

Trabajo Fin de Grado

Reorganización y mejoras de una plataforma
multirrobot

Reorganization and improvements of a multirobot

platform

Autora

Paloma Balmori Elósegui

Directores

Cristian Mahulea
Joaquín Ezpeleta Mateo

Escuela de Ingeniería y Arquitectura
2021-2022

2

REORGANIZACIÓN Y MEJORAS DE UNA
PLATAFORMA MULTIRROBOT

RESUMEN

 Este proyecto se enmarca en un proceso de rediseño de una
plataforma multirrobot, perteneciente a la Universidad de Zaragoza, con
el fin de hacerlo más general y adaptable. La plataforma se encuentra en el
Departamento de Informática e Ingeniería de Sistemas.

Entre las posibles mejoras a realizar, este trabajo se ha centrado en
implementar una planificación de trayectorias basada en una
descomposición en celdas cuadradas.

Además, se han desarrollado métodos que permiten simular la

navegación de los robots desde sus puntos de partida hasta sus
correspondientes destinos mientras que son supervisados para evitar
posibles colisiones.

 El lenguaje de programación utilizado en este proyecto ha sido C++.
Asimismo, se ha hecho uso de las librerías de OpenCV y Boost C++ para el
procesamiento de imágenes y la creación de grafos respectivamente.

3

ABSTRACT

This project is framed in a redesign process of a multirobot platform,
belonging to Universidad de Zaragoza, with the purpose of making it more
general and adaptable. The platform is situated in the computing and
system engineer department.

 Among the possible improvements to be made, this work has
focused on implementing a trajectory planning based on a decomposition
in square cells.

Furthermore, some methods have been developed that allow
simulating the navigation of robots from their starting points to their
corresponding targets while they are supervised to avoid possible
collisions.

C++ has been the programming language used in this project.
Additionally, OpenCV and Boost C++ libraries have been used for image
processing and graph creation, respectively.

4

Contenido

1. Introducción .. 1

1.1 Motivación y contexto ... 1

1.2 Objetivos ... 1

1.3 Alcance y Planificación ... 2

1.4 Contenidos ... 2

2. Tecnologías utilizadas ... 3

2.1 Programación orientada a objetos ... 3

2.2 Plataforma multirrobot .. 5

2.2.1 Hardware .. 5

2.2.2 Software ... 6

2.3 Planificación de trayectorias ... 8

2.3.1 Descomposición en celdas... 8

2.3.2 Grafos .. 9

2.3.3 Dijkstra .. 9

2.3.4 Algoritmo del banquero .. 10

3. Reorganización y mejoras de la plataforma multirrobot ... 11

3.1 Visión general ... 11

3.2 Clase Mission ... 12

3.3 Descomposición en celdas .. 12

3.2.2 Clase Celda ... 13

3.2.3 Clase CuatroLados ... 13

3.2.4 Clase CellDecomp .. 14

3.2.5 Clase Malla ... 14

3.4 Grafo ... 17

3.4.1 Clase Graph .. 17

3.5 Cálculo de trayectorias .. 18

3.5.1 Clase PlanningPath ... 19

3.6 Cambio de celdas a puntos .. 19

3.6.1 Clase Planificador .. 19

3.7 Evitar colisiones .. 20

3.7.1 Clase Controller .. 20

3.8 Mejoras en la clase scene .. 21

3.8.1 Detección de robots y de ROIs ... 21

5

3.8.2 JSON .. 23

1. Toma de decisiones ... 25

4.1 Asignación de destinos .. 25

4.2 Creación de la malla .. 25

4.3 Creación del grafo ... 27

4.3.1 Lista de adyacencia .. 27

4.3.2 Celdas Adyacentes ... 29

4.4 Transformación de celdas a puntos .. 30

2. Análisis y conclusiones ... 31

3. Bibliografía ... 35

Lista de figuras .. 36

ANEXOS... 38

I. Software inicial .. 39

II. Biblioteca de las clases creadas ... 41

1

Capítulo 1

1. Introducción

1.1 Motivación y contexto

La navegación de los robots móviles es una de las problemáticas actuales en el
mundo de la robótica. Se encuentra con problemas como adaptarse al entorno,
saber coexistir con otros robots en el mismo entorno y realizar las tareas de manera
eficiente, entre otros. Además, el mundo de la robótica está en constante cambio y
avance, por ello es muy importante que el software que controla los robots esté
preparado para ser modificado. Para lograr avances se necesita un software rápido
de interpretar y que, en el caso de querer añadir alguna mejoría, no sea necesario
destruir código alguno.

El departamento de Informática e Ingeniería de Sistemas de esta universidad
tiene distintas líneas de investigación en el ámbito de la robótica. Este trabajo se ha
llevado a cabo dentro de este departamento, en un laboratorio de la universidad y
con una plataforma de bajo coste.

1.2 Objetivos

Este proyecto se enmarca en un proceso de rediseño del sistema con el fin de
hacerlo más general y adaptable.

En concreto, este trabajo se centra en las partes del sistema dedicadas a la

planificación de las trayectorias que deben seguir los robots cuando se mueven
conjuntamente en la plataforma, basadas en una descomposición del escenario en
celas, y en la simulación de la evolución del movimiento de acuerdo a la planificación
establecida y al control requerido para evitar colisiones.

En concreto, los objetivos propuestos son los siguientes:

- Discretización del espacio mediante descomposición en celdas.

- Cálculo de trayectorias a partir de la discretización anterior.

- Control de navegación para evitar colisiones.

- Simulaciones y conclusiones

2

1.3 Alcance y Planificación

Se han creado distintas clases para la discretización del escenario mediante una

descomposición en celdas cuadradas. Posteriormente, se hace uso de la librería The
Boost Graph Library (BGL) [1] para generar un grafo, a partir de la discretización
anterior, que permita calcular las trayectorias más cortas entre los robots y sus
destinos utilizando el algoritmo de Dijkstra. Para una navegación segura se hace uso
del algoritmo del banquero que evita las posibles colisiones. Por último, se han
simulado distintas situaciones para evaluar el funcionamiento del programa.

La planificación llevada para realizar este trabajo ha sido la siguiente:

- Familiarizarse con el hardware y software de la plataforma multirrobot.

- Diseñar las clases necesarias para la planificación de trayectorias mediante

la descomposición de celdas.

- Investigar y estudiar librerías que permitan realizar el diseño pensado.

- Implementar las nuevas clases.

- Adaptar el algoritmo del banquero a la nueva planificación.

- Simular distintas situaciones y sacar conclusiones.

1.4 Contenidos

El contenido que se encuentra en el siguiente trabajo se resume en este apartado:

- Capítulo 2: Estado del Arte. Explicación de conceptos que han sido

utilizados durante el trabajo.

- Capítulo 3: Reorganización y mejoras de la plataforma multirrobot.
Presentación y explicación de los cambios hechos al programa base.

- Capítulo 4: Toma de decisiones. Descripción de las decisiones tomadas
respecto al diseño y a la implementación del software.

- Capítulo 5: Conclusiones y líneas futuras. Resumen de las conclusiones

obtenidas y el planteamiento de posibles desarrollos futuros.

3

Capítulo 2

2. Tecnologías utilizadas

2.1 Programación orientada a objetos

El concepto de la programación orientada a objetos (POO) [2] pretende organizar
los programas representando los objetos de la vida real. Para entender la programación
orientada a objetos se debe conocer la terminología:

- Clase: Una clase es una estructura que define unas características y que trabaja

con unas operaciones.

- Objeto: Un objeto de una clase es un tipo de dato creado en tiempo de ejecución
con las características definidas en la clase.

- Atributos: Son las características que son comunes a los objetos de una misma

clase. Cada objeto puede tener asignados distintos valores en sus atributos.

- Métodos: Son las operaciones que un objeto puede efectuar. Se encuentran
creadas dentro de una clase.

Entre las ventajas de la programación orientada a objetos se encuentra la

flexibilidad del código. La creación de clases permite a otros usuarios entender el
programa y hacer modificaciones de una manera más sencilla y rápida. Otra de las
ventajas es la reutilización de código cuando se necesitan varios objetos de la misma
clase.

Además, las clases se pueden relacionar entre sí mediante la herencia

compartiendo así su estructura interna. [3] De esta forma los objetos heredaran las
propiedades de todas las clases a las que pertenecen. Esta manera de relacionarse sirve
para reducir código cuando hay clases que contienen varios atributos y métodos
iguales. Un ejemplo de herencia entre clases se representa en la figura 1.

Figura 1. Herencia en POO.

4

Las clases suelen tener un método llamado constructor y destructor. Ambos
métodos se invocan automáticamente, el constructor al crear un objeto de la clase y el
destructor al dejar de utilizarlo. Al constructor se le pueden introducir datos que se
utilizaran para inicializar el objeto [3].

