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Scrapie is a neurodegenerative disorder belonging to the group of transmissible

spongiform encephalopathy (TSE). Scrapie occurs in sheep and goats, which are

considered good natural animal models of these TSE. Changes in DNA methylation

occur in the central nervous system (CNS) of patients suffering from prion-like

neurodegenerative diseases, such as Alzheimer’s disease. Nevertheless, potential DNA

methylation alterations have not yet been investigated in the CNS of any prion disease

model or naturally infected cases, neither in humans nor in animals. Genome-wide DNA

methylation patterns were studied in the thalamus obtained from sheep naturally infected

with scrapie at a clinical stage (n = 4) and from controls (n = 4) by performing a whole-

genome bisulfite sequencing (WGBS) analysis. Ewes carried the scrapie-susceptible

ARQ/ARQ PRNP genotype and were sacrificed at a similar age (4–6 years). Although

the average genomic methylation levels were similar between the control and the scrapie

animals, we identified 8,907 significant differentially methylated regions (DMRs) and 39

promoters (DMPs). Gene Ontology analysis revealed that hypomethylated DMRs were

enriched in genes involved in transmembrane transport and cell adhesion, whereas

hypermethylated DMRs were related to intracellular signal transduction genes. Moreover,

genes highly expressed in specific types of CNS cells and those previously described

to be differentially expressed in scrapie brains contained DMRs. Finally, a quantitative

PCR (qPCR) validation indicated differences in the expression of five genes (PCDH19,

SNCG, WDR45B, PEX1, and CABIN1) that matched the methylation changes observed

in the genomic study. Altogether, these results suggest a potential regulatory role of DNA

methylation in prion neuropathology.
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INTRODUCTION

Prion diseases are fatal and transmissible neurodegenerative disorders that occur in humans
and animals (1). These diseases are caused by the conformational conversion of the cellular
prion protein (PrPC) to an infectious isoform PrPSc, which is partially resistant to proteases and
prone to form aggregates (2). The accumulation of PrPSc in the central nervous system (CNS)
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causes spongiform neuronal degeneration, activation of glial
cells, and neuronal loss (3). Ovine scrapie was the first reported
transmissible spongiform encephalopathy (TSE) (4) and has
been widely studied. Several transcriptomic studies performed
in sheep have reported differentially expressed genes (DEGs)
and proteins that seem to be involved in the pathogenesis of
scrapie and other neurodegenerative diseases including human
prion diseases (5–8). These common findings between scrapie
and human prion diseases support the use of scrapie sheep as a
good natural animal model to study the molecular mechanisms
of prion neuropathology and to identify potential diagnostic and
therapeutic biomarkers for prion diseases.

Functional genomics provides important tools to investigate
molecular mechanisms of the disease and potential disease
biomarkers. In previous studies, using custom arrays, we
described significant changes in the CNS transcriptome of
sheep naturally infected with scrapie at the early and late
stages of the disease (5, 6). Dysregulated genes were associated
with ion binding and transport, nucleotide binding, structural
molecules, immune system, secreted extracellular proteins,
lysosomal proteases, and phospho-proteins.

Gene expression can be modulated by epigenetic mechanisms.
DNA methylation at the C5 position of Cytosine (mC) is one of
the main epigenetic regulatory mechanisms, which is essential
for the adequate development of the organism. Methylation
usually occurs in CpG islands (CGIs) located in promoter regions
or regulatory domains and also within intergenic regions (9).
Environmental variables, such as nutrition and stress exposure,
can induce alterations in DNA methylation (10). Many of these
may constitute epigenetic drift; that is, they are not translated into
phenotypic effect. However, some environmental changes may
display a relevant effect in the modulation of gene expression in
disease-associated status (11).

Epigenetics regulate neural activity in the brain (12), and
DNA methylation seems to be important in memory formation
and aging-related cognitive decline (13, 14). Regulation by DNA
methylation of specific genes in Alzheimer’s disease (AD) (15, 16)
and in Parkinson’s disease (PD) (17) has been demonstrated.
Distinct methylation observed in PD patients involves genes
previously associated with the disease, and concordant alterations
between the brain and peripheral blood leukocytes have been
found (18). Hypermethylation also occurs in the G4C2 repeat
expansion in C9orf72, which is the most common known
cause of amyotrophic lateral sclerosis (ALS) and frontotemporal
lobar degeneration (FTLD). The hypermethylation seems to be
associated with the presence of the expansion, which could
be responsible for C9orf72 downregulation in the disease (19).
Global methylation is also altered in the spinal cord of sporadic
ALS patients where both hyper- and hypomethylation can
directly modulate the expression of adjacent genes (20).

The abovementioned evidence from other neurodegenerative
diseases suggests that DNA methylation status may also
contribute to the development of prion diseases. The mouse
gene coding PrPC contains a CGI in its promotor that seems
to modulate the expression of this protein in a tissue-specific
manner (21). However, methylation has not been observed in
the promoter of the rat PRNP gene, at least in PC12 cells

(22). Regarding prion diseases, DNA methylation studies at
a genomic level have only been performed in blood from
patients with sporadic Creutzfeldt–Jakob disease (sCJD), the
most common human prion disease (23). To the best of our
knowledge, no genome-wide DNA methylation studies have
yet been reported in the CNS of any prion disease models
or naturally infected cases. We present here a whole-genome
bisulfite sequencing (WGBS) analysis of the thalamus obtained
from sheep naturally infected with scrapie. The study revealed
a number of differentially methylated regions (DMRs) between
the control and scrapie animals, as well as an enrichment of
several cellular and molecular functions that could contribute to
prion-related neuropathology. We compared these results with
previously described transcriptomic changes and performed a
gene expression analysis that revealed significant changes in
the expression of several genes with differential methylation. Of
these, several also correlated with prion-related lesions.

