Spatial Modeling of Day-Within-Year Temperature Time Series: An Examination of Daily Maximum Temperatures in Aragon, Spain

Castillo-Mateo, Jorge (Universidad de Zaragoza) ; Lafuente, Miguel (Universidad de Zaragoza) ; Asin, Jesus (Universidad de Zaragoza) ; Cebrian, Ana C. (Universidad de Zaragoza) ; Gelfand, Alan E. ; Abaurrea, Jesus (Universidad de Zaragoza)
Spatial Modeling of Day-Within-Year Temperature Time Series: An Examination of Daily Maximum Temperatures in Aragon, Spain
Resumen: Acknowledging a considerable literature on modeling daily temperature data, we propose a multi-level spatiotemporal model which introduces several innovations in order to explain the daily maximum temperature in the summer period over 60 years in a region containing Aragon, Spain. The model operates over continuous space but adopts two discrete temporal scales, year and day within year. It captures temporal dependence through autoregression on days within year and also on years. Spatial dependence is captured through spatial process modeling of intercepts, slope coefficients, variances, and autocorrelations. The model is expressed in a form which separates fixed effects from random effects and also separates space, years, and days for each type of effect. Motivated by exploratory data analysis, fixed effects to capture the influence of elevation, seasonality, and a linear trend are employed. Pure errors are introduced for years, for locations within years, and for locations at days within years. The performance of the model is checked using a leave-one-out cross-validation. Applications of the model are presented including prediction of the daily temperature series at unobserved or partially observed sites and inference to investigate climate change comparison. Supplementary materials accompanying this paper appear online.
Idioma: Inglés
DOI: 10.1007/s13253-022-00493-3
Año: 2022
Publicado en: JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS 27 (2022), 487–505
ISSN: 1085-7117

Factor impacto JCR: 1.4 (2022)
Categ. JCR: STATISTICS & PROBABILITY rank: 64 / 125 = 0.512 (2022) - Q3 - T2
Categ. JCR: MATHEMATICAL & COMPUTATIONAL BIOLOGY rank: 44 / 55 = 0.8 (2022) - Q4 - T3
Categ. JCR: BIOLOGY rank: 72 / 92 = 0.783 (2022) - Q4 - T3

Factor impacto CITESCORE: 3.2 - Agricultural and Biological Sciences (Q2) - Mathematics (Q2) - Decision Sciences (Q2) - Environmental Science (Q2)

Factor impacto SCIMAGO: 0.711 - Agricultural and Biological Sciences (miscellaneous) (Q1) - Statistics, Probability and Uncertainty (Q2) - Statistics and Probability (Q2) - Applied Mathematics (Q2) - Environmental Science (miscellaneous) (Q2)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E46-20R
Financiación: info:eu-repo/grantAgreement/ES/MCED/FPU-1505266
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2020-116873GB-I00
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Estadís. Investig. Opera. (Dpto. Métodos Estadísticos)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2024-03-18-13:50:05)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2022-05-11, última modificación el 2024-03-19


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)