Una manera de representar el sistema de programación orientado a objetos es

mediante el Lenguaje de Modelado Unificado (UML). Se utilizará esta representación
durante el presente documento para explicar las clases utilizadas y creadas en el
software de la plataforma. [4]

La representación de las clases incluye el nombre, la lista de atributos y la lista de

métodos tal y como se indica en la figura 2.

Por otro lado, la relación entre clases y objetos se representan con distintos tipos

de flechas como se muestra en la figura 3.

- Uso: Es la relación entre clases en las que una clase utiliza un objeto de
otra clase en algunos de sus métodos.

Ejemplo: Coche hace uso de la gasolinera para repostar.

- Agregación: es la relación en la cual un objeto forma parte de otro.
Ejemplo: Jugador forma parte de un equipo.

- Herencia: representa la relación herencia de POO.

Figura 2. Representación gráfica de una Clase en UML. [19]

m

5

2.2 Plataforma multirrobot

El trabajo se realiza en una plataforma multirrobot situada en el laboratorio L0.5 a
del edificio Ada Byron en la Escuela de Ingeniería y Arquitectura de la Universidad de
Zaragoza.

En este apartado se explicará tanto el hardware de la plataforma como el software

desarrollado por anteriores estudiantes desde el que se ha comenzado este trabajo.

2.2.1 Hardware

La plataforma multirrobot se compone de robots, regiones de interés, una cámara

y un escenario donde además se sitúan los marcadores y los rectángulos que se
necesitan para la identificación de la plataforma.

Figura 3. Representación gráfica de las relaciones entre clases y
objetos en UML. [3]

Figura 4. Plataforma multirrobot de bajo coste.

6

La plataforma tiene unas dimensiones de 3,32 metros de largo y 2,34 metros de
ancho. Contiene 8 marcadores distribuidos de a dos por las esquinas, 4 a ras del suelo y
4 elevados a la altura de los robots, que permiten la localización de los robots. Por otro
lado, en los 4 lados de la plataforma se encuentran unos rectángulos de tres colores
diferentes, rojo, azul y verde, que permiten la identificación de las regiones de interés.
Estas regiones de interés son del mismo color que alguno de los rectángulos. Por
último, están situados los dos robots con un marcador situado en su cara superior para
su posible identificación.

Los robots utilizados funcionan con la placa “DFRobot RoMeo A11 In One Controller
V2.2” que se comporta como un Arduino Leonardo. Para la comunicación con los robots
desde el PC se utilizan unos dispositivos XBee, pequeños módulos de radio frecuencia,
que transmiten y reciben datos a través de señales de radio [5].

La cámara utilizada es Microsoft LifeCam Studio 1080p HD que presenta 3

resoluciones, de las cuales se utiliza la de mayor resolución, 1920x1980 píxeles, para una
mayor precisión en la detección del robot [6].

2.2.2 Software

El software utilizado antes de este proyecto estaba implementado por Daniel Roche

Garcia [6], y era una adaptación y reorganización de parte del trabajo de fin de máster
de Jose.B García Barreto [5]. En este software se detectaban tanto los marcadores y los
rectángulos, como los robots y las regiones de interés. Esta detección se realizaba
utilizando las librerías OpenCV [7] y ArUco [8] [9]. La primera librería era utilizada para
la detección de los marcadores y de las regiones de interés, mientras que la segunda era
utilizada para la estimación de la posición de los robots.

Figura 5. Dispositivo XBee para la comunicación PC-Robot.

Figura 6. Microsoft LifeCam Studio 1080p. [20]

7

El software desde el que se partió en este proyecto contenía 6 clases que se
relacionaban como se muestra la figura 7. [6] Los atributos de las clases y una
explicación más exhaustiva de éstas se encuentran en el anexo 1 de este documento.

- Robot: representa al robot físico real utilizado en la plataforma.

- Camera: es una abstracción del sistema de visión de la plataforma.

- ROI (Region of Interest): modela las regiones de interés. Depende de los

colores y lo que el usuario indique, las regiones de interés pueden ser
obstáculos, puntos por los que el robot debe pasar, etc. Para este
proyecto se ha supuesto que todas las regiones de interés son
obstáculos.

- scene: es la representación de la plataforma en su totalidad. En ella se

detectan los marcadores, los robots, las regiones de interés… Robot,
Camera y ROI son agregaciones de la clase scene.

Las clases de PlanningPath y Controller han sido totalmente redefinidas debido al

nuevo diseño que ha adquirido el software de la plataforma y que se explica en el
apartado 3 de este documento.

Además, está implementado el uso del archivo JSON (JavaScript Object Notation),

para introducir la información necesaria. Un archivo JSON es un formato de texto
utilizado para la transferencia de datos compuesto de un conjunto de campos que están
asociados con un identificador [10]. Tanto el contenido de este archivo como una
explicación más detallada del funcionamiento de un archivo JSON se encuentran en el
anexo I.

Figura 7. Diseño del software antes de este trabajo. Representación gráfica en UML.

8

2.3 Planificación de trayectorias

Para que el robot alcance su objetivo sin colisionar con las regiones de interés
consideradas obstáculos, se debe crear una planificación de trayectorias. El área de la
planificación de trayectorias se puede dividir en dos grandes categorías: los algoritmos
tradicionales de planificación y los algoritmos basados en un muestreo aleatorio. Los
algoritmos tradicionales de planificación (algoritmos exactos o combinacionales)
discretizan el escenario para encontrar la mejor ruta para el robot, mientras que los
algoritmos basados en un muestreo aleatorio buscan la mejor ruta mediante un
muestreo pequeño del escenario [5].

2.3.1 Descomposición en celdas

La descomposición en celdas es el algoritmo tradicional de planificación que ha
sido utilizado en este trabajo. La descomposición en celdas discretiza el escenario
descomponiéndolo en regiones, a las que llamamos celdas. Estas regiones pueden ser
de distintas formas dando paso a una descomposición triangular, rectangular,
trapezoidal… [11] Una representación de una descomposición en celdas cuadradas se
muestra en la figura 8.

Figura 8. Descomposición en celdas cuadradas. 1. El escenario el cual se quiere
discretizar. 2. El escenario se descompone en regiones cuadradas. 3. Se detectan
aquellas regiones que están en contacto con alguna región de interés (gris).

1. 2.

3.

9

2.3.2 Grafos

La Real Academia Española (RAE) define un grafo como: “Diagrama que representa
mediante puntos y líneas las relaciones entre pares de elementos y que se usa para
resolver problemas lógicos, topológicos y de cálculo combinatorio” [12]. Están
compuestos por objetos llamados vértices y arcos que representan la conexión entre
los vértices, tal y como se ve en la Figura 9.

Además, existen distintas maneras de almacenar grafos dependiendo de las

características del grafo y del algoritmo que se utiliza para su manipulación. En la figura
9 se muestra un grafo almacenado en una estructura de lista llamada lista de
adyacencia. Esta estructura es de dos dimensiones donde la primera dimensión se
corresponde con una lista de los vértices que almacenan a su vez en otra lista los vértices
adyacentes a ellos [1] [13] .

2.3.3 Dijkstra

Dijkstra, también llamado algoritmo de caminos cortos, es un algoritmo de
búsqueda que desarrolló Edsger Dijkstra en 1956 [14]. Dicho algoritmo consiste en, a
partir de un grafo cuyos arcos tienen pesos de valor positivo, determinar el camino más
corto entre un vértice y el resto de los vértices del grafo. El camino cuya suma de los
pesos de todos los arcos sea menor, será el camino elegido por el algoritmo [15].

Figura 9. Representación de un grafo dirigido y de la lista de adyacencia de él.

10

2.3.4 Algoritmo del banquero

El algoritmo del banquero se utiliza en sistemas de procesos que comparten
recursos conservativos, y consiste en estudiar con anticipación los recursos que se
utilizarán en todos los procesos para conocer si un estado es seguro. El sistema se
encuentra en un estado seguro si es posible realizar los procesos en un orden en el cual
todas las peticiones de recursos puedan ser concedidas [16] [17].

En el caso de una plataforma multirrobot, dichos procesos son la trayectoria de cada

robot desde su punto de partida a su punto de destino, y los recursos son los espacios
en los cuales se encuentra dividido el escenario.

11

Capítulo 3

3. Reorganización y mejoras de la
plataforma multirrobot

3.1 Visión general

En este apartado se presentan las clases utilizadas en este proyecto y su relación

entre ellas mediante la representación en UML, figura 10. Las clases en color verde son
las creadas con anterioridad a este proyecto y que se encuentran explicadas en el
apartado 2.2 y el anexo I de este documento.

En los siguientes apartados se explicarán las características y funciones de las clases

creadas en este proyecto. En el anexo II se encuentra una biblioteca con los atributos y
métodos de estas clases.

Figura 10. Representación de la relación entre las clases de este proyecto.

12

3.2 Clase Mission

La misión de los robots se encuentra almacenada en los atributos de un objeto de la
clase Mission. El usuario introduce las coordenadas del destino al que quiere que
lleguen los robots a través del archivo JSON. En el Anexo II se encuentra una explicación
de los métodos y atributos de esta clase.