MATERIALS AND METHODS

Animals and Tissue Selection
Thalamus samples from eight Rasa Aragonesa sheep were
used for WGBS analysis. Four of them were controls, and
the other four were naturally infected with scrapie. All the
ewes were aged from 4 to 6 years and carried the ARQ/ARQ
genotype for the PRNP gene (Supplementary Table S1). These
animals correspond to those used previously in an association
study between gene expression profiles and scrapie-related
lesions in the medulla oblongata of scrapie-infected sheep
(5). All scrapie animals displayed clear symptomatology. The
time the animals were maintained until sacrifice is shown
in Supplementary Table S1. Histopathological lesions related
to prion diseases (PrPSc deposition, neuronal vacuolation,
spongiosis, and gliosis) were semiquantified in a previous study
(24) and are shown in Supplementary Table S1.

The expression of selected differentially methylated genes
(DMGs) was evaluated by quantitative PCR (qPCR) using a
different set of thalamus samples, with five tissues obtained from
control sheep and eight from naturally infected scrapie animals.

Whole-Genome Bisulfite Sequencing
Library Preparation and Sequencing
Genomic DNA was isolated from the thalamus using the Quick-
DNA Midiprep Plus kit (Zymo Research, Irvine, CA, USA).
Before library construction, degradation of DNA was checked
by agarose gel electrophoresis, DNA purity (260/280 ratio) was
assessed using NanoDrop spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA), and the quality and quantity
of DNA were determined using Qubit R© 2.0 fluorometer (Life
Technologies, Carlsbad, CA, USA).

Sequencing libraries were constructed for the different
genomic DNA samples. Approximately 2.5 µg of genomic
DNA spiked with 12.5 ng of lambda DNA was fragmented
by sonication to 200–400 bp with Biorupter, followed by end
repair and adenylation. EZ DNA Methylation-Gold Kit (Zymo
Research) was used to treat DNA fragments with bisulfite.
Afterwards, fragments were selected by size and PCR amplified
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using KAPA HiFi HotStart Uracil + ReadyMix (2×). Library
DNA concentration was firstly quantified with Qubit2.0 and then
diluted to 1 ng/?l before checking insert size on Agilent 2100
(Agilent Technologies, Santa Clara, CA, USA) and quantified
with more accuracy by qPCR (effective concentration of library
>2 nM). Libraries were then sequenced on the Illumina HiSeq
Xten platform, and 150-bp paired-end reads were generated
according to Illumina’s protocol. Raw and processed WGBS data
are stored at the National Center for Biotechnology Information
(NCBI) GEO Series record GSE184767. Library preparation and
WGBS were performed by Novogene (UK) Company Limited
(Cambridge, UK).

Data Analysis
Raw reads were saved as fastq format files, and Trimmomatic
(v0.36) tool was used to filter out the contaminated adapter
sequence and low-quality reads with default parameters. FastQC
(v0.11.3) was also performed on the clean data obtained from
trimming. Bisulfite-treated reads were aligned with the reference
genome (Oar_v4.0) using the Bismark (v0.12.5) software (25)
with default parameters. After alignment, Bismark was used
to calculate read coverage and sequencing depth, distribution
of genome coverage, distribution of chromosome depth and
coverage, and coverage depth of each cytosine site context (CpG,
CHH, and CHG, where H = A, C, or G) and to identify
methylated sites by comparison of read base and the reference
genome base at the same position. The bigWig format files
containing mapping results, as well as corresponding reference
genome and gene annotation files, were visualized using the IGV
(Integrative Genomic Viewer) software. In order to find accurate
methylated sites, sequencing depth ≥5 and q-values ≤0.05 were
set as thresholds in the analysis (26, 27). For methylated sites,
the methylation level was calculated using the formula ML =

mCc/(mCc+ umCc), whereML represents themethylation level,
and mCc and umCc represent the methylated and unmethylated
read counts, respectively. The average methylation level of the
whole genome was calculated in each sample with 10 kb as a bin.
The average methylation level of all the covered cytosine sites on
each chromosome was also calculated. The average methylated
level in different cytosine contexts was evaluated in different
functional genomic regions such as promotor [2-kb region above
a transcriptional start site (TSS)], 5′UTR, exon, intron, CGI,
and CGI shore. Functional areas of each gene were divided
into 20 bins. Finally, motif characteristics around the positions
of methylated cytosines were determined in high-methylated
(methylation level higher than 75% in CG context and higher
than 25% in non-CG context) and low-methylated sites and in
all mC sites.

