1. Introduccion. Se explicala importancia, se describe el problema y los objetivos.

- Capitulo 2. Fundamento tedrico. Se explican los fundamentos tedricos necesarios para
entender este trabajo.

- Capitulo 3. Estudio de la pieza. Se realiza un estudio de conocimiento de la pieza para
encontrar las mejores condiciones de capturar imagenes.

- Capitulo 4. Estudio de la localizacion del sistema de captura. Se estudian las diferentes
configuraciones de captura en linea de produccién.

- Capitulo 5. Estudio de clasificacion de imagen.

- Capitulo 6. Estudio de deteccién de objetos.



1.4. Herramientas

Este trabajo incluye la adquisicién de imagenes y la fase de estudio de Deep learning. Para la fase de
adquisicidon de imagenes el sistema estd constituido por una cdmara industrial BFLY-PGE-20E4M-CS
1/1.8” con banda ancha Gigabit Ethernet basada en la interfaz de datos estandares GigE Vision para
asegurar la transferencia de imagenes de alta resoluciony el software de captura delfabricante ‘Point
Grey FlyCap?2'. El sistema oOptico consta de un equipo de lentes de distancia focal f =16 mm, f =50 mm, f
=100 mm. Para los estudios de deep learning, usamos Matlab 2021acon el framework de deep learning
‘Matlab Deeplearning Toolbox’ bajo la versién Cuda 8.0. Ejecutando un sistema operativo Microsoft
Windows 10 Pro. El hardware utilizado tiene las propiedades de la Tabla 1.

Tabla 1. Configuracién de hardware

Hardware Parametro

CPU Intel® Core™ i5-10300H @2.5GHz
RAM DDR4 16 Gb

GPU NVIDIA GeForce GTX 2060 6Gb



2. Fundamento tedrico

2.1. Proceso de formacion de la imagen
El proceso de formacion de laimagen consiste en dos pasos, reflexién dptica y conversion fotoeléctrica.
2.1.1. Modelo de reflexion de Phong

El modelo de iluminacidn convierte las propiedades fisicas como la reflectividad de la superficie en
intensidad de luz reflejada. El modelo de reflexiéon de Phong (Ec. 1) es un modelo ampliamente usado
para entender la fisica de la luz. Su estructura principal consiste en los términos de ambiente, términos
difusos y términos especulares: [6]

_ Jamb dif spe — Jamb dif 7y 1 spe Ty 7!
R =1 4 14 4 [pe—gamb 4 D (ke (Tay I+ kpe(7T) Il ) 1)

m € lights

Las componentes del modelo de reflexidon de Phong

1. Reflexion especular. Es la componente de luz reflejada procedente de una fuente que presenta
el mismo angulo de reflexiény de incidencia.

2. Reflexidn difusa. Es la componente de la luz reflejada procedente de una fuente que se refleja
en varias direcciones a consecuenciade la rugosidad de la superficie. La distribucion de esta luz
tiene forma de lI6bulo segun la ecuacidn de Lambert.

3. Luzambiente. Es la componente reflejada de la luz externa del ambiente

n Normal n Reflection # Normal

Light vector ]  vector vector
] vector
17 p v
View .
Object Object vector Object
Surface surface o Surface

(a) (b) (c)

Figura 2. Componentes modelo de reflexion de Phong: (a) luz reflejada especular; (b) luz reflejada difusa; (c) luz
ambiente.

2.1.2. Conversion fotoeléctrica

El proceso fotoeléctrico convierte la intensidad de la luz reflejada en imagen digital del objeto a través
de una lente y un conversor analégico digital: [6]

1p=(x-Rp+ﬁ (2)

donde @y fson pardmetros constantes especificados por la cdmara

Esta imagen digital contiene el valor de intensidad de los pixeles lp, que se introducen enla capa de
entrada de una red neuronal convolucional.



2.2. Redes neuronales convolucionales

Son un tipo de redes neuronales artificiales donde las neuronas corresponden a campos receptivos de
una manera muy similar a las neuronas en la corteza visual primaria de un cerebro biolégico. Debido a
que su aplicacion es realizada en matrices bidimensionales son muy efectivas para tareas de vision
artificial. [5]

Las neuronas se activan cuando se reconocen ciertas caracteristicas importantes para la clasificacién de
laimagen. Las primeras capas corresponden a caracteristicas menoresy mas generales como esquinas,
contornos, siluetas. Las siguientes corresponden son mas especificas como ojos nariz boca, las
siguientes son mas especificas como rostros.

2.2.1. Estructura de redes convolucionales

La estructura estd formada por una capa de entrada, etapas intermedias y capa totalmente conectada.
Las capas intermedias estan formadas por repeticiones de bloques de capas convolucionales, capas de
activacion y capas de agrupacion. Estas tres capas forman el nicleo de bloques de redes neuronales
convolucionales.

2.2.1.1. Capa de entrada

El nimero de neuronas de la capa de entrada corresponde al nimero de pixelesde laimagen y su valor
es laintensidad del pixel. Su funcidn es centrar y normalizar los datos para acelerar la convergencia.

2.2.1.2. Capas convolucionales

Las capas convolucionales definen un conjunto de filtros con pesos que son actualizados durante el
entrenamiento. Estos filtros son matrices cuadradas que realizan la operacion de convolucion como el
producto escalar del filtro por un tamafio igual en la imagen y su suma es el valor de la capa
convolucionada. El filtro recorre toda la imagen calculando todos los valores de salida. [3]

2.2.1.3. Capa de activacion

La capa de activacion realiza una operacién no lineal como la funcién ReLU lo que permite al modelo
aproximarse a funciones no lineales que relacionan pixeles con contenidos semanticos de la red.

2.2.1.4. Capade agrupacion

Las capas de agrupacién disminuyen la dimensionalidad de los datos conservando las caracteristicas mas
importantes. Lo consiguen realizando operaciones basicas como obtener el valor maximo o media sobre
los valores de una subregion de la matriz.

2.2.1.5. Capastotalmente conectadas

Son las capas encargadas de la clasificacion, reciben las caracteristicas de las capas anterioresy estan
conectadas de forma que las dependencias entre ellas producen determinados valores de activacion. En
las neuronas finales el valor de activacion corresponde a la probabilidad de pertenenciade laimagen a
una determinada clase.
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Figura 2.1. Capas convolucionales. Fuente: [4]
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Figura 2.4. Capas totalmente conectadas. Fuente: [4]

2.3. Transferencia de aprendizaje

El disefio de la arquitectura de una red neuronal desde cerorequiere alto conocimiento y experienciaen
arquitectura de redes, ademds de una cantidad ingente de datos y mucho tiempo de computacion. [7]

La transferencia de aprendizaje es el proceso mediante el cual el conocimiento sobre un tema se

traspasa a otro sistema. En deep learning reutilizamos el conocimiento de extraccidn de caracteristicas
de redes preentrenadas por expertos para adaptarlas a la clasificacién de nuestro problema.

Durante la transferencia de aprendizaje, las capas de clasificacion de la red preentrenadason
reemplazadas por nuevas capas de clasificacion y se entrena el modelo con nuestros datos congelando

las capas de extraccion de la red anterior. De este modo se reducen drasticamente la cantidad de datos
necesarios y eltiempo de entrenamiento.

Input Image Image — Features Features — Classification
mnnnn; @
[
@ max
Input Convolution, Pooling, and ReLU Fully Softmax Output
L P \ ! % Connected 4

Figura 2.5. Transferencia de aprendizaje en red neuronal convolucional. Reemplaza las capas de clasificacién.
Fuente: [7]

2.3.1. Redes preentrenadas

Las redes preentrenadas han sido disefiadas y entrenadas por expertoscon una coleccion de imagenes
de millones de clases para clasificar miles de objetos tomando semanas de entrenamiento de la red.
Para la seleccidn de redes preentrenadas hay que tener en cuenta el coste de oportunidad entre: (i) la
precisién de validacion (ii) la velocidad de entrenamiento vy (iii) el tamafio en disco. [7]



2.3.1.1. AlexNet

AlexNet puede clasificar mas de 1000 clases diferentes, tiene 60 millones de parametros y su estructura
presenta cinco capas de convolucidn, tres capas de agrupamiento y dos capas totalmente conectadas y
una capa Softmax. La dimensién de la capa de entrada es 227x227x3 ylas primeras capas convierten la
imagen con 96 kernels de 11x11x3. Para la reduccién del sobreajuste utiliza dos técnicas: data
augmentation y dropout. [3]
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Figura 2.6. Arquitectura red AlexNet

2.3.1.2. GoogleNet

Tiene una red de 22 capas con 5 millones de parametros con un tamafio de filtro 1x1, 3x3y 5x5 para
extraer caracteristicas a varias escalas junto con max pooling. [2]

Figura 2.7. Arquitectura red GoogleNet

2.3.1.3. ResNet-50

ResNet-50 pertenece a la familia de Redes Residuales y tiene 50 capas con 26 millones de parametros.
En las redesresiduales aprendemos de los residuos que on sustracciones de caracteristicas aprendidas
por las capas de entrada. ResNet usa una funcidn que conecta la entrada de una n-capa conuna (n+x)-

capa permitiendo afadir perturbaciones a las imagenes y evitando los problemas de vanishing explode
gradient. [2] [3]

[Brain tumor classification in MRl image using convolutional neural network]
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Figura 2.8. Arquitectura red ResNet-50



2.3.2. Conjuntos de preentrenamiento

Los conjuntos ImageNet y Places365 son conjuntos a larga escala, conjuntos de imdgenes naturales, y
cubren una amplia variedad de imagenes centradas en objetos (ImageNet) y escenarios (Places365).

2.3.2.1. ImageNet

Es una gran base de datos visual disefiada para el uso de la investigacidon. Contiene mas de 20000
categorias con mas de 14 millones de imagenes anotadas a mano Las imagenes estan organizadas y
etiquetadas de forma jerarquica. Desde 2010, existe una competicién anual de software, ImageNet
Large Scale Visual Recognition Challenge (ILSRVC) donde los programas compiten para clasificar y
detectar objetos correctamente. [8]

2.3.2.2. Places365

El conjunto de datos Places esta disefiado siguiendo los principios de la cognicion visual humana. Su
objetivo es construir un nucleo de conocimiento visual, que pueda usarse para entrenar sistemas
artificiales con tareas de compresién visual de alto nivel. Su caracteristica principal es su gran volumen
de imagenes de escenas a gran escala. Tiene 1.8 millones de imagenes de 365 categorias, donde hay
como maximo 5000 imagenes por categoria. [9]
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Figura 2.9. Conjuntos de datos de preentrenamiento (lzquierda) ImageNet. (Derecha) Places365. Fuente: Google
Images

2.4. Redes GAN

Una red ‘Generative adversarial Network’ (GAN) es un tipo de red de deep learning que puede generar
datos con caracteristicas similares a datos de entrada reales. Consiste en el entrenamiento de dos tipos
de redes entrenadas simultdneamente para maximizar el rendimiento de ambas.

