
Trabajo de Fin de Grado

Monitor de presión arterial y pulso

Blood pressure Monitor

Autor/es

Isabel Angélica Romeo

Director/es

Bonifacio Martín del Brío

Grado en ingeniería electrónica y automática

Departamento de Ingeniería electrónica y comunicaciones
Escuela de ingeniería y arquitectura de Zaragoza

Noviembre 2021

1

Resumen

En este documento se describe el proceso de investigación, diseño y desarrollo de un
monitor de presión arterial y pulso. Esta clase de monitores se usan tanto en el área médica
como en el hogar, de ahí la motivación de desarrollar un producto que se pueda usar en
ambos casos.

Para desarrollar un monitor con estas funcionalidades primero se expone una serie de
conceptos clave, como pueden ser la presión arterial y el método oscilométrico de medida,
para dar una mejor base de conocimiento para la posterior explicación. El diseño del
prototipo y la selección de componentes se hace en base a los requerimientos y
prestaciones que se comentarán más adelante. El desarrollo del esquema del circuito se
realiza mediante el software EasyEDA.

Una vez explicados esta serie de conceptos, el documento se centra en el esquema general
del circuito y sus componentes más relevantes. Dos de los componentes más importantes
del monitor son el microcontrolador y el sensor de presión. El microcontrolador utilizado
para este prototipo es el ESP32, ya que ofrece elevadas prestaciones a un precio reducido.

Por otro lado, una de las partes críticas de este producto es la adquisición y procesamiento
de los datos de presión. Para ello se ha elegido un sensor de presión de precisión del
fabricante Honeywelll, además se utilizarán una serie de filtros digitales para obtener las
señales necesarias para realizar la medición.

En cuanto al funcionamiento general del monitor, consiste en un sistema de tiempo real
formado por una serie de tareas con distintas prioridades y que se comunican entre ellas. La
tarea central es la máquina de estados del sistema, que es la que controla todo el
funcionamiento del prototipo. Por otro lado, tenemos otras tareas que complementan a la
central, como la tarea de adquisición de datos y la de visualización de resultados.

Para el procesado de las medidas, en una primera fase se utilizó el entorno de Matlab, donde
se utilizan una serie de funciones para el cálculo de los resultados. Una vez validados los
resultados sobre Matlab, las funciones empleadas para realizar el procesamiento de las
señales en el microcontrolador se implementan en lenguaje C. Para esta implementación se
utilizará el programa Eclipse IDE con el entorno de desarrollo que ofrece el fabricante del
microcontrolador, Espressif IDF.

La validación de las mediciones del prototipo se realizó comparándolas con las obtenidas
por el monitor TOPCOM Blood Pressure Monitor BPM Wrist 3311 y siguiendo una serie de
condiciones que se comentan en el apartado de validación de medidas.

Por último se expondrán los resultados obtenidos y los problemas surgidos en el desarrollo
de esta aplicación. Además se comentarán posibles mejoras e implementaciones futuras,
que podrán mejorar la calidad del prototipo de monitor de tensión desarrollado.

2

Índice

1. Introducción 5
1.1 Motivación y objetivos del proyecto 5
1.2 Estructura del documento y cronograma 6

2. Marco de referencia 7
2.1 Fisiología cardiovascular 7

2.1.2 Sistema arterial 8
2.2 Presión arterial 9

2.2.1 Hipertensión arterial 10
2.2.2 Hipotensión arterial 11

2.3 Medición de la tensión arterial 11
2.4 Medición de pulso 15

3. Diseño y desarrollo de un monitor de presión arterial 17

3.1 Esquema general 18

3.1.1 Bloque de adquisición de datos 19

3.1.2 Bloque neumático 20

3.1.3 Bloque de alimentación 22

3.1.4 Bloque de control 23

3.1.5 Bloque de visualización 25

3.1.6 Componentes auxiliares 25

4. Procesamiento digital de señal 26

4.1. Filtros digitales 26

4.2. Simulación de medidas en Matlab 29

5. Desarrollo del Software 31

5.1 Entorno de desarrollo 31

5.2 Estructura del software 32

5.3 Tarea adquisición datos 32

5.4 Tarea botones 36

3

https://docs.google.com/document/d/1DK5H5-eD75OgHsTE_yCaXUNf94yrZlMNG4ntOkIHWj4/edit#heading=h.7chnu715ip33
https://docs.google.com/document/d/1DK5H5-eD75OgHsTE_yCaXUNf94yrZlMNG4ntOkIHWj4/edit#heading=h.507kh1g2sim8
https://docs.google.com/document/d/1DK5H5-eD75OgHsTE_yCaXUNf94yrZlMNG4ntOkIHWj4/edit#heading=h.oe8s9v5dg6n3
https://docs.google.com/document/d/1DK5H5-eD75OgHsTE_yCaXUNf94yrZlMNG4ntOkIHWj4/edit#heading=h.zc2a6ek2pkfs
https://docs.google.com/document/d/1DK5H5-eD75OgHsTE_yCaXUNf94yrZlMNG4ntOkIHWj4/edit#heading=h.avdrpptai65c
https://docs.google.com/document/d/1DK5H5-eD75OgHsTE_yCaXUNf94yrZlMNG4ntOkIHWj4/edit#heading=h.yf3h66pipu1j
https://docs.google.com/document/d/1DK5H5-eD75OgHsTE_yCaXUNf94yrZlMNG4ntOkIHWj4/edit#heading=h.yf3h66pipu1j

5.5 Tarea de procesado de la medida 37

5.6 Tarea UI/Visualización 39

6. Análisis de resultados 40
6.1 Validación de las medidas de presión sistólica y diastólica 40
6.2 Validación de las medidas de pulso 42

7. Conclusiones y Trabajo futuro 43

Referencias 45

Anexos 48

Anexo 1: Código desarrollado en Eclipse IDE 48
Anexo 2: Presupuesto 86
Anexo 3: Esquema general del circuito 92

4

https://docs.google.com/document/d/1DK5H5-eD75OgHsTE_yCaXUNf94yrZlMNG4ntOkIHWj4/edit#heading=h.m9h1spi842cl
https://docs.google.com/document/d/1DK5H5-eD75OgHsTE_yCaXUNf94yrZlMNG4ntOkIHWj4/edit#heading=h.8g9rp3b2qjoe
https://docs.google.com/document/d/1DK5H5-eD75OgHsTE_yCaXUNf94yrZlMNG4ntOkIHWj4/edit#heading=h.8g9rp3b2qjoe

1. Introducción

1.1 Motivación y objetivos del proyecto
Las enfermedades cardiovasculares (CVDs) están siendo la principal causa de muerte a lo
largo del planeta durante los últimos 20 años. Representan el 32% de las muertes mundiales
y un 29% de las muertes en España. Este tipo de enfermedades son causadas por
desórdenes en el corazón y en los vasos sanguíneos, dentro de este grupo se incluyen
enfermedades coronarias, cerebrovasculares, y otras. Más de 4 de cada 5 muertes
causadas por CVDs son debidas a ataques de corazón y 1 de cada 3 muertes ocurre en
personas menores de 70 años. [1]

Los factores más importantes que conducen a este tipo de enfermedades son una dieta no
saludable, sedentarismo, tabaquismo y consumo excesivo de alcohol. Estos factores se ven
reflejados en la salud de los individuos, como presión arterial elevada, alto nivel de glucosa y
lípidos en sangre, sobrepeso y obesidad. Estos factores indicativos pueden ser medidos
regularmente en instalaciones médicas para llevar un seguimiento y poder prever el riesgo
de infarto, stroke, etc.

Uno de los factores indicativos más importantes es la presión arterial, ya que es un trastorno
grave que aumenta significativamente el riesgo de sufrir cardiopatías y otras enfermedades
del corazón. Se calcula que hay alrededor de 1.130 millones de personas con hipertensión y
apenas una de cada cinco lo tienen controlado. [1]

A raíz de ahí surge la motivación de crear un prototipo con el que poder tomar medidas de
presión arterial de forma fácil y sencilla en casa o en cualquier lugar, sin necesidad de
desplazarse a unas instalaciones médicas. Esta accesibilidad permitirá llevar un control
más continuo, tanto de los niveles de tensión arterial como de pulso.

Partiendo de estas ideas, los objetivos principales de este proyecto son:
- Entender el método oscilométrico y cómo aplicarlo para obtener las medidas de

presión arterial.
- Diseñar un prototipo electrónico de monitor conforme a las prestaciones requeridas

utilizando un ESP32 como microcontrolador.
- Programación en tiempo real del sistema de medida del monitor a partir de las

librerías de Espressif en lenguaje C.
- Utilizar Matlab como paso intermedio para realizar una primera aproximación de los

cálculos de las medidas, para más tarde adaptar el código a lenguaje C para su
implementación en el microcontrolador.

- Diseño e implementación de los filtros adecuados para el procesamiento digital de
señal.

- Validación de las medidas con un dispositivo homologado y obtención de las
estadísticas de precisión del prototipo desarrollado.

5

1.2 Estructura del documento y cronograma
Este documento está organizado de tal forma que se expone el diseño y desarrollo de una
aplicación en tiempo real en un sistema empotrado dentro de un microcontrolador. El código
desarrollado se puede encontrar en uno de los anexos adjuntados con este documento.

La memoria se estructura de la siguiente manera. En el Capítulo 2 se explican una serie de
conceptos clave sobre el funcionamiento del sistema cardíaco y arterial, además de exponer
las patologías relacionadas con la presión arterial y los métodos empleados para la
estimación de la tensión arterial y la frecuencia cardiaca. El Capítulo 3 se divide en dos
partes, en la primera se muestra el esquema general del circuito, detallando la función de
cada bloque y los componentes que lo forman. En la segunda parte del Capítulo 3 se
muestra el proceso de filtrado digital, simulación de medidas en Matlab y por último se pasa
a la explicación del software desarrollado. El Capítulo 4 se enfoca en la metodología de
validación de las medidas y se muestra la precisión obtenida con el prototipo en diferentes
fases de medida. Por último, en el Capítulo 5 se muestran las conclusiones obtenidas tras el
desarrollo del prototipo, poniendo el foco en la precisión de los resultados. Por otro lado se
proponen una serie de mejoras tanto para la calidad de las medidas como para ofrecer una
mejor experiencia de uso al usuario.

La Fig. 1 muestra las principales actividades llevadas a cabo en este proyecto mediante un
diagrama de Gantt. Entre estas actividades se encuentran: estudio de la metodología de
obtención de las medidas, diseño del circuito e implementación del software en el
microcontrolador.

Fig. 1 Diagrama de Gantt

6

2. Marco de referencia. Medida de la presión
arterial

2.1 Fisiología cardiovascular
El sistema cardiovascular está formado por el corazón y los vasos sanguíneos: una red de
venas, arterias y capilares que transportan oxígeno desde los pulmones a los tejidos de todo
el cuerpo a través de la sangre mediante el bombeo del corazón. Otra función del sistema
cardiovascular es transportar dióxido de carbono, un producto de desecho, desde todo el
cuerpo hasta el corazón y los pulmones y, finalmente, eliminar el dióxido de carbono
mediante la respiración [12].

El ciclo cardíaco es la secuencia rítmica de contracción y relajación miocárdica (latido). A la
contracción miocárdica se le llama sístole y durante ella se impulsa la sangre fuera del
corazón. A la relajación miocárdica se le llama diástole y durante ella se llena de sangre el
corazón.

El funcionamiento del corazón consiste en una serie ordenada de pasos (figura 2), empieza
con la sangre desoxigenada regresando del resto del cuerpo al corazón por la vena cava
superior (VCS) y la vena cava inferior (VCI), esta sangre entra entra en la aurícula derecha
(AD) que se encuentra en estado de relajación (diástole), desde allí la sangre fluye a través
de la válvula tricúspide (VT) hacia dentro del ventrículo derecho (VD). Teniendo en cuenta
que las válvulas auriculo-ventriculares se encuentran cerradas, la presión sanguínea
aumenta conforme se van llenando, de forma que se produce una sístole o contracción que
provoca que se abran, mientras tanto la diástole ventricular sigue llenando los ventrículos y
la sangre desoxigenada es bombeada a través de la válvula pulmonar (VP) hacia la arteria
pulmonar principal (APP). Desde allí, la sangre fluye a través de las arterias pulmonares
derecha e izquierda hacia adentro de los pulmones.

En los pulmones, se incorpora oxígeno y se retira dióxido de carbono a la sangre durante el
proceso de respiración. Después de que la sangre recibe oxígeno en los pulmones, se llama
sangre oxigenada.

En la segunda etapa la sangre oxigenada fluye desde los pulmones de vuelta a la aurícula
izquierda (AI) a través de cuatro venas pulmonares, las válvulas aurículo-ventriculares se
mantiene cerradas mientras se produce una sístole ventricular, la sangre oxigenada fluye a
través de la válvula mitral (VM) hacia adentro del ventrículo izquierdo (VI).

El ventrículo izquierdo (VI) bombea la sangre oxigenada a través de la válvula aórtica (VAo)
hacia la aorta (Ao), la principal arteria que transporta sangre oxigenada al resto del cuerpo.

7

Fig. 2 Ciclo cardiaco
Fuente: ref [14]

2.1.1 Sistema arterial
El sistema arterial consiste en una serie de vasos, sucesivamente ramificados, que van
desde las arterias de gran tamaño, como la aorta y la pulmonar, pasando por las de
mediano, pequeño tamaño y arteriolas, hasta los capilares o vasos de intercambio. Las
arterias encargadas de transportar la sangre al corazón son la pulmonar y la aorta. La arteria
pulmonar es de recorrido corto y mide 3 cm de diámetro, comunica el ventrículo derecho
con las arterias pulmonares derecha e izquierda. Por otro lado, la arteria aorta es de largo
recorrido, tiene un diámetro igual que la pulmonar y sus cuatro divisiones principales son la
aorta ascendente, el arco aórtico, la aorta torácica y la aorta abdominal. La aorta es el
tronco principal de las arterias sistémicas [2].

Entre las arterias de las extremidades superiores está la arteria subclavia o también llamado
axilar, al adentrarse en el brazo se denomina arteria braquial como se observa en la Figura 3,
más tarde se ramifica en el antebrazo en radial y cubital, las cuales irrigan toda esa región.

La medición de parámetros como la presión arterial, se deben realizar en estado de reposo y
el brazo izquierdo apoyado a la altura del corazón

8

Fig. 3 Esquema arterial del brazo.
Fuente: ref [15]

2.2 Presión arterial
Por definición la presión arterial es la fuerza que ejerce contra la pared arterial la sangre que
circula por las arterias. La presión arterial incluye dos mediciones: la presión sistólica, que
se mide durante el latido del corazón (momento de presión máxima), y la presión diastólica,
que se mide durante el descanso entre dos latidos (momento de presión mínima). La unidad
de medida de la presión arterial es el mmHg. Primero se registra la presión sistólica y luego
la presión diastólica, por ejemplo: 120/80. También se llama presión sanguínea arterial o
tensión arterial [3].

Conceptualmente la presión arterial se diferencia de la tensión arterial, ya que la primera es
la fuerza que ejerce la sangre que circula por las arterias, mientras que la tensión arterial es
la tensión que realiza la sangre contra la pared de las arterias [4].

La ecuación que relaciona ambas expresiones es la ley de Laplace [5]:

Donde es la tensión, es la presión y corresponde al radio de un vaso sanguíneo.𝑇 𝑃 𝑟
Cuando se tiene la medida aproximada de la presión arterial (PA), es posible identificar
enfermedades de diferente índole, causadas por múltiples factores que se pueden
identificar, de tal forma que sea posible brindar al paciente un tratamiento apropiado.

9

2.2.1 Hipertensión arterial
La Hipertensión Arterial (HTA) es la elevación continua de la PA por encima de los niveles
normales, se considera como límites normales una Presión Arterial Sistólica (PAS) de 140
mmHg ó superior y Presión Arterial Diastólica (PAD) de 90 mmHg ó superior.

En la tabla 1 se muestra la clasificación que se debe tener en cuenta a la hora de
diagnosticar a un paciente, estándar planteado por la OMS y JNC.