Differentially Methylated Region Analysis
DMRs between scrapie and control groups were determined by
employing the Bsseq (v0.6.2) software from the Bioconductor
(v2.13) package (28) (http://www.bioconductor.org/packages/
release/bioc/html/bsseq.html) with default parameters. Bsseq
is based on the BSmooth algorithm and targeted for WGBS
data. As more variations may occur between scrapie samples
than between control samples, the variance was estimated

using data from the control group. To identify differentially
methylated sites, t-test and quantile-based screening (cutoff set
as [2.5%, 97.5%], namely, false discovery rate (FDR) < 0.05)
were performed. Differentially methylated sites were merged and
filtered to obtain the final DMRs with a threshold of at least
0.1 difference in methylation level and at least 3 cytosine sites
in every DMR, being two adjacent cytosine sites not beyond
300 bp. DMRs were annotated when overlapping with functional
elements (exon, intron, or promoters) of associated genes.

Differentially Methylated Promoter Analysis
Differentially methylated promoters (DMPs) were identified by
testing for each cytosine in each context (CG, CHG, and CHH)
of the promoter region using Fisher’s exact test. Then, the p-value
was corrected applying an FDR< 0.05 and an absolute difference
of the methylation levels between the scrapie and the control
group >0.2. The promoter region was set as the upstream 2 kb
of TSS. Hierarchical clustering methods were adopted to analyze
the methylation level of DMPs in scrapie and control thalami.

Enrichment Analysis
Gene Ontology (GO; http://www.geneontology.org/) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways analysis
were performed to identify the significant function and pathways
of genes associated with DMRs and DMPs (DMGs). GO
and KEGG terms with corrected p < 0.05 were considered
significantly enriched by DMGs.

To investigate if DMGs were expressed in a specific type of
CNS cell, a comparison of DMGs with proteins defined as tenfold
more abundant in oligodendrocytes, astrocytes, microglia, and
cortical neurons in the mouse brain (29) was performed using the
InteractiVenn software (30). Afterwards, an enrichment analysis
in Reactome (31) was conducted in order to reveal possible
pathways with DMGs.

New Microarray Proof Annotation and
Comparison With Identified Differentially
Methylated Regions
In a previous study using custom arrays, significant changes in
the expression profile of several genes were found in the CNS
of sheep naturally infected with scrapie compared to healthy
animals (5). As the tissues of this former report belonged to
the same animals used in our study, the datasets that contained
differentially expressed probes between symptomatic and non-
symptomatic animals were used to perform a new annotation.
The BLAST-Like Alignment Tool (BLAT) (32) was used to
identify the chromosome, the strand, and the location of the
beginning and the end of the alignment from the probe in the
reference Oar v3.1 genome. That information was included as
new information in the original dataset.

Subsequently, the data were loaded into a data.frame
object in R (version 3.6.1), and the biomaRt (33, 34)
package was used to retrieve annotation information
and identifier cross-references from Ensembl. Oar
v3.1 reference genome from Ensembl was used as the
dataset. Attributes to query the database were as follows:
chromosome_name, start_position, end_position, strand,
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external_gene_name, refseq_mrna_predicted, refseq_mrna,
description, external_synonym, and wikigene_name in order
to obtain the annotated gene for the probe. Subsequently,
annotated genes were included in the new dataset and exported
into a comma-separated file.

Those probe sequences without any hit by biomaRt were
manually annotated, using the Genome Data Viewer from the
NCBI and, again, the Oar v3.1 reference genome (https://www.
ncbi.nlm.nih.gov/genome/gdv/browser/genome/?id=GCF_
000298735.1).

These genes differentially expressed in scrapie animals were
then compared with the identified DMRs using the InteractiVenn
software (30).

RNA/cDNA Preparation and Quantitative
Real-Time PCR Analysis
Real-time qPCR was used to validate the biological functionality
of a set of DMRs and DMPs by analyzing the expression levels of
their linked DMGs. DMRs were selected for validation according
to their level of methylation variation, the functionality of
their associated genes, and their position in regulatory regions.
Similarly, we chose DMPs taking into account the role of DMGs,
the number of differentially regulated cytosines, and the level
of change.

Total RNA was isolated using the RNeasy Lipid Tissue Mini
kit (Qiagen, Valencia, CA, USA). The quality and quantity of
RNA were determined using a NanoDrop instrument (Thermo
Fisher Scientific, Waltham, MA, USA). cDNA samples were
synthesized from 200 ng of total RNA using the reverse
transcription (RT) reagent qScript cDNA SuperMix (Quantabio,
Beverly, MA, USA). All procedures were performed following the
manufacturer’s recommended instructions.

The primers used for qPCR are listed in
Supplementary Table S2. The reactions were performed on
a QuantStudio 3 Real-Time PCR System (Thermo Fisher
Scientific). Each PCR was performed by triplicate in a total
volume of 10 µl, using 2 µl of cDNA, 300 nM of each primer,
and Fast SYBRTM Green Master Mix (Applied Biosystems,
Thermo Fisher Scientific). The comparative quantification of the
results was standardized by the 2−11Ct method (35), using the
geometric mean of GAPDH, G6PDH, and SDHA as a normalizer
(36). Student’s t-test was applied to identify differences between
groups, which were considered significant at p < 0.05.

Correlation Between Methylation Levels,
Gene Expression, and Prion-Related
Lesions
Tissues analyzed in this work were used in previous studies to
validate expression changes of candidate genes in different CNS
areas, including the thalamus (24, 37). In these previous works,
PrPSc deposition profiles, neuronal vacuolization, neuropil
spongiosis, and gliosis were evaluated and semiquantitatively
scored. These published scores were used to analyze any possible
relationship between the degree of lesions and whole methylation
levels in the different mC context or expression levels of DMGs
using Pearson’s correlation.

