. Universidad

[]
i8f Zaragoza

1 2

A

w
H

Trabajo Fin de Grado

Reorganizacion y mejoras de una plataforma
multirrobot

Reorganization and improvements of a multirobot
platform

Autora

Paloma Balmori Eldsequi

Directores

Cristian Mahulea
Joaquin Ezpeleta Mateo

Escuela de Ingenieria y Arquitectura
2021-2022

REORGANIZACION Y MEJORAS DE UNA
PLATAFORMA MULTIRROBOT

RESUMEN

Este proyecto se enmarca en un proceso de redisefio de una
plataforma multirrobot, perteneciente a la Universidad de Zaragoza, con
el fin de hacerlo mas general y adaptable. La plataforma se encuentra en el
Departamento de Informatica e Ingenieria de Sistemas.

Entre las posibles mejoras a realizar, este trabajo se ha centrado en
implementar una planificacion de trayectorias basada en wuna
descomposicion en celdas cuadradas.

Ademas, se han desarrollado métodos que permiten simular la
navegacion de los robots desde sus puntos de partida hasta sus
correspondientes destinos mientras que son supervisados para evitar
posibles colisiones.

El lenguaje de programacion utilizado en este proyecto ha sido C++.
Asimismo, se ha hecho uso de las librerias de OpenCV y Boost C++ para el
procesamiento de imagenes y la creacion de grafos respectivamente.

ABSTRACT

This project is framed in a redesign process of a multirobot platform,
belonging to Universidad de Zaragoza, with the purpose of making it more
general and adaptable. The platform is situated in the computing and
system engineer department.

Among the possible improvements to be made, this work has
focused on implementing a trajectory planning based on a decomposition
in square cells.

Furthermore, some methods have been developed that allow
simulating the navigation of robots from their starting points to their
corresponding targets while they are supervised to avoid possible
collisions.

C++ has been the programming language used in this project.
Additionally, OpenCV and Boost C++ libraries have been used for image
processing and graph creation, respectively.

Contenido

1.

2.

INETOAUCCTION ..ttt ettt et bttt sbe et e be s st e be bt et e beeueeneas 1
1.1 MOtIVACION Y CONEEXLO . .uverruererreerriererieeesreeeteeesieeesseeensreesseessseesssseessssessssesssseesssessses 1
1.2 ODJEUIVOS evteereiriieesteesteeeeeesteetesteesteeteeseeessessstessseesseessessseesssesssessseessesssesssessseesssesseens 1
1.3 Alcance y Planificacion........cueeverireenininierinee sttt 2
1.4 (0703111511 [0 - F RS URUTSUPTORTUPROPRRPO 2

Tecnologias UtIIZAAAScceerveirieriieerie et cseesteste ettt ese et seeese e ee e e te e be e seesaesreeeneeenseensees 3
2.1 Programacion orientada @ ODJELOS ..ucveevververieeriieiieseeseesieste e e ese e seesreeseeeeeens 3
2.2 Plataforma mMuItirTODOLeoveiiieeieeiieste ettt st st eare e 5

2.2.1 HAVAWAFE ...ttt ettt st e s tae s ste s nteeeneaens 5

2.2.2 SOIWATC ..ottt s s st st sr e n e re e 6
2.3 Planificacion de trayECtOTIASuivveirerrieerieerirerrieesreeseeseessesssesseeeseesseessesssesssesssesessenns 8

2.3.1 Descomposicion en Celdas........oouiiiiiiieiiiieiniie et 8

2.3.2 GTAT0S ettt sttt et e b e st ettt ettt e nae e shtesaeesaneeareen 9

233 DIJKSIIA ottt ettt e 9

2.3.4 AlZoritmo del DANGUETO ..c..veevierieeieeiiirie et ee et e e e e s ee e e beesaeesneesnns 10

Reorganizacion y mejoras de la plataforma multirrobot........cceevveevveervineeineene e 11
3.1 VISION ZENETAL ..eevuvviiiiiiiiie ittt ettt ettt e ettt te e sabeesabe e sabeesbeessaneesareeen 11
32 CLaSE MISSION ...ttt e siee et sttt et st e sttt ea et e sae e s be e sbeesatesateeabeebeebeeebeenneesnes 12
33 Descomposicion €N CELAASccueririeriiririine e e 12

322 C1aSE Celda...cveeuieieiieerieriiee ettt sttt st ettt 13

323 Clase CuatroLadoscceeoeerieriiriierieseeseee et 13

3.2.4 C1aSe CelIDECOMP....ueireerreeieeeieeieeieesteesreeeeesbesbeeseesreesreesreesrsesssesssesssessseesnns 14

325 CIaSE Malla....oueieieiieeiee ettt et s 14
34 €121 {0 TP TP USSP ORISR 17

34.1 (O] F: T €1 o) WS RS 17
3.5 (7 (T) (O I (S8 ¥ ot 0] o SR 18

3.5.1 Clase PlanningPath..........ccccoeviiieiinieiineee e 19
3.6 Cambio de celdas @ PUNLOSc..ereererieeiirieiereeee et s s 19

3.6.1 Clase PIanificadorco.eeiiiiieeiiese ettt 19
3.7 EVIar COLISIONES c.uueeueieiiiiiieite ettt sttt st st e e nn e sae e 20

3.7.1 Clase CONIOIIET......ecceeiirieiierierite ettt st se et s 20
3.8 Mejoras n 1a ClaSe SCEMEevvereirririeiiiieiere et 21

3.8.1 Deteccion de robots y de ROIS.....ccvvvrcierieceiiceceeceece e 21

3.8.2 TJSON Lo e e s 23

L. TOMA @ AECISIONES ...ceuveeueiieitieteeie ettt et e et e bttt e bt sbe e bt e et e e be bt e b e esbe e satesbesbeebeaseesas 25
4.1 ASIZNACION A€ AESHINOS . ..e.uveureereeieieeieeiesie et s e 25
4.2 Creacion de lamalla........ccooiriniiiiiiniiiiiiic s 25
4.3 Creacion del rafooccveciieciecieiiece st st e e aees 27

43.1 Lista de adyacenCiacoveruereererieiireeieeeees et 27
432 Celdas AQYACENLEScevrruerreriiriee ettt s st 29
4.4 Transformacion de celdas @ PUNLOSc.eecvereeierieeieerireesee e 30

2. ANALISIS Y CONCIUSIONES ..evviiuriieiiereeieesieeseeeiteeteeseesteesreeseesssessseesseessessressseesssesssesssessressnes 31

TR =11 0) 1 oY 2 i £ SRS 35

LiSta A fIGUIAS .eveueeeieteeteteet ettt s nre e 36

ANEXOS. ..ttt sttt h e bbbt bt bbbt e et eaeerenaen 38

L Software MICIAL........ccveeeiiiieieire et 39

II. Biblioteca de las clases Creadas.........oeveierieiiiiiinisinsee e 41

Capitulo 1

1. Introduccion

1.1~ Motivacion y contexto

La navegacion de los robots moviles es una de las problematicas actuales en el
mundo de la robdtica. Se encuentra con problemas como adaptarse al entorno,
saber coexistir con otros robots en el mismo entorno y realizar las tareas de manera
eficiente, entre otros. Ademas, el mundo de la robdtica esta en constante cambioy
avance, por ello es muy importante que el software que controla los robots esté
preparado para ser modificado. Para lograr avances se necesita un software rapido
de interpretar y que, en el caso de querer anadir alguna mejoria, no sea necesario
destruir codigo alguno.

El departamento de Informatica e Ingenieria de Sistemas de esta universidad
tiene distintas lineas de investigacion en el ambito de la robdtica. Este trabajo se ha
llevado a cabo dentro de este departamento, en un laboratorio de la universidad y
con una plataforma de bajo coste.

1.2 Objetivos

Este proyecto se enmarca en un proceso de redisefio del sistema con el fin de
hacerlo mas general y adaptable.

En concreto, este trabajo se centra en las partes del sistema dedicadas a la
planificacion de las trayectorias que deben sequir los robots cuando se mueven
conjuntamente en la plataforma, basadas en una descomposicion del escenario en
celas, y enlasimulacidn de la evolucion del movimiento de acuerdo a la planificacion
estableciday al control requerido para evitar colisiones.

En concreto, los objetivos propuestos son los siguientes:

Discretizacion del espacio mediante descomposicion en celdas.

Calculo de trayectorias a partir de la discretizacion anterior.

Control de navegacion para evitar colisiones.

Simulaciones y conclusiones

1.3

Alcance y Planificacion

Se han creado distintas clases para la discretizacion del escenario mediante una
descomposicion en celdas cuadradas. Posteriormente, se hace uso de la libreria The
Boost Graph Library (BGL) [1] para generar un grafo, a partir de la discretizacion
anterior, que permita calcular las trayectorias mas cortas entre los robots y sus
destinos utilizando el algoritmo de Dijkstra. Para una navegacion segura se hace uso
del algoritmo del banquero que evita las posibles colisiones. Por Ultimo, se han
simulado distintas situaciones para evaluar el funcionamiento del programa.

La planificacion llevada para realizar este trabajo ha sido la siguiente:

1.4

Familiarizarse con el hardware y software de la plataforma multirrobot.

Disefiar las clases necesarias para la planificacion de trayectorias mediante
la descomposicion de celdas.

Investigar y estudiar librerias que permitan realizar el disefio pensado.
Implementar las nuevas clases.
Adaptar el algoritmo del banquero a la nueva planificacion.

Simular distintas situaciones y sacar conclusiones.

Contenidos

El contenido que se encuentra en el siguiente trabajo se resume en este apartado:

Capitulo 2: Estado del Arte. Explicacion de conceptos que han sido
utilizados durante el trabajo.

Capitulo 3: Reorganizacion y mejoras de la plataforma multirrobot.
Presentacion y explicacion de los cambios hechos al programa base.

Capitulo 4: Toma de decisiones. Descripcion de las decisiones tomadas
respecto al disefio y a la implementacion del software.

Capitulo 5: Conclusiones y lineas futuras. Resumen de las conclusiones
obtenidas y el planteamiento de posibles desarrollos futuros.

Capitulo 2

2. Tecnologias utilizadas

2.1 Programacion orientada a objetos

El concepto de la programacion orientada a objetos (POO) [2] pretende organizar
los programas representando los objetos de la vida real. Para entender la programacion
orientada a objetos se debe conocer la terminologia:

- Clase: Una clase es una estructura que define unas caracteristicas y que trabaja
con unas operaciones.

