

Trabajo Fin de Grado

Sistema de Información para el Museo de
Informática Histórica (MIH) de la Universidad de

Zaragoza

Information System for the Historical Computer
Science Museum (MIH) of the University of

Zaragoza

Autor:
David Alloza Tejero

Director:

Eduardo Mena Nieto

Titulación del autor:
Graduado en Ingeniería Informática

Escuela de Ingeniería y Arquitectura, Zaragoza

2021

TÍTULO

Sistema de Información para el Museo de Informática Histórica (MIH)
de la Universidad de Zaragoza.

RESUMEN

En este trabajo se ha desarrollado un sistema completamente funcional
que se utilizará para catalogar todos aquellos objetos que sean donados
al Museo de Informática Histórica (MIH) de la Universidad de Zara-
goza, aśı como para catalogar progresivamente todos aquellos objetos
que ya pertenecen al museo.

Este sistema consta de una base de datos MySQL en la que alma-
cenar toda la información y una aplicación web desarrollada en Java y
JavaScript que permite consultar el catálogo del museo de forma abier-
ta para cualquier usuario o realizar acciones de administración en ella,
esta última accesible solo para el usuario administrador con identifica-
ción previa.

El desarrollo de este trabajo puede dividirse en cuatro etapas:

1) Análisis previo al desarrollo del sistema de los gestores del mercado
y decisión de cuál es mejor opción para resolver este problema.

2) Diseño del modelo de datos.

3) Desarrollo de la aplicación web.
4) Incorporación de pequeñas mejoras a la aplicación, solución de erro-
res y catalogación de varias donaciones reales del museo.

2

AGRADECIMIENTOS

Agradecer a Eduardo Mena Nieto por acompañarme en el desarro-
llo en este trabajo fin de grado, por darme a conocer los entresijos del
Museo de Informática Histórica de la Universidad de Zaragoza y por
ofrecerme su disponibilidad en todo momento.

Agradecer también a mi familia por apoyarme en todo momento du-
rante estos 10 meses en los que he desarrollado mi trabajo fin de grado.

3

Índice

1. Introducción 7

1.1. El Museo de Informática Histórica (MIH) 7

1.2. Objetivos del proyecto . 8

1.3. Tecnoloǵıas utilizadas . 11

1.4. Estructura de la memoria . 12

2. Diseño de la base de datos 12

2.1. Análisis de los SGBD del mercado . 12

2.2. Elección del SGBD . 14

2.3. Esquema de la base de datos . 15

2.3.1. Esquema Entidad-Relación . 18

2.3.2. Esquema Relacional . 21

2.3.3. Evolución del esquema . 22

3. Arquitectura del sistema de información para el MIH 24

3.1. Diseño de la aplicación . 24

3.2. Funcionalidades de la aplicación . 29

4. Pruebas efectuadas al sistema 34

4.1. Validación . 34

4.2. Sobrecarga y eficiencia . 35

5. Conclusiones 37

5.1. Cronograma . 38

5.2. Posibles ampliaciones . 39

5.3. Opinión personal . 40

Bibliograf́ıa 42

A. Anexo: Análisis individual de los SGBD del mercado 43

4

A.1. MySQL . 43

A.2. MariaDB . 43

A.3. Oracle . 43

A.4. PostgreSQL . 43

A.5. DB2 . 43

A.6. Informix . 44

A.7. CACHE . 44

A.8. DB4O . 44

A.9. MongoDB . 45

A.10.Cuadro comparativo de los gestores anteriores 45

B. Anexo: Tablas de la Base de Datos 46

B.1. Tabla TIPOS . 46

B.2. Tabla DONANTES . 46

B.3. Tabla DONACIONES . 47

B.4. Tabla ITEMS . 48

B.5. Tabla IMAGENES ITEMS . 49

B.6. Tabla IMAGENES TIPOS . 50

B.7. Tabla ATTR TIPOS . 50

B.8. Tabla ATTR VALORES . 52

B.9. Tabla ATTR ITEMS STRING . 53

B.10.Tabla ATTR ITEMS REF . 54

B.11.Tabla ZONAS . 54

B.12.Tabla LOCALIZACIONES . 55

B.13.Tabla UBICACIONES . 56

C. Anexo: Manual de usuario de las funcionalidades de la aplicación 57

C.1. Funcionalidades de usuario . 57

C.1.1. Barra de navegación . 57

C.1.2. Visión global del museo . 58

C.1.3. Visualización de la jerarqúıa de tipos de ı́tems 59

5

C.1.4. Vista detallada de un tipo de ı́tem 60

C.1.5. Consultar datos variados con información detallada 62

C.1.6. Consultar datos estad́ısticos del sistema 66

C.1.7. Vista detallada de un ı́tem . 68

C.1.8. Búsqueda en el sistema . 70

C.2. Funcionalidades espećıficas de administración 71

C.2.1. Visualización de la jerarqúıa de tipos de ı́tems 71

C.2.2. Vista detallada de un tipo de ı́tem 74

C.2.3. Consultar datos variados con información detallada 84

C.2.4. Vista detallada de un ı́tem . 92

D. Anexo: Contenido del fichero XML de configuración configuracion tablas.xml101

E. Anexo: Contenido del fichero XML de configuración variables constantes.xml107

F. Anexo: Diagrama de Gantt completo. 109

6

1. Introducción

El Museo de Informática Histórica de la Universidad de Zaragoza, situado en el
edificio Ada Byron de la EINA, lleva recibiendo centenares de donaciones de objetos
anuales desde que se creara en año 2003. Todos estos objetos se guardan en el almacén
del sótano y después, aquellos que son más relevantes y están en mejor estado se
seleccionan para ser expuestos las vitrinas de los pasillos del edificio.

Eduardo Mena Nieto, profesor del Dpto. de Informática e Ingenieŕıa de Sistemas
de la Universidad de Zaragoza, miembro de la asociación RetroAcción, y coordinador
del museo y director de este Trabajo Fin de Grado, se encarga de catalogar las dona-
ciones de todos aquellos productos que recibe. Para ello utiliza un único documento
Google Drive donde anota todas las caracteŕısticas de los objetos e información re-
levante sobre el donante.

Después de 18 años con el museo en funcionamiento, ese documento se ha vuelto
tan voluminoso que resulta muy complicado trabajar con él y la búsqueda que ofrece
es solo a partir de cadenas de texto, por lo que resulta dif́ıcil por ejemplo hacer
un recuento de ı́tems catalogados. Por estos principales motivos se ha considerado
adecuado informatizar este registro de información.

1.1. El Museo de Informática Histórica (MIH)

El Museo de Informática Histórica surge en 2003 por la motivación de un grupo
de personas del Centro Politécnico Superior (actualmente Escuela de Ingenieŕıa y
Arquitectura, EINA) de la Universidad de Zaragoza por recuperar parte del patri-
monio de las tecnoloǵıas y sus conocimientos, precursores de la breve y trepidante
era informática, completando aśı unos fondos representativos del avance tecnológico
en nuestra sociedad.

El MIH resulta una iniciativa atractiva y pionera en nuestra comunidad autóno-
ma, siendo éste un reto que la asociación RetroAcción afronta en toda su extensión
e intensidad en colaboración con la EINA desde que en 2009 dicho centro confió en
RetroAcción la gestión técnica del MIH.

En estos momentos los fondos de MIH incluyen varios miles de art́ıculos tecnológi-
cos (desde sistemas completos, dispositivos de almacenamiento, microprocesadores,
periféricos...), buena parte de su software más significativo, y sus correspondien-
tes fuentes de documentación en distintos soportes (manuales originales, gúıas de
usuario, fotograf́ıas, documentos digitales, etc.). Se recogen también, siempre que es

7

posible, el testimonio de las personas que han utilizado dichas tecnoloǵıas. La parte
más importante de estos fondos se encuentra en la exposición permanente que se
distribuye a lo largo de las distintas plantas del edificio Ada Byron del Campus Rı́o
Ebro. Se comentan a continuación cada una de las zonas temáticas del museo que se
distribuyen a lo largo de las tres plantas del edificio:

Planta 0: Se incluyen 6 zonas centradas en los componentes de un ordena-
dor, los ordenadores domésticos, los ordenadores Apple, los compatibles PC, la
computación portátil, y los servidores y terminales. De esta manera se muestra
un completo recorrido a través de las distintas familias de ordenadores de la
historia de la Informática.

Planta 1: Se incluyen cuatro zonas centradas en algunas de las principales
aplicaciones y objetivos de los ordenadores: una doble zona dedicada a los
videojuegos (de máquinas recreativas, consolas, y ordenadores), la creación de
gráficos y música por ordenador, y las aplicaciones más empresariales.

Planta 2: Incluye una zona situada a lo largo de las cristaleras de la sala de
estudios del edificio Ada Byron y que sirve de complemento a la zona 6 de la
planta 0, incluyendo algún servidor más y sobre todo estaciones de trabajo.

Para ampliar la información sobre el museo, visitar la página del MIH http://mih.

unizar.es/ o consultar el dosier [10] del museo accesible también desde esa web.

1.2. Objetivos del proyecto

Se listan a continuación los objetivos principales que se pretenden abordar con la
realización de este proyecto:

1. El objetivo principal es elaborar un sistema de información que permita llevar
un registro de todos los elementos que forman parte del Museo de Informática
Histórica (MIH) situado en la EINA.

2. Se desarrollará una aplicación Web que permita consultar dicha información
por parte de los usuarios, aśı como catalogar la información sobre los elementos
por parte del personal administrador del museo.

3. Este proyecto pretende solucionar un problema de la vida real que existe desde
que se creó el museo y que todav́ıa no ha sido solucionado. En consecuencia, el

8

http://mih.unizar.es/
http://mih.unizar.es/

principal reto de este trabajo es manejar un modelado de la información que
puede ser cambiante a lo largo del tiempo conforme el museo crece.

4. Toda la aplicación girará entorno a los objetos f́ısicos que se donan al museo
con el fin de ser almacenados y catalogados, a dichos objetos se les denominará
ı́tems f́ısicos.

5. Para facilitar la catalogación de los ı́tems f́ısicos, se ha creado el concepto de
tipo de ı́tem. Un tipo será una abstracción de un conjunto de ı́tems f́ısicos en
el que se representarán las caracteŕısticas comunes que todos ellos comparten.

6. Los tipos se representarán mediante una jerarqúıa, lo que permitirá a algunos
tipos heredar caracteŕısticas de tipos con mayor nivel de abstracción. Esta idea
de almacenamiento jerárquico tiene como principales objetivos el poder cata-
logar un ı́tem de forma más rápida y evitar información repetida en el sistema.
Conforme se cataloguen objetos irán apareciendo nuevos tipos de ı́tems, y será
común que la clasificación inicial hecha de los tipos no sea la más adecuada
pasado un tiempo y que haya que reorganizarla, por este motivo resulta de vital
importancia ofrecer una jerarqúıa dinámica de tipos, en la que poder añadir
nuevos tipos, eliminar tipos no deseados o reubicar otros en diferentes ramas.

7. Las caracteŕısticas de un tipo estarán representadas en el sistema mediante
atributos. Estos atributos de los tipos tendrán un rango y un valor asociado.
El rango determinará el tipo de información que representan, pudiendo ser un
valor literal o una referencia a otro ı́tem. El valor asociado podrá ser asignado
por el propio tipo, por los subtipos o por los ı́tems asociados a dicho tipo (o
cuyo tipo asociado es descendiente).

8. Cada donación realizada al museo será registrada en la aplicación, indicando
el donante que la realizó, aśı como información adicional como la fecha, el tipo
de donación, etc.

9. El museo se dividirá en zonas, y cada zona tendrá una o varias localizaciones
en las que se podrán encontrar ubicados los ı́tems del museo. La aplicación
permitirá consultar la información de las zonas, las localizaciones y los ı́tems
ubicados en ellas.

10. Se pondrá también a disposición del administrador del museo una cuenta de
usuario administrador para el sistema. Con ella, además de poder interactuar
con la aplicación como un usuario invitado normal, podrá llevar a cabo diversas

9

tareas en el sistema para catalogar y almacenar la información relativa a los
objetos donados en el museo. Podrá realizar las siguientes acciones:

Modificar la jerarqúıa de tipos de ı́tems. Se le permitirá añadir nuevos
tipos, eliminar tipos existentes y reubicar tipos en otras ramas de la je-
rarqúıa.

Modificar la información relativa tanto a ı́tems f́ısicos como a tipos de
ı́tems. Se le permitirá añadir, eliminar y modificar atributos de tipos,
valores asignados en atributos y ubicaciones de un ı́tem.

Incorporar en el sistema nuevos donantes. También se le permite eliminar
o modificar la información relativa a otros donantes ya existentes.

Incorporar nuevas donaciones al sistema y asociarlas a un donante y a un
conjunto de ı́tems f́ısicos. También podrá eliminar o modificar lo relativo
a una donación existente.

Añadir nuevas zonas y localizaciones al museo. También podrá eliminar
o editar la información de alguna ya existente. Esta funcionalidad será la
menos utilizada del sistema ya que las zonas y localizaciones del museo
apenas cambiarán con el tiempo.

Se muestra a continuación un diagrama de las distintas vistas de las que dispondrá
la aplicación web y como se relacionan entre ellas:

10

Figura 1: Diagrama con las vistas de aplicación web y su relación entre ellas

1.3. Tecnoloǵıas utilizadas

MySQL: Gestor de base de datos utilizado por el sistema. En posteriores
secciones se explican los motivos por los que se ha optado por esta solución.

Java: Lenguaje de programación en el que está desarrollada la mayor parte de
la aplicación web [7].

JavaScript: Lenguaje de programación utilizado para hacer las distintas vistas
de la aplicación más dinámicas [8].

Bootstrap: Es un framework o biblioteca de código abierto basada en HTML,
CSS y JavaScript. Contiene plantillas de diseño web y componentes que per-
miten agilizar el proceso de construcción del front-end [1].

JSPs y Servlets: Tecnoloǵıa utilizada para la construcción del back-end de
la aplicación.

11

Datatables: Se trata de un plug-in para JQuery de JavaScript que permite
dar formato a una tabla HTML y añadirle funcionalidades como paginación,
filtrado, ordenación, buscador, etc [2].

1.4. Estructura de la memoria

En primer lugar, en la sección 2 se trata todo lo relacionado con la base de datos.
Se comenta el análisis realizado a los diferentes gestores del mercado, los motivos de
la elección final y se comenta el esquema final de la base de datos y su evolución. En
la sección 3, se habla de la arquitectura del sistema, es decir, como se ha diseñado
y desplegado y que funcionalidades presenta. La sección 4 comenta las diferentes
pruebas efectuadas al sistema. En la sección 5, se comentan las conclusiones extráıdas
tras la finalización del proyecto, se incluye un cronograma de tareas y se habla de
posibles ampliaciones en la aplicación.

Para terminar, existen 6 anexos que contienen información detallada acerca de:
análisis individual de los gestores (A), tablas SQL de la Base de datos (B), manual
de usuario de las funcionalidades de la aplicación (C), contenido del fichero XML de
configuración de las tablas visibles en la aplicación (D), contenido del fichero XML
de variables constantes (E) y diagrama de Gantt completo con la evolución temporal
de las tareas (F).

2. Diseño de la base de datos

En esta sección se analizan las caracteŕısticas que ofrecen los diferentes gestores
del mercado en el contexto de este problema antes de seleccionar uno, después se
comentan los motivos de la elección y finalmente se comentan aspectos sobre el
esquema final de la base de datos y su evolución.

2.1. Análisis de los SGBD del mercado

El problema principal del modelado de datos es la representación de los tipos de
objetos como una una jerarqúıa para que los tipos hijos heredasen los atributos de
los padres. Por tanto, el objetivo del análisis fue encontrar un gestor que fuese capaz
de crear una jerarqúıa de tablas donde cada tabla representaŕıa un tipo, contendŕıa
sus atributos propios como campos y heredaŕıa los atributos de las tablas superiores

12

gracias a las propiedades de la herencia. En la imagen 2 se muestra un esquema
entidad-relación de como se pretend́ıa modelar la herencia de tipos, donde la idea
era que cada entidad que figura se convirtiese en una tabla en la base de datos. En
este esquema cada ı́tem se relaciona con un único tipo de ı́tem, que este a su vez
puede ser de varios subtipos, y los subtipos tendŕıan acceso a los atributos de toda
la rama a la que perteneciesen.

Figura 2: Ejemplo de un esquema entidad-relación para modelar la herencia de tipos
de ı́tems con una tabla por tipo.

El gestor elegido, además de ofrecer un mecanismo de herencia de tablas propiamente
dicho, deb́ıa tener los siguientes requisitos:

Desde la tabla de un tipo hijo, poder acceder a sus atributos propios y a los
atributos de las tablas de los ancestros.

Las restricciones definidas en la tabla de un tipo se deben heredar para todas
las tablas de los tipos herederos.

A continuación, se muestran en una tabla comparativa las distintas caracteŕısticas
que presentan respecto a la gestión de la herencia cada uno de los gestores analizados.
En el Anexo A puede verse con más detalle un análisis individualizado de cada gestor.