1. Generador.
A partir de un vector de valores aleatorios como entrada, esta red genera datos con la misma
estructura que los datos de entrenamiento con el propdsito de engafiar a la red discriminadora
consiguiendo que clasifique sus imagenes como reales.

2. Discriminador.
Esta redintenta clasificar las observacionescomo ‘real’ o ‘falsas’ a partir de lotes de datos
reales de entrenamiento y datos generados.

Idealmente estas estrategias resultan en un generador que genera datos convincentemente realistas y
un discriminador ha aprendido fuertesrepresentaciones de caracteristicas del conjunto de
entrenamiento. [11]
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Figura 2.10. Estructura red GAN. Fuente: [12]

2.5. Deteccion de objetos

La deteccion de objetos es el proceso de localizar y clasificar objetos en una imagen. Los detectores que
vamos a probar son Faster R-CNN y YOLOv2. Tanto los detectores Faster R CNN como YOLO tienen la
ventaja de usar anchor boxes para mejorar la velocidad y la eficiencia de deteccion.

Para entrenar los detectores de objetos, usamos la técnica de transferencia de aprendizaje para
aprovechar el conocimiento de extraccién de caracteristicas de las redes entrenadas como clasificadores
de nuestro problema.

Durante el entrenamiento se optimiza la pérdida entre las bounding boxes predichas y las reals. La
funcidn de coste de estos modelos tiene en cuenta el error de localizacidn, el error de confianza y el
error de clasificacion: [14]
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2.5.1. Anchor Boxes

Los ‘anchor boxes’ son un conjunto de ‘bounding boxes’ predefinidos con unas determinadas
dimensiones. Estas cajas estan definidas para capturar la escapay la ratio de aspecto de objetos
especificos que se quieren detectar y son tipicamente elegidos basados en el tamafio de los datos de
entrenamiento. [13]

2.5.2. Faster RCNN

El detector Faster R-CNN afiade una red de propuesta de regiones para generar propuestas de regiones
directamente en lared envez de usar un algoritmo externo. La red de proposicién de regiones usa
Anchor boxes. Generar posibles regionesen la red es mas rdpido y se ajusta mas a los datos. [13]
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Figura 2.11. Arquitectura Faster R-CNN. Fuente: [13]

2.5..YOLOv2

You-only-look-once (YOLO) v2 es un detector de objetos que usa una red de deteccion de una etapa por
tanto es mas rapido que otros detectores de dos etapas como Faster R-CNN.

El modelo de YOLOvV2 ejecuta una CNN en una imagen de entrada para producir prediccionesde red. El
predictor de red decodifica las prediccionesy genera bounding boxes. [13]
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Figura 2.12. Arquitectura YOLOV2. Fuente: [13]

2.5.4. Metricas de detectores de objetos

Para la medicion de la precisidon en detectores de objetos, ‘average precision’ es una métrica muy
popular. La definicién de ‘average precision’ (AP) esel drea bajo la curva de ‘precision-recall’. ‘Precision’
es una métrica que mide el porcentaje de prediccionescorrectasy ‘recall’ es una métrica que mide qué
tan bien encuentralos positivos (anomalias). Si ordenamos las prediccionessegun el nivel de confianza,
el valor de ‘recall’ aumenta mientras que ‘precision’ presenta un patron caracteristico de zigzag. mAP es
la media de valores de AP de cada clase. [15]

1
AP:f p(r)dr (4)
0
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2.6. Optimizacion de modelo

El método de optimizacion de modelo consiste en el uso de modelos simples e iterar probando
diferentes configuraciones de preprocesamiento de imagenes y opciones de entrenamiento. Una vez
que se tiene una idea de que configuraciones van bien se puede pasas a redes mas precisas. [7]

2.6.1. Balanceo de datos

El problema de desbalanceado de datos ocurre cuando hay una desproporcidn significativa entre el
nuimero de ejemplos de cada clase de un conjunto. Los algoritmos de Machine Learning funcionan mejor
cuando el nimero de datos estan equilibrados porque estan disefiados para maximizar la precisiony
reducir el error.Para solucionar este problema: [16]

1.

Cambio de métricas.

En estos casos ‘Accuracy’ no es un buen estimador y se recomienda el uso de la matriz de
confusidn, la precisién, el recall y f1-score.

Sobremuestreo.

Consiste enigualar los datos de las clases afiadiendo mas datos de entrada de las clases
minoristas. La creacién de datos sintéticos para aumentar eltamafio de datos puede realizarse
a mano o mediante redes GAN.

Submuestreo.

Consiste en eliminar aleatoriamente datos de las clases en mayoria hasta igualar datos. Tiene el
inconveniente de eliminar informacion relevante y puede ser contraproducente.

Capas penalizadoras de clases

La capa de clasificacién penaliza los resultados segun el tamafio de datos de las clases.

2.6.2. Errores de prediccidon

Existen dos tipos de erroresasociados a los modelos de prediccion: sesgo y varianza. Estimar el sesgoy
la varianza de una distribucién te permite priorizar las técnicas de correccién siguientes.

1.

Sesgo o bias.

Error cometido entre la prediccién medida de nuestro modelo y el valor real que tratamos de
predecir. Un sesgo alto ignora las relacionesimportantes entre las variables y presenta un
rendimiento pobre sobre el conjunto de entrenamiento. [17]

Varianza.

Variabilidad de prediccidon que presenta nuestro modelo. Una varianza alta se caracteriza por
un sobreajuste del conjunto de entrenamiento y una mala generalizacién del conjunto de test y
presenta una amplia diferenciade error entre el rendimiento de entre namiento y de validacion
suponiendo la misma distribucién. [17]
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Figura 2.13. Bias Variance: (a) High bias and low variance; (b) Low bias and high variance; (c) High bias and high
variance; (d) Low bias and low variance. Fuente: [18]

Para conseguir un sesgo bajo y varianza baja hay que tener en cuenta el coste entre ambos.
Antiguamente no habia muchas herramientas que aumentaban uno sin perjudicar al otro. Pero enla era
moderna entrenar redes mas grandes siempre reduce el bias sin afectar a la varianza aplicando
regularizacion. Para reducir la varianza conseguir nuevos datos es la mejor manera. [18]

Iteracién

- Entrenar unared mas grande
- Incrementarel n2de épocas
- (Buscar otrared)

- Afiadir datos de entrenamiento
- Afladir regularizacion
- (Buscar otrared)

éVarianza
alta?

Figura 2.14. Proceso de correccion frente al conflicto bias-variance. Fuente: [18].
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2.6.3. Reduccion de sobreajuste
2.5.3.1. Data augmentation

Es una técnica que consiste en aplicar un conjunto de operacionesde transformacion sobre las
imagenes con el objetivo de aumentar eltamafio de los datos o mejorar la generalizacion del modelo.
Las operaciones pueden ser transformaciones espaciales como rotaciones, volteos, desplazamientos

deformaciones en laimagen como cizalladuras, reescalamientos, recortes, cambios en el colory ruido
de laimagen. [19]

Estd demostrado que da buenos resultados y se basa en que las transformaciones menoresson
interpretadas como imagenes diferentes segin la red neuronal. Puede ser de dos tipos: [20]

1. Offline data augmentation
Crea nuevas imagenes a partir de transformaciones y las almacena en el disco. Es deseable para
aumentar el tamano de los datos en conjuntos pequefios.

2. Online data augmentation
Realiza operaciones de transformacién aleatorias al principio de cada minibatch de
entrenamiento. Mejora la capacidad de generalizacion del modelo sin aumentar su tamafio.

L TCICT T I
( BT
CEGHEM
MiEE S

Figura 2.15. Proceso de aplicacién de data augmentation. Fuente: Google Images

2.5.3.2. Regularizacion

La regularizacion es una herramienta de reduccion del sobreajuste que penaliza los parametros con
valores grandes. Elimina datos espurios causando valores dentro del rango lineal de la funcién de
activacion tanh. La funcidén pasa a ser relativamente lineal y reduce la no linealidad de la funcién de
coste reduciendo el sobreajuste. La regularizaciéon L2 se controla con el valor A de acuerdo conla
formula. [18]

m

K
J(0) =— %[Z Zyi((i)llog(hg(x(i)))k_;_ ( 1—y§i>) .1og( 1—(h9(x<i))))k]+ 4 Z (0" 2(6)
i=1 k=1 4 i

2.5.3.3. Dropout

El dropout es una técnica de reduccidn del sobreajuste que asigna neuronas a valor nulo segun un valor

probabilistico. De esta forma se disminuye el nimero de pardmetros enla funcién de coste y la
probabilidad de sobreajuste.

{a) Standard Neural Net (b) After applying dropout.

Figura 2.16. Aplicacién de dropout: (a) Red neuronal estandar (b) Red después de dropout. Fuente: [18]
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2.6. Opciones de entrenamiento
2.6.1. Hiperpardmetros

Los hiperparametros son los parametros que optimizan la optimizacion del modelo. La influencia de los
hiperparametros en el resultado es subjetiva, segiin Andrew Ng, podemos afirmar que elorden de
importancia es (1) learning rate (2) la caida de learning rate y el nimero de capas y (3) el parametro del
optimizador, numero de capas ocultas y tamafio del minibatch. Mediante la seleccidon de redesde
estudio fijamos el nimero de capas y optimizamos el resto de las variables. [18]

2.6.1.1. Tasa de aprendizaje

Es el hiperparametro que controla el paso de correccion del gradiente. Para valores pequefios el camino
hasta el minimo optimo sera un proceso lento pero seguro. Para valores altos, sobrepasa el minimo
optimo y no converge. El valor de esta variable puede configurarse para cambiarse. La caida de la tasa
de aprendizaje es el parametro que disminuye su valor en un numero de épocas definido, (periodo de

caida).
2.6.1.2. Tamarfio del minibatch

En mini batch gradient descent, el conjunto total de entrenamiento se divide en porcionesdel conjunto
llamados minibatches. El nimero de datos que se utilizan para el célculo del gradiente. Permite
asegurarse que lared neuronal estd ejecutandose eficientemente. Si es demasiado grande puede
superar la capacidad de almacenamiento y reducir la velocidad drdsticamente. Es generalizado su uso en
valores de potencias de dos porque aceleran el calculo [18].