- Objeto: Unobjeto de unaclase es un tipo de dato creado en tiempo de ejecucion
con las caracteristicas definidas en la clase.

- Atributos: Son las caracteristicas que son comunes a los objetos de una misma
clase. Cada objeto puede tener asignados distintos valores en sus atributos.

- Métodos: Son las operaciones que un objeto puede efectuar. Se encuentran
creadas dentro de una clase.

Entre las ventajas de la programacion orientada a objetos se encuentra la
flexibilidad del codigo. La creacidon de clases permite a otros usuarios entender el
programa y hacer modificaciones de una manera mas sencilla y rapida. Otra de las
ventajas es la reutilizacion de codigo cuando se necesitan varios objetos de la misma
clase.

Ademas, las clases se pueden relacionar entre si mediante la herencia
compartiendo asi su estructura interna. [3] De esta forma los objetos heredaran las
propiedades de todas las clases a las que pertenecen. Esta manera de relacionarse sirve
para reducir cddigo cuando hay clases que contienen varios atributos y métodos
iguales. Un ejemplo de herencia entre clases se representa en la figura 1.

Poligonos

[3

Triangulo Cuadrado

Figura 1. Herencia en POO.

Las clases suelen tener un método llamado constructor y destructor. Ambos
métodos se invocan automaticamente, el constructor al crear un objeto de la clase y el
destructor al dejar de utilizarlo. Al constructor se le pueden introducir datos que se
utilizaran para inicializar el objeto [3].

Una manera de representar el sistema de programacion orientado a objetos es
mediante el Lenguaje de Modelado Unificado (UML). Se utilizara esta representacion
durante el presente documento para explicar las clases utilizadas y creadas en el
software de la plataforma. [4]

La representacion de las clases incluye el nombre, la lista de atributos y la lista de
métodos tal y como se indica en la figura 2.

Nombre —————+ Nombre (Define su Identidad)

Atributo 1
Atributo 2 = Lista de Atributos (Define su
Atributo n [Eeo)

A

|
Operacion 1
0 &0 9 | Lista de Operaciones (Define

pe I'aCJ.{iJ n * su Comportamiento dentro del

Operacion m J Sistema)

Figura 2. Representacion grdfica de una Clase en UML. [19]

Porotrolado, larelacion entre clases y objetos se representan con distintos tipos
de flechas como se muestra en la figura 3.

- Uso: Es la relacion entre clases en las que una clase utiliza un objeto de
otra clase en algunos de sus métodos.

Ejemplo: Coche hace uso de la gasolinera para repostar.

- Agregacion: es la relacion en la cual un objeto forma parte de otro.
Ejemplo: Jugador forma parte de un equipo.

- Herencia: representa la relacion herencia de POO.

Uso €
Agregacion <———
Herencia ~ <{}——

Figura 3. Representacion grdfica de las relaciones entre clases y
objetos en UML. [3]

2.2 Plataforma multirrobot

El trabajo se realiza en una plataforma multirrobot situada en el laboratorio LO.5 a
del edificio Ada Byron en la Escuela de Ingenieria y Arquitectura de la Universidad de
Zaragoza.

En este apartado se explicara tanto el hardware de la plataforma como el software
desarrollado por anteriores estudiantes desde el que se ha comenzado este trabajo.

2.2.1 Hardware

La plataforma multirrobot se compone de robots, regiones de interés, una camara
y un escenario donde ademas se sitUan los marcadores y los rectangulos que se
necesitan para la identificacion de la plataforma.

Figura 4. Plataforma multirrobot de bajo coste.

La plataforma tiene unas dimensiones de 3,32 metros de largo y 2,34 metros de
ancho. Contiene 8 marcadores distribuidos de a dos por las esquinas, 4 a ras del sueloy
4 elevados a la altura de los robots, que permiten la localizacion de los robots. Por otro
lado, en los 4 lados de la plataforma se encuentran unos rectangulos de tres colores
diferentes, rojo, azul y verde, que permiten la identificacion de las regiones de interés.
Estas regiones de interés son del mismo color que alguno de los rectangulos. Por
ultimo, estan situados los dos robots con un marcador situado en su cara superior para
su posible identificacion.

Los robots utilizados funcionan con la placa "DFRobot RoMeo A11 In One Controller
V2.2" que se comporta como un Arduino Leonardo. Para la comunicacion con los robots
desde el PC se utilizan unos dispositivos XBee, pequeiios mddulos de radio frecuencia,
que transmiten y reciben datos a través de sefiales de radio [5].

Figura 5. Dispositivo XBee para la comunicacion PC-Robot.

La camara utilizada es Microsoft LifeCam Studio 1080p HD que presenta 3
resoluciones, de las cuales se utiliza la de mayor resolucion, 1920x1980 pixeles, para una
mayor precision en la deteccion del robot [6].

Figura 6. Microsoft LifeCam Studio 1080p. [20]
2.2.2 Software

El software utilizado antes de este proyecto estaba implementado por Daniel Roche
Garcia [6], y era una adaptacion y reorganizacion de parte del trabajo de fin de master
de Jose.B Garcia Barreto [5]. En este software se detectaban tanto los marcadoresy los
rectangulos, como los robots y las regiones de interés. Esta deteccion se realizaba
utilizando las librerias OpenCV [7] y ArUco [8] [9]. La primera libreria era utilizada para
la deteccion de los marcadores y de las regiones de interés, mientras que la segunda era
utilizada para la estimacion de la posicion de los robots.

El software desde el que se partio en este proyecto contenia 6 clases que se
relacionaban como se muestra la figura 7. [6] Los atributos de las clases y una
explicacion mas exhaustiva de éstas se encuentran en el anexo 1 de este documento.

- Robot: representa al robot fisico real utilizado en la plataforma.
- Camera: es una abstraccion del sistema de vision de la plataforma.

- ROI (Region of Interest): modela las regiones de interés. Depende de los
colores y lo que el usuario indique, las regiones de interés pueden ser
obstaculos, puntos por los que el robot debe pasar, etc. Para este
proyecto se ha supuesto que todas las regiones de interés son
obstaculos.

- scene: es la representacion de la plataforma en su totalidad. En ella se
detectan los marcadores, los robots, las regiones de interés... Robot,
Camera 'y ROl son agregaciones de la clase scene.

Las clases de PlanningPath y Controller han sido totalmente redefinidas debido al
nuevo disefio que ha adquirido el software de la plataforma y que se explica en el
apartado 3 de este documento.

Robot] [Camera] [Rol]

scene | — —— Controller

[PlanningPath J

Figura 7. Diserio del software antes de este trabajo. Representacion grdfica en UML.

Ademads, esta implementado el uso del archivo JSON (JavaScript Object Notation),
para introducir la informacion necesaria. Un archivo JSON es un formato de texto
utilizado para la transferencia de datos compuesto de un conjunto de campos que estan
asociados con un identificador [10]. Tanto el contenido de este archivo como una
explicacion mas detallada del funcionamiento de un archivo JSON se encuentran en el
anexo .

2.3 Planificacion de trayectorias

Para que el robot alcance su objetivo sin colisionar con las regiones de interés
consideradas obstaculos, se debe crear una planificacion de trayectorias. El area de la
planificacion de trayectorias se puede dividir en dos grandes categorias: los algoritmos
tradicionales de planificacion y los algoritmos basados en un muestreo aleatorio. Los
algoritmos tradicionales de planificacion (algoritmos exactos o combinacionales)
discretizan el escenario para encontrar la mejor ruta para el robot, mientras que los
algoritmos basados en un muestreo aleatorio buscan la mejor ruta mediante un
muestreo pequeno del escenario [5].

2.3.1 Descomposicion en celdas

La descomposicidn en celdas es el algoritmo tradicional de planificacion que ha
sido utilizado en este trabajo. La descomposicidn en celdas discretiza el escenario
descomponiéndolo en regiones, a las que llamamos celdas. Estas regiones pueden ser
de distintas formas dando paso a una descomposicion triangular, rectangular,
trapezoidal... [11] Una representacion de una descomposicion en celdas cuadradas se
muestra en la figura 8.

1. 2.

bﬂ >

»

Figura 8. Descomposicion en celdas cuadradas. 1. El escenario el cual se quiere
discretizar. 2. El escenario se descompone en regiones cuadradas. 3. Se detectan
aquellas regiones que estdn en contacto con alguna region de interés (gris).

2.3.2 Grafos

La Real Academia Espaiiola (RAE) define un grafo como: “"Diagrama que representa
mediante puntos y lineas las relaciones entre pares de elementos y que se usa para
resolver problemas ldgicos, topoldgicos y de calculo combinatorio” [12]. Estan
compuestos por objetos llamados vértices y arcos que representan la conexion entre
los vértices, tal y como se ve en la Figura 9.

Ademads, existen distintas maneras de almacenar grafos dependiendo de las
caracteristicas del grafo y del algoritmo que se utiliza para su manipulacion. En la figura
9 se muestra un grafo almacenado en una estructura de lista llamada lista de
adyacencia. Esta estructura es de dos dimensiones donde la primera dimension se
corresponde con una lista de los vértices que almacenan a su vez en otra lista los vértices
adyacentes a ellos [1] [13] .

s Listz d=
Vertices virtices
I - il T
(ca[/A2 C4 |
cz fcTcs |\
C1 c2 3 lcs ez s |
| |
| C4 i. Cl C6 |
ca s s |[C3C8) |
(€6 { CAC7) |
C7 f C6 C8]/
Co C7 CE8 ..EE e &
T \"H__ —.-'._.-'
&= L 4
\x -..
R'. ‘”-,ﬁ Lizta de
s Ercas
ACos

Figura 9. Representacion de un grafo dirigido y de la lista de adyacencia de él.

2.3.3 Dijkstra

Dijkstra, también llamado algoritmo de caminos cortos, es un algoritmo de
busqueda que desarrollé Edsger Dijkstra en 1956 [14]. Dicho algoritmo consiste en, a
partir de un grafo cuyos arcos tienen pesos de valor positivo, determinar el camino mas
corto entre un vértice y el resto de los vértices del grafo. El camino cuya suma de los
pesos de todos los arcos sea menor, sera el camino elegido por el algoritmo [15].