3.3 Descomposición en celdas

Para implementar el algoritmo de descomposición en celdas se han creado
diferentes clases. La clase CellDecomp que representa el conjunto de celdas en el cual
se ha discretizado el escenario; la clase Malla que guarda las características de una
descomposición en celdas cuadradas; la clase Celda que representa cada una de estas
regiones y la clase CuatroLados que guarda las características de los polígonos regulares
de 4 lados tales como el cuadrado y el rectángulo. Estas 4 clases mantienen una relación
entre ellas:

- CellDecomp y Malla mantienen una relación de herencia.

- CellDecomp y Celda mantienen una relación de agregación donde
CellDecomp está compuesta por muchas celdas.

- Celda y CuatroLados mantienen una relación de herencia.

A continuación, se explicará el diseño de las clases CellDecomp, Malla, Celda y
CuatroLados. Para entender mejor su funcionamiento, en el anexo II se pueden
encontrar las explicaciones tanto de los atributos como de los métodos de las clases.

Figura 11. Relación entre las clases para el algoritmo de
descomposición en celdas. Representación en UML.

13

3.2.2 Clase Celda

La clase Celda crea objetos que almacenan la información de cada región en la que
se ha dividido el escenario. Esta clase está diseñada de tal forma que no tiene
restricciones en el número de esquinas de las regiones, dando la posibilidad en el futuro
de que las celdas puedan ser diferentes formas.

Entre los atributos de esta clase se encuentra state, un atributo al que se le asigna

un dato de tipo entero para indicar si hay situada alguna región de interés en esta celda
y de que tipo es. Para identificar el estado de la celda se consultaron funciones de
distintas librerías como son OpenCV y Boost C++ que calcularan la intersección entre
dos polígonos. Finalmente, se decidió hacer uso de una función llamada intersects de la
librería Boost C++. Esta función devuelve un valor de tipo bool: true cuando hay una
intersección entre los dos polígonos y false en el caso contrario.

3.2.3 Clase CuatroLados

La clase CuatroLados al tener una relación de herencia con la clase Celda tendrá los
atributos y métodos de ésta además de los suyos propios. En esta clase se crean
regiones con forma cuadrada o rectangular.

La razón de crear está clase es facilitar mejorías en el futuro. En vez de crear

directamente las celdas cuadradas, se crea una clase con la forma que se desea. De esta
forma, en el futuro, si se desea implementar un algoritmo de descomposición en celdas
triangulares, se deberá crear una clase triángulo con las características propias de un
triángulo y la clase Celda no tendrá que ser modificada.

True

False

Figura 12. Valor que devuelve la función intersects de Boost. El rectángulo azul
representa a una celda y el polígono rosa a una región de interes.

14

3.2.4 Clase CellDecomp

La clase CellDecomp representa el conjunto de celdas en el cual ha sido dividido el
escenario. Para comodidad del usuario, se han creado métodos dentro de esta clase que
permiten imprimir y mostrar por pantalla la descomposición en celdas realizada.

En este proyecto la descomposición en celdas utilizada ha sido la de celdas

cuadradas que se lleva a cabo en la clase Malla. En el futuro, si se desea implementar la
descomposición en celdas con otra forma diferente al cuadrado, únicamente se deberá
crear una clase, con relación de herencia con CellDecomp, que represente la división del
escenario en regiones de la forma deseada, el método para imprimir y dibujar dicha
descomposición no será necesario crearlo debido a que lo heredara de esta clase.

3.2.5 Clase Malla

La clase Malla al tener una relación de herencia con la clase CellDecomp tendrá los
atributos y métodos de ésta además de los suyos propios. En esta clase se crea una
descomposición en celdas cuadradas. Esta clase crea un objeto que representa la
división del escenario en cuadrados del tamaño de los robots.

A continuación, se muestran los intentos para dibujar la malla mediante el método

creado en la clase CellDecomp y finalmente, el resultado de dicha descomposición
correctamente.

En un principio se dibujó la malla introduciendo en la función line() de OpenCV las

coordenadas de los puntos de las celdas en píxeles. Para ello, primero se cambió el valor
de las coordenadas para escribirlas respecto al origen de coordenadas que establece
OpenCV. Esta diferencia en el origen de coordenadas de la plataforma y de OpenCV es
consecuencia de que OpenCV coje como punto (0,0) la esquina superior izquierda de la
imagen, y en el mundo matemático y de la ingeniería este punto está situado siempre
en la esquina inferior izquierda, como en la plataforma utilizada en este proyecto. En la
figura 13 puede verse donde están situados los orígenes de coordenadas según OpenCV
y la plataforma.

Posteriormente, había que convertir las coordenadas en centímetros a coordenadas
en pixeles. Para ello se creó una función que transformaba la distancia en centímetros

(0,0) OpenCV

(0,0) Plataforma

Figura 13. Posición del eje de coordenadas en la plataforma y en OpenCv.

15

entre puntos a pixeles. Para dicha conversión era necesario conocer una relación entre
centímetros y pixeles. Tanto el tamaño de los marcadores, como la distancia entre ellos
eran conocidos en pixeles y en centímetros. Ambos tenían ventajas e inconvenientes y
por ello se realizó un pequeño estudio para conocer cual calculaba la mejor relación
centímetro-píxel que se muestra en la figura 14. Para dicha prueba se realizaron 100
mediciones. Los marcadores con altura no se utilizaron en esta prueba debido a que al
no estar adheridos a la plataforma la distancia entre ellos puede variar mucho cada vez
que se instala la plataforma.

Teniendo en cuenta los datos, se escogió la conversión calculada por la media de las

distancias entre los marcadores. El dibujo de la malla resultante se muestra en la figura
15.

En la figura anterior, a pesar de que el origen de coordenadas ya coincide, se puede

apreciar como el eje de coordenadas de la malla no coincide con el eje de coordenadas
de la plataforma, pues este eje no se sitúa sobre la línea imaginaria que une a los dos

 Ventajas Inconvenientes Media
(cm/pixel) Desviación

Tamaño
del
marcador

Se realiza de forma
automática.

Distancia muy
pequeña, el error se
apreciará mucho.

1.7661 0.3903e-3

Distancia
entre
marcadores

Requiere tomar e
introducir las
medidas al montar
el escenario.

La distancia es
grande, el error
será más pequeño. 1.8506 0.1296e-6

Figura 14. Relación centímetro-pixel.
x: indica la conversión en el eje x e y: indica la conversión en el eje y.

Figura 15. Intento dibujo malla 1 .

16

marcadores inferiores que delimitan la plataforma. Esto es debido a que la imagen
capturada por la cámara está deformada. Por ello, se necesita convertir la posición de
las esquinas de las celdas en la plataforma real a su posición en pixeles en la imagen
deformada.

Para poder convertir las coordenadas de los puntos de centímetros de la plataforma
a pixeles de la imagen, se debe calcular la matriz de homografía (figura 16). Esta
conversión se ha realizado dentro de un método nuevo creado dentro de la clase scene,
ConversionPlatformToCV, que utiliza una función de OpenCV llamada findHomography.
A esta función, para que pueda calcular la matriz de homografía, hay que introducirle 4
coordenadas en pixeles y sus correspondientes 4 coordenadas en el mundo. [18] [7]

En la figura 17 se puede ver la malla dibujada sobre el video de la plataforma. En el

apartado 4.2 y en el anexo II de este documento, se explicarán las características de esta
malla cuadrada como, por ejemplo, porque la malla no llega a la parte superior de la
plataforma.

Imagen capturada por la
cámara

Plataforma real (x,y)

(i,j)

Matriz de
homografía

Figura 16. Conversión de puntos del mundo real a la imagen capturada por la cámara.

Figura 17. Dibujo de una malla creada por descomposición en celdas
cuadradas sobre la plataforma.

17

3.4 Grafo

Una vez el escenario está discretizado y descompuesto en celdas se crea un grafo
donde cada celda es un vértice del grafo que se conecta mediante arcos con sus celdas
contiguas. En este proyecto, al considerar todas las regiones de interés como
obstáculos, las celdas que contienen una región de interés no están conectadas con sus
celdas contiguas pues el robot no puede pasar por ellas. Para diseñar este grafo se ha
creado la clase Graph.

3.4.1 Clase Graph

El constructor de la clase Graph recorre la malla en busca de celdas contiguaspara
relacionarlas mediante un arco, creando así un grafo. Como se ha explicado en el
apartado 2.3.2 de este documento, almacena dicho grafo en una lista de adyacencia.
Además, para calcular más adelante la trayectoria más corta, se le asigna un peso de
valor 1 a los arcos que unen los vértices. En la figura 18 se puede ver una representación
gráfica del grafo que se crearía en la clase Graph a partir de una malla que contiene un
obstáculo en la celda C5.

