«1s Universidad
181 Zaragoza

Trabajo de Fin de Grado

Monitor de presién arterial y pulso

Blood pressure Monitor

Autor/es

Isabel Angélica Romeo

Director/es

Bonifacio Martin del Brio

Grado en ingenieria electréonica y automatica

Departamento de Ingenieria electrénica y comunicaciones
Escuela de ingenieria y arquitectura de Zaragoza
Noviembre 2021

Resumen

En este documento se describe el proceso de investigacion, disefio y desarrollo de un
monitor de presion arterial y pulso. Esta clase de monitores se usan tanto en el area médica
como en el hogar, de ahi la motivacion de desarrollar un producto que se pueda usar en
ambos casos.

Para desarrollar un monitor con estas funcionalidades primero se expone una serie de
conceptos clave, como pueden ser la presién arterial y el método oscilométrico de medida,
para dar una mejor base de conocimiento para la posterior explicacion. El disefio del
prototipo y la seleccion de componentes se hace en base a los requerimientos y
prestaciones que se comentaran mas adelante. El desarrollo del esquema del circuito se
realiza mediante el software EasyEDA.

Una vez explicados esta serie de conceptos, el documento se centra en el esquema general
del circuito y sus componentes mas relevantes. Dos de los componentes mas importantes
del monitor son el microcontrolador y el sensor de presién. EI microcontrolador utilizado
para este prototipo es el ESP32, ya que ofrece elevadas prestaciones a un precio reducido.

Por otro lado, una de las partes criticas de este producto es la adquisicion y procesamiento
de los datos de presion. Para ello se ha elegido un sensor de presion de precision del
fabricante Honeywelll, ademas se utilizaran una serie de filtros digitales para obtener las
sefiales necesarias para realizar la medicién.

En cuanto al funcionamiento general del monitor, consiste en un sistema de tiempo real
formado por una serie de tareas con distintas prioridades y que se comunican entre ellas. La
tarea central es la maquina de estados del sistema, que es la que controla todo el
funcionamiento del prototipo. Por otro lado, tenemos otras tareas que complementan a la
central, como la tarea de adquisicién de datos y la de visualizacion de resultados.

Para el procesado de las medidas, en una primera fase se utilizé el entorno de Matlab, donde
se utilizan una serie de funciones para el calculo de los resultados. Una vez validados los
resultados sobre Matlab, las funciones empleadas para realizar el procesamiento de las
sefiales en el microcontrolador se implementan en lenguaje C. Para esta implementacién se
utilizara el programa Eclipse IDE con el entorno de desarrollo que ofrece el fabricante del
microcontrolador, Espressif IDF.

La validacion de las mediciones del prototipo se realizé comparandolas con las obtenidas
por el monitor TOPCOM Blood Pressure Monitor BPM Wrist 3311 y siguiendo una serie de
condiciones que se comentan en el apartado de validacion de medidas.

Por ultimo se expondran los resultados obtenidos y los problemas surgidos en el desarrollo
de esta aplicacion. Ademds se comentaran posibles mejoras e implementaciones futuras,
que podran mejorar la calidad del prototipo de monitor de tensién desarrollado.

Indice

1. Introduccién
1.1 Motivacion y objetivos del proyecto
1.2 Estructura del documento y cronograma

2. Marco de referencia

2.1 Fisiologia cardiovascular
2.1.2 Sistema arterial

2.2 Presion arterial
2.2.1 Hipertension arterial
2.2.2 Hipotension arterial

2.3 Medicion de la tension arterial

2.4 Medicion de pulso

3. Diseno y desarrollo de un monitor de presién arterial

3.1 Esquema general
3.1.1 Bloque de adquisicion de datos
3.1.2 Blogue neumatico
3.1.3 Bloque de alimentacion
3.1.4 Bloque de control
3.1.5 Bloque de visualizacién
3.1.6 Componentes auxiliares
4. Procesamiento digital de sefal
4.1. Filtros digitales
4.2. Simulacion de medidas en Matlab
5. Desarrollo del Software
5.1 Entorno de desarrollo
5.2 Estructura del software
5.3 Tarea adquisicion datos

5.4 Tarea botones

0o Ng o

O

11
11
15

17

18

19

20

22

23

25

25

26

26

29

31

31

32

32

36

https://docs.google.com/document/d/1DK5H5-eD75OgHsTE_yCaXUNf94yrZlMNG4ntOkIHWj4/edit#heading=h.7chnu715ip33
https://docs.google.com/document/d/1DK5H5-eD75OgHsTE_yCaXUNf94yrZlMNG4ntOkIHWj4/edit#heading=h.507kh1g2sim8
https://docs.google.com/document/d/1DK5H5-eD75OgHsTE_yCaXUNf94yrZlMNG4ntOkIHWj4/edit#heading=h.oe8s9v5dg6n3
https://docs.google.com/document/d/1DK5H5-eD75OgHsTE_yCaXUNf94yrZlMNG4ntOkIHWj4/edit#heading=h.zc2a6ek2pkfs
https://docs.google.com/document/d/1DK5H5-eD75OgHsTE_yCaXUNf94yrZlMNG4ntOkIHWj4/edit#heading=h.avdrpptai65c
https://docs.google.com/document/d/1DK5H5-eD75OgHsTE_yCaXUNf94yrZlMNG4ntOkIHWj4/edit#heading=h.yf3h66pipu1j
https://docs.google.com/document/d/1DK5H5-eD75OgHsTE_yCaXUNf94yrZlMNG4ntOkIHWj4/edit#heading=h.yf3h66pipu1j

5.5 Tarea de procesado de la medida
5.6 Tarea Ul/Visualizacion

6. Analisis de resultados
6.1 Validacion de las medidas de presion sistolica y diastdlica
6.2 Validacion de las medidas de pulso

7. Conclusiones y Trabajo futuro

Referencias

Anexos

Anexo 1: Cadigo desarrollado en Eclipse IDE
Anexo 2: Presupuesto
Anexo 3: Esquema general del circuito

37

39

40
40
42

43

45

48

48
86
92

https://docs.google.com/document/d/1DK5H5-eD75OgHsTE_yCaXUNf94yrZlMNG4ntOkIHWj4/edit#heading=h.m9h1spi842cl
https://docs.google.com/document/d/1DK5H5-eD75OgHsTE_yCaXUNf94yrZlMNG4ntOkIHWj4/edit#heading=h.8g9rp3b2qjoe
https://docs.google.com/document/d/1DK5H5-eD75OgHsTE_yCaXUNf94yrZlMNG4ntOkIHWj4/edit#heading=h.8g9rp3b2qjoe

1. Introduccion

1.1 Motivacion y objetivos del proyecto

Las enfermedades cardiovasculares (CVDs) estan siendo la principal causa de muerte a lo
largo del planeta durante los ultimos 20 afnos. Representan el 32% de las muertes mundiales
y un 29% de las muertes en Espafia. Este tipo de enfermedades son causadas por
desodrdenes en el corazén y en los vasos sanguineos, dentro de este grupo se incluyen
enfermedades coronarias, cerebrovasculares, y otras. Mas de 4 de cada 5 muertes
causadas por CVDs son debidas a ataques de corazén y 1 de cada 3 muertes ocurre en
personas menores de 70 afios. [1]

Los factores mas importantes que conducen a este tipo de enfermedades son una dieta no
saludable, sedentarismo, tabaquismo y consumo excesivo de alcohol. Estos factores se ven
reflejados en la salud de los individuos, como presion arterial elevada, alto nivel de glucosay
lipidos en sangre, sobrepeso y obesidad. Estos factores indicativos pueden ser medidos
regularmente en instalaciones médicas para llevar un seguimiento y poder prever el riesgo
de infarto, stroke, etc.

Uno de los factores indicativos mas importantes es la presién arterial, ya que es un trastorno
grave que aumenta significativamente el riesgo de sufrir cardiopatias y otras enfermedades
del corazén. Se calcula que hay alrededor de 1.130 millones de personas con hipertension y
apenas una de cada cinco lo tienen controlado. [1]

A raiz de ahi surge la motivacién de crear un prototipo con el que poder tomar medidas de
presién arterial de forma facil y sencilla en casa o en cualquier lugar, sin necesidad de
desplazarse a unas instalaciones médicas. Esta accesibilidad permitira llevar un control
mas continuo, tanto de los niveles de tension arterial como de pulso.

Partiendo de estas ideas, los objetivos principales de este proyecto son:

- Entender el método oscilométrico y como aplicarlo para obtener las medidas de
presion arterial.

- Disefiar un prototipo electronico de monitor conforme a las prestaciones requeridas
utilizando un ESP32 como microcontrolador.

- Programacion en tiempo real del sistema de medida del monitor a partir de las
librerias de Espressif en lenguaje C.

- Utilizar Matlab como paso intermedio para realizar una primera aproximacion de los
calculos de las medidas, para mas tarde adaptar el cédigo a lenguaje C para su
implementacién en el microcontrolador.

- Disefio e implementacion de los filtros adecuados para el procesamiento digital de
sefal.

- Validacion de las medidas con un dispositivo homologado y obtencion de las
estadisticas de precision del prototipo desarrollado.

1.2 Estructura del documento y cronograma

Este documento esta organizado de tal forma que se expone el disefio y desarrollo de una
aplicacién en tiempo real en un sistema empotrado dentro de un microcontrolador. El codigo
desarrollado se puede encontrar en uno de los anexos adjuntados con este documento.

La memoria se estructura de la siguiente manera. En el Capitulo 2 se explican una serie de
conceptos clave sobre el funcionamiento del sistema cardiaco y arterial, ademas de exponer
las patologias relacionadas con la presion arterial y los métodos empleados para la
estimacién de la tension arterial y la frecuencia cardiaca. El Capitulo 3 se divide en dos
partes, en la primera se muestra el esquema general del circuito, detallando la funcién de
cada bloque y los componentes que lo forman. En la segunda parte del Capitulo 3 se
muestra el proceso de filtrado digital, simulacién de medidas en Matlab y por ultimo se pasa
a la explicacion del software desarrollado. El Capitulo 4 se enfoca en la metodologia de
validacién de las medidas y se muestra la precision obtenida con el prototipo en diferentes
fases de medida. Por ultimo, en el Capitulo 5 se muestran las conclusiones obtenidas tras el
desarrollo del prototipo, poniendo el foco en la precision de los resultados. Por otro lado se
proponen una serie de mejoras tanto para la calidad de las medidas como para ofrecer una
mejor experiencia de uso al usuario.

La Fig. 1 muestra las principales actividades llevadas a cabo en este proyecto mediante un
diagrama de Gantt. Entre estas actividades se encuentran: estudio de la metodologia de
obtencion de las medidas, disefio del circuito e implementacién del software en el
microcontrolador.

abr de 2021 may de 2021 jun de 2021 jul de 2021 ago de 2021 sept de 2021 octubre 21 nov de 2021
m 5 (101520 25 30 1 |5 10/15/2025 30| 1 |5 1015|2025 30 1 |5 10 15 20 2530 1 |5 10/15/20|25|30|1 5 10|15(20 2530 1 |5 10 15 20|25 30 L 5 10 15 20 25|30

Fase de estudio

Tarea 1 Estudio método oscilométrico ‘IIII

Tarea 2 Estudio medicidn de pulso IIII‘

Tarea 3 Investigacion especificaciones ‘III

Tarea 4 Busqueda y eleccién de componentes ‘Ill‘

Fase de desarrolio

Tarea 1 Esquema general del circuito IIII I

L]
Tarea 3 Programacién bloque de adqusicién
Tarea 4 Simulacién medidas Matab
it £t i SO
Validacién de medidas

Tarea 1 Calibracién de coeficientes

Tarea 2 Validacién medidas de simulacién

Tarea 3 Validacion medidas finales

Fig. 1 Diagrama de Gantt

2. Marco de referencia. Medida de la presion
arterial

2.1 Fisiologia cardiovascular

El sistema cardiovascular esta formado por el corazén y los vasos sanguineos: una red de
venas, arterias y capilares que transportan oxigeno desde los pulmones a los tejidos de todo
el cuerpo a través de la sangre mediante el bombeo del corazén. Otra funcién del sistema
cardiovascular es transportar dioxido de carbono, un producto de desecho, desde todo el
cuerpo hasta el corazén y los pulmones vy, finalmente, eliminar el diéxido de carbono
mediante la respiracion [12].

El ciclo cardiaco es la secuencia ritmica de contraccion y relajacién miocardica (latido). Ala
contraccion miocardica se le llama sistole y durante ella se impulsa la sangre fuera del
corazon. A la relajacion miocardica se le llama diastole y durante ella se llena de sangre el
corazon.

El funcionamiento del corazén consiste en una serie ordenada de pasos (figura 2), empieza
con la sangre desoxigenada regresando del resto del cuerpo al corazén por la vena cava
superior (VCS) y la vena cava inferior (VCI), esta sangre entra entra en la auricula derecha
(AD) que se encuentra en estado de relajacion (diastole), desde alli la sangre fluye a través
de la vélvula tricispide (VT) hacia dentro del ventriculo derecho (VD). Teniendo en cuenta
que las valvulas auriculo-ventriculares se encuentran cerradas, la presion sanguinea
aumenta conforme se van llenando, de forma que se produce una sistole o contraccion que
provoca que se abran, mientras tanto la diastole ventricular sigue llenando los ventriculos y
la sangre desoxigenada es bombeada a través de la vélvula pulmonar (VP) hacia la arteria
pulmonar principal (APP). Desde alli, la sangre fluye a través de las arterias pulmonares
derecha e izquierda hacia adentro de los pulmones.

En los pulmones, se incorpora oxigeno y se retira didxido de carbono a la sangre durante el
proceso de respiracion. Después de que la sangre recibe oxigeno en los pulmones, se llama
sangre oxigenada.

En la segunda etapa la sangre oxigenada fluye desde los pulmones de vuelta ala auricula
izquierda (Al) a través de cuatro venas pulmonares, las valvulas auriculo-ventriculares se
mantiene cerradas mientras se produce una sistole ventricular, la sangre oxigenada fluye a
través de la valvula mitral (VM) hacia adentro del ventriculo izquierdo (VI).

El ventriculo izquierdo (VI) bombea la sangre oxigenada a través de la valvula adrtica (VAo)
hacia la aorta (Ao), la principal arteria que transporta sangre oxigenada al resto del cuerpo.

Sistole :

(&

auricular
vgﬁtr:i{; 3% : Contraccién
; ventricular
isovolumétrica

Ciclo
cardiaco
. " =i
- Eyeccidn
@ '- <
Relgjacién ['
ventricular

isovolumétrica

Fig. 2 Ciclo cardiaco
Fuente: ref [14]

2.1.1 Sistema arterial

El sistema arterial consiste en una serie de vasos, sucesivamente ramificados, que van
desde las arterias de gran tamafio, como la aorta y la pulmonar, pasando por las de
mediano, pequefio tamarfo y arteriolas, hasta los capilares o vasos de intercambio. Las
arterias encargadas de transportar la sangre al corazén son la pulmonar y la aorta. La arteria
pulmonar es de recorrido corto y mide 3 cm de diametro, comunica el ventriculo derecho
con las arterias pulmonares derecha e izquierda. Por otro lado, la arteria aorta es de largo
recorrido, tiene un diametro igual que la pulmonar y sus cuatro divisiones principales son la
aorta ascendente, el arco adrtico, la aorta toracica y la aorta abdominal. La aorta es el
tronco principal de las arterias sistémicas [2].

Entre las arterias de las extremidades superiores esta la arteria subclavia o también llamado
axilar, al adentrarse en el brazo se denomina arteria braquial como se observa en la Figura 3,
mas tarde se ramifica en el antebrazo en radial y cubital, las cuales irrigan toda esa region.

La medicion de parametros como la presion arterial, se deben realizar en estado de reposo y
el brazo izquierdo apoyado a la altura del corazén

Artéria Axilar

Artéria Braguial

Artéria Ulnar

Artéria Radial

Arco Profundo Palmar
arco Supetficial Palmar

Fig. 3 Esquema arterial del brazo.
Fuente: ref [15]

2.2 Presion arterial

Por definicion la presion arterial es la fuerza que ejerce contra la pared arterial la sangre que
circula por las arterias. La presion arterial incluye dos mediciones: la presion sistélica, que
se mide durante el latido del corazén (momento de presién mdaxima), y la presion diastdlica,
que se mide durante el descanso entre dos latidos (momento de presiéon minima). La unidad
de medida de la presion arterial es el mmHg. Primero se registra la presion sistolica y luego
la presion diastdlica, por ejemplo: 120/80. También se llama presidén sanguinea arterial o
tension arterial [3].

Conceptualmente la presion arterial se diferencia de la tension arterial, ya que la primera es
la fuerza que ejerce la sangre que circula por las arterias, mientras que la tension arterial es

la tension que realiza la sangre contra la pared de las arterias [4].

La ecuacion que relaciona ambas expresiones es la ley de Laplace [5]:

Donde T es la tension, P es la presién y rcorresponde al radio de un vaso sanguineo.
Cuando se tiene la medida aproximada de la presion arterial (PA), es posible identificar
enfermedades de diferente indole, causadas por multiples factores que se pueden
identificar, de tal forma que sea posible brindar al paciente un tratamiento apropiado.

2.2.1 Hipertension arterial

La Hipertension Arterial (HTA) es la elevacion continua de la PA por encima de los niveles
normales, se considera como limites normales una Presion Arterial Sistélica (PAS) de 140
mmHg 6 superior y Presion Arterial Diastélica (PAD) de 90 mmHg 6 superior.

En la tabla 1 se muestra la clasificacion que se debe tener en cuenta a la hora de
diagnosticar a un paciente, estandar planteado por la OMS y JNC.