RESULTS

DNA Methylation Patterns
Between 832,778,776 and 1,152,563,414 sequencing raw reads
were obtained per sample corresponding to 125 and 173 Gb of
raw data, respectively. Supplementary Table S3 shows the data
quality of the resulting sequences. More than 97.5% of bases
displayed a quality higher than Q20, and the percentage of
bases showing higher quality (Q30) was higher than 93.7%. The
percentage of bisulfite conversion was higher than 99.88% in all
samples analyzed.

After raw data cleaning and trimming, the reads were mapped
to the reference genome (Oar_v4.0). Between 258,079,070 and
339,064,958 clean reads were mapped on the genome with
a percentage of unique mapping reads higher than 53% and
covering more than 25 times the genome (Table 1). The
percentage of genome bases with a minimum 5× coverage was
higher than 85% and higher than 73% for a 10× coverage.

No significant differences were observed between
scrapie and control sheep in the overall methylation level
(Supplementary Table S4) for each cytosine context (mC in
CG, CHG, and CHH), nor in the total percentage of methylated
cytosines or in the percentages of methylated cytosines in
these contexts (Supplementary Table S5), being the higher
percentage of mC found in CpG context. Compared with the
controls, the scrapie samples displayed higher variability in the
percentages of methylated cytosines (Supplementary Table S5)
and in the whole-genome methylation level (Figure 1). Sequence
preferences flanking the 9 bp sequences around methylated C
sites were similar in all samples (Supplementary Figure S1). No
specific sequences were found in CG contexts, and CAG and
CAC were the most frequent motifs in high and low methylation
regions in CHG and CHH contexts, respectively.

Correlation Between PrPSc Accumulation
and Methylation Levels
In order to explain the variability observed within the scrapie
group, we compared global methylated cytosines in the different
sites with the degree of PrPSc deposition in the thalamus
within the analyzed animals. We obtained a significant negative
correlation between PrPSc deposits and the percentage of
methylated CHG sites (r = −0.972, p = 0.028) and a negative
trend correlation with the percentages of mC sites (r=−0.942, p
= 0.057) and mCHH sites (r=−0.936, p= 0.064) (Figure 2A).

Similarly, significant negative correlations were found
between % mC (r = −0.965, p = 0.03) and % mCHH (r =

−0.976, p= 0.02) and spongiosis in scrapie thalamus and a trend
to signification between this lesion and % mCHG (r = −0.933,
p = 0.06) (Figure 2B). On the contrary, a positive correlation
was found between % mCHG (r = 0.753, p = 0.03) and reactive
gliosis in the whole set of animals, but not when the group of
scrapie sheep were analyzed separately (Figure 2C).

Finally, the time the animal was showing clinical symptoms
could also explain the observed variation because animals
showing the highest PrPSc deposition scores are thosemaintained
for longer periods (Supplementary Table S1).
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TABLE 1 | Overview of mapping and genome coverage.

Sample Mapped reads Unique mapping rate (%)a Duplication rate (%)b Sites coverage meanc 5× coveraged 10× coveragee

C1 339,064,958 59.64 15.94 31.94 85.26 74.66

C2 280,226,053 53.03 13.26 27.23 85.04 73.82

C3 298,189,223 69.19 13.11 29.07 86.39 75.28

C4 287,338,062 55.24 12.21 28.30 85.30 74.55

Sc1 294,158,670 71.52 11.76 29.15 86.79 76.62

Sc2 289,367,126 64.95 11.7 28.67 85.02 74.01

Sc3 292,893,236 71.15 12.13 28.84 86.22 75.75

Sc4 258,079,070 61.95 13.51 24.99 86.10 74.13

aPercentage of uniquely mapped reads in the filtered clean reads used for mapping.
bPercentage of duplication reads.
cSites coverage mean: the average base coverage of the genome.
dPercentage of bases with a minimum 5× coverage of the genome.
ePercentage of bases with a minimum 10× coverage of the genome.

FIGURE 1 | Violin plot for the overall distribution of methylation levels using 10 kb/bin. The abscissa represents the different control (C) and scrapie (S) samples; the

ordinate represents the level of methylation of the samples; and the width of each violin represents the density of the point at that methylation level.

Differentially Methylated Cytosines,
Regions, and Promoters in Scrapie
DNA methylation level was investigated in different genome
components including promoters, exons, and introns. Average
methylation levels were similar in all samples, with exons having
the features with a lower degree of methylation in all samples
(Supplementary Figure S2).

Besides this lack of overall methylation changes, DMRs
between the control and scrapie groups were identified using
the Bsseq package. We identified 8,907 DMRs between scrapie
and control tissues, from which 4,630 were hypermethylated and

4,277 hypomethylated (Supplementary Table S6). These DMRs
were mainly distributed in introns (7,511), followed by exons
(2,426) and 955 located in annotated promoters (Figure 3). A
total of 3,568 annotated genes were associated with these DMRs.

As methylation plays an important role in the regulation
of gene expression, we performed an analysis to determine
DMPs. After filtering and identifying promoters with an
absolute difference of the methylation levels >0.2 and
with an FDR lower than 0.05, we identified 39 DMPs, 15
of which were hypermethylated and 24 hypomethylated
(Supplementary Table S7).
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FIGURE 2 | (A) Correlation between PrPSc deposition scores and percentage of methylated cytosines in different motifs. (B) Correlation between spongiosis and

percentage of methylated cytosines in different motifs. (C) Correlation between gliosis and percentage of methylated CHG sites.