Algunos de los factores causantes de la prevalencia de esta patología son el tabaquismo,
una dieta poco saludable, un estilo de vida sedentario, la obesidad y algunas alteraciones
psicológicas(estrés, alteraciones emocionales, etc.). Por otro la edad y el sexo también son
factores que diferencian la afectación de este trastorno.

10

2.2.2 Hipotensión arterial
La hipotensión arterial es la condición en la que se presenta una presión arterial baja
continuada causada por la irrigación sanguínea deficiente, lo que provoca una afectación a
la oxigenación y nutrición celular, pudiendo provocar síntomas como vértigo o mareo. Si
se presenta una caída de presión de solo 20 mmHg puede ocasionar problemas en algunos
órganos.

Existen tres tipos de hipotensión; Hipotensión Ortostática, Hipotensión Mediada
Neuralmente (NMH) e Hipotensión grave producida por una pérdida súbita de sangre
(shock), infección o reacción alérgica intensa.

● La hipotensión ortostática es producida por un cambio súbito en la posición del
cuerpo, generalmente al pasar de estar tumbado a estar de pie y usualmente dura
sólo unos pocos segundos o minutos. Si este tipo de hipotensión ocurre después de
comer, se denomina hipotensión ortostática posprandial y afecta más comúnmente
a los adultos mayores, aquellos con presión arterial alta.

● La hipotensión mediada neuralmente afecta con más frecuencia a adultos jóvenes y
niños, y ocurre cuando una persona ha estado de pie por mucho tiempo.

● El Shock se define como la pérdida severa de la adecuada irrigación sanguínea a los
órganos lo que disminuye el suministro de oxígeno y puede causar daños al
organismo. La hipotensión severa se presenta con un descenso mayor a 40 mmHg
de la presión sistólica, el tratamiento para este tipo de patología debe realizarse de
forma simultánea con el de la enfermedad causante.

La presión arterial baja suele ser causada por fármacos como los ansiolíticos,
antidepresivos, diuréticos, medicamentos para el corazón, entre ellos los que se utilizan para
tratar la hipertensión arterial y la cardiopatía coronaria. Otras causas de presión arterial baja
pueden ser la diabetes avanzada, anafilaxia (una respuesta alérgica potencialmente mortal),
cambios en el ritmo cardíaco (arritmias), deshidratación, desmayo, etc [6].

2.3 Medición de la tensión arterial

La medición de la presión arterial (PA) se puede realizar de dos maneras distintas, mediante
métodos directos e indirectos. La primera metodología, también conocida como invasiva, se
debe tomar una muestra en el interior de la arteria por medio de un catéter, este
procedimiento se utiliza únicamente con fines clínicos e investigativos.

Por otro lado, en el método indirecto, las mediciones se realizan mediante un
esfigmomanómetro el cual obtienen resultados aproximados. Dentro del método indirecto
se pueden encontrar otros tres métodos; palpatorio, auscultatorio y oscilométrico [7]:

11

https://es.wikipedia.org/wiki/S%C3%ADntoma
https://es.wikipedia.org/wiki/V%C3%A9rtigo
https://es.wikipedia.org/wiki/Mareo

● Método palpatorio: este método consiste en identificar el pulso ubicado a la altura
de la muñeca cercano al dedo pulgar, utilizando un brazalete como instrumento de
medición que se infla hasta que el pulso desaparezca. Posteriormente se desinfla
paulatinamente hasta que el pulso vuelva a aparecer, en este momento se toma la
medición de presión sistólica. Por último, cuando las pulsaciones vuelven a la
normalidad, se toma la medición de la presión diastólica. Uno de los principales
inconvenientes del método palpatorio es que es muy poco preciso, ya que se
requiere de mucha práctica para realizar bien las tomas.

● Método auscultatorio: consiste en identificar los sonidos (sonidos de Korotkoff, Fig
4) que emite la arteria parcialmente ocluida y por consiguiente se determina el flujo
arterial. Para realizar esta práctica se debe disponer de un estetoscopio y un
brazalete. La medición se realiza en cinco fases; en la primera fase se identifica la
presión sistólica y en la quinta la diastólica [8].

Fig. 4 Ruido de Korotkoff
Fuente: ref [16]

● Método oscilométrico: es la metodología indirecta más usada actualmente, el
objetivo es monitorear las oscilaciones de la señal producida por la presión arterial.
Igual que en los métodos anteriores se usa un brazalete para realizar la medidas y,
mediante el procesamiento de la señal obtenida, se determina la presión sistólica
(PS), diastólica (PD) y media (MAP). El método oscilométrico consiste en inflar el
brazalete hasta llegar 40-50 mmHg por encima de la presión sistólica estándar (120
mmHg), esta presión es transmitida a través del brazo hasta las paredes de la arteria
que pasará a estar más ocluida conforme aumente la presión. Una vez se llega a
esta presión se pasa a desinflar el brazalete hasta bajar por debajo de la presión
diastólica estándar (80 mmHg), en este tramo la arteria se va abriendo, la sangre
empieza a circular de nuevo y las oscilaciones llegan a su máxima amplitud [9].

12

Fig. 5 Método oscilométrico
Fuente: ref [9]

EL cálculo de la presiones sistólica, diastólica y media se hace siguiendo estos tres pasos
(Fig 5):

1. Obtención de la curva de presión durante el desinflado: durante el periodo de
desinflado obtenemos la señal de presión a través del sensor de presión conectado
con el brazalete. Esta señal tiene dos componentes importantes: la componente de
baja frecuencia causada por el aumento paulatino de presión del brazalete y la
componente de las oscilaciones de presión de la arteria. Esta última componente se
llama onda oscilométrica(OMW) y será analizada para estimar la PS, PD, y MAP.

2. Extracción de la onda oscilométrica(OMW): para extraer esta onda a partir de la
señal de presión del brazalete se utiliza un filtro digital de paso banda para eliminar
la componente de presión del brazalete y permitir el paso de las oscilaciones de
presión con unas frecuencias de corte de 0,5 Hz y 3,5 Hz .

3. Creación de la envolvente de la onda oscilométrica(OMWE): la amplitud de los
pulsos oscilométricos aumenta hasta llegar al máximo y luego desciende a medida
que se desinfla el brazalete. Debido a que la amplitud de la onda oscilométrica carga
con la mayoría de información para la estimación de la medida, muchos de los
algoritmos oscilométricos utilizan la envolvente de la onda oscilométrica (OMWE).
Esta envolvente se forma uniendo pico a pico los máximos locales separados por un
número mínimo de muestras.

13

Algoritmos oscilométricos

Los algoritmos oscilométricos son utilizados para estimar la presión sistólica, diastólica y
media mediante el análisis de los cambios en la morfología de las oscilaciones de presión.
Estos algoritmos se pueden aplicar en diferentes estados de procesamiento de las señales
grabadas y utilizan diferentes técnicas para la estimación de las medidas como el uso
coeficientes empíricos, análisis de la pendiente de la OMWE, algoritmos de machine learning
o modelado de la envolvente.

El algoritmo más popular y el que se implementa en este prototipo es el Algoritmo de
Máxima Amplitud (MAA). Éste se basa en el supuesto de que la elasticidad arterial es
máxima cuando la presión del brazalete es igual a la presión arterial, que se produce cuando
las paredes de la arteria están mínimamente dilatadas. Basado en este supuesto la presión
arterial media (MAP) se encuentra en la posición donde la envolvente de la señal de
oscilaciones (OMWE) alcanza su máximo. La presión sistólica y diastólica se identifican
cuando la amplitud de la oscilación alcanza unos ciertos ratios de la amplitud máxima
(figura 6). Estos ratios se obtienen de forma empírica y varían en el rango de 0.45 a 0.73
para el coeficiente de presión sistólica, rs y de 0.69 a 0.83 para el coeficiente de presión
sistólica rd [9].

𝐴𝑑: 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑 𝑑𝑖𝑎𝑠𝑡ó𝑙𝑖𝑐𝑎
𝐴𝑠: 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑 𝑠𝑖𝑠𝑡ó𝑙𝑖𝑐𝑎
𝑟𝑑: 𝑟𝑎𝑡𝑖𝑜 𝑑𝑒 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑 𝑑𝑖𝑎𝑠𝑡ó𝑙𝑖𝑐𝑎
𝑟𝑠: 𝑟𝑎𝑡𝑖𝑜 𝑑𝑒 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑 𝑠𝑖𝑠𝑡ó𝑙𝑖𝑐𝑎

14

Fig 6. Algoritmo de Máxima Amplitud (MAA)
Fuente: ref [9]

2.4 Medición del pulso
En cuanto a la estimación de la frecuencia cardíaca se ha optado por analizar la señal de
presión en el dominio de la frecuencia mediante la Transformada Rápida de Fourier (FFT)
[10].

La FFT es un algoritmo que permite calcular la transformada de Fourier discreta (DFT) y
su inversa cuando el número de muestras de la señal es una potencia de dos. Este
algoritmo se emplea en una amplia variedad de aplicaciones, desde el tratamiento
digital de señales y filtrado digital a la resolución de ecuaciones en derivadas parciales.
El rango de frecuencias cubierto por el análisis FFT depende de la cantidad de muestras
recogidas y de la proporción de muestreo. Para el cómputo de la DFT se utiliza:

Donde es la señal de oscilaciones (OMW) y es la longitud de la señal obtenida y𝑋𝑛 𝑁 𝑋𝑘
corresponde a las muestras equiespaciadas de la transformada de Fourier. Se debe𝑁
cumplir que , siendo el número de muestras de la señal .𝑁 ≥ 𝐿 𝐿 𝑋𝑛

15

https://es.wikipedia.org/wiki/Transformada_de_Fourier_discreta
https://es.wikipedia.org/wiki/Procesamiento_digital_de_se%C3%B1ales
https://es.wikipedia.org/wiki/Procesamiento_digital_de_se%C3%B1ales
https://es.wikipedia.org/wiki/Filtro_digital
https://es.wikipedia.org/wiki/Ecuaci%C3%B3n_en_derivadas_parciales

Una vez obtenida la secuencia de la transformada de Fourier de la señal de
oscilaciones(OMW) , , se busca el armónico más prominente dentro del rango de𝑋𝑘
frecuencias cardiacas (0,8 - 2 Hz aprox) y se obtiene la frecuencia cardíaca usando la
siguiente fórmula:

(3)𝐻𝑒𝑎𝑟𝑡 𝑟𝑎𝑡𝑒 = ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 × 60

En el caso de la Figura 7 se ha recortado un tramo de la señal de oscilaciones de presión
(OMW) de 512 muestras al que se le aplica la transformada rápida de Fourier (FFT)
obteniendo el armónico más prominente en 1,25 Hz lo que resulta en un pulso de 75
bpm.

Fig 7. Aplicación de la FFT a la señal de oscilaciones de la presión arterial

16

3. Diseño y desarrollo del hardware
En este capítulo se lleva a cabo la descripción del diseño del prototipo hardware de monitor
de presión arterial y sus diferentes partes. Para la elección de los componente de cada parte
se han seguido una serie de requerimientos básicos:

● Bloque adquisición de datos:
- Rango de presión mínimo: 0-200 mmHg (Absolutos)
- Sensor calibrado.
- Etapa amplificadora.

● Bloque neumático:
- Caudal de aire mínimo: 2 L/min

● Bloque de control:
- Módulo conversor A/D
- Módulo PWM
- Interfaz SPI
- Interfaz I2C
- Interfaz UART

Fig 8. Circuito Monitor de tensión en protoboard

17

3.1 Esquema general del circuito
El diseño de este prototipo (Fig. 8) está compuesto por diversos bloques (Fig. 9): bloque de
adquisición de datos (1), bloque neumático (2), bloque de alimentación (3), bloque de
control (4) y bloque de visualización (5).

Fig 9. Diagrama de bloques esquema general del circuito

18

3.1.1 Bloque de adquisición de datos

El bloque de adquisición está formado por un módulo electrónico que cuenta con un sensor
de presión de precisión, los amplificadores correspondientes, conversor A/D y los terminales
necesarios para comunicación I2C (Fig 10 y 11). Inicialmente se utilizó un sensor de presión
convencional conectado a una etapa amplificadora a su vez conectada con el módulo
conversor A/D del micro, pero este sensor no estaba calibrado y no cumplía las
especificaciones requeridas.

La banda de error total (TEB) es una especificación que incluye las principales fuentes de
error del sensor de presión e indica el peor error que podría experimentar, 1.25% FFS (Full
Scale Span) en el caso de este sensor [13]. La TEB no debe ser confundida con la precisión,
ya que esta es en realidad es un componente de la TEB. El rango de presiones de este
sensor es de 0-25 psi absolutos, suficiente para cubrir los requerimientos del monitor, ya que
la máxima presión absoluta que va a soportar este sensor es de 200 mmHg (3,86 psi). Una
de las peculiaridades de este sensor es que tiene un puerto de metal de 2,5 mm de diámetro
al que conectamos el tubo que irá conectado al brazalete.

Fig 10. MPRLS ported pressure sensor Honeywell
Fuente: ref [17]

19

Fig 11. Esquema circuital del sensor de presión
Fuente: red [17]

3.1.2 Bloque neumático
Este bloque está formado por los elementos encargados de la regulación del aire (Fig. 11).
Como elementos actuadores están la bomba de aire y la válvula de aire. Por otro lado, están
los tubos de conexión que conectan los elementos actuadores con el brazalete y éste con el
sensor de presión.

Fig 12. Diagrama del bloque neumático

La estructura neumática parte de la bomba, la cual se encarga de suministrar el aire que
pasa a través de la válvula hasta llegar al brazalete. Del brazalete sale otra rama que lo une
con el sensor de presión. Todas estas conexiones se han montado con un tubo de plástico
flexible de 2,5 mm, excepto la conexión con el sensor de presión, que tiene un diámetro de 2
mm. Por otro lado, para la salida de aire de la válvula se ha utilizado un tubo de 0,5 mm,

20

ligeramente obstruido para conseguir una pendiente en la fase de desinflado de 2-3
mmHg/s [9].

La bomba debe tener un caudal que permita el inflado en un tiempo razonable y que tenga la
suficiente potencia como para llegar a la presión de medida. Un tipo de bombas que
cumplen estas características y son baratas son las llamadas bombas peristálticas, que
utilizan rodillos para impulsar el fluido (en este caso aire) y pueden alcanzar un caudal de 3,4
l/m. El control de la bomba se realiza a través de un PWM.

Fig 13. Bomba peristáltica
Fuente: Aliexpress

Del mismo modo que se necesita inflar el brazalete, también se deberá desinflar después de
su uso. De hecho, es la parte más importante de la medida, ya que la presión arterial se
calcula durante el desinflado. Para ello se usa una válvula (Fig 14) de aire accionada
electrónicamente, su funcionamiento es como el de un relé: cuando circula corriente en éste,
activa un electroimán que hace un contacto mecánico, dejando pasar el aire y, por lo tanto,
desinflando el brazalete.

Fig 14. Electroválvula
Fuente: Aliexpress

El brazalete se eligió con un tamaño de 22-48 cm de diámetro, por lo que este monitor se ha
enfocado para el uso de personas adultas.

21

3.1.3 Bloque de alimentación
Es el bloque básico para el funcionamiento del aparato, ya que se encarga de suministrar
energía tanto a los accionadores (bomba, electroválvula), como al control y a la interfaz con
el usuario (botones y pantalla).

Para ello se requieren diferentes tensiones de alimentación, que vienen condicionadas por
las tecnologías de construcción de los componentes:

● Bomba de aire y electroválvula: alimentación a 6 VDC
● Pantalla LCD y botones: alimentación a 5 VDC
● Unidad de control: alimentación a 3 VDC

Las posibles soluciones ante esta variedad de tensiones son muchas, pero principalmente
tenemos dos: regulación por elevación de tensión o por reducción de la misma.