TABLA 1. Clasificaciones de la HTA de la OMS

y JNC VI
PAS PAD
Clasificacion de la HTA (OMS
Optima 120
Norma 130 BS
Mormal-Alta 130-13% B85-80
Grado 1, ligera 140-15% 5094
Subgrupo <limitrobes 140-14% 9094
Grado 2 moderada 160-179 100- 109
Grado 3, sovera > 180 =110
HTA sistalica aislada = 140
subgrispo «limitrobes 140-149
Clasificacion de la HTA (JNC VI
Optima 120
Horma 130 BS
Mormal alta 0-139 +] 85-89
HTA o estadio 1 140-150) G0-00
HTA o estadio ? 160-179 y 100-100
HTA o estadio 3 = 180 o Nz110

Algunos de los factores causantes de la prevalencia de esta patologia son el tabaquismo,
una dieta poco saludable, un estilo de vida sedentario, la obesidad y algunas alteraciones
psicoldgicas(estrés, alteraciones emocionales, etc.). Por otro la edad y el sexo también son
factores que diferencian la afectacién de este trastorno.

10

2.2.2 Hipotension arterial

La hipotension arterial es la condicion en la que se presenta una presion arterial baja
continuada causada por la irrigacién sanguinea deficiente, lo que provoca una afectacién a
la oxigenacion y nutricién celular, pudiendo provocar sintomas como vértigo o mareo. Si
se presenta una caida de presién de solo 20 mmHg puede ocasionar problemas en algunos
organos.

Existen tres tipos de hipotension; Hipotension Ortostatica, Hipotension Mediada
Neuralmente (NMH) e Hipotension grave producida por una pérdida subita de sangre
(shock), infeccién o reaccién alérgica intensa.

e La hipotension ortostatica es producida por un cambio subito en la posicion del
cuerpo, generalmente al pasar de estar tumbado a estar de pie y usualmente dura
s6lo unos pocos segundos o minutos. Si este tipo de hipotensidn ocurre después de
comer, se denomina hipotensién ortostatica posprandial y afecta mas cominmente
a los adultos mayores, aquellos con presion arterial alta.

e La hipotension mediada neuralmente afecta con mas frecuencia a adultos jévenes y
nifos, y ocurre cuando una persona ha estado de pie por mucho tiempo.

e El Shock se define como la pérdida severa de la adecuada irrigacion sanguinea a los
organos lo que disminuye el suministro de oxigeno y puede causar dafios al
organismo. La hipotension severa se presenta con un descenso mayor a 40 mmHg
de la presion sistolica, el tratamiento para este tipo de patologia debe realizarse de
forma simultanea con el de la enfermedad causante.

La presiéon arterial baja suele ser causada por farmacos como los ansioliticos,
antidepresivos, diuréticos, medicamentos para el corazon, entre ellos los que se utilizan para
tratar la hipertension arterial y la cardiopatia coronaria. Otras causas de presion arterial baja
pueden ser la diabetes avanzada, anafilaxia (una respuesta alérgica potencialmente mortal),
cambios en el ritmo cardiaco (arritmias), deshidratacién, desmayo, etc [6].

2.3 Medicion de la tension arterial

La medicion de la presion arterial (PA) se puede realizar de dos maneras distintas, mediante
métodos directos e indirectos. La primera metodologia, también conocida como invasiva, se
debe tomar una muestra en el interior de la arteria por medio de un catéter, este
procedimiento se utiliza Unicamente con fines clinicos e investigativos.

Por otro lado, en el método indirecto, las mediciones se realizan mediante un

esfigmomanometro el cual obtienen resultados aproximados. Dentro del método indirecto
se pueden encontrar otros tres métodos; palpatorio, auscultatorio y oscilométrico [7]:

11

https://es.wikipedia.org/wiki/S%C3%ADntoma
https://es.wikipedia.org/wiki/V%C3%A9rtigo
https://es.wikipedia.org/wiki/Mareo

Método palpatorio: este método consiste en identificar el pulso ubicado a la altura
de la mufieca cercano al dedo pulgar, utilizando un brazalete como instrumento de
medicién que se infla hasta que el pulso desaparezca. Posteriormente se desinfla
paulatinamente hasta que el pulso vuelva a aparecer, en este momento se toma la
medicién de presidn sistdlica. Por ultimo, cuando las pulsaciones vuelven a la
normalidad, se toma la mediciéon de la presién diastélica. Uno de los principales
inconvenientes del método palpatorio es que es muy poco preciso, ya que se
requiere de mucha practica para realizar bien las tomas.

Método auscultatorio: consiste en identificar los sonidos (sonidos de Korotkoff, Fig
4) que emite la arteria parcialmente ocluida y por consiguiente se determina el flujo
arterial. Para realizar esta practica se debe disponer de un estetoscopio y un
brazalete. La medicion se realiza en cinco fases; en la primera fase se identifica la
presion sistolica y en la quinta la diastdlica [8].

180 —
! Artery

occluded; Silence
i i nio flow

E Systolic
20— pressure

5 Artery %
h compressed; 5 Sounds of
i blood flow & turbulent flow
1 audible =

? _ _ [Diaskolic
pressure

Artery not
?STT:SE: Silence
40— and audible

Arterial Effect of cuff Auscultatory
pulse on arterial blood flow findings
racing

mmHg
~—
1
=
|
i

B0

Fig. 4 Ruido de Korotkoff
Fuente: ref [16]

Método oscilométrico: es la metodologia indirecta mas usada actualmente, el
objetivo es monitorear las oscilaciones de la sefial producida por la presion arterial.
Igual que en los métodos anteriores se usa un brazalete para realizar la medidas vy,
mediante el procesamiento de la sefal obtenida, se determina la presién sistdlica
(PS), diastdlica (PD) y media (MAP). EI método oscilométrico consiste en inflar el
brazalete hasta llegar 40-50 mmHg por encima de la presion sistdlica estandar (120
mmHg), esta presidn es transmitida a través del brazo hasta las paredes de la arteria
que pasara a estar mas ocluida conforme aumente la presion. Una vez se llega a
esta presion se pasa a desinflar el brazalete hasta bajar por debajo de la presién
diastélica estandar (80 mmHg), en este tramo la arteria se va abriendo, la sangre
empieza a circular de nuevo y las oscilaciones llegan a su maxima amplitud [9].

12

Arm Tissue

Arter
.l:'*r) /E_'u'”
\ -
‘s_‘ o //\ e ‘B
p - // \ one
¥ Py
- \
| |
||I | Pressure
J | Sensor Oscill bri Oscillometric
i SCcHiomeric
Deflation curve waveform envelope
_ __// waveform (OMW) (OMWE)

Cross-section of the
cuff-arm-artery
system

Fig. 5 Método oscilométrico
Fuente: ref [9]

EL calculo de la presiones sistdlica, diastdlica y media se hace siguiendo estos tres pasos
(Fig 5):

1. Obtencion de la curva de presion durante el desinflado: durante el periodo de
desinflado obtenemos la sefal de presién a través del sensor de presién conectado
con el brazalete. Esta sefial tiene dos componentes importantes: la componente de
baja frecuencia causada por el aumento paulatino de presion del brazalete y la
componente de las oscilaciones de presion de la arteria. Esta ultima componente se
llama onda oscilométrica(OMW) y sera analizada para estimar la PS, PD, y MAP.

2. Extraccion de la onda oscilométrica(OMW): para extraer esta onda a partir de la
sefial de presién del brazalete se utiliza un filtro digital de paso banda para eliminar
la componente de presion del brazalete y permitir el paso de las oscilaciones de
presion con unas frecuencias de corte de 0,5 Hzy 3,5 Hz .

3. Creacion de la envolvente de la onda oscilométrica(OMWE): la amplitud de los
pulsos oscilométricos aumenta hasta llegar al maximo y luego desciende a medida
que se desinfla el brazalete. Debido a que la amplitud de la onda oscilométrica carga
con la mayoria de informacion para la estimacion de la medida, muchos de los
algoritmos oscilométricos utilizan la envolvente de la onda oscilométrica (OMWE).
Esta envolvente se forma uniendo pico a pico los maximos locales separados por un
nuamero minimo de muestras.

13

Algoritmos oscilométricos

Los algoritmos oscilométricos son utilizados para estimar la presion sistdlica, diastdlica 'y
media mediante el analisis de los cambios en la morfologia de las oscilaciones de presion.
Estos algoritmos se pueden aplicar en diferentes estados de procesamiento de las sefiales
grabadas y utilizan diferentes técnicas para la estimacion de las medidas como el uso
coeficientes empiricos, analisis de la pendiente de la OMWE, algoritmos de machine learning
o modelado de la envolvente.

El algoritmo mas popular y el que se implementa en este prototipo es el Algoritmo de
Méaxima Amplitud (MAA). Este se basa en el supuesto de que la elasticidad arterial es
maxima cuando la presioén del brazalete es igual a la presién arterial, que se produce cuando
las paredes de la arteria estan minimamente dilatadas. Basado en este supuesto la presion
arterial media (MAP) se encuentra en la posicion donde la envolvente de la sefal de
oscilaciones (OMWE) alcanza su maximo. La presion sistélica y diastdlica se identifican
cuando la amplitud de la oscilacion alcanza unos ciertos ratios de la amplitud maxima
(figura 6). Estos ratios se obtienen de forma empirica y varian en el rango de 0.45 a 0.73
para el coeficiente de presion sistélica, rs y de 0.69 a 0.83 para el coeficiente de presion

sistélica rd [9].

e R — rr{ p—
Am Am

Fg

Ad: Amplitud diastélica

As: Amplitud sistélica

rd: ratio de amplitud diastélica
rs: ratio de amplitud sistolica

14

Cuff pressure
[mHg]

oMW

Larbitrary unit]

¢

s 4
[b

OMWE
[arbitrary unit]

0 5 10 15 0 25 0 35 a0 45
Time [sec]

Fig 6. Algoritmo de Maxima Amplitud (MAA)
Fuente: ref [9]

2.4 Medicion del pulso

En cuanto a la estimacion de la frecuencia cardiaca se ha optado por analizar la sefial de
presiéon en el dominio de la frecuencia mediante la Transformada Rapida de Fourier (FFT)

[10].

La FFT es un algoritmo que permite calcular la transformada de Fourier discreta (DFT) y
su inversa cuando el numero de muestras de la sefal es una potencia de dos. Este
algoritmo se emplea en una amplia variedad de aplicaciones, desde el tratamiento
digital de sefales y filtrado digital a la resolucién de ecuaciones en derivadas parciales.
El rango de frecuencias cubierto por el andlisis FFT depende de la cantidad de muestras
recogidas y de la proporcion de muestreo. Para el computo de la DFT se utiliza:

N-1 —j2mkn

z[k] = Z x[nle” N

n=(

Donde Xn es la sefial de oscilaciones (OMW) y N es la longitud de la sefial obtenida Xk y
corresponde a las N muestras equiespaciadas de la transformada de Fourier. Se debe
cumplirque N > L, siendo L el nimero de muestras de la sefial Xn.

15

https://es.wikipedia.org/wiki/Transformada_de_Fourier_discreta
https://es.wikipedia.org/wiki/Procesamiento_digital_de_se%C3%B1ales
https://es.wikipedia.org/wiki/Procesamiento_digital_de_se%C3%B1ales
https://es.wikipedia.org/wiki/Filtro_digital
https://es.wikipedia.org/wiki/Ecuaci%C3%B3n_en_derivadas_parciales

Una vez obtenida la secuencia de la transformada de Fourier de la sefial de
oscilaciones(OMW) , Xk, se busca el arménico mds prominente dentro del rango de
frecuencias cardiacas (0,8 - 2 Hz aprox) y se obtiene la frecuencia cardiaca usando la
siguiente férmula:

Heart rate = harmonic X 60 (3)
En el caso de la Figura 7 se ha recortado un tramo de la sefial de oscilaciones de presion
(OMW) de 512 muestras al que se le aplica la transformada rapida de Fourier (FFT)

obteniendo el armdénico mas prominente en 1,25 Hz lo que resulta en un pulso de 75
bpm.

oMW

FFT

Fig 7. Aplicacion de la FFT a la sefial de oscilaciones de la presion arterial

16

3. Diseno y desarrollo del hardware

En este capitulo se lleva a cabo la descripcién del disefio del prototipo hardware de monitor
de presion arterial y sus diferentes partes. Para la eleccion de los componente de cada parte
se han seguido una serie de requerimientos basicos:

Bloque adquisicion de datos:

Rango de presién minimo: 0-200 mmHg (Absolutos)
Sensor calibrado.
Etapa amplificadora.

Bloque neumatico:

Caudal de aire minimo: 2 L/min

Bloque de control:

Modulo conversor A/D
Médulo PWM

Interfaz SPI

Interfaz 12C

Interfaz UART

Fig 8. Circuito Monitor de tensién en protoboard

17

3.1 Esquema general del circuito

El disefio de este prototipo (Fig. 8) estd compuesto por diversos bloques (Fig. 9): bloque de
adquisicion de datos (1), bloque neumatico (2), bloque de alimentacién (3), bloque de

control (4) y bloque de visualizacion (5).

..—..I (")
4’{ Bomba de aire Valvula de aire ‘ = .
| | | | Microcontrolador
1
A
‘ Brazaleie | | Sensor de presion |
3
5
] Alimentacion 9V
Display LCD-TFT . —
v Y) v
[3,3\!’} [5V { 6V]
— 1 1 J
@ ©® ©® 0o

Fig 9. Diagrama de bloques esquema general del circuito

18

3.1.1 Bloque de adquisiciéon de datos

El bloque de adquisicion esta formado por un médulo electrénico que cuenta con un sensor
de presion de precision, los amplificadores correspondientes, conversor A/D y los terminales
necesarios para comunicacioén 12C (Fig 10 y 11). Inicialmente se utilizé un sensor de presion
convencional conectado a una etapa amplificadora a su vez conectada con el médulo
conversor A/D del micro, pero este sensor no estaba calibrado y no cumplia las
especificaciones requeridas.

La banda de error total (TEB) es una especificacidon que incluye las principales fuentes de
error del sensor de presion e indica el peor error que podria experimentar, 1.25% FFS (Full
Scale Span) en el caso de este sensor [13]. La TEB no debe ser confundida con la precision,
ya que esta es en realidad es un componente de la TEB. El rango de presiones de este
sensor es de 0-25 psi absolutos, suficiente para cubrir los requerimientos del monitor, ya que
la maxima presién absoluta que va a soportar este sensor es de 200 mmHg (3,86 psi). Una
de las peculiaridades de este sensor es que tiene un puerto de metal de 2,5 mm de diametro
al que conectamos el tubo que ira conectado al brazalete.

Fig 10. MPRLS ported pressure sensor Honeywell
Fuente: ref [17]

19

® ®
00

1SSUE ADAFRUIT INDUSTRIES I © svenr
DRAKN TITLE REV

A D

CHECKED
E DRG N2
>DRGNOD

DATE

9/24/2018 1:39 AM
£ FILE: MPR pressure rev A [PAGE: 1/1
1 2 3 4 5 [

DATE

Fig 11. Esquema circuital del sensor de presion
Fuente: red [17]

3.1.2 Bloque neumatico

Este bloque estd formado por los elementos encargados de la regulacion del aire (Fig. 11).
Como elementos actuadores estan la bomba de aire y la valvula de aire. Por otro lado, estan
los tubos de conexidn que conectan los elementos actuadores con el brazalete y éste con el

sensor de presion.

| |
Bomba de aire | I Valvula de aire

Erazalete Sensor de presion
Fig 12. Diagrama del bloque neumatico

La estructura neumatica parte de la bomba, la cual se encarga de suministrar el aire que
pasa a través de la valvula hasta llegar al brazalete. Del brazalete sale otra rama que lo une
con el sensor de presién. Todas estas conexiones se han montado con un tubo de plastico
flexible de 2,5 mm, excepto la conexién con el sensor de presién, que tiene un diametro de 2
mm. Por otro lado, para la salida de aire de la valvula se ha utilizado un tubo de 0,5 mm,

20

ligeramente obstruido para conseguir una pendiente en la fase de desinflado de 2-3
mmHg/s [9].

La bomba debe tener un caudal que permita el inflado en un tiempo razonable y que tenga la
suficiente potencia como para llegar a la presion de medida. Un tipo de bombas que
cumplen estas caracteristicas y son baratas son las llamadas bombas peristalticas, que
utilizan rodillos para impulsar el fluido (en este caso aire) y pueden alcanzar un caudal de 3,4
I/m. El control de la bomba se realiza a través de un PWM.

input

QOuter diameter 4.3mm
output
24mm Outer dianfeter 4.3mm
#-"M ST, ; ! a L\

| 58mm |

Fig 13. Bomba peristaltica
Fuente: Aliexpress

Del mismo modo que se necesita inflar el brazalete, también se debera desinflar después de
su uso. De hecho, es la parte mas importante de la medida, ya que la presion arterial se
calcula durante el desinflado. Para ello se usa una vaélvula (Fig 14) de aire accionada
electronicamente, su funcionamiento es como el de un relé: cuando circula corriente en éste,
activa un electroiman que hace un contacto mecanico, dejando pasar el aire y, por lo tanto,
desinflando el brazalete.

Fig 14. Electrovalvula
Fuente: Aliexpress

El brazalete se eligié con un tamafio de 22-48 cm de diametro, por lo que este monitor se ha
enfocado para el uso de personas adultas.

21

3.1.3 Bloque de alimentacién

Es el bloque basico para el funcionamiento del aparato, ya que se encarga de suministrar
energia tanto a los accionadores (bomba, electrovélvula), como al control y a la interfaz con
el usuario (botones y pantalla).

Para ello se requieren diferentes tensiones de alimentacién, que vienen condicionadas por
las tecnologias de construccion de los componentes:

e Bomba de aire y electrovalvula: alimentacion a 6 VDC
e Pantalla LCD y botones: alimentacién a 5 VDC
e Unidad de control: alimentacién a 3 VDC

Las posibles soluciones ante esta variedad de tensiones son muchas, pero principalmente
tenemos dos: regulacion por elevacién de tension o por reduccion de la misma.

En el presente proyecto se ha escogido la segunda opcidén por su simplicidad al permitir
emplear reguladores de tension lineales, que aunque sean menos eficientes que otros de
tipo conmutado, son mucho mas sencillos, baratos y faciles de adquirir. De esta forma, la
alimentacion viene de una fuente de 9V. El motivo de emplear una fuente de 9V, y no de otro
tipo (por ejemplo, 4 baterias de 1,5V en serie) es la tensién de “dropout” de los reguladores
lineales. Este parametro nos impone una minima diferencia de tensién entre la entrada y la
salida del regulador, condicién que no se puede satisfacer con baterias de 6V para el
regulador de 5V. Existen reguladores llamados de “bajo dropout”, pero son mas caros y
pueden dar lugar a una reparacién defectuosa en caso de ser sustituidos por uno
convencional.