Para la simulación de la navegación de los robots, las celdas que conforman el borde
de la malla se han asignado como celdas de descanso. Estas celdas no se han agregado
al grafo, y serán las celdas donde los robots iniciarán y terminarán sus trayectorias.

Adicionalmente, se ha creado un método en la clase Graph para guardar en un

archivo png el dibujo del grafo calculado. En la figura 19 se puede ver un trozo de un
grafo creado a partir de la descomposición en celdas cuadradas de la plataforma
utilizada en este proyecto. Debido a que el grafo se compone de 215 nodos y 782 arcos,
no se expone la imagen entera.

Figura 18. Representación de un grafo dirigido interpretando la región de interés situada en la
celda C5 como un obstáculo.

C1 C2 C3

C4 C5 C6

C7 C8 C9

C1 C2 C3

C4 C5 C6

C7 C8 C9

18

3.5 Cálculo de trayectorias

Con el grafo creado, se pueden calcular trayectorias eligiendo un punto de partida

y uno de destino. Para ello se ha creado la clase PlanningPath, que crea objetos cuyos
atributos almacenan las trayectorias que los métodos de esta clase calculan.

En el ejemplo de la figura 18, suponiendo que el robot tiene que ir de la celda C1 a la

celda C6, existirían dos trayectorias para alcanzar el destino puesto que desde la celda
1, el robot puede dirigirse hacia la celda 2 o la celda 4 (figura 20):

- Trayectoria 1 (azul): C1  C2 C3 C6
- Trayectoria 2 (naranja): C1 C4 C7 C8 C9 C6

Figura 19. Pequeña parte de un grafo.

C1
Start

C2 C3

C4 C5 C6
End

C7 C8 C9

Figura 20. Trayectorias entre dos puntos

19

3.5.1 Clase PlanningPath

La clase PlanningPath, no busca únicamente una trayectoria del robot al
destino, sino que se busca la trayectoria posible más corta. Para ello primero se
utiliza una función de la librería Boost que implementa el algoritmo Dijkstra. La
característica de esta función es que deja introducir el punto de partida, pero no el
de destino, y por ello devuelve la trayectoria más corta de la celda inicial a todas las
demás celdas del grafo. Siguiendo el ejemplo, esta función nos devolvería las
siguientes trayectorias:

- Trayectoria A (de C1 a C2): C1  C2
- Trayectoria B (de C1 a C3): C1  C2  C3
- Trayectoria C (de C1 a C4): C1  C4
- Trayectoria D (de C1 a C5): No hay trayectoria posible. Obstáculo en C5.
- Trayectoria E (de C1 a C6): C1  C2 C3 C6
- Trayectoria F (de C1 a C7): C1  C4 C7
- Trayectoria G (de C1 a C8): C1  C4 C7 C8
- Trayectoria H (de C1 a C9 hay dos trayectorias igual de longitud,

devolverá una aleatoriamente): C1  C2 C3 C6 C9

Una vez se tienen estas trayectorias, solo queda elegir aquella trayectoria que

conecta la celda inicial con la celda final. En este ejemplo esa trayectoria sería la E. La
azul en la figura 20.

3.6 Cambio de celdas a puntos

La ruta en el grafo obtenida con la clase PlanningPath es un conjunto de celdas. El
siguiente paso consiste en transformar esta secuencia de celdas en una secuencia de
puntos. Debido a que hay distintas maneras de hacer dicha transformación, como se
explicará en el capítulo 4 de este documento, se ha creado la clase Planificador que se
encarga de convertir la ruta creada en PlanningPath a una secuencia de puntos.

3.6.1 Clase Planificador

La clase Planificador es la encargada de hacer la conversión de una trayectoria de
celdas a una secuencia de puntos para poder ser enviada al robot, y dependerá del
formato que el usuario habrá introducido en el archivo JSON.

En este trabajo se han calculado las coordenadas del centro de las celdas cuadradas,

y serán estas coordenadas las que formen la nueva secuencia de puntos.

20

El resultado de los puntos que debe seguir el robot se ha dibujado por pantalla para

que el usuario pueda ver las trayectorias de los robots. Se ha representado la celda de
la que parten los robots con un círculo azul, y con uno amarillo la celda de destino.

3.7 Evitar colisiones

Para evitar colisiones durante la navegación, se ha adaptado el algoritmo del
banquero a la planificación de trayectorias mediante la descomposición en celdas. Este
algoritmo se ha implementado en la clase Controller.

3.7.1 Clase Controller

La clase Controller es la clase creada para generar un supervisor que asegure una
navegación sin colisiones. Para ello, se escogerá un robot aleatoriamente y se
comprobará, antes de realizar ningún movimiento, si el estado es seguro. Un estado es
seguro si, en el hipotético caso de trasladar el robot a una nueva celda, si existe un orden
en el movimiento de los robots en el cual todos los robots pueden alcanzar su destino.
Si el estado es seguro, este controlador permite mover el robot a su siguiente punto. En
caso contrario, el robot no se moverá de su sitio y se pasará a comprobar si es seguro
mover a otro robot de su posición. Esta clase cuenta además con un método dibujo, que
va mostrando por pantalla las trayectorias que van recorriendo.

Figura 22. Representación de las trayectorias que deben seguir los robots.

Celda 1  Celda 2 Celda 3 Punto 1  Punto 2  Punto 3

Figura 21. Representación de secuencia de celdas y secuencia de puntos.

21

La comprobación del funcionamiento de esta clase se ha realizado mediante

simulaciones de distintas situaciones que se muestran en el apartado 5 de este
documento.

3.8 Mejoras en la clase scene

Por último, en este capítulo se van a comentar las mejoras que se hicieron en la clase
scene, creada antes de empezar este proyecto, para mejorar la calidad del software de
la plataforma.

3.8.1 Detección de robots y de ROIs

Durante el proyecto, una vez las trayectorias fueron dibujadas y mostradas por
pantalla, se pudo apreciar como las trayectorias no empezaban en la celda donde se
situaba el centro del robot, sino en una celda cercana, figura 23. Además, algunas
trayectorias pasaban por encima de objetos.

Por ello, se decidió mostrar por pantalla el centro de los robots y los contornos de

las regiones de interés. En la figura 24, la imagen de la izquierda muestra los contornos
de las regiones desplazadas, al igual que en la foto de la derecha se observan
desplazados los centros de los robots.

Figura 23. Trayectorias dibujadas con una mala detección de los robots.

22

El problema por el cual estos objetos eran detectados con mucho margen de error
se debía a la matriz de homografía que se utilizaba para convertir los puntos de pixeles
de la imagen a puntos en centímetros de la plataforma. Como se ha explicado en el
aparatado 3.2.5 de este documento, para calcular la matriz de homografía mediante la
función findHomography de OpenCV, que relaciona los píxeles de la imagen con los
centímetros de la plataforma, se necesitan 4 puntos conocidos tanto en pixeles como
en centímetros. Al comienzo de este proyecto, se escogían los centros de los
marcadores para encontrar dicha matriz de homografía. El problema de estos puntos
es que OpenCV no devuelve los centros de los marcadores y estos deben ser calculados,
acumulando errores en el proceso. Esto hacía que el centro de los marcadores no
tuviera mucha precisión, y como consecuencia, la matriz de homografía no relacionase
correctamente los píxeles de la imagen con los centímetros de la plataforma.

Para corregir este error se utilizaron las esquinas de los marcadores que limitan el

espacio. Es decir, la matriz de homografía es la misma que se calcula para dibujar en la
imagen, con la diferencia de que esta vez los puntos se multiplican por la matriz inversa
de dicha matriz de homografía, para poder pasar de píxeles a centímetros.

 El resultado de la detección de los robots y los ROIs después de calcular la matriz de
homografía con los puntos comentados anteriormente, se puede ver en la figura 26.

Figura 24. Mejora en la detección de las regiones de interés y de los robots. Parte 1.

De coordenadas en centímetros a
coordenadas píxeles.

De coordenadas en píxeles a coordenadas
centímetros.

Figura 25. Conversión de centímetros a píxeles y viceversa.

23

3.8.2 JSON

Para que el código pudiera adaptarse a cualquier plataforma se ha decidido
introducir más datos a través del archivo JSON. Al comenzar este proyecto, los
identificadores de los marcadores y de los robots estaban escritos dentro del código, de
tal forma que, si se detectaba otra plataforma con distintos marcadores y robots, el
código fallaría durante el proceso de reconocimiento de la plataforma. Como se puede
ver en la figura 27, en los marcadores elevados el identificador empieza por 1, en los
marcadores a ras del suelo el identificador empieza por 2 y en los robots por 3.

La identificación de los marcadores y de los robots se utiliza a lo largo del código. Si

esta identificación se introduce desde el código mismo, en una plataforma con
marcadores diferentes éste no podría funcionar. Para ello se han introducido los
identificadores de los marcadores y de los robots a través del archivo JSON.

Figura 27. Elementos detectados por la función DetectMarkers de OpenCV.