2.6.1.3. Parametro del optimizador

El descenso de gradiente estocastico es propuesto por Herbert y Sutton. En resumen, para el calculo
tomamos las derivadas de los pesos, dW, y la derivada del sesgo, db para cada épocay los multiplicamos
por latasa de aprendizaje. [2]
W=W-yxdW (7)
b=b—nxdb (8)

2.6.4.3.1. Descenso del gradiente con momento

Mientras que el descenso del gradiente estocdstico con momento B esla media movil de los gradientes,
aqui es la media movil entre 0y 1 cuando calculamos dW'y db. [2]
Vo =BXV 4 (1= ) x dW (9)
Vp=BxV,+(1-p)xdb (10)

2.6.4.3.2. RMSProp

Similarmente, Root Mean Squared Prop es una tasa de aprendizaje adaptiva presentada por Geoff
Hinton. RMSprop toma la raiz de la media mévil de los gradientes. 3 es el hiperpardmetro que controla
la media ponderada exponencialmente. [2]

S w=PxS gt (1= f) x dW? (11)
S ,=BX S, + (1= p) x db? (12)

2.6.4.3.3. Adam

Combinando las caracteristicas de la media ponderada de los gradientes anteriores y el cuadrado de la
media ponderada de los gradientes anteriores implementamos la técnica Adam. Epsilon es un numero
pequefio que previene la division por ceron es una tasa de aprendizaje con diferente rango de valores.

(2]
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W=W—1;x(V“,w.",fb'd“_+ s) (13)
b:b—r;x(vbf,fsdb+f) (14)

2.6.4.4. Estrategias de optimizacion

En un hiperespacio de millones de parametros es dificil conocer que parametros funciona mejor para
cada modelo. Antiguamente la busqueda de mejores variables se realizaba mediante la busqueda en
rejilla, asigna valores fijos a las variables independientesy calcula el resultado de la variable
dependiente. El muestreo aleatorio asignar valores aleatorios a las variables independientes en cada
experimento. De este método, se barrer mas espacio dentro del hiperespacio del modelo. La
optimizacidon bayesiana tiene en cuenta los resultados de experimentos anteriores para elaborar una
region de probabilidad de valores dptimos acorde a la férmula. [18]

IP( F“( X) X”) < - (15)

2. n,
(2-7) IEt?l
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3. Estudio dela pieza

3.1. Introduccion

Desde los afios 70, el plastico llego a las zonas mas significativas del automovil debido a su ligerezay
aumento de resistencia y seguridad. En el revestimiento interior de los automéviles juega un papel muy
importante debido a su facilidad de disefio de formas complicadas y estética interior.

En los acabados interiores, el uso de termoplasticos transformados por inyecciéon esampliamente
utilizado debido a su buen acabado superficial a un coste razonable. Las partes estructurales que
requieren de buena rigidez y comportamiento se conforman mediante termoestables reforzados con
fibra. [21]

3.1.1. Descripcion de la pieza

El panel de instrumentos o salpicadero es el dispositivo que se encuentra frente al conductory
semiconductor y alberga los instrumentos e indicadores que permiten el funcionamiento del vehiculo.

En la planta de CEFA, se producen varios modelos de paneles de instrumentos. La pieza de estudio es un
panel de instrumentos o salpicadero perteneciente al modelo OPEL Corsa (62 Gen). El salpicadero es de
tipo flexible, este tipo de salpicaderos estan compuestos por varias capas: [22]

1- capa superior rugosa (huella) hechatipicamente de PVC plastificado
2- capaintermedia hecha de poliestireno o poliuretano expandido
3- capa base metadlica, de plastico o aglomerado.

El alcance de este trabajo se centra en lainspecciény deteccion de los defectos sobre la capa superior
rugosa también denominada tela.

Figura 3.1.1. Panel de instrumentos Opel Corsa. Tela (contorno amarillo). Fuente: CEFAS.A.

3.1.2. Proceso de produccion de la pieza

El proceso de produccion de la tela parte de una ldmina semielaborada de termoplastico. El material en
forma derollo es arrastrado mediante tetones a una maquina de termoconformado. El proceso de
termoconformado le confiere las curvaturas finales de la pieza ademas del dibujo de la huella. Se suele
se suele realizar tratamientos superficiales y adicion de aditivos previa la incorporacion de espuma.

La tela moldeada y la base de plastico se disponen en cunas macho y hembra. La cuna tiene las
condiciones de temperatura y presion apropiadas para la reaccion de expansién delisocianato y el poliol
en poliuretano. La espuma se adapta ala forma de la tela moldeada y la correctadistribucion de espuma
se realiza por medio de una cdmara de visién térmica.
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La pieza es refrigerada por conveccién natural a su transporte por gravedad en unos ganchos. En una
cuna, se troquela el excedente de pieza y la zona del airbag del salpicadero es debilitada por medio de
una cortadora laser de precision. La pieza de salpicadero es montada en la estructura general del panel
de instrumentos. Y en los sucesivos pasos recibe la instalacién del rsto componentes y dispositivo del
airbag.

En su etapa final, la pieza se monta en un sistema de AGVs donde recibe montaje de los ultimos
componentes. Al final, recibe la inspeccidn manual de la superficie. Las piezas OK son empaquetadas y
enviadas al almacén. Mientras que las piezas detectadas como NOK son separadas en un puesto de
retrabajo.

En la misma linea se producen piezas en ambos sentidos de conduccidn, izquierda y derecha, aunque
esta ultima en menor proporcion.
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Figura 3.1.2. Proceso de produccion del Opel Corsa. Fuente: ‘Estudio de la viabilidad técnica y econdmica de la
automatizacion del suministro logistico de productos en Mddulos Ribera Alta SL’. Baguena Gutiérrez.
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3.1. 3. Descripcion de los defectos

Los tipos de defectos mas importantes son:

1-
2-

Raya. Defecto superficial con forma de surco producidas por el contacto con un objeto con filo.
Roces. Defecto superficial que presenta rotura de la capa superior en forma de levantamiento
irregulary discontinuo de la superficie de tela. Estd producida por el contacto por friccién con
otros objetos.

Bollos. Defectos que producen zonas elevadas sobre la superficie, generalmente asociada a
variaciones en las condiciones térmicas. Se presenta como una forma abombada o como una
distorsién dimensional. Las causas mas comunes son la presidn de los gases dentro de la parte
en expansion o por esfuerzos residuales internos.

Hundimientos. Defectos que producen una zona inferior respecto a la superficie. Puede ocurrir
que el rechupe aparezca una vez se ha extraido la pieza, esto es debido a que al expulsar el
calor de la pieza se crea un estado tensional que se traduce en contracciones. Las
incrustaciones son imperfecciones debido a la presenciade particulas en el molde. [23]
Arrugas en las esquinas. Imperfecciones que tiene la apariencia de una onda moldeada sobre
la capa superior que se localizan en las esquinas de la pieza.

Manchas. Defectos presentan comportamientos visuales diferentes en ciertas regiones. Los
defectos mas conocidos son los de decoloracién, cambios en el color original a menudo
causada por sobrecalentamiento exposicidéna la luz o ataques quimicos. El defecto de brillo se
denomina a cuando la region pierde ‘gloss’ o grado de brillo. [24]

Gap. defecto dimensional para referirnosa las desuniformidades en las juntas entre piezas.

3.1.4. Necesidades de dataset

El conjunto de imagenes (data set) debe de satisfacer las siguientes necesidades:

Representatividad de la poblacién a detectar
Diferenciacién de los pardmetros de defectos
Numero minimo de imagenes de una misma clase

(b)
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(h) (i)

Figura 3.1.3. Defectos de produccion mas comunes en la superficie del salpicadero: (a) rayas; (b) roces; (c) bollos;
(d) hendiduras; (e) incrustaciones; (f) manchas; (g) defectos de brillos; (h) arrugas en las esquinas; (i) gap. Fuente:
Propia.
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3.1.5. Distribucion de defectos

La aparicion de defectos es ocasionada por la variacién de las condiciones de operacion de la pieza. Los
defectos poseen una alta variabilidad de tamafio, forma y tipo. Segun los datos de la figura 3.1.5., las
esquinas son las zonas de la pieza con mayor probabilidad de aparicion de defecto, siendo mas grave la
zona del conductor. En ambas zonas se localizan principalmente los defectos de arrugas, el cual es el
defecto mas probable por zona.

Los datos recogidos sobre la frecuencia de defectos corresponden al periodo entre 09/2020 - 02/2021.

MANCHA
RAYA

ARRUGA

HUNDIMIENTO

ROCE

BOLLO

Figura 3.1.4. Distribucion de defectos por tipo. Fuente: CEFA S.A.

Figura 3.1.5. Mapa de distribucidon de defectos por zonas. Fuente: CEFA S.A.
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3.2. Estudio de las condiciones de captacion

Los defectos presentan una alta variabilidad de sus caracteristicas. El objetivo de este estudio es
maximizar la probabilidad de visualizar los defectos con un sistema de deteccidn fijo.

3.2.1. Disefio de experimentos

Con el propdsito de seleccionar las mejores condiciones del sistema de captura se plantea el disefio de
un banco de experimentos que reproduzca las condiciones del sistema de captura en el entorno
deseado.

El modelo tedrico ideal delbanco de ensayos consistiria en un sistema de infinitas cdmaras y sistemas de
iluminacion ocupando todos los puntos del espacio analizando los resultados individualmente. En el
modelo real aproximado escogemos ciertos puntos estratégicos de estudio que nos permiten
generalizar el aprendizaje.

3.2.2. Subsistema de adquisicion

El estudio de la posicidn de la cdmara se divide en el estudio de 5 dngulos horizontales [22.52 452 67.5¢
909] y 4 angulos verticales [02 152 302 452] dispuestas en forma de semiabanico. La distancia de la
camara es fija, 1050 mm. El modo de captura es secuencial con una tasa de 10 [frames/seg].