Asi, desde la fuente se alimenta de forma independiente a cada uno de los circuitos

integrados de los reguladores, y ademas se disponen condensadores de filtrado a la entrada
y salida de los reguladores para filtrar ruidos de media y baja frecuencia.

22

Fig 15. Esquema circuital del bloque de alimentacion

3.1.4 Bloque de control

Constituye el elemento fundamental que controla el sistema y segun su eleccion se deberan
adoptar decisiones de disefio consecuentes. Existen componentes electronicos integrados
programables llamados microcontroladores que con un precio muy bajo y velocidad de
desarrollo alta integran casi todos los elementos necesarios, es por lo tanto obvia la
eleccion de este tipo de componente. En definitiva, un microcontrolador es un componente
integrado que incluye en el chip: CPU, memoria, periféricos, etc. Dentro de la amplia
variedad que existe se busca el mas barato que incluya las siguientes especificaciones:

e Menor nimero de pines posibles (abarata costes).
Capaz de entrar en modo de bajo consumo para guardar fecha y hora cumpliendo
con la autonomia deseada.
Largo ciclo de vida y soportado por el/los fabricante/s.
Generador de pulsos con tecnologia de modulacién de ancho de pulso (PWM)
integrado para el control de la bomba de aire.

e Frecuencia de reloj capaz de realizar las operaciones y mostrar la interfaz en plazo.

El microcontrolador elegido para este proyecto es el ESP32 de Espressif, montado en la
placa de desarrollo WROOM 32D. Este microcontrolador es ampliamente usado en el
desarrollo de prototipos electrénicos debido a su variedad de mddulos, compatibilidad con
diferentes lenguajes de programacion, amplia documentacién y bajo coste.

23

Algunas de sus caracteristicas mas destacables son:

Single or Dual-Core 32-bit LX6, con frecuencia de reloj de hasta 240 MHz.
520 KB de SRAM, 448 KB de ROM y 16 KB de RTC SRAM.

Conectividad Wi-Fi con velocidades de hasta 150 Mbps.

Soporta Bluetooth v4.2 y BLE.

34 GPIOs programables.

Hasta 18 canales de 12-bit SAR ADC y 2 canales de 8-bit DAC.

4 x SPI,2x12C, 2 x 12S, 3 x UART.

Ethernet MAC para conectividad LAN fisica.

PWM para control motor y hasta 16 canales de PWM para LED.

Embedded Flash Bluetooth

. Bluetooth RF |
T i baseband recei
controller e}

. JI[cock |18 |5
12c generator % 3
: Wi-Fi
125 Wi-Fi MAC Bakahann RF ' . v
e transmit |
SDIo L 4
Core and me [
UART mory Cryptographic hardware
R 2 (or 1) x Xtensa® 32- acceleration
TWAIE bit LX6& Microprocessors
SHA | | RSA
L ROM | SRAM
J L] AES RNG |
IR
——
e) RTC
Touch sensor
ULp Recovery
DAC AL J coprocessor J memory
\)

ADC

Fig 16. Diagrama de Bloques ESP32 wroom 32D
Fuente: ref [19]

ESP32-WROVER : USB-UART

ESP'WROOM'BH option space | Bridge

L)
T St W GCI:i'D

Fig 17. ESP32 wroom 32D
Fuente: ref [18]

24

3.1.5 Bloque de visualizacién

Para que el usuario visualice las medidas y pueda interactuar con el prototipo es necesario
crear un bloque de visualizacién. Este bloque esta compuesto por el display y los cuatro
botones que lo controlan. El display es una pantalla LCD-TFT de 320x240 alimentado a 5V,
controlado por un driver ILI9341 y conectado al microcontrolador via SPI.

En cuanto a la botonera, lo mas sencillo y eficiente es el uso de unos pocos botones, abarata
el coste y su manejo es muy facil e intuitivo. Por lo tanto, la botonera esta compuesta por
cuatro botones, tres de los cuales estan reservados para la movilidad por la interfaz de
usuario. El cuarto botén no tiene una funcion asignada todavia, por lo que se denomina
auxiliar y se mantiene por si es necesario en mejoras futuras del prototipo.

L]
®
®
®
®
o |

Fig 18. Display LCD-TFT
Fuente: Aliexpress

3.1.6 Componentes auxiliares

Como puede observarse en la Fig 19, en el circuito se incluyen ademas algunos
componentes estandar adicionales:
- Resistencias eléctricas, para limitar la corriente a ciertos componentes para que
funcionen sin danarse, como en el caso de los LED. También para regular
parametros, como la ganancia del amplificador del sensor de presion.

- Condensadores eléctricos: como es sabido, almacenar carga eléctrica durante
cortos periodos de tiempo. Sirven para regular parametros como la ganancia de
amplificadores o para el desacoplo de sefales. Esta ultima caracteristica los
convierte en un componente esencial cuando existen otros de caracter inductivo
como la bomba o la valvula: cuando se aplica una tensién sobre un componente
inductivo, la demanda de corriente es muy alta y, de no existir los condensadores de
desacoplo, todo el sistema podria sufrir una bajada de tension, dejando de funcionar
el aparato.

25

SENSOR_VP
SENSOR_VN
1034

Power MCU Buttons o Valve driver =
- +9V BI > 15522
+9V PWR_CONN_2P B2
T us - o
ESPa2WROOM-320C B2
v a 83
5 B3 [>— ci18 " | Ci
GND GND e 1000 1u
V3 1023 o B4
1022 YaLVE B4 1 2
R

Fig 19. Esquema circuital completo

4. Procesado digital de la senal

4.1 Filtros digitales

PWM FWD
;'a'_c?fg(sfn TFT Display (SPI) Motor driver z -
o Ror U MTR_CONN_2P
ESP_ADC 1
100 0z . 1
1N4DOTW T Toon
o / - MTR_Drain =
5 1k ci7 c7
5 - PWM_FWI at 100n | 100u
y - - FQP3ONOEL
. L
_ e
> : 2 + -
v LD1117v33 U Riswk T
3 fyin vouT|-2-e¢]33Y 1 Bl
1 GND | | LS c15
cs ce —=ciz ci3 RI16 10k 1000 Pressure sensor breakout board
T tooee T foue | ™ 10n B2 i
§ 13V 33V
L LED oo us
I'M"F Adalnuit MPRLS
= 1
EN _Lw" Adafruit
RE 10k FT232RL e MPRLS
DTR[_D>—9 Q2 sv [-Duee ol < R4 ‘\}73 (GND
2N3904(SOT-23) 4lvcaio RXD 2 RX) 4
o oy 131 PS_SCL>—scL
;'RESET ‘EIE? —pTR PS_SDA_>—={spa
#¥=05C1 1DSR ¢ LEDZ - (]
R7 10 2N3804(SOT-23) &l osco 1nco Y D LED Blue(0603) ps_Eo(_>—8{eoc
RTS a3 IRT ¢ 2
[PS RST_>—4{RsT
CBUSOES .
e BUS1 = = ADAFRUIT MPRLS
viour cBusz2pd
15 CBUS3H3 U
Jg|USBOP CBUS3 (S
81 USBOM 5
2! Test2 J~cm
GND
Nl Tmn
GNDE-—4 1 TITLE:
e GhDjel 4 = Medidor pulso y tension REV: 1.0
USB-UART | |« tose ‘ Company: Unizar Sheet: 1/2
o ‘ Date: 2021-06-11 Drawn By: Isabel Romeo

Los filtros digitales son una parte fundamental del procesamiento digital de sefales. Su
funcion principal es modificar el espectro de una sefal. Actualmente, existen una infinidad
de aplicaciones, tales como eliminacién de determinadas componentes espectrales,
enfatizar o atenuar algunas componentes espectrales, o desfasar estas componentes, etc.

La principal diferencia entre un filtro digital y otro analdgico es que los analdgicos operan
sobre sefales continuas, mientras los digitales trabajan sobre una secuencia de datos (las
muestras digitalizadas de la sefial analégica).

Como se ha comentado en la seccién del método oscilométrico, la sefial de presion
obtenida del sensor tiene dos componentes principales: la componente de baja frecuencia
producida por el cambio de presion y la componente provocada por las fluctuaciones en la
amplitud de las oscilaciones. Como la sefial que interesa obtener es la producida por las
oscilaciones de presion, se aplicara un filtro de paso de banda con frecuencias de corte de
0,5 Hz y 3,5 Hz, para eliminar el nivel de continua de la sefial y, a la vez, permitir que pasen
las fluctuaciones en la frecuencia cardiaca [9].

26

Para elegir qué tipo de filtro utilizar se ha realizado un script en python para analizar
diferentes caracteristicas de los filtros y elegir los adecuados. Debido a que la
implementacién de estos filtros se hace en una tarea con frecuencia de muestreo de 40 Hz
dentro de un sistema de tiempo real, se ha decidido implementar un filtro Butterworth de
orden dos, ya que filtros mas complejos podrian aumentar el tiempo de ejecucion de la tarea
y bloquear el sistema.

La funcién de transferencia del filtro Butterworth de paso banda es la siguiente:

0.14532% — 0.29062% + 0.1453
1

Hl:;:l - 1 - 3 -] 4 - - -
2P — 2251027 + 23844 2= — 1.10962" +0.2523

Band pass filter

)

ain

Frequency (Hz)

Fig 20. Diagrama Filtro paso banda

Los resultados obtenidos con el filtro Butterworth se pueden observar en las figuras 21y 22.
En la figura 21 se muestra la sefal de presién del brazalete y en la figura 22 el resultado de
pasarla a través del filtro paso banda, quedando asi la sefial de amplitud de las oscilaciones
(OMW).

27

OMW

Pressure mmHg

160

140

40

20

2500

Fig 22. Sefal de oscilaciones de presiéon (OMW)

200

400 600 800

n

1000

1200

1400

1600

1800

28

4.2 Simulacién de medidas en Matlab

La visualizacion de datos y graficas en el entorno de programacion del microcontrolador
puede llegar a ser muy tedioso (a veces imposible), por lo que se ha optado por utilizar
Matlab como entorno de simulacion de las medidas y, una vez obtenido un resultado
coherente en las medidas, se adaptara el cddigo a nuestro microcontrolador con las librerias
de Espressif.

El primer paso es obtener los datos de presién en un formato con el se pueda trabajar en
Matlab, para ello se ha empleado el programa Megunolink que adquiere los datos a través
de la interfaz UART, los representa en tiempo real y al finalizar la medida se exportan en un
formato de valores delimitados por coma (csv).

Una vez obtenidos estos datos se importan a un fichero de Matlab en forma de array. Seva a
trabajar con dos sefiales, la sefial de presién y la sefial de oscilaciones (OMW). Estas
sefiales se recortan para obtener sélo la parte del descenso de presion. A continuacion se
utiliza la funcién envelope() para obtener la envolvente de la sefial de oscilaciones (OMWE).
Esta funcidn realiza el calculo de la envolvente en tres pasos:

1. Busqueda de los maximos locales a lo largo del array de oscilaciones (Figura
24, proceso 1).

2. Seleccion de los maximos separados por mas de la distancia minima entre
picos (Figura 24, proceso 2).

3. Interpolacion lineal de los maximos seleccionados para crear la envolvente
(Figura 25, proceso 3).

Una vez tenemos la envolvente de la sefial sélo queda encontrar la presion arterial media
(MAP) que se encuentra en el punto maximo de la envolvente (figura 25, proceso 4). Este
valor se multiplica por los coeficientes de presion sistélica y diastdlica (rs y rd) para obtener
los valores de comparacién de presién sistélica y diastélica (figura 26, proceso 5). A
continuacion se divide la envolvente en dos partes separadas por el punto maximo, ya que la
presion sistolica se encuentra a la izquierda del presién arterial media (PAM) y la sistélica a
la derecha, esta separacion se encuentra indicada en la figura 26 con las flechas verde
(parte sistdlica) y roja (parte diastélica). Por dltimo se van a buscar los valores de la
envolvente que se parezcan mas a los valores de comparaciéon de presion sistdlica y
diastdlica. En la parte de la izquierda se compara cada valor de la envolvente con el valor de
comparacion de presion sistdlica y cuando se encuentra el mas parecido guardamos el
indice de localizacion de este valor; lo mismo se hace en la parte derecha con el valor de
comparacion de presion diastdlica. Para obtener los valores de presion sistélica y diastélica
se buscan los valores que corresponden a las localizaciones obtenidas en el array de
presiones (figura 26). Todo este proceso se ilustra en las figuras 23, 24, 25y 26.

29

initialize
envelope struct

create & initialize
temporal variables

Find local maxima of
the oscillation aray 1

store peak value
and location

v
short peaks in
descendent order

Y

find peaks separated by
more than minimun peal
distance

h 4
Ty

reorder peaks in
cronological order

. 0000 W

h 4
Ty

Bookend peaks and
locs arrays with 0

. 0000 W

h 4

Apply lingar
interpolation to obtain 3
envelope

—

" Obtain maximun |
value of envelope

¥

Fig 23. Diagrama de bloques del procesado de la medida

(MAP) and store its
\ localition

As = MAP*Ts
Ad= MAP*rd

v
(Obtain location of the |
maost similar values to
As and Ad in
envelope

Y

.Index the locations in.
the pressure array to
obtain PS and PD.

Return PS and PD

Fig 24. Procesos 1y 2 de la Fig 18

Fig 25. Procesos 3y 4 de la Fig 18

|
)

MAP
AD

AS

160

140

P
(= N
o Yo

Pressure mmHg

40 \

n.
20 -

Fig 26: Proceso 5 de la Fig 18

5. Desarrollo del software

5.1 Entorno de desarrollo

En cuanto a la implementacién del software en el microcontrolador, existen varios entornos
en los que desarrollar aplicaciones con el ESP32, como VisualStudio, EclipselDE o Arduino
IDE. Para esta aplicaciéon se ha escogido EclipselDE, una vez instalado el entorno de
desarrollo se debe anadir el framework que utiliza Espressif para la programacion de sus
dispositivos, ESP-IDF.

31

5.2 Estructura del software

La aplicacion desarrollada para el prototipo de monitor de tension arterial es un sistema de
tiempo real que se basa en una conjunto de tareas que se van ejecutando periédicamente
donde cada una de ellas tiene asignada una prioridad distinta en funcion de cual sea su
objetivo.

La tarea principal se llama pressure_control_handler y consiste en una maquina de
estados que controla el funcionamiento del prototipo. Por otro lado la tarea de adquisicion
de datos (read_pressure_task) es la tarea de mayor prioridad, ya que tiene el periodo de
muestreo mas pequefio (25 ms) para conseguir la precision adecuada en la sefial de
presion. Por ultimo, para el control del bloque de visualizacion se han desarrollado las tareas
de interfaz de usuario (gui_manager_task) y de botones (button_task), las dos con la
menor prioridad, ya que son las que menor uso de la CPU hacen.

G read Jreassure_taskﬂ‘
5 ‘ pressure_control_handler ‘
3 button_pressed _task() ‘
1 ‘ gui_manager_task |

Fig 27. Diagram de bloques de tareas

5.3 Tarea adquisicion datos

Esta tarea (Fig 29), como ya se ha comentado, es una de las mas importantes y tiene tres
funciones principales: es la encargada de recibir los datos de presién del sensor a través del
protocolo de comunicacion 12C, pasar estos datos por los filtros adecuados y almacenar
estos datos en dos arrays circulares distintos.

El protocolo de comunicacién serie 12C define la trama de datos y las conexiones fisicas
para transferir bits entre 2 dispositivos digitales. El puerto 12C incluye dos cables de
comunicacién, SDA (Serial Data) y SCL (Serial Clock). El protocolo permite conectar hasta
127 dispositivos esclavos con esas dos lineas, con velocidades de 100, 400 y 1000 kbits/s.

32

El protocolo 12C es uno de los mas utilizados para comunicarse con sensores digitales, ya
que a diferencia del puerto serie, su arquitectura permite tener una confirmacion de los
datos recibidos dentro de la misma trama, entre otras ventajas.

En el caso de 12C se diferencian dos elementos basicos, un MAESTRO y un ESCLAVO. La
Figura X, muestra una conexion tipica de tres dispositivos, el bus consiste en dos lineas
llamadas, Serial Data (SDA) y Serial Clock (SCL).

Fig 28. Interfaz 12¢c
Fuente: ref [20]

El MAESTRO I2C se encarga de controlar la linea de reloj, ademas de iniciar y parar la
comunicacién. La informacion binaria serie se envia a través de la linea SDA. Puede
funcionar de dos maneras, como maestro-transmisor o maestro-receptor y sus funciones
principales son:

Iniciar la comunicaciéon — S

Enviar 7 bits de direccién — ADDR

Generar 1 bit de Lectura 6 Escritura — R/W

Enviar 8 bits de direccién de memoria

Transmitir 8 bits de datos -

Confirmar la recepcién de datos — ACK — ACKnowledged

Generar confirmacién de No-recepciéon, NACK — No-ACKnowledged
Finalizar la comunicacion

El esclavo generalmente suele ser un sensor. Este elemento es el encargado de suministrar
la informacion de interés al MAESTRO. Puede actuar de dos formas: esclavo-transmisor ¢
esclavo-receptor. Sus funciones principales son:

e Enviar informacion en paquetes de 8 bits.
e Enviar confirmaciones de recepcion, llamadas ACK

Para establecer conexion entre el puerto 12C del microcontrolador (Maestro) y el sensor de
presién (esclavo) se han creado tres funciones read_MPRLS_status(),
read_MPRLS_data() y read_MPRLS_pressure(). La primera funcién es la encargada
de leer el byte de estado que aporta la informacion que se muestra en la tabla 2. La segunda
se encarga de establecer conexion con el sensor, mandando primero la direccion y comando

33

de medida, a continuacidén se espera hasta que se ponga a cero la bandera de dispositivo
ocupado y, entonces, se manda la direccion con el comando de lectura para obtener la
medida. Por dltimo read_MPRLS_pressure () transforma el valor obtenido del sensor a un
valor de presion dentro del rango de 0 a 25 psi.