Figura 26. Mejora en la detección de las regiones de interés y de los robots. Parte 2.

24

Además, al haber definido los identificadores dentro del código, únicamente se
podían tener 3 robots (ids=31,32,33) y en el caso de utilizar más robots había que
modificar el código. Por contrario, al introducir los ids de los robots mediante el archivo
JSON, estos serán guardados en un vector y no importara el número de robots siempre
y cuando coincida con el número de identificadores introducidos por el usuario.

25

Capítulo 4

1. Toma de decisiones

Rediseñar el software de una plataforma multirrobot puede realizarse de muchas
maneras. A ello hay que añadir que a lo largo del rediseño pueden aparecer dificultades
que requieran estudiar distintas formas de solucionarlas. Por ello evaluar las diferentes
opciones es necesario para poder decidir cuál es la mejor. En este apartado se
mostrarán distintas decisiones que se han tenido que tomar a lo largo de este proyecto.

4.1 Asignación de destinos

En un principio se pensó en una situación donde el usuario requería X robots en X
destinos, pero no importaba cual era el robot que llegaba a cada destino. Para ello se
había pensado en calcular en PlanningPath la trayectoria más corta de cada robot a
cada destino. De esta forma, suponiendo 2 robots y 2 destinos, deberíamos obtener 4
trayectorias, tal y como muestra la figura 18. Una vez calculadas estas 4 trayectorias se
seleccionaría el conjunto más corto: las trayectorias 1 y 2 ó las trayectorias 3 y 4.

A la hora de implementar la selección del conjunto más corto nos encontramos con

la complejidad que conlleva hacerlo para n número de robots. Por ello se decidió dejar
esta opción para un futuro TFG y que en este proyecto fuera el usuario el que asignaba
a cada robot un destino.

4.2 Creación de la malla

A la hora de crear la malla la primera decisión que se debe tomar es la forma y el
tamaño de las celdas. Para este proyecto se decidió una malla de celdas cuadradas con
el tamaño del diámetro del robot.

Robot 1

Robot 2

Destino 1

Destino 2

Trayectoria 1: Robot 1 – Destino 1

Trayectoria 2: Robot 1 – Destino 2

Figura 18. Relación entre robots y destinos.

Trayectoria 3: Robot 1 – Destino 1

Trayectoria 4: Robot 1 – Destino 2

26

Cuanto menor es el tamaño de la celda, más optimizada está la trayectoria debido
a que no se pierde tanto espacio cuando una celda está ocupada por una parte de un
obstáculo, figura 28. Pero, si la celda es menor que el tamaño del robot, al realizar la
trayectoria el robot no se situará en una única celda en cada punto, su tamaño abarcará
las celdas contiguas. Debido a esto se decidió que el tamaño sería el menor posible para
que el robot pueda ocupar únicamente una celda, siendo este tamaño el diámetro del
robot.

Pero dividir la malla en celdas con el tamaño del robot también tiene sus

consecuencias. La división entre el tamaño de la plataforma y el del robot puede no
dar exacto dejando así un espacio de la plataforma sin rellenar. En este trabajo se
tomó la decisión de incluir unas celdas con forma de rectángulo si el área era mayor
del 80% del área del resto de celdas.

La celda se empieza creando desde el punto cero de la plataforma, por ello la

malla no alcanza la parte superior de la plataforma, porque el rectángulo tendría
menos del 80% del área del resto de celdas. En el caso de la última columna ocurre lo
contrario, el rectángulo es de un área mayor al 80% y por ello la última columna está
formada con rectángulos.

Figura 28. Malla con dos tamaños distintos de celda.

Figura 29. Malla con celdas cuadradas.

Primera
columna

Primera
fila

27

4.3 Creación del grafo

4.3.1 Lista de adyacencia

A la hora de crear el grafo se decidió utilizar la librería Boost C++ que posee la opción
de crear y trabajar con grafos. Como se explicó en el apartado 2.3.2 de este documento,
los grafos pueden almacenarse de distintas maneras. Boost C++ permite almacenar los
grafos o bien, en una lista de adyacencia o en una matriz de adyacencia. Una lista de
adyacencia, como se explicó anteriormente, es una lista de vectores que almacena a su
vez otra lista de vectores. Por otro lado, una matriz de adyacencia es una matriz
cuadrada donde se representa con 1 y 0 si hay relación entre vértices o no.

En la siguiente tabla se muestran las ventajas y desventajas de la matriz de
adyacencia sobre la lista de adyacencia [1].

Este trabajo utiliza listas de adyacencia debido a que una vez creado el grafo no
se va a modificar los arcos creados y por ello no es necesario utilizar una matriz de
adyacencia con las desventajas de espacio y tiempo que estas tienen. Las siguientes
decisiones que deben ser tomadas son las características de dicha lista de
adyacencia. Lo primero de todo es conocer que parámetros requiere la clase la clase
adjacency_list de Boost.

Ventajas Desventajas

Permite introducir y eliminar
arcos en tiempo real.

Utiliza mucha memoria.

El tiempo que utiliza para
recorrer los arcos de cada vértice

es mucho mayor.

Figura 31. Ventajas y desventajas de la matriz de adyacencia respecto de la lista de
adyacencia.

Matriz de
adyacencia

Lista de
adyacencia

Figura 30. Matriz de adyacencia y lista de adyacencia de un grafo dirigido.

28

Los parámetros utilizados en este proyecto han sido:

- OutEdgeList: Representa la lista de arcos.

- VertexList: Representa la lista de vértices.

- Directed: Indica si el grafo es dirigido, no dirigido o dirigido

bidireccional con acceso a los arcos.

- EdgeProperties: Propiedades internas de los arcos.
 puede trabajar y devolver distintos tipos de datos.

De OutEdgeList y VertexList puede almacenarse entre distintos tipos de datos que

encajan en diferentes situaciones. Entre los tipos de datos que se pueden elegir, la
lista y el vector son los más utilizados. En la tabla 2 se muestra en qué condiciones es
de mayor utilidad seleccionar el vector y en cuales situaciones la mejor opción es la
lista.

En este proyecto el número de vértices del grafo es conocido antes de crearlo

(número de celdas que contiene la malla). Además, una vez el grafo esté creado, éste
no requiere de modificación alguna, pero en cambio, si se necesita un rápido acceso a
los vértices para calcular la trayectoria del robot. Por estas razones, el tipo de dato
seleccionado tanto para OutEdgeList como para VertexList ha sido el vector.

Otro de los parámetros nombrados anteriormente ha sido el parámetro Directed.

Un grafo dirigido conecta vértices en un único sentido, mientras que en un grafo no
dirigido sus arcos tienen ambos sentidos. Boost C++ da una tercera opción que es el
grafo dirigido bidireccional con acceso a los arcos, pero requiere mucho espacio para
cada arco. En este proyecto se ha creado un grafo direccionado dando la posibilidad en
el futuro de que se implemente algún tipo de restricciones como, por ejemplo, carriles
de circulación de un único sentido.

Conozco el número
de vértices antes de

crear el grafo

Necesito acceder a los
vértices almacenados

de forma continua

Necesito modificar el
grafo una vez creado:

añadir o eliminar vértices
Vector X X
Lista X

Figura 32. Situaciones en las cuales es más favorable utilizar el vector y en cuales utilizar
la lista en OutEdgeList y VertexList, parámetros de la clase Adjacency list de Boost.

29

4.3.2 Celdas Adyacentes

En un principio se pensó, para deducir si dos celdas eran contiguas, comprobar si
compartían dos esquinas. Este método funciona, no solo para la descomposición en
celdas cuadradas, sino para la descomposición en celdas de cualquier polígono regular.

 El problema de deducir si dos celdas son contiguas de la anterior manera es en la
descomposición trapezoidal. La descomposición en celdas trapezoidales detecta las
esquinas de los obstáculos en el entorno y traza una línea vertical desde ese punto hacia
arriba, hacia abajo o ambas, dependiendo de lo que el obstáculo permita creando
trapecios. Como se puede ver en la figura 34, si implementamos el método anterior no
detectará la celda 4 y 6 como celdas contiguas, debido a que solo comparten una
esquina de sus trapecios.

A pesar de que para la descomposición en celdas cuadradas utilizado en este
proyecto este método funciona, como se desea hacer el código lo más general posible
y que permita añadir mejorías en el futuro con facilidad, se decidió utilizar otro método.

Para ello se hizo uso de una función de Boost C++ llamada intersection. Esta función

puede devolver un punto (Point), una línea de puntos (LineString) o un polígono
(Polygon), dependiendo del tipo de dato que se elige para el parámetro GeometryOut.
Debido a que para este propósito no era necesario calcular el polígono que genera la
intersección y la intersección debía de ser de más de un punto, se seleccionó el tipo de
dato LineString que representa a una secuencia de puntos. En la siguiente tabla se
muestra el tamaño de la secuencia de puntos calculada por la función de Boost C++ en
las que las celdas se encuentran en distintas situaciones.