3.2.3. Subsistema de iluminacion

Laimagen deberatener unailuminacién tal que permita iluminar nitidamente el defecto sin saturar la
imagen. Se debe ajustar la distancia delfoco a la superficie del defecto junto con el obturador anal égico
y digital. Un nivel de exposicion optimo es1200-1350.El angulo de incidencia de la luz debe ser el
mismo angulo de incidencia de la cdmara.

3.2.4. Calibracion de la cdmara

La calibracion se realiza con la pieza situada en la posicion de referenciay el punto deseado en el plano
de laimagen. Se ajusta el enfoque de imagen con la ayuda de un mapa de enfoque. El ajuste del nivel de
exposiciéon mediante el obturador analdgico.

3.2.5. Descripcion de las pruebas

Las piezas de estos experimentos son piezas detectados en planta como NOK no recuperadas. La pieza
se arrastra sobre un carro sobre la linea continua a una velocidad aproximada de 3 [m/s]. Se realizan
una serie de estudios con el objetivo de sacar conclusionesde cara a encontrar un rango de valores
Optimos para el angulo horizontal y vertical de la camara.

Figura 3.2.1. Configuracién de banco de ensayos: (a) angulos horizontales; (b) dngulos verticales. Fuente: Propia.
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3.3. Resultados

225 45 67.5 90

Figura 3.2.2. Imagenes de pruebas de defectos captadas en banco de ensayos: (fila 1) mancha; (fila 2) defecto de
brillo; (fila 3) hendidura; (fila4) raya oblicua sin difusor de luz; (fila 5) raya oblicua con difusor de luz. Fuente:
Propia.
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Figura 3.2.3. Imagenes de pruebas de defecto de raya vertical captada en banco de ensayos. Fuente: Propia.
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Figura 3.2.4. Imagenes de pruebas de defecto de raya horizontal captada en banco de ensayos. Fuente: Propia.
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22.52 452 22.5° 452

Figura 3.2.5. Imagenes de pruebas de defectos de (col. 1y 2) rechupe; (col. 3 y 4) roce en banco de ensayos.
Fuente: Propia.
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Figura 3.2.6. Imagenes de pruebas defectos de (col. 1 y 2) arruga en esquina; (col. 3 y 4) roce en esquina captadas
en banco de ensayos. Fuente: Propia.
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3.4. Conclusiones

La luz difusa permite una iluminacion mas uniforme (Figura 3.2.2.5.) que esbuena para detectar ciertos
tipos de defectos, aunque no se ha considerado necesario su uso porque la diferenciaes no es sustancial
y requiere de posiciones muy cortas del foco o luminarias mayor potencia.

Para una determinada posicidn de la pieza, el defecto presenta un punto ciego donde no creasombra
(Figura 3.3.1). Esta posicion depende de la geometria y superficie del defecto. Para evitar la ausencia de
defectos visibles dentro del plano imagen es recomendable aumentar eldngulo de incidencia.

A medida que aumenta eldngulo de incidencia, disminuye la reflexion de luz difusa y la luz reflejada es
la componente especular.Como observacion general, este efecto permite diferenciar nitidamente la
presenciade defectos muy pequefios en superficies planas. Sin embargo, es contraproducente en
algunos casos, ya que depende del tipo de defectoy su geometria. Cuanto mas inclinado esel angulo
con la pieza disminuye la visibilidad de las dimensiones perpendicularesal haz de vision (Figura 3.3.2.)y
ciertos tipos de defectos como las decoloracionesson peor detectadas (Figura 3.2.3.1).

Teniendo en cuenta los datos anteriores, los angulos de Camara de (452,3092) se ha demostrado que
presenta buenos resultados generales.

Frame 1 Frame 2 Frame 3

Figura 3.3.1. Efecto de punto ciego

22.52 452 67.52 90¢

Figura 3.3.2. Efecto del reflejo especular.
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4. Estudio de la localizacidon del sistema de captura

4.1. Introduccién

La localizacidn delsistema de captura es un espacio de la linea dentro de la etapa de producto acabado
de la pieza donde se plantea la captura masiva de imagenes de defectos validas. Las mejores
condiciones de captura no siempre son posible transferirlas al sistema real debido a las restricciones del
entorno.

El propdsito de este apartado es seleccionar la configuracion del sistema de captacién que permitan
capturar la mayor cantidad de imagenes validas del mismo tipo de defecto. Para ello vamos a teneren
cuenta:

=  Condiciones de captacién de defectos
=  Distribucion de defectos por region
=  Distribucién de defectos por tipo

En la planta, lalinea de produccién presenta un espacio situado entre la finalizacién de componentes
que cumple con los requisitos necesarios donde las tres configuraciones posibles son:

(A) Suelo. Configuracidn de captura de pruebas inicial. No permite angulos verticales ni angulos
horizontales mayores de 452,

(B) Estanteria. Restriccionesde movimiento para el tripode y angulos delimitados por la posicion del
foco (22.59,459). La luz incide sobre la zona central.

(C) Entrada ala cabina. Escasas restriccionesde movimiento para el tripode, permite varias
configuraciones. Posibilidad de recibir vibraciones de puerta. La luz incide sobre la esquina.

La principal diferenciaentre By C es la posicién del foco de luz. El foco de luz tiene un espacio limitado y
estd obligado a adoptar una posicién en cada configuracion para iluminar correctamente la pieza.

Figura 4.1. Seleccidén de diferentes posiciones de camara: (A) suelo; (B) estanteria; C) puerta de cabina. Fuente:
Propia.
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4.2. Resultados

Resultados configuraciéon A (452,09):

Figura 4.2.1. Imagenes de defectos capturados desde la configuracion A: (a) roce; (b) mancha; (c) hendidura-1; (d)
hendidura-2. Fuente: Propia.

Resultados configuracién B (22.52, 459):

—

Figura 4.2.2. Imagenes de defectos capturados desde la configuracion B: (a) arruga; (b) raya-1; (c) raya-2; (d) bollo.
Fuente Propia.
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Resultados configuracion C (309, 452):

-

~———

Figura 4.2.3. Imagenes de pieza y defectos: (a) arruga; (b) raya-1; (c) raya-2; (d) gap; capturados con la
configuracion C. Fuente: Propia.

4.3. Conclusiones

La escasa versatilidad de la configuracion A le somete a caer en pobres resultados de visualizacién. La
configuracién B, esuna posicion ideal para capturar defectos en la zona central, aunque no recibe
iluminacion en las esquinas, es una buena opcidn para defectos de rayas y roces. La configuracién C, es
una posicion ideal para capturar defectos en la zona de la esquina. Ademas, la libertad de movimiento
permite ajustar el dngulo para optimizar la deteccién sobre un tipo de defecto especifico.

Teniendo en cuenta la informacion de distribucion de defectos por zonas nos vamos a centraren la
captura de arrugas en las esquinas con la configuracién C.
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4.4. Ajuste de la configuracion

Seleccionada la configuracidn, es necesario ajustar laimagen a las condiciones deseadas. La lente esel
dispositivo encargado de adecuar los rayos de luz a laimagen que recibe el sensor fotografico. El
principal parametro de la lente es la distancia focal, que actia como un zoom sobre la imagen.

Ajustamos laimagen de forma que la luz permita visualizar el defecto deseado nitidamente. La lente de f
=50 mm permite elrango de enfoque dentro delrango 6ptimo de captura (Fig. 12)

&

=

|
—

Figura 4.4. imagenes de seleccion de lente capturados con la configuracién C: (a) f =18 mm; (b) f = 50 mm; Fuente:
Propia.

4.5. Adquisicion de imdgenes

El proceso de adquisicion de imagenes ha consistido en la captura de secuencias de las imagenes de las
piezas tanto de conducciénizquierdas como derechas enlas opciones especificadas en el apartado
anterior para la creacion del conjunto de datos.

La captura se ha realizado durante intervalos regulares diarios. Las imagenes presentan ligeras
diferencias de posicidon de camara y en algunos casos hay grandes variaciones de iluminacién al no estar
controlada la iluminacién externa. El etiquetado de imagenes se ha realizado segun el criterio de los
empleados de la planta y posteriormente se ha procesado para la creaciéon del conjunto de datos.

La captura se ha configurado con una tasa de captura de 5 frames/seg para una velocidad de pieza
aproximada de 1.6 m/s. Un ajuste del nivel de exposicién EV = 1200 - 1350. El tamafio de imagenes =
1600 x 1200 pxls.
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5. Estudio de clasificacion de imagenes

5.1. Introduccion

El objetivo de este estudio es seleccionar el mejor modelo de clasificacion de las imagenes con defectos.
Para ello vamos a probar diferentesredes con diferentes opciones de entrenamiento y escoger aquellas
que denun mejor rendimiento en la validacidon y testeo.

5.1.2. Conjunto de imdgenes

Para la creacidn del conjunto de imagenes se han seleccionado aquellos tipos de defectos que presentan
un numero suficiente de imagenes validas.

1. Arruga

Dentro de la categoria arruga se incluyen aquellas imperfeccioneslocalizadas en la esquina superior.
Con forma de ufia, bulto, pliegues de la tela, ondas moldeadas, etc. Ademas de los defectos con
caracteristicas semejantes, pero no consideradas criticas por sus dimensiones menores (Fig 4.1.c.).

2. Gap

Esta categoriaincluye el defecto de gap conocido como las desviaciones en la alineacion entre
contornos de las piezas. El defecto de gap no es considerado un defecto superficial, por ende, no se
tienen datos. Sin embargo, se ha observado una alta probabilidad de ocurrenciade este defecto.

3. Suciedad
En esta categoria se han incluido las anormalidades de tonalidades y brillos en la superficie.
Ocasionadas por manchas de grasa, polvo, liquidos...

4. 0K
Clase con ausencia de defectos. Se dispone de un gran volumen de imagenes de piezas correctas. Se han
escogido piezas contiguas a las defectuosas para homogeneizar las condiciones.

El conjunto de entrenamiento es el conjunto utilizado para entrenar el modelo. El conjunto de
validacion es el conjunto para evaluar la capacidad de generalizacion de la poblacidon y comprobacion
del correcto funcionamiento de la red. El conjunto de entrenamiento y validacién han sido divididos en
una proporcion 0.8/0.2. El conjunto de test es un conjunto con la finalidad de medir el rendimiento del
modelo con imagenes de defectos nunca antes vistas durante el entrenamiento ni validacién.