2.3.4 Algoritmo del banquero

El algoritmo del banquero se utiliza en sistemas de procesos que comparten
recursos conservativos, y consiste en estudiar con anticipacion los recursos que se
utilizaran en todos los procesos para conocer si un estado es seguro. El sistema se
encuentra en un estado sequro si es posible realizar los procesos en un orden en el cual
todas las peticiones de recursos puedan ser concedidas [16] [17].

En el caso de una plataforma multirrobot, dichos procesos son la trayectoria de cada

robot desde su punto de partida a su punto de destino, y los recursos son los espacios
en los cuales se encuentra dividido el escenario.

10

Capitulo 3

3. Reorganizacion y mejoras de la
plataforma multirrobot

3.1 Vision general

En este apartado se presentan las clases utilizadas en este proyecto y su relacion
entre ellas mediante la representacion en UML, figura 10. Las clases en color verde son
las creadas con anterioridad a este proyecto y que se encuentran explicadas en el
apartado 2.2y el anexo | de este documento.

Robot Camera Roi

> scene =

\
.
S N

N
Planificador N
\\
v
{ R «‘ PlanningPath - — }) — >| CellDecomp K >0 Celda

Figura 10. Representacion de la relacion entre las clases de este proyecto.

En los siguientes apartados se explicaran las caracteristicas y funciones de las clases
creadas en este proyecto. En el anexo Il se encuentra una biblioteca con los atributos y
métodos de estas clases.

11

3.2 Clase Mission

La mision de los robots se encuentra almacenada en los atributos de un objeto de la
clase Mission. El usuario introduce las coordenadas del destino al que quiere que
lleguen los robots a través del archivo JSON. En el Anexo Il se encuentra una explicacion
de los métodos y atributos de esta clase.

3.3 Descomposicion en celdas

Para implementar el algoritmo de descomposicion en celdas se han creado
diferentes clases. La clase CellDecomp que representa el conjunto de celdas en el cual
se ha discretizado el escenario; la clase Malla que guarda las caracteristicas de una
descomposicion en celdas cuadradas; la clase Celda que representa cada una de estas
regionesy la clase CuatroLados que guarda las caracteristicas de los poligonos regulares
de 4 lados tales como el cuadradoy el rectangulo. Estas 4 clases mantienen una relacion
entre ellas:

- CellDecomp y Malla mantienen una relacidn de herencia.

- CellDecomp y Celda mantienen una relacién de agregacion donde
CellDecomp esta compuesta por muchas celdas.

- Celday CuatroLados mantienen una relacion de herencia.

ellDecomp< > Celda
A
Malla CuatroLados

Figura 11. Relacion entre las clases para el algoritmo de
descomposicion en celdas. Representacion en UML.

A continuacion, se explicara el disefio de las clases CellDecomp, Malla, Celda y
CuatrolLados. Para entender mejor su funcionamiento, en el anexo Il se pueden
encontrar las explicaciones tanto de los atributos como de los métodos de las clases.

12

3.2.2 Clase Celda

La clase Celda crea objetos que almacenan la informacion de cada region en la que
se ha dividido el escenario. Esta clase esta disefiada de tal forma que no tiene
restricciones en el nUmero de esquinas de las regiones, dando la posibilidad en el futuro
de que las celdas puedan ser diferentes formas.

Entre los atributos de esta clase se encuentra state, un atributo al que se le asigna
un dato de tipo entero para indicar si hay situada alguna region de interés en esta celda
y de que tipo es. Para identificar el estado de la celda se consultaron funciones de
distintas librerias como son OpenCV y Boost C++ que calcularan la interseccion entre
dos poligonos. Finalmente, se decidid hacer uso de una funcion llamada intersects de la
libreria Boost C++. Esta funcion devuelve un valor de tipo bool: true cuando hay una
interseccion entre los dos poligonos y false en el caso contrario.

-

False

Figura 12. Valor que devuelve la funcion intersects de Boost. El rectangulo azul
representa a una celda y el poligono rosa a una region de interes.

3.2.3 Clase CuatroLados

La clase CuatroLados al tener una relacion de herencia con la clase Celda tendra los
atributos y métodos de ésta ademas de los suyos propios. En esta clase se crean
regiones con forma cuadrada o rectangular.

La razon de crear esta clase es facilitar mejorias en el futuro. En vez de crear
directamente las celdas cuadradas, se crea una clase con la forma que se desea. De esta
forma, en el futuro, si se desea implementar un algoritmo de descomposicion en celdas
triangulares, se debera crear una clase tridangulo con las caracteristicas propias de un
triangulo y la clase Celda no tendra que ser modificada.

13

3.2.4 Clase CellDecomp

La clase CellDecomp representa el conjunto de celdas en el cual ha sido dividido el
escenario. Para comodidad del usuario, se han creado métodos dentro de esta clase que
permiten imprimir y mostrar por pantalla la descomposicion en celdas realizada.

En este proyecto la descomposicion en celdas utilizada ha sido la de celdas
cuadradas que se lleva a cabo en la clase Malla. En el futuro, si se desea implementar la
descomposicion en celdas con otra forma diferente al cuadrado, Unicamente se debera
crear una clase, con relacion de herencia con CellDecomp, que represente la division del
escenario en regiones de la forma deseada, el método para imprimir y dibujar dicha
descomposicion no sera necesario crearlo debido a que lo heredara de esta clase.

3.2.5 Clase Malla

La clase Malla al tener una relacion de herencia con la clase CellDecomp tendra los
atributos y métodos de ésta ademas de los suyos propios. En esta clase se crea una
descomposicion en celdas cuadradas. Esta clase crea un objeto que representa la
division del escenario en cuadrados del tamafio de los robots.

A continuacion, se muestran los intentos para dibujar la malla mediante el método
creado en la clase CellDecomp y finalmente, el resultado de dicha descomposicion
correctamente.

En un principio se dibujo la malla introduciendo en la funcion line() de OpenCV las
coordenadas de los puntos de las celdas en pixeles. Para ello, primero se cambid el valor
de las coordenadas para escribirlas respecto al origen de coordenadas que establece
OpenCV. Esta diferencia en el origen de coordenadas de la plataforma y de OpenCV es
consecuencia de que OpenCV coje como punto (0,0) la esquina superior izquierda de la
imagen, y en el mundo matematico y de la ingenieria este punto esta situado siempre
en la esquina inferior izquierda, como en la plataforma utilizada en este proyecto. En la
figura 13 puede verse donde estan situados los origenes de coordenadas segun OpenCV
y la plataforma.

\ 4

(0,0) OpenCV

<
¢

A

(0,0) Plataforma

Figura 13. Posicion del eje de coordenadas en la plataforma y en OpenCv.

Posteriormente, habia que convertir las coordenadas en centimetros a coordenadas
en pixeles. Para ello se cred una funcion que transformaba la distancia en centimetros

14

entre puntos a pixeles. Para dicha conversion era necesario conocer una relacion entre
centimetrosy pixeles. Tanto el tamafo de los marcadores, como la distancia entre ellos
eran conocidos en pixeles y en centimetros. Ambos tenian ventajas e inconvenientes y
por ello se realizd un pequeno estudio para conocer cual calculaba la mejor relacion
centimetro-pixel que se muestra en la figura 14. Para dicha prueba se realizaron 100
mediciones. Los marcadores con altura no se utilizaron en esta prueba debido a que al
no estar adheridos a la plataforma la distancia entre ellos puede variar mucho cada vez
que se instala la plataforma.

Ventajas Inconvenientes Media .
. Desviacion
(cm/pixel)
Tamariio Se realiza de forma | Distancia muy
del automatica. pequena, el error se 1.7661 0.3903e-3
marcador apreciara mucho.
Distancia Requiere tomare La distancia es
ntr intr ir | ran | error
entre int o.dua as g a’de,,e erro i 1.8506 0.1296e-6
marcadores | medidas al montar | serd mas pequefio.
el escenario.

Figura 14. Relacidn centimetro-pixel.
x: indica la conversidn en el eje x e y: indica la conversion en el eje y.

Teniendo en cuenta los datos, se escogid la conversion calculada por la media de las
distancias entre los marcadores. El dibujo de la malla resultante se muestra en la figura

15.

Figura 15. Intento dibujo malla 1.

En la figura anterior, a pesar de que el origen de coordenadas ya coincide, se puede
apreciar como el eje de coordenadas de la malla no coincide con el eje de coordenadas
de la plataforma, pues este eje no se sitUa sobre la linea imaginaria que une a los dos

15

marcadores inferiores que delimitan la plataforma. Esto es debido a que la imagen
capturada por la camara esta deformada. Por ello, se necesita convertir la posicion de
las esquinas de las celdas en la plataforma real a su posicidn en pixeles en la imagen
deformada.

Para poder convertir las coordenadas de los puntos de centimetros de la plataforma
a pixeles de la imagen, se debe calcular la matriz de homografia (figura 16). Esta
conversion se ha realizado dentro de un método nuevo creado dentro de la clase scene,
ConversionPlatformToCV, que utiliza una funcidon de OpenCV llamada findHomography.
A esta funcion, para que pueda calcular la matriz de homografia, hay que introducirle 4
coordenadas en pixeles y sus correspondientes 4 coordenadas en el mundo. [18] [7]

<4

(i,j) Imagen capturada por la i hyy hys hys %
camara jl=|hsy hy, hyy|= (J’)
// \\ 1 hsy hsy has 1

Matriz de

(x,y) Plataforma real homografia

Figura 16. Conversion de puntos del mundo real a la imagen capturada por la cdmara.

En la figura 17 se puede ver la malla dibujada sobre el video de la plataforma. En el
apartado 4.2y en el anexo Il de este documento, se explicaran las caracteristicas de esta
malla cuadrada como, por ejemplo, porque la malla no llega a la parte superior de la
plataforma.

Figura 17. Dibujo de una malla creada por descomposicion en celdas
cuadradas sobre la plataforma.

16

3.4 QGrafo

Una vez el escenario esta discretizado y descompuesto en celdas se crea un grafo
donde cada celda es un vértice del grafo que se conecta mediante arcos con sus celdas
contiguas. En este proyecto, al considerar todas las regiones de interés como
obstaculos, las celdas que contienen una regidn de interés no estan conectadas con sus
celdas contiguas pues el robot no puede pasar por ellas. Para disefiar este grafo se ha
creado la clase Graph.

