
 

 

 

 

 

 

 

 

Trabajo Fin de Máster 
 

 

Estudio de la viabilidad de redes neuronales 

artificiales para la detección de defectos sobre la 

superficie de los salpicaderos de automóviles 

 

Study of the feasibility of artificial neural networks 

for the detection of defects on the surface of car 

dashboards 

 
Autor 

 

José Antonio Núñez Carrión 

 
Director 

 

Jorge Santolaria Mazo 

  

 
Máster en Ingeniería Industrial 

 
ESCUELA DE INGENIERÍA Y ARQUITECTURA, 2021 



 

  



Agradecimientos 
 

Este trabajo merece un especial agradecimiento, a todas las personas que han hecho posible 

este trabajo y han aportado algo en mí durante este periodo de aprendizaje.  

A los que han hecho posible la Cátedra CEFA, responsables de CEFA y los profesores Ángel Fer-

nandez e Ignacio Martínez. A mi tutor, Juan José Pradas. 

A mi director de trabajo, Jorge Santolaria, y sus compañeros de J3D Vision.  

A mis compañeras de prácticas, por ser mis chóferes personales. 

Pero sobre todo a mi familia, mis padres, José Antonio y Dolca y a mi hermana Joandra, por 

todo el apoyo en estos días. 

 

  



Resumen 
 

En una gran mayoría de los productos industriales, éstos se encuentran inevitablemente sujetos a una 
variabilidad de defectos debido a su diseño, condiciones del entorno o manipulación. Especialmente en 
los productos expuestos a la vista del consumidor la calidad es un aspecto especialmente crítico. Un 
defecto puede suponer el deshecho de la pieza con la consiguiente pérdida de recursos e impacto 
medioambiental. 
Los sistemas de inspección de defectos modernos se basan en la generación de un barrido de 
iluminación para producir sobre la superficie del defecto el llamado ‘efecto amplificación’ como 
consecuencia de las sombras generadas en los alrededores del defecto aumentando el tamaño del 
reflejo en la superficie. 
Sin embargo, las piezas de salpicadero y de revestimiento interior de automóviles presentan una serie 
de dificultades que dificultan su detección por este método. Presentan defectos con una alta 
variabilidad en sus características junto con una superficie mate oscura con huella impresa que llegan a 
resultar difícil su inspección incluso al ojo humano.  
A modo de solucionar este problema, este trabajo presenta método de estudio de la viabilidad de la 
detección de defectos sobre la línea de producción de salpicaderos del modelo Opel Corsa que se 
produce en las instalaciones de Módulos de Ribera alta (MRA) en Figueruelas (España).  
Este método propone un estudio previo en un banco de ensayos de las mejores configuraciones y 
condiciones para la implementación de un sistema de captura de defectos en la línea de producción. 
Mediante la captura masiva de imágenes de piezas en línea se ha creado un conjunto de 2160 imágenes 
consistentes en arrugas, gap, manchas y piezas sin defecto.  
Como es habitual, en problemas de reconocimiento de imágenes, la falta de imágenes ocasiona 
problemas de sobreajuste y datos desbalanceados. Se han usado técnicas de data augmentation y redes 
GAN para la generación de datos y de regularización para corregir el sobreajuste. Usando la 
transferencia de aprendizaje se han entrenado cuatro modelos de redes convolucionales preentrenadas: 
AlexNet, GoogLeNet-ImageNet; GoogLeNet-Places365 y ResNet-50 obteniendo los resultados de 
precisión sobre la validación de 99,22%, 99,34%, 99,54% y 98, 54% respectivamente; y 41.58%,56.44%, 
41.58%, 52.48% sobre el conjunto de test.  
El modelo de mejor rendimiento ha sido usado como red de extracción para entrenamiento de 
detectores de objetos YOLOv2 y Faster R-CNN obteniendo un resultado máximo de mAP de 0,935. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: deep learning, transferencia de aprendizaje, redes GAN, data augmentation, mAP 

 



 
 
  



Índice 
 

1. Introducción  ........................................................................................................................................ 1 

1.1. Motivación  .......................................................................................................................................... 1 

1.2. Objetivos  ............................................................................................................................................. 2 

1.3. Estructura de la memoria  ...................................................................................................................... 2 

1.4. Herramientas  ....................................................................................................................................... 3 

 

2. Fundamento teórico .............................................................................................................................. 4 

2.1. Proceso de formación de la luz ............................................................................................................... 4 

2.1.1. Modelo de reflexión de Phong ........................................................................................................ 4 

2.1.1. Conversión fotoeléctrica ................................................................................................................ 4 

2.2. Redes neuronales convolucionales ......................................................................................................... 5 

2.1.1. Estructura de las redes convolucionales ........................................................................................... 5 

2.1.1.1. Capa de entrada .................................................................................................................... 5 

2.1.1.2. Capas convolucionales  .......................................................................................................... 5 

2.1.1.3. Capas de activación  .............................................................................................................. 5 

2.1.1.4. Capas de agrupación  ............................................................................................................. 5 

2.1.1.5. Capas totalmente conectadas ................................................................................................. 5 

2.3. Transferencia de aprendizaje ................................................................................................................. 6 

2.3.1. Redes preentrenadas ..................................................................................................................... 6 

2.3.1.1. AlexNet ................................................................................................................................ 7 

2.3.1.1. GoogLeNet ............................................................................................................................ 7 

2.3.1.1. ResNet-50  ............................................................................................................................ 7 

2.3.2. Conjuntos de preentrenamiento ..................................................................................................... 8 

2.3.2.1. ImageNet  ............................................................................................................................. 8 

2.3.2.1. Places365 ............................................................................................................................. 8 

2.4. Redes GAN ........................................................................................................................................... 8 

2.5. Detección de objetos ............................................................................................................................. 9 

2.5.1. Anchor boxes ................................................................................................................................ 9 

2.5.2. Faster R-CNN ................................................................................................................................. 9 

2.5.3. YOLOv2 ....................................................................................................................................... 10 

2.5.4. Métricas de detectores de objetos  ............................................................................................... 10 

2.6. Optimización de modelo ...................................................................................................................... 11 

2.6.1. Balanceo de datos  ....................................................................................................................... 11 

2.6.2. Errores de predicción ................................................................................................................... 11 

2.6.3. Reducción de sobreajuste ............................................................................................................. 13 

2.6.3.1. Data augmentation  ............................................................................................................. 13 

2.6.3.2. Regularización  .................................................................................................................... 13 



2.6.3.3. Dropout  ............................................................................................................................. 13 

2.6.4. Opciones de entrenamiento ......................................................................................................... 14 

2.6.4.1. Tasa de aprendizaje  ............................................................................................................ 14 

2.6.4.2. Tamaño del minibatch  ......................................................................................................... 14 

2.6.4.3. Parámetro del optimizador  .................................................................................................. 14 

2.6.4.3.1. Descenso del gradiente con momento  ............................................................................ 14 

2.6.4.3.2. RMSProp ...................................................................................................................... 14 

2.6.4.3.3. Adam ........................................................................................................................... 14 

2.6.4.4. Estrategias de optimización  ................................................................................................. 15 

 

3. Estudio de la pieza ............................................................................................................................... 17 

3.1. Introducción ....................................................................................................................................... 17 

3.1.1. Descripción de la pieza ................................................................................................................. 17 

3.1.2. Proceso de producción de la pieza ................................................................................................. 17 

3.1.3. Descripción de los defectos .......................................................................................................... 19 

3.1.4. Necesidades de dataset ................................................................................................................ 19 

3.1.5. Distribución de defectos ............................................................................................................... 21 

3.2. Estudio de condiciones de captación ..................................................................................................... 22 

3.2.1. Diseño de experimentos ............................................................................................................... 22 

3.2.2. Subsistema de adquisición ............................................................................................................ 22 

3.2.3. Subsistema de iluminación ........................................................................................................... 22 

3.2.4. Calibración de la cámara .............................................................................................................. 22 

3.2.5. Descripción de las pruebas ........................................................................................................... 22 

3.3. Resultados ......................................................................................................................................... 23 

3.4. Conclusiones ...................................................................................................................................... 28 

 

4. Estudio de la localización del sistema de captura ..................................................................................... 30 

4.1. Introducción ....................................................................................................................................... 30 

4.2. Resultados ......................................................................................................................................... 31 

4.3. Conclusiones ...................................................................................................................................... 32 

4.4. Ajuste de la configuración .................................................................................................................... 33 

4.5. Adquisición de imágenes ..................................................................................................................... 33 

 

5. Estudio de clasificación de imágenes ...................................................................................................... 35 

5.1. Introducción  ...................................................................................................................................... 35 

5.1.1. Conjunto de imágenes ................................................................................................................. 35 

5.1.2. Preprocesamiento de imágenes .................................................................................................... 36 

5.1.3. Data augmentation ...................................................................................................................... 36 

5.1.3. Optimización de hiperparámetros ................................................................................................. 36 



5.2. Resultados  ......................................................................................................................................... 38 

5.2.1. Entrenamiento inicial ................................................................................................................... 38 

5.2.2. Regularización ............................................................................................................................. 39 

5.2.3. Datos balanceados ....................................................................................................................... 41 

5.2.4. Transformaciones de imágenes  .................................................................................................... 44 

5.3. Conclusiones  ..................................................................................................................................... 45 

5.4. Generative adversarial network  ........................................................................................................... 46 

5.4.1. Introducción  ............................................................................................................................... 46 

5.4.2. Resultado ................................................................................................................................... 46 

5.4.3. Conclusiones ............................................................................................................................... 46 

5.5. Análisis de clasificación ........................................................................................................................ 47 

5.5.1. Introducción  ............................................................................................................................... 47 

5.5.2. Resultados .................................................................................................................................. 47 

5.5.3. Conclusiones ............................................................................................................................... 50 

 

6. Estudio de detección de objetos  ........................................................................................................... 51 

6.1. Introducción ....................................................................................................................................... 51 

6.1.1. Ground truth data  ....................................................................................................................... 51 

6.1.2. Numero de anchor boxes  ............................................................................................................. 51 

6.1.3. Capa de extracción de características  ............................................................................................ 51 

6.1.4. Data augmentation  ..................................................................................................................... 52 

6.1.5. Opciones de entrenamiento  ........................................................................................................ 52 

6.2. Resultados ......................................................................................................................................... 53 

6.3. Conclusiones  ..................................................................................................................................... 54 

 

VII. Conclusiones .................................................................................................................................... 55 

VIII. Bibliografía  ..................................................................................................................................... 56 

IX. Anexos  ............................................................................................................................................. 57 

 
 



1 
 

1. Introducción 
________________________________________________________________________________ 

 

1.1. Motivación 

El sector de los sistemas de inspección automatizados estuvo valorado en 17,6 mil millones de dólares 

en 2018. Se estima que para 2028 su valoración incremente un 160% hasta 45,8 mil millones de dólares. 

Las búsquedas de servicios relacionados con este sector se han incrementado un 34% de año a año y 

solo un 133% en el primer cuatrimestre de 2020. [1] 

Entre sus principales aplicaciones industriales, el sector automovilístico es el que ha adoptado 

enormemente estos sistemas debido a que este sector requiere de un amplio abanico de procesos de 

alta calidad, repetibles y automatizados para el ensamblaje de las piezas. También en el sector de la 

alimentación ha ganado gran popularidad debido al procesamiento de un flujo elevado de productos. [1] 

Estas industrias se caracterizan por presentar altos tiempos de ciclo durante largas jornadas de trabajo. 

A lo que el esfuerzo físico de los empleados y la exposición reiterada a tareas de concentración visual 

ocasionan la aparición de fatiga física y mental. La inspección humana aumenta el error de clasificación 

con el cansancio y la fatiga, y además tienen la tendencia de cambiar el criterio de detección con el 

tiempo dando lugar a una falta de consistencia en la clasificación de los datos. [1] 

Para disminuir estos errores de tipo sistemático, muchas empresas se ven obligadas a buscar una 

solución mediante la contratación de más personal destinado a las tareas de  inspección, asumiendo los 

costes fijos asociados y de riesgo laboral. 

A diferencia de éstos, los sistemas de visión artificial presentan una precisión constante a lo largo del 

tiempo y son capaces de superar la predicción del cerebro humano (ResNet consiguió un error de 3,2% 

en 2015). Para conseguir esta eficiencia, las tareas de procesamiento de imágenes han pasado por varios 

hitos: clasificación; localización y detección de objetos; detección por segmentación. 