1 2

4

3
1

2

3
4

Figura 33. Mallas formadas por polígonos regulares.

Figura 34. Espacio descompuesto en trapecios.

30

La tabla anterior demuestra que la función intersection puede encontrar una
intersección entre dos celdas a pesar de que estas no sean contiguas como ocurre en la
situación 2. Por ello si únicamente a encontrado un punto, el método creado no las
considera celdas adyacentes y en el grafo no se añade un arco entre sus vértices.

4.4 Transformación de celdas a puntos

Como anteriormente se explicó en el apartado 3, se decidió que la transformación
de celdas a puntos se creará en una clase diferente a PlanningPath. Esto se debe a que
hay múltiples opciones para convertir la celda en un punto. Las dos mejores opciones
las que se pueden ver en la figura 36: calcular las coordenadas del punto medio de la
celda (opción A) o calcular las coordenadas del punto del medio de la línea de
intersección entre celdas (opción B). Para este proyecto se optó por la opción A dejando
la opción B como posibilidad para mejorar en el futuro y que sea el usuario el que pueda
elegir.

 Situación 1: Situación 2: Situación 3:

Length
(output)

0 1 >1

Figura 35.Output de la función "intersecion" de Boost.

Opción A Opción B

Figura 36. Transformación de celda a punto.

31

Capítulo 5

2. Análisis y conclusiones

El principal objetivo de este proyecto era mejorar un software de una plataforma
multirrobot añadiendo una planificación de trayectorias basada en la descomposición
en celdas. Se realizaron diferentes simulaciones, como la que se muestra a
continuación, que permitía comprobar el funcionamiento de la planificación de
trayectorias:

1. Se disponía el escenario sin ninguna región de interés situada en él y se

calculaban las trayectorias para los robots.

2. A continuación, se colocaba un obstáculo que bloqueaba algunas celdas
situadas en alguna de las trayectorias.

Figura 37. Simulación planificación de trayectorias. Parte 1.

Figura 38. Simulación planificación de trayectorias. Parte 2.

32

3. Se repetía el paso 2.

Como podemos comprobar, las trayectorias van cambiando para evitar los
obstáculos del camino.

Para analizar el funcionamiento de la clase controller que supervisa la navegación y

evita colisiones, se ha creado un método que permite crear simulaciones. Para apreciar
mejor la simulación, se han dibujado las trayectorias en colores y se ha ido pintando de
negro la parte de la trayectoria que el robot ya ha realizado. Además, se ha pintado con
un círculo azul el punto inicial de los robots, y con un círculo negro, se indica en que
posición estarían los robots después de haberse movido.

Además, para comprobar si el algoritmo del banquero utiliza mucho tiempo, se ha
hecho un estudio del tiempo que le cuesta al programa calcular si una posición es segura
o no. Para ello, se ha variado el número de robots y el tamaño de las trayectorias y se
han tomado 1000 medidas en cada simulación. Como se puede ver en la figura 41, el
tiempo que se tarda en decidir si un estado es seguro o no, no es apreciable para el
humano.

Figura 39. Simulación planificación de trayectorias. Parte 3.

Figura 40. Simulación algoritmo del banquero. Los círculos negros representan la
posición actual de los robots, los amarillos el destino y los azules la posición inicial de los
robots.

33

Dado un estado formado por n pares (r_i,t_i) donde r_i es un robot y t_i es su
trayectoria, el coste de determinar si un estado es seguro está acotado superiormente
por 𝑛ଶ ∗ 𝐿, donde L es la longitud de la trayectoria más larga.

La conclusión general que puede sacarse al terminar este proyecto, y que se ve

reflejada sobre todo en el apartado 4 de este documento, es la necesidad de adaptarse
a las circunstancias. El diseño de software pensado antes de empezar un proyecto
puede sufrir cambios debido a las dificultades que se encuentra por el camino o a ideas
nuevas que surgen para mejorarlo.

Los conocimientos que he adquirido durante este proyecto respecto a mi formación

anterior, grado en ingeniería electrónica y automática, son la planificación de
trayectorias y la búsqueda y uso de nuevas librerías. Además, este proyecto me ha
permitido reforzar y mejorar mis conocimientos básicos en la programación orientada
a objetos y a conocer un lenguaje nuevo para mí, como es C++.

Durante todo el proyecto a la hora de diseñar las clases necesarias para el algoritmo

de descomposición en celdas, se ha tenido en cuenta futuras mejoras y la manera de
implementarlas sin necesidad de modificar el código escrito en este proyecto. Entre
estas mejoras, destaca crear un grafo no constante que permita modificar el estado de
las celdas durante la navegación de los robots, por ejemplo, añadir o eliminar regiones
de interés, o convertir el robot en obstáculo si este permanece quieto dentro de la
plataforma, bien debido a una avería o por requerimiento del usuario. Esto supone una
replanificación de las trayectorias antes de hacer uso de la clase controller. Para
comprobar si esta mejoría para el futuro era factible, se realizaron unas medidas para
calcular el tiempo que tarda el algoritmo en planificar una trayectoria. Se realizaron
1000 medidas para ambos casos y se consiguieron unos resultados que permiten
replanificar la trayectoria antes de cada movimiento:

Número de
robots

Trayectoria más larga
(celdas)

Media de tiempo
(ms) Desviación

3 24 0.212 2.1932-13
6 27 0.427 1.269e-13

Figura 41. Estudio del tiempo que le cuesta al algoritmo del banquero decidir si un estado
es seguro o no. Número de muestras: 1000.

Número de
celdas Media de tiempo (ms) Desviación

7 0.4328 3.4066e-9
11 0.44919 5.1737e-9
24 0.48714 9.8395e-9

Figura 42. Estudio del tiempo que tarda en calcular una trayectoria. Número de muestras:
1000.

34

Otras líneas futuras que pueden mejorar el software de esta plataforma multirrobot

son:

- Implementar un algoritmo que permita decidir que robot va a cada
destino dependiendo de la posición de éstos como se explica en el
apartado 4.1.

- Implementar un algoritmo de descomposición en celdas con otras
formas: trapezoidal, triangular…

- Transformar la trayectoria de celdas a trayectorias de puntos utilizando
criterios diferentes, tal y como se explica en el apartado 4.4.

- Implementar otras formas de discretizar el escenario como, por
ejemplo, los grafos de visibilidad. Dando así la oportunidad al usuario
de elegir de qué forma le conviene más discretizarlo.

- Asignar distintas funciones a las regiones de interés dependiendo de su

color: obstáculos, destinos, puntos intermedios por donde pasar para ir
a un destino...

35

Capítulo 6

3. Bibliografía

[1] J. Siek, L.-Q. Lee y A. Lumsdaine, boost c++ libraries, Addison-Wesley

Professional., 2001.

[2] I. D.Craig, Object-Oriented Programming Languages: Interpretation, London:
Springer, 2007.

[3] A. Pertursa, D. Tomás, C. Pérez, J. Aragonés, J. A. Pérez y F. Moreno,
Programación 2, Universidad de Alicante.

[4] B. Rumpe, Modeling with UML, Springer, 2016.

[5] J. B. G. Barreto, «Diseño e implementación de un algoritmo que evite colisiones en
un sistema multi-robot utilizando el Modified Banker’s Algorithm.,» Universidad
de Zaragoza, 2020.

[6] D. R. García, «Rediseño de una Plataforma de robots móviles,» Universidad de
Zaragoza, 2021.

[7] «OpenCV,» [En línea]. Available: https://opencv.org/.

[8] F. J. Romero Ramirez, R. M. Salinas y R. M. Carnicer, «Speeded Up Detection of
Squared Fiducial Markers,» de Image and Vision Computing 76, 2018.

[9] R. M. Salinas, F. J. Cuevas y R. M. Carnicer, «Generation of fiducial marker
dictionaries using Mixed Integer Linear Programming,» de Pattern Recognition,
2015.

[1
0]

J. Pokorný, «JSON Functionally,» de Advances in Databases and Information
Systems, 2020.

[1
1]

C. Mahulea, M. Kloetze y R. González, Path Planning of Cooperative Mobile
Robots, Piscataway: IEEE Press Editorial Board, 2020.

[1
2]

R. A. Española, «Dle,» [En línea]. Available: https://dle.rae.es/grafo.

[1
3]

anonymous, «Universidad de Pamplona,» [En línea]. Available:
https://www.unipamplona.edu.co/unipamplona/portalIG/home_23/recursos/general
/11072012/grafo3.pdf.

[1
4]

S. Mukherjee, «Dijkstra’s Algorithm for Solving the Shortest Path Problem on
Networks Under Intuitionistic Fuzzy Environment,» Journal of Mathematical
Modelling and Algorithms, vol. 11, pp. 345-359, 2012.

[1
5]

E.W.Dijkstra, «A Note on Two Problems in Connexion with Graphs,» Numerische
Mathematik , vol. 1, pp. 269-271, 1959.