3.4.1 Clase Graph

El constructor de la clase Graph recorre la malla en busca de celdas contiguaspara
relacionarlas mediante un arco, creando asi un grafo. Como se ha explicado en el
apartado 2.3.2 de este documento, almacena dicho grafo en una lista de adyacencia.
Ademads, para calcular mas adelante la trayectoria mas corta, se le asigna un peso de
valori alos arcos que unen los vértices. En la figura 18 se puede ver una representacion
grafica del grafo que se crearia en la clase Graph a partir de una malla que contiene un
obstaculo en la celda Cs.

C1 C2 C3 0 @ @
C4 C6 @ @ @
C7 C8 C9 @ @ @

Figura 18. Representacion de un grafo dirigido interpretando la region de interés situada en la
celda C5 como un obstaculo.

Para la simulacion de la navegacion de los robots, las celdas que conforman el borde
de la malla se han asignado como celdas de descanso. Estas celdas no se han agregado
al grafo, y seran las celdas donde los robots iniciaran y terminaran sus trayectorias.

Adicionalmente, se ha creado un método en la clase Graph para guardar en un
archivo png el dibujo del grafo calculado. En la figura 19 se puede ver un trozo de un
grafo creado a partir de la descomposicion en celdas cuadradas de la plataforma
utilizada en este proyecto. Debido a que el grafo se compone de 215 nodos y 782 arcos,
no se expone laimagen entera.

17

Figura 19. Pequena parte de un grafo.

3.5 Calculo de trayectorias

Con el grafo creado, se pueden calcular trayectorias eligiendo un punto de partida
y uno de destino. Para ello se ha creado la clase PlanningPath, que crea objetos cuyos
atributos almacenan las trayectorias que los métodos de esta clase calculan.

En el ejemplo de la figura 18, suponiendo que el robot tiene que irde lacelda C1ala
celda C6, existirian dos trayectorias para alcanzar el destino puesto que desde la celda
1, el robot puede dirigirse hacia la celda 2 o la celda 4 (figura 20):

- Trayectoria 1 (azul): C1 > C2 >C3 >C6
- Trayectoria 2 (naranja): C2 2>C4 >C7 >C8 >Cq 2C6

1 2 c3
Start
v
ca C6
A End
c7 c8 9

Figura 20. Trayectorias entre dos puntos

18

3.5.1 Clase PlanningPath

La clase PlanningPath, no busca Unicamente una trayectoria del robot al
destino, sino que se busca la trayectoria posible mas corta. Para ello primero se
utiliza una funcidn de la libreria Boost que implementa el algoritmo Dijkstra. La
caracteristica de esta funcion es que deja introducir el punto de partida, pero no el
de destino, y por ello devuelve la trayectoria mas corta de la celda inicial a todas las
demas celdas del grafo. Siguiendo el ejemplo, esta funcion nos devolveria las
siguientes trayectorias:

- TrayectoriaA(deC1aC2):C2 > C2

- TrayectoriaB(deC1a(C3): C2 > C2> (3

- TrayectoriaC(de C1aCq): C1 > Cy

- Trayectoria D (de C1 a C5): No hay trayectoria posible. Obstaculo en Cs.

- Trayectoria E (de C1a C6): C2 > C2> (3> (6

- TrayectoriaF(deC1a (7):C2 > C4> C7

- Trayectoria G (de C1a C8): C21 > C4—> C7> (8

- Trayectoria H (de C1 a Cg hay dos trayectorias igual de longitud,
devolvera una aleatoriamente): C1 > C2> (3> C6> Cg

Una vez se tienen estas trayectorias, solo queda elegir aquella trayectoria que
conecta la celda inicial con la celda final. En este ejemplo esa trayectoria seria la E. La
azul en lafigura 20.

3.6 Cambio de celdas a puntos

La ruta en el grafo obtenida con la clase PlanningPath es un conjunto de celdas. El
siguiente paso consiste en transformar esta secuencia de celdas en una secuencia de
puntos. Debido a que hay distintas maneras de hacer dicha transformacion, como se
explicara en el capitulo 4 de este documento, se ha creado la clase Planificador que se
encarga de convertir la ruta creada en PlanningPath a una secuencia de puntos.

3.6.1 Clase Planificador

La clase Planificador es la encargada de hacer la conversion de una trayectoria de
celdas a una secuencia de puntos para poder ser enviada al robot, y dependera del
formato que el usuario habra introducido en el archivo JSON.

En este trabajo se han calculado las coordenadas del centro de las celdas cuadradas,
y serdn estas coordenadas las que formen la nueva secuencia de puntos.

19

Celda1 > Celda2 >Celda3 Punto 1 = Punto 2 2 Punto 3

Figura 21. Representacidn de secuencia de celdas y secuencia de puntos.

El resultado de los puntos que debe sequir el robot se ha dibujado por pantalla para
que el usuario pueda ver las trayectorias de los robots. Se ha representado la celda de
la que parten los robots con un circulo azul, y con uno amarillo la celda de destino.

7 £ 2 R
e EEEEl
s .

) S b s
(i1 T O
oo O e I S

Figura 22. Representacion de las trayectorias que deben sequir los robots.

3.7 Evitar colisiones

Para evitar colisiones durante la navegacion, se ha adaptado el algoritmo del
banquero a la planificacion de trayectorias mediante la descomposicion en celdas. Este
algoritmo se ha implementado en la clase Controller.

3.7.1 Clase Controller

La clase Controller es la clase creada para generar un supervisor que asegure una
navegacion sin colisiones. Para ello, se escogera un robot aleatoriamente y se
comprobara, antes de realizar ningun movimiento, si el estado es seguro. Un estado es
seguro si, en el hipotético caso de trasladar el robot a una nueva celda, si existe un orden
en el movimiento de los robots en el cual todos los robots pueden alcanzar su destino.
Siel estado es seguro, este controlador permite mover el robot a su siguiente punto. En
caso contrario, el robot no se movera de su sitio y se pasara a comprobar si es seguro
mover a otro robot de su posicion. Esta clase cuenta ademas con un método dibujo, que
va mostrando por pantalla las trayectorias que van recorriendo.

20

La comprobacion del funcionamiento de esta clase se ha realizado mediante
simulaciones de distintas situaciones que se muestran en el apartado 5 de este
documento.

3.8 Megjoras en la clase scene

Por Ultimo, en este capitulo se van a comentar las mejoras que se hicieron en la clase
scene, creada antes de empezar este proyecto, para mejorar la calidad del software de
la plataforma.

3.8.1 Deteccion de robots y de ROIs

Durante el proyecto, una vez las trayectorias fueron dibujadas y mostradas por
pantalla, se pudo apreciar como las trayectorias no empezaban en la celda donde se
situaba el centro del robot, sino en una celda cercana, figura 23. Ademas, algunas
trayectorias pasaban por encima de objetos.

IIIIIIIIIIIIH
E====IIIII B b

Figura 23. Trayectorias dibujadas con una mala deteccion de los robots.

Por ello, se decidid mostrar por pantalla el centro de los robots y los contornos de
las regiones de interés. En la figura 24, laimagen de la izquierda muestra los contornos
de las regiones desplazadas, al igual que en la foto de la derecha se observan
desplazados los centros de los robots.

21

b s [y (=] ' W & £

Figura 24. Mejora en la deteccion de las regiones de interés y de los robots. Parte 1.

El problema por el cual estos objetos eran detectados con mucho margen de error
se debia a la matriz de homografia que se utilizaba para convertir los puntos de pixeles
de la imagen a puntos en centimetros de la plataforma. Como se ha explicado en el
aparatado 3.2.5 de este documento, para calcular la matriz de homografia mediante la
funcion findHomography de OpenCV, que relaciona los pixeles de la imagen con los
centimetros de la plataforma, se necesitan 4 puntos conocidos tanto en pixeles como
en centimetros. Al comienzo de este proyecto, se escogian los centros de los
marcadores para encontrar dicha matriz de homografia. El problema de estos puntos
es que OpenCV no devuelve los centros de los marcadores y estos deben ser calculados,
acumulando errores en el proceso. Esto hacia que el centro de los marcadores no
tuviera mucha precisidn, y como consecuencia, la matriz de homografia no relacionase
correctamente los pixeles de la imagen con los centimetros de la plataforma.

Para corregir este error se utilizaron las esquinas de los marcadores que limitan el
espacio. Es decir, la matriz de homografia es la misma que se calcula para dibujar en la
imagen, con la diferencia de que esta vez los puntos se multiplican por la matriz inversa
de dicha matriz de homografia, para poder pasar de pixeles a centimetros.

i his hiz hys X X hyy Be Wah ™= i
jl=|hay hyy hys *(y) (y): hyy hy, hyg =

1 h31 h32 h‘33 1 1 h31 h32 h33 1
De coordenadas en centimetros a De coordenadas en pixeles a coordenadas
coordenadas pixeles. centimetros.

Figura 25. Conversion de centimetros a pixeles y viceversa.

El resultado de la deteccion de los robots y los ROIs después de calcular la matriz de
homografia con los puntos comentados anteriormente, se puede ver en la figura 26.

22

Figura 26. Mejora en la deteccion de las regiones de interés y de los robots. Parte 2.

3.8.2 JSON

Para que el cddigo pudiera adaptarse a cualquier plataforma se ha decidido
introducir mas datos a través del archivo JSON. Al comenzar este proyecto, los
identificadores de los marcadores y de los robots estaban escritos dentro del codigo, de
tal forma que, si se detectaba otra plataforma con distintos marcadores y robots, el
cddigo fallaria durante el proceso de reconocimiento de la plataforma. Como se puede
ver en la figura 27, en los marcadores elevados el identificador empieza por 1, en los
marcadores a ras del suelo el identificador empieza por 2 y en los robots por 3.

markers

Figura 27. Elementos detectados por la funcion DetectMarkers de OpenCV.

La identificacion de los marcadores y de los robots se utiliza a lo largo del cddigo. Si
esta identificacion se introduce desde el cédigo mismo, en una plataforma con
marcadores diferentes éste no podria funcionar. Para ello se han introducido los
identificadores de los marcadores y de los robots a través del archivo JSON.

23

Ademads, al haber definido los identificadores dentro del cddigo, Unicamente se
podian tener 3 robots (ids=31,32,33) y en el caso de utilizar mas robots habia que
modificar el cddigo. Por contrario, al introducir los ids de los robots mediante el archivo
JSON, estos seran guardados en un vector y no importara el nUmero de robots siempre
y cuando coincida con el nUmero de identificadores introducidos por el usuario.