A partir de las primeras aspiraciones de los científicos por emular el cerebro humano nacieron los 

primeros modelos simples como la neurona de McCulloch-Pitts y sus derivados. Las influencias en el 

campo de la neurología (Hebbs, 1949) y la biología se han conformado el modelo de perceptrón simple 

(F. Rosenblatt, 1958) y ADALINE (Wirow, Hoff, 1959) que demuestran su capacidad para representar 

funciones lógicas y despiertan admiración por su capacidad de reconocimiento de patrones.  

Sin embargo, el libro ‘Perceptrons’ (Minsky, Papert, 1969) demuestra que las redes monocapa no son 

capaces de resolver problemas no lineales simples como XOR y supuso el abandono de muchos 

científicos en la investigación de las redes neuronales. Las redes de varias capas como el perceptrón 

multicapa (1965) no tenían esta limitación sin embargo los cálculos eran hechos a mano y el cálculo con 

muchas capas profundas era inviable. 

En 1986 se abrió un nuevo panorama con el redescubrimiento del algoritmo de propagación hacia atrás 

o ‘backpropagation’ (Rumelhart, 1986) que soluciona la limitación del cálculo no lineal.  

En 1989, Yan LeCun utilizó campos receptivos para el reconocimiento de códigos postales y años más 

tarde creó LeNet5 marcando la estructura de las redes neuronales convolucionales (CNN) que 

conocemos.  

A partir de 2010, investigadores compiten en el ‘Image Net Large Scale Visual Recognition Challenge’ 

(ILSVRC) para crear la mejor red neuronal convolucional. No fue importante hasta que el ganador de 

2012, ‘AlexNet’ (A. Krizhevsky, 2012) bajo la tasa de error de 25% a 17%, con más de 10.8 puntos por 
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debajo del siguiente competidor. Introdujo las funciones de activación ReLU que redujo el tiempo de 

entrenamiento sin la pérdida de precisión. [3] 

1.2. Objetivos 

Este trabajo tiene como propósito final el entrenamiento y validación de modelos basados en redes 

neuronales profundas para la clasificación de imágenes de un problema real.  

Para llevar a cabo este propósito se discretizan en los siguientes objetivos simples: 

- Revisión del estado del arte de los métodos de clasificación de imágenes, detección y 

segmentación de objetos. 

- Estudio de las características y condiciones de los defectos de la pieza. 

- Estudio y selección de las posibles configuraciones de captación de imágenes en linea de la 

pieza. 

- Adquisición de un conjunto de imágenes para entrenamiento, validación y test. 

- Estudio y selección de las mejores configuraciones de clasificación de defectos. 

- Desarrollo de detección de objetos 

 

1.3. Estructura de la memoria 

Este trabajo se estructura de la siguiente manera:  

- Capítulo 1. Introducción. Se explica la importancia, se describe el problema y los objetivos. 

 

- Capítulo 2. Fundamento teórico. Se explican los fundamentos teóricos necesarios para 

entender este trabajo. 

 

- Capítulo 3. Estudio de la pieza. Se realiza un estudio de conocimiento de la pieza para 

encontrar las mejores condiciones de capturar imágenes. 

 

- Capítulo 4. Estudio de la localización del sistema de captura. Se estudian las diferentes 

configuraciones de captura en línea de producción. 

 

- Capítulo 5. Estudio de clasificación de imagen.  

 

- Capítulo 6. Estudio de detección de objetos. 
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1.4. Herramientas  

Este trabajo incluye la adquisición de imágenes y la fase de estudio de Deep learning. Para la fase de 

adquisición de imágenes el sistema está constituido por una cámara industrial  BFLY-PGE-20E4M-CS 

1/1.8” con banda ancha Gigabit Ethernet basada en la interfaz de datos estándares GigE Vision para 

asegurar la transferencia de imágenes de alta resolución y el software de captura del fabricante ‘Point 

Grey FlyCap2’. El sistema óptico consta de un equipo de lentes de distancia focal f = 16 mm, f = 50 mm, f 

= 100 mm. Para los estudios de deep learning, usamos Matlab 2021a con el framework de deep learning 

‘Matlab Deeplearning Toolbox’ bajo la versión Cuda 8.0. Ejecutando un sistema operativo Microsoft 

Windows 10 Pro. El hardware utilizado tiene las propiedades de la Tabla 1. 

 

Tabla 1. Configuración de hardware 

Hardware Parametro 

CPU Intel® Core™ i5-10300H @2.5GHz 

RAM DDR4 16 Gb 

GPU NVIDIA GeForce GTX 2060 6Gb 
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2. Fundamento teórico 
________________________________________________________________________________ 

 

 

2.1. Proceso de formación de la imagen 

El proceso de formación de la imagen consiste en dos pasos, reflexión óptica y conversión fotoeléctrica.  

2.1.1. Modelo de reflexión de Phong 

El modelo de iluminación convierte las propiedades físicas como la reflectividad de la superficie en 

intensidad de luz reflejada. El modelo de reflexión de Phong (Ec. 1) es un modelo ampliamente usado 

para entender la física de la luz. Su estructura principal consiste en los términos de ambiente, términos 

difusos y términos especulares: [6] 

   (1) 

Las componentes del modelo de reflexión de Phong 

1. Reflexión especular. Es la componente de luz reflejada procedente de una fuente que presenta 

el mismo ángulo de reflexión y de incidencia. 

2. Reflexión difusa. Es la componente de la luz reflejada procedente de una fuente que se refleja 

en varias direcciones a consecuencia de la rugosidad de la superficie. La distribución de esta luz 

tiene forma de lóbulo según la ecuación de Lambert. 

3. Luz ambiente. Es la componente reflejada de la luz externa del ambiente 

 

 

Figura 2. Componentes modelo de reflexión de Phong: (a) luz reflejada especular; (b) luz reflejada difusa; (c) luz 
ambiente. 

2.1.2. Conversión fotoeléctrica  

El proceso fotoeléctrico convierte la intensidad de la luz reflejada en imagen digital del objeto a través 

de una lente y un conversor analógico digital: [6] 

       (2) 

donde  y  son parámetros constantes especificados por la cámara  

Esta imagen digital contiene el valor de intensidad de los píxeles Ip, que se introducen en la capa de 

entrada de una red neuronal convolucional. 
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2.2. Redes neuronales convolucionales 

Son un tipo de redes neuronales artificiales donde las neuronas corresponden a campos receptivos de 

una manera muy similar a las neuronas en la corteza visual primaria de un cerebro biológico . Debido a 

que su aplicación es realizada en matrices bidimensionales son muy efectivas para tareas de visión 

artificial. [5] 

Las neuronas se activan cuando se reconocen ciertas características importantes para la clasificación de 

la imagen. Las primeras capas corresponden a características menores y más generales como esquinas, 

contornos, siluetas. Las siguientes corresponden son más específicas como ojos nariz boca, las 

siguientes son más específicas como rostros.  

2.2.1. Estructura de redes convolucionales 

La estructura está formada por una capa de entrada, etapas intermedias y capa totalmente conectada. 

Las capas intermedias están formadas por repeticiones de bloques de capas convolucionales, capas de 

activación y capas de agrupación. Estás tres capas forman el núcleo de bloques de redes neuronales 

convolucionales.  

2.2.1.1. Capa de entrada 

El número de neuronas de la capa de entrada corresponde al número de píxeles de la imagen y su valor 

es la intensidad del píxel. Su función es centrar y normalizar los datos para acelerar la convergencia. 

2.2.1.2. Capas convolucionales 

Las capas convolucionales definen un conjunto de filtros con pesos que son actualizados durante el 

entrenamiento. Estos filtros son matrices cuadradas que realizan la operación de convolución como el 

producto escalar del filtro por un tamaño igual en la imagen y su suma es el valor de la capa 

convolucionada. El filtro recorre toda la imagen calculando todos los valores de salida. [3] 

2.2.1.3. Capa de activación 

La capa de activación realiza una operación no lineal como la función ReLU lo que permite al modelo 

aproximarse a funciones no lineales que relacionan pixeles con contenidos semánticos de la red.  

2.2.1.4. Capa de agrupación 

Las capas de agrupación disminuyen la dimensionalidad de los datos conservando las características más 

importantes. Lo consiguen realizando operaciones básicas como obtener el valor máximo o media sobre 

los valores de una subregión de la matriz. 

2.2.1.5. Capas totalmente conectadas 

Son las capas encargadas de la clasificación, reciben las características de las capas anteriores y están 

conectadas de forma que las dependencias entre ellas producen determinados valores de activación. En 

las neuronas finales el valor de activación corresponde a la probabilidad de pertenencia de la imagen a 

una determinada clase.  

 

  

Figura 2.1. Capas convolucionales. Fuente: [4] 
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Figura 2.2. Capas de agrupación o pooling. Fuente: [4] 

 

 

Figura 2.4. Capas totalmente conectadas. Fuente: [4] 

 

2.3. Transferencia de aprendizaje 

El diseño de la arquitectura de una red neuronal desde cero requiere alto conocimiento y experiencia en 

arquitectura de redes, además de una cantidad ingente de datos y mucho tiempo de computación.  [7] 

La transferencia de aprendizaje es el proceso mediante el cual el conocimiento sobre un tema se 

traspasa a otro sistema. En deep learning reutilizamos el conocimiento de extracción de características 

de redes preentrenadas por expertos para adaptarlas a la clasificación de nuestro problema.  

Durante la transferencia de aprendizaje, las capas de clasificación de la red preentrenada son 

reemplazadas por nuevas capas de clasificación y se entrena el modelo con nuestros datos congelando 

las capas de extracción de la red anterior. De este modo se reducen drásticamente la cantidad de datos 

necesarios y el tiempo de entrenamiento.  

 

Figura 2.5. Transferencia de aprendizaje en red neuronal convolucional. Reemplaza las capas de clasificación. 

Fuente: [7] 

 

2.3.1. Redes preentrenadas 

Las redes preentrenadas han sido diseñadas y entrenadas por expertos con una colección de imágenes 

de millones de clases para clasificar miles de objetos tomando semanas de entrenamiento de la red. 

Para la selección de redes preentrenadas hay que tener en cuenta el coste de oportunidad entre: (i) la 

precisión de validación (ii) la velocidad de entrenamiento y (iii) el tamaño en disco. [7] 
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2.3.1.1. AlexNet 

AlexNet puede clasificar más de 1000 clases diferentes, tiene 60 millones de parámetros y su estructura 

presenta cinco capas de convolución, tres capas de agrupamiento y dos capas totalmente conectadas y 

una capa Softmax. La dimensión de la capa de entrada es 227x227x3 y las primeras capas convierten la 

imagen con 96 kernels de 11x11x3. Para la reducción del sobreajuste utiliza dos técnicas: data 

augmentation y dropout. [3] 

 

Figura 2.6. Arquitectura red AlexNet 

2.3.1.2. GoogLeNet 

Tiene una red de 22 capas con 5 millones de parámetros con un tamaño de filtro 1x1, 3x3 y 5x5 para 

extraer características a varias escalas junto con max pooling. [2] 

 

 

Figura 2.7. Arquitectura red GoogLeNet 

2.3.1.3. ResNet-50 

ResNet-50 pertenece a la familia de Redes Residuales y tiene 50 capas con 26 millones de parámetros. 

En las redes residuales aprendemos de los residuos que on sustracciones de características aprendidas 

por las capas de entrada. ResNet usa una función que conecta la entrada de una n-capa con una (n+x)-

capa permitiendo añadir perturbaciones a las imágenes y evitando los problemas de vanishing explode 

gradient. [2] [3] 

 

[Brain tumor classification in MRI image using convolutional neural network ] 

 

Figura 2.8. Arquitectura red ResNet-50 
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2.3.2. Conjuntos de preentrenamiento 

Los conjuntos ImageNet y Places365 son conjuntos a larga escala, conjuntos de imágenes naturales, y 

cubren una amplia variedad de imágenes centradas en objetos (ImageNet) y escenarios (P laces365).  