[1
6]

J.Ezpeleta, F.Tricas, F.Garcia-Vallés y J.M.Colom, «A Banker's solution for
deadlock avoidance in FMS with flexible routing and multi-resource states,» de
IEEE Transactions on Robotics and Automation, vol. 18, 2002, pp. 621-625.

36

[1
7]

L. Kalinovcic, T. Petrovic, S. Bogdan y V. Bobanac, «Modified Banker's algorithm
for scheduling in multi-AGV systems,» de IEEE International Conference on
Automation Science and Engineering, 2011.

[1
8]

J. B. Arbex, «Localización de múltiples robots móviles mediante una cámara
cenital,» Universidad de Zaragoza, 2016.

[1
9]

L. E. Aponte, «El blog de Prof. Luis E. Aponte I,» [En línea]. Available:
http://programandoenjava.over-blog.es/article-el-uml-o-lenguaje-de-modelado-
unificado-como-herramienta-en-el-modelado-de-objetos-53386438.html.

[2
0]

«https://www.microsoft.com/,» [En línea]. Available:
https://www.microsoft.com/es-xl/accessories/business/lifecam-studio-for-
business?activetab=overview:primaryr2.

[2
1]

I. f. Cobo, «Software de Simulación del algoritmo Del Banquero,» Ciencia &
Futuro, vol. 3, nº 3, 2013.

Lista de figuras
Figura 1. Herencia en POO. .. 3
Figura 2. Representación gráfica de una Clase en UML. [19] ... 4
Figura 3. Representación gráfica de las relaciones entre clases y objetos en UML. [3] . 5
Figura 4. Plataforma multirrobot de bajo coste. ... 5
Figura 5. Dispositivo XBee para la comunicación PC-Robot. .. 6
Figura 6. Microsoft LifeCam Studio 1080p. [20] ... 6
Figura 7. Diseño del software antes de este trabajo. Representación gráfica en UML. . 7
Figura 8. Descomposición en celdas cuadradas. 1. El escenario el cual se quiere
discretizar. 2. El escenario se descompone en regiones cuadradas. 3. Se detectan
aquellas regiones que están en contacto con alguna región de interés (gris). 8
Figura 9. Representación de un grafo dirigido y de la lista de adyacencia de él. 9
Figura 10. Representación de la relación entre las clases de este proyecto. 11
Figura 11. Relación entre las clases para el algoritmo de descomposición en celdas.
Representación en UML. .. 12
Figura 12. Valor que devuelve la función intersects de Boost. El rectángulo azul
representa a una celda y el polígono rosa a una región de interes. 13
Figura 13. Posición del eje de coordenadas en la plataforma y en OpenCv. 14
Figura 14. Relación centímetro-pixel. .. 15
Figura 15. Intento dibujo malla 1 . .. 15
Figura 16. Conversión de puntos del mundo real a la imagen capturada por la cámara.
 .. 16
Figura 17. Dibujo de una malla creada por descomposición en celdas cuadradas sobre
la plataforma. ... 16
Figura 18. Representación de un grafo dirigido interpretando la región de interés
situada en la celda C5 como un obstáculo. .. 17
Figura 19. Pequeña parte de un grafo. .. 18
Figura 20. Trayectorias entre dos puntos .. 18
Figura 21. Representación de secuencia de celdas y secuencia de puntos. 20
Figura 22. Representación de las trayectorias que deben seguir los robots. 20

37

Figura 23. Trayectorias dibujadas con una mala detección de los robots. 21
Figura 24. Mejora en la detección de las regiones de interés y de los robots. Parte 1. 22
Figura 25. Conversión de centímetros a píxeles y viceversa. .. 22
Figura 26. Mejora en la detección de las regiones de interés y de los robots. Parte 2. 23
Figura 27. Elementos detectados por la función DetectMarkers de OpenCV. 23
Figura 28. Malla con dos tamaños distintos de celda. .. 26
Figura 29. Malla con celdas cuadradas. ... 26
Figura 30. Matriz de adyacencia y lista de adyacencia de un grafo dirigido. 27
Figura 31. Ventajas y desventajas de la matriz de adyacencia respecto de la lista de
adyacencia. ... 27
Figura 32. Situaciones en las cuales es más favorable utilizar el vector y en cuales
utilizar la lista en OutEdgeList y VertexList, parámetros de la clase Adjacency list de
Boost. ... 28
Figura 33. Mallas formadas por polígonos regulares. .. 29
Figura 34. Espacio descompuesto en trapecios. ... 29
Figura 35.Output de la función "intersecion" de Boost. .. 30
Figura 36. Transformación de celda a punto. .. 30
Figura 37. Simulación planificación de trayectorias. Parte 1. .. 31
Figura 38. Simulación planificación de trayectorias. Parte 2. 31
Figura 39. Simulación planificación de trayectorias. Parte 3. 32
Figura 40. Simulación algoritmo del banquero. Los círculos negros representan la
posición actual de los robots, los amarillos el destino y los azules la posición inicial de
los robots. ... 32
Figura 41. Estudio del tiempo que le cuesta al algoritmo del banquero decidir si un
estado es seguro o no. Número de muestras: 1000. ... 33
Figura 42. Estudio del tiempo que tarda en calcular una trayectoria. Número de
muestras: 1000. .. 33
Figura 43. Escribir y leer datos en un archivo JSON. A la izquierda se muestra cómo se
introducen datos en el archivo, y a la derecha la forma en la que estos datos se leen en
el código. .. 40
Figura 44. Elección de algoritmos y métodos en el archivo JSON................................ 40
Figura 45. Clase Mission UML. ... 42
Figura 46. Clase Celda UML. .. 43
Figura 47. Clase CuatroLados UML. ... 44
Figura 48. Clase CellDecomp UML. ... 45
Figura 49. Clase Malla UML. .. 45
Figura 50. Clase Graph UML. ... 46
Figura 51. Clase PlanningPath UML. ... 48
Figura 52. Clase Planificador UML. .. 49
Figura 53. Clase Controller UML. ... 49
Figura 54. Clase Point2D UML. .. 51
Figura 55. Clase Point2D UML. .. 51

38

ANEXOS

39

Anexo I

I. Software inicial

En este anexo se explican las clases que existían en el software antes de empezar
este proyecto y el archivo JSON. La explicación de los métodos y atributos de la clase
se pueden encontrar en el Trabajo de Fin de Grado de Daniel Roche García [5]

ROBOT

La clase Robot crea abstracciones de los robots que se encuentran en la

plataforma. Es decir, esta clase crea unos objetos con las características de cada
robot. Además, esta clase cuenta con las funciones de comunicación necesarias
para la navegación de los robots y con atributos que almacenan la posición y
orientación del robot.

CAMERA

La clase Camera se utiliza para representar a las cámaras utilizadas para la

visualización digital y el reconocimiento de la plataforma. En el caso de este
proyecto al utilizar únicamente una cámara, solo se crea un objeto de esta clase.

Los objetos de esta clase almacenan datos como los pixeles de ancho y alto

que utiliza y hace uso de funciones que configuran la clase VideoCapture de la
librería OpenCV.

ROI

La clase ROI crea objetos que representan a las regiones de interés que se
sitúan en la plataforma. Estos objetos tienen de atributos datos como el contorno
de las regiones, el color o el centroide. [6]

SCENE

La clase scene representa la plataforma en su totalidad. Es en esta clase donde

se lleva lugar la detección de los robots y de las regiones de interés creando así
objetos de sus respectivas clases para representarlos.

A la clase ya scene ya creada, durante este proyecto se le ha añadido un

atributo de tipo vector llamado limite que almacena las coordenadas de las 4
esquinas que limitan la plataforma. Además, se ha creado un método llamado
ConversionPlatformToCV, comentado en el apartado 3.2.1 de este documento para

40

poder transformar unas coordenadas de la plataforma real en coordenadas en
pixeles de la imagen capturada por la cámara.

CONTROLLER

 Esta clase representa al controlador que supervisa la navegación de los robots
para que no colisionen mediante el algoritmo del banquero. Esta clase fue creada
en el Trabajo de Fin de Máster de Jose Benigno García Barreto [5] y Daniel Roche
García [6] añadió alguna función para reestructurarla. Para más información sobre
los atributos y métodos de esta clase es necesario consultar ambos trabajos.

JSON

 Como se definió anteriormente, un archivo JSON es un formato de texto
utilizado para la transferencia de datos y que se compone de un conjunto de campos
que están asociados con un identificador. Un ejemplo de cómo se introducen datos
en el archivo y como se leen desde el programa se ve en la figura 44.

En este proyecto se introducen los datos necesarios para la configuración de la clase

Camera, la clase scene y las coordenadas de los destinos. Además, el usuario introduce
en dicho archivo el algortimo de discretización que desea usar y el método para la
transformación de trayectorias de celdas a trayectorias de puntos, figura 45.

Figura 43. Escribir y leer datos en un archivo JSON. A la izquierda se muestra cómo se
introducen datos en el archivo, y a la derecha la forma en la que estos datos se leen en el código.

