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ABSTRACT
For a given sequence of real numbers a = (am)m≥1, we define the function

Ua
µ,ν(x) =

2µΓ(µ+ 1)

xµ

∑
m≥1

am
jµm,ν

Jµ(jm,νx), x ∈ (0,+∞),

where µ, ν > −1, Jµ denotes the Bessel function of order µ, and (jm,ν)m≥1 are the positive
zeros of Jν . In this paper, we study the function Ua

µ,ν and some outstanding instances of it on
the whole real line and propose a number of conjectures about its positive zeros.
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1. Introduction

For ν > −1, consider the Bessel function Jν of order ν. The zeros jm,ν (m = 1, 2, . . . ) of the
Bessel function Jν are positive and can be ordered so that 0 < jm,ν < jm+1,ν , m ≥ 1 ( [1, § 15.27,
p. 483]).

Let a = (am)m≥1 be a sequence of real numbers satisfying

∞∑
m=1

|am|
j
µ+1/2
m,ν

< +∞,
∞∑
m=1

|am| < +∞, (1.1)

where µ, ν > −1. We then define the function

Ua
µ,ν(x) =

2µΓ(µ+ 1)

xµ

∑
m≥1

am
jµm,ν

Jµ(jm,νx), x ∈ (0,+∞). (1.2)

Using well-known bounds for the Bessel functions (see Section 2 below), it is easy to show that
the Bessel series (1.2) defines a continuous function Ua

µ,ν on [0,+∞). Since Jµ(x)/xµ is an even
function, we can extend the function Ua

µ,ν to (−∞, 0) just by setting Ua
µ,ν(x) = Ua

µ,ν(−x).
For particular values of the parameters µ and ν, and except for the factor 1/xµ, the series

(1.2) are examples of Fourier series in [0, 1]:



(1) Sine or cosine orthogonal series for ν = ±1/2, µ = ±1/2 (for these values, jm,1/2 = mπ
and jm,−1/2 = (2m− 1)π/2).

(2) Fourier-Bessel series for µ = ν.
(3) Dini series for µ = ν + 1.
(4) Schlömilch series for ν = 1/2. They are not properly Fourier series but have enough

similarities with them so as to be considered Fourier type series.

All these Fourier series have been studied in the bounded interval [0, 1] where the orthogonality
occurs.

For the particular values of µ = ν = 1/2 the function

xUa
1/2,1/2(x) =

∑
m≥1

am
mπ

sin(mπx) (1.3)

is odd and periodic, with period 2. As a consequence, since xUa
1/2,1/2(x) vanishes at x = 0, 1, the

function Ua
1/2,1/2(x) vanishes at each interval [k, k + 1), k ≥ 1 (to be precise, it vanishes at k).

As the main result in this paper, we prove that this fact is essentially true when the periodicity
disappears. We stress that we are interested in the zeros of Ua

µ,ν on the whole real line, and
hence our results are rather different to the aim of the theorem of Pólya-Szegő on trigonometric
polynomials [2, Th. 6.4, p. 134] or similar results.

The content of this paper is as follows. In Section 3, we study the case ν = 1/2 (when
jm,ν = mπ). We then write the function Ua

µ,1/2, µ > 1/2, as an integral transform of the

periodic function vUa
1/2,1/2(v), v ∈ [0, 1], with respect to a suitable kernel Kµ : [0,∞)×[0, 1]→ R

(see (3.1) and (3.2) below):

Ua
µ,1/2(x) =

4Γ(µ+ 1)√
π Γ(µ− 1/2)x2µ

∫ 1

0
vUa

1/2,1/2(v)Kµ(x, v) dv.

It turns out that for µ > 1/2 and x = k ∈ N big enough (depending on µ) the kernel Kµ(k, v) has
a constant sign in [0, 1] which oscillates with k. This allows us to prove the following theorem:

Theorem 1. Assume that the function vUa
1/2,1/2(v) defined in (1.3) has constant sign for v ∈

(0, 1). Then, for each µ > 1/2 there exists some integer kµ (which does not depend on the
sequence a) such that the function Ua

µ,1/2 defined in (1.2) has at least one zero in each interval

[k, k + 1), for k ∈ N, k ≥ kµ. In particular, for 1/2 < µ ≤ 5/2, we can take kµ = 1.

We guess that Theorem 1 is also true for µ > −1 without any additional assumption. This
question and other related ones will be considered in Section 4, where we propose a number
of conjectures about the positive zeros of Ua

µ,ν . For instance, the quantification of the number
of zeros of the function Ua

µ,1/2 on an interval [k, k + 1) is a difficult challenge which seems to

depend not on how many changes of sign vUa
1/2,1/2(v) has on (0, 1) but on its shape. Surprisingly,

however, there are several properties of the zeros of Ua
µ,1/2 which seem to be more regular when

µ is big enough.

Conjecture 1. There exists some µ0 > −1 satisfying that for any µ ≥ µ0 there exists some
nonnegative integer kµ (depending only on µ) such that if vUa

1/2,1/2(v) has constant sign in

(0, 1), then:

(1) The function Ua
µ,1/2 has exactly one simple zero in each interval [k, k + 1), for k ≥ kµ.

(2) The zeros of Ua
µ,1/2 separate the zeros of Ua

µ+1,1/2 in [kµ,+∞).

(3) If µ0 ≤ ν ≤ µ then the m-th zero of Ua
ν,1/2 in [kµ,+∞) is an increasing function of ν.

Our computational evidences show that µ0 could be a relatively small number: µ0 = 12
seems to be enough.
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In Section 5, we introduce the functions V b
µ,ν as

V b
µ,ν(x) =

2µ−νΓ(µ+ 1)

Γ(ν + 1)xµ

∑
m≥1

Jµ(jm,νx)

jb+µ−νm,ν Jν+1(jm,ν)
, (1.4)

where b > max{ν − µ+ 1, ν + 3/2}. They are particular cases of the functions Ua
µ,ν for

am =
2−ν

jb−νm,νΓ(ν + 1)Jν+1(jm,ν)
.