2.3.2.1. ImageNet 

Es una gran base de datos visual diseñada para el uso de la investigación. Contiene más de 20000 

categorías con más de 14 millones de imágenes anotadas a mano Las imágenes están organizadas y 

etiquetadas de forma jerárquica. Desde 2010, existe una competición anual de software, ImageNet 

Large Scale Visual Recognition Challenge (ILSRVC) donde los programas compiten para clasificar y 

detectar objetos correctamente. [8] 

2.3.2.2. Places365 

El conjunto de datos Places está diseñado siguiendo los principios de la cognición visual humana. Su 

objetivo es construir un núcleo de conocimiento visual, que pueda usarse para entrenar sistemas 

artificiales con tareas de compresión visual de alto nivel. Su característica principal es su gran volumen 

de imágenes de escenas a gran escala. Tiene 1.8 millones de imágenes de 365 categorías, donde hay 

como máximo 5000 imágenes por categoría. [9] 

 

Figura 2.9. Conjuntos de datos de preentrenamiento (Izquierda) ImageNet. (Derecha) Places365. Fuente: Google 

Images 

 

2.4. Redes GAN 

Una red ‘Generative adversarial Network’ (GAN) es un tipo de red de deep  learning que puede generar 

datos con características similares a datos de entrada reales. Consiste en el entrenamiento de dos tipos 

de redes entrenadas simultáneamente para maximizar el rendimiento de ambas. 

1. Generador. 

A partir de un vector de valores aleatorios como entrada, esta red genera datos con la misma 

estructura que los datos de entrenamiento con el propósito de engañar a la red discriminadora 

consiguiendo que clasifique sus imágenes como reales. 

2. Discriminador. 

Esta red intenta clasificar las observaciones como ‘real’ o ‘falsas’ a partir de lotes de datos 

reales de entrenamiento y datos generados.  

Idealmente estas estrategias resultan en un generador que genera datos convincentemente realistas y 

un discriminador ha aprendido fuertes representaciones de características del conjunto de 

entrenamiento. [11] 
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Figura 2.10. Estructura red GAN. Fuente: [12] 

 

2.5. Detección de objetos 

La detección de objetos es el proceso de localizar y clasificar objetos en una imagen. Los detectores que 

vamos a probar son Faster R-CNN y YOLOv2. Tanto los detectores Faster R CNN como YOLO tienen la 

ventaja de usar anchor boxes para mejorar la velocidad y la eficiencia de detección.  

Para entrenar los detectores de objetos, usamos la técnica de transferencia de aprendizaje para 

aprovechar el conocimiento de extracción de características de las redes entrenadas como clasificadores 

de nuestro problema. 

Durante el entrenamiento se optimiza la pérdida entre las bounding boxes predichas y las reals. La 

función de coste de estos modelos tiene en cuenta el error de localización, el error de confianza y el 

error de clasificación: [14] 

   (3) 

 

2.5.1. Anchor Boxes 

Los ‘anchor boxes’ son un conjunto de ‘bounding boxes’ predefinidos con unas determinadas 

dimensiones. Estas cajas están definidas para capturar la escapa y la ratio de aspecto de objetos 

específicos que se quieren detectar y son típicamente e legidos basados en el tamaño de los datos de 

entrenamiento. [13] 

2.5.2. Faster RCNN 

El detector Faster R-CNN añade una red de propuesta de regiones para generar propuestas de regiones 

directamente en la red en vez de usar un algoritmo externo. La red de pr oposición de regiones usa 

Anchor boxes. Generar posibles regiones en la red es más rápido y se ajusta más a los datos. [13] 
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Figura 2.11. Arquitectura Faster R-CNN. Fuente: [13] 

2.5.. YOLOv2 

You-only-look-once (YOLO) v2 es un detector de objetos que usa una red de detección de una etapa por 

tanto es más rápido que otros detectores de dos etapas como Faster R-CNN. 

El modelo de YOLOv2 ejecuta una CNN en una imagen de entrada para producir predicciones de red . El 

predictor de red decodifica las predicciones y genera bounding boxes. [13] 

 

Figura 2.12. Arquitectura YOLOv2. Fuente: [13] 

 

2.5.4. Metricas de detectores de objetos 

Para la medición de la precisión en detectores de objetos, ‘average precision’ es una métrica muy 

popular. La definición de ‘average precision’ (AP) es el área bajo la curva de ‘precision-recall’. ‘Precision‘ 

es una métrica que mide el porcentaje de predicciones correctas y ‘recall’ es una métrica que mide qué 

tan bien encuentra los positivos (anomalías). Si ordenamos las predicciones según el nivel de confianza, 

el valor de ‘recall’ aumenta mientras que ‘precision’ presenta un patrón característico de zigzag. mAP es 

la media de valores de AP de cada clase. [15] 

     (4) 

     (5) 
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2.6. Optimización de modelo 

El método de optimización de modelo consiste en el uso de modelos simples e iterar probando 

diferentes configuraciones de preprocesamiento de imágenes y opciones de entrenamiento. Una vez 

que se tiene una idea de que configuraciones van bien se puede pasas a redes más precisas. [7] 

2.6.1. Balanceo de datos 

El problema de desbalanceado de datos ocurre cuando hay una desproporción significativa entre el 

número de ejemplos de cada clase de un conjunto. Los algoritmos de Machine Learning funcionan mejor 

cuando el número de datos están equilibrados porque están diseñados para maximizar la precisión y 

reducir el error. Para solucionar este problema: [16] 

1. Cambio de métricas. 

En estos casos ‘Accuracy’ no es un buen estimador y se recomienda el uso de la matriz de 

confusión, la precisión, el recall y f1-score. 

2. Sobremuestreo. 

Consiste en igualar los datos de las clases añadiendo más datos de entrada de las clases 

minoristas. La creación de datos sintéticos para aumentar el tamaño de datos puede realizarse 

a mano o mediante redes GAN. 

3. Submuestreo. 

Consiste en eliminar aleatoriamente datos de las clases en mayoría hasta igualar datos. Tiene el 

inconveniente de eliminar información relevante y puede ser contraproducente. 

4. Capas penalizadoras de clases 

La capa de clasificación penaliza los resultados según el tamaño de datos de las clases. 

2.6.2. Errores de predicción 

Existen dos tipos de errores asociados a los modelos de predicción: sesgo y varianza. Estimar el sesgo y 

la varianza de una distribución te permite priorizar las técnicas de corrección siguientes. 

1. Sesgo o bias.  

Error cometido entre la predicción medida de nuestro modelo y el valor real que tratamos de 

predecir. Un sesgo alto ignora las relaciones importantes entre las variables y presenta un 

rendimiento pobre sobre el conjunto de entrenamiento. [17] 

2. Varianza. 

Variabilidad de predicción que presenta nuestro modelo. Una varianza alta se caracteriza por 

un sobreajuste del conjunto de entrenamiento y una mala generalización del conjunto de test y 

presenta una amplia diferencia de error entre el rendimiento de entre namiento y de validación 

suponiendo la misma distribución. [17] 
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Figura 2.13. Bias Variance: (a) High bias and low variance; (b) Low bias and high variance; (c) High bias and high 
variance; (d) Low bias and low variance. Fuente: [18] 

Para conseguir un sesgo bajo y varianza baja hay que tener en cuenta el coste entre ambos. 

Antiguamente no había muchas herramientas que aumentaban uno sin perjudicar al otro. Pero en la era 

moderna entrenar redes más grandes siempre reduce el bias sin afe ctar a la varianza aplicando 

regularización. Para reducir la varianza conseguir nuevos datos es la mejor manera. [18] 

 

 

Figura 2.14. Proceso de corrección frente al conflicto bias-variance. Fuente: [18]. 
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2.6.3. Reducción de sobreajuste 

2.5.3.1. Data augmentation 

Es una técnica que consiste en aplicar un conjunto de operaciones de transformación sobre las 

imágenes con el objetivo de aumentar el tamaño de los datos o mejorar la generalización del modelo. 

Las operaciones pueden ser transformaciones espaciales como rotaciones, volteos, desplazamientos 

deformaciones en la imagen como cizalladuras, reescalamientos, recortes, cambios en el color y ruido 

de la imagen. [19] 

Está demostrado que da buenos resultados y se basa en que las transformaciones menores son 

interpretadas como imágenes diferentes según la red neuronal. Puede ser de dos tipos:  [20] 

1. Offline data augmentation 

Crea nuevas imágenes a partir de transformaciones y las almacena en el disco. Es deseable para 

aumentar el tamaño de los datos en conjuntos pequeños. 

2. Online data augmentation 

Realiza operaciones de transformación aleatorias al principio de cada minibatch de 

entrenamiento. Mejora la capacidad de generalización del modelo sin aumentar su tamaño. 

 

Figura 2.15. Proceso de aplicación de data augmentation. Fuente: Google Images 

2.5.3.2. Regularización 

La regularización es una herramienta de reducción del sobreajuste que penaliza los parámetros con 

valores grandes. Elimina datos espurios causando valores dentro del rango lineal de la función de 

activación tanh. La función pasa a ser relativamente lineal y reduce la no linealidad de la función de 

coste reduciendo el sobreajuste. La regularización L2 se controla con el valor λ de acuerdo con la 

fórmula. [18] 

(6) 

 

2.5.3.3. Dropout 

El dropout es una técnica de reducción del sobreajuste que asigna neuronas a valor nulo según un valor 

probabilístico. De esta forma se disminuye el número de parámetros en la función de coste y la 

probabilidad de sobreajuste.  

 

Figura 2.16. Aplicación de dropout: (a) Red neuronal estándar (b) Red después de dropout. Fuente: [18] 
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2.6. Opciones de entrenamiento 

2.6.1. Hiperparámetros 

Los hiperparámetros son los parámetros que optimizan la optimización del modelo. La influencia de los 

hiperparámetros en el resultado es subjetiva, según Andrew Ng, podemos afirmar que el orden de 

importancia es (1) learning rate (2) la caída de learning rate y el número de capas y (3) el parámetro del 

optimizador, número de capas ocultas y tamaño del minibatch. Mediante la selección de redes de 

estudio fijamos el número de capas y optimizamos el resto de las variables. [18] 

2.6.1.1. Tasa de aprendizaje 

Es el hiperparámetro que controla el paso de corrección del gradiente. Para valores pequeños el camino 

hasta el mínimo optimo será un proceso lento pero seguro. Para valores altos, sobrepasa el mínimo 

optimo y no converge. El valor de esta variable puede configurarse para cambiarse. La caída de la tasa 

de aprendizaje es el parámetro que disminuye su valor en un número de épocas definido, (periodo de 

caída). 

2.6.1.2. Tamaño del minibatch  

En mini batch gradient descent, el conjunto total de entrenamiento se divide en porciones del conjunto 

llamados minibatches. El número de datos que se utilizan para el cálculo del gradiente. Permite 

asegurarse que la red neuronal está ejecutándose eficientemente. Si es demasiado grande puede 

superar la capacidad de almacenamiento y reducir la velocidad drásticamente. Es generalizado su uso en 

valores de potencias de dos porque aceleran el cálculo [18]. 

2.6.1.3. Parámetro del optimizador  

El descenso de gradiente estocástico es propuesto por Herbert y Sutton. En resumen, para el cálculo 

tomamos las derivadas de los pesos, dW, y la derivada del sesgo, db para cada época y los multiplicamos 

por la tasa de aprendizaje. [2] 

     (7) 

  (8) 

2.6.4.3.1. Descenso del gradiente con momento 

Mientras que el descenso del gradiente estocástico con momento β es la media móvil de los gradientes, 

aquí es la media móvil entre 0 y 1 cuando calculamos dW y db. [2] 

          (9) 

   (10) 

2.6.4.3.2. RMSProp 

Similarmente, Root Mean Squared Prop es una tasa de aprendizaje adaptiva presentada por Geoff 

Hinton. RMSprop toma la raíz de la media móvil de los gradientes. β es el hiperparámetro que controla 

la media ponderada exponencialmente. [2] 

 (11) 

 (12) 

2.6.4.3.3. Adam 

Combinando las características de la media ponderada de los gradientes anteriores y el cuadrado de la 

media ponderada de los gradientes anteriores implementamos la técnica Adam. Épsilon es un numero 

pequeño que previene la división por cero η es una tasa de aprendizaje con diferente rango de valores. 

[2] 
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 (13) 

  (14) 

2.6.4.4. Estrategias de optimización  

En un hiperespacio de millones de parámetros es difícil conocer que parámetros funciona mejor para 

cada modelo. Antiguamente la búsqueda de mejores variables se realizaba mediante la búsqueda en 

rejilla, asigna valores fijos a las variables independientes y calcula el resultado de la variable 

dependiente. El muestreo aleatorio asignar valores aleatorios a las variables independientes en cada 

experimento. De este método, se barrer más espacio dentro del hiperespacio del modelo. La 

optimización bayesiana tiene en cuenta los resultados de experimentos anteriores para elaborar una 

región de probabilidad de valores óptimos acorde a la fórmula. [18] 

    (15) 
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3. Estudio de la pieza 
________________________________________________________________________________ 

 

 

3.1. Introducción 

Desde los años 70, el plástico llegó a las zonas más significativas del automóvil debido a su ligereza y 

aumento de resistencia y seguridad. En el revestimiento interior de los automóviles juega un papel muy 

importante debido a su facilidad de diseño de formas complicadas y estética interior. 