Figura 5.1. Diferentes tipos de formas de defectos de arruga usados en el conjunto de datos: (a) bulto critico; (b)
pliegue critico; (c) pliegue no critico; (d) ufia no critica. Fuente: Propia.
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5.1.3. Preprocesamiento de imdgenes

Para aplicar la técnica de transferenciade aprendizaje con redes preentrenadas, ha sido necesario (1)
redimensionar el tamafio de las imagenes al tamafio de la capa de entrada de lared y (2) convertir los

canales de imagen de grises a RGB.

5.1.4. Data augmentation

Se ha empleado dos tipos de data augmentation: (1) balanceo de datos (2) transformaciones aleatorias
de imagen para mejorar la generalizacion. Para balancear los datos, el conjunto de entrenamiento la
adicion de volteos horizontales, verticalesy ambos sobre las clases minoristas. En los datos de validacidn
y testeo Unicamente volteos horizontales para mantener la condicion de representatividad del sistema
de deteccidnreal.

Las operaciones de transformacién de imagen online se asignan valores aleatorios dentro de un rango

(Tabla 5.1.3.) durante cada minibatch de entrenamiento.

Tabla 5.1.1. Conjunto de datos base

Arrugas Gap Ok Suciedad Total
Training set 220 246 942 276 1684
Validation set 54 61 236 69 420
Test set 12 14 19 15 60
Total 286 321 1197 360 2160

Tabla 5.1.2. Conjunto de datos sobremuestreado con data augmentation

Arrugas Gap Ok Suciedad Total
Training set 878 984 942 1104 3908
Validation set 108 122 236 138 604
Test set 24 28 19 30 101
Total 1010 1134 | 1197 1272 4613

Tabla 5.1.3. Operaciones de transformacion de imagen online

Transformacion min max
online
Traslacién X -300 300
Traslacién Y -100 100
Re-escalamiento 0,75 1,25
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5.1.5. Optimizacién de hiperpardmetros

Para la optimizacién de hiperparametros se ha realizado una optimizaciéon bayesiana de los valores con

el conjunto de datos base (Tabla 5.1.1.).Ajuste rango cada 15 experimentos y un uso de escalas

apropiadas para la tasa de aprendizaje, regularizacion L2 y el tamafio del minibatch. No se ha
considerado necesario afiadir caida de learning rate.

Tabla 5.1.4. Valores de hiperparametros de modelos optimizados

Red Dataset Numero Learning Tamaiio Momento
Preentren. | de épocas rate
preentrenada Minibatch SDGM
AlexNet ImageNet 30 0.000823 64 0.8967
GoogleNet ImageNet 30 0,00355 16 0.7443
GoogleNet Places365 30 0,000238 16 0.9793
ResNet-50 ImageNet 30 0,00145 8 0.8379

Tabla 5.1.5. Valores de hiperparametros de modelos optimizados con regularizacién L2

Red Dataset Numero Learning Tamaiio Momento L2Reg
Preentren. | de épocas rate . SDGM (10%)
preentrenada Minibatch
AlexNet ImageNet 30 0,000733 32 0.6742 -4.5581
GoogleNet ImageNet 30 0,002177 16 0.9 -6.752
GoogleNet Places365 30 0,00072 32 0.9768 -7.999
ResNet-50 ImageNet 15 0,00555 8 0,6576 -6.390
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5.2. Resultados

5.2.1. Entrenamiento inicial

El primer paso consiste en entrenar rapidamente los modelos y observar su comportamiento para
decidir el siguiente paso de estudio. Para este entrenamiento inicial se usa el conjunto de datos base

(Tabla 5.1.1.) y las opciones de entrenamiento de la (Tabla 5.2.1.).

Tabla 5.2.1. Opciones de entrenamiento iniciales

Numero Learning Caida Tamaio Momento L2Reg
de épocas rate learning
Minibatch | SDGM
rate
30 0.0001 0% 128 0.9 0
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Figura 5.2.1. Graficas de entrenamiento de modelos: (a) AlexNet; (b) GooglLeNet-ImageNet; (c) GooglLeNet-
Places365; (d) ResNet-50. Linea azul: Training accuracy suavizada; Linea roja: Training Loss suavizada; Linea negra
discontinua: Validation Loss/Validation accuracy. Fuente: Propia.

En esta situacion el Validation Loss aumenta y Training Loss disminuye en todos los modelos. Los
modelos sufren un problema comin en Machine Learning conocido como overfitting. Los modelos se
estan centrando en el ruido de las imagenes de entrenamiento y esta extrayendo las caracteristicas en
base a ello. Esto le ayuda a mejorar el rendimiento en el entrenamiento a costa de perjudicar su
capacidad de generalizacién.

Para solucionar el overfitting existen técnicas como el uso regularizacion, dropout o afiadir mas datos.
La adicion de datos es la técnica mas utilizada y puede hacerse mediante data augmentation o creacién
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de los datos artificiales con redes neuronales GAN. En este trabajo se estudian la regularizaciony la
adicién de datos con data augmentation y redes GAN.

4.2.2. Regularizacion

Conjunto de datos base (Tabla 5.1.1.) con los valores de hiperpardmetros optimizados con
regularizacion L2 (Tabla 5.2.4.)
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Figura 4.2.2. Graficas de entrenamiento de modelos: (a) AlexNet; (b) GooglLeNet-ImageNet; (c) GooglLeNet-
Places365; (d) ResNet-50. Linea azul: Training accuracy suavizada; Linea roja: Training Loss suavizada; Linea negra
semicontinua: Validation Loss/Validation accuracy. Fuente: Propia.

= Resultados sobre conjunto de validacion

Confusion Matrix Confusion Matrix
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Figura 5.2.3. Resultados de matriz de confusidn sobre el conjunto de validacion para los modelos: (a) AlexNet; (b)
GoogleNet-ImageNet; (c) GooglLeNet-Places365; (d) ResNet-50. Fuente: Propia.

»
171
S
&]
5
=
=

arruga

gap

ok

suciedad

Resultados sobre conjunto de test

Confusion Matrix

- 100.0%  100.0% [MESNGA

arruga gap ok suciedad
Predicted Class

(a)

40

Confusion Matrix

arruga

gap

ok

suciedad

100.0% - 12.5% 100.0%

suciedad
Predicted Class

arruga gap ok

(b)



Confusion Matrix

arruga 4 8

gap

ok

suciedad

arruga gap ok suciedad
Predicted Class

(c)

Confusion Matrix

arruga

33.3%

gap

ok

suciedad

100.0% - 11.1% 100.0%

suciedad

arruga gap ok
Predicted Class

(d)

15.8%

Figura 5.2.4. Resultados de matriz de confusidn sobre el conjunto de test para los modelos: (a) AlexNet; (b)
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Tabla 5.2.1. Resultados de validation accuracy, testaccuracy con regularizacién L2.

Dataset Epocas Tiempo Tamaiio Parametros | Validation Test

preentr. entr. (MB) (Millions) Accuracy Accuracy

AlexNet ImageNet 30 9'4" 227 61 76,19% 23,76%
GoogleNet ImageNet 30 14'49" 27 7 94,05% 38%
GoogleNet Places365 30 11'46" 27 7 96,19% 25%

ResNet-50 ImageNet 15 16'39" 96 25,6 98,84% 23,33%

5.2.3. Datos balanceados

Conjunto de datos sobremuestreado con data augmentation (Tabla 4.1.2.) con los valores de

hiperparamatros optimizados (Tabla 4.2.4.)
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Figura 5.2.3. Graficas de entrenamiento de modelos: (a) AlexNet; (b) GooglLeNet-ImageNet; (c) GooglLeNet-
Places365; (d) ResNet-50. Linea azul: Training accuracy suavizada; Linea roja: Training Loss suavizada; Linea negra

semicontinua: Validation Loss/Validation accuracy. Fuente: Propia.
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Tabla 4.2.2. Resultados de validation accuracy, testaccuracy con balanceo de datos.

Dataset Epocas Tiempo Tamafo | Parametros | Validation Test
preentr. entr. (mB) (Millones) Accuracy Accuracy
AlexNet ImageNet 30 16'04" 227 61 82,95% 25%
GoogleNet ImageNet 30 34'30" 27 7 98,18% 46%
GoogleNet Places365 31 32'13" 27 7 99,50% 57%
ResNet-50 ImageNet 25 68'17" 96 25,6 97,52% 52,48%
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5.2.4. Transformaciones de imdgenes

Conjunto de datos aumentado con data augmentation (Tabla 5.1.2.) con los valores de hiperparamatros
optimizados (Tabla 5.2.4.)y las operaciones de transformacion de imagen online (Tabla 5.1.3.)
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Tabla 5.2.3. Resultados de validation accuracy, test accuracy con operaciones de transformacion.

Red Dataset Epocas Tiempo Tamaiio | Parametros Validation Test
preentr. preentr. entr. (MB) (Millones) accuracy accuracy
AlexNet ImageNet 50 47’ 31" 227 61 92,22% 41,58%

GoogleNet ImageNet 30 40’ 07” 27 7 99,34% 56,44%
GoogleNet Places365 35 44’ 53” 27 7 98,84% 41,58%
ResNet-50 ImageNet 26 80’ 05” 96 25,6 98,84% 51,49%

5.3. Conclusiones

El método de calculo de la red, “minibatch gradient descent”, calcula los gradientes entre cada
minibatches y baraja aleatoriamente las imagenes entre épocas para mejorar la generalizacion. Es por
ello por lo que los resultados tienen una alta variabilidad en los resultados vy las gréficas muestran ruido.

Para el conjunto de test se han elegido imagenes de piezas que no han sido vistas durante el
entrenamiento ni validacién. Para aumentar la dificultad, estas imdgenes incluyen caracteristicas

dificiles de diferenciar con otras clases.

En la industria es mdas importante evitar los falsos negativos que los falsos positivos. Asi, por tanto,
priorizamos el modelo que permite un alto rendimiento en los términos de precision sobre los defectos.
La mayoria de los modelos han tenido altos resultados sobre el conjunto de validacion. Entre los dos
modelos que han presentado mayores resultados sobre el conjunto de test: GooglLeNet-ImageNet
ofrece una tasa de acierto sobre defectos de arrugas de 87,5% y gap de 22,5% (Fig. 5.2.4.b.). Mientras
que GoogleNet-365 ofrece una tasa de acierto sobre los defectos de arrugas de 62,5% y gap de 42,9%
(Fig. 5.2.3.c.)