En el presente proyecto se ha escogido la segunda opción por su simplicidad al permitir
emplear reguladores de tensión lineales, que aunque sean menos eficientes que otros de
tipo conmutado, son mucho más sencillos, baratos y fáciles de adquirir. De esta forma, la
alimentación viene de una fuente de 9V. El motivo de emplear una fuente de 9V, y no de otro
tipo (por ejemplo, 4 baterías de 1,5V en serie) es la tensión de “dropout” de los reguladores
lineales. Este parámetro nos impone una mínima diferencia de tensión entre la entrada y la
salida del regulador, condición que no se puede satisfacer con baterías de 6V para el
regulador de 5V. Existen reguladores llamados de “bajo dropout”, pero son más caros y
pueden dar lugar a una reparación defectuosa en caso de ser sustituidos por uno
convencional.

Así, desde la fuente se alimenta de forma independiente a cada uno de los circuitos
integrados de los reguladores, y además se disponen condensadores de filtrado a la entrada
y salida de los reguladores para filtrar ruidos de media y baja frecuencia.

22

Fig 15. Esquema circuital del bloque de alimentación

3.1.4 Bloque de control
Constituye el elemento fundamental que controla el sistema y según su elección se deberán
adoptar decisiones de diseño consecuentes. Existen componentes electrónicos integrados
programables llamados microcontroladores que con un precio muy bajo y velocidad de
desarrollo alta integran casi todos los elementos necesarios, es por lo tanto obvia la
elección de este tipo de componente. En definitiva, un microcontrolador es un componente
integrado que incluye en el chip: CPU, memoria, periféricos, etc. Dentro de la amplia
variedad que existe se busca el más barato que incluya las siguientes especificaciones:

● Menor número de pines posibles (abarata costes).
● Capaz de entrar en modo de bajo consumo para guardar fecha y hora cumpliendo

con la autonomía deseada.
● Largo ciclo de vida y soportado por el/los fabricante/s.
● Generador de pulsos con tecnología de modulación de ancho de pulso (PWM)

integrado para el control de la bomba de aire.
● Frecuencia de reloj capaz de realizar las operaciones y mostrar la interfaz en plazo.

El microcontrolador elegido para este proyecto es el ESP32 de Espressif, montado en la
placa de desarrollo WROOM 32D. Este microcontrolador es ampliamente usado en el
desarrollo de prototipos electrónicos debido a su variedad de módulos, compatibilidad con
diferentes lenguajes de programación, amplia documentación y bajo coste.

23

Algunas de sus características más destacables son:

● Single or Dual-Core 32-bit LX6, con frecuencia de reloj de hasta 240 MHz.
● 520 KB de SRAM, 448 KB de ROM y 16 KB de RTC SRAM.
● Conectividad Wi-Fi con velocidades de hasta 150 Mbps.
● Soporta Bluetooth v4.2 y BLE.
● 34 GPIOs programables.
● Hasta 18 canales de 12-bit SAR ADC y 2 canales de 8-bit DAC.
● 4 x SPI, 2 x I2C, 2 x I2S, 3 x UART.
● Ethernet MAC para conectividad LAN física.
● PWM para control motor y hasta 16 canales de PWM para LED.

Fig 16. Diagrama de Bloques ESP32 wroom 32D
Fuente: ref [19]

Fig 17. ESP32 wroom 32D
Fuente: ref [18]

24

3.1.5 Bloque de visualización
Para que el usuario visualice las medidas y pueda interactuar con el prototipo es necesario
crear un bloque de visualización. Este bloque está compuesto por el display y los cuatro
botones que lo controlan. El display es una pantalla LCD-TFT de 320x240 alimentado a 5V,
controlado por un driver ILI9341 y conectado al microcontrolador vía SPI.

En cuanto a la botonera, lo más sencillo y eficiente es el uso de unos pocos botones, abarata
el coste y su manejo es muy fácil e intuitivo. Por lo tanto, la botonera está compuesta por
cuatro botones, tres de los cuales están reservados para la movilidad por la interfaz de
usuario. El cuarto botón no tiene una función asignada todavía, por lo que se denomina
auxiliar y se mantiene por si es necesario en mejoras futuras del prototipo.

Fig 18. Display LCD-TFT
Fuente: Aliexpress

3.1.6 Componentes auxiliares
Como puede observarse en la Fig 19, en el circuito se incluyen además algunos
componentes estándar adicionales:

- Resistencias eléctricas, para limitar la corriente a ciertos componentes para que
funcionen sin dañarse, como en el caso de los LED. También para regular
parámetros, como la ganancia del amplificador del sensor de presión.

- Condensadores eléctricos: como es sabido, almacenar carga eléctrica durante
cortos periodos de tiempo. Sirven para regular parámetros como la ganancia de
amplificadores o para el desacoplo de señales. Esta última característica los
convierte en un componente esencial cuando existen otros de carácter inductivo
como la bomba o la válvula: cuando se aplica una tensión sobre un componente
inductivo, la demanda de corriente es muy alta y, de no existir los condensadores de
desacoplo, todo el sistema podría sufrir una bajada de tensión, dejando de funcionar
el aparato.

25

Fig 19. Esquema circuital completo

4. Procesado digital de la señal

4.1 Filtros digitales
Los filtros digitales son una parte fundamental del procesamiento digital de señales. Su
función principal es modificar el espectro de una señal. Actualmente, existen una infinidad
de aplicaciones, tales como eliminación de determinadas componentes espectrales,
enfatizar o atenuar algunas componentes espectrales, o desfasar estas componentes, etc.

La principal diferencia entre un filtro digital y otro analógico es que los analógicos operan
sobre señales continuas, mientras los digitales trabajan sobre una secuencia de datos (las
muestras digitalizadas de la señal analógica).

Como se ha comentado en la sección del método oscilométrico, la señal de presión
obtenida del sensor tiene dos componentes principales: la componente de baja frecuencia
producida por el cambio de presión y la componente provocada por las fluctuaciones en la
amplitud de las oscilaciones. Como la señal que interesa obtener es la producida por las
oscilaciones de presión, se aplicará un filtro de paso de banda con frecuencias de corte de
0,5 Hz y 3,5 Hz, para eliminar el nivel de continua de la señal y, a la vez, permitir que pasen
las fluctuaciones en la frecuencia cardíaca [9].

26

Para elegir qué tipo de filtro utilizar se ha realizado un script en python para analizar
diferentes características de los filtros y elegir los adecuados. Debido a que la
implementación de estos filtros se hace en una tarea con frecuencia de muestreo de 40 Hz
dentro de un sistema de tiempo real, se ha decidido implementar un filtro Butterworth de
orden dos, ya que filtros más complejos podrían aumentar el tiempo de ejecución de la tarea
y bloquear el sistema.

La función de transferencia del filtro Butterworth de paso banda es la siguiente:

Fig 20. Diagrama Filtro paso banda

Los resultados obtenidos con el filtro Butterworth se pueden observar en las figuras 21 y 22.
En la figura 21 se muestra la señal de presión del brazalete y en la figura 22 el resultado de
pasarla a través del filtro paso banda, quedando así la señal de amplitud de las oscilaciones
(OMW).

27

Fig 21. Señal de presión del brazalete

Fig 22. Señal de oscilaciones de presión (OMW)

28

4.2 Simulación de medidas en Matlab
La visualización de datos y gráficas en el entorno de programación del microcontrolador
puede llegar a ser muy tedioso (a veces imposible), por lo que se ha optado por utilizar
Matlab como entorno de simulación de las medidas y, una vez obtenido un resultado
coherente en las medidas, se adaptará el código a nuestro microcontrolador con las librerías
de Espressif.

El primer paso es obtener los datos de presión en un formato con el se pueda trabajar en
Matlab, para ello se ha empleado el programa Megunolink que adquiere los datos a través
de la interfaz UART, los representa en tiempo real y al finalizar la medida se exportan en un
formato de valores delimitados por coma (csv).

Una vez obtenidos estos datos se importan a un fichero de Matlab en forma de array. Se va a
trabajar con dos señales, la señal de presión y la señal de oscilaciones (OMW). Estas
señales se recortan para obtener sólo la parte del descenso de presión. A continuación se
utiliza la función envelope() para obtener la envolvente de la señal de oscilaciones (OMWE).
Esta función realiza el cálculo de la envolvente en tres pasos:

1. Búsqueda de los máximos locales a lo largo del array de oscilaciones (Figura
24, proceso 1).

2. Selección de los máximos separados por más de la distancia mínima entre
picos (Figura 24, proceso 2).

3. Interpolación lineal de los máximos seleccionados para crear la envolvente
(Figura 25, proceso 3).

Una vez tenemos la envolvente de la señal sólo queda encontrar la presión arterial media
(MAP) que se encuentra en el punto máximo de la envolvente (figura 25, proceso 4). Este
valor se multiplica por los coeficientes de presión sistólica y diastólica (rs y rd) para obtener
los valores de comparación de presión sistólica y diastólica (figura 26, proceso 5). A
continuación se divide la envolvente en dos partes separadas por el punto máximo, ya que la
presión sistólica se encuentra a la izquierda del presión arterial media (PAM) y la sistólica a
la derecha, esta separación se encuentra indicada en la figura 26 con las flechas verde
(parte sistólica) y roja (parte diastólica). Por último se van a buscar los valores de la
envolvente que se parezcan más a los valores de comparación de presión sistólica y
diastólica. En la parte de la izquierda se compara cada valor de la envolvente con el valor de
comparación de presión sistólica y cuando se encuentra el más parecido guardamos el
índice de localización de este valor; lo mismo se hace en la parte derecha con el valor de
comparación de presión diastólica. Para obtener los valores de presión sistólica y diastólica
se buscan los valores que corresponden a las localizaciones obtenidas en el array de
presiones (figura 26). Todo este proceso se ilustra en las figuras 23, 24, 25 y 26.

29

Fig 23. Diagrama de bloques del procesado de la medida

Fig 24. Procesos 1 y 2 de la Fig 18

30

Fig 25. Procesos 3 y 4 de la Fig 18

Fig 26: Proceso 5 de la Fig 18

5. Desarrollo del software

5.1 Entorno de desarrollo
En cuanto a la implementación del software en el microcontrolador, existen varios entornos
en los que desarrollar aplicaciones con el ESP32, como VisualStudio, EclipseIDE o Arduino
IDE. Para esta aplicación se ha escogido EclipseIDE, una vez instalado el entorno de
desarrollo se debe añadir el framework que utiliza Espressif para la programación de sus
dispositivos, ESP-IDF.

31

5.2 Estructura del software
La aplicación desarrollada para el prototipo de monitor de tensión arterial es un sistema de
tiempo real que se basa en una conjunto de tareas que se van ejecutando periódicamente
donde cada una de ellas tiene asignada una prioridad distinta en función de cual sea su
objetivo.

La tarea principal se llama pressure_control_handler y consiste en una máquina de
estados que controla el funcionamiento del prototipo. Por otro lado la tarea de adquisición
de datos (read_pressure_task) es la tarea de mayor prioridad, ya que tiene el periodo de
muestreo más pequeño (25 ms) para conseguir la precisión adecuada en la señal de
presión. Por último, para el control del bloque de visualización se han desarrollado las tareas
de interfaz de usuario (gui_manager_task) y de botones (button_task), las dos con la
menor prioridad, ya que son las que menor uso de la CPU hacen.

Fig 27. Diagram de bloques de tareas

5.3 Tarea adquisición datos
Esta tarea (Fig 29), como ya se ha comentado, es una de las más importantes y tiene tres
funciones principales: es la encargada de recibir los datos de presión del sensor a través del
protocolo de comunicación I2C, pasar estos datos por los filtros adecuados y almacenar
estos datos en dos arrays circulares distintos.

El protocolo de comunicación serie I2C define la trama de datos y las conexiones físicas
para transferir bits entre 2 dispositivos digitales. El puerto I2C incluye dos cables de
comunicación, SDA (Serial Data) y SCL (Serial Clock). El protocolo permite conectar hasta
127 dispositivos esclavos con esas dos líneas, con velocidades de 100, 400 y 1000 kbits/s.

32

El protocolo I2C es uno de los más utilizados para comunicarse con sensores digitales, ya
que a diferencia del puerto serie, su arquitectura permite tener una confirmación de los
datos recibidos dentro de la misma trama, entre otras ventajas.

En el caso de I2C se diferencian dos elementos básicos, un MAESTRO y un ESCLAVO. La
Figura X, muestra una conexión típica de tres dispositivos, el bus consiste en dos líneas
llamadas, Serial Data (SDA) y Serial Clock (SCL).

Fig 28. Interfaz I2c

Fuente: ref [20]

El MAESTRO I2C se encarga de controlar la línea de reloj, además de iniciar y parar la
comunicación. La información binaria serie se envía a través de la línea SDA. Puede
funcionar de dos maneras, como maestro-transmisor o maestro-receptor y sus funciones
principales son:

● Iniciar la comunicación – S
● Enviar 7 bits de dirección – ADDR
● Generar 1 bit de Lectura ó Escritura – R/W
● Enviar 8 bits de dirección de memoria
● Transmitir 8 bits de datos –
● Confirmar la recepción de datos – ACK – ACKnowledged
● Generar confirmación de No-recepción, NACK – No-ACKnowledged
● Finalizar la comunicación

El esclavo generalmente suele ser un sensor. Este elemento es el encargado de suministrar
la información de interés al MAESTRO. Puede actuar de dos formas: esclavo-transmisor ó
esclavo-receptor. Sus funciones principales son:

● Enviar información en paquetes de 8 bits.
● Enviar confirmaciones de recepción, llamadas ACK

Para establecer conexión entre el puerto I2C del microcontrolador (Maestro) y el sensor de
presión (esclavo) se han creado tres funciones read_MPRLS_status(),
read_MPRLS_data() y read_MPRLS_pressure(). La primera función es la encargada
de leer el byte de estado que aporta la información que se muestra en la tabla 2. La segunda
se encarga de establecer conexión con el sensor, mandando primero la dirección y comando

33

de medida, a continuación se espera hasta que se ponga a cero la bandera de dispositivo
ocupado y, entonces, se manda la dirección con el comando de lectura para obtener la
medida. Por último read_MPRLS_pressure() transforma el valor obtenido del sensor a un
valor de presión dentro del rango de 0 a 25 psi.

Tabla 2. Status Byte I2C [13]

Una vez obtenidos los datos de presión, se procede al filtrado de la señal. De la misma
forma que un filtro analógio tiene su modelo matemático expresado en ecuaciones
diferenciales, los filtros digitales tienen su representación matemática a través de
ecuaciones lineales en diferencias con coeficientes constantes, por lo general esta ecuación
parte de la siguiente expresión:

Donde es la señal de entrada, la señal de salida y y son los coeficientes del filtro.𝑥[𝑛] 𝑦[𝑛] 𝑎
𝑖

𝑏
𝑗

Al tratarse de un sistema lineal invariante en el tiempo, es decir, está en reposo en el estado
inicial, su función de transferencia va a ser de tipo racional:

Por lo tanto para realizar el filtrado de la señal de entrada, , a través del filtro definido por𝑥[𝑛]
los coeficientes y se emplea la siguiente igualdad recursiva:𝑎

𝑖
𝑏

𝑗

De esta forma para implementar el filtro Butterworth desarrollado en el apartado de
Procesamiento digital se han utilizado las siguientes ecuaciones:

34

Fig 29. Diagrama de bloques de la tarea de adquisición de datos

Para terminar con la tarea de adquisición de datos, se almacenarán los datos en dos colas
circulares. El código para la implementación de estas colas se ha extraído de un artículo de
StackOverflow [11] al que se le ha hecho alguna modificación.

Se ha elegido esta implementación porque almacena una serie de datos sobre cada cola
como cuántos elementos tiene, en qué índice está el último y primer elemento, etc. Esta
información es imprescindible para la obtención de la medida.

35

5.4 Tarea botones
El control de la interfaz de usuario (Fig 30) se hace a través de 3 botones, dejando un cuarto
botón de auxiliar por si es necesario en un futuro. Para facilitar la navegación por la pantalla
esta botonera está programada como si fuera un encoder, de forma que dos de los tres
botones se utilizan para incrementar y decrementar el contador del encoder, mientras que el
último botón sirve para seleccionar el objeto seleccionado en la pantalla. Dentro del fichero
display_gui.c, donde se desarrolla la programación de la pantalla, se encuentra la
función get_encoder_button_data_cb() que es la encargada de actualizar la
información del driver del encoder.