13

Gestor Tipo
Software
libre

Herencia
Propagación
restricciones

Integridad
referencial

MySQL Relacional Śı No tiene — —
MariaDB Relacional Śı No tiene — —
Oracle Relacional No Objetos Śı Śı

PostgreSQL Relacional Śı Tablas Parcial No
DB2 Relacional No Objetos Śı Parcial

Informix Relacional No Objetos Śı Parcial

CACHE
Orientado a
Objetos

No Clases — —

DB4O
Orientado a
Objetos

Śı Clases — —

MongoDB
Orientado a
Documentos

Śı No tiene — —

Cuadro 1: Comparativa de caracteŕısticas de los principales gestores del mercado

2.2. Elección del SGBD

En este punto, finalizado el análisis de los gestores y habiendo visto lo que ofrećıan,
se teńıa que elegir entre una de estas dos soluciones para solventar el tema de la
herencia:

1. Optar por una implementación orientada a objetos que permita heredar res-
tricciones entre la jerarqúıa a cambio de que dicha jerarqúıa sea más ŕıgida en
cuanto a cambios. Los gestores candidatos eran Oracle y DB2.

2. Optar por una implementación que permita una jerarqúıa de tablas flexible
pero a cambio de perder la herencia de restricciones entre tablas. El mejor
gestor candidato era PostgreSQL.

Ambas implementaciones teńıan problemas que solventar y hab́ıa que pensar cual
supondŕıa menos impacto. Con la primera solución estaba el problema de que cada
vez que se quisiera modificar la jerarqúıa habŕıa que hacer una copia de seguridad
de los datos de las tablas, modificar el esquema y después rehacer la base de datos.
Con la segunda solución aparećıa el problema de que para solventar la no herencia
de restricciones entre tablas habŕıa que implementar triggers que se encargasen de

14

propagarlas de forma automática cada vez que se añadiese una tabla nueva a la
jerarqúıa.

El objetivo de la herencia era poder establecer una jerarqúıa de tipos de ı́tems
almacenados en el museo, pudiendo aśı cada tipo tener una serie de atributos a los
que dar valor y que los heredasen sus descendientes. El fin no es otro que a la hora
de registrar un nuevo ı́tem donado, el encargado del museo tenga que hacer el menor
esfuerzo posible para registrarlo al poder utilizar la información jerárquica.

Como ninguna de las dos opciones resultaba convincente y ningún gestor ofrećıa
un soporte a la herencia de tablas con garant́ıas, surgió una nueva idea para modelar
la jerarqúıa de tipos sin necesidad de hacer uso de los mecanismos de herencia en
el gestor, que tras estudiarla se acabó considerando la mejor opción. La idea era
poder mantener una jerarqúıa a partir de una tabla que almacenase los meta-datos
de dicha jerarqúıa y sin necesidad de usar lo ofrecido por el gestor para controlar la
herencia, es decir, una tabla que guardasen toda la información necesaria para inferir
la herencia.

Por ejemplo, para modelar un tipo de ı́tem con dos tipos hijos, en lugar de tener
tres tablas relacionadas con el mecanismo de herencia del gestor, tener una única
tabla donde insertar tuplas [nombre del tipo,referencia al tipo padre] que indiquen
esta relación, y después guardar los atributos de cada tipo en otra tabla de manera
similar con tuplas [nombre del tipo,nombre del atributo,valor del atributo].

Finalmente, en lo que respecta al gestor utilizado, como con la nueva solución ya no
era necesario el uso de mecanismos de herencia propios de los gestores, se optó por
usar MySQL. Los motivos los siguientes:

Es uno de los gestores SQL más utilizados y que cuneta con una gran comunidad
de desarrolladores que lo utilizan.

Es software libre, ya dispone de una licencia GPL (General Public License).

A nivel personal ya hab́ıa trabajado con dicho gestor en diversas ocasiones.

El servidor donde se iba a alojar tanto la aplicación como el gestor de bases de
datos ya teńıa instalado y configurado MySQL.

2.3. Esquema de la base de datos

En esta sección se va a mostrar en primer lugar la versión final del esquema de
la base de datos y después se comentará la evolución del mismo desde que se tuvo la

15

primera idea y se comenzó a trabajar con él. Pero antes, destacar que para diseñar el
esquema se partió de una antigua versión del mismo diseñada por Daniel Mart́ınez
Garćıa. Daniel fue un alumno que comenzó a desarrollar este mismo TFG en el año
2012 pero que no llegó a terminarlo y lo abandonó. Dicho esquema sirvió como punto
de partida y de él se obtuvieron ideas importantes como: tener ı́tems y tipos de ı́tems
(Daniel los denominaba ı́tem f́ısico e ı́tem lógico), tener un histórico de ubicaciones
para un ı́tem o la idea de establecer una relación jerárquica para los tipos de ı́tems.
Hubo otras ideas de este esquema que se acabaron desechando finalmente ya que no
se consideraban muy adecuadas como por ejemplo: Tener triggers para asegurar la
integridad referencial en la herencia (ya que utilizaba el gestor PostgreSQL) o tener
atributos propios en la entidad Ítem F́ısico. Con todo este análisis se comenzó a
desarrollar el nuevo esquema.

16

Figura 3: Esquema Entidad-Relación diseñado por Daniel en 2012

En las siguientes subsecciones se muestra el esquema de la base de datos completo
en su versión actual. También se comentan las distintas etapas por las que este ha
pasado desde que se comenzó a trabajar con él.

17

2.3.1. Esquema Entidad-Relación

Figura 4: Esquema Entidad-Relación de la Base de Datos

18

A continuación se aporta una breve explicación de cada entidad:

Tipos: Almacena de forma jerárquica los diferentes tipos de ı́tems que se de-
claran en la aplicación, guardando su nombre y una referencia a su tipo que
actúa como padre jerárquico.

Donantes: Almacena información relativa a las personas que han realizado
una donación al museo al menos una vez.

Donaciones: Almacena información relativa a una donación de uno o varios
ı́tems realizada por un donante.

Ítems: Almacena cada uno de los ı́tems f́ısicos donados al museo y lo asocia a
un tipo concreto.

Imágenes Ítems: Almacena las rutas de aquellas imágenes asociadas a un
ı́tem.

Imágenes Tipos: Almacena las rutas de aquellas imágenes asociadas a un
tipo.

Attr Tipos: Almacena los atributos definidos por cada tipo. Recalcar que en
esta entidad solo se almacenan los atributos propios junto con su valor si es
que lo tienen, los heredados nunca estarán aqúı.

Attr Valores: Almacena únicamente los valores que un tipo le asigna a aque-
llos atributos que ha heredado de otros supertipos de forma jerárquica.

Attr Ítems String: Almacena únicamente los valores dados por un ı́tem a un
atributo heredado que sea de rango ’STRING’, es decir, cuando el valor que
puede adoptar el atributo represente valores literales.

Attr Ítems Ref: Almacena únicamente los valores dados por un ı́tem a un
atributo heredado que sea de rango ’Tipo’, es decir, cuando el atributo tenga
el rango restringido por un tipo de ı́tem y el valor que puede adoptar es una
referencia a otro ı́tem del tipo del rango.

Zonas: Almacena las distintas zonas en las que se divide el museo.

Localizaciones: Almacena los distintos puntos en los que se pueden localizar
ı́tems en el museo (cada localización pertenece a una zona concreta).

19

Ubicaciones: Almacena el historial de localizaciones por las que ha pasado
un ı́tem f́ısico desde que se donó.

Comentar también algunas restricciones que presenta el esquema y que se solucionan
en el lado del servidor:

El periodo temporal de cada ubicación asociada a un ı́tem no debe interferir
en el periodo de otra ubicación antigua a la hora de añadir nuevas o modificar
existente.

Cada ı́tem tendrá una ubicación inicial por defecto localizada en el almacén.

Existirá un donante predefinido denominado ’Donante desconocido’ asociará
por defecto a aquellas donaciones en las que no se indique donante.

No se podrá repetir el mismo nombre de atributo en la rama jerárquica de un
tipo.

Los nombres de atributos almacenados en las entidades ’Attr Valores’, ’Attr
Ítems String’ y ’Attr Ítems Ref’ deberán coincidir siempre con los nombres
definidos en ’Attr Tipos’.

20

2.3.2. Esquema Relacional

Figura 5: Esquema Entidad-Relación de la Base de Datos

21

Respecto a la normalización del esquema:

En primer lugar, se ha comprobado que cumple la primera forma normal ya
que ninguna relación presenta atributos multivaluados.

El modelo no presenta dependencias de parte de la clave en las relaciones ya
que en las relaciones con claves compuestas, ninguno de sus atributos puede ser
obtenido con solo una parte de la clave primaria, por estos motivos se puede
afirmar que cumple la segunda forma normal.

Se ha comprobado también que el modelo no presente dependencias de atri-
butos que no sean clave con otros de la misma relación, de esta manera se
confirma que cumple la tercera forma normal.

Para finalizar la normalización, se ha comprobado que cumple forma normal de
Boyce-Codd ya que en todas las relaciones del modelo las únicas dependencias
existentes son las de la clave primaria.

Como resultado se obtiene que el modelo relacional final ya está normalizado. Puede
verse una explicación más detallada de cada una de las tablas generadas para la base
de datos en el Anexo B.

2.3.3. Evolución del esquema

El esquema anterior representa la versión final de la base de datos utilizada por
la aplicación, pero como se puede suponer, previamente hubo otras versiones que se
acabaron descartando o que evolucionaron hasta llegar a la actual.

Las entidades que representan los ı́tems, las donaciones, los donantes, las zonas,
las localizaciones, las ubicaciones de un ı́tem y las imágenes de tipos e ı́tems se
tuvieron claras desde el inicio como se queŕıan modelar y no han sufrido apenas
cambios desde entonces. El cambio más significativo fue la incorporación de un campo
’código’ en las localizaciones y donaciones y de un campo ’orden’ en las imágenes, con
el fin de mostrar la información en la web con un orden preestablecido y configurable.

La entidad de los tipos tuvo dos etapas: La primera, en la que se pretend́ıa usar
un gestor que permitiese herencia de tablas y por tanto existiŕıa una tabla por tipo
creado en el sistema. La segunda y la actual, en la que decidió inferir la herencia de
tablas guardando los meta-datos en una única tabla, dando lugar a una única tabla
donde guardar tuplas con el nombre del tipo y una referencia al tipo padre.

22

El tema de los atributos de los tipos fue sin duda, junto con la herencia de los
tipos, lo más dif́ıcil de modelar y lo que supuso más tiempo. Al inicio, cuando se
teńıa la idea de tener una tabla por tipo, modelar los atributos era relativamente
sencillo ya que cada uno seŕıa un campo de la tabla del tipo que lo definiese y las
tablas hijas los heredaŕıan por las propiedades de la herencia del gestor. El problema
estaba en definir campos en las tablas que referenciaban a otras tablas (necesarios
para los atributos con rango ’Tipo’) ya que las restricciones de integridad referencial
no eran soportadas por el gestor elegido, este fue uno de los motivos que propició el
cambio en la forma de modelar la herencia. Con la solución de la herencia de tipos
modelada con una sola tabla, el modelado de los atributos pasó por varias versiones:

1. Una única tabla donde almacenar tanto los atributos que se defińıan como los
valores asignados a ellos por su tipo o por un subtipo.

2. Se decidió dividir la tabla anterior en dos, en una se almacenaŕıa la definición
de atributos y en otra la asignación de valores.

3. Cuando se decidió que los ı́tems también pudiesen asignar valores a atributos
de su tipo o de un tipo ancestro jerárquicamente, la tabla para almacenar la
asignación de valores se quedaba pequeña, por tanto se destino esta para la
asignación en tipos y se creó otra para la asignación en ı́tems.

4. Con la implementación del sistema bastante avanzada, se decidió que un ı́tem
no solo pod́ıa asignar valores a atributos de rango STRING sino que también
pod́ıa hacerlo con atributos de rango Tipo (el valor pasaba de ser un literal
a ser una referencia a un ı́tem). Este cambio supuso añadir una nueva tabla
para almacenar solo la asignación en ı́tems de atributos de rango Tipo y dejar
la que hab́ıa para almacenar solo la asignación en ı́tems de atributos de rango
STRING.

Destacar también que cuando la aplicación estaba bastante avanzada surgió un de-
bate acerca del uso de tablas MyIsam o InnoDB en MySQL. En un principio se
construyó la base de datos con tablas MyIsam ya que están más optimizadas para
recibir una gran cantidad de lecturas y pocas escrituras, que es lo que hace esta
aplicación la mayor parte del tiempo. El problema vino al descubrir que este tipo
de tablas no aseguraban la integridad referencial. Por tanto se tuvo que elegir entre
mantener MyIsam y asegurar la integridad con triggers o con código en el backend,
o pasarse a tablas InnoDB que si ofrecen integridad referencial a cambio de perder
un poco de eficiencia. Se optó finalmente por la última opción.

23

3. Arquitectura del sistema de información para
el MIH

La arquitectura del sistema es sencilla, tanto el servidor web con la aplicación
como el gestor de la base de datos se encuentran desplegados en una misma máquina
ubicada en el edificio Ada Byron, a la cuál el director de este proyecto (y adminis-
trador del museo) tiene acceso tanto de forma f́ısica como remota.

Figura 6: Diagrama de despliegue del sistema

El gestor de la base de datos utilizado es MySQL y se ha optado por usar la
versión 5.1 ya que esta se encontraba ya preinstalada en la máquina. El servidor web
utilizado es Apache Tomcat y se utiliza la versión 7.0 ya que también se encontraba
preinstalada. Al desarrollar la aplicación en Java, la conexión entre la base de datos y
la aplicación se realiza mediante JDBC. En lo referente a los clientes de la aplicación,
interactuarán con ella mediante HTTP desde un navegador web.

Se trata de una aplicación que a nivel de interfaz gráfico es sencilla, en la que los
datos almacenados no serán muy pesados y que la mayor cantidad de peticiones reali-
zadas por clientes serán consultas a la base de datos, por tanto, la potencia requerida
a nivel hardware no es elevada. Por estos motivos se ha considerado suficiente utilizar
la máquina nombrada y las versiones citadas tanto de gestor como servidor, pese a
tener varios años y estar ligeramente obsoletos. Además, dichas versiones obsoletas
son más ligeras que las modernas y consumen menos recursos.

3.1. Diseño de la aplicación

El lenguaje utilizado ha sido Java tanto para el lado del servidor como del cliente
y HTML y JavaScript para el lado del cliente. Además, para desarrollar las interfaces
se ha hecho uso del framework Bootstrap.

24

Para desarrollar la aplicación se ha hecho uso del patrón MVC (Modelo Vista
Controlador). Con este patrón, la vista (lo que ve el usuario) interacciona de forma
indirecta con el modelo (lo que representa a los datos almacenados) a través de
controladores, que recibe peticiones del cliente a través de las vistas y las redirige al
modelo en la forma correspondiente.

Para el acceso a datos se ha hecho uso del patrón DAO (Objeto de Acceso a
Datos). Este patrón crea una capa intermedia entre la aplicación y la base de datos,
proporcionando una abstracción del acceso a la base de datos. Esto permite inde-
pendizar la base de datos de aplicación, haciendo más fácil por ejemplo la labor de
migrar los datos entre distintos gestores.

Los fuentes Java de la aplicación se dividen en 3 paquetes distintos:

Figura 7: Paquetes de la aplicación Java y sus ficheros.

com.museo.controller: Contiene todas las clases Java que actúan como ser-
vlets en la aplicación. Estas clases se encargan de recibir peticiones de los
clientes y procesarlas. Existe un servlet para cada vista de la aplicación.

com.museo.dao: Contiene las clases encargadas de acceder a los datos, es
decir, los DAOs. Se invocan desde los servlets y permiten interactuar con la
base de datos. Se ha generado un DAO para cada conjunto de información
similar.

com.museo.model: Contiene clases que representan una determinada infor-
mación de la base de datos que quiere tratarse en conjunto. Se generan en los
servlets o en los DAO y permiten crear objetos que agrupan información y que
después se pasan a las vistas para mostrarlos al usuario. En este paquete se

25

encuentra también la clase encargada de establecer la conexión con la base de
datos a través de JDBC, una clase con todas las consultas en formato texto
que se utilizan en el sistema y por último, diversos ficheros XML que contie-
nen información de configuración. Estos ficheros permiten cambiar aspectos de
configuración de la aplicación sin necesidad de detenerla y volverla a lanzar ya
que la aplicación obtiene la información de ellos cada vez que la necesita. Los
ficheros XML son los siguientes:

1. atributos TablaItems.xml: Fichero que conteńıa el nombre de aquellos
campos definidos en la tabla ITEMS de la base de datos y que actuaban
como atributos comunes para cualquier ı́tem. Conteńıa también para cada
atributo un indicador de si era público o privado. Actualmente este fichero
no se usa en la aplicación pero se ha querido mantener por si acaso.

2. credenciales Web.xml: Fichero que contiene el nombre de usuario y la
contraseña del administrador de la aplicación. Es el fichero que se consulta
cada vez que se trata de iniciar sesión como administrador.

3. configuracion Database.xml: Fichero que contiene diversas variables
de configuración para establecer la conexión con la base de datos. Alma-
cena el nombre del tipo de JDBC, el nombre del driver de MySQL, la IP
y puerto de la base de datos, el nombre de la base de datos y el nombre
de usuario y contraseña para acceder a ella. También se ha creado una
variable en este fichero llamada ’Modo’ (pude tener los valores ’desarrollo’
o ’produccion’) que permite cambiar entre dos bases de datos distintas,
lo que permite cambiar rápidamente la fuente de datos de la aplicación.
La utilización de esta variable fue muy útil durante el desarrollo, ya que
para desarrollar se usaba una base de datos local y después al desplegar
la aplicación en el servidor se cambiaba a la base de datos del servidor.