TABLE 15. I>C STATUS BYTE EXPLANATION

BIT (MEANING) STATUS COMMENT

7 always 0

G (Powar mdication] 1 = device is powered Needed for the SPI Mode where the Master reads all zeroes
0 = device is not powered if the device is not powered or in power-on reset (POR).

Indicates that the data for the last command is not yet

5 (Busy flag) 1 = device is busy available. No new commands are processed if the device is
busy.

4 always 0

3 always 0

Indicates whether the checksum-based integrity check
passed or failed; the memory error status bit is calculated
only during the power-up sequence.

0 =integrity test passed

2(M integrity. fl
=(Mamary integrityemar fag) 1 = integrity test failed

1 always 0

1 =internal math saturation has

0O (Math saturation)
occurred

Tabla 2. Status Byte 12C [13]

Una vez obtenidos los datos de presion, se procede al filtrado de la sefial. De la misma
forma que un filtro analdgio tiene su modelo matematico expresado en ecuaciones
diferenciales, los filtros digitales tienen su representacion matematica a través de
ecuaciones lineales en diferencias con coeficientes constantes, por lo general esta ecuacion
parte de la siguiente expresion:

iaky[n—k] =ibkx[n—k]
k=0 k=0

Donde x[n]es la sefial de entrada, y[n] la sefial de saliday ay bjson los coeficientes del filtro.

Al tratarse de un sistema lineal invariante en el tiempo, es decir, esta en reposo en el estado
inicial, su funcidn de transferencia va a ser de tipo racional:

Y(z) Xk-obyz™*
X(_Z) ZL:: Ay z-k

Por lo tanto para realizar el filtrado de la sefial de entrada, x[n], a través del filtro definido por
los coeficientes ay b], se emplea la siguiente igualdad recursiva:

M N
yin] 2%12 bexln =K1 -)" a y[n—k]]
k=0

k=1

H(z) =

De esta forma para implementar el filtro Butterworth desarrollado en el apartado de
Procesamiento digital se han utilizado las siguientes ecuaciones:

34

L = raw! pressure
= (bp* xp + ba s xp_9 + by % xp_yg)

— |':“{:| k Ye] k Ye—1 + a2 k Y2 +az F Y3 + aq * .fﬂc—-lj
Yk—4 = Tk—-3 % Yk—3 = Yk-2% Yk-2 = Yk—1: Yk-1 = Yk

Ep—g = -3, Th—3 = Pp—2. -2 = Fk—1. TE—1 = Ik

‘ Initialization ‘

L

while(1) \

read pressure sensor
data (psi)

convert data to
mmHg

pressure
Bandpass filter oscillation value
obtained
no
ifistore)

yes

" Store pressure and |

oscillation values y
separated circular
queues

Fig 29. Diagrama de bloques de la tarea de adquisicién de datos

Para terminar con la tarea de adquisicién de datos, se almacenaran los datos en dos colas
circulares. El codigo para la implementacion de estas colas se ha extraido de un articulo de

StackOverflow [11] al que se le ha hecho alguna modificacion.

Se ha elegido esta implementacion porque almacena una serie de datos sobre cada cola
como cuantos elementos tiene, en qué indice esta el ultimo y primer elemento, etc. Esta

informacion es imprescindible para la obtencién de la medida.

35

5.4 Tarea botones

El control de la interfaz de usuario (Fig 30) se hace a través de 3 botones, dejando un cuarto
botén de auxiliar por si es necesario en un futuro. Para facilitar la navegacion por la pantalla
esta botonera esta programada como si fuera un encoder, de forma que dos de los tres
botones se utilizan para incrementar y decrementar el contador del encoder, mientras que el
ultimo botdn sirve para seleccionar el objeto seleccionado en la pantalla. Dentro del fichero
display_gui.c, donde se desarrolla la programacion de la pantalla, se encuentra la
funcién get_encoder_button_data_cb() que es la encargada de actualizar la
informacion del driver del encoder.

‘ IDLE

Mo

.

if (xQueuereceive)

Yes

‘ Disable interrupt |

:

Do —
while(lbutton }
released) > dilay(20ms}

Switch (BTN)

> case(B1) —» ESP_LOGI (TAG, "auxiliar"); ‘
> case(B2) —»| ESP_LOGI (TAG, "middle"); ‘
> case(B3) — button_count ++ ‘
—» case(B4) — button_count - ‘

Fig 30. Diagrama de bloques tarea de botonera

36

5.5 Tarea de procesado de la medida

Otra de las tareas mas importantes es la tarea de control
(pressure_control_handler()), la cual se encarga de organizar el proceso de la
medida desde el inicio hasta la visualizacion de los resultados. Este control se hace a través
de una maquina de estados con seis estados, los cuales podemos ver en la figura 31.

e MEASURE_IDLE: Este es el estado inicial o de reposo, en el que lo Unico que se hace
es abrir la valvula de aire.

e SCHEDULED: cuando se selecciona el boton Measure en la pantalla se pasa al
estado de planificacién en el que se cierra la valvula y se activa el PWM que controla
el motor para comenzar a inflar el brazalete. Ademas se almacena el primer valor de
presién (presion inicial) para, mas tarde, restarlo al resultado de la medida. Por otro
lado se activa una variable logica llamada store con la que controlamos el
almacenamiento de los datos de presion y oscilaciones en la tarea de adquisicion.
Por ultimo se pasa el estado a INFLATING.

e INFLATING: en este estado se va actualizando el ultimo valor de presion adquirido y
se compara con el limite de presion suprasistélica (190 mmHg), una vez se alcance
dicho valor se pasa al estado DEFLATING.

e DEFLATING: una vez se llega a este estado se abre la valvula y se cambia la
referencia del PWM para que llegue gradualmente a cero en un espacio de 35
segundos, de esta forma se asegura que el brazalete se desinfla lentamente y la
sefal se almacenada correctamente. Por ultimo se pone la variable store a false para
dejar de almacenar datos y cambiamos el estado a DONE.

e DONE: este es el estado en el que se procesa la sefial para obtener las medidas de
presidon sistolica, diastdlica y pulso. Para ello se utiliza la funcién
init_envelope() para inicializar la variable donde se van a almacenar los valores
de la envolvente. Por otro lado se utiliza la funcién find_peaks () que se encarga
de todo el procesamiento de la sefial, desde la generacion de la envolvente hasta la
obtencion de los resultados de la medida de la presion, el diagrama de
funcionamiento de esta funcion se puede ver en la figura 18. A continuacién se
realiza el calculo del pulso, para ello transformamos la sefial de oscilaciones en un
array complejo al que aplicaremos la transformada rapida de Fourier con la funcién
fft(). Mas tarde, con la funcién get_highest_harmonic() se obtiene el armdnico
mas prominente del rango de frecuencias cardiacas y, por ultimo, se cambia el
estado a WRITE_STATUS.

e WRITE_STATUS: una vez terminado el procesado de las medidas, se escriben los tres
resultados por pantalla a través de la funcién write_measure_bpm().

37

4’{ MEASURE_IDLE

’
.
k=]

Button Measure
. selected?

es

ESCHEDULED

:

INFLATING

es
Mo

Max pressure
reached?

)

DEFLATING

Wait fro 35 sec

|

DONE

:

WRITE RESULTS

|

Fig 31. Diagrama de bloque tarea de control

38

5.6 Tarea Ul/Visualizacion

En la tarea de interfaz de usuario (Fig 33) se muestran una serie de pantallas que parten de
un menu principal como se observa en la figura 32. La pantalla principal es la MAIN MENU,
una vez seleccionado el boton MEASURE se procede a realizar la medida de presién y se
muestran los resultados.

Por otro lado, las dos pantallas restantes, USER WINDOW y RECORDS WINDOW, servirian
para elegir el usuario y acceder al historial de medidas del mismo pero todavia no han sido
desarrolladas. Para la creacion de esta interfaz se ha usado la libreria grafica LVGL, con la
que se han creado todas las pantallas y sus elementos dentro de la funcién pp_ui () que se
ejecuta periodicamente dentro de esta tarea. Esta libreria grafica es muy Uutil para este tipo
de proyectos, ya que contiene gran cantidad de elementos interactivos y personalizables
para crear interfaces Unicas.

' N

Performing measurement...
' Please stay still. %
Measure

Fig 32. Pantallas de la interfaz de usuario

| MAIN MENU |

/ N
‘ USER WINDOW ‘ | MEASURE WINDOW ‘ RECORDS WINDOW
Lo ‘
Yet to be Performing Yet to be
programmed measurement programmed

if (meaure_STATUS ==

Get & show
measurement results

Fig 33. Diagrama de bloques tarea de interfaz de usuario

39

6. Analisis de los resultados.

Durante el procesado de las sefiales y el calculo de las medidas en Matlab se utilizo el
tensiémetro de mufieca TOPCOM Blood Pressure Monitor BPM Wrist 3311 para comparar las
medidas obtenidas con nuestro prototipo, con las obtenidas con un tensiometro
homologado.

Las medidas se realizan en estado de reposo, con el brazo izquierdo extendido y apoyado a
la altura del corazén. Primero se realiza la medida con el prototipo desarrollado en este
proyecto y dos minutos después con el tensiometro homologado, ya que no se pueden
realizar las dos medidas a la vez porque pueden afectarse mutuamente.

6.1 Validacion de las medidas de las presiones sistdlicay
diastdlica

Antes de poder validar las medidas se debe realizar una fase de calibracion de los
coeficientes de presioén sistdlica y diastdlica, para ello se empieza eligiendo dos valores
centrados dentro del rango de coeficientes empiricos [9]. Con estos coeficientes se realizan
6 medidas, se observa la precisién de las mismas y si es necesario se reajustan los
coeficientes. Este proceso de ajuste se repite hasta que ya no se pueda mejorar la precision.
Los coeficientes elegidos son:rs = 0.5; rd = 0.75

s =106 rd=10.8

Ps Matlab Ps real Pd Matlab Pd real aPs APd std dev aPs std dev APd
103 100 a7 70 3 17 57 6,3
101 97 81 a7 4 6
93 100 84 69 7 15 mean APs mean APd
118 110 70 73 8 3 58 6,8
115 107 72 88 8 16
104 85 80 85 19 5 mean err % Ps mean err % Pd
5,8 8,6
rs=05 rd=077
Ps Matlab Ps real Pd Matlab Pd real aPs APd std dev aPs std dev APd
95 100 83 70 5 13 1,4 5,5
N 84 a7 87 7 o
101 97 73 69 4 4 mean APs mean APd
118 114 82 73 a4 9 5,4 5,9
N 97 75 88 6 13
104 97 82 85 7 3 mean err % Ps mean err % Pd
5,2 7.6
rs =05 rd = 0.75
Ps Matlab Ps real Pd Matlab Pd real aPs APd std dev aPs std dev APd
105 103 7 80 2 3 1,8 1,2
106 107 79 84 1 5
105 1 78 83 6 5 mean APs mean APd
98 95 86 83 3 3 2,6 3,3
113 117 72 69 4 3
97 99 75 73 2 2 mean err % Ps mean err % Pd

2,1 4,1

Tabla 3. Medidas para la fase de calibracién de coeficientes

40

Una vez calibrados los coeficientes se pasa a la fase de validacién de los calculos en Matlab
donde se realizaron 24 medidas a tres pacientes diferentes y se obtuvieron los resultados
que pueden verse en la Tabla 4.:

Paciente 1

Ps Matlab Ps real Pd Matlab Pd real APs APd std dev aPs std dev APd
103 100 I 70 3 7 1,8 2,3
94 97 83 87 3 4
101 100 i 69 1 8 mean APs mean APd
110 110 85 80 0 5 2,7 3,4
111 107 86 88 4 2
109 105 72 75 4 3 mean err % Ps mean err % Pd
105 100 78 76 5 2 2,7 4,2
90 85 82 79 5 3
Paciente 2
Ps Matlab Ps real Pd Matlab Pd real APs APd std dev APs std dev APd
95 100 80 79 5 1 2,3 13
113 107 79 i 6 2
97 100 74 79 3 5 mean APs mean APd
110 110 81 83 0 2 2,7 L8
103 97 85 88 6 3
90 88 72 75 2 3 mean err % Ps mean err % Pd
116 115 70 69 1 1 2,6 24
103 99 75 73 4 2
Paciente 3
Ps Matlab Ps real Pd Matlab Pd real APs APd std dev aPs std dev APd
81 90 66 60 9 6 2,4 4,1
79 87 66 57 8 9
m 75 62 59 4 3 mean APs mean APd
78 80 51 63 2 12 4,5 6,9
80 87 52 68 7 16
78 84 58 65 6 7 mean err % Ps mean err % Pd
81 85 66 55 4 1 55 11,5
7 75 54 60 4 6

Tabla 4. Medidas de la fase de célculo con Matlab

Como se puede observar en esta tabla, los dos primeros pacientes tienen una presion
arterial dentro de los limites normales (120-80 mmHg) y las medidas obtenidas con Matlab
no se alejan mucho de la medida con el tensiometro homologado. En estos dos casos la
tolerancia de la medida simulada esta alrededor de +2-3 mmHg (2,4-4,2% error absoluto).
Sin embargo, el tercer paciente tiene una presion arterial por debajo de la normal, rozando
los limites de la hipotensién y el algoritmo implementado en MATLAB estima peor la
medida. En este caso la tolerancia de la medida es de +4-6 mmHg (5,5-11,5% error
absoluto).

Una vez se termina la programacion del prototipo se lleva a cabo la ultima fase de validacién
en la que se realizaron otras 24 medidas a los mismos pacientes. Como era de esperar tras
los resultados obtenidos con MATLAB, las medidas realizadas con el prototipo a los
pacientes con tensiones dentro del rango normal tiene mas precision que las realizadas al
paciente con hipotension. Se observa que los resultados obtenidos con el prototipo tiene
una ligera peor precisién que los obtenidos en Matlab, esto puede deberse a que las
operaciones en Matlab se realizan en coma flotante (permite operar con mds precision)
mientras que en en el microcontrolador se realizan en coma fija, o simplemente por que
aunque la implementaciéon de las funciones de Matlab en el microcontrolador se ha

41

realizado siguiendo el mismo algoritmo, alguno de los calculo se puede llevar a cabo de
forma distinta.

En cuanto a los errores de medida totales, tanto en los célculos con Matlab como con el
prototipo final, se atribuyen a la vulnerabilidad del prototipo ante ruido y perturbaciones
provocadas por movimientos de elementos externos como el motor.

Paciente 1

Ps prototipo Ps real Pd prototipo Pd real aPs APd std dev aAP's std dev APd
97 94 84 80 3 4 1,2 12
103 99 80 87 4 7
99 93 75 79 6 4 mean APs mean APd
107 110 84 it 3 4 31 4.2
94 97 78 75 3 3
109 106 77 73 3 4 mean err % Ps mean err % Pd
97 94 85 80 3 5 3,0 51
1M 113 92 96 2 4

Paciente 2

Ps prototipo Ps real Pd prototipe Pd real aPs APd std dev aPs std dev APd
106 100 85 83 8 2 1.4 18
101 97 86 80 4 &
98 100 80 79 2 1 mean APs mean APd
90 92 86 83 2 3 2,8 2,1
113 110 T4 75 3 1
95 90 85 88 5 3 mean err % Ps mean err % Pd
99 97 90 87 2 3 2,7 2,6
105 107 84 79 2 5

Paciente 3

Ps prototipo Ps real Pd prototipo Pd real aPs APd std dev aPs std dev APd
80 84 66 59 4 7 2,6 1,9
i 75 70 73 2 3
88 79 69 63 9 6 mean APs mean APd
78 80 65 58 2 7 3,3 5,9
80 87 68 63 7 5
92 88 73 65 4 8 mean err % Ps mean err % Pd
75 70 69 60] 9 4,1 9,1
73 75 63 61 2 7

Tabla 5. Medidas ultima fase de validacion

6.2 Validacion de la medicién del pulso

En cuanto a la validacion de las medidas del pulso cardiaco, sélo se realizé en una fase y fue
una vez terminada la programacion de todo el prototipo. La precision de esta medida se ve
afectada por el tamafio de ventana de la transformada rapida de Fourier, ya que el rango de
frecuencias dentro del limite cardiaco se ve reducido. Las condiciones de realizacion de
estas medidas son las mismas que en las medidas de presion arterial. Dentro de esta fase
se realizaron 24 medidas de 3 pacientes diferentes. Como se puede observar en la tabla 6,
los errores medios absolutos se encuentran en el rango de 4-9%, superando el limite maximo
de 5% de error que se establece para este tipo de dispositivos.

42

Paciente 1 Paciente 2 Paciente 3

BPM pratc BPM real ABEM BPM protoc BPM real ABEM BPM proto BPM real ABPM
76 80 4 65 59 g 72 75 3
76 70 6 69 65 4 75 80 5
79 85 6 70 79 9 65 59 &
74 86 12 79 85 g 73 78 5
72 T 5 69 75 g 72 75 3
73 65 8 A 75 4 75 80 5
76 70 6 75 75 0 76 80 4
65 59 6 78 84 g5 72 75 3

mean ABPM 6,0 mean ABPM 5,5 mean ABPM 4,0

mean err % 9,0 mean err % 7.1 mean err % 5,2

Tabla 6. Medidas de validacién de frecuencia cardiaca.

7. Conclusiones y trabajo futuro.

La implementacién de aplicaciones médicas en sistemas empotrados basados en
microcontroladores requiere de un estudio intensivo del tipo de sefiales con las se va a
trabajar, ya que tratan con la salud de las personas.

La apariciéon en los ultimos afios de microcontroladores mas potentes ha favorecido el
aumento del desarrollo de este tipo de sistemas, haciéndolos cada vez mds compactos,
accesibles y con mas funcionalidades. Los primeros aparatos de medicion de la presion
eran manuales y dependian de la habilidad del profesional que realizaba la medida. Sin
embargo, una vez aparecieron los monitores de tension digitales, los factores de error
humano desaparecieron y las personas comenzaron a poder llevar un control de sus niveles
de tension sin necesidad de ir a un centro de salud.