Fig 30. Diagrama de bloques tarea de botonera

36

5.5 Tarea de procesado de la medida
Otra de las tareas más importantes es la tarea de control
(pressure_control_handler()), la cual se encarga de organizar el proceso de la
medida desde el inicio hasta la visualización de los resultados. Este control se hace a través
de una máquina de estados con seis estados, los cuales podemos ver en la figura 31.

● MEASURE_IDLE: Este es el estado inicial o de reposo, en el que lo único que se hace
es abrir la válvula de aire.

● SCHEDULED: cuando se selecciona el botón Measure en la pantalla se pasa al
estado de planificación en el que se cierra la válvula y se activa el PWM que controla
el motor para comenzar a inflar el brazalete. Además se almacena el primer valor de
presión (presión inicial) para, más tarde, restarlo al resultado de la medida. Por otro
lado se activa una variable lógica llamada store con la que controlamos el
almacenamiento de los datos de presión y oscilaciones en la tarea de adquisición.
Por último se pasa el estado a INFLATING.

● INFLATING: en este estado se va actualizando el último valor de presión adquirido y
se compara con el límite de presión suprasistólica (190 mmHg), una vez se alcance
dicho valor se pasa al estado DEFLATING.

● DEFLATING: una vez se llega a este estado se abre la válvula y se cambia la
referencia del PWM para que llegue gradualmente a cero en un espacio de 35
segundos, de esta forma se asegura que el brazalete se desinfla lentamente y la
señal se almacenada correctamente. Por último se pone la variable store a false para
dejar de almacenar datos y cambiamos el estado a DONE.

● DONE: este es el estado en el que se procesa la señal para obtener las medidas de
presión sistólica, diastólica y pulso. Para ello se utiliza la función
init_envelope() para inicializar la variable donde se van a almacenar los valores
de la envolvente. Por otro lado se utiliza la función find_peaks() que se encarga
de todo el procesamiento de la señal, desde la generación de la envolvente hasta la
obtención de los resultados de la medida de la presión, el diagrama de
funcionamiento de esta función se puede ver en la figura 18. A continuación se
realiza el cálculo del pulso, para ello transformamos la señal de oscilaciones en un
array complejo al que aplicaremos la transformada rápida de Fourier con la función
fft(). Más tarde, con la función get_highest_harmonic() se obtiene el armónico
más prominente del rango de frecuencias cardiacas y, por último, se cambia el
estado a WRITE_STATUS.

● WRITE_STATUS: una vez terminado el procesado de las medidas, se escriben los tres
resultados por pantalla a través de la función write_measure_bpm().

37

Fig 31. Diagrama de bloque tarea de control

38

5.6 Tarea UI/Visualización
En la tarea de interfaz de usuario (Fig 33) se muestran una serie de pantallas que parten de
un menú principal como se observa en la figura 32. La pantalla principal es la MAIN MENU,
una vez seleccionado el botón MEASURE se procede a realizar la medida de presión y se
muestran los resultados.
Por otro lado, las dos pantallas restantes, USER WINDOW y RECORDS WINDOW, servirían
para elegir el usuario y acceder al historial de medidas del mismo pero todavía no han sido
desarrolladas. Para la creación de esta interfaz se ha usado la librería gráfica LVGL, con la
que se han creado todas las pantallas y sus elementos dentro de la función pp_ui() que se
ejecuta periódicamente dentro de esta tarea. Esta librería gráfica es muy útil para este tipo
de proyectos, ya que contiene gran cantidad de elementos interactivos y personalizables
para crear interfaces únicas.

Fig 32. Pantallas de la interfaz de usuario

Fig 33. Diagrama de bloques tarea de interfaz de usuario

39

6. Análisis de los resultados.
Durante el procesado de las señales y el cálculo de las medidas en Matlab se utilizó el
tensiómetro de muñeca TOPCOM Blood Pressure Monitor BPM Wrist 3311 para comparar las
medidas obtenidas con nuestro prototipo, con las obtenidas con un tensiómetro
homologado.

Las medidas se realizan en estado de reposo, con el brazo izquierdo extendido y apoyado a
la altura del corazón. Primero se realiza la medida con el prototipo desarrollado en este
proyecto y dos minutos después con el tensiómetro homologado, ya que no se pueden
realizar las dos medidas a la vez porque pueden afectarse mutuamente.

6.1 Validación de las medidas de las presiones sistólica y
diastólica
Antes de poder validar las medidas se debe realizar una fase de calibración de los
coeficientes de presión sistólica y diastólica, para ello se empieza eligiendo dos valores
centrados dentro del rango de coeficientes empíricos [9]. Con estos coeficientes se realizan
6 medidas, se observa la precisión de las mismas y si es necesario se reajustan los
coeficientes. Este proceso de ajuste se repite hasta que ya no se pueda mejorar la precisión.
Los coeficientes elegidos son: 𝑟𝑠 = 0. 5; 𝑟𝑑 = 0. 75

Tabla 3. Medidas para la fase de calibración de coeficientes

40

Una vez calibrados los coeficientes se pasa a la fase de validación de los cálculos en Matlab
donde se realizaron 24 medidas a tres pacientes diferentes y se obtuvieron los resultados
que pueden verse en la Tabla 4.:

Tabla 4. Medidas de la fase de cálculo con Matlab

Como se puede observar en esta tabla, los dos primeros pacientes tienen una presión
arterial dentro de los límites normales (120-80 mmHg) y las medidas obtenidas con Matlab
no se alejan mucho de la medida con el tensiómetro homologado. En estos dos casos la
tolerancia de la medida simulada está alrededor de 2-3 mmHg (2,4-4,2% error absoluto).±
Sin embargo, el tercer paciente tiene una presión arterial por debajo de la normal, rozando
los límites de la hipotensión y el algoritmo implementado en MATLAB estima peor la
medida. En este caso la tolerancia de la medida es de 4-6 mmHg (5,5-11,5% error±
absoluto).
Una vez se termina la programación del prototipo se lleva a cabo la última fase de validación
en la que se realizaron otras 24 medidas a los mismos pacientes. Como era de esperar tras
los resultados obtenidos con MATLAB, las medidas realizadas con el prototipo a los
pacientes con tensiones dentro del rango normal tiene más precisión que las realizadas al
paciente con hipotensión. Se observa que los resultados obtenidos con el prototipo tiene
una ligera peor precisión que los obtenidos en Matlab, esto puede deberse a que las
operaciones en Matlab se realizan en coma flotante (permite operar con más precisión)
mientras que en en el microcontrolador se realizan en coma fija, o simplemente por que
aunque la implementación de las funciones de Matlab en el microcontrolador se ha

41

realizado siguiendo el mismo algoritmo, alguno de los cálculo se puede llevar a cabo de
forma distinta.
En cuanto a los errores de medida totales, tanto en los cálculos con Matlab como con el
prototipo final, se atribuyen a la vulnerabilidad del prototipo ante ruido y perturbaciones
provocadas por movimientos de elementos externos como el motor.

Tabla 5. Medidas última fase de validación

6.2 Validación de la medición del pulso
En cuanto a la validación de las medidas del pulso cardíaco, sólo se realizó en una fase y fue
una vez terminada la programación de todo el prototipo. La precisión de esta medida se ve
afectada por el tamaño de ventana de la transformada rápida de Fourier, ya que el rango de
frecuencias dentro del límite cardiaco se ve reducido. Las condiciones de realización de
estas medidas son las mismas que en las medidas de presión arterial. Dentro de esta fase
se realizaron 24 medidas de 3 pacientes diferentes. Como se puede observar en la tabla 6,
los errores medios absolutos se encuentran en el rango de 4-9%, superando el límite máximo
de 5% de error que se establece para este tipo de dispositivos.

42

Tabla 6. Medidas de validación de frecuencia cardiaca.

7. Conclusiones y trabajo futuro.

La implementación de aplicaciones médicas en sistemas empotrados basados en
microcontroladores requiere de un estudio intensivo del tipo de señales con las se va a
trabajar, ya que tratan con la salud de las personas.

La aparición en los últimos años de microcontroladores más potentes ha favorecido el
aumento del desarrollo de este tipo de sistemas, haciéndolos cada vez más compactos,
accesibles y con más funcionalidades. Los primeros aparatos de medición de la presión
eran manuales y dependían de la habilidad del profesional que realizaba la medida. Sin
embargo, una vez aparecieron los monitores de tensión digitales, los factores de error
humano desaparecieron y las personas comenzaron a poder llevar un control de sus niveles
de tensión sin necesidad de ir a un centro de salud.

De ahí el objetivo principal de este proyecto: desarrollar un prototipo de monitor de presión
que sea accesible, portable y que proporcione medidas precisas. Como se puede ver en el
Anexo 3, el precio de este prototipo, como simple suma de precio de componentes, es de
42,76€, si bien el precio se reduciría bastante en el caso de una empresa que compra
cientos de componentes.

El desarrollo de este proyecto se ha llevado a cabo realizando un estudio previo tanto del
método oscilométrico y sus algoritmos de estimación de la presión arterial, como de las
técnicas de análisis de señales en el dominio de la frecuencia para la estimación del pulso
cardiaco.

Como se ha visto en el apartado de validación, la precisión de las medidas es aceptable para
individuos con presión arterial dentro del rango normal (120-80 mmHg), sin embargo las
medidas realizadas en el paciente con presión arterial baja tienen menos precisión y son
menos constantes. Por otro lado, los datos obtenidos para la frecuencia cardiaca no tienen
la precisión que sería deseable. Hay que tener en cuenta que el prototipo está construido en

43

una placa de desarrollo electrónico (protoboard), lo que lo hace más vulnerable a ruidos,
movimientos e interferencias de su alrededor. Además, la validación se ha realizado con
datos tomados de tan solo 3 personas.

Para una validación más adecuada, habría que tomar datos de muchas más personas y
sobre un prototipo realizado en una PCB diseñada para minimizar interferencias y ruido.

No obstante, los resultados obtenidos no son malos. El error normal de la medición de
presión arterial en monitores homologados está entre 2-3 mmHg, y el del pulso alrededor del
5%. El monitor desarrollado en este proyecto todavía no cumple estos límites, por esta
misma razón a continuación se comentaran una serie de posibles mejoras y nuevas
funcionalidades que se pueden aplicar para mejorar la calidad del monitor de tensión
desarrollado.

En cuanto al trabajo futuro, primero se deberá centrar el foco en mejorar la precisión de las
medidas, tanto de presión arterial como de pulso. Para ello se proponen una serie de
mejoras:

● Construcción del prototipo en PCB, diseñado para minimizar ruido e interferencias.
● Estudio de algoritmos oscilométricos más precisos, como el de oscilometría

derivativa, que en vez de basarse en el uso de coeficientes empíricos realiza la
medida llevando a cabo un análisis de la pendiente de la envolvente. Otra técnica
interesante sería el uso de redes neuronales que reciben como entrada la envolvente
de la señal de oscilaciones (OMWE) y establecen relaciones complejas y no lineares
entre la envolvente y la presión arterial.

● Análisis de filtros complejos para obtener una mejor señal de oscilaciones y por
tanto una envolvente con más resolución.

● Añadir un sensor ECG (electrocardiograma) para mejorar la precisión de la medida
de la frecuencia cardiaca.

Por otro lado, una vez se haya conseguido una precisión de medida dentro de los rangos
exigidos, se puede mejorar la calidad y versatilidad del producto implementando una serie
de nuevas funcionalidades como:

● Añadir una opción para la elección de usuario antes de realizar la medida, para
posteriormente añadir una sección de historial donde cada usuario guarde sus
medidas y éstas puedan ser exportadas vía USB al ordenador.

● Desarrollo de una aplicación de smartphone en la que se muestren gráficas y
estadísticas de las mediciones de cada usuario. La sincronización del prototipo con
el smartphone se haría vía Bluetooth, de esta manera se actualizarán los datos de las
medidas realizadas por el monitor.

44

Referencias

1. “Cardiovascular Diseases (Cvds).” World Health Organization, 11 Jun. 2021,
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

2. “Sistema Arterial.” Clase De Anatomía, 18 Dec. 2020,
https://www.auladeanatomia.com/novosite/es/sistemas/sistema-cardiovascular/va
sos-sanguineos/sistema-arterial/.

3. “Diccionario De Cáncer Del NCI.” Instituto Nacional Del Cáncer, 6 May. 2021
https://www.cancer.gov/espanol/publicaciones/diccionarios/diccionario-cancer/def/
presion-arterial.

4. Amadeo Morera, et al. “Diferencias Entre Presión y Tensión Arterial” Mi Tensiómetro,
13 Dec. 2019, https://mitensiometro.com/diferencias-presion-y-tension-arterial/.

5. M Olmo R Nave. “Tensión En Paredes Arteriales.” Hyperphisics, 27 Jul. 2021
http://hyperphysics.phy-astr.gsu.edu/hbasees/ptens3.html.

6. Dr. Jeovhanni Nieves Rivera, et al. Módulo Instruccional Hipertensión e Hipotensión
Arterial. Mar. 2016,
https://gurabo.uagm.edu/sites/default/files/uploads/EducacionContinua/pdf/2016-2
/MOD-HIPER-HIPOTENSION-JA.pdf.

7. Simarro Blasco, J.A., Noheda Blasco, M.C., Bascuñana Blasco, M., Noheda Recuenco,
M., Tolmo Aranda, I. Romero Carralero, M.I. (2011). Estudio comparativo de la presión
arterial invasiva frente a la presión arterial no invasiva: Valoración de la diferencia.
Enfermería Global, vol 10 n.24
https://dx.doi.org/10.4321/S1695-61412011000400006

8. F. Barranco Ruiz, J. Blasco Morilla, et al. 1.16.2. Toma De La Presion Arterial, 15 Sep.
2021 https://uninet.edu/tratado/c011602.html.

45

https://dx.doi.org/10.4321/S1695-61412011000400006

9. M. Forouzanfar, H.R. Dajani, V.Z. Groza, M. Bolic, S. Rajan, and I Batkin, “Oscillometric
blood pressure estimation: past, present, and future,” IEEE Reviews in Biomedical
Engineering, vol. 8, pp. 44-63, May 2015.

10. Sani, Hac & Mansor, Wahidah & Lee, Yoot Khuan & Zainudin, N. & Mahrim, Syamsul
Adlan. (2015). Determination of heart rate from photoplethysmogram using Fast
Fourier Transform. 168-170. 10.1109/ICBAPS.2015.7292239.

11. Seamus. “How Do You Make a FIFO Array in C.” Stack Overflow, 25 Sep. 2019,
https://stackoverflow.com/questions/59023297/how-do-you-make-a-fifo-array-in-c.

12. Dr. Emiliano Fdez-Obanza Windscheid. “El Sistema Cardiovascular.” Sociedade Galega
de Cardioloxía, 25 Apr. 2019, https://www.sogacar.com/el-sistema-cardiovascular/.

13.Honeywell, “MPR SERIES MicroPressure Board Mount Pressure Sensors Compact,
High Accuracy, Compensated/Amplified”, 32332628 Issue I datasheet, Jul. 2021.

14. “La Historia Del Ciclo Cardiaco Timeline.” Timetoast Timelines, 4 Mar. 2021,
https://www.timetoast.com/timelines/la-historia-del-ciclo-cardiaco.

15. “Sistema Cardiovascular.” Aula De Anatomia, 31 Aug. 2021,
https://www.auladeanatomia.com/.

16. Rivas, Iván. “Ruidos De Korotkoff.” Gastro Mérida, 4 Aug. 2018,
https://www.ivanrivasmd.com/ruidos-de-korotkoff/.

17. Ada, Lady. “Adafruit MPRLS Ported Pressure Sensor Breakout.” Adafruit Learning
System, July 2021,
https://learn.adafruit.com/adafruit-mprls-ported-pressure-sensor-breakout.

18. “ESP32-DEVKITC Development Boards.” Mouser, 10 July 2018,
https://www.mouser.es/new/espressif/espressif-esp32-devkitc-boards/.