4. configuracion Tablas.xml: Guarda información de configuración rela-
tiva a las tablas con información detallada de ı́tems, donantes, donaciones,
localizaciones, zonas, resumen de donantes y resumen de donaciones (las
2 últimas se encuentran en la vista de estad́ısticas). Se puede ver el fichero
completo en el Anexo D. Las variables disponibles para cada tabla son las
siguientes:

• nombresAtrPrincipales: Nombres de los atributos principales.

• nombresAtrSecundarios: Nombres atributos secundarios.

• inputTypesAtr: Tipo de input de todos los atributos para el formula-
rio.

26

• infoAdicionalInputTypes: Información adicional para cada input an-
terior.

• comentariosCampos: Comentarios explicativos acerca de cada uno de
los atributos.

• columnSize: Tamaño de cada columna visible de la tabla.

• inputSize: Tamaño de cada input del formulario.

• columnaOrden: Indica que ı́ndice de columna es el que marca el orden
de la tabla.

• tipoOrden: Indica si el orden es ascendente (asc) o descendente (desc).

5. consultas sql.xml: Contiene todas las consultas en lenguaje SQL que
se utilizan en la aplicación.

6. variables constantes.xml: Almacena el valor de diferentes constantes
que se utilizan en la aplicación, principalmente constantes usadas en los
JSPs. El objetivo es que cualquier constante que aparezca en el futuro al
realizar alguna mejora en la interfaz pueda ubicarse aqúı. Se puede ver el
fichero completo en el Anexo E.

Para desarrollar las vistas de la aplicación se ha utilizado la tecnoloǵıa JSP (Java
Server Page). Que permite combinar el lenguaje HTML con el lenguaje Java, además
de poder incorporar JavaScript. Esto permite generar páginas para el usuario que
sean dinámicas. Existe un JSP por cada una de las vistas, excepto en el caso de
las tablas de ı́tems, donantes, donaciones, zonas y localizaciones, para ellas se ha
utilizado un JSP común en todas ellas.

27

Figura 8: Directorio de la aplicación Java con los JSPs y otros subdirectorios impor-
tantes.

Otros subdirectorios destacables de la aplicación:

css: Almacena las fuentes de estilo CSS que pueden ser utilizadas en la aplica-
ción en más de un punto. Por ejemplo: Para las cajas del árbol jerárquico de
tipos, para las zonas y vitrinas de la página de inicio o para el zoom con el que
se muestra una imagen al pulsar en ella.

scripts: Contiene el código JavaScript que se utiliza tanto para mostrar una
imagen con zoom como para previsualizar una imagen en el formulario de
subida.

28

files: Almacena los ficheros PDF subidos que representan el contrato de una
donación.

images: Contiene las imágenes que aparecen en la web, como los iconos del
MIH por ejemplo. También se subdivide en los directorios ’img-items’ y ’img-
tipos’, donde se almacenan las imágenes subidas que se asocian o bien a un
tipo o bien a un ı́tem.

3.2. Funcionalidades de la aplicación

Podemos dividir las funcionalidades que la aplicación ofrece en dos grupos:

Funcionalidades de usuario: Aquellas que pueda realizar cualquier visitante
de la web (incluido el administrador). Son las siguientes:

1. Desde la barra de navegación: Redirigir a la página de inicio, a la
jerarqúıa de tipos, a la ventana de inicio de sesión, a la página original
del MIH y a las tablas con información detallada (con información de
ı́tems, zonas, localizaciones y tablas y gráficos estad́ısticos). También hay
accesible un buscador, que busca por nombres o por valores de atributos,
y un selector del tipo de información a consultar en el sistema (cambiar
entre exposición, en almacén o todo).

2. Desde la página de inicio: Ver el plano de cada planta, acceder a la
página detallada de una zona y ver el listado de ı́tems de una vitrina.

3. Desde la vista del árbol de tipos: Visualizar una sola rama, visualizar
el árbol completo, ocultar/mostrar subtipos y acceder a la vista detallada
de un tipo.

4. Desde la vista de un tipo:Observar sus imágenes, su tabla de atributos,
el árbol de tipos herederos y el listado de ı́tems (propios y de los herederos).

5. Desde las vistas de tablas con información detallada: Observar
toda la información referente a ı́tems, localizaciones y zonas en formato
de tabla con un formulario para ver información adicional.

6. Desde la vista de información estad́ıstica: Observar una tabla con
el resumen de donaciones de cada donante, otra tabla con el resumen
de donaciones anual y una gráfica que muestra una evolución del año de
lanzamiento de cada ı́tem catalogado.

29

7. Desde la vista de un ı́tem: Observar las imágenes, la tabla de atributos
del tipo, información sobre la donación y una tabla con el histórico de
ubicaciones.

Funcionalidades espećıficas de administrador: Aquellas que únicamente
podrán llevarse a cabo por el administrador del sistema. Requerirán de un
proceso de identificación previo (inicio de sesión en la web como administrador
a través de usuario y contraseña) y son las siguientes:

1. Desde la vista del árbol de tipos: Añadir un tipo hijo, eliminar un
tipo o tipos y reubicar un tipo o tipos bajo un nuevo padre.

2. Desde la vista de un tipo: Cambiar su nombre, añadir/eliminar imáge-
nes, añadir nuevo ı́tem, añadir/eliminar/editar un atributo propio, añadi-
r/editar/eliminar un valor literal a un atributo y añadir/editar/eliminar
una restricción de rango para un atributo (si es de rango Tipo y no
STRING).

3. Desde las vistas de tablas con información detallada: Añadir/ac-
tualizar/eliminar una de las entradas de la tabla a través del formulario.
También se puede desde la lista de ı́tems de una donación vincular/des-
vincular uno de los ı́tems de dicha donación.

4. Desde la vista de un ı́tem: Cambiar su nombre, cambiar su tipo asocia-
do, eliminar dicho ı́tem del sistema, añadir/eliminar imágenes, añadir/e-
ditar/eliminar un valor literal a un atributo, añadir/editar/eliminar una
referencia a otro ı́tem para un atributo (si es de rango Tipo), añadir/elimi-
nar una ubicación, editar la localización de una ubicación, editar la fecha
de inicio/fin de una ubicación y editar los comentarios de una ubicación.

Todas las funcionalidades pueden verse de forma más detallada (con capturas de
pantalla incluidas) en el Anexo C, pero cabe hacer una mención especial en esta
sección dada su complejidad, al tema de los rangos de los atributos, su configuración,
y toda la casúıstica que estos generan, que es la siguiente:

1. Si el rango es STRING: Hay que indicar quien asignará valores (que serán
literales) al atributo, para esto hay dos opciones:

a) Si se elige ’Tipo’ entonces podrá asignar un valor literal en el tipo o en
un subtipo.
Por ejemplo: el atributo ’año de comercialización’ del tipo ’́Item lógico’.

30

b) Si se elige ’́Item’ solo se le podrá asignar un valor literal desde un ı́tem
del propio tipo o desde un ı́tem de los tipos herederos.
Por ejemplo: el atributo ’defectos’ del tipo ’́Item lógico’.

Figura 9: Opciones de configuración de un atributo con rango STRING.

31

2. Si el rango es un tipo: Hay que seleccionar del árbol de tipos uno para que
actúe como rango ráız. Después hay que indicar quien asignará valores (que
serán referencias a ı́tems) al atributo, para esto hay dos opciones:

a) Si se elige ’Ninguno’ el atributo no tendrá valores asociados ya que se
considera que el rango y sus posibles restricciones aportan ya suficiente
información.
Por ejemplo: el atributo ’microprocesador’ del tipo ’Ordenador’, ya que no
interesa guardar todos los microprocesadores internos como ı́tems aparte,
solo interesa conocer el tipo al cual pertenece.

b) Si se elige ’́Item’ se podrán asignar valores únicamente en los ı́tems (dicho
valor consistirá en la referencia aun ı́tem del tipo marcado por el rango
o su restricción). Habrá que indicar también si será multivaluado o no
(en caso de ser multivaluado, se permitirá referenciar a uno o más ı́tems
desde el mismo atributo).
Por ejemplo: el atributo multivaluado ’contenido’ del tipo ’Software’, ya
que interesa relacionar por ejemplo el ı́tem de un videojuego con su soporte
f́ısico (unos floppies), su caja, sus manuales, etc.

32

Figura 10: Opciones de configuración de un atributo con rango Tipo.

33

4. Pruebas efectuadas al sistema

A continuación, se comentan las pruebas realizadas sobre el sistema para asegurar
su correcto funcionamiento futuro:

4.1. Validación

Durante el proceso de desarrollo de la aplicación que comenzó en marzo y ha
terminado en noviembre, se han ido realizando pruebas de validación manuales para
cada una de las funcionalidades. La metodoloǵıa al acabar la implementación de
una nueva funcionalidad era probarla a través de la interfaz y corregir los errores
detectados. Con esto se consegúıa que la aplicación desplegada en el servidor de la
Universidad siempre estuviese probada. Si se detectaban errores, no se lanzaba una
nueva versión de la aplicación hasta que se solucionasen o se mitigasen de la mejor
forma.

En las semanas finales del desarrollo de la aplicación, también se ha probado la
aplicación mediante la incorporación al sistema de datos reales del museo, con el ob-
jetivo de ver como se comportaba la aplicación en su entorno real y poder detectar
posibles fallos no vistos hasta entonces. Se catalogaron un total de 21 ı́tems corres-
pondientes a la vitrina central 0.2 de la zona ’Ordenadores domésticos’, dedicando
un total de 5 horas y media para completar la catalogación en el nuevo sistema. Esto
demuestra lo tedioso y costoso en tiempo que puede llegar a ser la catalogación.

Destacar un problema surgió al catalogar la caja de cartón vaćıa del juego ’Lem-
mings’ para el ordenador ’Commodore Amiga’, que se encontraba expuesto en la
vitrina: La caja representa el juego de cara al público, ya que cuando alguien la ob-
serva la relaciona directamente con el juego, pero lo que realmente contiene el juego
f́ısico son los floppies de 3.5 que vienen dentro de la caja y que actúan como soporte
informático del videojuego (además en esta ocasión no estaban dentro de la caja
sino guardados en el almacén). Ni la caja ni los floppies son el videojuego, ya que el
videojuego realmente es un software, pero se utilizan para representarlo debido a sus
caracteŕısticas f́ısicas (portada, t́ıtulo, serigraf́ıa, etc).

Por tanto al catalogar este ı́tem aparece el debate entre guardar la caja como
un ı́tem de algún subtipo de ’videojuego’ o crear un nuevo tipo ’caja de cartón’
para este ı́tem y referenciar la caja desde otro ı́tem más abstracto creado en un tipo
espećıfico para el videojuego denominado ’Lemmings (Amiga)’ que es heredero del
tipo ’Videojuego’. En esta ocasión se optó por la segunda opción, pero ambas podŕıan

34

ser válidas y es común que para unos objetos interese mejor una opción y para otros
la otra dadas sus caracteŕısticas.

Por tanto, la catalogación muchas veces conlleva tiempo debido a los problemas
conceptuales propios de la catalogación y a la reflexión que hay que hacer respecto
a la jerarqúıa de los tipos. ¿Cuándo se debeŕıa crear un nuevo tipo? ¿cuál es el sitio
más adecuado para un cierto atributo en la jerarqúıa de tipos? son preguntas que
no tienen fácil respuesta en algunos casos. También será común que la clasificación
inicial que se hace de los tipos no sea la más adecuada pasado un tiempo y que haya
que reorganizarla, por este motivo resulta tan importante el tener una jerarqúıa
dinámica.

4.2. Sobrecarga y eficiencia

Una de las partes que se ha detectado como más cŕıtica en cuanto a sobrecarga de
datos ha sido el mostrar el árbol jerárquico de tipos. El crecimiento que este puede
llegar a tener con el paso de los años pude ser elevado y conviene que la forma de
generarlo sea eficiente.

La primera versión (V1) de la función generadora del árbol consultaba para el
tipo ráız los hijos, después para cada hijo consultaba de nuevo sus hijos, y aśı lo haćıa
de forma recursiva hasta obtener todo el árbol haciendo un recorrido en profundidad.
El problema que presentaba esta solución era el elevado número de consultas que se
haćıan contra la Base de Datos, lo que haćıa que mostrar el árbol fuese más lento
conforme crećıa.

La segunda versión (V2) de la función generadora del árbol solucionó el problema
de la anterior. Esta versión obtiene mediante una sola consulta a la base de datos
tuplas [padre,hijos] y las almacena en una tabla Hash. Después recorre dicha tabla
Hash de forma recursiva para generar el árbol como en la versión anterior. Con esta
nueva versión se elimina el problema del número elevado de consultas y hace que
mostrar el árbol sea casi instantáneo.

Las pruebas de rendimiento realizadas con ambas versiones de la función genera-
dora han consistido en mostrar árboles jerárquicos con distintos niveles (el nivel de
la ráız no se cuenta) y con distinto número de hijos por nivel y calcular el tiempo en
segundos que tarda la aplicación en mostrarlo en pantalla. Los resultados obtenidos
han sido los mostrados en el cuadro 4.2.

35

Niveles Hijos/Nivel Total nodos
Tiempo V1

(seg.)
Tiempo V2

(seg.)
5 3 364 1 0,2
5 5 3.906 9 0,2
5 6 9.331 23 0,2
6 5 19.531 118 0,2

Cuadro 2: Resultados de las pruebas de rendimiento realizadas a las dos funciones
generadoras del árbol de tipos.

Destacar que aunque el tiempo de visualización del árbol completo usando la
versión 2 es siempre mı́nimo y constante, el tiempo real de carga de la página es algo
más elevado debido a algunos procesos que ocurren internamente (estamos hablando
de unos 10 segundos adicionales para la última de las pruebas). No obstante, esta
pequeña demora tampoco es apreciable por el usuario ya que mientras termina la
carga, el árbol ya está visible.

Otra de las partes cŕıticas en cuanto a sobrecarga es mostrar la tabla completa de
ı́tems. Todas las tablas de la aplicación se muestran a través del plug-in de JQuery
Datatables, que permite formatear las tablas HTML y añadirles funcionalidades extra
(filtrado, buscado, paginación, ordenación, etc). En las primeras versiones de los JSPs
se generaba primero la tabla en HTML y después se formateaba con Datatables, esto
haćıa que el tiempo de carga de la vista fuese muy elevado ya que teńıa generar
todo el HTML y después formatearlo todo a la vez. Por este motivo se optó por
generar el contenido HTML de las tablas de forma dinámica mediante una opción
el propio plug-in Datatables. De esta forma el contenido de la tabla se obteńıa en
formato JSON dinámicamente, lo que permit́ıa generar la tabla y formatearla de
forma progresiva.

Volviendo con la tabla de ı́tems, se probó a mostrar el contenido de las dos
formas anteriores, aplicando Datatables directamente sobre la tabla primero y usando
Datatables para obtener el contenido en formato JSON de forma dinámica después.
El número de ı́tems almacenados en la base de datos que utilizó para la prueba fue
de 50.000, se estimó que este seŕıa el número aproximado que la aplicación tendŕıa
pasados 50 años de uso con una media de 1.000 ı́tems donados al año (desde el 2007
en tan solo un año se ha registrado una cifra de ı́tems donados superior a 1.000). Los
resultados obtenidos fueron:

Con la primera de las configuraciones de Datatables, el tiempo de carga de la

36

tabla rozaba el minuto desde que se acced́ıa a la vista hasta que se formateaba
completamente.

Con la segunda configuración de Datatables, la tabla se mostraba de forma
instantánea al acceder a la vista y tardaba aproximadamente 2-3 segundos en
cargar el contenido.

5. Conclusiones

Como resultado de este trabajo, se ha desarrollado un sistema completamente
funcional que se utilizará desde este momento para catalogar todos aquellos obje-
tos que sean donados al Museo de Informática Histórica (MIH) de la Universidad
de Zaragoza, aśı como para catalogar progresivamente todos aquellos objetos que
ya pertenecen al museo. Este sistema consta de: una base de datos MySQL en la
que almacenar toda la información y una aplicación web que permite consultar el
catálogo del museo de forma abierta para cualquier usuario o realizar acciones de
administración en ella solo para el usuario administrador (con identificación previa).

El desarrollo de este trabajo puede dividirse en cuatro etapas:
1) Análisis de los gestores del mercado y decisión de cuál es mejor opción para re-
solver este problema.
2) Diseño del modelo de datos.
3) Desarrollo de la aplicación web.
4) Incorporación de pequeñas mejoras a la aplicación, solución de errores y catalo-
gación de varias donaciones reales del museo.

El proceso de desarrollo no ha estado exento de dificultades como era de esperar.
Se podŕıa afirmar que la mayor dificultad, sin duda alguna, ha sido el modelado a
nivel de base de datos de la jerarqúıa de tipos de ı́tems y el permitir gestionarla
después a través de una interfaz web. Y más concretamente, ha supuesto muchos
problemas la gestión de los atributos de estos tipos, ya que la cantidad de tipos de
atributos que pueden coexistir en el sistema según su naturaleza es mucho mayor de
lo que se planteo al inicio del trabajo.

