Personalized Model to Predict Small for Gestational Age at Delivery Using Fetal Biometrics, Maternal Characteristics, and Pregnancy Biomarkers: A Retrospective Cohort Study of Births Assisted at a Spanish Hospital
Resumen: Small for gestational age (SGA) is defined as a newborn with a birth weight for gestational age < 10th percentile. Routine third-trimester ultrasound screening for fetal growth assessment has detection rates (DR) from 50 to 80%. For this reason, the addition of other markers is being studied, such as maternal characteristics, biochemical values, and biophysical models, in order to create personalized combinations that can increase the predictive capacity of the ultrasound. With this purpose, this retrospective cohort study of 12,912 cases aims to compare the potential value of third-trimester screening, based on estimated weight percentile (EPW), by universal ultrasound at 35–37 weeks of gestation, with a combined model integrating maternal characteristics and biochemical markers (PAPP-A and β-HCG) for the prediction of SGA newborns. We observed that DR improved from 58.9% with the EW alone to 63.5% with the predictive model. Moreover, the AUC for the multivariate model was 0.882 (0.873–0.891 95% C.I.), showing a statistically significant difference with EPW alone (AUC 0.864 (95% C.I.: 0.854–0.873)). Although the improvements were modest, contingent detection models appear to be more sensitive than third-trimester ultrasound alone at predicting SGA at delivery.
Idioma: Inglés
DOI: 10.3390/jpm12050762
Año: 2022
Publicado en: Journal of Personalized Medicine 12, 5 (2022), 762 [12 pp.]
ISSN: 2075-4426

Factor impacto JCR: 3.4 (2022)
Categ. JCR: MEDICINE, GENERAL & INTERNAL rank: 67 / 169 = 0.396 (2022) - Q2 - T2
Categ. JCR: HEALTH CARE SCIENCES & SERVICES rank: 42 / 106 = 0.396 (2022) - Q2 - T2

Factor impacto CITESCORE: 2.6 - Medicine (Q3)

Factor impacto SCIMAGO: 0.665 - Medicine (miscellaneous) (Q2)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E46-20R
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2020-116873GB-I00
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Estadís. Investig. Opera. (Dpto. Métodos Estadísticos)
Área (Departamento): Area Anatom.Embriol.Humana (Dpto. Anatom.Histolog.Humanas)
Área (Departamento): Área Obstetricia y Ginecología (Dpto. Cirugía)


Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2024-03-18-13:03:10)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2022-05-25, última modificación el 2024-03-19


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)