46

19. Teja, Ravi. “Introduction to ESP32: Specifications, ESP32 Devkit Board, Layout.”
Electronics Hub, 7 Sept. 2021,
https://www.electronicshub.org/getting-started-with-esp32/.

20. “El Bus I2C.” Dignal.com, 25 Mar. 2015, https://dignal.com/el-bus-i2c/.

47

Anexos

Anexo 1: Código desarrollado en Eclipse IDE

48

1. main.c

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <stdbool.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "driver/gpio.h"
#include "freertos/queue.h"
#include "esp_log.h"
#include "esp_types.h"
#include "driver/i2c.h"
#include "fifo_queue.h"
#include "driver/ledc.h"
#include "findPeaks.h"
#include "fft.h"
#include "display_gui.h"
#include "lvgl/lvgl.h"
#include "lvgl_helpers.h"

#define B1 34 // Aux button

#define B2 35 // Middle button

#define B3 27 // Right button

#define B4 14 // Left button
#define EOC_PS 17 // End of Conversion prs sensor
#define RST_PS 16 // Reset prs sensor
#define SDA_PS 21 //
End of Conversion prs
sensor #define SCL_PS 5
// End of Conversion prs
sensor
#define MPRL_ADDRESS 0x18//I2C adress
#define I2C_MASTER_FREQ_HZ 100000//SCK maste freq 100KHz

//Display
#define LCD_CS 14
#define LCD_RST 25
#define LCD_DC 26
#define LCD_MOSI 32
#define LCD_SCK 33

// i2c
#define ACK_CHECK_EN 0x1 /*!< I2C master
will check ack from slave*/
#define ACK_CHECK_DIS 0x0 /*!< I2C master
will not check ack from slave */
#define ACK_VAL 0x0 /*!< I2C ack value */

49

#define NACK_VAL 0x1 /*!< I2C nack value */

// Pressure related
#define COUNTS_224 (16777216L) ///< Constant: 2^24
#define PSI_to_HPA (68.947572932) ///< Constant: PSI to HPA conversion factor
#define PSI_to_ATM (0.068046)
#define PSI_to_mmHg (51.715) ///< Constant: PSI to mmHg conversion factor
#define MPRLS_OUTPUT_min (uint32_t)((float)COUNTS_224 * (10 / 100.0) + 0.5)
#define MPRLS_OUTPUT_max (uint32_t)((float)COUNTS_224 * (90 / 100.0) + 0.5)
#define MPRLS_PSI_min 0
#define MPRLS_PSI_max 25

//typedef enum{MEASURE_IDLE, SCHEDULED, INFLATING, DEFLATING, DONE}
measure_stage;

#define VALVE_PIN 22
#define FWD_PIN 19
//#define BWD_PIN 18
#define PUMP_CHANNEL_A LEDC_CHANNEL_1
//#define PUMP_CHANNEL_B LEDC_CHANNEL_2
#define TMR_RES LEDC_TIMER_12_BIT
//display
#define LV_TICK_PERIOD_MS 1

50

/* User global variables */

static TaskHandle_t button_task;
static QueueHandle_t button_queue;

static TaskHandle_t pressure_task;
static QueueHandle_t pressure_queue;

static TaskHandle_t pwm_task;
//static QueueHandle_t pressure_queue;

static TaskHandle_t gui_task;
static SemaphoreHandle_t xGuiSemaphore; int32_t btn_encoder_count = 0;

bool valve_state = false; bool store = false;
struct fifo_queue oscil_queue;
struct fifo_queue press_queue;

struct envelope env; float first_pressure = 0;

uint32_t button_count;
static const char* TAG= "ButtonInfo";

/* Task declarations */

static void button_pressed_task(void *params); static void read_pressure_task(void *params); static void
lv_tick_task(void *arg);
static void gui_manager_task(void *pvParameter); static void IRAM_ATTR gpio_isr_handler(void *args){

uint32_t pin_number = (uint32_t)args;
xQueueSendFromISR(button_queue, &pin_number, NULL);

}
void pressure_control_handler(void *params);

void app_main(void){
/*Button config*/
gpio_config_t config;
config.intr_type =
GPIO_INTR_NEGEDG
E; config.mode =
GPIO_MODE_INPUT;
config.pull_down_en =
false; config.pull_up_en
= true;
config.pin_bit_mask = ((1ULL<<B1) | (1ULL<<B2) | (1ULL<<B3) | (1ULL<<B4));

gpio_config(&config);
button_queue = xQueueCreate(4,sizeof(uint32_t));
xTaskCreate(button_pressed_task, "button pushed", 2048, NULL,
3, &button_task);

gpio_install_isr_service(0);
gpio_isr_handler_add(B1,
gpio_isr_handler, (void *)B1);
gpio_isr_handler_add(B2,
gpio_isr_handler, (void *)B2);
gpio_isr_handler_add(B3,
gpio_isr_handler, (void *)B3);
gpio_isr_handler_add(B4,

gpio_isr_handler, (void *)B4);

52

/*I2C config*/

gpio_pad_select_gpio(RST_PS);
gpio_set_direction(RST_PS,
GPIO_MODE_OUTPUT);
gpio_set_level(RST_PS, 1);

gpio_pad_select_gpio(EOC_PS);
gpio_set_direction(EOC_PS,
GPIO_MODE_INPUT);

i2c_config_t i2c_config = {
.mode = I2C_MODE_MASTER,
.sda_io_num = SDA_PS,
.scl_io_num = SCL_PS,
.sda_pullup_en = GPIO_PULLUP_ENABLE,
.scl_pullup_en = GPIO_PULLUP_ENABLE,
.master.clk_speed =
I2C_MASTER_FREQ_HZ};
i2c_param_config(I2C_NUM_0,
&i2c_config);
i2c_set_timeout(I2C_NUM_0,
1048575);
i2c_driver_install(I2C_NUM_0, I2C_MODE_MASTER, 0, 0, 0);
xTaskCreate(read_pressure_task, "read pressure", 4096, NULL, 5,
&pressure_task);

ESP_LOGI(TAG, "Setup done");

// Configure PWM
ledc_timer_config_t pwm_timer_config = {
.speed_mode = LEDC_LOW_SPEED_MODE,
.duty_resolution = TMR_RES,
.timer_num = LEDC_TIMER_1,
.freq_hz = 15000,
.clk_cfg = LEDC_AUTO_CLK};
ledc_timer_config(&pwm_timer_config)
;

ledc_channel_config_t pump_channel_config = {
.gpio_num = FWD_PIN,
.speed_mode = LEDC_LOW_SPEED_MODE,
.channel = PUMP_CHANNEL_A,
.timer_sel = LEDC_TIMER_1,
.duty = 0,
.hpoint = 0};
ledc_channel_config(&pump_channel_
config);

xTaskCreate(pressure_control_handler, "pwm", 14*2048, NULL, 5, &pwm_task);

// Configure screen
xTaskCreate(gui_manager_task, "gui", 4096*2, NULL, 1, &gui_task);
// see gui_manager_task() and pp_ui() for the layout
//xTaskCreatePinnedToCore(gui_manager_task, "gui", 4096*2, NULL, 0, &gui_task, 1);

// Configure valve
gpio_config_t valve_config = {

53

.mode = GPIO_MODE_OUTPUT,

.pull_up_en = GPIO_PULLUP_DISABLE,

.pull_down_en = GPIO_PULLDOWN_DISABLE,

.pin_bit_mask = (1ULL<<VALVE_PIN),

.intr_type = GPIO_INTR_DISABLE
};
ESP_ERROR_CHECK(gpio_config(&valve_config));

}

54

static void button_pressed_task(void *params){

uint32_t pin_number=0;

while(1)
{

if (xQueueReceive(button_queue, &pin_number, portMAX_DELAY))
{

// disable the interrupt
gpio_isr_handler_remove(pin_number);

// wait some time while we check for the button to be released
do
{

vTaskDelay(20 / portTICK_PERIOD_MS);
} while(gpio_get_level(pin_number) == 0);

//do some work
switch(pin_number) {

case B1: // Aux button
printf("Boton auxiliar ya
le daremos algun uso");
ESP_LOGI(TAG,
"auxiliar");
break;

case B2: // Middle button
ESP_LOGI(TAG, "middle");
break;

case B3: // Right button
//measure_STATUS = DEFLATING;
btn_encoder_count++;
ESP_LOGI(TAG, "encoder++, value : %d \n", btn_encoder_count);
break;

case B4: // Left button
//measure_STATUS = SCHEDULED;
btn_encoder_count--;
ESP_LOGI(TAG, "encoder++, value
: %d \n",btn_encoder_count); break;

}

// re-enable the interrupt
gpio_isr_handler_add(pin_number, gpio_isr_handler, (void *)pin_number);

}
}

}

uint8_t read_MPRLS_status(){

uint8_t status_data;

i2c_cmd_handle_t cmd = i2c_cmd_link_create(); i2c_master_start(cmd);

55

i2c_master_write_byte(cmd, (MPRL_ADDRESS << 1) | I2C_MASTER_READ,
ACK_CHECK_EN); i2c_master_read_byte(cmd, &status_data, NACK_VAL);
i2c_master_stop(cmd);
ESP_ERROR_CHECK(i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 /
portTICK_RATE_MS)); i2c_cmd_link_delete(cmd);

return status_data;

}

56

uint32_t read_MPRLS_data(){

uint8_t query_command[3] = {0xAA, 0x00, 0x00};

// Ask for data
i2c_cmd_handle_t cmd =
i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, (MPRL_ADDRESS << 1) | I2C_MASTER_WRITE,
ACK_CHECK_EN); i2c_master_write(cmd, query_command, 3,
ACK_CHECK_EN);
i2c_master_stop(cmd);
ESP_ERROR_CHECK(i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 /
portTICK_RATE_MS)); i2c_cmd_link_delete(cmd);

// Wait for data
TickType_t t=
xTaskGetTickC
ount(); uint8_t
last_status;
while ((last_status = read_MPRLS_status()) & 0x20) { // Device busy flag

//printf("status: 0x%X, \r\n", last_status);
float ellapsed_wait_time_ms = (xTaskGetTickCount() - t) / portTICK_RATE_MS;
if (ellapsed_wait_time_ms > 20){

//printf("TIMEOUT BUSY FLAG \r\n");
return 0xFFFFFFFF; // timeout

}
}

// Read data
//ESP_LOGI(TAG, "Reading data");
const size_t N_PRESSURE_BYTES = 4;
uint8_t pressure_raw_data[N_PRESSURE_BYTES];

cmd = i2c_cmd_link_create();
i2c_master_start(cmd);
i2c_master_write_byte(cmd, (MPRL_ADDRESS << 1) | I2C_MASTER_READ,
ACK_CHECK_EN); i2c_master_read(cmd, pressure_raw_data, N_PRESSURE_BYTES - 1,
ACK_VAL); i2c_master_read_byte(cmd, pressure_raw_data + N_PRESSURE_BYTES - 1,
NACK_VAL); i2c_master_stop(cmd);
ESP_ERROR_CHECK(i2c_master_cmd_begin(I2C_NUM_0, cmd, 1000 /
portTICK_RATE_MS)); i2c_cmd_link_delete(cmd);

//printf("READ status: 0x%X, \r\n", pressure_raw_data[0]);
uint32_t pressure_raw = (pressure_raw_data[1] << 16) | (pressure_raw_data[2] << 8) |
(pressure_raw_data[3]);
return pressure_raw;

}

float read_MPRLS_pressure(){

uint32_t raw_psi = read_MPRLS_data();
float psi = (raw_psi - MPRLS_OUTPUT_min) * (MPRLS_PSI_max -
MPRLS_PSI_min); psi /= (float)(MPRLS_OUTPUT_max -
MPRLS_OUTPUT_min);
psi += MPRLS_PSI_min;

57

return psi;

}

static void read_pressure_task(void *params){

// Initialization
gpio_set_level(RST_PS, 0);
vTaskDelay(10/ portTICK_RATE_MS); gpio_set_level(RST_PS, 1);
vTaskDelay(10/ portTICK_RATE_MS); // Startup timing
//init pressure queue
init_fifo_queue(&press_queue, 3000);
init_fifo_queue(&oscil_queue, 3000);
// Bandpass pass
//const float b0 = 0.1453, b2 = -0.2906, b2 = 0.2929;
//const float a2 = 0.1716; // a0=1, a1 = 0
const float float b0 = 0.1453, b1 =0, b2 = -0.2906,b3 = 0, b4 = 0.1453;
const float a4= 1, a3 = -2.521, a2 = 2.3844, a1 = -1.1096, a0=0.2523;
float xk1=0, xk2=0, xk3=0, xk4=0, yk1=0, yk2=0,
yk2=0, yk3=0, yk4=0; float xk, yk;

TickType_t last_wake_time = xTaskGetTickCount();
while(1){

//uint32_t pressure_raw = read_MPRLS_data();
float psi = read_MPRLS_pressure();
float mmHg = psi * PSI_to_mmHg;

58

// Band pass filter

xk = mmHg;
yk = b0*xk + b1*xk1 + b2*xk2 + b3*x3 + b4*x4 +
(a0*yk + a1*yk1 + a2*yk2 + a3*yk3 + a4*yk4);

yk4 = yk3; yk3 = yk2; yk2 = yk1; yk1 = yk;
xk4 = xk3; xk3= xk2; xk2 = xk1; xk1 = xk;

if(store == true){
enqueue(&oscil_queue, yk);
enqueue(&press_queue, mmHg);
//for data aquisition
//printf("{TIMEPLOT|data|RawPressure|T|%d}\n", (uint32_t)((yk - 740)*1000)); //
DEBUG
//printf("{TIMEPLOT|data|OscilAmplitude|T|%d}\n", (uint32_t)((yk_h*1000)));

}

vTaskDelayUntil(&last_wake_time, pdMS_TO_TICKS(25));
}

}

void pressure_control_handler(void *params){ TickType_t last_wake_time = xTaskGetTickCount();

// Array for bpm measurement
const float Ts = 0.025;
measure_stage measure_STATUS;
const uint32_t N = 512;
int offset = 500;
float max_harmonic=0;
measure_STATUS = MEASURE_IDLE;
float sys_r = 0;
float dias_r = 0;

59

while(1){

measure_STATUS = read_measure_status();
switch(measure_STATUS){

case MEASURE_IDLE:;
// PWM Control
ESP_LOGI(TAG, "Ready for measurement");
//float ref_pressure = 0;
// Valve control
gpio_set_level(VALVE_PIN, 0);//valveopen
break;

case SCHEDULED:
ESP_LOGI(TAG, "Scheduled measurement");
ledc_fade_func_install(0);
measure_STATUS = INFLATING; ESP_LOGI(TAG, "Proceeding to inflate");
gpio_set_level(VALVE_PIN, 1);//valve closed
//Comenzamos a guardar los datos
store = true;
ledc_set_fade_time_and_start(LEDC_LOW_SPEED_MODE, PUMP_CHANNEL_A,
2800, 1500, LEDC_FADE_WAIT_DONE);

first_pressure = last_queue_value(&press_queue);
break;

case INFLATING:;

float current_pressure = last_queue_value(&press_queue);
printf("Pressure measured %f \r\n", current_pressure);
if (current_pressure > 890.){

measure_STATUS = DEFLATING;

}

break;

case DEFLATING:;
gpio_set_level(VALVE_PIN, 0);
ESP_LOGI(TAG, "Proceeding to deflate");
ledc_set_fade_time_and_start(LEDC_LOW_SPEED_MODE,
PUMP_CHANNEL_A, 0, 35000, LEDC_FADE_WAIT_DONE);

store = false;
measure_STATUS = DONE; break;

case DONE:
gpio_set_level(VALVE_PIN, 0);
ESP_LOGI(TAG, "Measurement done");
vTaskDelay(pdMS_TO_TICKS(500));

//BUSCAMOOS LOS MAXIMOS LOCALES CON ENVPEAKS
int minD=30; //minima distancia entre picos

init_envelope(&env, minD, 2800);
findPeaks(&env, &oscil_queue);
int sys= env.As_idx;
int dias= env.Ad_idx;
sys_r = (press_queue.arr[sys])-740;

60

dias_r = (press_queue.arr[dias])-740;