We study the functions V b
µ,ν when b is an odd integer. It has been known for a long time that

V 1
µ,µ(x) is constant on the interval [0, 1], see [1, 18.12(1), p. 581]. Using residues as the main

tool, we will prove that actually each function V 2n+1
µ,ν , n = 0, 1, 2, . . . , is a polynomial of degree

2n on the interval [0, 1], and provide a recurrence relation to compute explicitly this sequence of
polynomials. Using the Sonine formula for Bessel functions, we also find an explicit expression
for V 2n+1

µ,1/2 (x), n = 0, 1, 2, . . . , outside [0, 1] in terms of a hypergeometric function. We prove

that the function V 2n+1
1/2,1/2 satisfies the hypothesis of Theorem 1; hence, V 2n+1

µ,1/2 has at least one

zero on each interval [k, k + 1) for k big enough (depending only on µ; for 1/2 < µ ≤ 5/2 this
function actually has at least one zero on each interval [k, k + 1) for k ≥ 1).

The zeros of special functions are an integral part of the approximation theory and some
other related areas such as numerical integration ( [3]), or orthogonal and hypergeometric poly-
nomials ( [2, Ch. VI], [4–9] and references therein). As pointed out above, our functions Ua

µ,ν

are closely related to some outstanding orthogonal systems on the interval [0, 1], but we are
interested in the zeros of these functions outside this interval, where, as we have shown, some
remarkable regularities seem to appear. We emphasize something that will be apparent to any
reader of this paper: the full picture of these regularities is still far from being complete. This
paper is a first attempt to pose some new questions about zeros of special functions and rise
a number of conjectures (for which we have extensive computational evidence) which show the
richness of the situation at hand.

2. A Sonine formula for the functions Ua
µ,ν

For each µ > −1, there exists some constant Cµ > 0 such that

|Jµ(x)| ≤

{
Cµ|x|µ, if |x| ≤ 1,

Cµ|x|−1/2, if |x| ≥ 1
(2.1)

(see [1, 3.1(8), p. 40] and [1, 7.21(1), p. 199], or [10, formulas 10.7.3 and 10.7.8]). Since jm ∼ m
as m→∞ (see [1, § 15.53, p. 506]), the series in (1.2) converges uniformly on every compact set
in [0,+∞) under the condition (1.1), so that Ua

µ,ν(x) is well defined and continuous on [0,+∞).
The object of this section is to prove the formula

Ua
µ,ν(x) = 2(µ− η)

(
µ

η

)∫ 1

0
Ua
η,ν(xs)s2η+1(1− s2)µ−η−1 ds, (2.2)

for µ > η > −1 and ν > −1, provided that

∑
m≥1

|am|
j
η+1/2
m,ν

< +∞,
∞∑
m=1

|am| < +∞ (2.3)
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(which is the condition required to define Ua
η,ν and implies (1.1)). This formula is an analogue

of Sonine’s formula

Jµ+ν+1(z) =
zν+1

2νΓ(ν + 1)

∫ 1

0
Jµ(zs)sµ+1(1− s2)ν ds, (2.4)

valid for µ, ν ∈ C, Reµ > −1, Re ν > −1 ( [1, 12.11(1), p. 373], after a change of variable
s = sin θ).

Given x > 0, the definition (1.2) gives

2(µ− η)

(
µ

η

)∫ 1

0
Ua
η,ν(xs)s2η+1(1− s2)µ−η−1 ds

=
2ν+1Γ(µ+ 1)

Γ(µ− η)

∫ 1

0

1

(xs)η

∑
m≥1

am
jηm,ν

Jη(jm,νxs)s
2η+1(1− s2)µ−η−1 ds.

Commuting the series and the integral, which will be justified next, and using Sonine’s identity
(2.4) with η instead of µ, µ−η−1 instead of ν, and jm,νx instead of z easily proves (2.2), under
the conditions µ > η > −1 and ν > −1.

Now, commuting the series and the integral is justified if

∑
m≥1

|am|
jηm,ν

∫ 1

0

1

(xs)η
|Jη(jm,νxs)|s2η+1(1− s2)µ−η−1 ds < +∞.

The bounds (2.1) give

∑
m≥1

|am|
jηm,ν

∫ 1

0

1

(xs)η
|Jη(jm,νxs)|s2η+1(1− s2)µ−η−1 ds

≤ Cη
∑
m≥1
|am|

∫(
0, 1

jm,νx

] s2η+1(1− s2)µ−η−1 ds

+ Cη
∑
m≥1

|am|
(jm,νx)η+1/2

∫(
1

jm,νx
,1
) sη+1/2(1− s2)µ−η−1 ds

∼ C
∑
m≥1

|am|
(jm,νx)2η+2

+ C
∑
m≥1

|am|
(jm,νx)η+1/2

.

The two estimates in the last step follow from 2η + 1 > −1 and µ − η − 1 > −1, respectively,
and the constants C depend on η and x. Since 2η + 2 > η + 1

2 , condition (2.3) concludes the
proof of (2.2).

3. The kernel Kµ(x, v)

The purpose of this section is to prove Theorem 1. Therefore, along this section we always take
ν = 1/2 (so that jm,ν = mπ). First of all, we show that the function Ua

µ,1/2 can be written as

an integral transform of vUa
1/2,1/2(v), v ∈ [0, 1], with respect to a suitable kernel.

For µ > −1 and x > 0, consider the function

hµ,x(u) =

{
u(x2 − u2)µ−3/2, u ∈ [0, x),

0, u ∈ [x,+∞).
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Figure 1. The kernels K1(x, v) and K2(x, v), v ∈ (0, 1), for x = 6, x = 6.7, and x = 7.

We define the kernel Kµ : [0,+∞)× [0, 1)→ R as follows: for k ≤ x < k + 1, with k even,

Kµ(x, v) =

k/2∑
r=1

(hµ,x(2r − 2 + v)− hµ,x(2r − v)) + hµ,x(k + v)χ[0,x−k)(v); (3.1)

if k is odd,

Kµ(x, v) =

(k+1)/2∑
r=1

hµ,x(2r − 2 + v)−
(k−1)/2∑
r=1

hµ,x(2r − v)− hµ,x(k + 1− v)χ[k+1−x,1)(v). (3.2)

The kernel Kµ allows us to write the function Ua
µ,1/2, µ > 1/2, in terms of the function

vUa
1/2,1/2(v), v ∈ [0, 1].

Lemma 2. If µ > 1/2, then

Ua
µ,1/2(x) =

4Γ(µ+ 1)√
π Γ(µ− 1/2)x2µ

∫ 1

0
vUa

1/2,1/2(v)Kµ(x, v) dv.