En los acabados interiores, el uso de termoplásticos transformados por inyección es ampliamente 

utilizado debido a su buen acabado superficial a un coste razonable. Las partes estructurales que 

requieren de buena rigidez y comportamiento se conforman mediante termoestables reforzados con 

fibra. [21] 

3.1.1. Descripción de la pieza 

El panel de instrumentos o salpicadero es el dispositivo que se encuentra frente al conductor y 

semiconductor y alberga los instrumentos e indicadores que permiten el funcionamiento del vehículo.  

En la planta de CEFA, se producen varios modelos de paneles de instrumentos. La pieza de estudio es un 

panel de instrumentos o salpicadero perteneciente al modelo OPEL Corsa (6ª Gen). El salpicadero es de 

tipo flexible, este tipo de salpicaderos están compuestos por varias capas: [22] 

1- capa superior rugosa (huella) hecha típicamente de PVC plastificado 

2- capa intermedia hecha de poliestireno o poliuretano expandido 

3- capa base metálica, de plástico o aglomerado.  

El alcance de este trabajo se centra en la inspección y detección de los defectos sobre la c apa superior 

rugosa también denominada tela. 

 

 

Figura 3.1.1. Panel de instrumentos Opel Corsa. Tela (contorno amarillo). Fuente: CEFA S.A. 

 

3.1.2. Proceso de producción de la pieza 

El proceso de producción de la tela parte de una lámina semielaborada de termoplástico. El material en 

forma de rollo es arrastrado mediante tetones a una máquina de termoconformado. El proceso de 

termoconformado le confiere las curvaturas finales de la pieza además del dibujo de la huella. Se suele 

se suele realizar tratamientos superficiales y adición de aditivos previa la incorporación de espuma. 

La tela moldeada y la base de plástico se disponen en cunas macho y hembra. La cuna tiene las 

condiciones de temperatura y presión apropiadas para la reacción de expansión del isocianato y el poliol 

en poliuretano. La espuma se adapta a la forma de la tela moldeada y la correcta distribución de espuma 

se realiza por medio de una cámara de visión térmica. 
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La pieza es refrigerada por convección natural a su transporte por gravedad en unos ganchos. En una 

cuna, se troquela el excedente de pieza y la zona del airbag del salpicadero es debilitada por medio de 

una cortadora láser de precisión. La pieza de salpicadero es montada en la estructura general del panel 

de instrumentos. Y en los sucesivos pasos recibe la instalación de l rsto  componentes y dispositivo del 

airbag. 

En su etapa final, la pieza se monta en un sistema de AGVs donde recibe montaje de los últimos 

componentes. Al final, recibe la inspección manual de la superficie. Las piezas OK son empaquetadas y 

enviadas al almacén. Mientras que las piezas detectadas como NOK son separadas en un puesto de 

retrabajo. 

En la misma línea se producen piezas en ambos sentidos de conducción, izquierda y derecha, aunque 

esta última en menor proporción. 

 

 

 

Figura 3.1.2. Proceso de producción del Opel Corsa. Fuente: ‘Estudio de la viabilidad técnica y económica de la 

automatización del suministro logístico de productos en Módulos Ribera Alta SL’. Báguena Gutiérrez. 
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3.1. 3. Descripción de los defectos 

Los tipos de defectos más importantes son: 

1- Raya. Defecto superficial con forma de surco producidas por el contacto con un objeto con filo.  

2- Roces. Defecto superficial que presenta rotura de la capa superior en forma de levantamiento 

irregular y discontinuo de la superficie de tela. Está producida por el c ontacto por fricción con 

otros objetos. 

3- Bollos. Defectos que producen zonas elevadas sobre la superficie, generalmente asociada a 

variaciones en las condiciones térmicas. Se presenta como una forma abombada o como una 

distorsión dimensional. Las causas más comunes son la presión de los gases dentro de la parte 

en expansión o por esfuerzos residuales internos.  

4- Hundimientos. Defectos que producen una zona inferior respecto a la superficie. Puede ocurrir 

que el rechupe aparezca una vez se ha extraído la pieza, esto es debido a que al expulsar el 

calor de la pieza se crea un estado tensional que se traduce en contracciones. Las 

incrustaciones son imperfecciones debido a la presencia de partículas en el molde. [23] 

5- Arrugas en las esquinas. Imperfecciones que tiene la apariencia de una onda moldeada sobre 

la capa superior que se localizan en las esquinas de la pieza. 

6- Manchas. Defectos presentan comportamientos visuales diferentes en ciertas regiones. Los 

defectos más conocidos son los de decoloración, cambios en el color original a menudo 

causada por sobrecalentamiento exposición a la luz o ataques químicos. El defecto de brillo se 

denomina a cuando la región pierde ‘gloss’ o grado de brillo. [24] 

7- Gap. defecto dimensional para referirnos a las desuniformidades en las juntas entre piezas.  

 

3.1.4. Necesidades de dataset 

El conjunto de imágenes (data set) debe de satisfacer las siguientes necesidades:  

- Representatividad de la población a detectar 

- Diferenciación de los parámetros de defectos  

- Número mínimo de imágenes de una misma clase  

 

 
(a) 

 
(b) 
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(c) 

 
(d)                                                   (e) 

 
(f)   (g) 

 
(h)    (i) 

Figura 3.1.3. Defectos de producción más comunes en la superficie del salpicadero: (a) rayas; (b) roces; (c) bollos; 

(d) hendiduras; (e) incrustaciones; (f) manchas; (g) defectos de brillos; (h) arrugas en las esquinas; (i) gap. Fuente: 
Propia. 
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3.1.5. Distribución de defectos  

La aparición de defectos es ocasionada por la variación de las condiciones de operación de la pieza. Los 

defectos poseen una alta variabilidad de tamaño, forma y tipo. Según los datos de la figura 3.1.5., las 

esquinas son las zonas de la pieza con mayor probabilidad de aparición de defecto, siendo más grave la 

zona del conductor. En ambas zonas se localizan principalmente los defectos de arrugas, el cual es el 

defecto más probable por zona. 

Los datos recogidos sobre la frecuencia de defectos corresponden al periodo entre 09/2020 - 02/2021. 

 

Figura 3.1.4. Distribución de defectos por tipo. Fuente: CEFA S.A. 

 

Figura 3.1.5. Mapa de distribución de defectos por zonas. Fuente: CEFA S.A. 
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3.2. Estudio de las condiciones de captación 

Los defectos presentan una alta variabilidad de sus características. El objetivo de este estudio es 

maximizar la probabilidad de visualizar los defectos con un sistema de detección fijo. 

3.2.1. Diseño de experimentos 

Con el propósito de seleccionar las mejores condiciones del sistema de captura se plantea el diseño de 

un banco de experimentos que reproduzca las condiciones del sistema de captura en el entorno 

deseado.  

El modelo teórico ideal del banco de ensayos consistiría en un sistema de infinitas cámaras y sistemas de 

iluminación ocupando todos los puntos del espacio analizando los resultados individualmente. En el 

modelo real aproximado escogemos ciertos puntos estratégicos de estudio que nos permiten 

generalizar el aprendizaje. 

3.2.2. Subsistema de adquisición 

El estudio de la posición de la cámara se divide en el estudio de 5 ángulos horizontales [22.5º 45º 67.5º 

90º]  y 4 ángulos verticales [0º 15º 30º 45º] dispuestas en forma de semiabanico. La distancia de la 

cámara es fija, 1050 mm. El modo de captura es secuencial con una tasa de 10 [frames/seg]. 

3.2.3. Subsistema de iluminación 

La imagen deberá tener una iluminación tal que permita iluminar nítidamente el defecto sin saturar la 

imagen. Se debe ajustar la distancia del foco a la superficie del defecto junto con el obturador anal ógico 

y digital.  Un nivel de exposición optimo es 1200-1350. El ángulo de incidencia de la luz debe ser el 

mismo ángulo de incidencia de la cámara.  

3.2.4. Calibración de la cámara 

La calibración se realiza con la pieza situada en la posición de referencia y el punto deseado en el plano 

de la imagen. Se ajusta el enfoque de imagen con la ayuda de un mapa de enfoque. El ajuste del nivel de 

exposición mediante el obturador analógico. 

3.2.5. Descripción de las pruebas 

Las piezas de estos experimentos son piezas detectados en planta como NOK no recuperadas. La pieza 

se arrastra sobre un carro sobre la línea continua a una velocidad aproximada de 3 [m/s]. Se realizan 

una serie de estudios con el objetivo de sacar conclusiones de cara a encontrar un rango de valores 

óptimos para el ángulo horizontal y vertical de la cámara. 

 

 

Figura 3.2.1. Configuración de banco de ensayos: (a) ángulos horizontales; (b) ángulos verticales. Fuente: Propia. 
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3.3. Resultados 
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Figura 3.2.2. Imágenes de pruebas de defectos captadas en banco de ensayos: (fila 1) mancha; (fila 2) defecto de 

brillo; (fila 3) hendidura; (fila 4) raya oblicua sin difusor de luz; (fila 5) raya oblicua con difusor de luz. Fuente: 
Propia. 
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Figura 3.2.3. Imágenes de pruebas de defecto de raya vertical captada en banco de ensayos. Fuente: Propia. 
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Figura 3.2.4. Imágenes de pruebas de defecto de raya horizontal captada en banco de ensayos. Fuente: Propia. 
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Figura 3.2.5. Imágenes de pruebas de defectos de (col. 1 y 2) rechupe; (col. 3 y 4) roce en banco de ensayos. 
Fuente: Propia. 
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Figura 3.2.6. Imágenes de pruebas defectos de (col. 1 y 2) arruga en esquina; (col. 3 y 4) roce en esquina captadas 
en banco de ensayos. Fuente: Propia. 
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3.4. Conclusiones 

La luz difusa permite una iluminación más uniforme (Figura 3.2.2.5.) que es buena para detectar ciertos 

tipos de defectos, aunque no se ha considerado necesario su uso porque la diferencia es no es sustancial 

y requiere de posiciones muy cortas del foco o luminarias mayor potencia. 

Para una determinada posición de la pieza, el defecto presenta un punto ciego donde no crea so mbra 

(Figura 3.3.1). Esta posición depende de la geometría y superficie del defecto. Para evitar la ausencia de 

defectos visibles dentro del plano imagen es recomendable aumentar el ángulo de incidencia.  

A medida que aumenta el ángulo de incidencia, disminuye la reflexión de luz difusa y la luz reflejada es 

la componente especular. Como observación general, este efecto permite diferenciar nítidamente la 

presencia de defectos muy pequeños en superficies planas. Sin embargo, es contraproducente en 

algunos casos, ya que depende del tipo de defecto y su geometría. Cuanto más inclinado es el ángulo 

con la pieza disminuye la visibilidad de las dimensiones perpendiculares al haz de visión (Figura 3.3.2.) y 

ciertos tipos de defectos como las decoloraciones son peor detectadas (Figura 3.2.3.1). 

Teniendo en cuenta los datos anteriores, los ángulos de Cámara de (45º, 30º) se ha demostrado que 

presenta buenos resultados generales. 

 

 Frame 1 Frame 2 Frame 3 

0 

   

 

Figura 3.3.1. Efecto de punto ciego 

 

 22.5º 45º 67.5º 90º 

0 

    

 
Figura 3.3.2. Efecto del reflejo especular. 
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4. Estudio de la localización del sistema de captura 
________________________________________________________________________________ 

 

 

4.1. Introducción 

La localización del sistema de captura es un espacio de la línea dentro de la etapa de producto acabado 

de la pieza donde se plantea la captura masiva de imágenes de defectos válidas. Las mejores 

condiciones de captura no siempre son posible transferirlas al sistema real debido a las restricciones del 

entorno. 

El propósito de este apartado es seleccionar la configuración del sistema de captación que permitan 

capturar la mayor cantidad de imágenes válidas del mismo tipo de defecto. Para ello vamos a tener en 

cuenta: 

▪ Condiciones de captación de defectos 

▪ Distribución de defectos por región 

▪ Distribución de defectos por tipo 

En la planta, la línea de producción presenta un espacio situado entre la finalización de componentes 

que cumple con los requisitos necesarios donde las tres configuraciones posibles son:  

(A)  Suelo. Configuración de captura de pruebas inicial. No permite ángulos verticales ni ángulos 

horizontales mayores de 45º.  