Para la seleccion del modelo, escogemos GooglLeNet-ImageNet porque responde mejor a los defectos
de arruga los cuales presentan mucha variabilidad en sus caracteristicas de forma y posicién y son mas

dificiles de detectar.
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5.4. Generative Adversarial Network
5.4.1. Introduccion

Para el entrenamiento de una red GAN usamos el conjunto de datos aumentado (Tabla 5.1.2.) de una
clase de defecto. Las imagenes son transformadas a 64x64x3 para reducir el coste computacional y 500
épocas de entrenamiento. Los pardmetros de entrenamiento son [11]

Parala red generadora se creauna red que convierte un vector de ruido de tamafio 100 en una imagen
de 64x64x3.Lacapa de entrada transforma elvector de ruido a 7x7x128 y le sucede una etapa de capas
de convoluciény capas de activacién ReLU, de tamafio 5x5xN con N, elnimero de filtros decreciente y
cuya ultima capa de activacion es tanh.

Para la red discriminadora se creauna red que acepta imagenes de 64x64x3 y devuelve una puntuacion
de clasificacién. Usando una serie de capas de convolucidn con capas de activacidon RelLU. Las capas de
convolucién son de tamaifio 5x5xN con N el numero de filtros creciente. La capa final es 4x4x1. Para
controlar el aprendizaje del discriminador dropout de 0.5.

5.4.2. Resultado

Figura 5.4.2. Imagenes de defectos sintéticos originados con red GAN

5.4.3. Conclusion

La generacion de datos sintéticos a partir de redes GAN, esuna practica ampliamente utilizada por sus
excelentesresultados para el entrenamiento de redes. En las imagenes sintéticas vélidas, se aprecia el
defecto como si se estuvieran viendo de lejos. En nuestro caso, no se ha considerado necesario el uso de
las imagenes para entrenamiento.
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5.5. Andlisis de clasificacion

5.5.1. Introduccion

Las herramientas de visualizacién nos permiten entender el comportamiento de las redes por medio de
la resaltacion de las caracteristicas que influyen enla clasificacidén. Para comprobar la correcta deteccion
de laredvisualizamos los resultados de occlusion sensitivity y LIME de las diferentesformas de los
defectos de la clase de arruga. [25]

5.5.2. Resultados

arruga (0.99); ok (0.01); suciedad (0.00); gap (0.00) Occlusion sensitivity (arruga) \mage LIME (arruga)
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- . | . |
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arruga (1.00); ok (0.00); suciedad (0.00); gap (0. ao) Occlusion sensitivity (arruga) Image LIME (arruga)

\ ;
" \‘ ;‘ .

Figura 5.5.1. Resultados de visualizacién de arruga de bulto critico con: (a) imagen; (b) occlusion sensitivity; (c)
LIME.
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Figura 5.5.2. Resultados de visualizacion de arruga de bulto no critico con: (a) imagen; (b) occlusion sensitivity; (c)
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Figura 5.5.3. Resultados de visualizacion de arruga de pliegue critico con: (a) imagen; (b) occlusion sensitivity; (c)
LIME.
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Figura 5.5.4. Resultados de visualizacion de arruga de pliegue no critico con: (a) imagen; (b) occlusion sensitivity; (c)
LIME.
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Figura 5.5.5. Resultados de visualizacidn de arruga de pliegue critico con falta de iluminacion: (a) imagen; (b)
occlusion sensitivity; (c) LIME.
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5.5.3. Conclusiones

Los defectos de arrugas con forma de bultos tienen la dificultad de que requiere de escoger el angulo
adecuado para visualizar la distorsidon de forma. Como consecuenciaen la Figura 4.5.2., el bulto no
critico esdetectado enla entrada de la pieza en el plano imagen, pero en la salida la pieza es detectada
como OK.

Se ha comprobado que el detector esrobusto ante las vibraciones externas. Sin embargo, la variacion de
iluminacion externa afecta drasticamente a la deteccionde la red.
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6. Estudio de deteccion de objetos

6.1. Introduccion

Para entrenar los detectores de objetos requiere ajustar una serie de pardmetros que parametrizan las
redes YOLOv2 y Faster RCNN.

1- Numero de anchor boxes
2- Tamafio de laimagen
3- Capa de extraccién de caracteristicas

6.1.1. Ground truth data

Se ha creado el ground truth data a partir del conjunto de datos base con la aplicacion de Matlab Image

Labeler.En el etiquetado de las imagenes se han incluido clases manchas mas especificos como defectos
de brillo.

6.1.2. Numero de anchor boxes

Aumentar el nimero de anchor box puede mejorar la medida de mean loU. Sin embargo, aumentar el
numero puede incrementar el coste computacional y llegar a overfitting. Se obtienen una gran mejoria
de mean loU con el uso de 1-5anchor boxes. A partir de 5 obtiene tan solo una mejoria marginal de
mean loU (Fig.6.1.1.) a costa de perjudicar la precisidon de la red.

Number of Anchors vs. Mean loU

0951
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®
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075
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0 5 10 15

Number of Anchors

Figura 6.1.1. NUumero de anchor boxes frente mean loU.

6.1. 3. Capa de extraccion de caracteristicas

La eleccionde la capa de extraccidén requiere de analisis empirico. La capa de extraccion de
caracteristicas tiene una funcién distinta en la arquitectura del detector. En la red Faster RCNN alimenta
la capa de RPNy ROI Pooling layer es incluida después de la capa de caracteristicas. En la red YOLOv2
alimenta a la etapa de convolucion de la red YOLO.
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Figura 4.4.2. Arquitectura de la red de extraccion: (lzquierda) YOLOv2; (Derecha) Faster RCNN.

6.1.4. Data augmentation

En este caso las operaciones de data augmentation son las mismas que en elapartado de clasificacién
con la diferenciade que no aumentamos el dataset. Los volteos en X e Y son variables aleatorias
calculadas al principio de cada minibach.

6.1.5. Opciones de entrenamiento

Los valores se han optimizado mediante rejillay se ha usado el optimizador Adam para mejorar la
rapidez y el comportamiento de la red ante los ‘puntos sillin’. El rango de solapamiento positivo y
negativo para entrenar lared Faster R-CNN es [0.6 1] y [00.3].

Tabla 12. Opciones de entrenamiento

Detector de Red Capade Anchor | Epocas | Learning Caida Tamaiio Squared | Gradient
objetos extraccion boxes rate learning rate Gradient decay
extractora Minibatch
YOLOv2 GoogleNet_ | inception_ 5 120 0.001 10%/75 16 0.99 0.9
ImageNet 4d-output epocas
Faster RCNN GoogleNet_ | inception_ 3 75 0.0008 10%/20 2 0.9 0.95
ImageNet 4d-output épocas
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6.2. Resultados

Para cada clase se obtiene la curva de precision-recall con el conjunto de validacidn:
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098} 09
0.96 - 08
b 4 1
094 o7}l
0.92
8 / . o6
o a 05 Ly
088 ) )
04 A
0.86 -
084+ 03
082 A 02
08 0.1
0 02 0.4 06 08 1 0 01 02 03 04 05 06 07 08 09
Recall Recall

Figura 12. Resultados de curvas de precision-recall: (lzquierda) YOLOv2; (Derecha) Faster RCNN. Azul: arruga; rojo:
gap; amarillo: suciedad.

Tabla 12. Resultados de average-precision para cada defecto y medium average precisién de cada red.

Detector Tiempo Tiempo arruga gap suciedad mAP
de entr. detecc. (s)

YOLOv2 2h 0.9772 0.908 0.994 0.9032 0.935

Faster R-CNN 6 dias 0.6063 0.3683 0.118 0.164 0.216

6.2. Resultados de deteccion con YOLOv2

Figura 6.2.1. Resultados de predicciones de defectos de arrugas con detector YOLOv2

Figura 6.2.2. Resultados de predicciones de defectos de gap con detector YOLOv2
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Figura 6.2.3. Resultados de predicciones de defectos de manchas con detector YOLOV2: (a) suciedades; (b) suciedad
y liquido; (c) suciedad vy brillo.

6.3. Conclusiones

Los ‘bounding boxes’ de los resultados tienen tamafios similares porque se han estimado los anchor
boxes basados en los ‘bounding boxes’ del conjunto de entrenamiento para reducir el coste
computacional y acelerar el entrenamiento. En caso contrario tendria que probar diferentesvariaciones
con diferentestamafios de boxes.

El detector YOLOv2 generalmente presenta una precision menor que el Faster RCNN en la deteccién de
objetos con caracteristicas complicadas, sin embargo, el mean average precisidn ha sido superior para
esta red. Las diferencias de precisién entre ambas redes pueden ser ocasionadas por la dificultad de
entrenamiento de la red Faster R-CNN. Alser unared tan grande agota los recursos de memoria y el
entrenamiento ha sido realizado en condiciones de ahorro de memoria. Una GPU con mayor memoria
permitiria un entrenamiento apropiado.

En la figura puede demostrarse la eficacia de este sistema para la deteccién de manchas de diferentes
caracteristicas: manchas de suciedad, liquidos y defectos de brillos (Fig. 6.2.3.).
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VII. Conclusiones

Este trabajo propone un estudio que juega un papel importante dentrode la inspeccién de defectos en
piezas de termoplasticos. Las ideas adquiridas para la captacion de los defectos en estas piezas pueden
ser transferidas a piezas de caracteristicas similares.

Para lograr resultados precisos y sofisticados las redes neuronales requieren de una cantidad ingente de
datos para entrenar. Pero con la técnica de data augmentation para aumentar eltamafio de nuestros
datos hemos demostrado que se pueden crear modelos de clasificacion con precisiones superioresal
98%. Ademas, con un software no especializado en deep learning hemos obtenido grandes resultados
gracias a un ajuste apropiado de las opciones de entrenamiento. Para la mejora de los modelos un
ajuste de hiperparametros y una mejora del preprocesamiento pueden ser llevados a cabo.

Se ha demostrado la robustez del modelo ante variaciones en el enfoque o perturbacionesen la imagen
a excepcion de baja luminosidad. Sin embargo, no ha sido posible demostrar su eficacia con defectos
que no presentan caracteristicas visibles enla imagen por lo que un sistema de camaras extendido es
requerido.