//Calculamos BPM
complex *ordered_bpm_arr = (complex *) malloc(N*sizeof(complex));
complex *temp = (complex *) malloc(N*sizeof(complex));

for (size_t j = 0; j < N; j++){
ordered_bpm_arr[j].Im = 0.;
ordered_bpm_arr[j].Re = oscil_queue.arr_norm[offset + j];

}

fft(ordered_bpm_arr, N, temp); // Use unordered array as scratch
max_harmonic = get_highest_harmonic(ordered_bpm_arr, N, 1/Ts);

61

free(ordered_bpm_arr); free(temp);

printf("Highest harmonic is %4.4f \n", max_harmonic);
printf("BPM: %f \n", max_harmonic*60);

free_envelope(&env);
free_queue(&press_queue);
free_queue(&oscil_queue); measure_STATUS = WRITE_RESULTS;
break;
case WRITE_RESULTS:

printf("sys Pressure: %f \n", sys_r); printf("dias Pressure: %f \n", dias_r);
printf("first Press %f: \n", first_pressure);
printf("Highest harmonic is %4.4f \n", max_harmonic);
printf("BPM: %f \n", max_harmonic*60);
write_measured_bpm(60*max_harmonic, sys_r,dias_r);
ESP_LOGI(TAG, "write_result_status");

break; default:
break;

}
write_measure_status(measure_STATUS);
vTaskDelayUntil(&last_wake_time, pdMS_TO_TICKS(50));

}

}

static void gui_manager_task(void *pvParameter) {
(void) pvParameter;

TickType_t last_wake_time = xTaskGetTickCount();
lv_init();
lvgl_driver_init();

// Use double buffered when not working with monochrome displays

62

static lv_color_t buf1[DISP_BUF_SIZE];

static lv_color_t buf2[DISP_BUF_SIZE]; static lv_disp_buf_t disp_buf;
uint32_t size_in_px = DISP_BUF_SIZE;
lv_disp_buf_init(&disp_buf, buf1, buf2, size_in_px);

lv_disp_drv_t disp_drv; lv_disp_drv_init(&disp_drv);
disp_drv.flush_cb = disp_driver_flush;
disp_drv.buffer = &disp_buf;
lv_disp_drv_register(&disp_drv);

// Create and start a periodic timer interrupt to call lv_tick_inc
const esp_timer_create_args_t periodic_timer_args = {
.callback = &lv_tick_task,
.name = "periodic_gui"
};
esp_timer_handle_t periodic_timer;
ESP_ERROR_CHECK(esp_timer_create(&periodic_timer_args, &periodic_timer));
ESP_ERROR_CHECK(esp_timer_start_periodic(periodic_timer, LV_TICK_PERIOD_MS
* 1000));

// Create the demo application
pp_ui();

while (1) {
// Delay 1 tick (assumes FreeRTOS tick is 10ms
vTaskDelay(pdMS_TO_TICKS(10));

lv_task_handler();

}

vTaskDelayUntil(&last_wake_time, pdMS_TO_TICKS(100));
}

static void lv_tick_task(void *arg) {

(void) arg;

lv_tick_inc(LV_TICK_PERIOD_MS);
}

63

2. findPeaks.c

/*
* findPeaks.c
*
* Created on: 5 oct. 2021
* Author: romeoisabel
*/

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <math.h>
#include "fifo_queue.h"
#include "findPeaks.h"
void init_envelope(struct envelope *env, int d, int nelems){

env->MAXSIZE = nelems;

env->y = malloc(nelems*sizeof(float));
env->minD=d;
env->x = malloc(nelems*sizeof(float));
env->MAP = 0.;
env->MAP_idx = 0;
env->As= 0.;
env->As_idx= 0;
env->Ad= 0.;
env->Ad_idx= 0;
//env->iPk = malloc(nelems*sizeof(float));

}
void free_envelope(struct envelope *env){
free(env->y);
free(env->x);
env->MAXSIZE=0;
env->minD=0;
env->MAP = 0.;
env->MAP_idx = 0;
env->As= 0.;
env->As_idx= 0;
env->Ad= 0.;
env->Ad_idx= 0;

}

void findPeaks(struct envelope *env, struct fifo_queue *oscil_norm){

float *yTemp;
int oscil_size = oscil_norm->size;
printf("oscil_size= %d \n", oscil_size);
yTemp = malloc((oscil_size +2)*sizeof(float));

for(int i=0; i<(oscil_size +2); i++){

if(i==0){

64

yTemp[i]=0;
}
else if(i==oscil_size +1){
yTemp[i] = 0;

}
else {
yTemp[i] = oscil_norm->arr_norm[i-1];
}

}

//Hacemos resta de los valores adyacentes a lo largo del array
//y sacamos el signo de cada valor
float *diff;
signed
int *s;
diff = malloc((oscil_size+2)*sizeof(float)); s = malloc((oscil_size+2)*sizeof(int)); printf("g \n");
for(int i=0; i<(oscil_size+2); i++){

if(i>0){
diff[i-1] = yTemp[i]-yTemp[i-1];
}

}

for(int i=0; i<(oscil_size+2); i++){
if(diff[i]>0){ s[i] = 1;
}
else if(diff[i]<0){
s[i] = -1;
}
else s[i] = 0;

}

//Buscamos los maximos locales (su localizacio, indice)
//para ello hacemos la resta de los valores adyacentes a lo largo de s
//y buscamos donde sea menor de 0
signed int *diffS;
diffS = malloc((oscil_size+2)*sizeof(int));

struct fifo_queue iMax;
init_fifo_queue(&iMax, (oscil_size+2));

for(int i=0; i<(oscil_size+2); i++){
if(i>0){
diffS[i-1] = s[i]-s[i-1];
}

}

for(int i=0; i<(oscil_size+2); i++){
if(diffS[i]<0){
enqueue(&iMax, i);

}
}

struct fifo_queue iPk;
init_fifo_queue(&iPk, (oscil_norm->size+2));
int size_iMax = iMax.size;
for(int i=0; i<=size_iMax; i++){

enqueue(&iPk, i-1);

65

}

66

//findPeaksSeparatedByMoreThanMinPeakDistance
//guardamos peaks y locs en dos variables
int size_iMax = iMax.size;
float pks[size_iMax];
float locs[size_iMax];
//locs=iPk;
printf("k \n");
for(int i=0; i<size_iMax; i++){
pks[i] = oscil_norm->arr_norm[(int)iMax.arr[i]];/// //////////////arr_norm
locs[i] = iMax.arr[i];

}

//ordenamos los Peaks de mayor a menor y guardamos
//los idx ordenados tmbn en otro array
printf("size_iMax= %d \n", size_iMax);

struct sort_queue
{
float value;
int idx;

};

struct sort_queue sortIdx[size_iMax];

for (int i = 0; i < size_iMax; i++)
{

sortIdx[i].value = pks[i]; sortIdx[i].idx = (int)locs[i];
}

//decending function
int comp(const void *a, const void *b){

struct sort_queue *a1 = (struct sort_queue *)a;
struct sort_queue *a2 = (struct sort_queue *)b;
if ((*a1).value > (*a2).value)) {

return -1;
}
else if ((*a1).value < (*a2).value) {

return 1;
}
else return 0;

}

67

qsort(sortIdx, size_iMax, sizeof(sortIdx[0]), comp);

//una vez tenemos el array de idx ordenado obtenemos el
//array de x indexando sortIdx

for(int i=0; i<size_iMax; i++){
locs[i] = sortIdx[i].idx;

}
int idelete[size_iMax];
for(int i=0; i<size_iMax; i++){

idelete[i]=0;
}

//If the peak is not in the neighborhood of a larger peak, find
//secondary peaks to eliminate.
int masc1[size_iMax];
int masc2[size_iMax];
for(int i=0; i<size_iMax; i++){

if(!idelete[i]){

for(int k=0; k<size_iMax; k++){
if(locs[k]>=(locs[i]-env->minD)){
masc1[k]=1;

} else masc1[k]=0;

if(locs[k]<=(locs[i]+env->minD)){
masc2[k]=1;
} else masc2[k]=0;

}

for(int j=0; j<=size_iMax; j++){
idelete[j] = idelete[j] | (masc1[j] & masc2[j]);

}
idelete[i] = 0; //keep current peak
}
}

68

//Para cribar los maximos solo nos quedaremos con los maximos
//en los que el valor en el indice correspondiente en el array idelete
//sea 0. -> Ej: sortValue=[5, 3, 2 ,1] sortIdx=[2, 3, 1, 0] idelete=[0, 0, 1, 0]
//nos quedaremos con los maximos situados en 2 3 y 0

//Para ello crearemos otro struct sort con los valores definitivos

//Debemos contar cuantos maximos quitamos para saber el size del nuevo
//struct de valores
int cnt=0;
for(int i=0; i<size_iMax; i++){

if(idelete[i]==1){
cnt++;

}
}

int size_def = size_iMax-cnt;
struct sort_queue def[size_def];
cnt=0;

for(int i=0; i<size_iMax; i++){
if(idelete[i]==0){

def[cnt].value = sortIdx[i].value;
def[cnt].idx = sortIdx[i].idx;
cnt++;
//guardamos valores definitivos
}

}

cnt=0;

//Una vez tenemos seleccionados los maximos los volvemos a reordenar
//en orden cronologico
int comp2(const void *a, const void *b)
{

struct sort_queue *a1 = (struct sort_queue *)a;
struct sort_queue *a2 = (struct sort_queue *)b;
if ((*a1).idx > (*a2).idx)
return 1;
else if ((*a1).idx < (*a2).idx)
return -1; else return 0;

}
qsort(def, size_def, sizeof(def[0]), comp2);

//Una vez lo tenemos reordenado guardamos los idx
//hacemos bookend con 0 a los arrays de valores e indices finales para interpolar bien

for(int i=0; i<size_def+2; i++){
if((i==0) | (i==(size_def+1))){

env->y[i]=0;
env->x[i]=0;
}
else {
env->y[i]=def[i-1].value;
env->x[i]=def[i-1].idx;
}

69

}

70

float xi[oscil_size +2];
float yi[oscil_size +2];
//Inicializamos el array de valores de x de la iterpolacion
for(int i=0; i<oscil_size+2; i++){

xi[i] = i;

}

//Algoritmo 2

for(int i=0; i<(size_def+1); i++){
int x0 = env->x[i];
int x1 = env->x[i+1];
float y0 = env->y[i]; float y1 = env->y[i+1]; yi[x0]=y0;
yi[x1]=y1;

for(int j=x0+1; j<x1; j++){
int xp = xi[j];
float yp = y0+ ((y1-y0)/(x1-x0))*(xp-x0);
yi[xp]=yp;

}

}

//Una vez tenemos la envelope hecha solo queda buscar el maximo que sera el MAP
//Una vez tengamos el MAP las medidas de SYS y DIAS seran unos porcentaje fijos
//del MAP(por arriba o por abajo)
float max=0; int max_idx=0;
//Para Buscar el MAP buscaremos a partir del indice 500 + o - mpara evitar los
//maximos del principio
for(int i=500; i<(oscil_size-100); i++){

if((yi[i])>max){
max=(yi[i]); max_idx=i;
}

}

float MAP=max;
printf("MAP %f \n", MAP);
printf("MAP_idx %d \n", max_idx);
float Ad=0.5*MAP;
float As=0.75*MAP;
//Buscamos el idx donde se encuentra As y Ad
float d=5; float d_min=5;

int x_min_sys=0;
int x_min_dias=0;

for(int i=500; i<max_idx; i++){

71

d=abs((yi[i])-abs(As));
if(d<d_min){

d_min=d;
x_min_sys=i;

}

}

d=5;
d_min=5;
for(int i=max_idx; i<1500; i++){

d=abs((yi[i])-abs(Ad));
if(d<d_min){

d_min=d;
x_min_dias=i;

}

}
env->MAP = MAP;
env->As = As; env->Ad = Ad;
env->MAP_idx = max_idx; env->As_idx = x_min_sys; env->Ad_idx = x_min_dias;

printf("SYS_idx %d \n", env->As_idx);
printf("DIAS_idx %d \n", env->Ad_idx);

//Obtenemos los valores de presion dias y sys con los indices obtenidos
//float press_sys=press_queue.arr[x_min_sys];
//float press_dias=press_queue.arr[x_min_dias];

//Vaciamos las colas

free(yTemp); free(diff); free(s);
free_queue(&iMax);

}

72

3. display_gui.c

/*
* display_gui.c
*
* Created on: 21 oct. 2021
* Author: romeoisabel
*/

#include "display_gui.h"
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <stdbool.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "driver/gpio.h"
#include "freertos/queue.h"

#include "esp_log.h"
#include "esp_types.h"
#include "driver/i2c.h"

/**** User variables ****/

#define B2 35 // Middle button

// Main menu and globals static lv_group_t* pp_group;
static lv_obj_t *btn_settings;
static lv_obj_t *btn_measure;
static lv_obj_t *btn_record;
static lv_style_t window_bg_style;
static lv_style_t win_btn_style;

// Settings menu
static lv_obj_t* devmode_switch;
static lv_obj_t* settings_menu;
static lv_obj_t *btn_settings_close;
static lv_obj_t* set_devmode_btn;
static lv_obj_t* user1_btn;
static lv_obj_t* user2_btn;
static lv_obj_t* user3_btn;
static lv_obj_t* set_time_btn;
static lv_obj_t* motor_control_btn;
static lv_obj_t* view_graph_btn;
static bool dev_state = false;
static lv_style_t btn_settings_style;

// Measure window
static lv_obj_t *btn_measure_close; lv_task_t *get_measure_status_task;
measure_stage measure_STATUS = MEASURE_IDLE;
static lv_obj_t * measure_status_label;
static float measured_bpm = 0.;
static float measured_sys = 0.;

73

static float measured_dias = 0.;

//Results window
static lv_obj_t *btn_results_close;
static lv_obj_t * sys_label ;
static lv_obj_t * dias_label ;
static lv_obj_t * bpm_label ;
static lv_obj_t * par;

/**** User function prototypes ****/
#if !SIMULATION
int32_t btn_encoder_count;
bool get_encoder_button_data_cb(lv_indev_drv_t *indev_drv,
lv_indev_data_t *data);
uint8_t pwm_power;
#endif
static void btn_settings_cb(lv_obj_t * btn, lv_event_t event);

// Settings menu
static void settings_window();
static void btn_devmode_cb(lv_obj_t * btn, lv_event_t event);
static void close_win_settings_cb(lv_obj_t *btn, lv_event_t event);
static void btn_view_graph_cb(lv_obj_t *btn, lv_event_t event);
static void add_dev_settings();
static void btn_motor_control_cb(lv_obj_t *btn, lv_event_t event);

// Measure window
static void measure_window();
static void btn_measure_cb(lv_obj_t * btn,
lv_event_t event);
static void close_win_measure_cb(lv_obj_t *btn,
lv_event_t event);
static void
get_measure_status_cb(lv_task_t
*task);
//void write_measured_bpm(float bpm);

// Measure result window
static void measure_result_window();
static void close_win_results_cb(lv_obj_t *btn, lv_event_t event);
extern void write_measured_bpm(float bpm, float sys, float dias);

void pp_ui(void){

pp_group = lv_group_create();

/* Initialize input driver(encoder) */
v_indev_drv_t enc_drv;
lv_indev_drv_init(&enc_drv);
enc_drv.type = LV_INDEV_TYPE_ENCODER;
#if SIMULATION
enc_drv.read_cb =
mousewheel_read;
#else
enc_drv.read_cb =
get_encoder_button_data_cb;
#endif

74

lv_indev_t *enc_indev = lv_indev_drv_register(&enc_drv);
lv_indev_set_group(enc_indev, pp_group);