Proof. What follows is a variant of [1, § 15.2, p. 478]. Using the Sonine-type formula (2.2) for
η = 1/2 (that is why we assume that µ > 1/2) we get

Ua
µ,1/2(x) =

4Γ(µ+ 1)√
π Γ(µ− 1/2)

∫ 1

0
Ua
1/2,1/2(xs)s

2(1− s2)µ−3/2 ds

=
4Γ(µ+ 1)√

π Γ(µ− 1/2)x2µ

∫ x

0
uUa

1/2,1/2(u)u(x2 − u2)µ−3/2 du.

Notice that the function

uUa
1/2,1/2(u) =

√
2 Γ(3/2)√

u

∑
m≥1

am

(mπ)1/2
J1/2(mπu) =

∑
m≥1

am
mπ

sin(mπu)

is odd and periodic with period equal to 2.
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Assume now that k ≤ x < k + 1 and write∫ x

0
uUa

1/2,1/2(u)u(x2 − u2)µ−3/2 du

=

k∑
r=1

∫ r

r−1
uUa

1/2,1/2(u)u(x2 − u2)µ−3/2 du+

∫ x

k
uUa

1/2,1/2(u)u(x2 − u2)µ−3/2 du.

For odd values of r we do the change of variable v = r − 1 + u in the corresponding integral,
while for even values of r we change v = r−u. In the last integral, if k is even we do the change
of variable v = k+ u, while if k is odd we change v = k+ 1− u. The lemma now follows taking
into account that the function uUa

1/2,1/2(u) has period 2 and is an odd function.

From now on, given a function g, g(c−) and g(c+) stand for limv→c− g(v) and limv→c+ g(v).
For the benefit of the reader, we split up the proof of Theorem 1 into several lemmas.

Lemma 3. Fix µ ∈ R, k ∈ N, and let hµ,k(u) = u(k2 − u2)µ−3/2 for u ∈ [0, k). Let n be a
nonnegative integer.

(a) If n < µ− 3/2, then h
(n)
µ,k(k

−) = 0.

(b) If µ− 1/2 /∈ N and µ− 3/2 ≤ n, then signh
(n)
µ,k(k

−) = sign(−1)n
∏n
j=1(µ−

1
2 − j).

(c) If µ− 1/2 ∈ N and µ− 3/2 ≤ n ≤ 2µ− 2, then signh
(n)
µ,k(k

−) = (−1)µ−3/2.

(d) If µ− 1/2 ∈ N and 2µ− 2 < n, then h
(n)
µ,k(k

−) = 0.

Proof. Part (a) is immediate from Leibniz rule for the n-th derivative of a product. Part (d)
is also immediate, since hµ,k is in this case a polynomial of degree 2µ− 2. Part (b) follows from

h
(n)
µ,k(u) = (k2 − u2)µ−3/2−n

(
(−1)n2nun+1

n∏
j=1

(µ− 1
2 − j) + (k2 − u2)ϕn(u)

)
,

where ϕn(u) is a polynomial of degree at most n− 1; this formula is easily proved by induction
on n. For the proof of part (c), let us write hµ,k(u) = P (u)(k − u)µ−3/2, where P (u) = u(k +

u)µ−3/2 is a polynomial of degree µ − 1/2 and positive coefficients. Thus, P (j)(k) > 0 for
j = 0, 1, . . . , µ− 1/2 and

hµ,k(u) = (k − u)µ−3/2
µ−1/2∑
j=0

P (j)(k)

j!
(u− k)j = (−1)µ−3/2

µ−1/2∑
j=0

P (j)(k)

j!
(u− k)j+µ−3/2,

which gives the result.

As a consequence, we have the following:

Corollary 4. Let µ > 1/2 and let m the integer given by 1/2 + m < µ ≤ 3/2 + m. Let n be

a nonnegative integer. If n < m, then h
(n)
µ,k(k

−) = 0; if m ≤ n ≤ 2m + 1, then signh
(n)
µ,k(k

−) =

(−1)m.

Proof. The case n < m follows from part (a) of Lemma 3, while the case m ≤ n ≤ 2m + 1
follows from parts (b) and (c).

It might be worthwhile highlighting that h2m+1
µ,k (u) is a product of a Gegenbauer polynomial

of parameter µ − 2m − 2 ≤ −1/2 and a nonvanishing function. This follows from Rodrigues
formula (see [2, (4.3.1), p. 67]). The proof of our next lemma is essentially a proof that these
polynomials have no zeros on the interval (−1, 1).
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Lemma 5. Let µ > 1/2 and let m the integer given by 1/2 +m < µ ≤ 3/2 +m. Then, h
(2m)
µ,k (u)

is increasing and positive for u ∈ [0, k) if m is even, and decreasing and negative if m is odd.

Proof. Since d
du(k2−u2)µ−1/2 = −2(µ− 1

2)hµ,k(u), Leibniz rule for the derivative of a product
gives

h2m+1
µ,k (u) = − 1

2(µ− 1
2)

2m+2∑
j=0

(
2m+ 2

j

)
dj

duj
(
(k − u)µ−

1

2

) d2m+2−j

du2m+2−j
(
(k + u)µ−

1

2

)
.

Each one of the derivatives on the right-hand side has a constant sign (depending on j) on (0, k)
which is easy to determine, so one can deduce that every term in that sum either is 0 (this only
occurs if µ = 3/2 +m) or has sign (−1)m+1. This proves that signh2m+1

µ,k (u) = (−1)m in (0, k).

That is, h
(2m)
µ,k (u) is increasing if m is even, and decreasing if m is odd. To finish the proof, just

observe that hµ,k is an odd function, so h
(2m)
µ,k is odd as well, and h

(2m)
µ,k (0) = 0.

Lemma 6. Let µ > 1/2 and m the integer given by 1/2+m < µ ≤ 3/2+m. Let j be an integer
such that m ≤ 2j ≤ 2m.

(a) If k is odd and large enough, then sign d2j+1

dv2j+1Kµ(k, 0) = (−1)m.

(b) If k is even and large enough, then sign d2j+1

dv2j+1Kµ(k, 1) = (−1)m.