De ahi el objetivo principal de este proyecto: desarrollar un prototipo de monitor de presion
que sea accesible, portable y que proporcione medidas precisas. Como se puede ver en el
Anexo 3, el precio de este prototipo, como simple suma de precio de componentes, es de
42,76€, si bien el precio se reduciria bastante en el caso de una empresa que compra
cientos de componentes.

El desarrollo de este proyecto se ha llevado a cabo realizando un estudio previo tanto del
método oscilométrico y sus algoritmos de estimacion de la presion arterial, como de las
técnicas de analisis de sefiales en el dominio de la frecuencia para la estimacién del pulso
cardiaco.

Como se ha visto en el apartado de validacién, la precision de las medidas es aceptable para
individuos con presion arterial dentro del rango normal (120-80 mmHg), sin embargo las
medidas realizadas en el paciente con presion arterial baja tienen menos precision y son
menos constantes. Por otro lado, los datos obtenidos para la frecuencia cardiaca no tienen
la precisidn que seria deseable. Hay que tener en cuenta que el prototipo esta construido en

43

una placa de desarrollo electrénico (protoboard), lo que lo hace mds vulnerable a ruidos,
movimientos e interferencias de su alrededor. Ademas, la validacion se ha realizado con
datos tomados de tan solo 3 personas.

Para una validacion mas adecuada, habria que tomar datos de muchas mas personas y
sobre un prototipo realizado en una PCB disefiada para minimizar interferencias y ruido.

No obstante, los resultados obtenidos no son malos. El error normal de la medicién de
presion arterial en monitores homologados esta entre 2-3 mmHg, y el del pulso alrededor del
5%. El monitor desarrollado en este proyecto todavia no cumple estos limites, por esta
misma razén a continuacidon se comentaran una serie de posibles mejoras y nuevas
funcionalidades que se pueden aplicar para mejorar la calidad del monitor de tension
desarrollado.

En cuanto al trabajo futuro, primero se debera centrar el foco en mejorar la precision de las
medidas, tanto de presion arterial como de pulso. Para ello se proponen una serie de
mejoras:

Construccién del prototipo en PCB, disefiado para minimizar ruido e interferencias.
Estudio de algoritmos oscilométricos mas precisos, como el de oscilometria
derivativa, que en vez de basarse en el uso de coeficientes empiricos realiza la
medida llevando a cabo un andlisis de la pendiente de la envolvente. Otra técnica
interesante seria el uso de redes neuronales que reciben como entrada la envolvente
de la sefal de oscilaciones (OMWE) y establecen relaciones complejas y no lineares
entre la envolvente y la presion arterial.

e Andlisis de filtros complejos para obtener una mejor sefial de oscilaciones y por
tanto una envolvente con mas resolucion.

e Afadir un sensor ECG (electrocardiograma) para mejorar la precision de la medida
de la frecuencia cardiaca.

Por otro lado, una vez se haya conseguido una precisién de medida dentro de los rangos
exigidos, se puede mejorar la calidad y versatilidad del producto implementando una serie
de nuevas funcionalidades como:

e Afadir una opcion para la eleccién de usuario antes de realizar la medida, para
posteriormente afadir una seccion de historial donde cada usuario guarde sus
medidas y éstas puedan ser exportadas via USB al ordenador.

e Desarrollo de una aplicacion de smartphone en la que se muestren graficas y
estadisticas de las mediciones de cada usuario. La sincronizacion del prototipo con
el smartphone se haria via Bluetooth, de esta manera se actualizaran los datos de las
medidas realizadas por el monitor.

44

Referencias

1. “Cardiovascular Diseases (Cvds).” World Health Organization, 11 Jun. 2021,
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

2. “Sistema Arterial.” Clase De Anatomia, 18 Dec. 2020,
https://www.auladeanatomia.com/novosite/es/sistemas/sistema-cardiovascular/va
sos-sanguineos/sistema-arterial/.

3. “Diccionario De Cancer Del NCI." Instituto Nacional Del Cancer, 6 May. 2021
https://www.cancer.gov/espanol/publicaciones/diccionarios/diccionario-cancer/def/
presion-arterial.

4. Amadeo Morera, et al. “Diferencias Entre Presidon y Tensidn Arterial” Mi Tensiometro,
13 Dec. 2019, https://mitensiometro.com/diferencias-presion-y-tension-arterial/.

5. M Olmo R Nave. “Tensién En Paredes Arteriales.” Hyperphisics, 27 Jul. 2021
http://hyperphysics.phy-astr.gsu.edu/hbasees/ptens3.html.

6. Dr. Jeovhanni Nieves Rivera, et al. Modulo Instruccional Hipertension e Hipotension
Arterial. Mar. 2016,
https://gurabo.uagm.edu/sites/default/files/uploads/EducacionContinua/pdf/2016-2
/MOD-HIPER-HIPOTENSION-JA.pdf.

7. Simarro Blasco, J.A., Noheda Blasco, M.C., Bascuiana Blasco, M., Noheda Recuenco,
M., Tolmo Aranda, I. Romero Carralero, M.I. (2011). Estudio comparativo de la presion
arterial invasiva frente a la presion arterial no invasiva: Valoracion de la diferencia.
Enfermeria Global, vol 10 n.24
https://dx.doi.org/10.4321/S1695-61412011000400006

8. F. Barranco Ruiz, J. Blasco Morilla, et al. 7.76.2. Toma De La Presion Arterial, 15 Sep.
2021 https://uninet.edu/tratado/c011602.html.

45

https://dx.doi.org/10.4321/S1695-61412011000400006

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

M. Forouzanfar, H.R. Dajani, V.Z. Groza, M. Bolic, S. Rajan, and | Batkin, “Oscillometric
blood pressure estimation: past, present, and future,” IEEE Reviews in Biomedical
Engineering, vol. 8, pp. 44-63, May 2015.

Sani, Hac & Mansor, Wahidah & Lee, Yoot Khuan & Zainudin, N. & Mahrim, Syamsul
Adlan. (2015). Determination of heart rate from photoplethysmogram using Fast
Fourier Transform. 168-170. 10.1109/ICBAPS.2015.7292239.

Seamus. “How Do You Make a FIFO Array in C.” Stack Overflow, 25 Sep. 2019,
https://stackoverflow.com/questions/59023297/how-do-you-make-a-fifo-array-in-c.

Dr. Emiliano Fdez-Obanza Windscheid. “El Sistema Cardiovascular.” Sociedade Galega
de Cardioloxia, 25 Apr. 2019, https://www.sogacar.com/el-sistema-cardiovascular/.

Honeywell, “MPR SERIES MicroPressure Board Mount Pressure Sensors Compact,
High Accuracy, Compensated/Amplified”, 32332628 Issue | datasheet, Jul. 2021.

“La Historia Del Ciclo Cardiaco Timeline.” Timetoast Timelines, 4 Mar. 2021,
https://www.timetoast.com/timelines/la-historia-del-ciclo-cardiaco.

“Sistema Cardiovascular.” Aula De Anatomia, 31 Aug. 2021,
https://www.auladeanatomia.com/.

Rivas, Ivan. “Ruidos De Korotkoff” Gastro Meérida, 4 Aug. 2018,
https://www.ivanrivasmd.com/ruidos-de-korotkoff/.

Ada, Lady. “Adafruit MPRLS Ported Pressure Sensor Breakout." Adafruit Learning
System, July 2021,
https://learn.adafruit.com/adafruit-mprls-ported-pressure-sensor-breakout.

“ESP32-DEVKITC Development Boards.” Mouser, 10 July 2018,
https://www.mouser.es/new/espressif/espressif-esp32-devkitc-boards/.

46

19. Teja, Ravi. “Introduction to ESP32: Specifications, ESP32 Devkit Board, Layout.”
Electronics Hub, 7 Sept. 2021,
https://www.electronicshub.org/getting-started-with-esp32/.

20. “El Bus I12C." Dignal.com, 25 Mar. 2015, https://dignal.com/el-bus-i2c/.

47

Anexos

Anexo 1: Codigo desarrollado en Eclipse IDE

48

1. main.c

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>

#include <stdbool.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h”
#include "driver/gpio.h"
#include "freertos/queue.h”
#include "esp_log.h"
#include "esp_types.h"
#include "driver/i2c.h"
#include "fifo_queue.h"
#include "driver/ledc.h"
#include "findPeaks.h"
#include "fft.h"

#include "display _gui.h"
#include "lvgl/livgl.h"
#include "lvgl_helpers.h"

#define B1 34 // Aux button
#define B2 35 // Middle button
#define B3 27 // Right button

#define B4 14 // Left button

#define EOC_PS 17 // End of Conversion prs sensor

#define RST_PS 16 / Reset prs sensor

#define SDA_PS 21/

End of Conversion prs

sensor #define SCL_PS 5

// End of Conversion prs

sensor

#define MPRL_ADDRESS 0x18//2C adress

#define I2C_MASTER_FREQ_HZ 100000//SCK maste freq 100KHz

//Display

#define LCD_CS 14
#define LCD_RST 25
#define LCD_DC 26
#define LCD_MOSI 32
#define LCD_SCK 33

//i2¢c

#define ACK_CHECK_EN 0x1 /*I< 12C master
will check ack from slave™/

#define ACK_CHECK_DIS 0x0 /*I< 12C master
will not check ack from slave */

#define ACK_VAL 0x0 /*I< 12C ack value */

49

#define NACK_VAL 0x1 /*I< 12C nack value ¥/

// Pressure related

#define COUNTS_224 (16777216L) ///< Constant: 224

#define PSI_to_HPA (68.947572932) ///< Constant: PSI to HPA conversion factor
#define PSI_to_ATM (0.068046)

#define PSI_to_mmHg (51.715) ///< Constant: PSI to mmHg conversion factor
#define MPRLS_OUTPUT_min (uint32_t)((float) COUNTS_224 * (10 / 100.0) + 0.5)
#define MPRLS_OUTPUT_max (uint32_t)((float) COUNTS_224 * (90 / 100.0) + 0.5)
#define MPRLS_PSI_min 0

#define MPRLS_PSI_max 25

/Mtypedef enum{MEASURE _IDLE, SCHEDULED, INFLATING, DEFLATING, DONE}
measure_stage;

#define VALVE_PIN 22

#define FWD_PIN 19

//#define BWD_PIN 18

#define PUMP_CHANNEL_A LEDC_CHANNEL 1
//#define PUMP_CHANNEL_B LEDC _CHANNEL_2
#define TMR_RES LEDC_TIMER_12_BIT

//display

#define LV_TICK_PERIOD_MS 1

50

/* User global variables */

static TaskHandle_t button_task;
static QueueHandle_t button_queue;

static TaskHandle_t pressure_task;
static QueueHandle_t pressure_queue;

static TaskHandle_t pwm_task;
//static QueueHandle t pressure_queue;

static TaskHandle_t gui_task;
static SemaphoreHandle_t xGuiSemaphore; int32_t btn_encoder_count = 0;

bool valve_state = false; bool store = false;
struct fifo_queue oscil_queue;
struct fifo_queue press_queue;

struct envelope env; float first_pressure = 0;

uint32_t button_count;
static const char®* TAG= "ButtonInfo";

/* Task declarations */

static void button_pressed_task(void *params); static void read_pressure_task(void *params); static void
Iv_tick_task(void *arg);
static void gui_manager_task(void *pvParameter); static void IRAM_ATTR gpio_isr_handler(void *args){

uint32_t pin_number = (uint32_t)args;
xQueueSendFromISR(button_queue, &pin_number, NULL);
}

void pressure_control_handler(void *params);

void app_main(void){
/*Button config*/
gpio_config_t config;
config.intr_type =
GPIO_INTR_NEGEDG
E; config.mode =
GPIO_MODE_INPUT;
config.pull_down_en =
false; config.pull_up_en
= true;
config.pin_bit_ mask = ((1ULL<<B1) | (1ULL<<B2) | (1ULL<<B3) | (1ULL<<B4));

gpio_config(&config);

button_queue = xQueueCreate(4,sizeof(uint32_t));
xTaskCreate(button_pressed_task, "button pushed", 2048, NULL,
3, &button_task);

gpio_install_isr_service(0);
gpio_isr_handler_add(B1,
gpio_isr_handler, (void *)B1);
gpio_isr_handler_add(B2,
gpio_isr_handler, (void *)B2);
gpio_isr_handler_add(B3,
gpio_isr_handler, (void *)B3);
gpio_isr_handler_add(B4,

gpio_isr_handler, (void *)B4);

52

/*I12C config®/

gpio_pad_select_gpio(RST_PS);
gpio_set_direction(RST_PS,
GPIO_MODE_OUTPUT);
gpio_set_level(RST_PS, 1);

gpio_pad_select_gpio(EOC_PS);
gpio_set_direction(EOC_PS,
GPIO_MODE_INPUT);

i2c_config_ti2c_config = {

.mode = 12C_MODE_MASTER,

.sda_io_num = SDA_PS,

.scl_io_num = SCL_PS,

.sda_pullup_en = GPIO_PULLUP_ENABLE,

.scl_pullup_en = GPIO_PULLUP_ENABLE,

.master.clk_speed =

[2C_MASTER_FREQ_HZ};

i2¢c_param_config(I2C_NUM_0,

&i2¢_config);

i2c_set_timeout(I2C_NUM_O0,

1048575);

i2¢_driver_install(I2C_NUM_0, 12C_MODE_MASTER, 0, 0, 0);
xTaskCreate(read_pressure_task, "read pressure”, 4096, NULL, 5,
&pressure_task);

ESP_LOGI(TAG, "Setup done");

// Configure PWM

ledc_timer_config_t pwm_timer_config = {
.speed_mode = LEDC_LOW_SPEED_MODE,
.duty_resolution = TMR_RES,

timer_num = LEDC_TIMER _1,

.freq_hz = 15000,

.clk_cfg =LEDC_AUTO_CLK};
ledc_timer_config(&pwm_timer_config)

ledc_channel_config_t pump_channel_config = {
.gpio_num = FWD_PIN,

.speed_mode = LEDC_LOW_SPEED_MODE,
.channel = PUMP_CHANNEL_A,

timer_sel = LEDC_TIMER_1,

.duty =0,

.hpoint = 0};
ledc_channel_config(&pump_channel_

config);

xTaskCreate(pressure_control_handler, "pwm", 14*2048, NULL, 5, &pwm_task);
// Configure screen

xTaskCreate(gui_manager_task, "gui", 4096*2, NULL, 1, &gui_task);
// see gui_manager_task() and pp_ui() for the layout

//xTaskCreatePinnedToCore(gui_manager_task, "qui", 4096*2, NULL, 0, &qui_task, 1);

// Configure valve
gpio_config_t valve_config = {

53

.mode = GPIO_MODE_OUTPUT,

.pull_up_en = GPIO_PULLUP_DISABLE,
.pull_down_en = GPIO_PULLDOWN_DISABLE,
.pin_bit_mask = (1ULL<<VALVE_PIN),
intr_type = GPIO_INTR_DISABLE

}1
ESP_ERROR_CHECK(gpio_config(&valve_config));

54

static void button_pressed_task(void *params){
uint32_t pin_number=0;

while(1)
{
if (xQueueReceive(button_queue, &pin_number, portMAX_DELAY))

{

// disable the interrupt
gpio_isr_handler_remove(pin_number);

// wait some time while we check for the button to be released
do
{
vTaskDelay(20 / portTICK_PERIOD_MS);
} while(gpio_get_level(pin_number) == 0);

//do some work
switch(pin_number) {

case B1: // Aux button
printf("Boton auxiliar ya
le daremos algun uso");
ESP_LOGI(TAG,
"auxiliar");
break;

case B2: // Middle button
ESP_LOGI(TAG, "middle");
break;

case B3: / Right button

//measure_STATUS = DEFLATING;

btn_encoder_count++;

ESP_LOGI(TAG, "encoder++, value : %d \n", btn_encoder_count);
break;

case B4: // Left button
//measure_STATUS = SCHEDULED;
btn_encoder_count--;
ESP_LOGI(TAG, "encoder++, value

: %d \n",btn_encoder_count); break;

}

// re-enable the interrupt
gpio_isr_handler_add(pin_number, gpio_isr_handler, (void *)pin_number);

uint8_tread_MPRLS_status(){
uint8_t status_data;

i2c_cmd_handle_t cmd =i2c_cmd_link_create(); i2c_master_start(cmd);

55

i2c_master_write_byte(cmd, (MPRL_ADDRESS << 1) | I2C_MASTER_READ,
ACK_CHECK_EN); i2c_master_read_byte(cmd, &status_data, NACK_VAL);
i2c_master_stop(cmd);
ESP_ERROR_CHECK(i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 /
portTICK_RATE_MS)); i2c_cmd_link_delete(cmd);

return status_data;

56

uint32_tread MPRLS_data(){

}

uint8_t query_command[3] = {OxAA, 0x00, 0x00};

// Ask for data

i2c_cmd_handle_tcmd =

i2c_cmd_link_create();

i2c_master_start(cmd);

i2c_master_write_byte(cmd, (MPRL_ADDRESS << 1) | I2C_MASTER_WRITE,
ACK_CHECK_EN); i2c_master_write(cmd, query_command, 3,
ACK_CHECK_EN);

i2c_master_stop(cmd);
ESP_ERROR_CHECK(i2c_master_cmd_begin(12C_NUM_0, cmd, 1000 /
portTICK_RATE_MS)); i2c_cmd_link_delete(cmd);

// Wait for data

TickType_t t=

xTaskGetTickC

ount(); uint8_t

last_status;

while ((last_status = read_MPRLS_status()) & 0x20) { // Device busy flag

/printf("status: 0x%X, \r\n", last_status);
float ellapsed_wait_time_ms = (xTaskGetTickCount() - t) / portTICK_RATE_MS;
if (ellapsed_wait_time_ms > 20){