Enrichment Analysis of Genes Related to
Hyper- and Hypomethylated Differentially
Methylated Regions

In order to determine if different molecular functions can be
activated or repressed in scrapie brains, the identified DMRs
were directionally separated, and GO enrichment was performed
in hypermethylated (Figure 4A, Supplementary Table S8) and
hypomethylated (Figure 4B, Supplementary Table S9) DMR-
associated genes. Biological processes showing a significant
increase of hypermethylated DMRs were related to the regulation
of small GTPasemediated signal transduction, intracellular signal
transduction and its regulation, homophilic cell adhesion via
plasma membrane adhesion molecules, and cell–cell adhesion
via plasma–membrane adhesion molecules, the last being
also enriched in hypomethylated DMRs. In addition, the
transmembrane transport biological process was also enriched
in hypomethylated DMRs. Genes related to hyper- and
hypomethylated DMRs were significantly enriched for myosin
complex cellular components, and genes with hypermethylated
DMRs were enriched in components of the actin cytoskeleton.
Some molecular functions were found to be enriched in

both hyper- and hypomethylated DMRs, such as those related
to protein, ATP, ion or ribonucleotide binding, and motor
activity. However, hypermethylated DMRs were enriched in
calcium ion binding, cytoskeletal protein binding, or acting
binding, whereas molecular functions related to purine binding,
hydrolase, and kinase activity were enriched in hypomethylated
DMRs (Figure 4).

KEGG pathway analysis revealed a significant enrichment
of hypermethylated DMRs in the calcium signaling pathway
and ABC transporters (Figure 5A, Supplementary Table S10),
whereas hypomethylated DMRs appeared enriched in calcium
signaling, circadian entrainment, and cAMP signaling pathways
(Figure 5B, Supplementary Table S11).

Due to the relatively low number of DMPs found, GO
enrichment analysis did not display any biological process,
molecular component, or molecular function with a statistically
significant corrected p-value. Although KEGG pathway analysis
detected no significant pathways enriched, in hypomethylated
DMPs, some pathways displayed a trend toward significance after
multiple corrections including terms like apoptosis, lysosomes,
protein processing in the endoplasmic reticulum, or AD
(Supplementary Table S12).
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FIGURE 3 | Distribution of differentially methylated regions (DMRs) within

functional regions.

To investigate if DMGs were expressed in a specific type
of CNS cell, we compared DMGs with proteins defined
as tenfold more abundant in oligodendrocytes, astrocytes,
microglia, and cortical neurons in the mouse brain (29). A total
of 206 DMGs corresponded to genes encoding for abundant
proteins in neurons (46% of described abundant proteins).
An enrichment analysis in Reactome (31) revealed enriched
pathways corresponding to unblocking of NMDA receptors,
glutamate binding, and activation (Supplementary Table S13).
In the analysis of abundant proteins in microglia, we found
a total of 83 DMGs (32% of abundant proteins in these
cells). Three Reactome pathways were enriched in this set of
DMGs: immune system, innate immune system, and neutrophil
degranulation (Supplementary Table S13). More than half of the
genes encoding proteins abundant in oligodendrocytes displayed
DMRs, although we did not find any enriched pathways. Finally,
close to 40% of genes encoding known abundant proteins in
astrocytes had DMRs. Pathways enriched were related to laminin
interactions, post-translational protein phosphorylation, IL6
signaling, and extracellular matrix organization and interactions
(Supplementary Table S13).

Microarray-Identified Genes Differentially
Expressed in Scrapie Contain Differentially
Methylated Regions
To identify DEGs previously described in scrapie animals (5)
containing DMRs, we enriched the annotation of the published
set of DEGs with the identified DMRs. Of the total of annotated
genes (n = 125) (Supplementary Table S14), 21 were found
to harbor DMRs (Figure 6). These DMRs were hyper- or

hypomethylated, and the majority of them were located in intron
regions (Figure 7).

Expression Analysis of Genes With
Significant Hypo- and Hypermethylated
Differentially Methylated Regions and
Differentially Methylated Promoters
In order to evaluate the effect of DNA methylation on gene
expression in scrapie, we selected, among all the significant
hypo- and hypermethylated DMRs and DMPs, a series of genes
(DMGs) (Tables 2, 3) with important functions in the nervous
system and in other neurodegenerative diseases. The expression
of these genes was analyzed by qPCR and correlated with their
methylation state and the position (promoter, exon, or intron) of
their significant DMRs.

As shown inTables 2, 3 and Figure 8, significant changes were
found between the control and scrapie animals in the expression
of four genes (PCDH19, SNCG, PEX1, and CABIN1) and a trend
toward significance in the expression of geneWDR45B.