Proof. Assume that k is odd. It follows from (3.2) that

Kµ(k, v) =

(k+1)/2∑
r=1

hµ,k(2r − 2 + v)−
(k−1)/2∑
r=1

hµ,k(2r − v). (3.3)

Now, hµ,k(u) = k2µ−2hµ,1(uk ). Hence, h
(2j+1)
µ,k (u) = k2µ−2j−3h(2j+1)

µ,1 (uk ) and (3.3) gives

d2j+1

dv2j+1
Kµ(k, 0) = h

(2j+1)
µ,k (0) +

(k−1)/2∑
r=1

2h
(2j+1)
µ,k (2r)

= k2µ−2j−3h(2j+1)
µ,1 (0) + k2µ−2j−3

(k−1)/2∑
r=1

2h
(2j+1)
µ,1 ( 2kr),

so

k−2µ+2j+2 d
2j+1

dv2j+1
Kµ(k, 0) = k−1h(2j+1)

µ,1 (0) +

(k−1)/2∑
r=1

2
kh

(2j+1)
µ,1 ( 2kr).

The last term is a Riemann sum of the integral of h
(2j+1)
µ,1 on the interval (0, 1). Therefore,

lim
k→+∞

k−2µ+2j+2 d
2j+1

dv2j+1
Kµ(k, 0) =

∫ 1

0
h
(2j+1)
µ,1 (u) du = h

(2j)
µ,1 (1−),

taking into account that hµ,1(u) is an odd function, so h
(2j)
µ,1 (0) = 0. This, together with Corol-

lary 4, proves (a).

If k is even, the same arguments give k−2µ+2j+2 d2j+1

dv2j+1Kµ(k, 1) =
∑k/2

r=1
2
kh

(2j+1)
µ,1 (2r−1k ), which

is again a Riemann sum of the integral of h
(2j+1)
µ,1 on the interval (0, 1).
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Before going on, we remark the following elementary properties of convex functions. Let
g : [0, 1)→ R be a twice differentiable function such that g(0) = 0 and g′′(v) > 0 for v ∈ (0, 1).

(a) If g(1−) = 0, then g(v) < 0 for every v ∈ (0, 1).
(b) If g′(0) > 0, then g(v) > 0 for every v ∈ (0, 1).

Let us state also the symmetric situation, for further reference. Let g : (0, 1] → R be a twice
differentiable function such that g(1) = 0 and g′′(v) > 0 for every v ∈ (0, 1).

(a) If g(0+) = 0, then g(v) < 0 for every v ∈ (0, 1).
(b) If g′(1) < 0, then g(v) > 0 for every v ∈ (0, 1).

We can now prove that, for any µ > 1/2, the kernel Kµ(k, v) has constant sign for v ∈ (0, 1)
if k ∈ N is big enough (depending on µ).

Lemma 7. Let µ > 1/2 and let m the integer given by 1/2 + m < µ ≤ 3/2 + m. Then, there
exists some kµ ∈ N such that for any integer k ≥ kµ,

signKµ(k, v) = (−1)bm/2c+k+1, v ∈ (0, 1).

More precisely, for 1/2 < µ ≤ 5/2, we can take kµ = 1.

Proof. From (3.1) and (3.2), it follows that

Kµ(k, v) =


k/2∑
r=1

(hµ,k(2r − 2 + v)− hµ,k(2r − v)), for k even,

(k+1)/2∑
r=1

hµ,k(2r − 2 + v)−
(k−1)/2∑
r=1

hµ,k(2r − v), for k odd.

(3.4)

If 1/2 < µ ≤ 3/2, then for any k ∈ N the function hµ,k(u) is increasing and positive, so that
(3.4) gives easily that

signKµ(k, v) = (−1)k+1, v ∈ (0, 1).

This proves the lemma for 1/2 < µ ≤ 3/2.
Assume now that 1/2 +m < µ ≤ 3/2 +m, with m ≥ 1. The same argument, together with

Lemma 5, proves that

sign
d2m

dv2m
Kµ(k, v) = (−1)k+1+m, v ∈ (0, 1).

Let us take

gj(v) = (−1)k+1+m d2j

dv2j
Kµ(k, v),

for m ≤ 2j ≤ 2m. We have just proved that gm(v) > 0 on (0, 1).
If m = 1 we can skip the following iteration, which is the only step where k is required to be

large enough. If m ≥ 2, let us suppose that m ≤ 2j ≤ 2m− 2 and gj+1(v) > 0 on (0, 1). Then,
g′′j (v) = gj+1(v) > 0 on (0, 1). If k is odd,

gj(0) = (−1)k+1+m d2j

dv2j
Kµ(k, 0) = (−1)k+1+mh

(2j)
µ,k (0) = 0
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and

g′j(0) = (−1)k+1+m d2j+1

dv2j+1
Kµ(k, 0) > 0

for k large enough, by Lemma 6. By convexity, gj(v) > 0 on (0, 1). If k is even, gj(1) = 0 and
g′j(1) < 0, so again gj(v) > 0 on (0, 1). As a result of this iteration we conclude that

(−1)k+1+m d2j

dv2j
Kµ(k, v) > 0

on (0, 1), for j = b(m+ 1)/2c. Now, let us take

fj(v) = (−1)k+1+m+b(m+1)/2c−j d
2j

dv2j
Kµ(k, v).

For j = b(m+ 1)/2c we have just proved that fj(v) > 0 on (0, 1). Let us iterate again: suppose
that 0 ≤ j < b(m+ 1)/2c and fj+1(v) > 0 on (0, 1). Then, (−fj)′′(v) = fj+1(v) > 0 on (0, 1). If
k is odd,

−fj(0) = (−1)k+m+b(m+1)/2c−jh(2j)µ,k (0) = 0

and

−fj(1−) = (−1)k+m+b(m+1)/2c−jh(2j)µ,k (k−) = 0,

by Corollary 4. By convexity, fj(v) > 0 on (0, 1). If k is even, fj(1) = 0 and fj(0
+) = 0, so

again fj(v) > 0 on (0, 1).
As a result of this second iteration, we conclude that

(−1)k+1+m+b(m+1)/2cKµ(k, v) > 0

on (0, 1), that is,

signKµ(k, v) = (−1)k+1+m+b(m+1)/2c = (−1)bm/2c+k+1.

Proof of Theorem 1. It is now an easy consequence of Lemmas 2 and 7.

Corollary 8. Let −1/2 < µ ≤ 1/2. Assume that the function

vUa
1/2,1/2(v) =

∑
m≥1

am
mπ

sin(mπv), v ∈ [0, 1],

has constant sign on (0, 1) and

vUa
1/2,1/2(v)

1− v
is bounded on a neighbourhood of v = 1. (3.5)

Then the function Ua
µ,1/2 has at least one zero on each interval [k, k + 1), k ≥ 0.