Hprintf("TIMEOQUT BUSY FLAG \r\n");

return OXFFFFFFFF; // timeout

// Read data

//ESP_LOGI(TAG, "Reading data");

const size t N PRESSURE_BYTES = 4;

uint8_t pressure_raw_data[N_PRESSURE_BYTES];

cmd =i2c_cmd_link_create();

i2c_master_start(cmd);

i2c_master_write_byte(cmd, (MPRL_ADDRESS << 1) | 2C_MASTER_READ,
ACK_CHECK_EN); i2c_master_read(cmd, pressure_raw_data, N PRESSURE_BYTES - 1,
ACK _VAL); i2c_master_read_byte(cmd, pressure_raw_data + N PRESSURE_BYTES - 1,
NACK_VAL); i2c_master_stop(cmd);
ESP_ERROR_CHECK(i2c_master_cmd_begin(12C_NUM_0, cmd, 1000 /
portTICK_RATE_MS)); i2c_cmd_link_delete(cmd);

/printf("READ status: 0x%X, \r\n", pressure_raw_data[0]);

uint32_t pressure_raw = (pressure_raw_data[1] << 16) | (pressure_raw_data[2] << 8) |
(pressure_raw_data[3]);

return pressure_raw;

float read_ MPRLS_pressure(){

uint32_t raw_psi = read_MPRLS_data();

float psi = (raw_psi - MPRLS_OUTPUT_min) * (MPRLS_PSI_max -
MPRLS_PSI_min); psi /= (float)(MPRLS_OUTPUT_max -
MPRLS_OUTPUT_min);

psi += MPRLS_PSI_min;

57

return psi;

static void read_pressure_task(void “params){

// Initialization

gpio_set_level(RST_PS, 0);

vTaskDelay(10/ portTICK_RATE_MS); gpio_set_level(RST_PS, 1);
vTaskDelay(10/ portTICK_RATE_MS); // Startup timing

//init pressure queue

init_fifo_queue(&press_queue, 3000);

init_fifo_queue(&oscil_queue, 3000);

// Bandpass pass

//const float b0 = 0.1453, b2 = -0.2906, b2 = 0.2929;

//const float a2 = 0.1716; //a0=1, a1 =0

const float float bO = 0.1453, b1 =0, b2 = -0.2906,b3 = 0, b4 = 0.1453;
const float a4= 1, a3 = -2.521, a2 = 2.3844, a1 = -1.1096, a0=0.2523;
float xk1=0, xk2=0, xk3=0, xk4=0, yk1=0, yk2=0,

yk2=0, yk3=0, yk4=0; float xk, yk;

TickType_t last_wake_time = xTaskGetTickCount();
while(1)}

/uint32_t pressure_raw = read_MPRLS _data();
float psi = read_MPRLS_pressure();
float mmHg = psi * PSI_to_mmHg;

58

// Band pass filter

xk = mmHg;
yk = b0*xk + b1*xk1 + b2*xk2 + b3*x3 + b4*x4 +
(a0*yk + a1*yk1 + a2*yk2 + a3*yk3 + a4*yk4);

yk4 = yk3; yk3 = yk2; yk2 = yk1; yk1 = yk;
xk4 = xk3; xk3= xk2; xk2 = xk1; xk1 = xk;

if(store == true){
enqueue(&oscil_queue, yk);
enqueue(&press_queue, mmHQ);
//for data aquisition
/printf("{TIMEPLOT|data|RawPressure|T|%d}\n", (uint32_t)((yk - 740)*1000)); //
DEBUG
/printf("{TIMEPLOT]data|OscilAmplitude| T|%d}\n", (uint32_t)((yk_h*1000)));

}

vTaskDelayUntil(&last_wake_time, pdMS_TO_TICKS(25));
}

void pressure_control_handler(void *params){ TickType_t last_ wake_time = xTaskGetTickCount();

// Array for bpom measurement

const float Ts = 0.025;

measure_stage measure_STATUS;
const uint32_t N = 512;

int offset = 500;

float max_harmonic=0;
measure_STATUS = MEASURE_IDLE;
float sys_r = 0;

float dias_r = 0;

59

while(1)}

measure_STATUS = read_measure_status();
switch(measure_STATUS)

case MIEASURE_IDLE:;

// PWM Control

ESP_LOGI(TAG, "Ready for measurement");
//float ref_pressure = 0;

// Valve control

gpio_set_level(VALVE_PIN, 0);/valveopen
break;

case SCHEDULED:

ESP_LOGI(TAG, "Scheduled measurement");

ledc_fade_func_install(0);

measure_STATUS = INFLATING; ESP_LOGI(TAG, "Proceeding to inflate");
gpio_set_level(VALVE_PIN, 1);/valve closed

//Comenzamos a guardar los datos

store = true;

ledc_set fade time_and_start(LEDC_LOW_SPEED_MODE, PUMP_CHANNEL_A,
2800, 1500, LEDC_FADE_WAIT_DONE);

first_pressure = last_queue_value(&press_queue);
break;

case INFLATING:;

float current_pressure = last_queue_value(&press_queue);
printf("Pressure measured %f \r\n", current_pressure);
if (current_pressure > 890.)

measure_STATUS = DEFLATING;

}

break;

case DEFLATING:;
gpio_set_level(VALVE_PIN, 0);
ESP_LOGI(TAG, "Proceeding to deflate");

ledc_set fade time_and_start(LEDC LOW_SPEED_MODE,
PUMP_CHANNEL_A, 0, 35000, LEDC_FADE_WAIT_DONE);

store = false;
measure_STATUS = DONE; break;

case DONE:
gpio_set_level(VALVE_PIN, 0);
ESP_LOGI(TAG, "Measurement done");
vTaskDelay(pdMS_TO_TICKS(500));

//BUSCAMOOS LOS MAXIMOS LOCALES CON ENVPEAKS
int minD=30; /minima distancia entre picos

init_envelope(&env, minD, 2800);
findPeaks(&env, &oscil_queue);

int sys= env.As_idx;

int dias= env.Ad_idx;

sys_r = (press_queue.arr[sys])-740;

60

dias_r = (press_queue.arr[dias])-740;

//Calculamos BPM
complex *ordered_bpm_arr = (complex *) malloc(N*sizeof(complex));
complex *“temp = (complex *) malloc(N*sizeof(complex));

for (size_tj=0;j<N;j++)
ordered_bpm_arr[j.Im = 0.;
ordered_bpm_arr[j].Re = oscil_queue.arr_norm[offset + j];

}

fft(ordered_bpm_arr, N, temp); // Use unordered array as scratch
max_harmonic = get_highest_harmonic(ordered_bpm_arr, N, 1/Ts);

61

free(ordered_bpm_arr); free(temp);

printf("Highest harmonic is %4.4f \n", max_harmonic);
printf("BPM: %f \n", max_harmonic*60);

free_envelope(&env);

free_queue(&press_queue);

free_queue(&oscil_queue); measure_ STATUS = WRITE_RESULTS;
break;

case WRITE _RESULTS:

printf("sys Pressure: %f \n", sys_r); printf("dias Pressure: %f \n", dias_r);
printf("first Press %f: \n", first_pressure);

printf("Highest harmonic is %4.4f \n", max_harmonic);

printf("BPM: %f \n", max_harmonic*60);
write_measured_bpm(60*max_harmonic, sys_r,dias_r);
ESP_LOGI(TAG, "write_result_status");

break; default:
break;

}

write_measure_status(measure_STATUS);
vTaskDelayUntil(&last_wake time, pdMS_TO_TICKS(50));

}

static void gui_manager_task(void *pvParameter) {
(void) pvParameter;

TickType_t last_wake_time = xTaskGetTickCount();
Iv_init();

Ivgl_driver_init();

// Use double buffered when not working with monochrome displays

62

static Iv_color_t buf1[DISP_BUF_SIZE];

static Iv_color_t buf2[DISP_BUF_SIZE]; static Iv_disp_buf t disp_buf;
uint32_t size_in_px = DISP_BUF_SIZE;
Iv_disp_buf_init(&disp_buf, buf1, buf2, size_in_px);

Iv_disp_drv_t disp_drv; Iv_disp_drv_init(&disp_drv);
disp_drv.flush_cb = disp_driver_flush;
disp_drv.buffer = &disp_buf;
Iv_disp_drv_register(&disp_drv);

// Create and start a periodic timer interrupt to call Iv_tick_inc

const esp_timer_create_args_t periodic_timer_args = {

.callback = &lv_tick_task,

.name = "periodic_gui"

I3

esp_timer_handle_t periodic_timer;
ESP_ERROR_CHECK(esp_timer_create(&periodic_timer_args, &periodic_timer));
ESP_ERROR_CHECK(esp_timer_start periodic(periodic_timer, LV_TICK_PERIOD_MS
*1000));

// Create the demo application
pp_ui();

while (1) {

// Delay 1 tick (assumes FreeRTOS tick is 10ms
vTaskDelay(pdMS_TO_TICKS(10));

Iv_task_handler();

}

vTaskDelayUntil(&last_wake_time, pdMS_TO_TICKS(100));
}

static void Iv_tick task(void *arg) {
(void) arg;
Iv_tick_inc(LV_TICK_PERIOD_MS);

63

2. findPeaks.c

/*

* findPeaks.c

* Created on: 5 oct. 2021
* Author: romeoisabel

¥

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <math.h>
#include "fifo_queue.h"
#include "findPeaks.h"

void init_envelope(struct envelope *eny, int d, int nelems){

env->MAXSIZE = nelems;

env->y = malloc(nelems*sizeof(float));
env->minD=d;
env->x = malloc(nelems*sizeof(float));

env->MAP =0;
env->MAP_idx = 0;
env->As=0;
env->As_idx= 0;
env->Ad=0.;
env->Ad_idx= 0;

//env->iPk = malloc(nelems*sizeof(float));

}

void free_envelope(struct envelope “env){
free(env->y);
free(env->x);
env->MAXSIZE=0;
env->minD=0;
env->MAP =0
env->MAP_idx = 0;
env->As=0;
env->As_idx= 0;
env->Ad=0.;
env->Ad_idx= 0;

void findPeaks(struct envelope *env, struct fifo_queue *oscil_norm){
float *yTemp;
int oscil_size = oscil_norm->size;
printf("oscil_size= %d \n", oscil_size);
yTemp = malloc((oscil_size +2)*sizeof(float));

for(int i=0; i<(oscil_size +2); i++){

if(i==0){

yTempli]=0;

}

else if(i==oscil_size +1){
yTempl[i] = 0;

}

else {
yTempli] = oscil_norm->arr_norm[i-1];
}

}

//Hacemos resta de los valores adyacentes a lo largo del array
//y sacamos el signo de cada valor

float *diff;

signed

int *s;

diff = malloc((oscil_size+2)*sizeof(float)); s = malloc((oscil_size+2)*sizeof(int)); printf("g \n");

for(int i=0; i<(oscil_size+2); i++){
if(i>0){
diffi-1] = yTemp[i]-yTempli-1];
}

}

for(int i=0; i<(oscil_size+2); i++){
if(diff[i]>0){ sl[i] = 1;
}
else if(diff[i]<0){
s[i] = -1;
}

else s[i] = 0;

//Buscamos los maximos locales (su localizacio, indice)

//para ello hacemos la resta de los valores adyacentes a lo largo de s
//y buscamos donde sea menor de 0

signed int *diffS;

diffS = malloc((oscil_size+2)*sizeof(int));

struct fifo_queue iMax;
init_fifo_queue(&iMax, (oscil_size+2));

for(int i=0; i<(oscil_size+2); i++){
if(i>0){
diffS[i-1] = s[i]-s[i-1];
}
}

for(int i=0; i<(oscil_size+2); i++){
if(diffS[i]<0){
enqueue(&iMax, i);

}
}

struct fifo_queue iPk;

init_fifo_queue(&iPk, (oscil_norm->size+2));

int size_iMax = iMax.size;

for(int i=0; i<=size_iMax; i++){
enqueue(&iPk, i-1);

65

66

//ffindPeaksSeparatedByMore ThanMinPeakDistance

//guardamos peaks y locs en dos variables

int size_iMax = iMax.size;

float pks[size_iMax];

float locs[size_iMax];

/ocs=iPk;

printf("k \n");

for(int i=0; i<size_iMax; i++){
pksl[i] = oscil_norm->arr_norm[(int)iMax.arr[il];/// //////////////arr_norm
locs[i] = iMax.arr[i];

}

//ordenamos los Peaks de mayor a menor y guardamos
//los idx ordenados tmbn en otro array
printf("size_iMax= %d \n", size_iMax);

struct sort_queue

{

float value;
int idx;

2
struct sort_queue sortldx[size_iMax];

for (inti=0;i < size_iMax; i++)
{

sortldx]i].value = pksJi]; sortldx[i].idx = (int)locs]i];
}

//decending function
int comp(const void *a, const void *b){
struct sort_queue *a1 = (struct sort_queue *)a;
struct sort_queue *a2 = (struct sort_queue *)b;
if ((*a1).value > (*a2).value)) {
return -1;
}

else if ((*a1).value < (*a2).value) {
return 1;

}

else return O;

67

gsort(sortldx, size_iMax, sizeof(sortldx[0]), comp);

//una vez tenemos el array de idx ordenado obtenemos el
//array de x indexando sortldx

for(int i=0; i<size_iMax; i++)
locs]i] = sortldx][i].idx;

}

int idelete[size_iMax];

for(int i=0; i<size_iMax; i++){
idelete[i]=0;

}

//If the peak is not in the neighborhood of a larger peak, find
//secondary peaks to eliminate.
int masc1[size_iMax];
int masc2[size_iMax];
for(int i=0; i<size_iMax; i++)
if(lidelete[i]){

for(int k=0; k<size_iMax; k++){
if(locs[k]>=(locs[i]-env->minD)¥{
masci1[k]=1;

} else masc1[k]=0;

if(locs[k]<=(locs][i]+env->minD)){
masc2[k]=1;
} else masc2[k]=0;

}

for(int j=0; j<=size_iMax; j++){
idelete[j] = idelete[j] | (masc1[j] & masc2[jl);
}
idelete[i] = O; /keep current peak
}
}

68

//Para cribar los maximos solo nos quedaremos con los maximos

//en los que el valor en el indice correspondiente en el array idelete
//sea 0. -> Ej: sortValue=[5, 3, 2 ,1] sortldx=[2, 3, 1, 0] idelete=[0, 0, 1, 0]
//nos quedaremos con los maximos situados en 2 3y 0

//Para ello crearemos otro struct sort con los valores definitivos

//Debemos contar cuantos maximos quitamos para saber el size del nuevo
//struct de valores
int cnt=0;
for(int i=0; i<size_iMax; i++)

if(idelete[i]==1)%

cnt++;

}

}

int size_def = size_iMax-cnt;
struct sort_queue def[size_def];
cnt=0;

for(int i=0; i<size_iMax; i++)
if(idelete[i]==0}
def[cnt].value = sortldx[i].value;
deflcnt].idx = sortldx[i].idx;

cnt++;
//guardamos valores definitivos
}

}

cnt=0;

//Una vez tenemos seleccionados los maximos los volvemos a reordenar
//en orden cronologico
int comp2(const void *a, const void *b)

{

struct sort_queue *a1 = (struct sort_queue *)a;
struct sort_queue *a2 = (struct sort_queue *)b;
if ((*a1).idx > (*a2).idx)

return 1;

else if ((*a1).idx < (*a2).idx)

return -1; else return O;

}
gsort(def, size_def, sizeof(def[0]), comp2);

//Una vez lo tenemos reordenado guardamos los idx

//hacemos bookend con 0 a los arrays de valores e indices finales para interpolar bien

for(int i=0; i<size_def+2; i++){
if((i==0) | (i==(size_def+1))X

env->y[i]=0;
env->x[i]=0;

}

else {
env->y[i]=def[i-1].value;
env->x[i]=deffi-1].idx;

}

69

70

float xi[oscil_size +2];
float yi[oscil_size +2];
//Inicializamos el array de valores de x de la iterpolacion
for(int i=0; i<oscil_size+2; i++){
xi[i] = 1i;

}

//Algoritmo 2

for(int i=0; i<(size_def+1); i++){
int x0 = env->Xx][i];
int x1 = env->x[i+1];
float yO = env->y[i]; float y1 = env->y[i+1]; yi[x0]=yO0;
yilx1]=y1;

for(int j=x0+1; j<x1; j++){
int xp = xi[j];
float yp = y0+ ((y1-y0)/(x1-x0))*(xp-x0);
yilxpl=yp;

//Una vez tenemos la envelope hecha solo queda buscar el maximo que sera el MAP
//Una vez tengamos el MAP las medidas de SYS y DIAS seran unos porcentaje fijos
//del MAP(por arriba o por abajo)

float max=0; int max_idx=0;

//Para Buscar el MAP buscaremos a partir del indice 500 + o - mpara evitar los
//maximos del principio

for(int i=500; i<(oscil_size-100); i++)

if((yi[i])>max){
max=(yi[i]); max_idx=i,

}

float MAP=max;

printf("MAP %f \n", MAP);

printf("MAP_idx %d \n", max_idx);

float Ad=0.5*MAP;

float As=0.75*MAP;

//Buscamos el idx donde se encuentra As y Ad
float d=5; float d_min=5;

int x_min_sys=0;
int x_min_dias=0;

for(int i=500; i<max_idx; i++){

71

d=abs((yi[i])-abs(As));

if(d<d_min){
d_min=d;
X_min_sys=i;
}
}
d=5;
d_min=5;

for(int i=max_idx; i<1500; i++){
d=abs((yi[i])-abs(Ad));
if(d<d_min){
d_min=d;
X_min_dias=i;

}

}

env->MAP = MAP;

env->As = As; env->Ad = Ad;

env->MAP_idx = max_idx; env->As_idx = x_min_sys; env->Ad_idx = x_min_dias;

printf("SYS_idx %d \n", env->As_idx);
printf("DIAS_idx %d \n", env->Ad_idx);

//Obtenemos los valores de presion dias y sys con los indices obtenidos
//float press_sys=press_queue.arr{x_min_sys];
//float press_dias=press_queue.arr[x_min_dias];