Destacar también que resulta de vital importancia y es un aspecto clave tener una
jerarqúıa dinámica de tipos en la que poder añadir nuevos tipos, eliminar tipos no
deseados o reubicar otros en diferentes ramas, ya que será común que la clasificación
inicial hecha de los tipos no sea la más adecuada pasado un tiempo y que haya que
reorganizarla.

37

5.1. Cronograma

Se muestra una evolución temporal de las tareas que se han llevado a cabo en este
trabajo. Para ello se ha elaborado un diagrama de Gantt, en esta sección se muestra
una versión reducida, la versión completa está en el Anexo F.

Figura 11: Versión reducida del diagrama de Gantt con la evolución temporal del
desarrollo de este trabajo.

Destacar que en este trabajo el director ha jugado un doble papel, puesto que ha
hecho tanto de director aconsejando sobre como afrontar el trabajo, como de cliente
que que será quien utilice la aplicación y quien tiene las necesidades reales de una
buena gestión y acceso a esa información. Por tanto la mayoŕıa de las reuniones
mantenidas han sido con roles de cliente y empleado, en lugar de alumno y director.
Este es el motivo principal de que se supere la veintena de reuniones y de que, desde el
mes de julio, la media de horas dedicadas a cada reunión haya sido de unas 4 horas.
En la tabla 5.1 se muestran la cronoloǵıa de las diferentes reuniones mantenidas
durante toda la etapa de desarrollo.

38

Fecha Lugar Motivación
09/02/2021 Despacho Primera toma de contacto con el tema del TFG.

22/02/2021 Online Repasar análisis de las caracteŕısticas de los gestores del mercado.

26/02/2021 Online Repasar el análisis de la herencia que ofrecen los gestores.

08/03/2021 Online Discusión sobre el modelado de la jerarqúıa de tipos y discusión sobre

la primera versión del esquema de la Base de datos.

06/04/2021 Online Probar el primer prototipo de la aplicación.

28/04/2021 Online Mirar las nuevas funcionalidades de la aplicación.

21/05/2021 Online Mirar nuevas funcionalidades de la App y revisar propuesta del TFG.

17/06/2021 Online Mirar las nuevas funcionalidades de la aplicación.

29/06/2021 Online Mirar las nuevas funcionalidades de la aplicación.

19/07/2021 Online Mirar las nuevas funcionalidades de la aplicación.

29/07/2021 Online Mirar correcciones hechas en la aplicación.

23/08/2021 Online Mirar correcciones hechas en la App y revisar el ı́ndice de la memoria.

06/09/2021 Teléfono Debate sobre uso de tablas MyIsam o InnoDB en la base de datos.

07/09/2021 Online Mirar correcciones hechas en la aplicación.

09/09/2021 Online Mirar correcciones hechas en la aplicación.

14/09/2021 Online Analizar el estado del TFG y debatir aplazamiento a Noviembre.

27/09/2021 Online Mirar correcciones hechas en la aplicación.

08/10/2021 Online Mirar correcciones hechas en la aplicación.

15/10/2021 Online Mirar correcciones hechas en la aplicación.

21/10/2021 Online Mirar correcciones hechas en la aplicación.

26/10/2021 Online Mirar correcciones hechas en la aplicación.

09/11/2021 Online Mirar correcciones hechas en la aplicación.

15/11/2021 Edif. Ada

Byron

Dos horas y media cargando datos reales de ı́tems en la aplicación

para observar como se comporta (registrar los 21 ı́tems de la vitrina

central 0.2 del museo).

17/11/2021 Edif. Ada

Byron

Tres horas cargando datos reales de ı́tems en la aplicación para ob-

servar como se comporta (registrar los 21 ı́tems de la vitrina central

0.2 del museo).

Cuadro 3: Cronoloǵıa de las reuniones mantenidas entre el director y el alumno
durante este trabajo.

5.2. Posibles ampliaciones

A continuación se listan las posibles ampliaciones que podŕıan llevarse a cabo en la
aplicación en un futuro próximo:

Además de tener imágenes asociadas a tipos y a ı́tems, poder tener también
v́ıdeos asociados. Se trataŕıan de forma idéntica a las imágenes a nivel de base de

39

datos pero que habŕıa que adaptar las interfaces para mostrarlos correctamente.

Ampliar el rango de búsqueda del buscador de la aplicación. Permitiendo buscar
cualquier cadena en cualquier campo de la base de datos.

Tratar el atributo ’Descripción’ declarado en el tipo ’́Item lógico’ de forma
especial en las vistas de tipos e ı́tems. Mostrando su valor asociado debajo de la
tabla ocupando todo el ancho en vez de contenido en su celda. Esto permitiŕıa
que al incorporar código HTML como valor de este atributo se tuviese más
espacio para mostrarlo, como por ejemplo, al insertar el plug-in HTML de un
v́ıdeo.

Actualmente, a los atributos que presentan un rango tipo solo les pueden asig-
nar valor (una referencia a ı́tem) los ı́tems. Se podŕıa ampliar para que se
permitiese también asignar una referencia a ı́tem desde un tipo.

Dado que la jerarqúıa de tipos crecerá bastante con el paso del tiempo, seŕıa
interesante incorporar algún mecanismo de zoom que permita ampliar/reducir
el tamaño en el que se muestran los nodos del árbol para hacerlo más manejable.

Añadir más tablas y gráficas con información estad́ıstica. Hay mucha informa-
ción en el sistema y podŕıan mostrarse una gran cantidad de datos estad́ısticos
interesantes.

Fusionar la web de este sistema de catalogación con actual web del museo MIH
(http://mih.unizar.es/), con el fin de tener todo accesible desde un mismo
punto.

5.3. Opinión personal

Personalmente considero que el resultado obtenido tras la realización de este
trabajo es bastante satisfactorio. Se ha logrado implementar todas aquellas funcio-
nalidades que se consideraban imprescindibles y otras más que no lo eran tanto pero
que mejoran la aplicación. También se ha conseguido que la aplicación sea bastan-
te eficiente en cuanto a recursos utilizados y tiempos de carga de los datos en la
web. Además, se trata de un sistema que va a ser utilizado en la vida real de forma
instantánea tras su finalización, por lo que resulta todav́ıa más gratificante haberlo
desarrollado.

Con este trabajo he aprendido que los gestores de bases de datos del mercado
dejan mucho que desear en algunos aspectos (en referencia a la gestión de la herencia

40

http://mih.unizar.es/

de estos). También he aprendido a analizar alternativas y ofrecer la mejor solución
posible cuando ningún gestor es el adecuado para tu problema de modelado de datos
(en referencia al modelado de la jerarqúıa de tipos y sus atributos). Por último, he
aprendido también a trabajar en un entorno donde el cliente de la aplicación no
te fija los requisitos funcionales desde el inicio y en cambio te los va proponiendo
conforme avanza el desarrollo de la misma, o donde algún requisito que resultaba
imprescindible al inicio deja de serlo y viceversa.

Respecto a la metodoloǵıa de trabajo y relacionado con el aspecto de trabajar con
unos requisitos cambiantes constantemente, ha resultado complicado sobrellevarlo en
muchas ocasiones, pero también considero que es uno de los motivos por los que el
resultado final de la aplicación ha sido finalmente satisfactorio para el cliente y que
hacen que este trabajo fin de grado sea más interesante. Destacar también pese a
todo la buena relación mantenida con Eduardo (director de este trabajo fin de grado
y futuro usuario administrador de la aplicación) durante los 10 meses en los que he
estado desarrollando este sistema.

41

Bibliograf́ıa

[1] Bootstrap. Geting started to Bootstrap V5.1. url: https://getbootstrap.
com/docs/5.1/getting-started/introduction/. (accedido: 26.11.2021).

[2] Datatables. Datatables Manual. url: https://datatables.net/manual/.
(accedido: 26.11.2021).

[3] Merche Marqués (Universitat Jaume I). Tema 2. Bases de datos orientadas a

objetos. url: https://www3.uji.es/~mmarques/e16/teoria/cap2.pdf.
(accedido: 26.11.2021).

[4] IBM. DB2: Creating typed tables. url: https://www.ibm.com/support/
knowledgecenter/SSEPGG_9.7.0/com.ibm.db2.luw.admin.structypes.

doc/doc/t0006634.html. (accedido: 26.11.2021).

[5] IBM. Informix: Table inheritance. url: https://www.ibm.com/docs/en/
informix-servers/12.10?topic=SSGU8G_12.1.0/com.ibm.ddi.doc/ids_

ddi_124.htm. (accedido: 26.11.2021).

[6] Intersystems. Cache Documentation: Relationships Between Tables. url: https:
//docs.intersystems.com/latest/csp/docbook/Doc.View.cls?KEY=

GSQL_foreignkeys#GSQL_foreignkeys_child. (accedido: 26.11.2021).

[7] Java. Java API Specifications. url: https://docs.oracle.com/en/java/
javase/17/docs/api/index.html. (accedido: 26.11.2021).

[8] JavaScript. JavaScript Documentation. url: https://developer.mozilla.
org/es/docs/Web/JavaScript. (accedido: 26.11.2021).

[9] PostgreSQL. PostgreSQL: Inheritance. url: https://www.postgresql.org/
docs/9.1/ddl-inherit.html. (accedido: 26.11.2021).

[10] Asociación RetroAcción. Dosier del Museo de Informática Histórica (MIH) de

la Universidad de Zaragoza. url: http://mih.unizar.es/DossierMIH.pdf.
(accedido: 26.11.2021).

42

https://getbootstrap.com/docs/5.1/getting-started/introduction/
https://getbootstrap.com/docs/5.1/getting-started/introduction/
https://datatables.net/manual/
https://www3.uji.es/~mmarques/e16/teoria/cap2.pdf
https://www.ibm.com/support/knowledgecenter/SSEPGG_9.7.0/com.ibm.db2.luw.admin.structypes.doc/doc/t0006634.html
https://www.ibm.com/support/knowledgecenter/SSEPGG_9.7.0/com.ibm.db2.luw.admin.structypes.doc/doc/t0006634.html
https://www.ibm.com/support/knowledgecenter/SSEPGG_9.7.0/com.ibm.db2.luw.admin.structypes.doc/doc/t0006634.html
https://www.ibm.com/docs/en/informix-servers/12.10?topic=SSGU8G_12.1.0/com.ibm.ddi.doc/ids_ddi_124.htm
https://www.ibm.com/docs/en/informix-servers/12.10?topic=SSGU8G_12.1.0/com.ibm.ddi.doc/ids_ddi_124.htm
https://www.ibm.com/docs/en/informix-servers/12.10?topic=SSGU8G_12.1.0/com.ibm.ddi.doc/ids_ddi_124.htm
https://docs.intersystems.com/latest/csp/docbook/Doc.View.cls?KEY=GSQL_foreignkeys%23GSQL_foreignkeys_child
https://docs.intersystems.com/latest/csp/docbook/Doc.View.cls?KEY=GSQL_foreignkeys%23GSQL_foreignkeys_child
https://docs.intersystems.com/latest/csp/docbook/Doc.View.cls?KEY=GSQL_foreignkeys%23GSQL_foreignkeys_child
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://developer.mozilla.org/es/docs/Web/JavaScript
https://developer.mozilla.org/es/docs/Web/JavaScript
https://www.postgresql.org/docs/9.1/ddl-inherit.html
https://www.postgresql.org/docs/9.1/ddl-inherit.html
http://mih.unizar.es/DossierMIH.pdf

A. Anexo: Análisis individual de los SGBD del
mercado

A continuación, se detallan para cada gestor analizado, los aspectos más importantes
respecto a la gestión de la herencia. Por último se muestra una tabla comparativa
con las caracteŕısticas que ofrece cada gestor a modo de resumen.

A.1. MySQL

Uno de los gestores más populares del mercado que sorprende por no soportar ningún
tipo de herencia. Por esto se descartó en primera instancia, aunque finalmente se optó
por el a consecuencia de la solución final adoptada en el modelado de los datos que
se comentará más adelante.

A.2. MariaDB

Es un gestor derivado de MySQL, por lo que presenta las mismas caracteŕısticas
citadas anteriormente.

A.3. Oracle

No soporta herencia de tablas, ya que las trata como tablas individuales sin ningún
tipo de relación entre ellas. En cambio presenta una buena herencia de objetos,
aunque el tratamiento de los mismos es complicado [3].

A.4. PostgreSQL

Probablemente el gestor con mejor gestión de la herencia del mercado. Dispone de
una herencia de tablas muy completa. Su único fallo es que las restricciones de tipo
clave primaria y clave extranjera no se heredan para las tablas hijas [9].

A.5. DB2

Se parece bastante a Oracle, aunque este permite tener al mismo tiempo herencia en
los tipos y herencia en tablas tipadas, que son tablas que se han generado a partir

43

de objetos. Las restricciones de clave primaria y clave extranjera si que se propagan
entre los hijos de la jerarqúıa, lo que lo haćıa un buen gestor candidato. También
permite consultar sobre una tabla padre y obtener las tuplas también de sus hijas.
El problema es que para las referencias a objetos no existe la integridad referencial,
por tanto hay que solucionarlo a nivel de tabla tipada añadiendo la restricción de
clave extranjera. Además los tipos presentan varias restricciones importantes [4]:

No se pueden modificar ni eliminar atributos heredados desde un tipo/tabla
hija.

No se pueden crear tipos sin atributos, aunque este heredando de otro tipo.

No se puede ni añadir ni eliminar atributos a un tipo si se está utilizando en
una tabla tipada.

No se ha encontrado nada sobre modificar la herencia tipos ya creados.

A.6. Informix

Es muy parecida a DB2, ya que ambas pertenecen a IBM. Ofrece herencia pero solo
para tablas tipadas. Al igual que ocurre con DB2, está la importante limitación de
que no permite ni añadir ni eliminar atributos de un tipo que se esté usando en una
tabla [5].

A.7. CACHE

Es un gestor de los denominados Orientado a Objetos. En el se declaran clases que
luego se transforman en tablas. Pese a ser Orientado a Objetos soporta el lenguaje
SQL. Al ser un gestor de pago se descartó y no se pudieron hacer pruebas con él [6].

A.8. DB4O

Es un gestor Orientado a Objetos puro. Por tanto, se trabaja con él a través de clases
Java y la herencia es bastante buena. Pero presenta dos problemas importantes, uno
que el lenguaje de consultas no es SQL (lo que hace complicado el tratamiento de
referencias) y otro que al trabajar con clases Java el modelo de datos debe ser fijo
(generar código Java para crear una nueva clase de forma dinámica seŕıa complicado).

44

A.9. MongoDB

Es un gestor de los denominados NoSQL. Los datos no siguen un esquema fijo y
se almacenan en documentos independientes, por tanto, es un gestor que no ofrece
integridad referencial. Para este sistema, la información estaŕıa repartida en muchos
documentos y hacer consultas que impliquen varios documentos resulta muy tedioso
en este tipo de gestor.

A.10. Cuadro comparativo de los gestores anteriores

La tabla siguiente compara las caracteŕısticas generales de cada gestor y las soluciones
que cada gestor ofrece respecto a la herencia.

Gestor Tipo
Software
libre

Herencia
Propagación
restricciones

Integridad
referencial

MySQL Relacional Śı No tiene — —
MariaDB Relacional Śı No tiene — —
Oracle Relacional No Objetos Śı Śı

PostgreSQL Relacional Śı Tablas Parcial No
DB2 Relacional No Objetos Śı Parcial

Informix Relacional No Objetos Śı Parcial

CACHE
Orientado a
Objetos

No Clases — —

DB4O
Orientado a
Objetos

Śı Clases — —

MongoDB
Orientado a
Documentos

Śı No tiene — —

Cuadro 4: Comparativa de caracteŕısticas de los principales gestores del mercado

45

B. Anexo: Tablas de la Base de Datos

En las siguientes secciones se comenta para cada tabla cual es su funcionalidad prin-
cipal, se detallan los campos que cada una tiene y finalmente, se muestra el código
SQL.

B.1. Tabla TIPOS

Almacena los diferentes tipos de ı́tems que se donan al museo. Esta misma tabla
se utiliza también para establecer la relación jerárquica existente entre todos ellos.
Dispone de dos campos:

nombre: Utilizado para asignarle un nombre al tipo de ı́tem y que será único
en toda la jerarqúıa.

padre: Referencia al tipo concreto que hace de padre a nivel jerárquico.

CREATE TABLE TIPOS (

padre VARCHAR(100) ,

nombre VARCHAR(100) PRIMARY KEY,
CONSTRAINT f k p ad r e t i p o s FOREIGN KEY (padre)

REFERENCES TIPOS(nombre) ON DELETE CASCADEONUPDATECASCADE
)ENGINE=InnoDB ;

B.2. Tabla DONANTES

Almacena información de todas aquellas personas que han realizado alguna vez una
donación al museo. Dispone de 5 campos:

id: Es el identificador único de cada donante.

email: Dirección de correo electrónico del donante (es opcional).

nombre: Nombre completo del donante (es obligatorio indicarlo).

telefono: Teléfono de contacto del donante (es opcional).

46

descripcion: Campo en el que poder indicar otros aspectos relevantes acerca
de la persona.