Proof. Using the Sonine formula (2.2) for η = −1/2, we get

Ua
µ,1/2(x) =

2Γ(µ+ 1)√
π Γ(µ+ 1/2)

∫ 1

0
Ua
−1/2,1/2(xs)(1− s

2)µ−1/2 ds. (3.6)

9



Notice that

(uUa
1/2,1/2)

′(u) = Ua
−1/2,1/2(u). (3.7)

So, integrating by parts in (3.6), we get

Ua
µ,1/2(x) =

2Γ(µ+ 1)√
π Γ(µ+ 1/2)

(
lim
s→1−

sUa
1/2,1/2(sx)(1− s2)µ−1/2 (3.8)

+ 2(µ− 1/2)

∫ 1

0
sUa

1/2,1/2(xs)s(1− s
2)µ−3/2 ds

)
.

Since the function Ua
1/2,1/2(v) is continuous at v = 0, and vUa

1/2,1/2(v) has period 2 and is an

odd function, we deduce for k even and positive that

sUa
1/2,1/2(sk)

1− s
is bounded on a neighbourhood of s = 1, (3.9)

because

sUa
1/2,1/2(sk)

1− s
=
ksUa

1/2,1/2(sk)

k(1− s)
=

(ks− k)Ua
1/2,1/2(sk − k)

k(1− s)
= −Ua

1/2,1/2(sk − k).

But (3.9) is still true for k odd, as can be easily deduced using (3.5) and, again, that the function
vUa

1/2,1/2(v) has period 2 and is odd, because

sUa
1/2,1/2(sk)

1− s
=
ksUa

1/2,1/2(sk)

k(1− s)
=

(ks− k + 1)Ua
1/2,1/2(sk − k + 1)

k(1− s)
=
vUa

1/2,1/2(v)

1− v

with v = k(s− 1) + 1.
Since −1/2 < µ, from (3.8) and (3.9) we have, for any positive integer k,

Ua
µ,1/2(k) =

4Γ(µ+ 1)√
π Γ(µ− 1/2)

∫ 1

0
sUa

1/2,1/2(ks)s(1− s
2)µ−3/2 ds.

Proceeding as in Lemma 2, we write

Ua
µ,1/2(k) =

4Γ(µ+ 1)√
π Γ(µ− 1/2)k2µ

∫ 1

0
vUa

1/2,1/2(v)Kµ(k, v) dv.

Now, for −1/2 < µ ≤ 1/2 the function hµ,k(u) is increasing in [0, k). Hence, the kernel Kµ(k, v)
has constant sign equal to (−1)k+1 for v ∈ (0, 1), for every k ≥ 1.

The function Ua
µ,1/2(x) has also at least one zero on [0, 1). Indeed, assume that vUa

1/2,1/2(v)

is positive in (0, 1) (the proof is similar if it is negative). Then, on the one hand, according to
the discussion in the previous line the sign of Ua

µ,1/2(1) is negative. On the other hand, since

vUa
1/2,1/2(v) vanishes at v = 0, it must be increasing at v = 0 and so (3.7) gives that Ua

−1/2,1/2(0)

is positive. Hence, using (3.6), we can conclude that Ua
µ,1/2(0) is positive.

4. Conjectures on the zeros of the functions Ua
µ,ν

As we pointed out in the Introduction, we guess that Theorem 1 is also true for µ > −1 without
any additional assumption:
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Conjecture 2. For µ > −1 and k ∈ N big enough (depending on µ), the function Ua
µ,1/2 defined

in (1.2) has at least one zero in each interval [k, k + 1).

It is well-known that the zeros of the Bessel functions Jµ, µ > −1, enjoy a number of
interesting properties (see [1, Ch. XV]). Some of those properties are that the function Jµ has
infinitely many positive zeros, all of them simple; they interlace with the zeros of Jµ+1 and the
k-th zero of Jµ is an increasing function of µ.

Except for the fact that the function Ua
µ,1/2 has infinitely many positive zeros, in general,

those properties seem to fail for the zeros of the functions Ua
µ,1/2, as the following numerical

example suggests. Before going on with it we stress that the computation of zeros of special
functions is a difficult task (see, for instance, [11]), in particular when, as it happens with the
function Ua

µ,1/2, they are defined as infinite series. In the following example and in others in this

section, we have chosen sequences am for which am = 0, m ≥ 4. For some other examples in this
and in following sections, however, we have made a huge amount of experiments with sequences
with much more non-null terms so as to check the behavior described in our conjectures. The
use of series with many non-null summands may also have an influence on the zeros, so we have
looked for changes of sign that are heuristically meaningful. More precisely, the values at the
endpoints of an interval [k, k + 1] (whose change of signs implies the existence of zeros in that
interval) should be big enough compared with the estimated bound for the error terms.

Let us go on with our first example. Consider the sequence a1 = 1
3 , a2 = 0, a3 = 1, and

am = 0 for m ≥ 4. Hence,

xUa
1/2,1/2(x) =

1

3π
(sin(πx) + sin(3πx)).

It is easy to check that xUa
1/2,1/2(x) ≥ 0 for x ∈ [0, 1] and has double zeros at x = (2k + 1)/2,

k = 0, 1, 2, . . . The zeros of Ua
0.4,1/2 do not interlace with the zeros of Ua

1.4,1/2. Indeed, Ua
0.4,1/2

has six zeros on the interval [0, 2] but Ua
1.4,1/2 has only one zero on that interval. On the other

hand, the first positive zero of Ua
0.4,1/2 is less than 0.45 and its second zero is greater than 0.53;

but the first positive zero of Ua
0.48,1/2 is between 0.45 and 0.5 and its second zero lies between

0.5 and 0.53. This shows that the second zero of Ua
µ,1/2 is not an increasing function of µ.

The interlacing property of the zeros of Jµ and Jµ+1 follows from the identities

(xµ+1Jµ+1(x))′ = xµ+1Jµ(x), (x−µJµ(x))′ = −x−µJµ+1(x).

These identities give the following ones for the functions Ua
µ,ν :

(x2µ+2Ua
µ+1,ν(x))′ = 2(µ+ 1)x2µ+1Ua

µ,ν(x), (4.1)

(U ã
µ,ν(x))′ = −

xUa
µ+1,ν(x)

2(µ+ 1)
, (4.2)

where ã = (am/j
2
m,ν)m.