24

Capitulo 4

1. Toma de decisiones

Redisenar el software de una plataforma multirrobot puede realizarse de muchas
maneras. A ello hay que anadir que a lo largo del redisefio pueden aparecer dificultades
que requieran estudiar distintas formas de solucionarlas. Por ello evaluar las diferentes
opciones es necesario para poder decidir cual es la mejor. En este apartado se
mostraran distintas decisiones que se han tenido que tomar a lo largo de este proyecto.

4.1 Asignacion de destinos

En un principio se pensd en una situacion donde el usuario requeria X robots en X
destinos, pero no importaba cual era el robot que llegaba a cada destino. Para ello se
habia pensado en calcular en PlanningPath la trayectoria mas corta de cada robot a
cada destino. De esta forma, suponiendo 2 robots y 2 destinos, deberiamos obtener 4
trayectorias, tal y como muestra la figura 18. Una vez calculadas estas 4 trayectorias se
seleccionaria el conjunto mas corto: las trayectorias 1y 2 ¢ las trayectorias 3 y 4.

\
Robot 1 { Destino 1 Trayectoria 1: Robot 1 — Destino 1

Trayectoria 2: Robot 1 — Destino %

\
_ Trayectoria 3: Robot 1 — Destino 1
Robot 2 Destino 2

Trayectoria 4: Robot 1 — Destino %

Figura 18. Relacidn entre robots y destinos.

Ala hora de implementar la seleccion del conjunto mas corto nos encontramos con
la complejidad que conlleva hacerlo para n numero de robots. Por ello se decidio dejar
esta opcion para un futuro TFG y que en este proyecto fuera el usuario el que asignaba
a cada robot un destino.

4.2 Creacion de la malla
A la hora de crear la malla la primera decision que se debe tomar es la forma y el

tamano de las celdas. Para este proyecto se decidié una malla de celdas cuadradas con
el tamano del didmetro del robot.

25

Cuanto menor es el tamano de la celda, mas optimizada esta la trayectoria debido
a que no se pierde tanto espacio cuando una celda estd ocupada por una parte de un
obstaculo, figura 28. Pero, si la celda es menor que el tamafo del robot, al realizar la
trayectoria el robot no se situara en una Unica celda en cada punto, su tamano abarcara
las celdas contiguas. Debido a esto se decidio que el tamaio seria el menor posible para
que el robot pueda ocupar Unicamente una celda, siendo este tamanio el didmetro del

robot.

Figura 28. Malla con dos tamarios distintos de celda.

Pero dividir la malla en celdas con el tamaiio del robot también tiene sus
consecuencias. La division entre el tamafo de la plataforma y el del robot puede no
dar exacto dejando asi un espacio de la plataforma sin rellenar. En este trabajo se
tomo la decisidn de incluir unas celdas con forma de rectangulo si el area era mayor
del 80% del area del resto de celdas.

La celda se empieza creando desde el punto cero de la plataforma, por ello la
malla no alcanza la parte superior de la plataforma, porque el rectangulo tendria
menos del 80% del area del resto de celdas. En el caso de la Ultima columna ocurre lo
contrario, el rectangulo es de un area mayor al 80% y por ello la Ultima columna esta
formada con rectangulos.

-

l 1

— P =

columna At —
HEREREET T TrErme.

IR EEEEEmEE
ERERELEAEESSEESN -

Primera

Primera
fila

Figura 29. Malla con celdas cuadradas.

26

4.3 Creacion del grafo

4.3.1 Lista de adyacencia

Alahorade crear el grafo se decidio utilizar la libreria Boost C++ que posee la opcion
de creary trabajar con grafos. Como se explico en el apartado 2.3.2 de este documento,
los grafos pueden almacenarse de distintas maneras. Boost C++ permite almacenar los
grafos o bien, en una lista de adyacencia o en una matriz de adyacencia. Una lista de
adyacencia, como se explico anteriormente, es una lista de vectores que almacena a su
vez otra lista de vectores. Por otro lado, una matriz de adyacencia es una matriz
cuadrada donde se representa con 1y O si hay relacion entre vértices o no.

A B C D E F
Alog O O O O O .
BE|lo o1 o o 1 > Matriz de
° ejr e eo@ advacencia
oc|jo o o o 1 O
ElIC o O 1 (o]
° F|ll o o o o O
—
EH ol .
C F .
(=) hac —» Listade
° o[E advacencia
E C
FEla

~——

Figura 30. Matriz de adyacencia y lista de adyacencia de un grafo dirigido.

En la siguiente tabla se muestran las ventajas y desventajas de la matriz de
adyacencia sobre la lista de adyacencia [1].

Ventajas Desventajas

Utiliza mucha memoria.

Permite introducir y eliminar

; El tiempo que utiliza para
arcos en tiempo real.

recorrer los arcos de cada vértice
es mucho mayor.

Figura 31. Ventajas y desventajas de la matriz de adyacencia respecto de la lista de
adyacencia.

Este trabajo utiliza listas de adyacencia debido a que una vez creado el grafo no
se va a modificar los arcos creados y por ello no es necesario utilizar una matriz de
adyacencia con las desventajas de espacio y tiempo que estas tienen. Las siguientes
decisiones que deben ser tomadas son las caracteristicas de dicha lista de
adyacencia. Lo primero de todo es conocer que pardmetros requiere la clase la clase
adjacency_list de Boost.

27

Los parametros utilizados en este proyecto han sido:

OutEdgelList: Representa la lista de arcos.

VertexList: Representa la lista de vértices.

Directed: Indica si el grafo es dirigido, no dirigido o dirigido
bidireccional con acceso a los arcos.

EdgeProperties: Propiedades internas de los arcos.
puede trabajar y devolver distintos tipos de datos.

De OutEdgelListy VertexList puede almacenarse entre distintos tipos de datos que
encajan en diferentes situaciones. Entre los tipos de datos que se pueden elegir, la
lista y el vector son los mas utilizados. En la tabla 2 se muestra en qué condiciones es
de mayor utilidad seleccionar el vector y en cuales situaciones la mejor opcion es la

lista.
Conozco el numero | Necesito acceder a los Necesito modificar el
de vértices antes de | vértices almacenados grafo una vez creado:
crear el grafo de forma continua anadir o eliminar vértices
Vector X X
Lista X

Figura 32. Situaciones en las cuales es mds favorable utilizar el vector y en cuales utilizar
la lista en OutEdgelist y VertexList, pardmetros de la clase Adjacency list de Boost.

En este proyecto el nUmero de vértices del grafo es conocido antes de crearlo
(numero de celdas que contiene la malla). Ademas, una vez el grafo esté creado, éste
no requiere de modificacidn alguna, pero en cambio, si se necesita un rapido acceso a
los vértices para calcular la trayectoria del robot. Por estas razones, el tipo de dato
seleccionado tanto para OutEdgeList como para VertexList ha sido el vector.

Otro de los parametros nombrados anteriormente ha sido el pardmetro Directed.
Un grafo dirigido conecta vértices en un Unico sentido, mientras que en un grafo no
dirigido sus arcos tienen ambos sentidos. Boost C++ da una tercera opcion que es el
grafo dirigido bidireccional con acceso a los arcos, pero requiere mucho espacio para
cada arco. En este proyecto se ha creado un grafo direccionado dando la posibilidad en
el futuro de que se implemente algun tipo de restricciones como, por ejemplo, carriles
de circulacion de un Unico sentido.

28

4.3.2 Celdas Adyacentes

En un principio se pensd, para deducir si dos celdas eran contiguas, comprobar si
compartian dos esquinas. Este método funciona, no solo para la descomposicion en
celdas cuadradas, sino para la descomposicidn en celdas de cualquier poligono regular.

4

1 2 3

L

Figura 33. Mallas formadas por poligonos regulares.

El problema de deducir si dos celdas son contiguas de la anterior manera es en la
descomposicion trapezoidal. La descomposicion en celdas trapezoidales detecta las
esquinas de los obstaculos en el entorno y traza una linea vertical desde ese punto hacia
arriba, hacia abajo o ambas, dependiendo de lo que el obstaculo permita creando
trapecios. Como se puede ver en la figura 34, siimplementamos el método anterior no
detectara la celda 4 y 6 como celdas contiguas, debido a que solo comparten una
esquina de sus trapecios.

Inicio] 2 4

6 12

Ohbjetivo
'

Figura 34. Espacio descompuesto en trapecios.

A pesar de que para la descomposicion en celdas cuadradas utilizado en este
proyecto este método funciona, como se desea hacer el cédigo lo mas general posible
y que permita afiadir mejorias en el futuro con facilidad, se decidio utilizar otro método.

Para ello se hizo uso de una funcidn de Boost C++ llamada intersection. Esta funcion
puede devolver un punto (Point), una linea de puntos (LineString) o un poligono
(Polygon), dependiendo del tipo de dato que se elige para el parametro GeometryOut.
Debido a que para este proposito no era necesario calcular el poligono que genera la
interseccion y la interseccion debia de ser de mas de un punto, se selecciono el tipo de
dato LineString que representa a una secuencia de puntos. En la siguiente tabla se
muestra el tamano de la secuencia de puntos calculada por la funcion de Boost C++ en
las que las celdas se encuentran en distintas situaciones.

29

Situacion 1: Situacion 2: Situacion 3:

Length 0 1 >1
(output)

Figura 35.0utput de la funcion "intersecion" de Boost.

La tabla anterior demuestra que la funcion intersection puede encontrar una
interseccion entre dos celdas a pesar de que estas no sean contiguas como ocurre en la
situacion 2. Por ello si Unicamente a encontrado un punto, el método creado no las
considera celdas adyacentes y en el grafo no se anade un arco entre sus vértices.

4.4 Transformacion de celdas a puntos

Como anteriormente se explicd en el apartado 3, se decidio que la transformacion
de celdas a puntos se creard en una clase diferente a PlanningPath. Esto se debe a que
hay multiples opciones para convertir la celda en un punto. Las dos mejores opciones
las que se pueden ver en la figura 36: calcular las coordenadas del punto medio de la
celda (opcion A) o calcular las coordenadas del punto del medio de la linea de
interseccion entre celdas (opcion B). Para este proyecto se opto por la opcidon A dejando
la opcion B como posibilidad para mejorar en el futuro y que sea el usuario el que pueda
elegir.