CREATE TABLE DONANTES (

id SERIAL PRIMARY KEY,
emai l VARCHAR(100) ,

nombre VARCHAR(100) NOT NULL,
t e l e f o n o VARCHAR(100) ,

d e s c r i p c i on TEXT

)ENGINE=InnoDB ;

B.3. Tabla DONACIONES

Guarda información espećıfica sobre una donación de uno o varios ı́tems realizada por
una persona. Permite relacionar los ı́tems donados con su donante concreto. Dispone
de 8 campos:

id: Es el identificador único de cada donación.

persona: Referencia al donante concreto que efectuó la donación.

tipo: Es obligatorio elegir entre ’Donación a fondo perdido’, ’Cesión indefinida’
o ’Cesión temporal’.

estado: Es obligatorio elegir entre ’Pendiente’ o ’Finalizada’. Este indicador
facilita al administrador del museo la identificación de donaciones incompletas.

anonima: Es obligatorio elegir entre ’Śı’ o ’No’. Indica si el donante a dado su
consentimiento para aparecer en la web de forma pública. Si se marca la dona-
ción como anónima solo el administrador podrá conocer quién es el donante,
para el resto aparecerá como ’Donante anónimo’.

fecha donacion: Indica la fecha en la que se ha efectuado la donación. Es
obligatorio almacenar dicha fecha en el sistema.

contrato: Este campo se utiliza para almacenar la ruta a un fichero PDF que
representa un contrato con el donante sobre la donación que haya realizado.
No es obligatorio hacerlo.

47

comentarios: Permite indicar otros aspectos adiciones relevantes acerca de la
donación.

CREATE TABLE DONACIONES (

id SERIAL PRIMARY KEY,
persona BIGINT UNSIGNED NOT NULL,
CONSTRAINT f k pe r sona donac ion FOREIGN KEY (persona)

REFERENCES DONANTES(id) ON DELETE CASCADEONUPDATECASCADE,
t i po VARCHAR(100) ,

estado VARCHAR(100) ,

anonima VARCHAR(2) NOT NULL,
f e cha donac ion VARCHAR(100) NOT NULL,
cont rato VARCHAR(200) ,

comentar ios TEXT

)ENGINE=InnoDB ;

B.4. Tabla ITEMS

Registra cada uno de los diferentes ı́tems f́ısicos únicos que recibe el museo como
parte de una donación y los relaciona con un tipo concreto. Dispone de 4 campos:

id: Es el identificador único de cada ı́tem.

nombre: Nombre asociado a cada ı́tem. Por defecto el nombre lo conformarán
el nombre del tipo asociado y el identificador numérico.

tipo: Referencia al tipo de ı́tem concreto de la jerarqúıa con el que se le asocia.

donacion: Referencia a la donación concreta a través de la cuál este ı́tem llego
al museo por primera vez.

48

CREATE TABLE ITEMS (

id SERIAL PRIMARY KEY,
nombre VARCHAR(100) NOT NULL,
t i po VARCHAR(100) NOT NULL,
CONSTRAINT f k t i p o i t em s FOREIGN KEY (t i po)

REFERENCES TIPOS(nombre) ON DELETE CASCADEONUPDATECASCADE,
donacion BIGINT UNSIGNED,

CONSTRAINT f k donac i on i t ems FOREIGN KEY (donacion)

REFERENCES DONACIONES(id) ON DELETE SET NULL ONUPDATECASCADE
)ENGINE=InnoDB ;

B.5. Tabla IMAGENES ITEMS

Almacena las rutas de todas las imágenes asociadas a ı́tems. Dispone de 5 campos:

id: Es el identificador único de cada imagen.

ruta: Es la URL del servidor donde se almacena la imagen. El nombre de dicha
imagen siempre está compuesto por el identificador del ı́tem y por su propio
identificador como imagen. Por ejemplo: idItemY imgIdX.png.

item: Referencia al ı́tem f́ısico concreto con el que se asocia la imagen.

descripcion: Campo que permite asociar una descripción semántica para la
imagen.

orden: Número que indica el orden de visualización de las imágenes de un
mismo ı́tem.

CREATE TABLE IMAGENES ITEMS (

id SERIAL PRIMARY KEY,
ruta VARCHAR(200) NOT NULL,
item BIGINT UNSIGNED NOT NULL,
CONSTRAINT f k i t em imagene s i t ems FOREIGN KEY (item)

REFERENCES ITEMS(id) ON DELETE CASCADEONUPDATECASCADE,
d e s c r i p c i on TEXT,

orden INT
)ENGINE=InnoDB ;

49

B.6. Tabla IMAGENES TIPOS

Almacena las rutas de todas las imágenes asociadas a tipos de ı́tems. Dispone de 5
campos:

id: Es el identificador único de cada imagen.

ruta: Es la URL del servidor donde se almacena la imagen. El nombre de dicha
imagen siempre está compuesto por el nombre único del tipo y por su propio
identificador como imagen. Por ejemplo: nombre del tipo imgIdX.png.

tipo: Referencia al tipo de ı́tem concreto con el que se asocia la imagen.

descripcion: Campo que permite asociar una descripción semántica para la
imagen.

orden: Número que indica el orden de visualización de las imágenes de un
mismo tipo.

CREATE TABLE IMAGENES TIPOS (

id SERIAL PRIMARY KEY,
ruta VARCHAR(200) NOT NULL,
t i po VARCHAR(100) NOT NULL,
CONSTRAINT f k t i p o imag en e s t i p o s FOREIGN KEY (t i po)

REFERENCES TIPOS(nombre) ON DELETE CASCADEONUPDATECASCADE,
d e s c r i p c i on TEXT,

orden INT
)ENGINE=InnoDB ;

B.7. Tabla ATTR TIPOS

Almacena los atributos propios de cada tipo de ı́tem, es decir, para cada tipo en
la jerarqúıa, se almacenarán aqúı solo aquellos atributos que el propio tipo haya
definido. Dispone de 8 campos:

tipo: Referencia al tipo de ı́tem concreto que ha definido este atributo.

50

atributo: Es el nombre del atributo. En una misma rama de la jerarqúıa de
tipos nunca se repetirá dos veces el mismo nombre, en ramas diferentes nada
lo impide.

tipo rango: Toma valor NULL cuando estemos ante un atributo de rango
STRING, es decir, aquellos atributos en los que el valor asociado es un valor
literal. Referenciará a un tipo de ı́tem concreto cuando estemos ante un atributo
en el que su rango lo define otro tipo de la jerarqúıa.

valor literal: Cuando el atributo sea de rango STRING tomará valor cuando
este sea asignado desde el propio tipo que definió el atributo. Tomará valor
NULL cuando el rango lo defina un tipo.

publico: Indica si el atributo se muestra a cualquier usuario (1) o solo es visible
para el administrador (0). El valor por defecto es 1.

descripcion: Permite indicar una descripción semántica que explique más en
detalle el significado del atributo.

rellenable por: Indica desde donde se podrán asignar los valores para el atri-
buto, desde un ı́tem concreto, desde un tipo de ı́tem o desde ninguno de los dos.
Si el rango del atributo es STRING su valor siempre será ”Tipo”. Si el rango es
un tipo, será obligatorio elegir entre ”Ítem.o ”Ninguno”. Marcar la opción de
”Ninguno”significa que dicho atributo ya aporta sufienciente información solo
con el tipo indicado en el rango.

multievaluado: Es obligatorio elegir entre ”Si.o ”No”. Por defecto todos los
atributos serán multivaluados, excepto en los atributos con rango tipo y relle-
nables por un ı́tem en los que se indique lo contrario.

51

CREATE TABLE ATTR TIPOS (

t ipo VARCHAR(100) NOT NULL,
CONSTRAINT f k t i p o a t t r t i p o s FOREIGN KEY (t i po)

REFERENCES TIPOS(nombre) ON DELETE CASCADEONUPDATECASCADE,
a t r i bu to VARCHAR(100) NOT NULL,
t i po rango VARCHAR(100) ,

CONSTRAINT f k t i p o r a n g o a t t r t i p o s FOREIGN KEY (t i po rango)

REFERENCES TIPOS(nombre) ON DELETE CASCADEONUPDATECASCADE,
v a l o r l i t e r a l TEXT,

pub l i co BOOLEAN NOT NULL DEFAULT 1 ,

d e s c r i p c i on TEXT,

r e l l e n a b l e p o r VARCHAR(7) NOT NULL,
mult ieva luado VARCHAR(2) NOT NULL,
PRIMARYKEY (t ipo , a t r i bu to)

)ENGINE=InnoDB ;

B.8. Tabla ATTR VALORES

Almacena para un tipo el valor que le ha asignado a un atributo que este ha heredado
jerárquicamente de sus tipos ancestros. Dispone de 4 campos:

tipo: Referencia al tipo de ı́tem concreto que ha heredado este atributo y que
le ha asignado un valor.

atributo: Es el nombre del atributo original. Siempre coincidirá con el nombre
que aparezca en ATTR TIPOS asociado a un ancestro de este tipo.

tipo rango: Toma valor NULL cuando estemos ante un atributo de rango
STRING. Cuando estemos ante un atributo de rango tipo se utilizará este
campo para restringir el rango definido por el tipo original, es decir, referenciará
a algún tipo heredero del último tipo definido como rango o como restricción
del rango.

valor literal: Cuando el atributo sea de rango STRING tomará el valor que
el tipo le asigne a este atributo heredado. Tomará valor NULL cuando el rango
lo defina un tipo.

52

CREATE TABLE ATTRVALORES (

t ipo VARCHAR(100) NOT NULL,
CONSTRAINT f k t i p o a t t r v a l o r e s FOREIGN KEY (t i po)

REFERENCES TIPOS(nombre) ON DELETE CASCADEONUPDATECASCADE,
a t r i bu to VARCHAR(100) NOT NULL,
t i po rango VARCHAR(100) ,

CONSTRAINT f k t i p o r a n g o a t t r v a l o r e s FOREIGN KEY (t i po rango)

REFERENCES TIPOS(nombre) ON DELETE CASCADEONUPDATECASCADE,
v a l o r l i t e r a l TEXT NOT NULL,
PRIMARYKEY (t ipo , a t r i bu to)

)ENGINE=InnoDB ;

B.9. Tabla ATTR ITEMS STRING

Almacena para un ı́tem el valor que este le ha asignado a un atributo de rango
STRING que es propio de su tipo asociado o heredado por su tipo asociado. Dispone
de 3 campos:

item: Referencia al ı́tem que asigna el valor.

atributo: Es el nombre del atributo original. Siempre coincidirá con el nombre
que aparezca en ATTR TIPOS asociado al tipo de este ı́tem o a los ancestros.

valor literal: Toma el valor literal que el ı́tem le ha asignado al atributo.

CREATE TABLE ATTR ITEMS STRING (

item BIGINT UNSIGNED NOT NULL,
CONSTRAINT f k i t em a t t r i t em s s t r i n g FOREIGN KEY (item)

REFERENCES ITEMS(id) ON DELETE CASCADEONUPDATECASCADE,
a t r i bu to VARCHAR(100) NOT NULL,
v a l o r l i t e r a l TEXT,

PRIMARYKEY (item , a t r i bu to)

)ENGINE=InnoDB ;

53

B.10. Tabla ATTR ITEMS REF

Almacena para un ı́tem el valor que este le ha asignado a un atributo de rango tipo
que es propio de su tipo asociado o heredado por su tipo asociado. Dicho valor no será
un valor literal sino que será una referencia a otro ı́tem concreto cuyo tipo asociado
coincida con el tipo indicado en el rango del atributo o con sus herederos. Dispone
de 3 campos:

item: Referencia al ı́tem que asigna el valor.

atributo: Es el nombre del atributo original. Siempre coincidirá con el nombre
que aparezca en ATTR TIPOS asociado al tipo de este ı́tem o a los ancestros.

ref item: Referencia al ı́tem que actúa como valor definido para este atributo
por el ı́tem asignador.

CREATE TABLE ATTR ITEMS REF (

item BIGINT UNSIGNED NOT NULL,
CONSTRAINT f k i t em a t t r i t em s r e f FOREIGN KEY (item)

REFERENCES ITEMS(id) ON DELETE CASCADEONUPDATECASCADE,
a t r i bu to VARCHAR(100) NOT NULL,
r e f i t em BIGINT UNSIGNED,

CONSTRAINT f k r e f i t em a t t r i t em s r e f FOREIGN KEY (r e f i t em)

REFERENCES ITEMS(id) ON DELETE CASCADEONUPDATECASCADE,
PRIMARYKEY (item , at r ibuto , r e f i t em)

)ENGINE=InnoDB ;

B.11. Tabla ZONAS

Guarda las distintas zonas en las que se divide el museo. Dispone de 4 campos:

nombre: Define el nombre propio de una zona, cada nombre es único.

codigo: Es un código numérico único que permite identificar a cada zona.
El formato es ”X.Y”, donde la X es el número de planta y la Y el orden de
aparición.

descripcion: Guarda cualquier información adicional acerca de la zona.

54

exposicion: Es obligatorio elegir entre ”Śı.o ”No”. Indica si la zona está visible
al público, tanto f́ısica como virtualmente, o si por el contrario solo tiene acceso
el administrador el museo a su contenido.

CREATE TABLE ZONAS (

nombre VARCHAR(100) PRIMARY KEY,
cod igo VARCHAR(4) NOT NULL UNIQUE,
d e s c r i p c i on TEXT,

expo s i c i on VARCHAR(2) NOT NULL
)ENGINE=InnoDB ;

B.12. Tabla LOCALIZACIONES

Distintos puntos en los que se depositan los ı́tems f́ısicos donados. Cada localización
siempre tiene una zona a la que pertenece. Dispone de 4 campos:

nombre: Define el nombre propio de una localización, cada nombre es único.

codigo: Es un código numérico único que permite identificar la zona y también
establecer un orden de visita de las mismas.

descripcion: Guarda cualquier información adicional acerca de la localización.

zona: Referencia a la zona concreta a la que pertenece.

CREATE TABLE LOCALIZACIONES (

nombre VARCHAR(100) PRIMARY KEY,
cod igo INTEGER NOT NULL UNIQUE,
d e s c r i p c i on TEXT,

zona VARCHAR(100) NOT NULL,
CONSTRAINT f k z o n a l o c a l i z a c i o n FOREIGN KEY (zona)

REFERENCES ZONAS(nombre) ON DELETE CASCADEONUPDATECASCADE
)ENGINE=InnoDB ;

55

B.13. Tabla UBICACIONES

Guarda para cada ı́tem f́ısico concreto el historial de localizaciones por las que este ha
pasado desde que llegó al museo por primera vez. Pudiéndose repetir una localización
en el tiempo para un mismo ı́tem. Dispone de 6 campos:

id: Es el identificador único de cada ubicación.

item: Referencia al ı́tem f́ısico concreto asociado a la ubicación.

localizacion: Referencia a la localización concreta en la que se ubica el ı́tem.

fecha inicio: Indica la fecha en la que un ı́tem comenzó a estar ubicado en
una localización. Dicha fecha siempre ha de indicarse para cualquier ubicación.

fecha fin: Indica la fecha en la que un ı́tem dejó de estar ubicado en una
localización. Si toma valor NULL es porque el ı́tem sigue ubicado alĺı en la
actualidad.

comentarios: Guarda cualquier tipo de información adicional acerca de la
ubicación.

CREATE TABLE UBICACIONES (

id SERIAL PRIMARY KEY,
item BIGINT UNSIGNED NOT NULL,
CONSTRAINT f k i t em ub i c a c i on FOREIGN KEY (item)

REFERENCES ITEMS(id) ON DELETE CASCADEONUPDATECASCADE,
l o c a l i z a c i o n VARCHAR(100) NOT NULL,
CONSTRAINT f k l o c a l i z a c i o n u b i c a c i o n FOREIGN KEY (l o c a l i z a c i o n)

REFERENCES LOCALIZACIONES(nombre) ON DELETE CASCADE
ONUPDATECASCADE,

f e c h a i n i c i o VARCHAR(100) NOT NULL,
f e c h a f i n VARCHAR(100) ,

comentar ios TEXT

)ENGINE=InnoDB ;

56

C. Anexo: Manual de usuario de las funcionalida-
des de la aplicación

A continuación se muestran las funcionalidades de las que dispone la aplicación,
indicando para cada una de ellas las instrucciones para que el usuario (ya sea admi-
nistrador o invitado) las ejecute.

C.1. Funcionalidades de usuario

Funcionalidades disponibles para cualquier visitante de la web. Se enumeran a con-
tinuación todas ellas haciendo una categorización según la vista a la que pertenecen:

C.1.1. Barra de navegación

La aplicación muestra siempre desde cualquier vista una barra de navegación fija con
las siguientes opciones, según orden de aparición:

1. Botón de inicio: El icono del MIH actúa como un botón del pánico, ya que
redirige siempre hacia la página de inicio.

2. Jerarqúıa de tipos: Redirige hacia la vista del árbol jerárquico de tipos. Se
hablará más en detalle posteriormente.

3. Consultar datos: Menú desplegable que permite visualizar en formato ta-
bla datos acerca de los ı́tems, zonas, localizaciones e información estad́ıstica
general. Se hablará más en detalle posteriormente.

4. Mostrado de datos: Menú desplegable que permite seleccionar el tipo de
información con la que se quiere que trabaje la aplicación de forma global.
Actúa como un filtro global y se puede elegir entre .Exposición”, .Almacén 2

”Todo”, esta última es la opción por defecto.

5. Tipo de usuario: Menú desplegable que indica que tipo de usuario está utili-
zando la aplicación, pudiendo ser usuario invitado (por defecto) o administrador
(requiere de identificación con credenciales). Desde este menú se puede acceder
a la ventana de inicio de sesión como administrador o se puede cerrar dicha
sesión y pasar a usuario invitado.