The change of the sequence a in the identity (4.2) does not allow to proceed like with the
Bessel functions. But (4.1) can be used to show that Ua

µ,1/2 has zeros at each interval [k, k+ 2),

if −1 < µ < −1/2.
Our Conjecture 1 establishes that under the assumption that the function vUa

1/2,1/2(v) has

constant sign on [0, 1] (see Theorem 1), the zeros of the function Ua
µ,1/2 seem to behave more

regularly if µ is big enough. We have a lot of computational evidences for Conjecture 1. This
evidences also show that the threshold value µ0 from which this conjecture would hold could
be a relatively small number such as 12.

When vUa
1/2,1/2(v) changes its sign in (0, 1), the quantification of the number of zeros of

the function Ua
µ,1/2 on an interval [k, k + 1) in Theorem 1 seems to depend not on the number
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of changes of sign of xUa
1/2,1/2(x) in (0, 1), but on its shape. We display here three illustrative

examples.

(1) Consider the sequence a1 = −
√

2/2, a2 = 1, and am = 0 for m ≥ 3. Then,

xUa
1/2,1/2(x) =

1

2π
(−
√

2 sin(πx) + sin(2πx)).

As a consequence, this function has exactly one change of sign on (0, 1), at 1/4. When µ is
small, say 0.55, the function Ua

µ,1/2 seems to have three zeros in each interval [2k+1, 2k+2)

and one zero in each interval [2k, 2k + 1), for k ≥ 1. However, when µ increases (µ ≥ 1 is
enough), the function Ua

µ,1/2 seems to have just one zero in each interval [k, k + 1), for k

big enough.
(2) Consider the sequence a1 = 0, a2 = 1, and am = 0 for m ≥ 3. Then,

Ua
µ,1/2(x) =

Γ(µ+ 1)

(πx)µ
Jµ(2πx).

In particular, xUa
1/2,1/2(x) = sin(2πx)/(2π) for x ∈ [0, 1], which has exactly one change

of sign on (0, 1), at x = 1/2. Obviously, the zeros of Ua
µ,1/2(x) are jm,µ/(2π). Hence,

using [1, § 15.35, p. 492], one sees that for µ > 1 and k > (2µ+ 1)(2µ+ 3)/π, k ∈ N, the
function Ua

µ,1/2(x) has two zeros on each interval [k, k + 1). So, the number of changes

of sign of xUa
1/2,1/2(x) on (0, 1) is the same as in the first example, but now the function

Ua
µ,1/2 has always just two zeros on each interval [k, k + 1), for k big enough.

(3) Consider the sequence a1 = − 1−2 sin(3π/8)
3(1−2 sin(π/8)) , a2 = −2

√
2(− sin(π/8)+sin(3π/8))

3(1−2 sin(π/8)) , a3 = 1, and

am = 1 for m ≥ 4; notice that a1 = 1
3

(
1 +

√
4 + 4

√
2
)

and a2 = −2
3

(√
2 +

√
2 +
√

2
)
. It

is then easy to see that xUa
1/2,1/2(x) has exactly two changes of sign on (0, 1), at x = 1/8

and x = 1/4. But, for µ > 2, the function Ua
µ,1/2 seems to have just one zero on each

interval [k, k + 1) for k big enough. So, the number of changes of sign of xUa
1/2,1/2(x) in

(0, 1) is bigger than in the previous example, but the function Ua
µ,1/2, for µ > 2, seems to

have less zeros on each interval [k, k + 1), for k big enough.

The extension of our conjectures for ν 6= 1/2 needs further research. The computational
evidences show that the normalization factor π/j1,ν will probably play an important role. This
is the case of Conjecture 2, which can be extended as follows.

Conjecture 3. For µ, ν > −1 and k ∈ N big enough (depending on µ and ν), the function Ua
µ,ν

defined in (1.2) has zeros in each interval [kπ/j1,ν , (k + 1)π/j1,ν).

The case of Conjecture 1 is more obscure: we have not found yet a sound candidate for the
function vUa

1/2,1/2(v), v ∈ [0, 1]. On the one hand, we do not find here the periodic structure

appearing when ν = 1/2. This structure allowed us to find the kernel Kµ(x, v) and the expression
of Ua

µ,1/2(x) in terms of vUa
1/2,1/2(v), v ∈ [0, 1] (see Lemma 2 for details). On the other hand,

we have not found computational evidence to exclude that the same hypothesis on the constant
sign of the function vUa

1/2,1/2(v) in [0, 1] could also work for any ν as for the case ν = 1/2. Hence,

extending Conjecture 1 would require a better understanding of this non-periodic situation.

5. The functions V b
µ,ν

In this section, we study the functions V 2n+1
µ,ν (x) defined in (1.4) and prove that for x ∈ [0, 1]

they are polynomials which can be explicitly computed using a recurrence relation. We need the
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residue theorem for analytic functions, so it is more convenient to consider the entire functions
Iµ defined by

Iµ(z) = 2µΓ(µ+ 1)
Jµ(iz)

(iz)µ
= Γ(µ+ 1)

∞∑
n=0

(z/2)2n

n! Γ(n+ µ+ 1)
(5.1)

instead of the Bessel functions Jµ, where we now assume µ ∈ C \ {−1,−2, . . . }.
Given a function f holomorphic in z = 0 and a complex number ν ∈ C \ {−1,−2, . . . }, our

tool in this section will be the Taylor coefficients (df,νn )n≥0 of f(z)/Iν(iz):

f(z)

Iν(iz)
=

∞∑
n=0

df,νn zn. (5.2)

The cases

f(z) = Iν−1(ixz) +
ixz

2ν
Iν(ixz), f(z) = Iν(ixz) +

ixz

2(ν + 1)
Iν+1(ixz),

x ∈ C, were studied in [12] and [13], respectively (some other cases can be found in [14]).
It is known that Iν(iz) =

∑∞
n=0 (−1)nz2n/γ2n,ν , where

γn,ν =

{
22kk! (ν + 1)k, if n = 2k,

22k+1k! (ν + 1)k+1, if n = 2k + 1
(5.3)

and (a)j is the Pochhammer symbol. Writing f(z) =
∑∞

n=0 anz
n, we get for (df,νn )n≥0 the

recurrence formulas

a2n = df,ν2n +
(−1)n

γ2n,ν

n−1∑
j=0

(−1)k
(

2n

2j

)
ν

df,ν2j , a2n+1 = df,ν2n+1 +
(−1)n

γ2n+1,ν

n−1∑
j=0

(−1)k
(

2n+ 1

2j

)
ν

df,ν2j+1,

(5.4)
where

(
n
j

)
ν

= γn,ν
γj,νγn−j,ν

.