//Vaciamos las colas

free(yTemp); free(diff); free(s);
free_queue(&iMax);

3. display_gui.c

/*

* display gui.c

* Created on: 21 oct. 2021
* Author: romeoisabel

4

#include "display_gui.h"
#include <stdio.h>

#include <stdlib.h>

#include <stdint.h>

#include <string.h>
#include <stdbool.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "driver/gpio.h"
#include "freertos/queue.h”
#include "esp_log.h"
#include "esp_types.h"
#include "driver/i2c.h"

/**** User variables ****/
#define B2 35 // Middle button

// Main menu and globals static Iv_group_t* pp_group;
static Iv_obj_t *btn_settings;
static Iv_obj_t *btn_measure;
static Iv_obj_t *btn_record;
static Iv_style_t window_bg_style;
static Iv_style_t win_btn_style;

// Settings menu

static Iv_obj_t* devmode_switch;
static Iv_obj_t* settings_menu;
static Iv_obj_t *btn_settings_close;
static Iv_obj_t* set_devmode_btn;
static Iv_obj_t* user1_btn;

static Iv_obj_t* user2_btn;

static Iv_obj_t* user3_btn;

static Iv_obj_t* set_time_btn;
static Iv_obj_t* motor_control_btn;
static Iv_obj_t* view_graph_btn;
static bool dev_state = false;
static Iv_style t btn_settings_style;

// Measure window

static Iv_obj_t *btn_measure_close; Iv_task_t *get_measure_status_task;
measure_stage measure_ STATUS = MEASURE_IDLE;

static Iv_obj_t * measure_status_label;

static float measured_bpm =0

static float measured_sys = 0;

73

static float measured_dias = 0;

//Results window

static Iv_obj_t *btn_results_close;
static Iv_obj_t * sys_label ;

static Iv_obj_t * dias_label ;
static Iv_obj_t * bpm_label ;
static Iv_obj_t * par;

/**** User function prototypes ****/

#if ISIMULATION

int32_t btn_encoder_count;

bool get_encoder_button_data_cb(lv_indev_drv_t *indev_drv,
Iv_indev_data_t *data);

uint8_t pwm_power;

#endif

static void btn_settings_cb(lv_obj_t * btn, Iv_event_t event);

// Settings menu
static void settings_window();
static void btn_devmode_cb(lv_obj_t * btn, Iv_event_t event);

static void close_win_settings_cb(lv_obj_t *btn, Iv_event t event);

static void btn_view_graph_cb(lv_obj_t *btn, Iv_event_t event);
static void add_dev_settings();
static void btn_motor_control_cb(lv_obj_t *btn, Iv_event_t event);

// Measure window
static void measure_window();
static void btn_measure_cb(lv_obj_t * btn,
Iv_event_t event);
static void close_win_measure_cb(lv_obj_t *btn,
Iv_event_t event);
static void
get_measure_status_cb(lv_task t
*task);
//void write_measured_bpm(float bpm);

// Measure result window

static void measure_result_window();

static void close_win_results_cb(lv_obj_t *btn, Iv_event_t event);
extern void write_measured_bpm(float bpm, float sys, float dias);

void pp_ui(void){

pp_group = Iv_group_create();

/* Initialize input driver(encoder) */
v_indev_drv_t enc_drv;
Iv_indev_drv_init(&enc_drv);
enc_drv.type = LV_INDEV_TYPE_ENCODER;
#if SIMULATION

enc_drv.read_cb =
mousewheel_read;

#else

enc_drv.read_cb =
get_encoder_button_data_cb;
#endif

74

Iv_indev_t “enc_indev = Iv_indev_drv_register(&enc_drv);
Iv_indev_set _group(enc_indev, pp_group);

/* style win bg */

Iv_style_init(&window_bg_style);

Iv_style set bg_color(&window_bg_style, LV_STATE_DEFAULT,
Iv_color_hex(0xFFFFFF)); Iv_style set bg grad_color(&window_bg_style,
LV_STATE_DEFAULT, Iv_color_hex(0xdff9fb));

Iv_style set bg_grad_dir(&window_bg_style, LV_STATE_DEFAULT,
LV_GRAD_DIR_VER); Iv_style_set_bg_main_stop(&window_bg_style,
LV_STATE_DEFAULT, 10);

Iv_style set bg grad_stop(&window_bg_style, LV_STATE_DEFAULT, 200);
/* Create main window */

Iv_obj _t *win_main = Iv_win_create(lv_scr_act(), NULL);
Iv_win_set_title(win_main, "Main menu");
Iv_win_set_header_height(win_main, 40);
Iv_obj_set style local text color(win_main, LV_WIN_PART_HEADER,
LV_STATE_DEFAULT, Iv_color_hex(0xffffff));
Iv_obj_set_style local bg_color(win_main, LV_WIN_PART_HEADER,
LV_STATE_DEFAULT, Iv_color_hex(0x686de0)); / f2f9fa
Iv_obj_add_style(win_main, LV_WIN_PART_BG, &window_bg_style);

/* label main window */

Iv_obj_t *label_win_main = Iv_label_create(lv_scr_act(), NULL);
Iv_label_set_text(label_win_main, "22:34");

Iv_obj_set style local_text_color(label_win_main, LV_LABEL_ PART_MAIN,

LV_STATE_DEFAULT, Iv_color_hex(0xFFFFFF)); Iv_obj_align(label_win_main, win_main,

LV_ALIGN_IN_TOP_RIGHT, -20, 12);
/* Add buttons to main window */

/* button style */

static Iv_style_t main_btn_style;

Iv_style init(&main_btn_style);

Iv_style_set_radius(&main_btn_style, LV_STATE_DEFAULT, 10);
Iv_style_set_outline_color(&main_btn_style, LV_STATE_DEFAULT,
Iv_color_hex(0OxFFFFFF));

Iv_style set_border_color(&main_btn_style, LV_STATE_DEFAULT,
Iv_color_hex(0OxFFFFFF));

Iv_style set border_opa(&main_btn_style, LV_STATE_DEFAULT,

LV_OPA_30); Iv_style set text color(&main_btn_style,

LV_STATE_DEFAULT, Iv_color_hex(0xFFFFFF));
Iv_style_set_outline_width(&main_btn_style, LV_STATE_FOCUSED, 7);

Iv_style set outline_color(&main_btn_style, LV_STATE_FOCUSED,
Iv_color_hex(0xb0eaff)); Iv_style_set outline_opa(&main_btn_style,
LV_STATE_FOCUSED, LV_OPA_80);

Iv_style set transform_width(&main_btn_style, LV_STATE_FOCUSED, 5);
Iv_style_set_transform_height(&main_btn_style, LV_STATE_FOCUSED, 5);

/* label style */

static Iv_style _t main_label_style;

Iv_style_init(&main_label_style);

Iv_style set text_color(&main_label_style, LV_STATE_DEFAULT, Iv_color_hex(0xffffff));
/* heart icon style */

static Iv_style t heart_icon_style; Iv_style_init(&heart_icon_style);

Iv_style set text color(&heart_icon_style, LV_STATE_DEFAULT, Iv_color_hex(0xffffff));
Iv_style set text font(&heart_icon_style, LV_STATE_DEFAULT, &heart_44);

static Iv_style_t user_icon_style; Iv_style_init(&user_icon_style);

Iv_style set text_color(&user_icon_style, LV_STATE_DEFAULT, Iv_color_hex(0xffffff));
Iv_style set text font(&user_icon_style, LV_STATE_DEFAULT, &user_44);

/* icon style */

75

static Iv_style t main_icon_style; Iv_style init(&main_icon_style);
Iv_style set_text_color(&main_icon_style, LV_STATE_DEFAULT, Iv_color_hex(0xffffff));
Iv_style set text font(&main_icon_style, LV _STATE_DEFAULT, &Iv_font_montserrat_44);

const uint8_t padding_btn = 16;
const uint8_t button_wh = 85;

/* btn settings */

btn_settings = Iv_btn_create(win_main, NULL);

Iv_obj_set_size(btn_settings, button_wh, button_wh);
Iv_obj_align(btn_settings, NULL, LV_ALIGN_IN_LEFT_MID, padding_btn, 0);
Iv_obj_set _style local bg_color(btn_settings, LV_BTN_PART_MAIN,
LV_STATE_DEFAULT, Iv_color_hex(0x95afc0));

Iv_obj_set style local_bg_color(btn_settings, LV_BTN_PART_MAIN,
LV_STATE_PRESSED, Iv_color_hex(0xc3dbeb)); Iv_group_add_obj(pp_group,
btn_settings);

Iv_obj_add_style(btn_settings, LV_BTN_PART_MAIN, &main_btn_style);
Iv_obj_set _event cb(btn_settings, btn_settings_cb);

/* icon settings */

Iv_obj_t *icon_settings = Iv_label_create(btn_settings, NULL);
Iv_label_set_text(icon_settings, "\uf007");

Iv_obj_set style local pad_left(icon_settings, LV_LABEL_ PART_MAIN,
LV_STATE_DEFAULT, 2);

//lv_obj_set_style local_pad_top(icon_settings, LV_LABEL PART_MAIN,
LV _STATE DEFAULT, 20);

Iv_obj_add_style(icon_settings, LV_LABEL_PART_MAIN, &user_icon_style);
/* label settings */

Iv_obj_t *label_settings = Iv_label_create(btn_settings, NULL);
Iv_label_set_text(label_settings, "User");

Iv_obj_add_style(label_settings, LV_LABEL_PART_MAIN, &main_label_style);

76

/* btn measure */

btn_measure = Iv_btn_create(win_main,

NULL); Iv_obj_set_size(btn_measure,

button_wh, button_wh);

Iv_obj_align(btn_measure, btn_settings, LV_ALIGN_OUT_RIGHT_MID, padding_btn, 0);
Iv_obj_set_style local_bg_color(btn_measure, LV_BTN_PART_MAIN, LV_STATE_DEFAULT,
Iv_color_hex(0xeb4d4b));

Iv_obj_set_style local_bg_color(btn_measure, LV_BTN_PART_MAIN, LV_STATE_PRESSED,
Iv_color_hex(0xff7979)); lv_group_add_obj(pp_group, btn_measure);
Iv_obj_add_style(btn_measure, LV_BTN_PART_MAIN,

&main_btn_style); Iv_obj_set_event_cb(btn_measure,

btn_measure_cb);

/* icon measure */

Iv_obj_t *icon_measure = Iv_label create(btn_measure, NULL);

/v_label_set text(icon_measure, LV_SYMBOL_PLAY);

Iv_label_set_text(icon_measure, "\uf004");

Iv_obj set style local pad_left(icon_measure, LV_LABEL_PART_MAIN, LV_STATE_DEFAULT, 2);
/lv_obj_add_style(icon_measure, LV_LABEL PART_MAIN, &main_icon_style);
Iv_obj_add_style(icon_measure, LV_LABEL_PART_MAIN, &heart_icon_style);

/* label measure */

Iv_obj_t *label_measure =

Iv_label_create(btn_measure, NULL);

Iv_label_set text(label _measure,

"Measure");

Iv_obj_add_style(label_measure, LV_LABEL_PART_MAIN, &main_label_style);

/* btn records */

btn_record = Iv_btn_create(win_main, NULL);

Iv_obj_set size(btn_record, button_wh,

button_wh);

Iv_obj_align(btn_record, btn_measure, LV_ALIGN_OUT_RIGHT_MID, padding_btn, 0);
Iv_obj_set_style_local_bg_color(btn_record, LV_BTN_PART_MAIN, LV_STATE_DEFAULT,
Iv_color_hex(0xf9ca24)); Iv_obj_set_style local_bg_color(btn_record, LV_BTN_PART_MAIN,
LV_STATE_PRESSED, Iv_color_hex(0xf6e58d)); Iv_group_add_obj(pp_group, btn_record);
Iv_obj_add_style(btn_record, LV_BTN_PART_MAIN, &main_btn_style);

/* icon records */

Iv_obj_t *icon_record = Iv_label_create(btn_record, NULL);

Iv_label_set_text(icon_record, LV_SYMBOL_DIRECTORY);

Iv_obj_set style local pad_left(icon_record, LV_LABEL PART_MAIN,
LV_STATE_DEFAULT, 2); Iv_obj_add_style(icon_record,

LV_LABEL_PART_MAIN, &main_icon_style);

/* label records ¥/

Iv_obj_t *label_record =

Iv_label_create(btn_record, NULL);

Iv_label_set_text(label_record,

"Records");

Iv_obj_add_style(label_record, LV_LABEL_PART_MAIN, &main_label_style);

/* window buttons style */

Iv_style_init(&win_btn_style);

Iv_style set radius(&win_btn_style,

LV_STATE_DEFAULT, 10);

Iv_style set outline_color(&win_btn_style, LV_STATE_DEFAULT,
Iv_color_hex(0xFFFFFF)); Iv_style_set_border_color(&win_btn_style,
LV_STATE_DEFAULT, Iv_color_hex(0OxFFFFFF));

Iv_style set border opa(&win_btn_style, LV_STATE_DEFAULT,
LV_OPA_30); Iv_style_set text color(&win_btn_style, LV_STATE_DEFAULT,
Iv_color_hex(0OxFFFFFF)); Iv_style set outline_width(&win_btn_style,
LV_STATE_FOCUSED, 2); Iv_style set outline_color(&win_btn_style,

77

LV_STATE_FOCUSED, Iv_color_hex(0xb0eaff));

Iv_style set_outline_opa(&win_btn_style, LV_STATE_FOCUSED,
LV_OPA_80); Iv_style_set_transform_height(&win_btn_style,
LV_STATE_DEFAULT, -10);

Iv_style set transform_width(&win_btn_style, LV_STATE_DEFAULT, -10);

}

#if ISIMULATION
bool get_encoder_button_data_cb(lv_indev_drv_t *indev_drv, Iv_indev_data_t *data){
static int32_t last_encoder_diff = 0;
int32_t encoder_val = btn_encoder_count;
int32_t encoder_diff = encoder_val - last_encoder_diff;
data->enc_diff = encoder_diff;
last_encoder_diff = encoder_val;

//btn select=B2 (middle)
if (gpio_get_level(B2)) data->state = LV_INDEV_STATE_PR;
else data->state = LV_INDEV_STATE_REL;

return false;

}
#endif

static void btn_settings_cb(lv_obj_t * btn, Iv_event_t event){
if(event == LV_EVENT_SHORT_CLICKED) {
settings_window();

}static void btn_measure_cb(lv_obj_t * btn, Iv_event_t event){
if(event == LV_EVENT_SHORT_CLICKEDX
measure_STATUS = SCHEDULED;
measure_window();
}
}

void write_measure_status(measure_stage stage){
measure_STATUS = stage;

}

measure_stage read_measure_status()}{
return measure_STATUS;

}

78

static void measure_window()}

/* Remove items from scrolling group */
Iv_group_remove_all_objs(pp_group);

/* Create window */

Iv_obj_t *win_measure =

Iv_win_create(lv_scr_act(),

NULL);

Iv_win_set_title(win_measur

e’ "");

Iv_win_set_header_height(w

in_measure, 40);

Iv_obj_set_style local text color(win_measure, LV_WIN_ PART_HEADER,
LV_STATE_DEFAULT, Iv_color_hex(0xffffff));

Iv_obj_set style local _bg_color(win_measure, LV_WIN_PART_HEADER,
LV_STATE_DEFAULT, Iv_color_hex(0x5a6975));
/lv_obj_add_style(win_measure, LV_WIN_PART_BG, &window_bg_style);
Iv_obj_set_style local_bg_color(win_measure, LV_WIN_PART_BG, LV_STATE_DEFAULT,
Iv_color_hex(0xcedfed));

//0x130f40

Iv_win_set_layout(win_measure, LV_LAYOUT_COLUMN_MID);

/* Close button */

btn_measure_close =

Iv_win_add_btn_right(win_measure, "");

Iv_obj add_style(btn_measure_close,

LV_BTN_PART_MAIN, &win_btn_style);
Iv_obj_set_event_cb(btn_measure_close,

close_win_measure_cb);

Iv_obj_t *close_btn_label =

Iv_label_create(btn_measure_clo

se, NULL);

Iv_label_set_text(close_btn_label,

LV_SYMBOL_CLOSE);

Iv_obj_set style local text color(close_btn_label, LV _LABEL PART_MAIN,
LV_STATE_DEFAULT, Iv_color_hex(0xffffff)); Iv_group_add_obj(pp_group,
btn_measure_close);

/* Label */

Iv_obj_t * measure_label = Iv_label_create(win_measure, NULL);
Iv_label_set_text(measure_label, "\n\n\nPerforming measurement...\n
Please stay still."); Iv_label_set_align(measure_label,
LV_LABEL_ALIGN_CENTER);

get_measure_status_task = Iv_task_create(get_measure_status_cb, 500,
LV_TASK_PRIO_MID,NULL);

79

static void measure_result_window(){

// Remove items from scrolling group
Iv_group_remove_all_objs(pp_group);

// Create window

Iv_obj_t *win_result =
Iv_win_create(lv_scr_act(), NULL);
Iv_win_set_title(win_result, ");

Iv_win_set_header_height(win_result, 40);

Iv_obj_set style local text color(win_result, LV_WIN_PART_HEADER, LV_STATE_DEFAULT,
Iv_color_hex(0xffffff)); Iv_obj_set_style local_bg_color(win_result, LV_WIN_PART_HEADER,
LV_STATE_DEFAULT, Iv_color_hex(0x5a6975));

//lv_obj_add_style(win_measure, LV_WIN_PART_BG, &window_bg_style);
Iv_obj_set_style local_bg_color(win_result, LV_WIN_PART_BG, LV_STATE_DEFAULT,
Iv_color_hex(0xcedfed)); /0x130f40

/lv_win_set layout(win_result, LV_LAYOUT _COLUMN_MID);

// Close button

btn_results_close = Iv_win_add_btn_right(win_result, "");
Iv_obj_add_style(btn_results_close, LV_BTN_PART_MAIN,
&win_btn_style); Iv_obj_set _event_cb(btn_results_close,
close_win_results_cb);