(B) Estantería. Restricciones de movimiento para el trípode y ángulos delimitados por la posición del 

foco (22.5º, 45º). La luz incide sobre la zona central. 

(C) Entrada a la cabina. Escasas restricciones de movimiento para el trípode, permite varias 

configuraciones. Posibilidad de recibir vibraciones de puerta. La luz incide sobre la esquina.  

La principal diferencia entre B y C es la posición del foco de luz. El foco de luz tiene un espacio limitado y 

está obligado a adoptar una posición en cada configuración para iluminar correctamente la pieza. 

 

 

Figura 4.1. Selección de diferentes posiciones de cámara: (A) suelo; (B) estantería; C) puerta de cabina. Fuente: 
Propia. 
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4.2. Resultados 

Resultados configuración A (45º, 0º):  

 

Figura 4.2.1. Imágenes de defectos capturados desde la configuración A: (a) roce; (b) mancha; (c) hendidura-1; (d) 
hendidura-2. Fuente: Propia. 

 

Resultados configuración B (22.5º, 45º):  

 

  

Figura 4.2.2. Imágenes de defectos capturados desde la configuración B: (a) arruga; (b) raya-1; (c) raya-2; (d) bollo. 
Fuente Propia. 
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Resultados configuración C (30º, 45º):  

 

 

Figura 4.2.3. Imágenes de pieza y defectos: (a) arruga; (b) raya-1; (c) raya-2; (d) gap; capturados con la 
configuración C. Fuente: Propia.  

4.3. Conclusiones 

La escasa versatilidad de la configuración A le somete a caer en pobres resultados de visualización. La 

configuración B, es una posición ideal para capturar defectos en la zona central, aunque no recibe 

iluminación en las esquinas, es una buena opción para defectos de rayas y roces. La configuración C, es 

una posición ideal para capturar defectos en la zona de la esquina. Además, la libertad de movimiento 

permite ajustar el ángulo para optimizar la detección sobre un tipo de defecto específico. 

Teniendo en cuenta la información de distribución de defectos por zonas nos vamos a centrar en la 

captura de arrugas en las esquinas con la configuración C. 
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4.4. Ajuste de la configuración 

Seleccionada la configuración, es necesario ajustar la imagen a las condiciones deseadas. La lente es el 

dispositivo encargado de adecuar los rayos de luz a la imagen que recibe el sensor fotográfico. El  

principal parámetro de la lente es la distancia focal, que actúa como un zoom sobre la imagen. 

Ajustamos la imagen de forma que la luz permita visualizar el defecto deseado nítidamente. La lente de f 

= 50 mm permite el rango de enfoque dentro del rango óptimo de captura (Fig. 12) 

 

 

Figura 4.4. imágenes de selección de lente capturados con la configuración C: (a) f = 18 mm; (b) f = 50 mm; Fuente: 
Propia. 

 

4.5. Adquisición de imágenes 

El proceso de adquisición de imágenes ha consistido en la captura de secuencias de las imágenes de las 

piezas tanto de conducción izquierdas como derechas en las opciones especificadas en el apartado 

anterior para la creación del conjunto de datos. 

La captura se ha realizado durante intervalos regulares diarios. Las imágene s presentan ligeras 

diferencias de posición de cámara y en algunos casos hay grandes variaciones de iluminación al no estar 

controlada la iluminación externa. El etiquetado de imágenes se ha realizado según el criterio de los 

empleados de la planta y posteriormente se ha procesado para la creación del conjunto de datos. 

La captura se ha configurado con una tasa de captura de 5 frames/seg para una velocidad de pieza 

aproximada de 1.6 m/s. Un ajuste del nivel de exposición EV = 1200 - 1350. El tamaño de imágenes = 

1600 x 1200 pxls.  
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5. Estudio de clasificación de imágenes 
________________________________________________________________________________ 

 

 

5.1. Introducción 

El objetivo de este estudio es seleccionar el mejor modelo de clasificación de las imágenes con defectos. 

Para ello vamos a probar diferentes redes con diferentes opciones de entrenamiento y escoger aquellas 

que den un mejor rendimiento en la validación y testeo. 

5.1.2. Conjunto de imágenes  

Para la creación del conjunto de imágenes se han seleccionado aquellos tipos de defectos que presentan 

un número suficiente de imágenes válidas. 

1.  Arruga 

Dentro de la categoría arruga se incluyen aquellas imperfecciones localizadas en la esquina superior. 

Con forma de uña, bulto, pliegues de la tela, ondas moldeadas, etc. Además de los defectos con 

características semejantes, pero no consideradas críticas por sus dimensiones menores (Fig 4.1.c.). 

2. Gap 

Esta categoría incluye el defecto de gap conocido como las desviaciones en la alineación entre 

contornos de las piezas. El defecto de gap no es considerado un defecto superficial, por ende, no se 

tienen datos. Sin embargo, se ha observado una alta probabilidad de ocurrencia de este defecto.  

3. Suciedad 

 En esta categoría se han incluido las anormalidades de tonalidades y brillos en la superficie. 

Ocasionadas por manchas de grasa, polvo, líquidos… 

4. OK 

Clase con ausencia de defectos. Se dispone de un gran volumen de imágenes de piezas correctas. Se han 

escogido piezas contiguas a las defectuosas para homogeneizar las condiciones.  

El conjunto de entrenamiento es el conjunto utilizado para entrenar el modelo. El conjunto de 

validación es el conjunto para evaluar la capacidad de generalización de la población y comprobación 

del correcto funcionamiento de la red. El conjunto de entrenamiento y validación han sido divididos en 

una proporción 0.8/0.2. El conjunto de test es un conjunto con la finalidad de medir el rendimiento del 

modelo con imágenes de defectos nunca antes vistas durante el entrenamiento ni validación. 

 

 

Figura 5.1. Diferentes tipos de formas de defectos de arruga usados en el conjunto de datos: (a) bulto crítico; (b) 
pliegue crítico; (c) pliegue no crítico; (d) uña no critica. Fuente: Propia. 
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5.1.3. Preprocesamiento de imágenes 

Para aplicar la técnica de transferencia de aprendizaje con redes preentrenadas, ha sido necesario (1) 

redimensionar el tamaño de las imágenes al tamaño de la capa de entrada de la red y (2) convertir los 

canales de imagen de grises a RGB. 

5.1.4. Data augmentation 

Se ha empleado dos tipos de data augmentation: (1) balanceo de datos (2) transformaciones aleatorias 

de imagen para mejorar la generalización. Para balancear los datos, el conjunto de entrenamiento la 

adición de volteos horizontales, verticales y ambos sobre las clases minoristas. En los datos de validación 

y testeo únicamente volteos horizontales para mantener la condición de representatividad del sistema 

de detección real. 

Las operaciones de transformación de imagen online se asignan valores aleatorios dentro de un rango 

(Tabla 5.1.3.) durante cada minibatch de entrenamiento.  

 

Tabla 5.1.1. Conjunto de datos base 

 Arrugas Gap Ok Suciedad Total 

Training set 220 246 942 276 1684 

Validation set 54 61 236 69 420 

Test set 12 14 19 15 60 

Total 286 321 1197 360 2160 

 

Tabla 5.1.2. Conjunto de datos sobremuestreado con data augmentation  

 Arrugas Gap Ok Suciedad Total 

Training set 878 984 942 1104 3908 

Validation set 108 122 236 138 604 

Test set 24 28 19 30 101 

Total 1010 1134 1197 1272 4613 

 

Tabla 5.1.3. Operaciones de transformación de imagen online 

Transformación 

online 

min max 

Traslación X -300 300 

Traslación Y -100 100 

Re-escalamiento 0,75 1,25 
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5.1.5. Optimización de hiperparámetros 

Para la optimización de hiperparámetros se ha realizado una optimización bayesiana de los valores con 

el conjunto de datos base (Tabla 5.1.1.). Ajuste rango cada 15 experimentos y un uso de escalas 

apropiadas para la tasa de aprendizaje, regularización L2 y el tamaño del minibatch. No se ha 

considerado necesario añadir caída de learning rate. 

Tabla 5.1.4. Valores de hiperparámetros de modelos optimizados  

Red 

preentrenada 

Dataset 

Preentren. 

Numero  

de épocas 

Learning 

rate 

Tamaño 

Minibatch 

Momento 

SDGM 

AlexNet ImageNet 30 0.000823 64 0.8967 

GoogleNet ImageNet 30 0,00355 16 0.7443 

GoogleNet Places365 30 0,000238 16 0.9793 

ResNet-50 ImageNet 30 0,00145 8 0.8379 

 

Tabla 5.1.5. Valores de hiperparámetros de modelos optimizados con regularización L2 

Red 

preentrenada 

Dataset 

Preentren. 

Numero 

de épocas 

Learning  

rate 

Tamaño 

Minibatch 

Momento  

SDGM 

L2Reg 

(10x) 

AlexNet ImageNet 30 0,000733 32 0.6742 -4.5581 

GoogleNet ImageNet 30 0,002177 16 0.9 -6.752 

GoogleNet Places365 30 0,00072 32 0.9768 -7.999 

ResNet-50 ImageNet 15 0,00555 8 0,6576 -6.390 
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5.2. Resultados 

5.2.1. Entrenamiento inicial 

El primer paso consiste en entrenar rápidamente los modelos y observar su comportamiento para 

decidir el siguiente paso de estudio. Para este entrenamiento inicial se usa el conjunto de datos base 

(Tabla 5.1.1.) y las opciones de entrenamiento de la (Tabla 5.2.1.). 

Tabla 5.2.1. Opciones de entrenamiento iniciales  

Numero  

de épocas 

Learning 

rate  

Caída 

learning 

rate 

Tamaño  

Minibatch 

Momento  

SDGM 

L2Reg 

30 0.0001 0% 128 0.9 0 

 

 

 

(a)       (b) 

 

   (c)      (d) 

Figura 5.2.1. Graficas de entrenamiento de modelos: (a) AlexNet; (b) GoogLeNet-ImageNet; (c) GoogLeNet-

Places365; (d) ResNet-50. Linea azul: Training accuracy suavizada; Linea roja: Training Loss suavizada; Linea negra 

discontinua: Validation Loss/Validation accuracy. Fuente: Propia. 

 

En esta situación el Validation Loss aumenta y Training Loss disminuye en todos los modelos. Los 

modelos sufren un problema común en Machine Learning conocido como overfitting. Los modelos se 

están centrando en el ruido de las imágenes de entrenamiento y e stá extrayendo las características en 

base a ello. Esto le ayuda a mejorar el rendimiento en el entrenamiento a costa de perjudicar su 

capacidad de generalización.  

Para solucionar el overfitting existen técnicas como el uso regularización, dropout o añadir más datos. 

La adición de datos es la técnica más utilizada y puede hacerse mediante data augmentation o creación 
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de los datos artificiales con redes neuronales GAN. En este trabajo se estudian la regularización y la 

adición de datos con data augmentation y redes GAN. 

4.2.2. Regularización 

Conjunto de datos base (Tabla 5.1.1.) con los valores de hiperparámetros optimizados con 

regularización L2 (Tabla 5.2.4.) 

 

  

(a)       (b) 

 

   (c)      (d) 

Figura 4.2.2. Graficas de entrenamiento de modelos: (a) AlexNet; (b) GoogLeNet-ImageNet; (c) GoogLeNet-

Places365; (d) ResNet-50. Linea azul: Training accuracy suavizada; Linea roja: Training Loss suavizada; Linea negra 

semicontinua: Validation Loss/Validation accuracy. Fuente: Propia. 

 

▪ Resultados sobre conjunto de validación  

  

(a)       (b) 
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   (c)      (d) 

 

Figura 5.2.3. Resultados de matriz de confusión sobre el conjunto de validación para los modelos: (a) AlexNet; (b) 

GoogLeNet-ImageNet; (c) GoogLeNet-Places365; (d) ResNet-50. Fuente: Propia. 

▪ Resultados sobre conjunto de test 

  

  

(a)       (b) 
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   (c)      (d) 

Figura 5.2.4. Resultados de matriz de confusión sobre el conjunto de test para los modelos: (a) AlexNet; (b) 
GoogLeNet-ImageNet; (c) GoogLeNet-Places365; (d) ResNet-50. Fuente: Propia. 

 

Tabla 5.2.1. Resultados de validation accuracy, test accuracy con regularización L2. 

 Dataset 

preentr. 

Épocas Tiempo 

entr. 