57

6. Sobre el MIH: Acceso directo a la página original del MIH (http://mih.
unizar.es/).

7. Buscador: Caja de texto donde indicar lo que se desee buscar en el siste-
ma. Se hablará posteriormente más en detalle de su funcionamiento y de sus
limitaciones.

Figura 12: Barra de navegación de la aplicación.

C.1.2. Visión global del museo

Desde la página principal de la aplicación (http://eolo.cps.unizar.es:4040/
MIH/) se podrá observar el esquema de vitrinas de las diferentes plantas del edificio
dividido por zonas. Las acciones disponibles son las siguientes:

1. Ver plano de la planta: Se puede observar para cada planta un plano del
edificio donde aparecen dibujadas las vitrinas en su ubicación.

2. Ver página detallada de la zona: Para cada zona del museo, se podrá
acceder a una página donde observar información detallada de esa zona aśı
como ver imágenes de las vitrinas que contiene.

3. Ver listado de ı́tems de una vitrina: Cada vitrina que aparece dibujada
contiene un enlace en forma de lupa que muestra el listado de ı́tems contenidos
en dicha vitrina.

58

http://mih.unizar.es/
http://mih.unizar.es/
http://eolo.cps.unizar.es:4040/MIH/
http://eolo.cps.unizar.es:4040/MIH/

Figura 13: Zonas y localizaciones de una planta del museo.

C.1.3. Visualización de la jerarqúıa de tipos de ı́tems

Visualización, en formato árbol, de la jerarqúıa de tipos de ı́tems. Las acciones dis-
ponibles son las siguientes:

1. Visualizar solo una rama: Marcar uno de los tipos en el árbol habilita
el botón ’Mostrar el sub-árbol’. Este botón recarga la vista del árbol pero
mostrando solo los tipos hijos del seleccionado, es decir, la rama de ese tipo.

2. Visualizar árbol completo: El botón ’Árbol completo’ recarga la vista del
árbol para mostrarlo en su forma completa, con todos sus tipos visibles.

3. Ocultar/Mostrar subtipos: En la caja de cada tipo padre existe un botón
-/+ que permite de forma dinámica ocultar los subtipos del padre o mostrarlos
si estaban ocultados previamente.

4. Acceder a la vista detallada de un tipo: En cada caja hay un enlace con
el nombre del tipo que redirige a la vista con información detallada. Se hablará
mas en detalle en la siguiente sección.

5. Recuento de ı́tems: En cada caja del árbol pude observarse un resumen de
los ı́tems asociados a ese tipo, tanto los propios (indicado como propios entre
paréntesis) como el global sumando los de los tipos hijos.

59

Figura 14: Árbol jerárquico de los tipos (vista del usuario invitado).

C.1.4. Vista detallada de un tipo de ı́tem

En la vista completa de un tipo podrá observarse la siguiente información:

El conjunto de imágenes asociadas al tipo. Además, el usuario podrá clicar en
cualquiera de ellas para visualizarlas a tamaño real y en pantalla completa. Ver
imagen 15.

Una tabla con los atributos propios y heredados de la rama a la cual el tipo
pertenece jerárquicamente, junto con su rango, su valor asociado y quién le ha
asignado el valor. Ver imagen 16.

Un árbol con los tipos hijos. El árbol presenta la misma estética visual que el
árbol de la vista de la jerarqúıa completa. Ver imagen 17.

Una tabla que lista tanto los ı́tems propios del tipo como los ı́tems de los tipos
hijos en formato tabla, indicando el nombre del ı́tem y el tipo en caso de estar
asociado a un subtipo del de la vista. Dispone de un filtro seleccionable para
mostrar solo los ı́tems propios (Opción ’Propios’), o los propios y los de los
hijos (Opción ’Todos’). Ver imagen 18.

60

Figura 15: Imágenes asociadas al tipo ’ZX Spectrum +2’.

Figura 16: Tabla de atributos del tipo ’ZX Spectrum 16K’.

61

Figura 17: Árbol con los subtipos del tipo ’ZX Spectrum’.

Figura 18: Tabla con los ı́tems del tipo ’ZX Spectrum’.

C.1.5. Consultar datos variados con información detallada

Desde la opción ’Consultar Datos’ de la barra de navegación se despliega un menú
que permite visualizar en formato tabla la siguiente información:

Ítems f́ısicos: La tabla muestra el ID, el nombre, el tipo asociado, información
sobre la donación (nombre del donante en caso de ser donación pública y fecha

62

de donación) e información sobre la ubicación actual (zona y localización).
No se permite al usuario invitado acceder a información detallada sobre un
donante ni tampoco a información detallada sobre localizaciones que no estén
en exposición.

Zonas: La tabla muestra el nombre, un código de ordenación, un indicador de
si está en exposición y un enlace a las localizaciones concretas de la zona (si no
está expuesta se indica ’La zona no está en exposición’ en lugar del enlace).

Localizaciones: La tabla muestra, solo para localizaciones pertenecientes a
zonas expuestas, el nombre, el código de ordenación, la zona y un enlace al
listado de ı́tems que se encuentran expuestos en ella (tabla con el mismo formato
que la comentada anteriormente para los ı́tems).

Toda la información mostrada en la tabla estará enlazada una con otra en caso de
ser posible. La tabla contendrá filtros de texto a nivel de columna (escribiendo la
palabra a buscar en la caja), buscador global en la tabla, capacidad para ordenar
columnas (clicando en la cabecera de la columna para cambiar el orden) y paginación
(pudiendo indicar el número de entradas a mostrar en la tabla).

Además, todas las tablas (excepto la de ı́tems) contendrán un formulario inferior
con información detallada que se autocompletará al clicar en una fila de la tabla
(la fila seleccionada se marcará con fondo azul). En el caso de la tabla de ı́tems, la
información detallada de cada ı́tem se mostrará a través de una vista única para cada
uno de ellos, la cual será accesible a través de un enlace y que se hablará de ella más
adelante.

63

Figura 19: Tabla con información detallada de las zonas del museo.

64

Figura 20: Tabla con información detallada de los ı́tems del museo.

65

Figura 21: Tabla con información detallada de las localizaciones del museo.

C.1.6. Consultar datos estad́ısticos del sistema

Visualización de tablas y gráficas que ofrecen una visión global de la información
almacenada por el sistema. Está accesible desde la opción ’Estad́ısticas’ del menú
desplegable ’Consultar datos’ en la barra de navegación. Se pueden observar los
siguientes elementos:

Resumen de los donantes: Tabla que muestra para cada donante registrado
en el sistema, el total de donaciones que ha realizado y el total de ejemplares
de ı́tems que ha donado. Ver imagen 22.

Resumen anual: Tabla que muestra el total de donaciones realizadas y el total
de ejemplares de ı́tems donados cada año. Tanto esta tabla como la anterior,
utilizan para sacar los datos estad́ısticos los valores dados a los distintos ı́tems

66

en el atributo ’número de ejemplares’ del tipo ’́Item lógico’. Ver imagen 22.

Evolución de la comercialización: Gráfica que muestra una evolución anual
del total de ejemplares de ı́tems del sistema que fueron lanzados cada año. Si no
se tiene información de ı́tems en el sistema para un año concreto, se muestra con
valor 0. Para sacar esta información, se utilizan los valores dados a los distintos
ı́tems/tipos en los atributos ’número de ejemplares’ y ’año de comercialización’
del tipo ’́Item lógico’. Ver imagen 23.

Las tablas contendrán filtros de texto a nivel de columna (escribiendo la palabra
a buscar en la caja), buscador global en la tabla, capacidad para ordenar columnas
(clicando en la cabecera de la columna para cambiar el orden) y paginación (pudiendo
indicar el número de entradas a mostrar en la tabla). En la gráfica, al pasar el cursor
sobre cada uno de los puntos aparecerá un pequeña ventana donde se indicará a
forma de resumen el año y el número de ejemplares.

Figura 22: Tablas estad́ısticas que resumen la información de los donantes y la in-
formación anual del sistema.

67

Figura 23: Gráfica que muestra la evolución temporal de la comercialización de ı́tems
del sistema.

C.1.7. Vista detallada de un ı́tem

La vista con información detallada de un ı́tem mostrará la siguiente información:

Enlace a su tipo asociado debajo del nombre del ı́tem.

Conjunto de imágenes asociadas al ı́tem (de forma idéntica a la mostrada an-
teriormente para los tipos).

Tabla con los atributos de la rama del tipo al que pertenece el ı́tem junto con
los valores asociados (que podrán ser dados por tipos o por el propio ı́tem).
Dicha tabla es visualmente idéntica a la mostrada en la vista de los tipos.

Información acerca de la donación a la cual pertenece el ı́tem. Se muestra el
tipo de donación, la fecha y el nombre del donante (este último solo en el
caso de que la donación no sea anónima). En caso de no pertenecer a ninguna
donación, se indicará con el texto ’Este ı́tem no pertenece a ninguna donación’.
Ver imagen 25.

Tabla con el histórico de ubicaciones por la que ha pasado el ı́tem. Se muestra
para cada ubicación la zona, la localización, la fecha de inicio y de finalización

68

y comentarios adicionales. Siempre aparecerá en verde la ubicación actual en la
que se encuentre el ı́tem. Si hay un periodo temporal en el que no existe ubica-
ción, se indicará en la tabla como una nueva entrada con el número de d́ıas de
ese periodo. Destacar también que en esta tabla solo aparecerán para usuarios
invitados aquellas que estén en una zona en exposición, en caso contrario se
informará con el mensaje ”No expuesto públicamente”. Ver imagen 26.

Figura 24: Tabla con los atributos del ı́tem ’Defender of the Crown (Amiga) #1’.

Figura 25: Información sobre la donación visible desde la vista del ı́tem para usuarios
invitados.

69

Figura 26: Historial de ubicaciones visible desde la vista del ı́tem para usuarios
invitados.

C.1.8. Búsqueda en el sistema

Buscador devuelve aquellas cadenas que coinciden con el substring indicado para
nombres de ı́tems, nombres de un tipos, nombres de localizaciones o nombres de zonas
(en estos dos últimos casos, siempre que la zona se encuentre en exposición). También
busca coincidencias entre los valores de un atributo perteneciente a cualquier tipo
(siempre que dicho atributo sea público cuando se opera como usuario invitado).
Cuando se accede como administrador se permite la búsqueda también de nombres de
donantes y de valores de atributos privados. Los resultados se muestran en una tabla
donde se indica la coincidencia encontrada y su categoŕıa. Las categoŕıas existentes
son:

Nombre del tipo de ı́tem.

Nombre del ı́tem f́ısico.

Nombre de la zona.

Nombre de la localización.

Valor del atributo ’xxxx’ (del tipo ’XXXX’).

Nombre del donante. (solo mostrado para el administrador)

La tabla, como las citadas en otras secciones, contendrá filtros de texto a nivel de
columna (escribiendo la palabra a buscar en la caja), buscador global en la tabla,
capacidad para ordenar columnas (clicando en la cabecera de la columna para cam-
biar el orden) y paginación (pudiendo indicar el número de entradas a mostrar en la
tabla).

70

Figura 27: Visualización de los resultados de una búsqueda en el sistema.

C.2. Funcionalidades espećıficas de administración

Funcionalidades disponibles únicamente para el administrador con inicio de sesión
previo. Se enumeran a continuación todas ellas haciendo una categorización según la
vista a la que pertenecen:

C.2.1. Visualización de la jerarqúıa de tipos de ı́tems

Se permite administrar la jerarqúıa de tipos mediante tres posibles acciones ubicadas
en la parte superior del árbol. Las acciones son las siguientes:

Figura 28: Acciones de administrador disponibles en la jerarqúıa de tipos.

1. Eliminar tipo/s: Elimina uno o varios tipos del sistema, pudiéndose elegir la

71

opción de borrado en cascada para eliminar también los descendientes. Para
ello el administrador seleccionará en el árbol el tipo o los tipos a eliminar,
pulsará el botón ’Eliminar tipo/s’ y después en la ventana emergente podrá
marcar la casilla de borrado en cascada (borrar tipos y subtipos en cascada,
o borrar solo el tipo marcado y reubicar los subtipos bajo su abuelo si no
es en cascada) antes de confirmar la acción si lo desea. Además, eliminar un
tipo conlleva las siguientes consecuencias directas que se efectúan de forma
automática: Borrado de los atributos del tipo y valores asociados, borrado de
las imágenes asociadas al tipo y el borrado de los ı́tems propios del tipo (con
las consecuencias propias que esto conlleva y que detallan más adelante). Si
borrar un tipo conlleva alguna de estas consecuencias se indicará en la ventana
emergente con un mensaje de alerta.

Figura 29: Ventana emergente de la acción de eliminar un tipo.

2. Añadir tipo hijo: Añade un nuevo tipo hijo bajo el tipo seleccionado. Para

72

ello el administrador seleccionará primero el tipo sobre el que añadir el hijo,
pulsará el botón ’Añadir tipo hijo’ y después indicará en la ventana emergente
el nuevo nombre antes de aceptar la acción.

Figura 30: Ventana emergente de la acción de añadir un tipo.

3. Reubicar tipo/s: Reubica uno o varios tipos sobre otro en la jerarqúıa. Para
ello el administrador seleccionará dos o más tipos del árbol, pulsará el botón
’Reubicar tipo/s’ y después indicará en la ventana emergente cual de ellos ac-
tuará como nuevo padre del resto, también podrá marcar la casilla de reubicar
en cascada antes de confirmar la acción si lo desea para reubicar el tipo jun-
to con los subtipos en cascada o solo el tipo y reubicar los subtipos bajo el
abuelo. Reubicar un tipo puede suponer la pérdida de los valores asignados por
los subtipos a atributos propios del tipo a reubicar. En estos casos se alerta
mediante un mensaje en la ventana emergente.

73

Figura 31: Ventana emergente de la acción de reubicar un tipo.

C.2.2. Vista detallada de un tipo de ı́tem

Se permiten realizar las siguientes acciones relacionadas con el tipo mostrado:

Cambiar el nombre: El administrador podrá indicar un nuevo nombre para
el tipo, siempre que este no haya sido utilizado previamente por otro tipo
existente. Para ello pulsará el botón ubicado junto al nombre y en la ventana
emergente lo editará antes de confirmar la acción.

74

Figura 32: Ventana emergente de la acción de editar el nombre de un tipo.

Añadir imágenes: El administrador podrá subir al sistema imágenes ubicadas
en su dispositivo y asociarlas al tipo de la vista. Para ello pulsará el botón ’+’
situado detrás de la última imagen (o debajo del nombre del tipo si no hay
imágenes), después en la ventana emergente seleccionará la imagen a subir en
el selector de archivos e indicará una descripción textual si lo desea antes de
confirmar.

Figura 33: Ventana emergente de la acción de subir una imagen.

Ordenar imágenes: El administrador podrá cambiar el orden de aparición
de las imágenes de un tipo editando la información directamente en la base

75

de datos (no está implementado desde la interfaz de la aplicación). Para ello
deberá cambiar el valor del campo ’orden’ en la tabla ’IMAGENES TIPOS’.

Eliminar imágenes: El administrador podrá eliminar una imagen del sistema
de forma permanente y quedar disociada del tipo al que pertenećıa. Para ello
pulsará sobre el icono de la papelera que aparece en la esquina inferior derecha
de cada imagen, después deberá confirmar la acción en la ventana emergente.

Figura 34: Ventana emergente de la acción de eliminar una imagen.

Añadir un nuevo ı́tem: El administrador podrá añadir un nuevo ı́tem para
el tipo de la vista actual. Dicho ı́tem será genérico, es decir, tendrá como
única ubicación por defecto el almacén del museo, no tendrá donación asociada,
no dispondrá de imágenes, no tendrá valores propios asociados a atributos y
dispondrá de un nombre generado automáticamente que consistirá en el nombre
del tipo junto con el identificador de dicho ı́tem nuevo. Para ello deberá pulsar
sobre el botón ’Añadir nuevo ı́tem’ y se redirigirá de forma automática a la
vista del ı́tem creado.

76

Figura 35: Botón para añadir directamente un ı́tem genérico asociado a un tipo.

Añadir atributo: El administrador podrá definir un nuevo atributo para el
tipo de la vista, el cual automáticamente será heredado por los tipos herederos
de este. Para ello deberá pulsar el botón ’+’ que aparece junto a la cabecera
’ATRIBUTO’ de la tabla de atributos, después en la ventana emergente deberá
indicar el nombre del atributo (no debe coincidir con ningún nombre de atributo
de la rama jerárquica a la que pertenece el tipo), podrá indicar una descripción
si lo desea y deberá seleccionar el rango del atributo (STRING o Tipo). Según
el rango seleccionado se dan los siguientes escenarios:

Figura 36: Botón para añadir un nuevo atributo al tipo.

1. Si el rango es STRING, deberá indicar quién asignará valores al atributo
(Tipo o Ítem), si se elige ’Tipo’ entonces podrá asignar un valor en ese

77

mismo instante si aśı lo desea o hacerlo más tarde en el tipo o en un
subtipo, si se elige ”Ítem”solo se le podrá asignar valor desde un ı́tem del
propio tipo o desde un ı́tem de los tipos herederos.

Figura 37: Ventana emergente de la acción de añadir un atributo con rango STRING.