Correlation Between Differentially
Methylated Gene Expression, PrPSc

Accumulation, and Prion-Related Lesions
In order to find a possible association between DMG expression,
PrPSc deposits, and prion-related lesions (spongiosis, gliosis,
and vacuolization) (24), a correlation analysis was performed.
A significant negative correlation was found between PrPSc

accumulation and the expression of PEX1 (r = −0.6471, p
= 0.0431) (Figure 9B) and Metazoa_SRP (r = −0.6649, p =

0.0256) (Figure 9A). Regarding spongiosis, a significant negative
correlation with PEX1 (r=−0.6709, p= 0.0337) (Figure 9B) and
Metazoa_SRP (r=−0.7383, p= 0.0095) (Figure 9A) expressions
and a positive correlation with KCNK4 expression (r = 0.7473,
p = 0.0082) (Figure 9C) were also observed. Metazoa_SRP
expression was as well negatively correlated with gliosis (r =

−0.7328, p = 0.0103) (Figure 9A), and this prion-related lesion
also showed a significant positive correlation with MTSS1L
expression (r = 0.6725, p = 0.0234) (Figure 9D). Finally, a
positive correlation between vacuolization and the expression of
CABIN1 (r = 0.6875, p = 0.0194) (Figure 9E) and SGSM2 (r =
0.6608, p= 0.0269) (Figure 9F) was obtained.

DISCUSSION

DNA methylation has been studied as a possible epigenetic
regulatory mechanism in the pathogenesis of several
neurodegenerative diseases. DNA methylation might have
a role in the progression and pathways linked to AD (38) and
PD (39). These diseases are also identified as prion-like diseases
because they share common pathogenic mechanisms with prion
diseases, such as the accumulation of misfolded proteins in the
CNS (40). These facts suggest that DNA methylation may also
have a role in prion diseases.

To the best of our knowledge, and in contrast to AD (38), PD
(41), and ALS (42), only one study has analyzed the genome-wide
methylation profile in prion diseases, and this was performed
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FIGURE 4 | Biological processes, cellular components, and molecular functions enriched in hypermethylated (A) and hypomethylated (B) differentially methylated

regions (DMRs).
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FIGURE 5 | Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment in hypermethylated (A) and hypomethylated (B) differentially methylated

regions (DMRs).

FIGURE 6 | Microarray-annotated genes containing differentially methylated regions (DMRs).
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FIGURE 7 | Differentially methylated region (DMR) positions (intron, exon, and

promoter) of the microarray-annotated genes.

in peripheral blood of sCJD patients (23). We report here the
first WGBS study carried out in the CNS of any prion disease
model. The study was performed in ovine classical scrapie, a
natural animal model of prion disease. After neuroinvasion,
PrPSc deposits in this form of scrapie are first observed in
the spinal cord and obex, and from there they spread to the
cerebellum, diencephalon, and prefrontal cortex (43). A previous
work from our group revealed the similar intensity of PrPSc

immunohistochemical signals in the obex (tissue selected for
classical scrapie diagnosis), cervical spinal cord, and thalamus,
although there was some variability between individuals showing
a lesser degree of injury in some cases (44). In the present
study, we have analyzed thalamus-derived DNA from a set of
individuals whose obex was used in a previous transcriptomic
analysis (5) and compared our methylation results with the
reported expression changes. Although these techniques have
been performed in different areas of the CNS, we believe that this
approach would still be appropriate because previous validation
of the expression changes observed in the array by qPCR showed
similar results in the obex and diencephalon (thalamus and
hypothalamus) (37). The sample size used in this study is limited
(four scrapie vs. four control tissues) but adequate for the WGBS
approach (45–49).

Although no significant differences were seen in global
methylation levels between scrapie and control animals,
significant correlations of methylation levels with PrPSc

accumulation and prion-related lesions were evidenced in the
scrapie group. However, significant correlations were seen in
the total percentage of methylated cytosine and in motifs other
than CpG, which was the most frequent methylated motif.
Furthermore, this study allowed the identification of a great
number of DMRs between the control and scrapie animals.

GO enrichment and KEGG pathway analyses of DMGs
revealed an enrichment of several molecular and cellular
functions in scrapie-affected animals. The most prominent

enriched functions include intracellular signal transduction,
transmembrane transport, protein and cellular binding, calcium
signaling pathway, cAMP signaling pathway, cholinergic synapse,
circadian entrainment, and apoptosis pathway. Interestingly,
the PrPC seems to have a role in all these processes. Several
hypotheses suggest that PrPC modulates components involved
in proliferation, cell adhesion, transmembrane signaling,
differentiation, and trafficking signaling pathways (50). In
addition, PrPC might also regulate synaptic transmission and
plasticity, preserving normal synaptic structure and function
(51). Regarding circadian entrainment, the role of PrPC in
sleep homeostasis and sleep continuity has been described
(51). Stimulating the cAMP signaling pathway, PrPC seems
to promote cell survival, neurite outgrowth (52), and myelin
maintenance (51). It has also been reported that PrPC may
regulate intracellular calcium homeostasis and exert control on
mitochondria-associated apoptotic signaling (52). Therefore,
the enrichment observed in all these functions when the PrPC

has lost its function due to its conversion to the pathological
prion protein suggests a possible epigenetic regulation of all
these processes.

Among the epigenetic mechanisms, DNA methylation has
been described to participate in gene expression regulation. It is
known that the position of the methylation in the transcriptional
unit influences its relationship to the control of gene expression
(53). Depending on whether the methylation is in a promoter,
exon, or intron region, the effect on gene expression is different.
Methylation in the promoter region is commonly associated
with gene repression, whereas methylation in the gene body
(exons) is associated with gene activation (53). Also, there is
an inverse correlation between DNA methylation of the first
intron and gene expression that could be due to the presence
of intronic enhancers interacting with the promoters (54). With
the purpose of studying the effect of DNA methylation on
gene expression in Scrapie, we selected, among all the identified
significant DMRs, a series of genes that have important functions
in the nervous system and in some neurodegenerative diseases.
Of all the selected genes, significant changes between the control
and scrapie animals were found in the expression of five genes:
PCDH19, SNCG,WDR45B, PEX1, and CABIN1.