Opcion A Opcion B

Figura 36. Transformacion de celda a punto.

30

Capitulo 5

2. Analisis y conclusiones

El principal objetivo de este proyecto era mejorar un software de una plataforma
multirrobot afiadiendo una planificacion de trayectorias basada en la descomposicion
en celdas. Se realizaron diferentes simulaciones, como la que se muestra a
continuacion, que permitia comprobar el funcionamiento de la planificacion de
trayectorias:

1. Se disponia el escenario sin ninguna region de interés situada en él y se
calculaban las trayectorias para los robots.

=
iIIIIIIIIIII

i) s
==I =ﬁIIIIII

Figura 37. S/mulaaon planificacidn de trayectorias. Parte 1.

2. A continuacion, se colocaba un obstaculo que bloqueaba algunas celdas
situadas en alguna de las trayectorias.

[T T |

IIIII==II====III
| IR SR | RN o e

Figura 38. Simulacion planificacion de trayectorias. Parte 2.

31

3. Serepetia el paso 2.

Figura 39. Simulacidn planificacién de trayectorias. Parte 3.

Como podemos comprobar, las trayectorias van cambiando para evitar los
obstaculos del camino.

Para analizar el funcionamiento de la clase controller que supervisa la navegacion y
evita colisiones, se ha creado un método que permite crear simulaciones. Para apreciar
mejor la simulacion, se han dibujado las trayectorias en colores y se ha ido pintando de
negro la parte de la trayectoria que el robot ya ha realizado. Ademas, se ha pintado con
un circulo azul el punto inicial de los robots, y con un circulo negro, se indica en que
posicion estarian los robots después de haberse movido.

Figura 40. Simulacion algoritmo del banquero. Los circulos negros representan la
posicion actual de los robots, los amarillos el destino y los azules la posicidn inicial de los
robots.

Ademas, para comprobar si el algoritmo del banquero utiliza mucho tiempo, se ha
hecho un estudio del tiempo que le cuesta al programa calcular si una posicidn es segura
o no. Para ello, se ha variado el nUmero de robots y el tamano de las trayectorias y se
han tomado 1000 medidas en cada simulacion. Como se puede ver en la figura 41, el
tiempo que se tarda en decidir si un estado es seguro o no, no es apreciable para el
humano.

32

Numero de | Trayectoria mas larga Media de tiempo . s
Desviacion
robots (celdas) (ms)
3 24 0.212 2.1932-13
6 27 0.427 1.269e-13

Figura 41. Estudio del tiempo que le cuesta al algoritmo del banquero decidir si un estado
es seguro o no. NUmero de muestras: 1000.

Dado un estado formado por n pares (r_i,t_i) donde r_i es un robot y t_i es su
trayectoria, el coste de determinar si un estado es seguro esta acotado superiormente
por n? * L, donde L es la longitud de la trayectoria mas larga.

La conclusidn general que puede sacarse al terminar este proyecto, y que se ve
reflejada sobre todo en el apartado 4 de este documento, es la necesidad de adaptarse
a las circunstancias. El disefio de software pensado antes de empezar un proyecto
puede sufrir cambios debido a las dificultades que se encuentra por el camino o a ideas
nuevas que surgen para mejorarlo.

Los conocimientos que he adquirido durante este proyecto respecto a mi formacion
anterior, grado en ingenieria electronica y automatica, son la planificacion de
trayectorias y la busqueda y uso de nuevas librerias. Ademas, este proyecto me ha
permitido reforzar y mejorar mis conocimientos basicos en la programacion orientada
a objetos y a conocer un lenguaje nuevo para mi, como es C++.

Durante todo el proyecto a la hora de disefiar las clases necesarias para el algoritmo
de descomposicidn en celdas, se ha tenido en cuenta futuras mejoras y la manera de
implementarlas sin necesidad de modificar el cddigo escrito en este proyecto. Entre
estas mejoras, destaca crear un grafo no constante que permita modificar el estado de
las celdas durante la navegacion de los robots, por ejemplo, afiadir o eliminar regiones
de interés, o convertir el robot en obstaculo si este permanece quieto dentro de la
plataforma, bien debido a una averia o por requerimiento del usuario. Esto supone una
replanificacion de las trayectorias antes de hacer uso de la clase controller. Para
comprobar si esta mejoria para el futuro era factible, se realizaron unas medidas para
calcular el tiempo que tarda el algoritmo en planificar una trayectoria. Se realizaron
1000 medidas para ambos casos y se consiguieron unos resultados que permiten
replanificar la trayectoria antes de cada movimiento:

NUmero de Media de tiempo (ms) Desviacion
celdas

7 0.4328 3.4066e-9

11 0.44919 5.1737e-9

24 0.48714 9.8395e-9

Figura 42. Estudio del tiempo que tarda en calcular una trayectoria. Numero de muestras:
1000.

33

Otras lineas futuras que pueden mejorar el software de esta plataforma multirrobot
son:

Implementar un algoritmo que permita decidir que robot va a cada
destino dependiendo de la posicion de éstos como se explica en el
apartado 4.1.

Implementar un algoritmo de descomposicion en celdas con otras
formas: trapezoidal, triangular...

Transformar la trayectoria de celdas a trayectorias de puntos utilizando
criterios diferentes, tal y como se explica en el apartado 4.4.
Implementar otras formas de discretizar el escenario como, por
ejemplo, los grafos de visibilidad. Dando asi la oportunidad al usuario
de elegir de qué forma le conviene mas discretizarlo.

Asignar distintas funciones a las regiones de interés dependiendo de su

color: obstaculos, destinos, puntos intermedios por donde pasar para ir
a un destino...

34

Capitulo 6

3. Bibliografia

[1] J. Siek, L.-Q. Lee y A. Lumsdaine, boost c++ libraries, Addison-Wesley
Professional., 2001.

[2] L. D.Craig, Object-Oriented Programming Languages: Interpretation, London:
Springer, 2007.

[3] A. Pertursa, D. Tomas, C. Pérez, J. Aragonés, J. A. Pérez y F. Moreno,
Programacion 2, Universidad de Alicante.

[4] B. Rumpe, Modeling with UML, Springer, 2016.

[5] J. B. G. Barreto, «Disefio e implementacion de un algoritmo que evite colisiones en
un sistema multi-robot utilizando el Modified Banker’s Algorithm.,» Universidad
de Zaragoza, 2020.

[6] D. R. Garcia, «Rediseno de una Plataforma de robots moéviles,» Universidad de
Zaragoza, 2021.

[7] «OpenCV,» [En linea]. Available: https://opencv.org/.

[8] F. J. Romero Ramirez, R. M. Salinas y R. M. Carnicer, «Speeded Up Detection of
Squared Fiducial Markers,» de Image and Vision Computing 76, 2018.

[9] R. M. Salinas, F. J. Cuevas y R. M. Carnicer, «Generation of fiducial marker
dictionaries using Mixed Integer Linear Programming,» de Pattern Recognition,
2015.

[1 J. Pokorny, «JSON Functionally,» de Advances in Databases and Information
0] Systems, 2020.

[C.Mahulea, M. Kloetze y R. Gonzdlez, Path Planning of Cooperative Mobile
1] Robots, Piscataway: IEEE Press Editorial Board, 2020.

[1 R. A. Espafiola, «Dle,» [En linea]. Available: https://dle.rae.es/grafo.

[l anonymous, «Universidad de Pamplona,» [En linea]. Available:
3] https://www.unipamplona.edu.co/unipamplona/portallG/home 23/recursos/general
/11072012/grafo3.pdf.

[1 S. Mukherjee, «Dijkstra’s Algorithm for Solving the Shortest Path Problem on
4] Networks Under Intuitionistic Fuzzy Environment,» Journal of Mathematical
Modelling and Algorithms, vol. 11, pp. 345-359, 2012.

[1 E.W.Dijkstra, «A Note on Two Problems in Connexion with Graphs,» Numerische
51 Mathematik, vol. 1, pp. 269-271, 1959.

[1 J.Ezpeleta, F.Tricas, F.Garcia-Vallés y J.M.Colom, «A Banker's solution for
6] deadlock avoidance in FMS with flexible routing and multi-resource states,» de
IEEFE Transactions on Robotics and Automation, vol. 18, 2002, pp. 621-625.

35

[l L.Kalinovcic, T. Petrovic, S. Bogdan y V. Bobanac, «Modified Banker's algorithm
7] for scheduling in multi-AGV systems,» de IEEE International Conference on
Automation Science and Engineering, 2011.

[1 J.B. Arbex, «Localizacién de multiples robots moviles mediante una camara
8] cenital,» Universidad de Zaragoza, 2016.

[1 L.E. Aponte, «El blog de Prof. Luis E. Aponte I,» [En linea]. Available:

9] http://programandoenjava.over-blog.es/article-el-uml-o-lenguaje-de-modelado-
unificado-como-herramienta-en-el-modelado-de-objetos-53386438.html.

[2 «https:// www.microsoft.com/,» [En linea]. Available:

0] https://www.microsoft.com/es-xl/accessories/business/lifecam-studio-for-
business?activetab=overview:primaryr2.

[2 [f. Cobo, «Software de Simulacion del algoritmo Del Banquero,» Ciencia &
1] Futuro, vol. 3, n° 3, 2013.