/* style win bg */
lv_style_init(&window_bg_style);
lv_style_set_bg_color(&window_bg_style, LV_STATE_DEFAULT,
lv_color_hex(0xFFFFFF)); lv_style_set_bg_grad_color(&window_bg_style,
LV_STATE_DEFAULT, lv_color_hex(0xdff9fb));
lv_style_set_bg_grad_dir(&window_bg_style, LV_STATE_DEFAULT,
LV_GRAD_DIR_VER); lv_style_set_bg_main_stop(&window_bg_style,
LV_STATE_DEFAULT, 10);
lv_style_set_bg_grad_stop(&window_bg_style, LV_STATE_DEFAULT, 200);
/* Create main window */
lv_obj_t *win_main = lv_win_create(lv_scr_act(), NULL);
lv_win_set_title(win_main, "Main menu");
lv_win_set_header_height(win_main, 40);
lv_obj_set_style_local_text_color(win_main, LV_WIN_PART_HEADER,
LV_STATE_DEFAULT, lv_color_hex(0xffffff));
lv_obj_set_style_local_bg_color(win_main, LV_WIN_PART_HEADER,
LV_STATE_DEFAULT, lv_color_hex(0x686de0)); // f2f9fa
lv_obj_add_style(win_main, LV_WIN_PART_BG, &window_bg_style);

/* label main window */
lv_obj_t *label_win_main = lv_label_create(lv_scr_act(), NULL);
lv_label_set_text(label_win_main, "22:34");
lv_obj_set_style_local_text_color(label_win_main, LV_LABEL_PART_MAIN,
LV_STATE_DEFAULT, lv_color_hex(0xFFFFFF)); lv_obj_align(label_win_main, win_main,
LV_ALIGN_IN_TOP_RIGHT, -20, 12);

/* Add buttons to main window */

/* button style */
static lv_style_t main_btn_style;
lv_style_init(&main_btn_style);
lv_style_set_radius(&main_btn_style, LV_STATE_DEFAULT, 10);
lv_style_set_outline_color(&main_btn_style, LV_STATE_DEFAULT,
lv_color_hex(0xFFFFFF));
lv_style_set_border_color(&main_btn_style, LV_STATE_DEFAULT,
lv_color_hex(0xFFFFFF));
lv_style_set_border_opa(&main_btn_style, LV_STATE_DEFAULT,
LV_OPA_30); lv_style_set_text_color(&main_btn_style,
LV_STATE_DEFAULT, lv_color_hex(0xFFFFFF));
lv_style_set_outline_width(&main_btn_style, LV_STATE_FOCUSED, 7);
lv_style_set_outline_color(&main_btn_style, LV_STATE_FOCUSED,
lv_color_hex(0xb0eaff)); lv_style_set_outline_opa(&main_btn_style,
LV_STATE_FOCUSED, LV_OPA_80);
lv_style_set_transform_width(&main_btn_style, LV_STATE_FOCUSED, 5);
lv_style_set_transform_height(&main_btn_style, LV_STATE_FOCUSED, 5);
/* label style */
static lv_style_t main_label_style;
lv_style_init(&main_label_style);
lv_style_set_text_color(&main_label_style, LV_STATE_DEFAULT, lv_color_hex(0xffffff));
/* heart icon style */
static lv_style_t heart_icon_style; lv_style_init(&heart_icon_style);
lv_style_set_text_color(&heart_icon_style, LV_STATE_DEFAULT, lv_color_hex(0xffffff));
lv_style_set_text_font(&heart_icon_style, LV_STATE_DEFAULT, &heart_44);
static lv_style_t user_icon_style; lv_style_init(&user_icon_style);
lv_style_set_text_color(&user_icon_style, LV_STATE_DEFAULT, lv_color_hex(0xffffff));
lv_style_set_text_font(&user_icon_style, LV_STATE_DEFAULT, &user_44);
/* icon style */

75

static lv_style_t main_icon_style; lv_style_init(&main_icon_style);
lv_style_set_text_color(&main_icon_style, LV_STATE_DEFAULT, lv_color_hex(0xffffff));
lv_style_set_text_font(&main_icon_style, LV_STATE_DEFAULT, &lv_font_montserrat_44);

const uint8_t padding_btn = 16;
const uint8_t button_wh = 85;

/* btn settings */
btn_settings = lv_btn_create(win_main, NULL);
lv_obj_set_size(btn_settings, button_wh, button_wh);
lv_obj_align(btn_settings, NULL, LV_ALIGN_IN_LEFT_MID, padding_btn, 0);
lv_obj_set_style_local_bg_color(btn_settings, LV_BTN_PART_MAIN,
LV_STATE_DEFAULT, lv_color_hex(0x95afc0));
lv_obj_set_style_local_bg_color(btn_settings, LV_BTN_PART_MAIN,
LV_STATE_PRESSED, lv_color_hex(0xc3dbeb)); lv_group_add_obj(pp_group,
btn_settings);
lv_obj_add_style(btn_settings, LV_BTN_PART_MAIN, &main_btn_style);
lv_obj_set_event_cb(btn_settings, btn_settings_cb);
/* icon settings */
lv_obj_t *icon_settings = lv_label_create(btn_settings, NULL);
lv_label_set_text(icon_settings, "\uf007");
lv_obj_set_style_local_pad_left(icon_settings, LV_LABEL_PART_MAIN,
LV_STATE_DEFAULT, 2);
//lv_obj_set_style_local_pad_top(icon_settings, LV_LABEL_PART_MAIN,
LV_STATE_DEFAULT, 20);
lv_obj_add_style(icon_settings, LV_LABEL_PART_MAIN, &user_icon_style);
/* label settings */
lv_obj_t *label_settings = lv_label_create(btn_settings, NULL);
lv_label_set_text(label_settings, "User");
lv_obj_add_style(label_settings, LV_LABEL_PART_MAIN, &main_label_style);

76

/* btn measure */
btn_measure = lv_btn_create(win_main,
NULL); lv_obj_set_size(btn_measure,
button_wh, button_wh);
lv_obj_align(btn_measure, btn_settings, LV_ALIGN_OUT_RIGHT_MID, padding_btn, 0);
lv_obj_set_style_local_bg_color(btn_measure, LV_BTN_PART_MAIN, LV_STATE_DEFAULT,
lv_color_hex(0xeb4d4b));

lv_obj_set_style_local_bg_color(btn_measure, LV_BTN_PART_MAIN, LV_STATE_PRESSED,
lv_color_hex(0xff7979)); lv_group_add_obj(pp_group, btn_measure);
lv_obj_add_style(btn_measure, LV_BTN_PART_MAIN,
&main_btn_style); lv_obj_set_event_cb(btn_measure,
btn_measure_cb);
/* icon measure */
lv_obj_t *icon_measure = lv_label_create(btn_measure, NULL);
//lv_label_set_text(icon_measure, LV_SYMBOL_PLAY);
lv_label_set_text(icon_measure, "\uf004");
lv_obj_set_style_local_pad_left(icon_measure, LV_LABEL_PART_MAIN, LV_STATE_DEFAULT, 2);
//lv_obj_add_style(icon_measure, LV_LABEL_PART_MAIN, &main_icon_style);
lv_obj_add_style(icon_measure, LV_LABEL_PART_MAIN, &heart_icon_style);
/* label measure */
lv_obj_t *label_measure =
lv_label_create(btn_measure, NULL);
lv_label_set_text(label_measure,
"Measure");
lv_obj_add_style(label_measure, LV_LABEL_PART_MAIN, &main_label_style);

/* btn records */
btn_record = lv_btn_create(win_main, NULL);
lv_obj_set_size(btn_record, button_wh,
button_wh);
lv_obj_align(btn_record, btn_measure, LV_ALIGN_OUT_RIGHT_MID, padding_btn, 0);
lv_obj_set_style_local_bg_color(btn_record, LV_BTN_PART_MAIN, LV_STATE_DEFAULT,
lv_color_hex(0xf9ca24)); lv_obj_set_style_local_bg_color(btn_record, LV_BTN_PART_MAIN,
LV_STATE_PRESSED, lv_color_hex(0xf6e58d)); lv_group_add_obj(pp_group, btn_record);
lv_obj_add_style(btn_record, LV_BTN_PART_MAIN, &main_btn_style);
/* icon records */
lv_obj_t *icon_record = lv_label_create(btn_record, NULL);
lv_label_set_text(icon_record, LV_SYMBOL_DIRECTORY);
lv_obj_set_style_local_pad_left(icon_record, LV_LABEL_PART_MAIN,
LV_STATE_DEFAULT, 2); lv_obj_add_style(icon_record,
LV_LABEL_PART_MAIN, &main_icon_style);
/* label records */
lv_obj_t *label_record =
lv_label_create(btn_record, NULL);
lv_label_set_text(label_record,
"Records");
lv_obj_add_style(label_record, LV_LABEL_PART_MAIN, &main_label_style);

/* window buttons style */
lv_style_init(&win_btn_style);
lv_style_set_radius(&win_btn_style,
LV_STATE_DEFAULT, 10);
lv_style_set_outline_color(&win_btn_style, LV_STATE_DEFAULT,
lv_color_hex(0xFFFFFF)); lv_style_set_border_color(&win_btn_style,
LV_STATE_DEFAULT, lv_color_hex(0xFFFFFF));
lv_style_set_border_opa(&win_btn_style, LV_STATE_DEFAULT,
LV_OPA_30); lv_style_set_text_color(&win_btn_style, LV_STATE_DEFAULT,
lv_color_hex(0xFFFFFF)); lv_style_set_outline_width(&win_btn_style,
LV_STATE_FOCUSED, 2); lv_style_set_outline_color(&win_btn_style,

77

LV_STATE_FOCUSED, lv_color_hex(0xb0eaff));
lv_style_set_outline_opa(&win_btn_style, LV_STATE_FOCUSED,
LV_OPA_80); lv_style_set_transform_height(&win_btn_style,
LV_STATE_DEFAULT, -10);
lv_style_set_transform_width(&win_btn_style, LV_STATE_DEFAULT, -10);

}

#if !SIMULATION
bool get_encoder_button_data_cb(lv_indev_drv_t *indev_drv, lv_indev_data_t *data){

static int32_t last_encoder_diff = 0;
int32_t encoder_val = btn_encoder_count;
int32_t encoder_diff = encoder_val - last_encoder_diff;
data->enc_diff = encoder_diff;
last_encoder_diff = encoder_val;

//btn select=B2 (middle)
if (!gpio_get_level(B2)) data->state = LV_INDEV_STATE_PR;
else data->state = LV_INDEV_STATE_REL;

return false;
}
#endif

static void btn_settings_cb(lv_obj_t * btn, lv_event_t event){
if(event == LV_EVENT_SHORT_CLICKED) {

settings_window();
}
static void btn_measure_cb(lv_obj_t * btn, lv_event_t event){
if(event == LV_EVENT_SHORT_CLICKED){

measure_STATUS = SCHEDULED;
measure_window();

}
}

void write_measure_status(measure_stage stage){
measure_STATUS = stage;

}

measure_stage read_measure_status(){
return measure_STATUS;

}

78

static void measure_window(){

/* Remove items from scrolling group */
lv_group_remove_all_objs(pp_group);

/* Create window */
lv_obj_t *win_measure =
lv_win_create(lv_scr_act(),
NULL);
lv_win_set_title(win_measur
e, "");
lv_win_set_header_height(w
in_measure, 40);
lv_obj_set_style_local_text_color(win_measure, LV_WIN_PART_HEADER,
LV_STATE_DEFAULT, lv_color_hex(0xffffff));
lv_obj_set_style_local_bg_color(win_measure, LV_WIN_PART_HEADER,
LV_STATE_DEFAULT, lv_color_hex(0x5a6975));
//lv_obj_add_style(win_measure, LV_WIN_PART_BG, &window_bg_style);
lv_obj_set_style_local_bg_color(win_measure, LV_WIN_PART_BG, LV_STATE_DEFAULT,
lv_color_hex(0xcedfed));
//0x130f40
lv_win_set_layout(win_measure, LV_LAYOUT_COLUMN_MID);
/* Close button */
btn_measure_close =
lv_win_add_btn_right(win_measure, "");
lv_obj_add_style(btn_measure_close,
LV_BTN_PART_MAIN, &win_btn_style);
lv_obj_set_event_cb(btn_measure_close,
close_win_measure_cb);
lv_obj_t *close_btn_label =
lv_label_create(btn_measure_clo
se, NULL);
lv_label_set_text(close_btn_label,
LV_SYMBOL_CLOSE);
lv_obj_set_style_local_text_color(close_btn_label, LV_LABEL_PART_MAIN,
LV_STATE_DEFAULT, lv_color_hex(0xffffff)); lv_group_add_obj(pp_group,
btn_measure_close);

/* Label */
lv_obj_t * measure_label = lv_label_create(win_measure, NULL);
lv_label_set_text(measure_label, "\n\n\nPerforming measurement...\n
Please stay still."); lv_label_set_align(measure_label,
LV_LABEL_ALIGN_CENTER);

get_measure_status_task = lv_task_create(get_measure_status_cb, 500,
LV_TASK_PRIO_MID,NULL);

}

79

static void measure_result_window(){

// Remove items from scrolling group
lv_group_remove_all_objs(pp_group);

// Create window
lv_obj_t *win_result =
lv_win_create(lv_scr_act(), NULL);
lv_win_set_title(win_result, "");
lv_win_set_header_height(win_result, 40);
lv_obj_set_style_local_text_color(win_result, LV_WIN_PART_HEADER, LV_STATE_DEFAULT,
lv_color_hex(0xffffff)); lv_obj_set_style_local_bg_color(win_result, LV_WIN_PART_HEADER,
LV_STATE_DEFAULT, lv_color_hex(0x5a6975));
//lv_obj_add_style(win_measure, LV_WIN_PART_BG, &window_bg_style);
lv_obj_set_style_local_bg_color(win_result, LV_WIN_PART_BG, LV_STATE_DEFAULT,
lv_color_hex(0xcedfed)); //0x130f40
//lv_win_set_layout(win_result, LV_LAYOUT_COLUMN_MID);

// Close button
btn_results_close = lv_win_add_btn_right(win_result, "");
lv_obj_add_style(btn_results_close, LV_BTN_PART_MAIN,
&win_btn_style); lv_obj_set_event_cb(btn_results_close,
close_win_results_cb);
lv_obj_t *close_btn_label =
lv_label_create(btn_results_close, NULL);
lv_label_set_text(close_btn_label,
LV_SYMBOL_CLOSE);
lv_obj_set_style_local_text_color(close_btn_label, LV_LABEL_PART_MAIN, LV_STATE_DEFAULT,
lv_color_hex(0xffffff)); lv_group_add_obj(pp_group, btn_results_close);

/* heart icon style */
static lv_style_t heart_icon_style; lv_style_init(&heart_icon_style);
//lv_style_set_text_color(&heart_icon_style, LV_STATE_DEFAULT, lv_color_hex(0xffffff));
lv_style_set_text_font(&heart_icon_style, LV_STATE_DEFAULT, &heart_20);

/*mini window style*/
static lv_style_t par_style; lv_style_init(&par_style);
lv_style_set_bg_color(&par_style,
LV_STATE_DEFAULT,lv_color_hex(0xa6a6a6));
lv_style_set_outline_width(&par_style, LV_STATE_DEFAULT, 2);
lv_style_set_outline_color(&par_style, LV_STATE_DEFAULT,
lv_color_hex(0x5a6975)); lv_style_set_outline_pad(&par_style,
LV_STATE_DEFAULT, 8);

par = lv_obj_create(win_result, NULL); /*Create a parent object on the current screen*/
lv_obj_set_size(par, 200, 160);
lv_obj_align(par,NULL,
LV_ALIGN_CENTER,0,0);
lv_obj_add_style(par, LV_LABEL_PART_MAIN, &par_style);
lv_group_add_obj(pp_group, par);
//lv_obj_set_color(par, lv_color_hex(0xa6a6a6));

80

/*result style*/
static lv_style_t result_style; lv_style_init(&result_style);
lv_style_set_text_font(&result_style, LV_STATE_DEFAULT, &montserrat_64);
static lv_style_t bpm_style; lv_style_init(&bpm_style);
lv_style_set_text_font(&bpm_style, LV_STATE_DEFAULT,&lv_font_montserrat_30);

/* Label SYS*/
sys_label = lv_label_create(par, NULL);
lv_obj_add_style(sys_label, LV_LABEL_PART_MAIN, &result_style);
lv_obj_align(sys_label, par,
LV_ALIGN_CENTER, 40,-30);