78

2. Si el rango marcado es Tipo, se deberá seleccionar del árbol de tipos uno
de ellos para que actúe como rango ráız. Después deberá indicar quien
asignará valores al atributo, hay dos opciones:

a) Si se elige ”Ninguno.el atributo no tendrá valores asociados ya que se
considera que el rango y sus posibles restricciones aportan ya suficien-
te información.

b) Si se elige ”Ítem”se podrán asignar valores únicamente en los ı́tems
(dicho valor consistirá en la referencia aun ı́tem del tipo marcado por
el rango o su restricción) y habrá que indicar también será multi-
valuado o no (en caso de ser multivaluado, se permitirá en un ı́tem
referenciar a uno o más ı́tems con el mismo atributo).

79

Figura 38: Ventana emergente de la acción de añadir un atributo con rango Tipo.

Eliminar atributo: Si el tipo dispone de atributos propios, es decir, atributos
que han sido definidos por él y que no son heredados, el administrador podrá
eliminarlo, eliminando en consecuencia todos valores dados por el tipo o por
los subtipos herederos. Para ello deberá pulsar sobre el botón ’X’ que aparece
al lado del nombre del atributo en la tabla y confirmar la acción en la ventana
emergente.

80

Editar atributo: El administrador podrá modificar para un atributo propio
del tipo de la vista, su nombre, su descripción, el valor asociado si lo tuviera (y
solo en caso de ser de rango STRING), el rango, quién puede asignarle valores
(vaŕıa en función de la selección del rango), el tipo que hace rango (solo cuando
sea un tipo de rango Tipo”) y si es multivaluado o no. Para ello deberá pulsar
sobre el botón ’X’ que aparece al lado del nombre del atributo en la tabla y
después en la ventana emergente, la cuál es idéntica a la mostrada para añadir,
podrá realizar los cambios oportunos antes de confirmar.

Figura 39: Botones de para borrar (1) y editar (2) un atributo.

Asignar valor literal: El administrador podrá asignar un valor literal a un
atributo de rango STRING que sea propio del tipo de la vista o que sea heredado
y al que ningún tipo ancestro le haya dado valor todav́ıa. Para ello deberá pulsar
el botón ’+’ que aparece junto al texto ’Sin valor’ en la fila del atributo de la
tabla, después en la ventana emergente podrá indicar en la caja de texto dicho
valor. Destacar que el valor pude ser cualquier tipo de texto, incluso se podrá
añadir texto HTML que se interpretará después como corresponda al mostrarse
en la tabla.

Editar valor literal: El administrador podrá editar el valor asignado con
anterioridad a un atributo por el mismo. Para ello deberá pulsar el botón con
el icono del lápiz que aparece junto al valor del atributo en la tabla, después
podrá modificar el valor en la ventana emergente antes de confirmar la acción.

Eliminar valor literal: El administrador podrá eliminar un valor literal desde
un tipo a un atributo de rango STRING, ya sea el atributo propio o heredado.
Después de esta acción el atributo aparecerá con la cadena ’Sin valor’. Para
ello deberá pulsar el botón ’X’ y confirmar después la acción en la ventana
emergente.

81

Figura 40: Botones de para añadir (1), editar (2) y borrar (3) el valor literal de un
atributo.

Añadir restricción de rango: Cuando un atributo heredado sea de rango
”Tipo”, el administrador podrá restringir su rango en el tipo de la vista actual,
para la restricción el administrador elegirá un tipo que sea heredero del tipo
que actuaba hasta el momento como rango de ese atributo (sea una restricción
previa o el rango inicial). Para ello deberá pulsar el botón ’+’ que aparece junto
al tipo que marca el rango para el atributo en la tabla, después en la ventana
emergente deberá pulsar en ’Seleccionar tipo’ para ser redirigido al árbol, alĺı
marcará el tipo y pulsará seleccionar, después en la ventana emergente inicial
aparecerá el tipo cargado y podrá confirmar la acción.

82

Figura 41: Ventana emergente de la acción de añadir una restricción de rango (pri-
mera imagen) y vista de la selección de un tipo en el árbol (segunda imagen).

Editar restricción de rango: El administrador podrá modificar el tipo que
actúa como restricción de rango en el tipo de la vista actual seleccionando un
tipo que sea heredero del tipo marcado como rango inicial (el cual aparece entre
paréntesis en la celda de la tabla). Para ello deberá pulsar el botón con el icono
del lápiz que aparece junto al tipo que marca el rango para el atributo en la
tabla, los siguientes pasos son idénticos al proceso de añadir anterior.

Eliminar restricción de rango: El administrador podrá eliminar una res-
tricción de rango de un atributo dada por el tipo de la vista actual. Como
consecuencia el rango efectivo para este tipo en este tipo volverá a ser el here-

83

dado de la restricción del tipo padre, o si no hubiese restricciones intermedias,
heredaŕıa el rango original del atributo (el que aparece entre paréntesis). Para
ello deberá pulsar el botón ’X’ que aparece junto al tipo que marca el rango
para el atributo en la tabla y en la ventana emergente confirmar la acción.

Figura 42: Botones para añadir (1), editar (2) y eliminar (3) un tipo como restricción
de rango a un atributo.

C.2.3. Consultar datos variados con información detallada

Se permite al administrador interactuar con las tablas de zonas, localizaciones, do-
nantes y donaciones. La visualización de estas dos últimas es exclusiva para el admi-
nistrador (ver imágenes 43 y 44).

84

Figura 43: Vista de la tabla de donantes.

85

Figura 44: Vista de la tabla de donaciones.

A través de los formularios de información detallada que aparecen en la parte inferior
de cada tabla, podrá llevar a cabo las siguientes acciones sobre la tabla:

Figura 45: Acciones disponibles para interactuar con las entradas de una tabla.

1. Añadir nueva entrada: El administrador deberá cumplimentar aquellos cam-
pos del formulario que sean requeridos y opcionalmente cumplimentar el resto,
después, tras pulsar el botón ’Añadir X’ (donde X será: Zona, Localización,

86

Donación o Donante) el sistema validará que los datos introducidos sean ade-
cuados para campo de la tabla y creará una nueva entrada con dicha informa-
ción. Destacar que el campo del formulario que representa el ID de una tabla
no permite la asignación de valor ya que este se genera de forma automática.

2. Actualizar entrada seleccionada: El administrador seleccionará un entrada
de la tabla y automáticamente los datos se cargarán en el formulario para
que puedan ser editados. Cuando el administrador pulse el botón ’Actualizar
X’ el sistema validará que la nueva información de los campos modificados
sea adecuada antes de realizar la actualización de dicha entrada de la tabla.
Destacar que el campo ID de una tabla no es editable.

3. Eliminar entrada seleccionada: El sistema eliminará de forma permanente
aquella entrada de la tabla que el administrador haya seleccionado de forma
previa a realizar la acción. Para ello deberá pulsar después de seleccionar la
entrada el botón ’Eliminar X’. En ocasiones, eliminar una entrada conllevará
la modificación o eliminación de otros datos del sistema:

Al eliminar un donante se eliminarán sus donaciones asociadas, al eliminar
una donación sus ı́tems no se eliminan pero dejan de pertenecer a ella.

Al eliminar una zona se eliminan sus localizaciones asociadas.

Al eliminar una localización se eliminarán del historial de ubicaciones de
un ı́tem aquellas que implicasen a dicha localización eliminada.

4. Limpiar campos: Limpia el contenido de los campos del formulario. Es una
acción útil cuando se ha seleccionado una entrada en la tabla y se quiere dejar
de seleccionarla para añadir una nueva con datos nuevos.

87

Los formularios de información detallada tienen los siguientes tipos de campos:

Figura 46: Campos existentes en los formularios de visualización de información
detallada de una tabla.

1. ID: Campo no editable, su valor se genera de forma automática por el sistema.

2. Selección: Campo desplegable con opciones seleccionables.

3. Fecha: Se podrá indicar escribiendo los números o eligiendo la fecha en un
calendario desplegable.

4. Nombre: Campo para indicar nombres en una sola ĺınea.

88

5. Texto: Campo para indicar un texto largo, se utiliza para escribir comentarios
o descripciones.

6. Selección: Botón que redirige a otra tabla para seleccionar alĺı una entrada y
después cargarla en el formulario. Existen dos, uno para seleccionar el donante
de una donación y otro para seleccionar la zona de una localización. La vista
de una tabla cuando se accede en modo selección es la siguiente:

Figura 47: Vista de la tabla de donantes cuando se accede en modo selección desde
el botón de selección en el formulario de una donación.

7. Número: Se pude indicar el número manualmente o hacerlo incrementado y
disminuyendo una unidad con las flechas del campo.

8. eMail: Campo para indicar correos electrónicos, valida que sintácticamente
este escrito correctamente.

9. Teléfono: Campo para indicar números telefónicos, valida que lo introducido
tenga exactamente nueve números comprendidos entre el 0 y el 9.

89

10. Fichero: Campo para subir ficheros al sistema. Se utiliza en el formulario de
una donación para poder asociarle el PDF de un contrato que acredite la do-
nación. Cuando se selecciona una entrada que contiene un contrato asociado,
aparece un nuevo botón para visualizar el contrato y aparece también un check-
box que si se marca se elimina el fichero al actualizar la entrada con el botón
’Actualizar Donación’ (Ver imagen 48).

Figura 48: Botón de visualización de un contrato de una donación y checkbox para
indicar su eliminación al actualizar la donación.

Destacar también que en la tabla con el listado de ı́tems de una donación, existen
tres acciones más exclusivas del administrador:

Figura 49: Acciones de administrador en el listado de ı́tems de una donación.

1. Añadir nuevo ı́tem: El administrador pulsará el botón ’Añadir nuevo ı́tem’
y se le redirigirá al árbol de tipos, seleccionará uno y pulsará el botón ’selec-
cionar’, después en la ventana emergente indicará en nombre del ı́tem (si no

90

lo hace se asignará uno por defecto) y confirmará la acción. El ı́tem añadido
tendrá la donación desde la que se añadió como donación asociada.

2. Añadir ı́tem existente: El administrador pulsará el botón ’Añadir ı́tem exis-
tente’ y se desplegará una ventana emergente con el listado de ı́tems sin dona-
ción asociada, marcará uno de la lista y confirmará la acción. El ı́tem marcado
pasará a estar vinculado con dicha donación.

Figura 50: Ventana emergente con los ı́tems que no están asociados a ninguna dona-
ción.

3. Desvincular ı́tem de la donación: El administrador pulsará el botón ’-’
que aparece junto al ID de cada entrada de la tabla de ı́tems de la donación,
después confirmará la acción en la ventana emergente. El ı́tem pasará a no
tener una donación asociada y desaparecerá de la lista.

91

C.2.4. Vista detallada de un ı́tem

Se permiten realizar las siguientes acciones relacionadas con el ı́tem mostrado:

Cambiar el nombre: El administrador podrá indicar un nuevo nombre para
el tipo pulsando el icono del lápiz junto al nombre. Mismo procedimiento que
el explicado para los tipos.

Cambiar el tipo: El administrador podrá cambiar el tipo asociado al ı́tem por
otro de los existentes en el árbol jerárquico de tipos. Para ello deberá pulsar
sobre el icono del lápiz que aparece junto a la referencia del tipo, después
se le redirigirá a la vista del árbol de tipos, marcará uno, pulsará el botón
’seleccionar’ y confirmará la acción.

Eliminar el ı́tem: El administrador podrá eliminar el ı́tem de forma per-
manente del sistema. Para ello deberá pulsar el icono de la papelera situado
junto al nombre y confirmar la acción en la ventana emergente. Esta acción
conlleva el borrado de todas sus imágenes asociadas, el borrado de los valores
asignados en atributos que impliquen a dicho ı́tem y el borrado del historial de
ubicaciones de dicho ı́tem.

Figura 51: Botones para editar el nombre del ı́tem, eliminar el ı́tem y cambiar el tipo
asociado al ı́tem.

Añadir imágenes: El administrador podrá subir al sistema imágenes ubicadas
en su dispositivo y asociarlas al ı́tem de la vista. También podrá indicar pre-
viamente a subirlas una descripción para cada imagen. Mismo procedimiento
que el explicado para los tipos.

Eliminar imágenes: El administrador podrá eliminar una imagen del sistema
de forma permanente y quedar disociada del ı́tem al que pertenećıa. Mismo
procedimiento que el explicado para los tipos.

Asignar valor literal en atributo: El administrador podrá asignar un valor
literal a un atributo perteneciente al tipo asociado o a los ancestros, siempre y

92

cuando sea de rango STRING y se haya indicado la opción de que los valores de
dicho atributo los asignarán los ı́tems. Mismo procedimiento que el explicado
para los tipos.

Editar valor literal en atributo: El administrador podrá editar un valor lite-
ral previamente asignado a un atributo. Mismo procedimiento que el explicado
para los tipos.

Eliminar valor literal en atributo: El administrador podrá eliminar un
valor literal asignado por él mismo a un atributo perteneciente al tipo asociado
o a los ancestros, siempre y cuando sea de rango STRING y se haya indicado
la opción de que los valores de dicho atributo los asignarán los ı́tems. Mismo
procedimiento que el explicado para los tipos.

Asignar referencia a ı́tem en atributo: El administrador podrá asignar un
ı́tem como valor a un atributo perteneciente al tipo asociado o a los ancestros,
siempre y cuando sea de rango Tipo y se haya indicado la opción de que los
valores de dicho atributo los asignarán los ı́tems. Si además el atributo se
marcó como multivaluado, se podrá asignar más de un ı́tem como valor en
dicho atributo. Para ello deberá pulsar el botón ’+’ que parece en la celda de
valores de un atributo en la tabla, después en la ventana emergente deberá
marcar el ı́tem deseado como valor y confirmar la acción.

Eliminar referencia a ı́tem en atributo: El administrador podrá eliminar
un ı́tem que actúa como valor asignado por él mismo a un atributo perteneciente
al tipo asociado o a los ancestros, siempre y cuando sea de rango Tipo y se
haya indicado la opción de que los valores de dicho atributo los asignarán los
ı́tems. Para ello debe pulsar el botón ’X’ situado junto a la referencia a un ı́tem
y confirmar la acción en la ventana emergente.

Editar referencia a ı́tem en atributo: Combina la acción de eliminar la
referencia a un ı́tem y añadir una nueva a otro en un solo paso. Para ello debe
pulsar el icono del lápiz situado junto a la referencia, y como al añadir, se
despliega una ventana emergente donde aparece el listado de ı́tems que está
permitido referenciar.

93

Figura 52: Botones para añadir, editar y eliminar una referencia a un ı́tem en un
atributo (primera imagen) y ventana emergente con el listado de ı́tems referenciables
(segunda imagen).

94

Añadir nueva ubicación: El administrador podrá añadir al historial de ubi-
caciones nuevas localizaciones para el ı́tem de la vista. Para ello deberá pulsar
el botón ’+’ que aparece junto al t́ıtulo ’Histórico de ubicaciones en el museo’,
después en la ventana emergente deberá indicar obligatoriamente una fecha de
inicio y de finalización (si no se indica fecha de finalización se tratará esta nueva
ubicación como la actual) y seleccionar una localización de entre las existentes
en el museo, hecho esto podrá confirmar la acción. También podrá indicar de
forma optativa un comentario explicativo de la ubicación previo a la confir-
mación. Antes de hacer efectiva la inclusión de la ubicación en el historial, el
sistema comprobará que las fechas introducidas no interfieran en otros periodos
de ubicaciones ya existentes. Si se permitirá que haya periodos donde el ı́tem
esté sin localización y se mostrarán visualmente dichos periodos en la tabla de
forma especial.

95

Figura 53: Botón (primera imagen) y ventana emergente para añadir una nueva
ubicación en un ı́tem (segunda imagen).

96

Eliminar una ubicación: El administrador podrá eliminar cualquier entrada
de la tabla del historial de ubicaciones. En consecuencia, el periodo temporal
liberado se marcará en la tabla como libre de ubicaciones. Para ello deberá pul-
sar el botón ’X’ que aparece al lado de la localización de una entrada de la tabla
de ubicaciones, después deberá confirmar la acción en la ventana emergente.

Figura 54: Botón para eliminar una ubicación existente en un ı́tem.

Editar una localización de una ubicación: El administrador podrá cambiar
la localización asociada a una entrada de la tabla del historial de ubicaciones
por cualquier otra localización del museo. Para ello deberá pulsar el icono del
lápiz situado junto a una localización de la tabla de ubicaciones, después en
la ventana emergente deberá seleccionar la nueva localización y confirmar la
acción.

97

Figura 55: Botón (primera imagen) y ventana emergente para editar la localización
de una ubicación (segunda imagen).

Editar la fecha de inicio/finalización de una ubicación: El administrador
podrá cambiar tanto la fecha de inicio como la de finalización de una ubicación.
En el caso de está última, si al cambiarla no especifica una concreta y se deja
el campo vaćıo pasará a considerarse esa ubicación como la actual. Además, al
igual que ocurre al añadir una ubicación, antes de hacer efectivo el cambio el

98

sistema comprobará que las fechas introducidas no interfieran en otros periodos
de ubicaciones ya existentes. Para ello deberá pulsar el icono del lápiz junto
a cada una de las fechas y en la ventana emergente seleccionar la nueva fecha
antes de confirmar la acción.

Figura 56: Botón (primera imagen) y ventana emergente para editar la fecha de inicio
o de fin de una ubicación (segunda imagen).