Theorem 9. Assume that f is an entire function satisfying

|f(z)| ≤ c(1 + |z|)Neκ| Im z|, z ∈ C, (5.5)

for certain constants 0 ≤ κ ≤ 1, c > 0 and N ∈ R. Let ν ∈ C\{−1,−2, . . . } and n a nonnegative
integer. Assume that they satisfy

Re ν +N <

{
n− 1/2, κ = 1,

n+ 1/2, 0 ≤ κ < 1.

Then

dn

dzn

(
f(z)

Iν(iz)

)
=

∑
m∈Z\{0}

2(−1)n+1(ν + 1)n!f(jm)

jmIν+1(ijm)(z − jm)n+1
, (5.6)

which converges uniformly in bounded subsets of C \ {jm : m ∈ Z \ {0}}.

Proof. The proof proceeds as that of Theorem 1.1 (n = 0) and Corollary 2.1 (n ≥ 1) of [13],
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and is based in the estimate

|Jν(w)| ≥ c e
| Imw|

|w|1/2
. (5.7)

Take a large circle D = {z ∈ C : |z| = A} of radius A > |z| with the only condition, at the mo-

ment, that none of the points jm, m ∈ Z\{0}, must lie in D, and consider 1
2πi

∫
D

f(w)
(w−z)Iν(iw) dw.

The poles of f(w)
(w−z)Iν(iw) in D, all of them simple, are z and those jm ∈ D. Thus, the calculus

of residues gives

1

2πi

∫
∂D

f(w)

(w − z)Iν(iw)
dw =

f(z)

Iν(iz)
+
∑
|jm|<A

2(ν + 1)f(jm)

jmIν+1(ijm)(z − jm)
. (5.8)

Using (5.7) and (5.5), we get, for w ∈ D,
∣∣∣ f(w)Iν(iw)

∣∣∣ ≤ c̃ |w|Re ν+N+1/2e(κ−1)| Imw|. This gives

∣∣∣∣ 1

2πi

∫
D

f(w)

(w − z)Iν(iw)
dw

∣∣∣∣ ≤ 1

2π

∫ π

−π

A

A− |z|
· c̃ ARe ν+N+1/2e(κ−1)|A sin s| ds.

Proceeding as in the proof of Theorem 1.1 of [13], we can see that either for κ = 1 and
Re ν + N + 1/2 < 0 or for 0 ≤ κ < 1 and Re ν + N − 1/2 < 0, the left-hand side of (5.8)
goes uniformly to 0 as A goes to infinity. This proves (5.6) for n = 0. For n ≥ 1, the proof goes
as that of Corollary 2.1 of [13].

Let us suppose that a function f satisfies the conditions of Theorem 9. Taking z = 0 in (5.6)
gives

df,νn =
∑

m∈Z\{0}

2(ν + 1)f(jm)

jn+2
m Iν+1(ijm)

.

The sums ∑
m∈Z\{0}

2(ν + 1)f(jm)

jn+2
m Iν+1(ijm)

inherit then the recurrence relation (5.4) for the numbers (df,νn )n≥0, and can be computed
recursively from the Taylor coefficients γn,ν (5.3) and an (of the function f).

We can now compute explicitly the value of the functions V 2n+1
µ,ν defined by (1.4) in [0, 1],

using the numbers dµ,νn associated to the entire function fv(z) = Iµ(ivz), v ∈ [0, 1]. Since Iµ is an
even function, we have dµ,ν2n+1 = 0. The numbers dµ,ν2n can be computed from the recursion (5.4);
in this case, a2n = (−1)nvn/γ2n,µ. The first numbers are

dµ,ν0 (v) = 1, dµ,ν2 (v) =
1

4

(
− v2

µ+ 1
+

1

ν + 1

)
,

dµ,ν4 (v) =
1

32

(
v4

(µ+ 1)(µ+ 2)
− 2v2

(µ+ 1)(ν + 1)
+

ν + 3

(ν + 1)2(ν + 2)

)
.

Taking into account (5.1) and the definition of the functions V b
µ,ν in (1.4), we get

V 2n+1
µ,ν (v) =

dµ,ν2n (v)

2
. (5.9)
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Hence, using Theorem 9 and the estimate |Iµ(z)| ≤ C| Im z|/|z|1/2+µ, z ∈ C (see (2.8) of [13]),
we deduce for

Re ν <

{
Reµ+ 2n, v = 1,

Reµ+ 2n+ 1, 0 ≤ v < 1,

that

V 1
µ,ν(v) =

1

2
, V 3

µ,ν(v) =
1

23

(
− v2

µ+ 1
+

1

ν + 1

)
, (5.10)

V 5
µ,ν(v) =

1

26

(
v4

(µ+ 1)(µ+ 2)
− 2v2

(µ+ 1)(ν + 1)
+

ν + 3

(ν + 1)2(ν + 2)

)
, (5.11)

and so the function V 2n+1
µ,ν is a polynomial of degree 2n in [0, 1].

The sum (5.11) seems to be new, while some particular values of the sums (5.10) are known.
For instance: for µ = 1/2 the sum V 1

µ,ν is the particular case m = 0 of [15, sum (26)]; for m = 0

and ν = 0, see [16, (13), p. 691]; for µ = ν, the sum V 1
µ,ν is [16, (1), p. 690] (see also [1, 12.12(1),

p. 581]) and the case µ = 0 of V 3
µ,ν is [16, (3), p. 690].

We next prove that the function V 2n+1
1/2,1/2 satisfies the hypothesis of Theorem 1.

Since I1/2(iz) = sin(z)/z, we have from (5.9) and (5.2) that

vV 2n+1
1/2,1/2(v) =

1

2n!

d2n

dz2n

(
sin(vz)

sin(z)

) ∣∣∣
z=0

, v ∈ [0, 1].

Lemma 10. For n ≥ 0, the function vV 2n+1
1/2,1/2(v) is positive for v ∈ (0, 1), and for n ≥ 1 it

vanishes at v = 0 and v = 1.