/* Label DIAS*/
dias_label = lv_label_create(par, NULL);
lv_obj_add_style(dias_label,
LV_LABEL_PART_MAIN,
&result_style);
lv_obj_align(dias_label, par,
LV_ALIGN_CENTER, 45,40);

/* Label BPM*/
bpm_label = lv_label_create(par, NULL);
lv_obj_add_style(bpm_label, LV_LABEL_PART_MAIN, &bpm_style);
lv_obj_align(bpm_label, par, LV_ALIGN_CENTER, -45,45);

/*Label heart*/
lv_obj_t * heart_label = lv_label_create(par, NULL);
lv_obj_add_style(heart_label, LV_LABEL_PART_MAIN, &heart_icon_style);
lv_label_set_text(heart_label, "\uf004");
lv_obj_align(heart_label, par, LV_ALIGN_CENTER, -80,45);

if(measure_STATUS == WRITE_RESULTS){
char buf1[30];
sprintf(buf1, "%2d", (int)(measured_bpm));
char buf2[30];
sprintf(buf2, "%2d", (int)(measured_sys));
char buf3[30];
sprintf(buf3, "%2d", (int)(measured_dias));
lv_label_set_text(bpm_label, buf1);
lv_label_set_text(sys_label, buf2);
lv_label_set_text(dias_label, buf3);

if (!gpio_get_level(B2)){
uint32_t btn_id = 0;
lv_event_send(btn_results_close, LV_EVENT_RELEASED, &btn_id);

lv_win_close_event_cb(btn_results_close, LV_EVENT_RELEASED);

/* Re-add settings group items */
lv_group_add_obj(pp_group, btn_settings);
lv_group_add_obj(pp_group, btn_measure);
lv_group_add_obj(pp_group, btn_record);
measure_STATUS = MEASURE_IDLE;

}
}

81

}

static void close_win_results_cb(lv_obj_t *btn, lv_event_t event){
if(event == LV_EVENT_RELEASED){

lv_win_close_event_cb(btn, event);

/* Re-add settings group items */
lv_group_add_obj(pp_group, btn_settings);
lv_group_add_obj(pp_group, btn_measure);
lv_group_add_obj(pp_group, btn_record);
measure_STATUS = MEASURE_IDLE;

}
}
static void close_win_measure_cb(lv_obj_t *btn, lv_event_t event){

if(event == LV_EVENT_RELEASED){
lv_win_close_event_cb(btn, event);
/* Re-add settings group items */
lv_group_add_obj(pp_group, btn_settings);
lv_group_add_obj(pp_group, btn_measure);
lv_group_add_obj(pp_group, btn_record);

}
}

static void get_measure_status_cb(lv_task_t *task){

#if SIMULATION
static uint8_t i = 5;
if (i== 0){

measure_STATUS = DONE;
write_measured_bpm(77, 114, 90);

}
i--;
#endif

if(measure_STATUS == WRITE_RESULTS){

measure_result_window();
}
#if SIMULATION
if(kk==1)
measure_S
TATUS =
MEASURE
_IDLE;
#endif
}

void write_measured_bpm(float bpm, float sys, float dias){
measured_bpm = bpm;
measured_sys = sys; measured_dias = dias;
}

static void settings_window(){

/* Remove items from scrolling group */
82

lv_group_remove_all_objs(pp_group);

/* Create window */
lv_obj_t *win_settings =
lv_win_create(lv_scr_act(),
NULL);
lv_win_set_title(win_settings
, "Settings");
lv_win_set_header_height(w
in_settings, 40);
lv_obj_set_style_local_text_color(win_settings, LV_WIN_PART_HEADER,
LV_STATE_DEFAULT, lv_color_hex(0xffffff)); lv_obj_set_style_local_bg_color(win_settings,
LV_WIN_PART_HEADER, LV_STATE_DEFAULT, lv_color_hex(0x686de0)); // f2f9fa
lv_obj_add_style(win_settings, LV_WIN_PART_BG, &window_bg_style);
/* Close button */
btn_settings_close =
lv_win_add_btn_right(win_settings, "");
lv_obj_add_style(btn_settings_close,
LV_BTN_PART_MAIN, &win_btn_style);
lv_obj_set_event_cb(btn_settings_close,
close_win_settings_cb);
lv_obj_t *close_btn_label =
lv_label_create(btn_settings_close, NULL);
lv_label_set_text(close_btn_label,
LV_SYMBOL_CLOSE);
lv_obj_set_style_local_text_color(close_btn_label, LV_LABEL_PART_MAIN,
LV_STATE_DEFAULT, lv_color_hex(0xffffff)); lv_group_add_obj(pp_group,
btn_settings_close);

/* Create settings menu */
settings_menu = lv_list_create(win_settings, NULL);
lv_obj_set_size(settings_menu, lv_obj_get_width_fit(lv_scr_act())-30,
lv_obj_get_height_fit(lv_scr_act())-70);

/* Button style */
lv_style_init(&btn_settings_style);
lv_style_set_outline_color(&btn_settings_style,
LV_STATE_FOCUSED, lv_color_hex(0x22a6b3));
lv_style_set_radius(&btn_settings_style,
LV_STATE_FOCUSED, 10);

/* User select Buttons */
set_devmode_btn = lv_list_add_btn(settings_menu,NULL,"User 1");
lv_obj_add_style(set_devmode_btn, LV_BTN_PART_MAIN,
&btn_settings_style); devmode_switch = lv_switch_create(win_settings, NULL);
lv_obj_align(devmode_switch, devmode_switch, LV_ALIGN_IN_TOP_LEFT,
220, 6); lv_obj_set_event_cb(set_devmode_btn,btn_devmode_cb);

set_time_btn = lv_list_add_btn(settings_menu,LV_SYMBOL_EDIT,"Set time");
lv_obj_add_style(set_time_btn, LV_BTN_PART_MAIN, &btn_settings_style);

lv_group_add_obj(pp_group, set_devmode_btn);
lv_group_add_obj(pp_group, set_time_btn);
if(dev_state){

add_dev_settings();
lv_switch_on(devmode_switch, LV_ANIM_OFF);

}

83

}

84

static void btn_devmode_cb(lv_obj_t * btn, lv_event_t event){
if(event == LV_EVENT_SHORT_CLICKED) {

lv_switch_toggle(devmode_switch, LV_ANIM_ON);

if (dev_state){
dev_state = false;
lv_list_remove(settings_menu, lv_list_get_size(settings_menu)-1);
lv_list_remove(settings_menu, lv_list_get_size(settings_menu)-1);

} else{
dev_state = true; add_dev_settings();

}

}
}

static void close_win_settings_cb(lv_obj_t *btn, lv_event_t event){
if(event == LV_EVENT_RELEASED){

lv_win_close_event_cb(btn, event);
/* Re-add settings group items */
lv_group_add_obj(pp_group, btn_settings);
lv_group_add_obj(pp_group, btn_measure);
lv_group_add_obj(pp_group, btn_record);

}
}

85

Anexo 2: Presupuesto

86

0. Introducción 88

1. Materiales y componentes 89
1.1 Componentes electrónicos 89
1.2 Componentes no electrónicos 90

2. Presupuesto global 91

87

https://docs.google.com/document/d/1ilnUCev8XQW8utw-sUgPz4WHKELwVkoh/edit#heading=h.isvl3w4dsi02

0. Introducción

En este documento se presenta el presupuesto del proyecto, dividido en diferentes
categorías. Todos los precios del documento están en euros.
Por otro lado, los precios señalados en este documento no incluyen el impuesto I.V.A, éste
se añadirá en el cálculo total.

88

1. Materiales y componentes

1.1 Componentes electrónicos

Nombre Designante Descripción Cantidad Fabricante Proveedor
Precio
(€)

Precio
unitario (€)

Precio
unitario ($)

LM7805 U4
Regulador
de tensión 1 TF LCSC

0,085318
92 0,08531892 0,105332

2N3904(
SOT-23) Q3,Q2 Transistor 2 KEC LCSC 0,009801 0,0049005 0,0121

K2-3.6×6
.1_SMD

B1,B2,B4,B
3 Botón 4 LCSC 0,03645 0,0091125 0,045

10uF C6
Condensad
or 1 ValuePro LCSC 0,008424 0,008424 0,0104

PWR_CO
NN_2P P1 Conectores 1 Skywin Aliexpress 0,5751 0,5751 0,71

MTR_CO
NN_2P P3 Conectores 1 Skywin Aliexpress 0,5751 0,5751 0,71

VLV_CO
NN_2P P2 Conectores 1 Skywin Aliexpress 0,5751 0,5751 0,71

100n

C17,C13,C9
,C15,C8,C1
8,C14

Condensad
or 8 LCSC LCSC 0,008991 0,001123875 0,0111

1u C10
Condensad
or 1 ValuePro LCSC 0,016119 0,016119 0,0199

DPY_CO
NN_9P CN1 Conectores 1

Ningbo
Xinlaiya
Elec. LCSC 0,137214 0,137214 0,1694

FQP30N
06L Q5,Q1 Transistor 2

VBsemi
Elec LCSC

0,164618
973

0,082309486
5 0,2032333

MPRLS0
025A U6

Sensor de
presión 1 Honeywell Adafruit 12,1095 12,1095 14,95

ESP32-W
ROOM-3
2DC U8

Microcontr
olador 1

Espressif
Systems LCSC

2,314636
56 2,31463656 2,857576

1u C11,C12
Condensaor
es 2 ReliaPro LCSC 0,09153 0,045765 0,113

100u C7
Condensaor
es 1 AVX LCSC 0,155925 0,155925 0,1925

LED-Red(
0603) LED1 Diodo LED 1

Hubei
KENTO
Elec LCSC 0,00324 0,00324 0,004

LED-Blue
(0603) LED2 Diodo LED 1

EVERLIGH
T LCSC 0,012312 0,012312 0,0152

89

Nombre Designante Descripción Cantidad Fabricante Proveedor
Precio
(€)

Precio
unitario (€)

Precio
unitario ($)

LD1117V
33 U3

Regulador
de tensión 1

STMicroel
ectronics LCSC 0,28998 0,28998 0,358

1k R12,R5,R4
Resistencia
s 3

Guangdon
g Fenghua
Advanced
Tech LCSC 0,001944 0,000648 0,0024

22k R8,R2
Resistencia
s 2

Uniroyal
Elec LCSC 0,001539 0,0007695 0,0019

10k

R10,R13,R1
5,R16,R7,R
9,R6

Resistencia
s 7

Uniroyal
Elec LCSC 0,024705

0,003529285
714 0,0305

100k R11,R14
Resistencia
s 2

Uniroyal
Elec LCSC 0,006885 0,0034425 0,0085

1k R3,R1
Resistencia
s 2

Guangdon
g Fenghua
Advanced
Tech LCSC 0,001944 0,000972 0,0024

LM7806
CT U5

Regulador
de tensión 1

Unisonic
Tech LCSC 0,195048 0,195048 0,2408

100nF C2,C3,C5
Condensad
ores 3 LCSC LCSC 0,008991 0,002997 0,0111

1N4007
W D1,D2 Diodo 2

BLUE
ROCKET LCSC 0,006885 0,0034425 0,0085

330nF C4,C1
Condensad
ores 2 ValuePro LCSC 0,005994 0,002997 0,0074

LM324 U2
Regulador
de tensión 1 PUOLOP LCSC 0,061236 0,061236 0,0756

smd
button

B5,B6,B7,B
8 Botones 4 TLZWLA Aliexpress 1,35 0,3375

1,66666666
7

BTN_CO
NN_4P CN2 Conectores 1 Skywin Aliexpress 0,64 0,64

0,79012345
68

DPY_CO
NN_9P U8

Pantalla
TFT 1 TZT Aliexpress 4,83 4,83

5,96296296
3

Motor
Bomba de
aire 1

World
Driven Aliexpress 5,04 5,04

6,22222222
2

Válvula Válvula 1 Shenzhen Aliexpress 1,16 1,16
1,43209876

5

1.2 Componentes no electrónicos

Nombre Descripción Cantidad Fabricante Proveedor Precio (€)

Brazalete
Brazalete
de presión 1 Salorie Aliexpress 4,84

90

2. Presupuesto global

Partida Precio unitario (€)

Partida de Materiales
y Componentes Componentes electrónicos 30,50

Componentes no electrónicos 4,84

Precio Total (sin I.V.A) 35,34

Precio Total (con I.V.A) 42,76

91

Anexo 3: Esquema general del circuito

92

A A

B B

C C

D D

1

1

2

2

3

3

4

4

5

5

TITLE:
Medidor pulso y tensión REV: 1.0

Date: 2021-06-11

Sheet: 1/2
Drawn By: Isabel Romeo

Company: Unizar

LD1117V33
U3

GND
VIN3 VOUT 2

1

PWR_CONN_2P
P1

1
2

+9V

GND

+9V

5V

6V

+9V

+9V
3.3V

Power

PWM_FWD

MTR_CONN_2P
P3

1
2

6V 6VMotor driver

VLV_CONN_2P
P2

1
2

1N4007W
D1

5V

1k
R3

VALVE

Valve driver

FT232RL
U7

VCC20

3V3OUT17

USBDP15

USBDM16

OSCO28 OSCI27

GND 7

TXD 1

RXD 5
!RTS 3
!CTS 11
!DTR 2
!DSR 9
!DCD 10

!RI 6

CBUS0 23
CBUS1 22
CBUS2 13
CBUS3 14
CBUS4 12

VCCIO4

!RESET19

GND25

GND 18

TEST 26

GND 21

LED-Red(0603)

LED1
LED-Blue(0603)

LED2

1k
R4

1k
R5

5V

100n
C8

5V

100n
C9

RX
5V

RTS

DTR

TX
2N3904(SOT-23)
Q2

2N3904(SOT-23)
Q3

EN

IO0

DTR

RTS

USB-UART

Pressure sensor breakout board

3.
3V

TFT Display (SPI)

B1

B2

B3

B4

MCU

1u
C10

+9V

GND

DPY_CONN_9P
CN1

1
1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

9
9

C
S

L
C

D
_R

ST
L

C
D

_D
C

M
O

SI
_L

C
D

SC
K

L
E

D

3.3VLED

FQP30N06L
Q5

FQP30N06L
Q1

1N4007W
D2

1k
R1

100u
C7

1u
C11

5V

3.
3V

1u
C12

100n
C13

ESP32-WROOM-32DC
U8

G
N

D
39

GND 38
IO23 37
IO22 36
TXD0 35
RXD0 34
IO21 33

NC 32
IO19 31
IO18 30
IO5 29

IO17 28
IO16 27
IO4 26
IO0 25

IO
2

24
IO

15
23

S
D

1
22

S
D

0
21

C
LK

20
C
M

D
19

S
D

3
18

S
D

2
17

IO
13

16
G

N
D

15

IO1214 IO1413 IO2712 IO2611 IO2510 IO339 IO328 IO357 IO346 SENSOR_VN5 SENSOR_VP4 EN3 3V32 GND1

TX
RX

EN
3.3V

CS

LCD_RST
LCD_DC

MOSI_LCD
SCK

B1

ESP_ADC

B2

B3
B4

VALVE

PWM_FWD
ESP_SND

B1

B2

10kR15

10kR16

3.
3V

IO0

100n
C14

5V

100n
C15

100n
C16

100n
C17

100n
C18

MTR_Drain

10kR6

10kR7

micro USBFemale
USB2

V+ 1
D- 2

D+ 3
ID 4
V- 5

LM7806CT
U5

IN1

G
N

D
2

OUT 3

LM7805
U4

VI1 VO 3

G
N

D
2

330nF
C1

330nF
C4

10uF
C6

100nF
C5

100nF
C3

100nF
C2

Adafruit MPRLS
U9

3Vo2

GND3

SCL4

SDA5

EOC6

RST7

VIn1
Adafruit
MPRLS

ADAFRUIT MPRLS

3.3V

PS_SCL

PS_SDA

PS_EOC

PS_RST

100nF
C19

PS_SDA

PS_SCL
PS_EOC
PS_RST

B1
1 2

B2

1 2

B3
1 2

B4
1 2

Buttons