Figura 44. Elección de algoritmos y métodos en el archivo JSON.

41

Anexo II

II. Biblioteca de las clases creadas

Se puede acceder al código utilizado en este proyecto mediante el siguiente enlace:

https://drive.google.com/drive/folders/198XJIeQONzgw29eeCY1kVVqT4grZ0fH

A?usp=sharing

MISSION

Clase en la que se crea un objeto misión con las coordenadas de los destinos
que han sido introducidas por el usuario.

Atributos:

- num: número de misión.

- destinos: vector que almacena los destinos a los que deben dirigirse los
robots.

Métodos:

- mission(): constructor de la clase.

- ~mission(): destructor de la clase.

- mission(string): constructor de la clase que recibe el nombre del
archivo JSON donde se almacenan las coordenadas de los destinos.

- GetMisiones(): devuelve el atributo destinos.

- GetNum(): devuelve el atributo número.

42

CELDA

Clase que crea abstracciones de las regiones en las que se divide el escenario al

discretizarlo mediante el algoritmo de descomposición de celdas.

Atributos:

- num: número de misión.

- state: indica el estado de la celda: libre, ocupada por un obstáculo…

- esquinas: vector que almacena las coordenadas de las esquinas que
forman la celda.

- centro: coordenadas del centro de la celda.

Métodos:

- Celda(): constructor de la clase.

- ~Celda(): destructor de la clase.

- Celda(int): constructor de la clase celda al que se le introduce el
número de celda.

- SetState(scene): Se comprueba si alguna región de interés se

encuentra situada en la celda y se le asigna un valor al atributo state.

- GetState(): devuelve el atributo estado.

- GetEsquinas(): devuelve el atributo esquinas.

Figura 45. Clase Mission UML.

43

- GetEsquina(int): devuelve las coordenadas de la esquina que se le
introduce.

- GetNum(): devuelve el atributo número.

- GetCentro(): devuelve el atributo centro.

- print(): imprime por pantalla las coordenadas de las esquinas de la

celda, así como el número que la identifica.

- PuntoDentro(Point2d): devuelve true si el punto introducido se
encuentra dentro de la celda y false en caso contrario.

CUATROLADOS

Clase heredada de la clase Celda que genera regiones cuadradas o
rectangulares. Los atributos de esta clase son heredados de la clase Celda.
Además, todos los métodos de la clase Celda también los contiene la clase
CuatroLados, por ello únicamente se explican aquí los métodos nuevos que
contiene esta clase.

Métodos:

- CuatroLados(int, Point2D, double, double): constructor de la clase al
que se le introduce: el número de celda, la coordenada de la esquina
inferior izquierda, el ancho y el largo de la región.

Figura 46. Clase Celda UML.

44

- SetEsquinas(Point2D, double, double): A partir del punto introducido

y de la anchura y altura de la región calcula la posición de las
coordenadas de las esquinas y las almacena en el atributo esquinas.

- SetCentro(): calcula las coordenadas del centro del polígono y las

almacena en el atributo centro.

CELLDECOMP

Clase que representa el conjunto de regiones en las que el escenario se discretiza.

Atributos:

- num: número de celdas que forman la malla.

- cellDecomp: vector que almacena las celdas que forman la

descomposición del escenario.

Métodos:

- CellDecomp(): constructor de la clase.

~CellDecomp(): destructor de la clase.

- GetSize(): devuelve el atributo num.

- GetCellDecomp(): devuelve el atributo cellDecomp.

- GetCelda(int): devuelve la celda cuyo número es el introducido.

- print(): imprime por pantalla las celdas que forman la descomposición

en celdas.

Figura 47. Clase CuatroLados UML.

45

- Dibujo(Mat im, scene escenario): muestra por pantalla la
descomposición dibujada. Ver Figura 17.

MALLA

Clase heredada de la clase CellDecomp que discretiza el escenario en regiones
cuadradas. Los atributos de esta clase son heredados de la clase CellDecomp.
Además, todos los métodos de la clase CellDecomp también los contiene la clase
Malla, por ello únicamente se explican aquí los métodos nuevos que contiene esta
clase.

Métodos:

- Malla(scene escenario): constructor de la clase.

GRAPH

Clase en la que se crea el grafo que representa las relaciones entre las celdas
creadas.

Atributos:

Figura 48. Clase CellDecomp UML.

Figura 49. Clase Malla UML.

46

- graph: objeto de la clase adjacency_ list de la librería Boost que

almacena el grafo.

Métodos:

- Graph(): constructor de la clase.

- ~Graph(): destructor de la clase

- Graph(Malla): constructor de la clase al que se le introduce la malla en
la que el escenario ha sido discretizado.

- vecino(Celda, Celda): devuelve true si las celdas introducidas son

contiguas y false en caso contrario.

- print(): imprime la lista de adyacencia: cada vértice con la lista de
vértices a los que esta unido mediante un arco.

- GetGraph(): devuelve el atributo graph.

- DibujarGraph(): Guarda en un archivo png el grafo dibujado.

PLANNINGPATH

Clase en la que se crea una trayectoria desde el punto de partida de cada robot
y su respectivo destino.

Atributos:

Figura 50. Clase Graph UML.

47

- caminos: vector que almacena las trayectorias de celdas más corta que

une las celdas de partida con las celdas de destino.

- CeldaInicialRobots: vector que almacena el número de las celdas
donde se encuentran los robots antes de comenzar su navegación.

- CeldaDestinos: vector que almacena el número de las celdas donde se

encuentran los destinos.

Métodos:

- PlanningPath(): constructor de la clase.

- ~ PlanningPath (): destructor de la clase

- PlanningPath(mission, Graph, Malla, scene): constructor de la clase al
que se le introduce la misión a realizar, el escenario, el grafo y la malla.

- GetCaminos(): devuelve el atributo caminos.

- GetRobotQueCelda(): devuelve un vector con las celdas donde están

situados los robots.

- GetDestinoQueCelda(): devuelve un vector con las celdas donde están
situados los destinos.

- RobotQueCeldaSimulador(int num, int celda): método utilizado para

simular las posiciones de los robots.

- RobotQueCeldaInicialSimulador(): método utilizado para simular las
posiciones iniciales de los robots.

- RobotQueCelda(): Recorre el conjunto de celdas en busca de las celdas

donde están situados los robots y las almacena en el atributo
CeldaInicialRobots.

DestinoQueCelda(): Recorre el conjunto de celdas en busca de las
celdas donde están situados los destinos y las almacena en el atributo
CeldaDestinos.

48

PLANIFICADOR

Clase que transforma una trayectoria de celdas en una trayectoria de puntos.

Atributos:

- paths: vector que almacena las trayectorias de puntos más corta que
une los puntos de partida con los puntos de destino.

Métodos:

- Planificador(): constructor de la clase.

- ~ Planificador (): destructor de la clase

- Planificador(string, Malla, PlanningPath): constructor de la clase que
crea una instancia a partir de un string para introducir el archivo JSON
que se desea, una malla y el PlanningPath donde se han calculado las
trayectorias de celdas.

- GetPaths(): devuelve el atributo paths.

- PuntosMedios(Malla, PlanningPath): transforma las trayectorias de

celda a trayectorias de puntos y las almacena en el atributo paths.

Figura 51. Clase PlanningPath UML.

49

- Dibujartrayectorias(Mat, scene): Muestra por pantalla las trayectorias
dibujadas. Ver figura 22.

- print(): imprime los puntos que forman la trayectoria.

CONTROLLER

Clase en la que se crea un controlador para supervisar la navegación de los
robots y evitar colisiones.

Métodos:

- Controller(): constructor de la clase.

- ~ Controller (): destructor de la clase.

- Controller(CellDecomp m, PlanningPath planning, Planificador plan,
Mat im, scene escenario): constructor de la clase que crea una
instancia a partir de un CellDecomp, un planningPath, un planificador,
una matriz y un scene.

Figura 52. Clase Planificador UML.

Figura 53. Clase Controller UML.

50

POINT2D

Clase utilizada durante el proyecto que transforma una trayectoria de celdas en
una trayectoria de puntos.

Atributos:

- x: coordenada x del punto.

- y: coordenada y del punto.

Métodos:

- Point2D(): constructor de la clase.

- ~ Point2D(): destructor de la clase

- Point2D(double, double): constructor de la clase al que se le
introducen los valores para las coordenadas x e y.

- GetX() y GetY(): devuelven los atributos x e y respectivamente.

- SetX(double) y SetY(double): modifican los atributos x e y

respectivamente, asignándoles el valor introducido.

- Set(double, double): modifica los dos atributos de la clase
asignándoles los valores introducidos.

- PuntosIguales(Point2D, Point2D): devuelve true si los dos puntos

introducidos son el mismo, y false en el caso contrario.

- print(): imprime los valores de los atributos.

51

Figura 54. Clase Point2D UML.