Los tres tipos de defectos tipicos de la pieza que hemos usado para la deteccidn se caracterizan por
manifestar cambios de sombras y luces (arrugas); regiones de diferentes tonalidades y brillos en varias
posiciones (manchas); y diferencias de tolerancias (gap); a raiz de esta informacion podemos asegurar
que es posible detectar el resto de los defectos por medio de redes neuronales contando con un buen
sistema de captura.

En general, se valida el uso de redes neuronales para los sistemas de inspeccidn, que esaplicable a
multitud de tipologias de piezas y problemas de inspeccién complejos.

Este trabajo incluye las fases de clasificacion de imagenes y deteccion de objetos, no obstante, enel
futuro este método puede ser extendido a fases de deteccidn por segmentacién y andlisis de los
parametros de los defectos como el tamafio y la forma.
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IX.Anexos

ANEXO I. Codigo de Matlab. Clasificacion de imdgenes.

clear
clc

%% Hiperparametros

net = resnet50;

InitiallLearnRate = 10" (-2.8385);
MaxEpochs = 30;

miniBatchSize = 8;

momentum = 0.8379;

%% Importing Dataset

imdsTrain = imageDatastore('C:\Users\José Antonio\Documents\MATLAB\datasets\[4] data set
augmented - training',

"IncludeSubfolders", true,

"LabelSource", "foldernames") ;
imdsTrain.ReadSize = miniBatchSize;
imdsVal = imageDatastore('C:\Users\José Antonio\Documents\MATLAB\datasets\[5] data set
augmented - validation', .

"IncludeSubfolders", true,

"LabelSource", "foldernames") ;
imdsTest = imageDatastore ("C:\Users\José Antonio\Documents\MATLAB\datasets\ [6] data set
augmented - test", .

"IncludeSubfolders", true,

"LabelSource", "foldernames") ;

%% Creating the modified net

inputSize = net.layers(l) .InputSize;

numClasses = numel (categories(imdsTrain.Labels)) ;
lgraph = pretrainedNetModifier (net, numClasses);
analyzeNetwork (lgraph)

[

%% Configuring Online Data augmentation

pixelRangeX = [-300 300];
pixelRangeY = [-50 50];
scaleRange = [0.75 1.25];

imageAugmenter = imageDataAugmenter (
'RandXTranslation', pixelRangeX,
'RandYTranslation', pixelRangeY,
'RandScale', scaleRange);
% 'RandXReflection',true, ...'DataAugmentation',6imageAugmenter

augimdsTrain =
augmentedImageDatastore (inputSize (1:2) ,imdsTrain, "ColorPreprocessing", "gray2rgb") ;
augimdsval =
augmentedImageDatastore (inputSize (1:2) ,imdsVal, "ColorPreprocessing"”, "gray2rgb");
augimdsTest =
augmentedImageDatastore (inputSize (1:2) ,imdsTest, "ColorPreprocessing","gray2rgb") ;

%% Configuring Training options

valFrequency = floor (numel (augimdsTrain.Files)/miniBatchSize);

options = trainingOptions ('sgdm',
'Momentum', momentum, ...
'MiniBatchSize',miniBatchSize,
'MaxEpochs', MaxEpochs,
'InitiallearnRate', InitiallearnRate,
'ValidationData', augimdsval,
'ValidationFrequency',valFrequency,
'Verbose', true,
'Plots', 'training-progress’',
'Shuffle', 'every-epoch');

%% Training the net

[net, info] = trainNetwork(augimdsTrain, lgraph,options) ;

oo

% Calculating Metrics

o°
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[testPreds, scrs] = classify (net,augimdsval);
testActual = imdsVal.Labels;

numCorrect = nnz (testPreds == testActual);
fracCorrect = numCorrect/numel (testPreds);

figure

cm = confusionchart (imdsVal.Labels, testPreds) ;
cm. ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';

cm.Title = 'Confusion Matrix';

%% Auxiliary functions
function lgraph = pretrainedNetModifier (net,numClasses)

net.Layers(1l)

if isa (net, 'SeriesNetwork")
lgraph = layerGraph (net.Layers) ;

else
lgraph = layerGraph (net);
end
[learnablelayer, classlayer] = findLayersToReplace (lgraph);

if isa(learnablelayer, 'nnet.cnn.layer.FullyConnectedLayer')
newLearnablelayer = fullyConnectedLayer (numClasses,
'Name', 'new fc',
'"WeightLearnRateFactor', 20,
'BiasLearnRateFactor', 20) ;

elseif isa(learnablelayer, 'nnet.cnn.layer.Convolution2DLayer"')
newLearnablelayer = convolution2dLayer (1, numClasses,
'Name', 'new conv', ..
'WeightLearnRateFactor', 20,
'BiasLearnRateFactor', 20) ;
end

lgraph = replacelayer (lgraph,learnablelayer .Name,newLearnablelayer);
newClassLayer = classificationlayer ('Name', 'new classoutput');
lgraph = replacelayer (lgraph,classLayer.Name, newClassLayer) ;

layers = lgraph.Layers;

connections = lgraph.Connections;

layers (1:10) = freezeWeights (layers (1:10));

lgraph = createLgraphUsingConnections (layers, connections);
end
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ANEXO Il. Codigo de Matlab. Deteccion de objetos con YOLOv2.

clear
clc

load("googlenetaugmented.mat", 'net');
%% Importing data

% sort data

rng (0) ;

data = load ('gTruth2.mat");

gTruth = data.gTruth2;

% Add the full path to the local vehicle data folder.
gTruth.imageFilename = fullfile(gTruth.imageFilename) ;

%% Creating datasets

shuffledIndices = randperm(height (gTruth));
idx = floor (0.8 * length(shuffledIndices));
trainingDataTbl = gTruth(shuffledIndices (1:1idx), :);
testDataTbl = gTruth(shuffledIndices(idx+l:end), :);

imdsTrain = imageDatastore(trainingDataTbl.imageFilename);
imdsTest = imageDatastore (testDataTbl.imageFilename);

bldsTrain = boxLabelDatastore(trainingDataTbl (:, 2:end));
bldsTest = boxLabelDatastore (testDataTbl (:, 2:end));

trainingData = combine(imdsTrain, bldsTrain);
testData = combine (imdsTest, bldsTest) ;

o

% Create YOLOvZ network
Input size for detector.

magelnputSize = [224 224 3];
define classes

umClasses = width (gTruth)-1;
estimate anchor boxes

o

oo

de 3

oo
oo

preprocessedTrainingData =
transform(trainingData, @ (data) preprocessData (data, imageInputSize));
preprocessedTestData = transform(testData,@ (data)preprocessData (data, imagelnputSize)) ;

o

% augment data
augmentedTrainingData = transform (preprocessedTrainingData,@augmentData) ;

%% Define YOLO v2 ObjectDetector

numAnchors = 5;

trainingDataForEstimation =
transform(trainingData, @ (data) preprocessData (data, imageInputSize));

[anchorBoxes, meanlIoU] = estimateAnchorBoxes (trainingDataForEstimation, numAnchors);

o0 o
o

oo

define feature extraction network

featureExtractionNetwork = net;

featureLayer = 'inception 4d-output';

lgraph =

yolov2Layers (imageInputSize, numClasses,anchorBoxes, featureExtractionNetwork, featurelayer

) ;

% train YOLOv2 object detector

options = trainingOptions ('adam',
'MiniBatchSize', 16,
'InitiallearnRate',0.001,
'LearnRateSchedule', 'piecewise',
'LearnRateDropFactor', 0.1,
'LearnRateDropPeriod', 75,
'MaxEpochs',170,...
'ValidationData', preprocessedTestData,
'Verbose', true,
'Plots', 'training-progress', ...
'Shuffle', 'once') ;

oo

% Train net
Train the YOLO v2 detector

o°
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[detector,info] = trainYOLOv20bjectDetector (augmentedTrainingData,lgraph,options);
%% Clasificacion

data = read (preprocessedTestData) ;

tstart = tic;
I = data{l,1};

[bboxes, scores,labels] = detect(detector,I);
idx = scores > 0.7;

bboxesTop = bboxes (idx, :) ;

labelsTop = labels (idx, :);

% Display the detections on image.
I = insertObjectAnnotation(I, 'rectangle',bboxesTop, cellstr(labelsTop));

figure
imshow (I)
telapsed = toc(tstart);

)

%% Evaluacion del detector
results = detect (detector,preprocessedTestData, 'MiniBatchSize',16);

[aP,recall, precision] = evaluateDetectionPrecision (results, preprocessedTestData);

figure

hold on

for k = l:numel (recall)
plot(recall{k}, precision{k})
end

hold off

xlabel ("Recall™)

ylabel ("Precision")
title("Precision-Recall Curve")

o o

% % legend(preprocessedTestData.Properties.VariableNames (2:end))

oo
oo

function data = augmentData (A)
data = cell (size (A));
for ii = 1:size(A,1)
I = A{ii, 1};
bboxes = A{ii,2};
labels = A{ii, 3};
sz = size(I);
% Randomly flip image.
tform = randomAffine2d('XReflection',true, ...
'YReflection', true, ...
'XTranslation', [-300 30017, ...
'YTranslation', [-50 50],...
'Scale', [0.75 1.251);
rout = affineOutputView(sz,tform, 'BoundsStyle', 'centerOutput');
I = imwarp(I,tform, 'OutputView',rout);

% Apply same transform to boxes.
[bboxes,indices] = bboxwarp (bboxes,tform, rout, 'OverlapThreshold',0.25);
labels = labels(indices) ;
% Return original data only when all boxes are removed by warping.
if isempty(indices)
data(ii, :) = A(ii,:);
else
data(ii, :) = {I, bboxes, labels};
end
end
end

function data = preprocessData (data, targetSize)
% Resize the images and scale the pixels to between 0 and 1. Also scale the

% corresponding bounding boxes.

for ii = 1l:size(data, 1)

60



I = data{ii, 1};
imgSize = size (I);
% Convert an input image with single channel to 3 channels.
if numel (imgSize) < 3

I = repmat(I,1,1,3);
end
bboxes = data{ii, 2};