Tamaño  

(MB) 

Parámetros 

(Millions) 

Validation 

Accuracy 

Test 

Accuracy 

AlexNet ImageNet 30 9' 4'' 227 61 76,19% 23,76% 

GoogleNet ImageNet 30 14' 49'' 27 7 94,05% 38% 

GoogleNet Places365 30 11' 46'' 27 7 96,19% 25% 

ResNet-50 ImageNet 15 16' 39'' 96 25,6 98,84% 23,33% 

 

 

5.2.3. Datos balanceados 

Conjunto de datos sobremuestreado con data augmentation (Tabla 4.1.2.) con los valores de 

hiperparámatros optimizados (Tabla 4.2.4.) 

 

  

(a) (b) 
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(b) (d) 

Figura 5.2.3. Graficas de entrenamiento de modelos: (a) AlexNet; (b) GoogLeNet-ImageNet; (c) GoogLeNet-

Places365; (d) ResNet-50. Linea azul: Training accuracy suavizada; Linea roja: Training Loss suavizada; Linea negra 
semicontinua: Validation Loss/Validation accuracy. Fuente: Propia. 

 

▪ Resultados sobre el conjunto de validación  

  

(a)       (b) 

 

 

(c) (d) 

Figura 5.2.3. Resultados de matriz de confusión sobre el conjunto de validación para los modelos: (a) AlexNet; (b) 

GoogLeNet-ImageNet; (c) GoogLeNet-Places365; (d) ResNet-50. Fuente: Propia. 
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▪ Resultados sobre el conjunto de validación  

   

(a)      (b) 

 

   (c)     (d) 

Figura 5.2.3. Resultados de matriz de confusión sobre el conjunto de validación para los modelos: (a) AlexNet; (b) 
GoogLeNet-ImageNet; (c) GoogLeNet-Places365; (d) ResNet-50. Fuente: Propia. 

 

Tabla 4.2.2. Resultados de validation accuracy, test accuracy con balanceo de datos. 

 Dataset 

preentr. 

Épocas Tiempo 

entr. 

Tamaño 

(MB) 

Parámetros 

(Millones) 

Validation 

Accuracy 

Test 

Accuracy 

AlexNet ImageNet 30 16' 04'' 227 61 82,95% 25% 

GoogleNet ImageNet 30 34' 30'' 27 7 98,18% 46% 

GoogleNet Places365 31 32' 13'' 27 7 99,50% 57% 

ResNet-50 ImageNet 25 68' 17'' 96 25,6 97,52% 52,48% 
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5.2.4. Transformaciones de imágenes 

Conjunto de datos aumentado con data augmentation (Tabla 5.1.2.) con los valores de hiperparámatros 

optimizados (Tabla 5.2.4.) y las operaciones de transformación de imagen online (Tabla 5.1.3.) 

▪ Resultados sobre conjunto de validación 

  

(a)       (b) 

  

   (c)      (d) 

Figura 5.2.3. Resultados de matriz de confusión sobre el conjunto de validación para los modelos: (a) AlexNet; (b) 
GoogLeNet-ImageNet; (c) GoogLeNet-Places365; (d) ResNet-50. Fuente: Propia. 

▪ Resultados sobre conjunto de test 
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(a)       (b) 

  

   (c)      (d) 

Figura 5.2.4. Resultados de matriz de confusión sobre el conjunto de test para los modelos: (a) AlexNet; (b) 
GoogLeNet-ImageNet; (c) GoogLeNet-Places365; (d) ResNet-50. Fuente: Propia. 

 

Tabla 5.2.3. Resultados de validation accuracy, test accuracy con operaciones de transformación. 

Red 

 preentr. 

Dataset 

 preentr. 

Épocas Tiempo 

entr. 

Tamaño 

(MB) 

Parámetros 

(Millones) 

Validation 

accuracy 

Test 

accuracy 

AlexNet ImageNet 50 47’ 31’’ 227 61 92,22% 41,58% 

GoogleNet ImageNet 30 40’ 07” 27 7 99,34% 56,44% 

GoogleNet Places365 35 44’ 53’’ 27 7 98,84% 41,58% 

ResNet-50 ImageNet 26 80’ 05’’ 96 25,6 98,84% 51,49% 

 

5.3. Conclusiones 

El método de cálculo de la red, “minibatch gradient descent”, calcula los gradientes entre cada 

minibatches y baraja aleatoriamente las imágenes entre épocas para mejorar la generalización. Es por 

ello por lo que los resultados tienen una alta variabilidad en los resultados y las gráficas muestran ruido.  

Para el conjunto de test se han elegido imágenes de piezas que no han sido vistas durante el 

entrenamiento ni validación. Para aumentar la dificultad, estas imágenes incluyen características 

difíciles de diferenciar con otras clases.  

En la industria es más importante evitar los falsos negativos que los falsos positivos. Así, por tanto, 

priorizamos el modelo que permite un alto rendimiento en los términos de precisión sobre los defectos. 

La mayoría de los modelos han tenido altos resultados sobre el conjunto de validación. Entre los dos 

modelos que han presentado mayores resultados sobre el conjunto de test: GoogLeNet-ImageNet 

ofrece una tasa de acierto sobre defectos de arrugas de 87,5% y gap de 22,5% (Fig. 5.2.4.b.). Mientras 

que GoogLeNet-365 ofrece una tasa de acierto sobre los defectos de arrugas de 62,5% y gap de 42,9% 

(Fig. 5.2.3.c.) 

Para la selección del modelo, escogemos GoogLeNet-ImageNet porque responde mejor a los defectos 

de arruga los cuales presentan mucha variabilidad en sus características de forma y posición y son más 

difíciles de detectar. 
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5.4. Generative Adversarial Network 

5.4.1. Introducción 

Para el entrenamiento de una red GAN usamos el conjunto de datos aumentado (Tabla 5.1.2.) de una 

clase de defecto. Las imágenes son transformadas a 64x64x3 para reducir el coste computacional y 500 

épocas de entrenamiento. Los parámetros de entrenamiento son [11] 

Para la red generadora se crea una red que convierte un vector de ruido de tamañ o 100 en una imagen 

de 64x64x3. La capa de entrada transforma el vector de ruido a 7x7x128 y le sucede una etapa de capas 

de convolución y capas de activación ReLU, de tamaño 5x5xN con N, el número de filtros decreciente y 

cuya última capa de activación es tanh. 

Para la red discriminadora se crea una red que acepta imágenes de 64x64x3 y devuelve una puntuación 

de clasificación. Usando una serie de capas de convolución con capas de activación ReLU. Las capas de 

convolución son de tamaño 5x5xN con N el número de filtros creciente. La capa final es 4x4x1. Para 

controlar el aprendizaje del discriminador dropout de 0.5. 

5.4.2. Resultado 

 

Figura 5.4.2. Imágenes de defectos sintéticos originados con red GAN 

 

5.4.3. Conclusión 

La generación de datos sintéticos a partir de redes GAN, es una práctica ampliamente utilizada por sus 

excelentes resultados para el entrenamiento de redes. En las imágenes sintéticas válidas, se aprecia el 

defecto como si se estuvieran viendo de lejos. En nuestro caso, no se ha considerado necesario el uso de 

las imágenes para entrenamiento. 
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5.5. Análisis de clasificación 

5.5.1. Introducción 

Las herramientas de visualización nos permiten entender el comportamiento de las redes por medio de 

la resaltación de las características que influyen en la clasificación. Para comprobar la correcta detección 

de la red visualizamos los resultados de occlusion sensitivity y LIME de las diferentes formas de los 

defectos de la clase de arruga. [25] 

 

5.5.2. Resultados 

 

   

   
 
Figura 5.5.1. Resultados de visualización de arruga de bulto crítico con: (a) imagen; (b) occlusion sensitivity; (c) 
LIME. 
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Figura 5.5.2. Resultados de visualización de arruga de bulto no crítico con: (a) imagen; (b) occlusion sensitivity; (c) 
LIME. 

 

   

   
 
Figura 5.5.3. Resultados de visualización de arruga de pliegue crítico con: (a) imagen; (b) occlusion sensitivity; (c) 
LIME. 
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Figura 5.5.4. Resultados de visualización de arruga de pliegue no crítico con: (a) imagen; (b) occlusion sensitivity; (c) 
LIME. 

 

   

   
 
Figura 5.5.5. Resultados de visualización de arruga de pliegue crítico con falta de iluminación: (a) imagen; (b) 
occlusion sensitivity; (c) LIME. 
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5.5.3. Conclusiones 

Los defectos de arrugas con forma de bultos tienen la dificultad de que requiere de escoger el ángulo 

adecuado para visualizar la distorsión de forma. Como consecuencia en la Figura 4.5.2., el bulto no 

crítico es detectado en la entrada de la pieza en el plano imagen, pero en la salida la pieza es detectada 

como OK. 

Se ha comprobado que el detector es robusto ante las vibraciones externas. Sin embargo, la variación de 

iluminación externa afecta drásticamente a la detección de la red. 

 

 

  



51 
 

6. Estudio de detección de objetos 
_____________________________________________________________________________________ 

 

 

6.1. Introducción 

Para entrenar los detectores de objetos requiere ajustar una serie de parámetros que parametrizan las 

redes YOLOv2 y Faster RCNN. 

1- Numero de anchor boxes 

2- Tamaño de la imagen 

3- Capa de extracción de características 

6.1.1. Ground truth data 

Se ha creado el ground truth data a partir del conjunto de datos base con la aplicación de Matlab Image 

Labeler. En el etiquetado de las imágenes se han incluido clases manchas más específicos como defectos 

de brillo. 

6.1.2. Número de anchor boxes 

Aumentar el número de anchor box puede mejorar la medida de mean IoU. Sin embargo, aumentar el 

número puede incrementar el coste computacional y llegar a overfitting. Se obtienen una gran mejoría 

de mean IoU con el uso de 1-5 anchor boxes. A partir de 5 obtiene tan solo una mejoría marginal de 

mean IoU (Fig. 6.1.1.) a costa de perjudicar la precisión de la red. 

 

 

Figura 6.1.1. Número de anchor boxes frente mean IoU. 

 

6.1. 3. Capa de extracción de características 

La elección de la capa de extracción requiere de análisis empírico. La capa de extracción de 

características tiene una función distinta en la arquitectura del detector. En la red Faster RCNN alimenta 

la capa de RPN y ROI Pooling layer es incluida después de la capa de características. En la red YOLOv2 

alimenta a la etapa de convolución de la red YOLO. 
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Figura 4.4.2. Arquitectura de la red de extracción: (Izquierda) YOLOv2; (Derecha) Faster RCNN. 

 

6.1.4. Data augmentation 

En este caso las operaciones de data augmentation son las mismas que en el apartado de clasificación 

con la diferencia de que no aumentamos el dataset. Los volteos en X e Y son variables aleatorias 

calculadas al principio de cada minibach. 

6.1.5. Opciones de entrenamiento 

Los valores se han optimizado mediante rejilla y se ha usado el optimizador Adam para mejorar la 

rapidez y el comportamiento de la red ante los ‘puntos sillín’. El rango de solapamiento positivo y 

negativo para entrenar la red Faster R-CNN es [0.6 1] y [0 0.3]. 

Tabla 12. Opciones de entrenamiento  

Detector de 

objetos 

Red 

extractora 

Capa de 

extracción 

Anchor 

boxes 

Épocas Learning 

 rate 

Caída 

learning rate 

Tamaño 

Minibatch 

Squared 

Gradient 

Gradient 

decay 

YOLOv2 GoogleNet_

ImageNet 

inception_ 

4d-output 

5 120 0.001 10%/75 

epocas 

16 0.99 0.9 

Faster RCNN GoogleNet_

ImageNet 

inception_ 

4d-output 

3 75 0.0008 10%/ 20 

épocas 

2 0.9 0.95 
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6.2. Resultados 

Para cada clase se obtiene la curva de precision-recall con el conjunto de validación: 

 

  

Figura 12. Resultados de curvas de precision-recall: (Izquierda) YOLOv2; (Derecha) Faster RCNN. Azul: arruga; rojo: 
gap; amarillo: suciedad. 

Tabla 12. Resultados de average-precision para cada defecto y medium average precisión de cada red. 

Detector Tiempo 

 de entr. 

Tiempo  

detecc. (s) 

arruga gap suciedad mAP 

YOLOv2 2h 0.9772 0.908 0.994 0.9032 0.935 

Faster R-CNN 6 dias 0.6063 0.3683 0.118 0.164 0.216 

 

 

6.2. Resultados de detección con YOLOv2 

  

Figura 6.2.1. Resultados de predicciones de defectos de arrugas con detector YOLOv2 

  

Figura 6.2.2. Resultados de predicciones de defectos de gap con detector YOLOv2 
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Figura 6.2.3. Resultados de predicciones de defectos de manchas con detector YOLOv2: (a) suciedades; (b) suciedad 
y liquido; (c) suciedad y brillo. 