Editar comentarios de una ubicación: El administrador podrá cambiar los
comentarios opcionales asociados a cada entrada del historial de ubicaciones.
Para ello deberá pulsar el icono del lápiz situado junto al comentario y después
en la ventana emergente modificar el texto antes de confirmar la acción.

99

Figura 57: Botón (primera imagen) y ventana emergente para editar los comentarios
de una ubicación (segunda imagen).

100

D. Anexo: Contenido del fichero XML de configu-
ración configuracion tablas.xml

<?xml version=” 1 .0 ” encoding=”UTF−8” standalone=”no”?>
<t ab l a s>

< !−− ∗∗ −−>
< !−− In fo sobre l a t a b l a DONACION −−>
< !−− ∗∗ −−>

<donacion>
<nombresAtrPr inc ipa les>ID</ nombresAtrPr inc ipa les>
<nombresAtrPr inc ipa les>Tipo</ nombresAtrPr inc ipa les>
<nombresAtrPr inc ipa les>Estado</ nombresAtrPr inc ipa les>
<nombresAtrPr inc ipa les>Anónima</ nombresAtrPr inc ipa les>
<nombresAtrPr inc ipa les>Fecha de donaci ón</ nombresAtrPr inc ipa les>
<nombresAtrPr inc ipa les>Nombre de l donante</ nombresAtrPr inc ipa les>

<nombresAtrSecundarios>Donante</nombresAtrSecundarios>
<nombresAtrSecundarios>Contrato</nombresAtrSecundarios>
<nombresAtrSecundarios>Comentarios</nombresAtrSecundarios>

<inputTypesAtr>id</ inputTypesAtr>
<inputTypesAtr>s e l e c t</ inputTypesAtr>
<inputTypesAtr>s e l e c t</ inputTypesAtr>
<inputTypesAtr>s e l e c t</ inputTypesAtr>
<inputTypesAtr>date</ inputTypesAtr>
<inputTypesAtr>no c r e a r i npu t</ inputTypesAtr>
<inputTypesAtr>r e f</ inputTypesAtr>
<inputTypesAtr> f i l e</ inputTypesAtr>
<inputTypesAtr>t ex ta r ea</ inputTypesAtr>

<in foAdic iona l InputTypes>nu l l</ in foAdic iona l InputTypes>
<in foAdic iona l InputTypes>

Donaci ón a fondo perdido ;

Ces i ón i n d e f i n i d a ;

Ces i ón temporal

</ in foAdic iona l InputTypes>
<in foAdic iona l InputTypes>Pendiente ; F ina l i z ada</ in foAdic iona l InputTypes>
<in foAdic iona l InputTypes>S ı́ ;No</ in foAdic iona l InputTypes>
<in foAdic iona l InputTypes>r equ i r ed</ in foAdic iona l InputTypes>
<in foAdic iona l InputTypes>nu l l</ in foAdic iona l InputTypes>
<in foAdic iona l InputTypes>nu l l</ in foAdic iona l InputTypes>
<in foAdic iona l InputTypes></ in foAdic iona l InputTypes>
<in foAdic iona l InputTypes>nu l l</ in foAdic iona l InputTypes>

<comentariosCampos></comentariosCampos>
<comentariosCampos>
Donaci ón a fondo perdido , se t r a t a de (. . .)

</comentariosCampos>
<comentariosCampos></comentariosCampos>
<comentariosCampos></comentariosCampos>
<comentariosCampos></comentariosCampos>
<comentariosCampos></comentariosCampos>
<comentariosCampos></comentariosCampos>
<comentariosCampos></comentariosCampos>

101

<comentariosCampos></comentariosCampos>

<columnSize>5</ columnSize>
<columnSize>11</ columnSize>
<columnSize>10</ columnSize>
<columnSize>2</ columnSize>
<columnSize>10</ columnSize>
<columnSize>20</ columnSize>
<columnSize>nu l l</ columnSize>
<columnSize>nu l l</ columnSize>
<columnSize>nu l l</ columnSize>
<columnSize>10</ columnSize>

<i nputS i z e>70px</ inputS i z e>
<i nputS i z e>nu l l</ inputS i z e>
<i nputS i z e>nu l l</ inputS i z e>
<i nputS i z e>nu l l</ inputS i z e>
<i nputS i z e>165px</ inputS i z e>
<i nputS i z e>160px</ inputS i z e>
<i nputS i z e>nu l l</ inputS i z e>
<i nputS i z e>475px</ inputS i z e>
<i nputS i z e>350px</ inputS i z e>

<columnaOrden>4</columnaOrden>
<tipoOrden>desc</ tipoOrden>

</donacion>

< !−− ∗∗ −−>
< !−− In fo sobre l a t a b l a DONANTE −−>
< !−− ∗∗ −−>

<donante>
<nombresAtrPr inc ipa les>ID</ nombresAtrPr inc ipa les>
<nombresAtrPr inc ipa les>eMail</ nombresAtrPr inc ipa les>
<nombresAtrPr inc ipa les>Nombre</ nombresAtrPr inc ipa les>
<nombresAtrPr inc ipa les>Tel é fono</ nombresAtrPr inc ipa les>

<nombresAtrSecundarios>Desc r i p c i ón</nombresAtrSecundarios>

<inputTypesAtr>id</ inputTypesAtr>
<inputTypesAtr>emai l</ inputTypesAtr>
<inputTypesAtr>t ex t</ inputTypesAtr>
<inputTypesAtr>t e l</ inputTypesAtr>
<inputTypesAtr>t ex ta r ea</ inputTypesAtr>

<in foAdic iona l InputTypes>nu l l</ in foAdic iona l InputTypes>
<in foAdic iona l InputTypes></ in foAdic iona l InputTypes>
<in foAdic iona l InputTypes>r equ i r ed</ in foAdic iona l InputTypes>
<in foAdic iona l InputTypes>pattern=” [0−9]{9}”</ in foAdic iona l InputTypes>
<in foAdic iona l InputTypes>nu l l</ in foAdic iona l InputTypes>

<comentariosCampos></comentariosCampos>
<comentariosCampos></comentariosCampos>
<comentariosCampos></comentariosCampos>
<comentariosCampos></comentariosCampos>
<comentariosCampos></comentariosCampos>

<columnSize>5</ columnSize>

102

<columnSize>35</ columnSize>
<columnSize>20</ columnSize>
<columnSize>9</ columnSize>
<columnSize>nu l l</ columnSize>
<columnSize>10</ columnSize>

<i nputS i z e>70px</ inputS i z e>
<i nputS i z e>350px</ inputS i z e>
<i nputS i z e>350px</ inputS i z e>
<i nputS i z e>110px</ inputS i z e>
<i nputS i z e>350px</ inputS i z e>

<columnaOrden>2</columnaOrden>
<tipoOrden>asc</ tipoOrden>

</donante>

< !−− ∗∗ −−>
< !−− In fo sobre l a t a b l a ZONA −−>
< !−− ∗∗ −−>

<zona>
<nombresAtrPr inc ipa les>Nombre</ nombresAtrPr inc ipa les>
<nombresAtrPr inc ipa les>Có digo</ nombresAtrPr inc ipa les>
<nombresAtrPr inc ipa les>En expo s i c i ón</ nombresAtrPr inc ipa les>

<nombresAtrSecundarios>Nombre</nombresAtrSecundarios>
<nombresAtrSecundarios>Desc r i p c i ón</nombresAtrSecundarios>

<inputTypesAtr>t ex t</ inputTypesAtr>
<inputTypesAtr>t ex t</ inputTypesAtr>
<inputTypesAtr>s e l e c t</ inputTypesAtr>
<inputTypesAtr>ocu l to</ inputTypesAtr>
<inputTypesAtr>t ex ta r ea</ inputTypesAtr>

<in foAdic iona l InputTypes>r equ i r ed</ in foAdic iona l InputTypes>
<in foAdic iona l InputTypes>r equ i r ed</ in foAdic iona l InputTypes>
<in foAdic iona l InputTypes>S ı́ ;No</ in foAdic iona l InputTypes>
<in foAdic iona l InputTypes>nu l l</ in foAdic iona l InputTypes>
<in foAdic iona l InputTypes>nu l l</ in foAdic iona l InputTypes>

<comentariosCampos></comentariosCampos>
<comentariosCampos></comentariosCampos>
<comentariosCampos></comentariosCampos>
<comentariosCampos></comentariosCampos>
<comentariosCampos></comentariosCampos>

<columnSize>25</ columnSize>
<columnSize>3</ columnSize>
<columnSize>2</ columnSize>
<columnSize>nu l l</ columnSize>
<columnSize>nu l l</ columnSize>
<columnSize>14</ columnSize>

<i nputS i z e>260px</ inputS i z e>
<i nputS i z e>60px</ inputS i z e>
<i nputS i z e>nu l l</ inputS i z e>
<i nputS i z e>nu l l</ inputS i z e>
<i nputS i z e>500px</ inputS i z e>

103

<columnaOrden>1</columnaOrden>
<tipoOrden>asc</ tipoOrden>

</zona>

< !−− ∗∗ −−>
< !−− In fo sobre l a t a b l a LOCALIZACION −−>
< !−− ∗∗ −−>

< l o c a l i z a c i o n>
<nombresAtrPr inc ipa les>Nombre</ nombresAtrPr inc ipa les>
<nombresAtrPr inc ipa les>Có digo</ nombresAtrPr inc ipa les>
<nombresAtrPr inc ipa les>Zona</ nombresAtrPr inc ipa les>

<nombresAtrSecundarios>Zona</nombresAtrSecundarios>
<nombresAtrSecundarios>Nombre</nombresAtrSecundarios>
<nombresAtrSecundarios>Desc r i p c i ón</nombresAtrSecundarios>

<inputTypesAtr>t ex t</ inputTypesAtr>
<inputTypesAtr>number</ inputTypesAtr>
<inputTypesAtr>no c r e a r i npu t</ inputTypesAtr>
<inputTypesAtr>r e f</ inputTypesAtr>
<inputTypesAtr>ocu l to</ inputTypesAtr>
<inputTypesAtr>t ex ta r ea</ inputTypesAtr>

<in foAdic iona l InputTypes>r equ i r ed</ in foAdic iona l InputTypes>
<in foAdic iona l InputTypes>r equ i r ed</ in foAdic iona l InputTypes>
<in foAdic iona l InputTypes>nu l l</ in foAdic iona l InputTypes>
<in foAdic iona l InputTypes>nu l l</ in foAdic iona l InputTypes>
<in foAdic iona l InputTypes>nu l l</ in foAdic iona l InputTypes>
<in foAdic iona l InputTypes>nu l l</ in foAdic iona l InputTypes>

<comentariosCampos></comentariosCampos>
<comentariosCampos></comentariosCampos>
<comentariosCampos></comentariosCampos>
<comentariosCampos></comentariosCampos>
<comentariosCampos></comentariosCampos>
<comentariosCampos></comentariosCampos>

<columnSize>25</ columnSize>
<columnSize>2</ columnSize>
<columnSize>25</ columnSize>
<columnSize>nu l l</ columnSize>
<columnSize>nu l l</ columnSize>
<columnSize>nu l l</ columnSize>
<columnSize>10</ columnSize>

<i nputS i z e>225px</ inputS i z e>
<i nputS i z e>60px</ inputS i z e>
<i nputS i z e>160px</ inputS i z e>
<i nputS i z e>nu l l</ inputS i z e>
<i nputS i z e>nu l l</ inputS i z e>
<i nputS i z e>500px</ inputS i z e>

<columnaOrden>1</columnaOrden>
<tipoOrden>asc</ tipoOrden>

</ l o c a l i z a c i o n>

104

< !−− ∗∗ −−>
< !−− In fo sobre l a t a b l a INSTANCIAS −−>
< !−− ∗∗ −−>

< i n s t a n c i a>
<nombresAtrPr inc ipa les>ID</ nombresAtrPr inc ipa les>
<nombresAtrPr inc ipa les>Nombre</ nombresAtrPr inc ipa les>
<nombresAtrPr inc ipa les>Tipo de ı́ tem</ nombresAtrPr inc ipa les>
<nombresAtrPr inc ipa les>Donaci ón</ nombresAtrPr inc ipa les>
<nombresAtrPr inc ipa les>Lo c a l i z a c i ón</ nombresAtrPr inc ipa les>

<nombresAtrPr inc ipa le s donac ion>ID</ nombresAtrPr inc ipa les donac ion>
<nombresAtrPr inc ipa le s donac ion>Nombre</ nombresAtrPr inc ipa les donac ion>
<nombresAtrPr inc ipa le s donac ion>Tipo de ı́ tem</ nombresAtrPr inc ipa les donac ion>
<nombresAtrPr inc ipa le s donac ion>Lo c a l i z a c i ón</ nombresAtrPr inc ipa les donac ion>

<columnSize>5</ columnSize>
<columnSize>25</ columnSize>
<columnSize>25</ columnSize>
<columnSize>25</ columnSize>
<columnSize>25</ columnSize>

<co lumnSize donacion>5</ columnSize donacion>
<co lumnSize donacion>25</ columnSize donacion>
<co lumnSize donacion>25</ columnSize donacion>
<co lumnSize donacion>25</ columnSize donacion>

<columnaOrden>1</columnaOrden>
<tipoOrden>asc</ tipoOrden>

</ i n s t an c i a>

< !−− ∗∗ −−>
< !−− In fo sobre l a t a b l a RESUMEN DONANTES −−>
< !−− ∗∗ −−>

<resumenDonantes>
<nombresAtrPr inc ipa les>Nombre de l donante</ nombresAtrPr inc ipa les>

<nombresAtrPr inc ipa les>#Donaciones r e a l i z a d a s</ nombresAtrPr inc ipa les>
<nombresAtrPr inc ipa les>#Ejemplares donados</ nombresAtrPr inc ipa les>

<columnSize>25</ columnSize>
<columnSize>6</ columnSize>
<columnSize>6</ columnSize>

<columnaOrden>1</columnaOrden>
<tipoOrden>desc</ tipoOrden>

</resumenDonantes>

< !−− ∗∗ −−>
< !−− In fo sobre l a t a b l a RESUMEN DONACIONES −−>
< !−− ∗∗ −−>

<resumenDonaciones>
<nombresAtrPr inc ipa les>Año</ nombresAtrPr inc ipa les>

<nombresAtrPr inc ipa les>#Donaciones r e a l i z a d a s</ nombresAtrPr inc ipa les>
<nombresAtrPr inc ipa les>#Ejemplares donados</ nombresAtrPr inc ipa les>

<columnSize>4</ columnSize>

105

<columnSize>6</ columnSize>
<columnSize>6</ columnSize>

<columnaOrden>0</columnaOrden>
<tipoOrden>desc</ tipoOrden>

</ resumenDonaciones>

</ tab l a s>

106

E. Anexo: Contenido del fichero XML de configu-
ración variables constantes.xml

<?xml version=” 1 .0 ” encoding=”UTF−8” standalone=”no”?>
<v a r i a b l e s>

<a l tu ra max imagen pr inc ipa l><va l o r>275px</ va l o r></ a l tu ra max imagen pr inc ipa l>
<a l tura max imagenes secundar ia s><va l o r>100px</ va l o r></ a l tura max imagenes secundar ia s>

</ v a r i a b l e s>

107

F. Anexo: Diagrama de Gantt completo.

109

	Introducción
	El Museo de Informática Histórica (MIH)
	Objetivos del proyecto
	Tecnologías utilizadas
	Estructura de la memoria

	Diseño de la base de datos
	Análisis de los SGBD del mercado
	Elección del SGBD
	Esquema de la base de datos
	Esquema Entidad-Relación
	Esquema Relacional
	Evolución del esquema

	Arquitectura del sistema de información para el MIH
	Diseño de la aplicación
	Funcionalidades de la aplicación

	Pruebas efectuadas al sistema
	Validación
	Sobrecarga y eficiencia

	Conclusiones
	Cronograma
	Posibles ampliaciones
	Opinión personal

	Bibliografía
	Anexo: Análisis individual de los SGBD del mercado
	MySQL
	MariaDB
	Oracle
	PostgreSQL
	DB2
	Informix
	CACHE
	DB4O
	MongoDB
	Cuadro comparativo de los gestores anteriores

	Anexo: Tablas de la Base de Datos
	Tabla TIPOS
	Tabla DONANTES
	Tabla DONACIONES
	Tabla ITEMS
	Tabla IMAGENES_ITEMS
	Tabla IMAGENES_TIPOS
	Tabla ATTR_TIPOS
	Tabla ATTR_VALORES
	Tabla ATTR_ITEMS_STRING
	Tabla ATTR_ITEMS_REF
	Tabla ZONAS
	Tabla LOCALIZACIONES
	Tabla UBICACIONES

	Anexo: Manual de usuario de las funcionalidades de la aplicación
	Funcionalidades de usuario
	Barra de navegación
	Visión global del museo
	Visualización de la jerarquía de tipos de ítems
	Vista detallada de un tipo de ítem
	Consultar datos variados con información detallada
	Consultar datos estadísticos del sistema
	Vista detallada de un ítem
	Búsqueda en el sistema

	Funcionalidades específicas de administración
	Visualización de la jerarquía de tipos de ítems
	Vista detallada de un tipo de ítem
	Consultar datos variados con información detallada
	Vista detallada de un ítem

	Anexo: Contenido del fichero XML de configuración configuracion_tablas.xml
	Anexo: Contenido del fichero XML de configuración variables_constantes.xml
	Anexo: Diagrama de Gantt completo.