I = im2single(imresize(I,targetSize(1:2)));
scale = targetSize(1l:2)./imgSize(1:2);
bboxes = bboxresize (bboxes,scale);

data(ii, 1:2) = {I, bboxes};

end
end
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ANEXO Ill. Codigo de Matlab. Deteccion de objetos con Faster R-CNN.

clear
clc

%% Importing data

% sort data

rng (0) ;

data = load ('gTruth2.mat"');

gTruth = data.gTruth2;

% Add the full path to the local vehicle data folder.
gTruth.imageFilename = fullfile(gTruth.imageFilename) ;

oo
o

=

oad('googlenetaugmented', 'net');

InitialLearnRate = 0.0008;
LRDropFactor = 0.9;

LRDropPeriod = 10;
SquaredGradientDecayFactor = 0.9;
GradientDecayFactor = 0.95;
MaxEpochs = 20;

numAnchors = 3;

miniBatchSize = 2;
ValidationFrequency = 250;
ExecutionEnvironment = 'auto';

imageInputSize = net.layers(l,1).InputSize(1l:2);

oo
oo

rng (0) ;

shuffledIndices = randperm(height (gTruth));

idx = floor (0.8 * length(shuffledIndices));
trainingDataTbl = gTruth(shuffledIndices (1:idx), :);
testDataTbl = gTruth(shuffledIndices(idx+l:end), :);

imdsTrain = imageDatastore(trainingDataTbl.imageFilename);
imdsTest = imageDatastore (testDataTbl.imageFilename);

bldsTrain = boxLabelDatastore(trainingDataTbl (:, 2:end));
bldsTest = boxLabelDatastore (testDataTbl (:, 2:end));

trainingData = combine(imdsTrain, bldsTrain);
testData = combine (imdsTest, bldsTest) ;

%% Preprocessing data

preprocessedTrainingData =
transform(trainingData, @ (data) preprocessData (data, imageInputSize));
preprocessedTestData = transform(testData,@ (data)preprocessData (data,imageInputSize)) ;
% augment data

augmentedTrainingData = transform (preprocessedTrainingData,@augmentData) ;

%% Training options

% train Faster RCNN object detector

options = trainingOptions ('adam',
'SquaredGradientDecayFactor', SquaredGradientDecayFactor,
'GradientDecayFactor', GradientDecayFactor,
'CheckpointPath', pwd,
'MiniBatchSize', miniBatchSize,
'InitiallearnRate',InitiallearnRate,
'LearnRateSchedule', 'piecewise’',
'LearnRateDropFactor', LRDropFactor,
'LearnRateDropPeriod', LRDropPeriod,
'MaxEpochs',MaxEpochs, ...
'"ValidationData', preprocessedTestData,
'ValidationFrequency', ValidationFrequency,
'Verbose', true,
'Plots', 'training-progress', ...
'Shuffle', 'every-epoch',
'ExecutionEnvironment', ExecutionEnvironment) ;
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%% Create a Fast RCNN

lgraph = layerGraph(net);

o°

o

% % Specify the number of classes the network should classify.
numClasses = width (gTruth)-1;

numClassesPlusBackground = numClasses + 1;

% Define the number of outputs of the fully connected layer.
numOutputs = 4 * numClasses;

% Create the box regression layers.

boxRegressionlayers = [
fullyConnectedLayer (numOutputs, 'Name', 'rcnnBoxFC")
rcnnBoxRegressionlayer ('Name', 'rcnnBoxDeltas')

17

% Add the layers to the network.
lgraph = addLayers (lgraph, boxRegressionlayers);

% Connect the regression layers to the layer named 'avg pool'.
lgraph = connectlayers(lgraph, 'pool5-drop 7x7 sl', 'rcnnBoxFC');
% Select a feature extraction layer.
featureExtractionLayer = 'inception 4d-output';
% Disconnect the layers attached to the selected feature extraction layer.

lgraph = disconnectlLayers (lgraph, featureExtractionLayer, 'inception 4e-1xl1");

lgraph = disconnectlayers (lgraph, featureExtractionlLayer, 'inception 4e-3x3 reduce');
lgraph = disconnectlLayers (lgraph, featureExtractionlLayer, 'inception 4e-5x5 reduce');
lgraph = disconnectlayers (lgraph, featureExtractionlLayer, 'inception 4e-pool');

o

% Add ROI max pooling layer.

outputSize = [14 14];

roiPool = roiMaxPooling2dlayer (outputSize, 'Name','roiPool');
lgraph = addLayers (lgraph, roiPool) ;

% Connect feature extraction layer to ROI max pooling layer.
lgraph = connectlayers(lgraph, featureExtractionlayer, 'roiPool/in');

% Connect the output of ROI max pool to the disconnected layers from above.
lgraph = connectlayers(lgraph, 'roiPool','inception 4de-1x1");

lgraph = connectlayers(lgraph, 'roiPool','inception 4e-3x3 reduce');

lgraph = connectlayers(lgraph, 'roiPool','inception 4e-5x5 reduce');
lgraph = connectlayers(lgraph, 'roiPool','inception 4e-pool');

%% Add region proporsal network (RPN)

Q

% Define anchor boxes.
anchorBoxes = estimateAnchorBoxes (preprocessedlrainingData,numAnchors) ;

o

% Create the region proposal layer.
proposallayer = regionProposallayer (anchorBoxes, 'Name', 'regionProposal') ;

lgraph = addLayers (lgraph, proposallayer);
% Number of feature maps in coming out of the feature extraction layer.
numFilters = 1024;

rpnlayers = [
convolution2dLayer (3, numFilters, 'padding',[1 1], 'Name', 'rpnConv3x3"')
relulayer ('Name', 'rpnRelu')

1;
lgraph = addLayers (lgraph, rpnlayers);

% Connect to RPN to feature extraction layer.
lgraph = connectlayers (lgraph, featureExtractionlayer, 'rpnConv3x3');
% Add RPN classification layers.
rpnClslayers = [
convolution2dLayer (1, numAnchors*2, 'Name', 'rpnConvlxlClsScores')
rpnSoftmaxlayer ('Name', 'rpnSoftmax')
rpnClassificationlLayer ('Name', 'rpnClassification')
1;
lgraph = addLayers (lgraph, rpnClslayers) ;
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% Connect the classification layers to the RPN network.

lgraph = connectlayers(lgraph, 'rpnRelu', 'rpnConvlxlClsScores');

% Add RPN regression layers.

rpnReglayers = [
convolution2dLayer (1, numAnchors*4, 'Name', 'rpnConvlxlBoxDeltas")
rcnnBoxRegressionlayer ('Name', 'rpnBoxDeltas');

1;
lgraph = addLayers (lgraph, rpnReglayers) ;

% Connect the regression layers to the RPN network.

lgraph = connectlayers (lgraph, 'rpnRelu', 'rpnConvlxlBoxDeltas');
% Connect region proposal network.

lgraph = connectlayers(lgraph, 'rpnConvlxlClsScores', 'regionProposal/scores');
lgraph = connectlayers(lgraph, 'rpnConvlxlBoxDeltas', 'regionProposal/boxDeltas');

% Connect region proposal layer to roi pooling.
lgraph = connectlayers(lgraph, 'regionProposal', 'roiPool/roi');

% Show the network after adding the RPN layers.
figure

plot (lgraph)

ylim([30 42])

%% Training a Faster RCNN
% Train the faster CNN detector

[trainedDetector,info] =

trainFasterRCNNObjectDetector (augmentedTrainingData,lgraph,options, ...
'NegativeOverlapRange', [0 0.3], 'PositiveOverlapRange', [0.6 11,
'NumRegionsToSample', 16,
'FreezeBatchNormalization', true);

data = read (preprocessedTrainingData);

I = data{l,1};

[bboxes, scores,labels] = detect(trainedDetector, I, 'MiniBatchSize',miniBatchSize) ;
idx = scores > 0.5;

bboxesTop = bboxes (idx, :) ;

labelsTop = labels (idx, :);

% Display the detections on image.
I = insertObjectAnnotation(I, 'rectangle',bboxesTop, cellstr(labelsTop));

figure

imshow (I)

%% Evaluacion del detector

results = detect (trainedDetector, preprocessedTestData, 'MiniBatchSize', 2,
'ExecutionEnvironment', 'gpu');

[aP,recall, precision] = evaluateDetectionPrecision (results, preprocessedTestData);

figure

hold on

for k = l:numel(recall)
plot(recall{k}, precision{k})
end

hold off

xlabel ("Recall™)

ylabel ("Precision")
title("Precision-Recall Curve")

%% Auxiliary functions

function data = augmentData(A)

Apply random horizontal flipping, and random X/Y scaling. Boxes that get
% scaled outside the bounds are clipped if the overlap is above 0.25. Also,
jitter image color.

oo

o\
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data = cell (size (A));
for ii = 1l:size(A, 1)
I = A{ii, 1};
bboxes = A{ii,2};
labels = A{ii, 3};

sz = size(I);

oo

if numel(sz) == 3 && sz (3) ==
I = jitterColorHSV(I,...
'Contrast',0.0,...
'Hue',0.1,...
'Saturation',0.2,...
'Brightness',0.2);

A0 de oo oe o

o

end

% Randomly flip image.

tform = randomAffine2d('XReflection',true, ...
'YReflection', true, ...

'XTranslation', [-300 30017, ...

'YTranslation', [-50 50],...

'Scale', [0.75 1.251);

rout = affineOutputView(sz,tform, 'BoundsStyle', 'centerOutput');
I = imwarp(I,tform, 'OutputView',rout);

% Apply same transform to boxes.
[bboxes,indices] = bboxwarp (bboxes,tform, rout, 'OverlapThreshold',0.25);
labels = labels(indices) ;

% Return original data only when all boxes are removed by warping.
if isempty(indices)
data(ii, :) = A(ii,:);
else
data(ii, :) = {I, bboxes, labels};
end
end
end

function data = preprocessData (data, targetSize)
Resize the images and scale the pixels to between 0 and 1. Also scale the
% corresponding bounding boxes.

oo

for ii = 1l:size(data, 1)
I = data{ii,1};
imgSize = size (I);

% Convert an input image with single channel to 3 channels.
if numel (imgSize) < 3
I = repmat(I,1,1,3);
end
bboxes = data{ii, 2};

I = im2single(imresize(I,targetSize(1:2)));
scale = targetSize(1l:2)./imgSize(1:2);
bboxes = bboxresize (bboxes,scale);

data(ii, 1:2) = {I, bboxes};

end
end
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