 

6.3. Conclusiones 

Los ‘bounding boxes’ de los resultados tienen tamaños similares porque se han estimado los anchor 

boxes basados en los ‘bounding boxes’ del conjunto de entrenamiento para reducir el coste 

computacional y acelerar el entrenamiento. En caso contrario tendría que probar diferentes variaciones 

con diferentes tamaños de boxes. 

El detector YOLOv2 generalmente presenta una precisión menor que el Faster RCNN en la detección de 

objetos con características complicadas, sin embargo, el mean average precisión ha sido superior para 

esta red. Las diferencias de precisión entre ambas redes pueden ser ocasionadas por la dificultad de 

entrenamiento de la red Faster R-CNN. Al ser una red tan grande agota los recursos de memoria y el 

entrenamiento ha sido realizado en condiciones de ahorro de memoria. Una GPU con mayor memoria 

permitiría un entrenamiento apropiado. 

En la figura puede demostrarse la eficacia de este sistema para la detección de manchas de diferentes 

características: manchas de suciedad, líquidos y defectos de brillos (Fig. 6.2.3.). 
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VII. Conclusiones 

________________________________________________________________________________ 

 

Este trabajo propone un estudio que juega un papel importante dentro de la inspección de defectos en 

piezas de termoplásticos. Las ideas adquiridas para la captación de los defectos en estas piezas pueden 

ser transferidas a piezas de características similares.  

Para lograr resultados precisos y sofisticados las redes neuronales requieren de una cantidad ingente de 

datos para entrenar. Pero con la técnica de data augmentation para aumentar el tamaño de nuestros 

datos hemos demostrado que se pueden crear modelos de clasificación con precisiones superiores al 

98%. Además, con un software no especializado en deep learning hemos obtenido grandes resultados 

gracias a un ajuste apropiado de las opciones de entrenamiento. Para la mejora de los modelos un 

ajuste de hiperparámetros y una mejora del preprocesamiento pueden ser llevados a cabo. 

Se ha demostrado la robustez del modelo ante variaciones en el enfoque o perturbaciones en la imagen  

a excepción de baja luminosidad. Sin embargo, no ha sido posible demostrar su eficacia con defectos 

que no presentan características visibles en la imagen por lo que un sistema de cámaras extendido es 

requerido. 

Los tres tipos de defectos típicos de la pieza que hemos usado para la detección se caracterizan por 

manifestar cambios de sombras y luces (arrugas); regiones de diferentes tonalidades y brillos en varias 

posiciones (manchas); y diferencias de tolerancias (gap); a raíz de esta información podemos asegurar 

que es posible detectar el resto de los defectos por medio de redes neuronales contando con un buen 

sistema de captura.  

En general, se valida el uso de redes neuronales para los sistemas de inspección, que es aplicable a 

multitud de tipologías de piezas y problemas de inspección complejos. 

Este trabajo incluye las fases de clasificación de imágenes y detección de objetos, no obstante, en el 

futuro este método puede ser extendido a fases de detección por segmentación y análisis de los 

parámetros de los defectos como el tamaño y la forma. 
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IX.Anexos 
ANEXO I. Codigo de Matlab. Clasificación de imágenes. 

clear 

clc 
  

%% Hiperparámetros 
 

net = resnet50; 

InitialLearnRate = 10^(-2.8385); 

MaxEpochs = 30; 

miniBatchSize = 8; 

momentum = 0.8379; 
  

%% Importing Dataset 

  

imdsTrain = imageDatastore('C:\Users\José Antonio\Documents\MATLAB\datasets\[4] data set 

augmented - training', ... 

    "IncludeSubfolders",true, ... 

    "LabelSource","foldernames"); 

imdsTrain.ReadSize = miniBatchSize; 

imdsVal = imageDatastore('C:\Users\José Antonio\Documents\MATLAB\datasets\[5] data set 

augmented - validation', ... 

    "IncludeSubfolders",true, ... 

    "LabelSource","foldernames"); 

imdsTest = imageDatastore("C:\Users\José Antonio\Documents\MATLAB\datasets\[6] data set 

augmented - test", ... 

    "IncludeSubfolders",true, ... 

    "LabelSource","foldernames"); 
  

%% Creating the modified net 
  

inputSize = net.Layers(1).InputSize;  

numClasses = numel(categories(imdsTrain.Labels)); 

lgraph = pretrainedNetModifier(net, numClasses); 

analyzeNetwork(lgraph) 
  

%% Configuring Online Data augmentation  

pixelRangeX = [-300 300]; 

pixelRangeY = [-50 50]; 

scaleRange = [0.75 1.25]; 

imageAugmenter = imageDataAugmenter( ... 

    'RandXTranslation',pixelRangeX, ... 

    'RandYTranslation',pixelRangeY, ... 

    'RandScale',scaleRange); 

%     'RandXReflection',true, ...'DataAugmentation',imageAugmenter 

  

augimdsTrain = 

augmentedImageDatastore(inputSize(1:2),imdsTrain,"ColorPreprocessing","gray2rgb"); 

augimdsVal = 

augmentedImageDatastore(inputSize(1:2),imdsVal,"ColorPreprocessing","gray2rgb"); 

augimdsTest = 

augmentedImageDatastore(inputSize(1:2),imdsTest,"ColorPreprocessing","gray2rgb"); 

  
 

%% Configuring Training options 

  

valFrequency = floor(numel(augimdsTrain.Files)/miniBatchSize); 

options = trainingOptions('sgdm', ... 

    'Momentum', momentum,... 

    'MiniBatchSize',miniBatchSize, ... 

    'MaxEpochs',MaxEpochs, ... 

    'InitialLearnRate',InitialLearnRate, ... 

    'ValidationData',augimdsVal, ... 

    'ValidationFrequency',valFrequency, ... 

    'Verbose',true, ... 

    'Plots','training-progress', ... 

    'Shuffle', 'every-epoch'); 
  

%% Training the net 
  

[net, info] = trainNetwork(augimdsTrain,lgraph,options); 

  

%% Calculating Metrics 

%  
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[testPreds, scrs] = classify(net,augimdsVal); 

testActual = imdsVal.Labels; 

numCorrect = nnz(testPreds == testActual); 

fracCorrect = numCorrect/numel(testPreds); 
  

figure 

cm = confusionchart(imdsVal.Labels,testPreds); 

cm.ColumnSummary = 'column-normalized'; 

cm.RowSummary = 'row-normalized'; 

cm.Title = 'Confusion Matrix'; 

%% 
  

 

%% Auxiliary functions 
  

function lgraph = pretrainedNetModifier(net,numClasses) 

net.Layers(1) 
  
  

if isa(net,'SeriesNetwork')  

  lgraph = layerGraph(net.Layers);  

else 

  lgraph = layerGraph(net); 

end  
  

[learnableLayer,classLayer] = findLayersToReplace(lgraph); 
  

if isa(learnableLayer,'nnet.cnn.layer.FullyConnectedLayer') 

    newLearnableLayer = fullyConnectedLayer(numClasses, ... 

        'Name','new_fc', ... 

        'WeightLearnRateFactor',20, ... 

        'BiasLearnRateFactor',20); 
  
  

elseif isa(learnableLayer,'nnet.cnn.layer.Convolution2DLayer') 

    newLearnableLayer = convolution2dLayer(1,numClasses, ... 

        'Name','new_conv', ... 

        'WeightLearnRateFactor',20, ... 

        'BiasLearnRateFactor',20); 

end 
  

lgraph = replaceLayer(lgraph,learnableLayer.Name,newLearnableLayer); 
  

newClassLayer = classificationLayer('Name','new_classoutput'); 

lgraph = replaceLayer(lgraph,classLayer.Name,newClassLayer); 
  
 

layers = lgraph.Layers; 

connections = lgraph.Connections; 
  

layers(1:10) = freezeWeights(layers(1:10)); 

lgraph = createLgraphUsingConnections(layers,connections); 

end 
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ANEXO II. Codigo de Matlab. Detección de objetos con YOLOv2. 

clear 

clc 
  

load("googlenetaugmented.mat",'net'); 

  

%% Importing data 
  

% sort data 

rng(0); 

data = load('gTruth2.mat'); 

gTruth = data.gTruth2; 

% Add the full path to the local vehicle data folder. 

gTruth.imageFilename = fullfile(gTruth.imageFilename); 

  
  

%% Creating datasets 

 

shuffledIndices = randperm(height(gTruth)); 

idx = floor(0.8 * length(shuffledIndices)); 

trainingDataTbl = gTruth(shuffledIndices(1:idx), :); 

testDataTbl = gTruth(shuffledIndices(idx+1:end), :); 
  

imdsTrain = imageDatastore(trainingDataTbl.imageFilename); 

imdsTest = imageDatastore(testDataTbl.imageFilename); 
  

bldsTrain = boxLabelDatastore(trainingDataTbl(:, 2:end)); 

bldsTest = boxLabelDatastore(testDataTbl(:, 2:end)); 
  

trainingData = combine(imdsTrain, bldsTrain); 

testData = combine(imdsTest, bldsTest); 
  
  

%% Create YOLOv2 network 

% Input size for detector. 

imageInputSize = [224 224 3]; 

% define classes 

numClasses = width(gTruth)-1; 

% estimate anchor boxes 
  

%% 

preprocessedTrainingData = 

transform(trainingData,@(data)preprocessData(data,imageInputSize)); 

preprocessedTestData = transform(testData,@(data)preprocessData(data,imageInputSize)); 
  

% augment data 

augmentedTrainingData = transform(preprocessedTrainingData,@augmentData); 
  

%% Define YOLO v2 ObjectDetector 

  

numAnchors = 5; 

trainingDataForEstimation = 

transform(trainingData,@(data)preprocessData(data,imageInputSize)); 

[anchorBoxes, meanIoU] = estimateAnchorBoxes(trainingDataForEstimation, numAnchors); 

%  

%% 

% define feature extraction network 

featureExtractionNetwork = net; 

featureLayer = 'inception_4d-output'; 

lgraph = 

yolov2Layers(imageInputSize,numClasses,anchorBoxes,featureExtractionNetwork,featureLayer

); 
  

% train YOLOv2 object detector 

options = trainingOptions('adam', ... 

        'MiniBatchSize', 16, .... 

        'InitialLearnRate',0.001, ... 

        'LearnRateSchedule','piecewise', ... 

        'LearnRateDropFactor', 0.1, ... 

        'LearnRateDropPeriod', 75, ... 

        'MaxEpochs',170,... 

        'ValidationData', preprocessedTestData, ... 

        'Verbose',true, ... 

        'Plots','training-progress',... 

        'Shuffle','once'); 
  

%% Train net 

% Train the YOLO v2 detector 
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[detector,info] = trainYOLOv2ObjectDetector(augmentedTrainingData,lgraph,options); 
  

%% Clasificacion 

  

data = read(preprocessedTestData); 
  

%% 

% Get the image. 

tic; 

tstart = tic; 

I = data{1,1}; 
  

[bboxes,scores,labels] = detect(detector,I); 

idx = scores > 0.7; 

bboxesTop = bboxes(idx,:); 

labelsTop = labels(idx,:); 
  

% Display the detections on image. 

I = insertObjectAnnotation(I,'rectangle',bboxesTop, cellstr(labelsTop)); 

  

figure 

imshow(I) 

telapsed = toc(tstart); 
  
 

%% Evaluacion del detector 

results = detect(detector,preprocessedTestData,'MiniBatchSize',16); 
  

[aP,recall,precision] = evaluateDetectionPrecision(results, preprocessedTestData); 
  
 

figure 

hold on 

for k = 1:numel(recall) 

plot(recall{k}, precision{k}) 

end 

hold off 

xlabel("Recall") 

ylabel("Precision") 

title("Precision-Recall Curve") 

% % legend(preprocessedTestData.Properties.VariableNames(2:end)) 

  

%% 
  

function data = augmentData(A) 

data = cell(size(A)); 

for ii = 1:size(A,1) 

    I = A{ii,1}; 

    bboxes = A{ii,2}; 

    labels = A{ii,3}; 

    sz = size(I); 
  

    % Randomly flip image. 

    tform = randomAffine2d('XReflection',true,... 

    'YReflection',true,... 