Lista de figuras

Figura 1. Herencia @n POO........cciiiiiiiiiiiiiiicicccccee e 3
Figura 2. Representacion grafica de una Clase en UML. [19]..cccooivieirieiieieieieciene, 4
Figura 3. Representacion grafica de las relaciones entre clases y objetos en UML. [3]. 5
Figura 4. Plataforma multirrobot de bajo coste.ccoereiiiniiiiniccce 5
Figura 5. Dispositivo XBee para la comunicacion PC-Robot..........cceevevveieieneneninne. 6
Figura 6. Microsoft LifeCam Studio 2080p. [20] ...cceeeeieieienieniiniisiieieieeee e 6

Figura 7. Disefo del software antes de este trabajo. Representacion grafica en UML.. 7
Figura 8. Descomposicion en celdas cuadradas. 1. El escenario el cual se quiere
discretizar. 2. El escenario se descompone en regiones cuadradas. 3. Se detectan

aquellas regiones que estan en contacto con alguna regidn de interés (gris)................. 8
Figura 9. Representacion de un grafo dirigido y de la lista de adyacenciadeél. 9
Figura 10. Representacion de la relacion entre las clases de este proyecto................. 11
Figura 11. Relacion entre las clases para el algoritmo de descomposicion en celdas.
Representacion €N UML..........cooioiieiiiieieecee ettt be e 12
Figura 12. Valor que devuelve la funcidn intersects de Boost. El rectangulo azul
representa a una celda y el poligono rosa a una region de interes.ccccoeeeenneneee 13
Figura 13. Posicion del eje de coordenadas en la plataforma y en OpenCu. 14
Figura 14. Relacion centimetro-piXel........cocooeiiiiineiiiieeee e 15
Figura 15. Intento dibujo malla @ceoiiiiiiiii e 15
Figura 16. Conversion de puntos del mundo real a la imagen capturada por la camara.
.. 16
Figura 17. Dibujo de una malla creada por descomposicion en celdas cuadradas sobre
1@ PlatAfOrMIA. (oo enae 16
Figura 18. Representacion de un grafo dirigido interpretando la regidn de interés
situada en la celda C5como UN ObSTACUIO.ocuvieviiiiiiiecce e 17
Figura 19. Pequena parte de un grafo. ... 18
Figura 20. Trayectorias entre dos PUNTOS.......cccevuirierienirienieecesee e 18
Figura 21. Representacion de secuencia de celdas y secuencia de puntos. 20
Figura 22. Representacion de las trayectorias que deben sequir los robots. 20

36

Figura 23. Trayectorias dibujadas con una mala deteccidn de los robots. 21
Figura 24. Mejora en la deteccion de las regiones de interés y de los robots. Parte 1. 22

Figura 25. Conversion de centimetros a pixeles y viceversa.ccoceeveeeeienenenenennens 22
Figura 26. Mejora en la deteccion de las regiones de interés y de los robots. Parte 2. 23
Figura 27. Elementos detectados por la funcion DetectMarkers de OpenCV.............. 23
Figura 28. Malla con dos tamarios distintos de celda.cccoceviniiiiiniiiinininens 26
Figura 29. Malla con celdas cuadradas.c..cocevieirieiiniiniininneecccccee 26
Figura 30. Matriz de adyacencia y lista de adyacencia de un grafo dirigido................. 27
Figura 31. Ventajas y desventajas de la matriz de adyacencia respecto de la lista de

AAYACENCIA. 1ttt ettt ettt e st e e e et e teesabe e bt e enbeeasaeenbeen 27

Figura 32. Situaciones en las cuales es mas favorable utilizar el vector y en cuales
utilizar la lista en OutEdgeList y VertexList, parametros de la clase Adjacency list de

BOOST. e 28
Figura 33. Mallas formadas por poligonos requlares...........ccocoeevevieieieiienienenenene 29
Figura 34. Espacio descompuesto en trapeCios.ccceveruerienieeienienenieseeeeeeeeeene 29
Figura 35.0utput de la funcion "intersecion" de BOOSt.ccevevieriieieieieieieseeene 30
Figura 36. Transformacion de celda a punto.cceoieiiiieinineeee e 30
Figura 37. Simulacion planificacion de trayectorias. Parte 1.......ccccoceveveeniniccecnnenee 31
Figura 38. Simulacion planificacion de trayectorias. Parte 2.ccccoceveeninieiecnnenee 31
Figura 39. Simulacidn planificacion de trayectorias. Parte 3.cccoceveveenenececnienee 32

Figura 4o0. Simulacion algoritmo del banquero. Los circulos negros representan la
posicion actual de los robots, los amarillos el destino y los azules la posicion inicial de

[0S FODOTS. ..ttt sttt ettt 32
Figura 41. Estudio del tiempo que le cuesta al algoritmo del banquero decidir si un
estado es sequro 0 no. NUmMero de muestras: 1000.ccceoueueruerieerienienieenienieeseseeneas 33
Figura 42. Estudio del tiempo que tarda en calcular una trayectoria. NUmero de
MUESTIAS: ZO00. ..ttt ettt ettt ettt s e e sa e sen et e s e e e neesaneeneeeane 33

Figura 43. Escribir y leer datos en un archivo JSON. A la izquierda se muestra como se
introducen datos en el archivo, y a la derecha la forma en la que estos datos se leen en

1 COAIGO. ettt ettt ettt ettt b e bt n e ne e 40
Figura 44. Eleccion de algoritmos y métodos en el archivo JSON.......cccccvevievinenenene 40
Figura 45. Clase MisSion UML.cc.cociiiiiririinieieeiestee ettt 42
Figura 46. Clase Celda UML.cccooiiiiiiiiiieeceeese et 43
Figura 47. Clase CuatroLados UML.........ccoiiiiiiiiiiiienieieeeeccce e 44
Figura 48. Clase CellDecomp UML.coiiiiiiiiiiiieieriteeeetee et 45
Figura 49. Clase Malla UML.coiiiiiiiiiie e 45
Figura 50. Clase Graph UML.cooiiiiiiiiiiiiieeceee et 46
Figura 51. Clase PlanningPath UML.c..ccccoiiiiiiiiiiiiiieeeeeeceeee 48
Figura 52. Clase Planificador UML.c..ccoiiiiiininiiininccccccsce e 49
Figura 53. Clase Controller UML.cooiiiiiiiiiieeeeee e 49
Figura 54. Clase POINt2D UML.coc.iiiiiiiiiiiiieieceee et 51
Figura 55. Clase Point2D UML.coc.oiiiiiiiiiiiieeeee e 51

37

ANEXOS

Anexo |

I. Software inicial

En este anexo se explican las clases que existian en el software antes de empezar
este proyecto y el archivo JSON. La explicacion de los métodos y atributos de la clase
se pueden encontrar en el Trabajo de Fin de Grado de Daniel Roche Garcia [5]

ROBOT

La clase Robot crea abstracciones de los robots que se encuentran en la
plataforma. Es decir, esta clase crea unos objetos con las caracteristicas de cada
robot. Ademas, esta clase cuenta con las funciones de comunicacion necesarias
para la navegacion de los robots y con atributos que almacenan la posicion y
orientacion del robot.

CAMERA

La clase Camera se utiliza para representar a las camaras utilizadas para la
visualizacion digital y el reconocimiento de la plataforma. En el caso de este
proyecto al utilizar Unicamente una camara, solo se crea un objeto de esta clase.

Los objetos de esta clase almacenan datos como los pixeles de ancho y alto
que utiliza y hace uso de funciones que configuran la clase VideoCapture de la
libreria OpenCV.

ROI

La clase ROI crea objetos que representan a las regiones de interés que se
situan en la plataforma. Estos objetos tienen de atributos datos como el contorno
de las regiones, el color o el centroide. [6]

SCENE

La clase scene representa la plataforma en su totalidad. Es en esta clase donde
se lleva lugar la deteccion de los robots y de las regiones de interés creando asi
objetos de sus respectivas clases para representarlos.

A la clase ya scene ya creada, durante este proyecto se le ha anadido un
atributo de tipo vector llamado limite que almacena las coordenadas de las 4
esquinas que limitan la plataforma. Ademas, se ha creado un método llamado
ConversionPlatformToCV, comentado en el apartado 3.2.1 de este documento para

39

poder transformar unas coordenadas de la plataforma real en coordenadas en
pixeles de laimagen capturada por la cdmara.

CONTROLLER

Esta clase representa al controlador que supervisa la navegacion de los robots
para que no colisionen mediante el algoritmo del banquero. Esta clase fue creada
en el Trabajo de Fin de Master de Jose Benigno Garcia Barreto [5] y Daniel Roche
Garcia [6] afadio alguna funcion para reestructurarla. Para mas informacion sobre
los atributos y métodos de esta clase es necesario consultar ambos trabajos.

JSON

Como se definid anteriormente, un archivo JSON es un formato de texto
utilizado para la transferencia de datos y que se compone de un conjunto de campos
que estan asociados con un identificador. Un ejemplo de como se introducen datos
en el archivo y como se leen desde el programa se ve en la figura 44.

“Camera”: [

“NUMBER" : 0,
"FPS": 60,
"WidthRes": 1920,
"HeightRes": 1080

Figura 43. Escribir y leer datos en un archivo JSON. A la izquierda se muestra cémo se
introducen datos en el archivo, y a la derecha la forma en la que estos datos se leen en el cddigo.

En este proyecto se introducen los datos necesarios para la configuracion de la clase
Camera, la clase scene y las coordenadas de los destinos. Ademas, el usuario introduce
en dicho archivo el algortimo de discretizacion que desea usar y el método para la
transformacion de trayectorias de celdas a trayectorias de puntos, figura 45.

"Discretize”:"C

"CeldasToPoin

Figura 44. Eleccion de algoritmos y métodos en el archivo JSON.

40

Anexo 11

II. Biblioteca de las clases creadas

Se puede acceder al cddigo utilizado en este proyecto mediante el siguiente enlace:

https://drive.google.com/drive/folders/198XJIleQONzgw29eeCY1kVVqT4grZ0fH

A?usp=sharing

MISSION

Clase en la que se crea un objeto misidn con las coordenadas de los destinos
que han sido introducidas por el usuario.

Atributos:
- num: nuUmero de mision.

- destinos: vector que almacena los destinos a los que deben dirigirse los
robots.

Métodos:
- mission(): constructor de la clase.
- ~mission(): destructor de la clase.

- mission(string): constructor de la clase que recibe el nombre del
archivo JSON donde se almacenan las coordenadas de los destinos.

- GetMisiones(): devuelve el atributo destinos.

- GetNum(): devuelve el atributo numero.

41

Mission

-num: int
-destinos: vector<Point2D>

+mission()

+~mission()

+mission(string nombre)
+GetMisiones(): vector<Point2D>
+GetNum(): int

Figura 45. Clase Mission UML.

CELDA

Clase que crea abstracciones de las regiones en las que se divide el escenario al
discretizarlo mediante el algoritmo de descomposicion de celdas.

Atributos:
- num: nUmero de mision.
- state: indica el estado de la celda: libre, ocupada por un obstaculo...

- esquinas: vector que almacena las coordenadas de las esquinas que
forman la celda.

- centro: coordenadas del centro de la celda.
Métodos:

- Celda(): constructor de la clase.

- ~Celda(): destructor de la clase.

- Celda(int): constructor de la clase celda al que se le introduce el
numero de celda.