The expression of the gene encoding Protocadherin 19
(PCDH19) was downregulated. This gene is located on
chromosome X and belongs to the protocadherin family involved
in signal transduction at synapses and in the establishment of
neuronal connections. Protocadherins are mainly expressed in
the CNS and participate in neuronal development, migration,
segregation, and synaptic plasticity. Accordingly, the highest
expression levels of PCDH19 are found in the nervous system,
although it is also expressed in several embryonic and adult
tissues such as the kidney, lungs, and trachea (55). This gene has
a role in the proliferation of neuronal progenitors, the formation
of neuronal circuits, and the regulation of neuronal activity
(56). Moreover, PCDH19 seems to participate in GABAergic
transmission, migration, and morphological maturation of
neurons (57). Autism, intellectual disabilities, and epilepsy are
related to defects in the expression or function of protocadherins,
and mutations in PCDH19 gene cause early infantile epileptic
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TABLE 2 | Expression levels of genes with differentially methylated regions (DMRs).

Gene DMR methylation state DMR position 2−11Ct Gene expression p-value

A1BG 1H Promoter 0.7331 NS

CABIN1 10 H/12 h Intron/exon 0.7180 p = 0.03

CD81 1H Promoter 0.7706 NS

MAD1L1 5H Promoter/intron 0.8738 NS

Metazoa_SRP 1h Exon/promoter 1.1784 NS

PCDH19 1H Promoter 0.7022 p = 0.03

PEX1 1 H/2 h Exon 1.3468 p = 0.01

PLA2G5 1 H/2 h Exon 0.9899 NS

PSMG4 2H Intron 0.9229 NS

SNX33 2H Promoter/intron 0.8682 NS

WDR45B 1H Exon 1.1992 p = 0.11

Methylation state, number of DMRs and state (H, hypermethylated, h, hypomethylated); DMR position, positions of the DMR; 2−11Ct; relative gene expression in terms of 2−11Ct and

gene expression p-value of significant differentially expressed genes; NS, no significant changes.

TABLE 3 | Expression levels of genes with differentially methylated promoters

(DMPs).

Gene DMP methylation

state

2−11Ct Gene expression

p-value

CAPN1 h 1.1886 NS

GSTA4 h 0.8821 NS

INTS1 H 0.9869 NS

KCNK4 h 0.7392 NS

MTSS1L H 0.8599 NS

NARS h 0.8130 NS

PLCL2 h 1.2551 NS

SNCG H 0.3663 p = 0.02

WSCD2 H 0.7505 NS

Methylation state, DMP state (H, hypermethylated, h, hypomethylated); 2−11Ct, relative

gene expression in terms of 2−11Ct and gene expression p-value of significant differentially

expressed genes; NS, no significant changes.

encephalopathy-9 (EIEE9) in humans (55). To the best of
our knowledge, PCDH19 methylation has only been studied
in hepatocellular carcinoma in which hypermethylation of the
promoter region correlated with a downregulation of the gene
expression was observed (58). Here, a decrease in the expression
of this gene was in accordance with promoter hypermethylation
in naturally infected scrapie animals. Given the important role
of PCDH19 in the maintenance of neuronal homeostasis and
neuronal connections, its downregulation observed in scrapie
animals could be associated with earlier onset and/or the
augmented progression of the prion disease.

Another DMG was γ-synuclein (SNCG), a member of
the synuclein family that encompasses an important class of
intrinsically disordered neural proteins. It is known that this
protein has pathogenic implications in both neurodegeneration
and cancer (59). γ-Synuclein is physiologically expressed
by astrocytes in the human nervous system stimulating the
cell cycle and participating in the expression and release of
extracellular brain-derived neurotrophic factor (BNDF) (60).

γ-Synuclein may also inhibit the aggregation propensity of
α-synuclein, a protein present in Lewy bodies whose aggregation
is a hallmark in PD (61). In contrast, overexpression of γ-
synuclein in the neurons of transgenic mice induces a severe
neurodegenerative pathology characterized by substantial
depletion of neurofilaments in neuronal processes and,
ultimately, death of motor neurons (62). In AD patients,
γ-synuclein is also increased extracellularly in the brain and
cerebrospinal fluid (60). In addition, upregulation of γ-synuclein
is considered a prognostic marker in neurodegenerative
conditions (62) and multiple invasive cancers (63, 64). Taking all
these data into consideration, the downregulation and promoter
hypermethylation observed in naturally infected scrapie animals
suggest a possible neuroprotective role of this gene at astrocytes
that are known to be involved in prion replication and spread.