    'XTranslation',[-300 300],...  

    'YTranslation', [-50 50],...   

    'Scale',[0.75 1.25]); 

    rout = affineOutputView(sz,tform,'BoundsStyle','centerOutput'); 

    I = imwarp(I,tform,'OutputView',rout); 

     

    % Apply same transform to boxes. 

    [bboxes,indices] = bboxwarp(bboxes,tform,rout,'OverlapThreshold',0.25); 

    labels = labels(indices); 

     

    % Return original data only when all boxes are removed by warping. 

    if isempty(indices) 

        data(ii,:) = A(ii,:); 

    else 

        data(ii,:) = {I, bboxes, labels}; 

    end 

end 

end 
  

function data = preprocessData(data, targetSize) 

% Resize the images and scale the pixels to between 0 and 1. Also scale the 

% corresponding bounding boxes. 
  

for ii = 1:size(data,1) 
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    I = data{ii,1}; 

    imgSize = size(I); 
     

    % Convert an input image with single channel to 3 channels. 

    if numel(imgSize) < 3  

        I = repmat(I,1,1,3); 

    end 

    bboxes = data{ii,2}; 
  

    I = im2single(imresize(I,targetSize(1:2))); 

    scale = targetSize(1:2)./imgSize(1:2); 

    bboxes = bboxresize(bboxes,scale); 

     

    data(ii, 1:2) = {I, bboxes}; 

end 

end 
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ANEXO III. Codigo de Matlab. Detección de objetos con Faster R-CNN. 

 

clear 

clc 

  

%% Importing data 

  

% sort data 

rng(0); 

data = load('gTruth2.mat'); 

gTruth = data.gTruth2; 

% Add the full path to the local vehicle data folder. 

gTruth.imageFilename = fullfile(gTruth.imageFilename); 

  

%% 

load('googlenetaugmented','net'); 

  

InitialLearnRate = 0.0008; 

LRDropFactor = 0.9; 

LRDropPeriod = 10; 

SquaredGradientDecayFactor = 0.9; 

GradientDecayFactor = 0.95; 

MaxEpochs = 20; 

numAnchors = 3; 

miniBatchSize = 2; 

ValidationFrequency = 250; 

ExecutionEnvironment = 'auto'; 

  

imageInputSize = net.Layers(1,1).InputSize(1:2); 

  

%% 

rng(0); 

shuffledIndices = randperm(height(gTruth)); 

idx = floor(0.8 * length(shuffledIndices)); 

trainingDataTbl = gTruth(shuffledIndices(1:idx), :); 

testDataTbl = gTruth(shuffledIndices(idx+1:end), :); 

  

imdsTrain = imageDatastore(trainingDataTbl.imageFilename); 

imdsTest = imageDatastore(testDataTbl.imageFilename); 

  

bldsTrain = boxLabelDatastore(trainingDataTbl(:, 2:end)); 

bldsTest = boxLabelDatastore(testDataTbl(:, 2:end)); 

  

trainingData = combine(imdsTrain, bldsTrain); 

testData = combine(imdsTest, bldsTest); 

  

%% Preprocessing data 

  

preprocessedTrainingData = 

transform(trainingData,@(data)preprocessData(data,imageInputSize)); 

preprocessedTestData = transform(testData,@(data)preprocessData(data,imageInputSize)); 

  

% augment data 

augmentedTrainingData = transform(preprocessedTrainingData,@augmentData); 

  

%% Training options 

  

% train Faster RCNN object detector 

options = trainingOptions('adam', ... 

        'SquaredGradientDecayFactor', SquaredGradientDecayFactor, ... 

        'GradientDecayFactor', GradientDecayFactor, ... 

        'CheckpointPath', pwd, ... 

        'MiniBatchSize', miniBatchSize, .... 

        'InitialLearnRate',InitialLearnRate, ... 

        'LearnRateSchedule','piecewise', ... 

        'LearnRateDropFactor', LRDropFactor, ... 

        'LearnRateDropPeriod', LRDropPeriod, ... 

        'MaxEpochs',MaxEpochs,... 

        'ValidationData', preprocessedTestData, ... 

        'ValidationFrequency', ValidationFrequency, ... 

        'Verbose',true, ... 

        'Plots','training-progress',... 

        'Shuffle','every-epoch', ... 

        'ExecutionEnvironment', ExecutionEnvironment); 
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%% Create a Fast RCNN 

  

lgraph = layerGraph(net); 

%  

% % Specify the number of classes the network should classify. 

numClasses = width(gTruth)-1; 

numClassesPlusBackground = numClasses + 1; 

  

% Define the number of outputs of the fully connected layer. 

numOutputs = 4 * numClasses; 

  

% Create the box regression layers. 

boxRegressionLayers = [ 

    fullyConnectedLayer(numOutputs,'Name','rcnnBoxFC') 

    rcnnBoxRegressionLayer('Name','rcnnBoxDeltas') 

    ]; 

  

% Add the layers to the network. 

lgraph = addLayers(lgraph, boxRegressionLayers); 

  

% Connect the regression layers to the layer named 'avg_pool'. 

lgraph = connectLayers(lgraph,'pool5-drop_7x7_s1','rcnnBoxFC'); 

  

% Select a feature extraction layer. 

featureExtractionLayer = 'inception_4d-output'; 

  

% Disconnect the layers attached to the selected feature extraction layer. 

lgraph = disconnectLayers(lgraph, featureExtractionLayer,'inception_4e-1x1'); 

lgraph = disconnectLayers(lgraph, featureExtractionLayer,'inception_4e-3x3_reduce'); 

lgraph = disconnectLayers(lgraph, featureExtractionLayer,'inception_4e-5x5_reduce'); 

lgraph = disconnectLayers(lgraph, featureExtractionLayer,'inception_4e-pool'); 

  

% Add ROI max pooling layer. 

outputSize = [14 14]; 

roiPool = roiMaxPooling2dLayer(outputSize,'Name','roiPool'); 

lgraph = addLayers(lgraph, roiPool); 

  

% Connect feature extraction layer to ROI max pooling layer. 

lgraph = connectLayers(lgraph, featureExtractionLayer,'roiPool/in'); 

  

% Connect the output of ROI max pool to the disconnected layers from above. 

lgraph = connectLayers(lgraph, 'roiPool','inception_4e-1x1'); 

lgraph = connectLayers(lgraph, 'roiPool','inception_4e-3x3_reduce'); 

lgraph = connectLayers(lgraph, 'roiPool','inception_4e-5x5_reduce'); 

lgraph = connectLayers(lgraph, 'roiPool','inception_4e-pool'); 

  

%% Add region proporsal network (RPN) 

  

% Define anchor boxes. 

anchorBoxes = estimateAnchorBoxes(preprocessedTrainingData,numAnchors); 

  

% Create the region proposal layer. 

proposalLayer = regionProposalLayer(anchorBoxes,'Name','regionProposal'); 

  

lgraph = addLayers(lgraph, proposalLayer); 

  

% Number of feature maps in coming out of the feature extraction layer.  

numFilters = 1024; 

  

rpnLayers = [ 

    convolution2dLayer(3, numFilters,'padding',[1 1],'Name','rpnConv3x3') 

    reluLayer('Name','rpnRelu') 

    ]; 

  

lgraph = addLayers(lgraph, rpnLayers); 

  

% Connect to RPN to feature extraction layer. 

lgraph = connectLayers(lgraph, featureExtractionLayer, 'rpnConv3x3'); 

  

% Add RPN classification layers. 

rpnClsLayers = [ 

    convolution2dLayer(1, numAnchors*2,'Name', 'rpnConv1x1ClsScores') 

    rpnSoftmaxLayer('Name', 'rpnSoftmax') 

    rpnClassificationLayer('Name','rpnClassification') 

    ]; 

lgraph = addLayers(lgraph, rpnClsLayers); 
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% Connect the classification layers to the RPN network. 

lgraph = connectLayers(lgraph, 'rpnRelu', 'rpnConv1x1ClsScores'); 

  

% Add RPN regression layers. 

rpnRegLayers = [ 

    convolution2dLayer(1, numAnchors*4, 'Name', 'rpnConv1x1BoxDeltas') 

    rcnnBoxRegressionLayer('Name', 'rpnBoxDeltas'); 

    ]; 

  

lgraph = addLayers(lgraph, rpnRegLayers); 

  

% Connect the regression layers to the RPN network. 

lgraph = connectLayers(lgraph, 'rpnRelu', 'rpnConv1x1BoxDeltas'); 

  

% Connect region proposal network. 

lgraph = connectLayers(lgraph, 'rpnConv1x1ClsScores', 'regionProposal/scores'); 

lgraph = connectLayers(lgraph, 'rpnConv1x1BoxDeltas', 'regionProposal/boxDeltas'); 

  

% Connect region proposal layer to roi pooling. 

lgraph = connectLayers(lgraph, 'regionProposal', 'roiPool/roi'); 

  

% Show the network after adding the RPN layers. 

figure 

plot(lgraph) 

ylim([30 42]) 

  

%% Training a Faster RCNN 

  

% Train the faster CNN detector 

  

[trainedDetector,info] = 

trainFasterRCNNObjectDetector(augmentedTrainingData,lgraph,options,... 

    'NegativeOverlapRange', [0 0.3], 'PositiveOverlapRange',[0.6 1], ... 

    'NumRegionsToSample', 16, ... 

    'FreezeBatchNormalization', true); 

  

%% 

data = read(preprocessedTrainingData); 

  

%% 

I = data{1,1}; 

  

[bboxes,scores,labels] = detect(trainedDetector,I,'MiniBatchSize',miniBatchSize); 

idx = scores > 0.5; 

bboxesTop = bboxes(idx,:); 

labelsTop = labels(idx,:); 

  

% Display the detections on image. 

I = insertObjectAnnotation(I,'rectangle',bboxesTop, cellstr(labelsTop)); 

  

figure 

imshow(I) 

  

%% Evaluacion del detector 

results = detect(trainedDetector,preprocessedTestData,'MiniBatchSize',2, 

'ExecutionEnvironment', 'gpu'); 

  

[aP,recall,precision] = evaluateDetectionPrecision(results, preprocessedTestData); 

  

figure 

hold on 

for k = 1:numel(recall) 

plot(recall{k}, precision{k}) 

end 

hold off 

xlabel("Recall") 

ylabel("Precision") 

title("Precision-Recall Curve") 

  

  

  

%% Auxiliary functions 

  

function data = augmentData(A) 

% Apply random horizontal flipping, and random X/Y scaling. Boxes that get 

% scaled outside the bounds are clipped if the overlap is above 0.25. Also, 

% jitter image color. 
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data = cell(size(A)); 

for ii = 1:size(A,1) 

    I = A{ii,1}; 

    bboxes = A{ii,2}; 

    labels = A{ii,3}; 

    sz = size(I); 

  

%     if numel(sz) == 3 && sz(3) == 3 

%         I = jitterColorHSV(I,... 

%             'Contrast',0.0,... 

%             'Hue',0.1,... 

%             'Saturation',0.2,... 

%             'Brightness',0.2); 

%     end 

     

    % Randomly flip image. 

    tform = randomAffine2d('XReflection',true,... 

    'YReflection',true,... 

    'XTranslation',[-300 300],...  

    'YTranslation', [-50 50],...   

    'Scale',[0.75 1.25]); 

    rout = affineOutputView(sz,tform,'BoundsStyle','centerOutput'); 

    I = imwarp(I,tform,'OutputView',rout); 

     

    % Apply same transform to boxes. 

    [bboxes,indices] = bboxwarp(bboxes,tform,rout,'OverlapThreshold',0.25); 

    labels = labels(indices); 

     

    % Return original data only when all boxes are removed by warping. 

    if isempty(indices) 

        data(ii,:) = A(ii,:); 

    else 

        data(ii,:) = {I, bboxes, labels}; 

    end 

end 

end 

  

function data = preprocessData(data, targetSize) 

% Resize the images and scale the pixels to between 0 and 1. Also scale the 

% corresponding bounding boxes. 

  

for ii = 1:size(data,1) 

    I = data{ii,1}; 

    imgSize = size(I); 

     

    % Convert an input image with single channel to 3 channels. 

    if numel(imgSize) < 3  

        I = repmat(I,1,1,3); 

    end 

    bboxes = data{ii,2}; 

  

    I = im2single(imresize(I,targetSize(1:2))); 

    scale = targetSize(1:2)./imgSize(1:2); 

    bboxes = bboxresize(bboxes,scale); 

     

    data(ii, 1:2) = {I, bboxes}; 

end 

end 
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