Proof. From (1.4) we get

vV 2n+1
1/2,1/2(v) =

∑
m≥1

(−1)m+1

(mπ)2n+1
sin(mπv), v ∈ (0, 1).

It is easy to see that vV 2n+1
1/2,1/2(v) vanishes at v = 0 for n ≥ 0 and at v = 1 for n ≥ 1.

The polynomials (vV 2n+1
1/2,1/2(v))n≥0, v ∈ [0, 1], are quasi-Appell in the sense that

d2

dv2

(
vV 2n+1

1/2,1/2(v)
)

= −vV 2n−1
1/2,1/2(v). (5.12)

Now, vV 1
1/2,1/2(v) = v/2 is a positive function on (0, 1). Assuming vV 2n−1

1/2,1/2(v) is positive on

(0, 1) for some n, (5.12) means that vV 2n+1
1/2,1/2(v) is a concave function on (0, 1) which, in addition,

vanishes at v = 0 and v = 1. Therefore, it is positive on (0, 1). By induction, every vV 2n+1
1/2,1/2(v)

is positive on (0, 1).

The following result is a consequence of Theorem 1 and Corollary 8.

Corollary 11. For −1/2 ≤ µ there exists kµ such that for n ≥ 1 the function V 2n+1
µ,1/2 defined in

(1.4) has zeros in each interval [k, k + 1), k ∈ N, k ≥ kµ. In particular, for −1/2 ≤ µ ≤ 1/2 we
can take kµ = 0, and for 1/2 < µ ≤ 5/2 we can take kµ = 1.

The function V 2n+1
µ,1/2 can be explicitly computed outside [0, 1] using the Sonine-type formula

(2.2) and the explicit values of V 2n+1
−1/2,1/2 obtained in this section. For instance, consider n = 1
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and 1 ≤ x ≤ 2. For µ > −1/2, the Sonine-type formula (2.2) for η = −1/2, ν = 1/2, gives

V 3
µ,1/2(x) =

2Γ(µ+ 1)√
π Γ(µ+ 1/2)

∫ 1

0
V 3
−1/2,1/2(xs)(1− s

2)µ−1/2 ds.

Separating the integral in [0, 1/x] and [1/x, 1], using that V 3
−1/2,1/2(u) is even and periodic of

period 2 and that V 3
−1/2,1/2(2− u) = V 3

−1/2,1/2(u) + 2u− 2, we get

V 3
µ,1/2(x) =

2Γ(µ+ 1)√
π Γ(µ+ 1/2)

(∫ 1

0
V 3
−1/2,1/2(xs)(1− s

2)µ−1/2 ds

+ 2x

∫ 1

1/x
s(1− s2)µ−1/2 ds− 2

∫ 1

1/x
(1− s2)µ−1/2 ds

)
.

Using (5.10) and making the change of variable u = (1 − s)/(1 − 1/x) in the last integral, we
finally get, for µ > −1/2 and x ∈ [1, 2],

V 3
µ,1/2(x) = − x2

8(µ+ 1)
+

1

12
+

Γ(µ+ 1)√
π Γ(µ+ 3/2)

(
1− 1

x

)µ+1/2

×

[
x

(
1 +

1

x

)µ+1/2

− 2µ+1/2
2F1

(
−µ+ 1/2, µ+ 1/2

µ+ 3/2
; (1− 1/x)/2

)]
.

In particular, for µ = 0 and x ∈ [1, 2], we have V 3
0,1/2(x) = −x2

8 + 1
12 + 2

π

(√
x2 − 1−arccos(1/x)

)
(compare with the identity [1, 19.4(9), p. 634]).

The positive zeros of the functions V b
µ,1/2(x) seem to have a great regularity. We conjecture

that the infinitely many positive zeros of these functions seem to inherit some of the good
properties that the Bessel zeros enjoy.

Conjecture 4. For µ > −1 and b > max{3/2 − µ, 2}, the functions V b
µ,1/2 defined in (1.4)

satisfy the following:

(1) All the zeros of the function V b
µ,1/2(x) are simple.

(2) There exists kµ ∈ N, such that the function V b
µ,1/2(x) has exactly one zero in each interval

[k, k + 1), k ∈ N, k ≥ kµ (plus a certain number of zeros in the interval [0, kµ)). In
particular, kµ = 0 for −1 < µ < 1/2 and kµ = 1 for 1/2 ≤ µ ≤ 5/2.

(3) The k-th positive zero of V b
µ,1/2 is an increasing function of µ.

(4) Write zb1,µ,ν for the first positive zero of V b
µ,ν(x); then limµ→∞ µ/zb1,µ,1/2 = π.

(5) The functions V b
µ,1/2 and V b

µ+1,1/2 separate their zeros.

In general, Conjecture 4 is not true for the zeros of V b
µ,ν . For instance:

(1) Double zeros can appear. This is the case of V 5
0.6...,2.771..., which seems to have a double

zero at 12.91 . . .
(2) V 5

0.6...,2.770... has three zeros in the interval [12.8, 13] while V 5
1.6...,2.770... has no zeros there.

Hence they do not separate their zeros.
(3) The 12-th zero of V 5

0.7...,3.45... is bigger than 5.01, but the 12-th zero of V 5
0.995,3.45... is smaller

than 5.01, so the 12-th zero is not an increasing function of µ.

However, we have a lot of computational evidences which show that Conjecture 4 can be
stated for ν 6= 1/2 provided µ is big enough:

Conjecture 5. For each ν > −1 there exists some µν > −1 such that for µ ≥ µν and b >
max{ν − µ+ 1, ν + 3/2}, the following properties hold:
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(1) All the zeros of the function V b
µ,ν(x) are simple.

(2) Write zbk,µ,ν for the k-th positive zero of V b
µ,ν(x); then limk→∞(zbk+1,µ,ν − zbk,µ,ν) = π/j1,ν .

As a consequence, one would expect to find an average of j1,ν/π zeros in the interval
[k, k + 1) when k →∞.

(3) The k-th positive zero zbk,µ,ν of V b
µ,ν is an increasing function of µ.

(4) The first positive zero zb1,µ,ν of V b
µ,ν satisfies limµ→∞ µ/zb1,µ,ν = j1,ν .

(5) The functions V b
µ,ν and V b

µ+1,ν separate their zeros.
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