WD repeat domain 45B (WDR45B/WIPI3) belongs to the
WIPI protein family and was overexpressed in scrapie animals.
All human WIPI proteins (WIPI1, WIPI2, WIPI3, and WIPI4)
are known to have a role in the control of the autophagy
process. In fact, WDR45B seems to participate in the formation
of functional autophagosomes (65). Autophagy is a quality
control mechanism for the degradation of misfolded proteins
and damaged organelles and plays an important role in the
maintenance of neural homeostasis (66). Dysregulation of the
autophagy process has been described in different natural and
experimental animal models of prion diseases (67–70) and
other neurodegenerative diseases (71). In addition, WDR45B
is associated in humans with a neurodevelopmental syndrome
characterized by spastic quadriplegia, epilepsy, intellectual
disability, and cerebral hypoplasia (72). WDR45B knockout
mice display deficits and cognitive defects (66). The fact
that neuronal homeostasis and autophagy are dysregulated
in scrapie could possibly explain the WDR45B upregulation
observed in naturally infected scrapie animals. The increased
expression of this gene could be a host response that aims
for the proper maintenance of the autophagic capacity and
balanced neuronal homeostasis to slow down the prion
disease progression.
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FIGURE 8 | Gene expression profile of significant differentially expressed genes (CABIN1, PCDH19, PEX1, SNCG, and WDR45B). Data are shown in terms of relative

gene expression (1Ct) between control and scrapie animals.

Peroxisomal biogenesis factor 1 (PEX1) is a gene encoding the
peroxin 1 protein that is involved in the peroxisome biogenesis
specifically in importing peroxisomal matrix proteins (73) and
was upregulated in scrapie animals. Peroxisomes are important
metabolic organelles that contribute to cellular lipid metabolism
and redox balance (74). Even though peroxisomes are present
in most mammalian cell types, their contribution to the CNS
function is related to the biosynthesis of ether phospholipids.
These are important components of myelin in the synthesis
of docosahexaenoic acid (DHA), which plays an important
role in nervous system signaling, and to the degradation of
toxic compounds and D-amino acids, which would protect
brain structures and modulate synaptic signaling, respectively
(75). Neurological diseases such as AD, autism, ALS (75), and
PD (74) present dysfunction of peroxisomes or dysregulation
of peroxisomal metabolites. As an example, patients with
pronounced AD pathology display an inefficient peroxisome
transport between neurites and soma and dysregulation in
peroxisomal lipid metabolism. These alterations contribute
to AD pathology aggravating disease progression. However,
whether they are a secondary phenomenon or play a causative
role in AD pathogenesis remains to be determined (74). In our
study, we detected an upregulation of PEX1 gene in naturally
infected scrapie animals that were significantly correlated with
spongiosis and PrPSc accumulation, suggesting that peroxisome
activity might as well be compromised in scrapie. Although

further research is needed, this finding could also indicate a
possible role of peroxisomes in the pathogenesis of prion diseases.

Calcineurin-binding protein 1 (CABIN1) is a gene that acts as
a calcium-dependent repressor of calcineurin in the CNS (76).
Calcineurin is a serine/threonine phosphatase widely expressed
in different cell types and structures including neurons, where
it is involved in synaptic transmission and neurotransmitter
release (77). The chronic aberrant activation of this protein in
neurons contributes to synaptic dysfunction in AD. In contrast,
calcineurin inhibition can improve synaptic morphology in AD
mouse models (78). Synaptic dysfunction and synaptic loss are as
well prominent and early events in prion diseases (51). Moreover,
calcineurin activation mediated by human prion protein triggers
neuronal cell death (79). Altogether, these data suggest that the
downregulation of CABIN1 observed in scrapie animals, which
showed a significant association with vacuolization, could trigger
calcineurin activation contributing, along with other pathogenic
mechanisms, to the synaptic impairment and neuronal cell death
observed in scrapie disease.

Although we found no significant changes in the expression
of Metazoa_SRP (Metazoan signal recognition particle RNA)
between the control and scrapie animals, we observed a
significant negative correlation between the expression of
this gene and PrPSc accumulation, spongiosis, and gliosis.
Metazoa_SRP is a noncoding RNA (ncRNA). This type of
molecule is abundantly expressed in the brain, and some of
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FIGURE 9 | Correlation between PrPSc deposition, spongiosis, gliosis, and vacuolization scores and the expression of Metazoa_SRP (A), PEX1 (B), KCNK4 (C),

MTSS1L (D), CABIN1 (E), and SGSM2 (F).

them have been reported to be dysregulated in neurodegenerative
diseases. In addition, ncRNAs have been proposed as potential
biomarkers for neural disorders (80, 81). Deregulation of
different types of ncRNAs, namely, microRNAs, long noncoding
RNAs, and circular RNAs, has been described in AD (82, 83)
and PD (84, 85) and also in prion diseases including scrapie (86,
87). Although further research is warranted, the association of
Metazoa_SRP with prion-related lesions could indicate a possible
implication of this ncRNA in scrapie pathology.

Finally, in addition to the expression study of genes with
functions in the nervous system and in some neurodegenerative
diseases, we compared genes previously described to be
differentially expressed in scrapie (5) with our set of identified
DMRs finding that some of these genes also harboredDMRs. This
fact suggests that DNA methylation could also be implicated in
the expression of these previously described genes.

In conclusion, our study shows a potential regulatory role
of DNA methylation in prion pathology. We identified many
DMRs between the control and scrapie animals, some of them
belonging to genes with possible neuroprotective roles against
neurodegeneration (SNCG andWDR45B) and to genes that may
facilitate or contribute to scrapie disease progression (PCDH19,

PEX1, and CABIN1). Additionally, an enrichment in a variety of
molecular and cellular functions in which the PrPC is involved
was found in naturally infected scrapie animals, supporting the
idea that epigenetic regulation could have an important role in
prion diseases. Due to the limitations of sample size and regions
studied, replication of the study using a larger number of animals
and other CNS areas is warranted in the future.
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