Self-Calibration Technique with Lightweight Algorithm for Thermal Drift Compensation in MEMS Accelerometers
Resumen: Capacitive MEMS accelerometers have a high thermal sensitivity that drifts the output when subjected to changes in temperature. To improve their performance in applications with thermal variations, it is necessary to compensate for these effects. These drifts can be compensated using a lightweight algorithm by knowing the characteristic thermal parameters of the accelerometer (Temperature Drift of Bias and Temperature Drift of Scale Factor). These parameters vary in each accelerometer and axis, making an individual calibration necessary. In this work, a simple and fast calibration method that allows the characteristic parameters of the three axes to be obtained simultaneously through a single test is proposed. This method is based on the study of two specific orientations, each at two temperatures. By means of the suitable selection of the orientations and the temperature points, the data obtained can be extrapolated to the entire working range of the accelerometer. Only a mechanical anchor and a heat source are required to perform the calibration. This technique can be scaled to calibrate multiple accelerometers simultaneously. A lightweight algorithm is used to analyze the test data and obtain the compensation parameters. This algorithm stores only the most relevant data, reducing memory and computing power requirements. This allows it to be run in real time on a low-cost microcontroller during testing to obtain compensation parameters immediately. This method is aimed at mass factory calibration, where individual calibration with traditional methods may not be an adequate option. The proposed method has been compared with a traditional calibration using a six tests in orthogonal directions and a thermal chamber with a relative error difference of 0.3%.
Idioma: Inglés
DOI: 10.3390/mi13040584
Año: 2022
Publicado en: Micromachines 13, 4 (2022), 584 [17 p.]
ISSN: 2072-666X

Factor impacto JCR: 3.4 (2022)
Categ. JCR: CHEMISTRY, ANALYTICAL rank: 29 / 86 = 0.337 (2022) - Q2 - T2
Categ. JCR: INSTRUMENTS & INSTRUMENTATION rank: 25 / 63 = 0.397 (2022) - Q2 - T2
Categ. JCR: PHYSICS, APPLIED rank: 57 / 160 = 0.356 (2022) - Q2 - T2
Categ. JCR: NANOSCIENCE & NANOTECHNOLOGY rank: 68 / 107 = 0.636 (2022) - Q3 - T2

Factor impacto CITESCORE: 4.7 - Engineering (Q2)

Factor impacto SCIMAGO: 0.546 - Control and Systems Engineering (Q2) - Mechanical Engineering (Q2) - Electrical and Electronic Engineering (Q2)

Tipo y forma: Artículo (Versión definitiva)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2024-03-18-13:43:57)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2022-05-11, última modificación el 2024-03-19


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)