- SetState(scene): Se comprueba si alguna region de interés se
encuentra situada en la celda y se le asigna un valor al atributo state.

- GetState(): devuelve el atributo estado.

- GetEsquinas(): devuelve el atributo esquinas.

42

- GetEsquina(int): devuelve las coordenadas de la esquina que se le
introduce.

- GetNum(): devuelve el atributo numero.
- GetCentro(): devuelve el atributo centro.

- print(): imprime por pantalla las coordenadas de las esquinas de la
celda, asi como el nUmero que la identifica.

- PuntoDentro(Point2d): devuelve true si el punto introducido se
encuentra dentro de la celda y false en caso contrario.

Celda

-num: int

-state: int

-esquinas: vector <Point2D>
-centro: Point2D

+Celda()

+~Celda()

+Celda(int n)

+SetState(scene escenario): void
+GetState(): int

+GetEsquinas(): vector<Point2D>
+GetEsquina(int n): Point2D
+GetNum(): int

+GetCentro(): Point2D

+print(): void
+PuntoDentro(Point2d p): bool

Figura 46. Clase Celda UML.

CUATROLADOS

Clase heredada de la clase Celda que genera regiones cuadradas o
rectangulares. Los atributos de esta clase son heredados de la clase Celda.
Ademas, todos los métodos de la clase Celda también los contiene la clase
CuatroLados, por ello Unicamente se explican aqui los métodos nuevos que
contiene esta clase.

Métodos:
- CuatroLados(int, Point2D, double, double): constructor de la clase al

que se le introduce: el numero de celda, la coordenada de la esquina
inferior izquierda, el ancho y el largo de la region.

43

- SetEsquinas(Point2D, double, double): A partir del punto introducido
y de la anchura y altura de la region calcula la posicidn de las
coordenadas de las esquinas y las almacena en el atributo esquinas.

- SetCentro(): calcula las coordenadas del centro del poligono y las
almacena en el atributo centro.

CuatrolLados

+CuatrolLados(int num, Point2D p0, double width, double length)
+SetEsquinas(Point2D pa, double w,double |): void
+SetCentro(): void

Figura 47. Clase CuatroLados UML.

CELLDECOMP

Clase que representa el conjunto de regiones en las que el escenario se discretiza.
Atributos:
- num: nUmero de celdas que forman la malla.

- cellDecomp: vector que almacena las celdas que forman la
descomposicion del escenario.

Metodos:

CellDecomp(): constructor de la clase.

~CellDecomp(): destructor de la clase.

GetSize(): devuelve el atributo num.
- GetCellDecomp(): devuelve el atributo cellDecomp.
- GetCelda(int): devuelve la celda cuyo numero es el introducido.

- print(): imprime por pantalla las celdas que forman la descomposicion
en celdas.

44

- Dibujo(Mat im, scene escenario): muestra por pantalla la
descomposicion dibujada. Ver Figura 17.

CellDecomp

-num: int
-cellDecomp: vector<Celda>

+CellDecomp()

+~CellDecomp()

+GetSize(): int

+GetCellDecomp(): vector<Celda>
+GetCelda(int n): Celda

+print (): void

+Dibujo(Matim, scene escenario): void

Figura 48. Clase CellDecomp UML.

MALLA

Clase heredada de la clase CellDecomp que discretiza el escenario en regiones
cuadradas. Los atributos de esta clase son heredados de la clase CellDecomp.
Ademas, todos los métodos de la clase CellDecomp también los contiene la clase
Malla, por ello Unicamente se explican aqui los métodos nuevos que contiene esta
clase.

Métodos:

- Malla(scene escenario): constructor de la clase.

Malla

+Malla(scene escenario)

Figura 49. Clase Malla UML.

GRAPH

Clase en la que se crea el grafo que representa las relaciones entre las celdas
creadas.

Atributos:

45

- graph: objeto de la clase adjacency_ list de la libreria Boost que
almacena el grafo.

Métodos:
- Graph(): constructor de la clase.
- ~Graph(): destructor de la clase

- Graph(Malla): constructor de la clase al que se le introduce la malla en
la que el escenario ha sido discretizado.

- vecino(Celda, Celda): devuelve true silas celdas introducidas son
contiguas y false en caso contrario.

- print(): imprime la lista de adyacencia: cada vértice con la lista de
vértices a los que esta unido mediante un arco.

- GetGraph(): devuelve el atributo graph.

- DibujarGraph(): Guarda en un archivo png el grafo dibujado.

Graph

-graph: adjacency_list<vecS,vecS,directedS,property<vertex_distance_t,
int>,property<edge_weight_t, int>, no_property, listS

+Graph()

+~Graph()

+Graph(Malla m)

+vecino (Celda c1, Celda c2): bool

+print(): void

+GetGraph (): typedef adjacency_list<vecS,vecS,directedS,property<vertex_distance_t,
int>,property<edge_weight_t, int>, no_property, listS

+DibujarGraph(): void

Figura 50. Clase Graph UML.

PLANNINGPATH

Clase en la que se crea una trayectoria desde el punto de partida de cada robot
y su respectivo destino.

Atributos:

46

Métodos:

caminos: vector que almacena las trayectorias de celdas mas corta que
une las celdas de partida con las celdas de destino.

CeldalnicialRobots: vector que almacena el numero de las celdas
donde se encuentran los robots antes de comenzar su navegacion.

CeldaDestinos: vector que almacena el numero de las celdas donde se
encuentran los destinos.

PlanningPath(): constructor de la clase.
~ PlanningPath (): destructor de la clase

PlanningPath(mission, Graph, Malla, scene): constructor de la clase al
que se le introduce la mision a realizar, el escenario, el grafo y la malla.

GetCaminos(): devuelve el atributo caminos.

GetRobotQueCelda(): devuelve un vector con las celdas donde estan
situados los robots.

GetDestinoQueCelda(): devuelve un vector con las celdas donde estan
situados los destinos.

RobotQueCeldaSimulador(int num, int celda): método utilizado para
simular las posiciones de los robots.

RobotQuecCeldalnicialSimulador(): método utilizado para simular las
posiciones iniciales de los robots.

RobotQuecCelda(): Recorre el conjunto de celdas en busca de las celdas
donde estan situados los robots y las almacena en el atributo
CeldalnicialRobots.

DestinoQueCelda(): Recorre el conjunto de celdas en busca de las

celdas donde estan situados los destinos y las almacena en el atributo
CeldaDestinos.

47

PlanningPath

-caminos: vector<vector<int>>
-celdalnicialRobots: vector<int>
-CeldasDestinos: vector<int>

+PlanningPath();

+~PlanningPath();

+PlanningPath(mission mision, Graph mision, Malla m, scene escenario);
+GetCaminos(): vector<vector<int>>
+GetRobotQueCelda(): vector<int>
+GetDestinoQueCelda(): vector<int>
+RobotQueCelda(Malla m, scene escenario):void
+RobotQueCeldaSimuladofint num, int celda): void
+RobotQueCeldalnicialSimuladof): void
+DestinoQueCelda(Malla m, mission mision): void
+print(): void

Figura 51. Clase PlanningPath UML.

PLANIFICADOR

Clase que transforma una trayectoria de celdas en una trayectoria de puntos.
Atributos:

- paths: vector que almacena las trayectorias de puntos mas corta que
une los puntos de partida con los puntos de destino.

Metodos:

Planificador(): constructor de la clase.
-~ Planificador (): destructor de la clase

- Planificador(string, Malla, PlanningPath): constructor de la clase que
crea una instancia a partir de un string para introducir el archivo JSON
que se desea, una mallay el PlanningPath donde se han calculado las
trayectorias de celdas.

GetPaths(): devuelve el atributo paths.

PuntosMedios(Malla, PlanningPath): transforma las trayectorias de
celda a trayectorias de puntos y las almacena en el atributo paths.

48

- Dibujartrayectorias(Mat, scene): Muestra por pantalla las trayectorias
dibujadas. Ver figura 22.

- print(): imprime los puntos que forman la trayectoria.

Planificador

-paths: vector<vector<Point2D>>

+Planificador();

+~Planificador();

+Planificador(string nombre, Malla m, PlanningPath plan)
+GetPaths(): vector<vector<Point2D>>
+PuntosMedios(Malla m, PlanningPath plan): void
+dibujarTrayectoriagMat im, scene escenario): void
+print(): void

Figura 52. Clase Planificador UML.

CONTROLLER

Clase en la que se crea un controlador para supervisar la navegacion de los
robots y evitar colisiones.

Métodos:
- Controller(): constructor de la clase.
- ~Controller (): destructor de la clase.
- Controller(CellDecomp m, PlanningPath planning, Planificador plan,
Mat im, scene escenario): constructor de la clase que crea una

instancia a partir de un CellDecomp, un planningPath, un planificador,
una matriz y un scene.

Controller

+Banker(CellDecomp m,PlanningPath planning, int celdalnic, int i, vector<int> robots): bool
+Dibujar(PlanningPath planning2, CellDecomp m, scene escenario, vector<int> celdaslnics,
Planificador plan, Mat im }: void

Figura 53. Clase Controller UML.

49

POINT2D

Clase utilizada durante el proyecto que transforma una trayectoria de celdas en
una trayectoria de puntos.

Atributos:
- x: coordenada x del punto.
- y:coordenaday del punto.
Métodos:
- Point2D(): constructor de la clase.
- ~Point2D(): destructor de la clase

- Point2D(double, double): constructor de la clase al que se le
introducen los valores para las coordenadas x e y.

- GetX() y GetY(): devuelven los atributos x e y respectivamente.

- SetX(double) y SetY(double): modifican los atributos x e y
respectivamente, asignandoles el valor introducido.

- Set(double, double): modifica los dos atributos de la clase
asignandoles los valores introducidos.

- Puntoslguales(Point2D, Point2D): devuelve true silos dos puntos
introducidos son el mismo, y false en el caso contrario.

- print(): imprime los valores de los atributos.

50

Point2D

-x: double
-y: double

+Point2D()

+~Point2D()

+Point2D(double iX, doubleiY)

+GetX(): double

+GetY(): double

+SetX(doubleiX): double

+SetY(doubleiY): void

+Set(doubleiX, doubleiY): void
+Puntoslguales(Point2D p1, Point2D p2): static bool
+print (): void

Figura 54. Clase Point2D UML.

51