Iv_obj_t *close_btn_label =

Iv_label_create(btn_results_close, NULL);
Iv_label_set_text(close_btn_label,

LV_SYMBOL_CLOSE);

Iv_obj_set _style local text color(close_btn_label, LV_LABEL PART_MAIN, LV_STATE_DEFAULT,
Iv_color_hex(0xffffff)); Iv_group_add_obj(pp_group, btn_results_close);

/* heart icon style %/

static Iv_style_t heart_icon_style; Iv_style_init(&heart_icon_style);

/v_style_set text_color(&heart_icon_style, LV _STATE_DEFAULT, Iv_color_hex(0xffffff));
Iv_style set text font(&heart_icon_style, LV_STATE_DEFAULT, &heart_20);

/*mini window style*/

static Iv_style t par_style; Iv_style_init(&par_style);
Iv_style_set_bg_color(&par_style,
LV_STATE_DEFAULT,v_color_hex(0Oxa6a6ab));

Iv_style set outline_width(&par_style, LV_STATE_DEFAULT, 2);
Iv_style set outline_color(&par_style, LV_STATE_DEFAULT,
Iv_color_hex(0x5a6975)); Iv_style_set_outline_pad(&par_style,
LV_STATE_DEFAULT, 8);

par = Iv_obj_create(win_result, NULL); /“Create a parent object on the current screen™/
Iv_obj_set_size(par, 200, 160);

Iv_obj_align(par,NULL,

LV_ALIGN_CENTER,0,0);

Iv_obj add_style(par, LV_LABEL_PART_MAIN, &par_style);
Iv_group_add_obj(pp_group, par);

//lv_obj_set _color(par, Iv_color_hex(Oxaba6a6)),

80

/*result style*/

static Iv_style_t result_style; Iv_style_init(&result_style);

Iv_style set text font(&result_style, LV_STATE_DEFAULT, &montserrat_64);
static Iv_style t bpm_style; Iv_style init(&bpm_style);
Iv_style_set text font(&bpm_style, LV_STATE_DEFAULT,&Iv_font_montserrat_30);

/* Label SYS™/

sys_label = Iv_label_create(par, NULL);

Iv_obj_add_style(sys_label, LV_LABEL PART_MAIN, &result_style);
Iv_obj_align(sys_label, par,

LV_ALIGN_CENTER, 40,-30);

/* Label DIAS?/

dias_label = Iv_label_create(par, NULL);
Iv_obj_add_style(dias_label,
LV_LABEL_PART_MAIN,
&result_style);

Iv_obj_align(dias_label, par,
LV_ALIGN_CENTER, 45,40);

/* Label BPM*/

bpm_label = Iv_label_create(par, NULL);
Iv_obj_add_style(bpm_label, LV_LABEL_PART_MAIN, &bpm_style);
Iv_obj_align(bpm_label, par, LV_ALIGN_CENTER, -45,45);

/*Label heart”/

Iv_obj_t * heart_label = Iv_label_create(par, NULL);
Iv_obj_add_style(heart_label, LV_LABEL_PART_MAIN, &heart_icon_style);
Iv_label_set_text(heart_label, "\uf004");

Iv_obj_align(heart_label, par, LV_ALIGN_CENTER, -80,45);

if(measure_STATUS == WRITE_RESULTS){
char buf1[30];
sprintf(buf1, "%2d", (int)(measured_bpm));
char buf2[30];
sprintf(buf2, "%2d", (int)(measured_sys));
char buf3[30];
sprintf(buf3, "%2d", (int)(measured_dias));
Iv_label_set_text(bpm_label, buf1);
Iv_label_set_text(sys_label, buf2);
Iv_label_set_text(dias_label, buf3);

if (gpio_get_level(B2)){
uint32_t btn_id = 0;
Iv_event_send(btn_results_close, LV_EVENT_RELEASED, &btn_id);

Iv_win_close_event_cb(btn_results_close, LV_EVENT_RELEASED);

/* Re-add settings group items */
Iv_group_add_obj(pp_group, btn_settings);
Iv_group_add_obj(pp_group, btn_measure);
Iv_group_add_obj(pp_group, btn_record);
measure_STATUS = MEASURE_IDLE;

81

}

static void close_win_results_cb(lv_obj_t *btn, Iv_event_t event){
if(event == LV_EVENT_RELEASED){

Iv_win_close_event_cb(btn, event);

/* Re-add settings group items */
Iv_group_add_obj(pp_group, btn_settings);
Iv_group_add_obj(pp_group, btn_measure);
Iv_group_add_obj(pp_group, btn_record);
measure_STATUS = MEASURE_IDLE;
}
}

static void close_win_measure_cb(lv_obj_t *btn, Iv_event_t event){
if(event == LV_EVENT_RELEASED){
Iv_win_close_event_cb(btn, event);
/* Re-add settings group items */
Iv_group_add_obj(pp_group, btn_settings);
Iv_group_add_obj(pp_group, btn_measure);
Iv_group_add_obj(pp_group, btn_record);

static void get_measure_status_cb(lv_task_t *task){

#if SIMULATION
static uint8_ti=5;
if (i== 0X
measure_STATUS = DONE;
write_measured_bpm(77, 114, 90);
}
i

#endif

if(measure_STATUS == WRITE_RESULTS){

measure_result_window();

}
#if SIMULATION

if(kk==1)
measure_S
TATUS =
MEASURE
_IDLE;
#endif

}

void write_measured_bpm(float bpm, float sys, float dias)}{
measured_bpm = bpm;

measured_sys = sys; measured_dias = dias;

}

static void settings_window(){

/* Remove items from scrolling group */

82

Iv_group_remove_all_objs(pp_group);

/* Create window */

Iv_obj_t *win_settings =

Iv_win_create(lv_scr_act(),

NULL);

Iv_win_set _title(win_settings

, "Settings");

Iv_win_set_header_height(w

in_settings, 40);

Iv_obj_set style local text_color(win_settings, LV_WIN_PART_HEADER,
LV_STATE_DEFAULT, Iv_color_hex(0xffffff)); Iv_obj_set_style local_bg_color(win_settings,
LV_WIN_PART_HEADER, LV_STATE_DEFAULT, Iv_color_hex(0x686de0)); // f2f9fa
Iv_obj_add_style(win_settings, LV_WIN_PART_BG, &window_bg_style);

/* Close button */

btn_settings_close =

Iv_win_add_btn_right(win_settings, "");
Iv_obj_add_style(btn_settings_close,

LV_BTN_PART_MAIN, &win_btn_style);

Iv_obj set event cb(btn_settings_close,

close_win_settings_cb);

Iv_obj_t *close_btn_label =

Iv_label create(btn_settings_close, NULL);
Iv_label_set_text(close_btn_label,

LV_SYMBOL_CLOSE);

Iv_obj_set_style local text color(close _btn_label, LV _LABEL PART_MAIN,
LV_STATE_DEFAULT, Iv_color_hex(0xffffff)); Iv_group_add_obj(pp_group,
btn_settings_close);

/* Create settings menu */

settings_menu = Iv_list_create(win_settings, NULL);

Iv_obj_set size(settings_menu, Iv_obj_get width_fit(lv_scr_act())-30,
Iv_obj_get_height_fit(lv_scr_act())-70);

/* Button style */

Iv_style init(&btn_settings_style);

Iv_style set outline_color(&btn_settings_style,
LV_STATE_FOCUSED, Iv_color_hex(0x22a6b3));
Iv_style_set_radius(&btn_settings_style,
LV_STATE_FOCUSED, 10);

/* User select Buttons */

set_devmode btn = Iv_list_add_btn(settings_menu,NULL,"User 1");
Iv_obj_add_style(set_devmode_btn, LV_BTN_PART_MAIN,
&btn_settings_style); devmode_switch = Iv_switch_create(win_settings, NULL);
Iv_obj_align(devmode_switch, devmode_switch, LV_ALIGN_IN_TOP_LEFT,
220, 6); Iv_obj_set_event_cb(set_devmode_btn,btn_devmode_cb);

set_time_btn = Iv_list_add_btn(settings_menu,LV_SYMBOL_EDIT,"Set time");
Iv_obj_add_style(set_time_btn, LV_BTN_PART_MAIN, &btn_settings_style);

Iv_group_add_obj(pp_group, set_devmode_btn);
Iv_group_add_obj(pp_group, set_time_btn);
if(dev_state){
add_dev_settings();
Iv_switch_on(devmode_switch, LV_ANIM_OFF);

83

84

static void btn_devmode_cb(lv_obj_t * btn, Iv_event_t event){
if(event == LV_EVENT_SHORT_CLICKED) {
Iv_switch_toggle(devmode_switch, LV_ANIM_ON);

if (dev_state){
dev_state = false;
Iv_list_remove(settings_menu, Iv_list_get_size(settings_menu)-1);
Iv_list_ remove(settings_menu, Iv_list_get size(settings_menu)-1);

} else{
dev_state = true; add_dev_settings();

}
}

static void close_win_settings_cb(lv_obj_t *btn, Iv_event_t event){
if(event == LV_EVENT_RELEASED)
Iv_win_close_event_cb(btn, event);
/* Re-add settings group items */
Iv_group_add_obj(pp_group, btn_settings);
Iv_group_add_obj(pp_group, btn_measure);
Iv_group_add_obj(pp_group, btn_record);

85

Anexo 2: Presupuesto

86

0. Introduccion

1. Materiales y componentes
1.1 Componentes electrénicos
1.2 Componentes no electrénicos

2. Presupuesto global

88

89
89
90

91

87

https://docs.google.com/document/d/1ilnUCev8XQW8utw-sUgPz4WHKELwVkoh/edit#heading=h.isvl3w4dsi02

0. Introduccion

En este documento se presenta el presupuesto del proyecto, dividido en diferentes
categorias. Todos los precios del documento estan en euros.

Por otro lado, los precios sefialados en este documento no incluyen el impuesto I.V.A, éste
se anadira en el célculo total.

88

1. Materiales y componentes

1.1 Componentes electrénicos

Precio Precio Precio
Nombre Designante Descripcion Cantidad Fabricante Proveedor (€) unitario (€) unitario ($)
Regulador 0,085318
LM7805 U4 de tension 1TF LCSC 92 0,08531892 0,105332
2N3904(
S0T-23) Q3,Q2 Transistor 2 KEC LCSC 0,009801 0,0049005 0,0121
K2-3.6x6 B1,B2,B4,B
J1_SMD 3 Botdn 4 LCSC 0,03645 0,0091125 0,045
Condensad
10uF Cé6 or 1 ValuePro LCSC 0,008424 0,008424 0,0104
PWR_CO
NN_2P P1 Conectores 1 Skywin Aliexpress 0,5751 0,5751 0,71
MTR_CO
NN_2P P3 Conectores 1 Skywin Aliexpress 0,5751 0,5751 0,71
VLV_CO
NN_2P P2 Conectores 1 Skywin Aliexpress 0,5751 0,5751 0,71
C17,C13,C9
,C15,C8,C1 Condensad
100n 8,C14 or 8 LCSC LCSC 0,008991 0,001123875 0,0111
Condensad
Tu C10 or 1 ValuePro LCSC 0,016119 0,016119 0,0199
Ningbo
DPY_CO Xinlaiya
NN_9P CN1 Conectores 1 Elec. LCSC 0,137214 0,137214 0,1694
FQP30N VBsemi 0,164618 0,082309486
o6L Q5,Q1 Transistor 2 Elec LCSC 973 5 0,2032333
MPRLSO Sensor de
025A ue presion 1 Honeywell Adafruit 12,1095 12,1095 14,95
ESP32-W
ROOM-3 Microcontr Espressif 2,314636
2DC us olador 1 Systems LCSC 56 2,31463656 2,857576
Condensaor
Tu C11,C12 es 2 ReliaPro |LCSC 0,09153 0,045765 0,113
Condensaor
100u c7 es 1 AVX LCSC 0,155925 0,155925 0,1925
Hubei
LED-Red(KENTO
0603) LED1 Diodo LED 1 Elec LCSC 0,00324 0,00324 0,004
LED-Blue EVERLIGH

(0603) LED2 Diodo LED 1T LCSC 0,012312 0,012312 0,0152

Nombre Designante Descripcion Cantidad

LD1117V
33

Tk

22k

10k

100k

1k

LM7806
CT

100nF

TN4007
W

330nF

LM324

smd
button

BTN_CO
NN_4P

DPY_CO
NN_9P

Motor

Vélvula

u3

R12,R5R4
R8,R2
R10,R13,R1

5R16,R7,R
9,R6

R11,R14

R3,R1

us

C2,C3,C5

D1,D2

C4,C1

U2

B5,86,87,B

8

CN2

us

Regulador
de tension

Resistencia
S

Resistencia
S

Resistencia
S

Resistencia
S

Resistencia
S

Regulador
de tensién

Condensad
ores

Diodo

Condensad
ores

Regulador
de tensién

Botones

Conectores

Pantalla
TFT

Bomba de
aire

Vélvula

Fabricante Proveedor (€)

1.2 Componentes no electronicos

Nombre

Descripcion Cantidad Fabricante

Brazalete
Brazalete de presion

1 Salorie

STMicroel

ectronics LCSC

Guangdon

g Fenghua

Advanced

Tech LCSC

Uniroyal

Elec LCSC

Uniroyal

Elec LCSC

Uniroyal

Elec LCSC

Guangdon

g Fenghua

Advanced

Tech LCSC

Unisonic

Tech LCSC

LCSC LCSC

BLUE

ROCKET LCSC

ValuePro LCSC

PUOLOP LCSC

TLZWLA Aliexpress

Skywin Aliexpress

TZT Aliexpress

World

Driven Aliexpress

Shenzhen Aliexpress
Proveedor
Aliexpress

Precio Precio
unitario (€)

0,28998 0,28998
0,001944 0,000648
0,001539 0,0007695
0,003529285
0,024705 714
0,006885 0,0034425
0,001944 0,000972
0,195048 0,195048
0,008991 0,002997
0,006885 0,0034425
0,005994 0,002997
0,061236 0,061236
1,35 0,3375
0,64 0,64
4,83 4,83
5,04 5,04
1,16 1,16

Precio (£)
4,84

Precio
unitario ($)

0,358

0,0024

0,0019

0,0305

0,0085

0,0024

0,2408

0,0111

0,0085

0,0074

0,0756

1,66666666
7

0,79012345
68

5,96296296
3

6,22222222
2

1,43209876
5

90

2. Presupuesto global

Partida

Partida de Materiales
y Componentes

Componentes electronicos
Componentes no electrénicos
Precio Total (sin .V.A)

Precio Total (con I.V.A)

Precio unitario (€)

30,50

4,84
3534
42,76

91

Anexo 3: Esquema general del circuito

92

1 [2 [3 [4 [5 [
Power MCU Buttons 51 Vvalve driver > >
+9V 1 2 P2
Loy Pl BI[> °© ©° VLV_CONN 2P U
PWR_CONN_2P B2 1
| 1 us = | === 0 2
5 C10 ESP32-WROOM-32DC] B2 15 o2+
L | L s .
= ° @) __ B3 ey
GND = 5 B3 15 o2 ¢ c1s | cu
U4 GND .|||—; GND GND Lllh VALV Q5 100n 1u
+9V 3.3V 3v3 1023 B4
LM7805 3 FQP30NO6L
1 3 EN EN 1022 [VALVE B4 >— 155=2
VI QVO 5V >ég SENSOR_VP TXDO 3 TX |
5 CS o] SENSOR_VN RXDO [RX = = =
B1 =1 1034 1021 PS_SDA
’I\%o o —|_(1:§o F MOS| L?:ZD g 1o5s NS %
n n 1032 1019 PWM_FWD
“SCK 2 1033 1018 2 ESP SND : .
ll%%_%sg (2 1ooe o8 g E%—E%LC TFT Display (SPI) Motor driver 3 o3 3
—— 1026 1017 |
= | > D o— P RST MTR_CONN_2P
54 331654 o4 EX—IESP ADC o)
ov Us = 1012 0o 100 DPY CONN_9P D2 _T_ 2
LM7806CT DoaNeOxodan 1N4007W €16
1 3 02nnd0nnl° eI NMTLONOOD . +
IN %OUT 6V o K DN S I P NN = IV R1 MTR _Drain e P
o 1k c17 c7
c4 N c3 = PWM_FWD| >—’\/\/\/—|0<-'_ 100n 100u
T330nF 100nF =
g - 1 1
. ™ o
e ™
°\Y o i = = =
+ LD1117V33 -
:ﬁ VIN VOuT ZTjS 3 B1 RIS O
+
cs GHD cé Cl2 —=Ci3 R16 10k Pressure sensor breakout board
TlOOnF 1 TlOuF ‘ L 100n B2 -I||—|
= = LED sV R U9
:I:%gm: Adafruit MPRLS
= 1)
EN sy vin Adafruit
U7 [—eo— 213y, MPRLS
FT232RL svo
, 3
o1 Saomoorzy & 2w poReqne [[Jes L
- VCCIO RXD RX 4
29 IRTS %(RTS PS SCL[>—4{scL
IRESET ICTS 5
. 1DTR F~—<__|DTR PS_SDAL_>—=sDA
oscl IDSR LED2 6
1 LED1 PS EOJ_>—21EOC
2N3904(SOT-23) % 0SCO 'DCD SZ\:‘ Y LED- B
RTS Q3 IRI LED-Red(0603) LED-Blue(0603) PS RSTT >—Z{rsT
cBuso 53
USB2 100 17 CBUSL £ 2 ADAFRUIT MPRLS
micro USBFemale ——— 1 3V30UT CBUS2 19?<
1 CBUS3
V+ 25X —15v 1l ysepp cBUSA I%
D-F3—1 | 16/ ysepMm
D+ J 6
4 TEST 122
1D 25 GND Ci14
V-2 onp LZ 100n
. GND ;i TITLE: . |
T =cC9 GND = Medidor pulso y tensié n REV: 1.0
100n I = - 1.
100n
L -) Company: Unizar Sheet: 1/2
= = L USB-UART e rgncn [P !
UniversidadZaragoza | Date: 2021-06-11 Drawn By: Isabel Romeo
1 [2 [3 [4 [5 [

