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Abstract
In this paper we prove that if G is a group for which there are k non-Frattini chief factors
isomorphic to a characteristically simple group A, then G has a normal section C/R that
is the direct product of k minimal normal subgroups of G/R isomorphic to A. This is a
significant extension of the notion of crown for isomorphic chief factors.
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Crown

Mathematics Subject Classification 20E34 · 20E28 · 20D10 · 20P05

1 Introduction and statement of results

All groups considered in this paper will be finite.
Gaschütz [8] introduced the notion of crown associated with a complemented chief factor

of a soluble group G. Given a G-module A, he discovered an important section of G, called
the A-crown of G, which is a completely reducible and homogeneous G-module and the
length of its G-composition series is the number of complemented chief factors of G which
areG-isomorphic to A in a given chief series ofG. These crowns turn out to be complemented
sections of G. Gaschütz applied his significant result to construct a characteristic conjugacy
class of subgroups in every soluble group: the prefrattini subgroups. Later Hawkes [11] used
this notion to define a closure operation for Schunck classes of finite soluble groups.

Lafuente [13] defined the crown associated with a non-Frattini chief factors of an arbitrary
group G. His approach depends on a equivalence relation in the set of all chief factors of G,
called G-connection, which is a natural extension of G-isomorphism. We say that two chief
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factors ofG areG-connected (orG-equivalent) when they areG-isomorphic or there exists a
normal subgroup N ofG such thatG/N is a primitive group of type 3 whose minimal normal
subgroups are G-isomorphic to the given chief factors. It is clear that if two chief factors
of G that are G-connected and non-G-isomorphic, then they are non-abelian and there is a
primitive epimorphic image ofG connecting them. Lafuente discovered the existence of some
sections associated with the non-abelian chief factors with similar properties to Gaschütz’s
crowns (see [13–15]), and he also used this notion to defined in [13] a new closure operation
of Schunck classes of arbitrary groups which allows us to discover new relations between
Schunck classes and saturated formations. Later, Förster [6] used the crowns to give an
alternative approach of the generalised Jordan–Hölder theorem, and Ezquerro and the first
author [1] used them to introduce the prefrattini subgroups in every group.

Crowns are also important in probabilistic group theory. Hall [10] gave a formula for the
probability PG(t) that t elements taken at random from a group G with a uniform probability
distribution generate G and Gaschütz [7] developed a formula for the conditional probability
PG,N (t) that a t-tuple generatesGmodulo a normal subgroup N , given that the corresponding
elements of the quotient groupG/N generateG/N . The concept of crown has become crucial
in the work of Detomi and Lucchini [4] to obtain factorisations of PG(t). Given a monolithic
primitive group L with a unique minimal normal subgroup A, for each positive integer k we
can consider the direct product Lk of k copies of L and its subgroup

Lk = {(l1, . . . , lk) ∈ Lk | l1 ≡ · · · ≡ lk (mod A)},
called in [5] the kth crown-based power of L . The crown-based powers play a key role in [5]
to understand the groups that need more generators than their proper quotients.

There is a close relation between crowns and crown-based powers. In order to state it, we
need to recall the definition of the primitive group associated with a chief factor.

Definition 1.1 (See [2,Definition 1.2.9])Given a chief factor H/K of a groupG, the primitive
group [H/K ]∗G associatedwith H/K inG is the semidirect product [H/K ](G/CG(H/K )

)

if H/K is abelian and the quotient group G/CG(H/K ) if H/K is non-abelian.

Theorem 1.2 ([4, Proposition 9]) Let H/K be a non-Frattini chief factor of a finite group
G and let C/R be its crown. Then G/R is isomorphic to a crown-based power Lk, where
L = [H/K ] ∗ G and k is the number of chief factors of G that are G-related to H/K in a
given chief series of G.

The following result shows the relation between crowns and crown-based powers.

Theorem 1.3 ([4, Proposition 9]) Let H/K be a non-Frattini chief factor of a finite group
G and let C/R be its crown. Then G/R is isomorphic to a crown-based power Lk, where
L = [H/K ] ∗ G and k is the number of chief factors of G that are G-related to H/K in a
given chief series of G.

The main aim of this paper is to obtain an extension of the notion of crown for isomorphic
chief factors, not necessarily related by G-connectedness. Our result will establish a relation
between the number of non-Frattini chief factors isomorphic to a characteristically simple
group A in a given chief series and the A-rank rA(G), defined as the largest number k such
that G has a normal section that is the direct product of k non-Frattini chief factors of G that
are isomorphic to A.

Theorem A Let A be a non-Frattini chief factor of a group G and suppose that in a given
chief series of G there are k non-Frattini chief factors isomorphic to A. Then there exist two
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normal subgroups C and R of G such that R ≤ C and C/R is isomorphic to a direct product
of k minimal normal subgroups of G/R isomorphic to A.

The proof of this result depends on the following property of monolithic primitive groups.

Theorem B If G is a primitive group with a unique minimal normal subgroup B, then G/B
has no chief factors isomorphic to B.

We thank one of the anonymous referees for informing us of a result (see Theorem 3.3
below) that has allowed us to present Theorem B in its broadest generality.

We bring the paper to a close with a consequence of Theorem A.

Corollary 1.4 If a group G has k non-Frattini chief factors in a given chief series isomorphic
to a characteristically simple group A, then rA(G) = k.

2 Preliminaries

In this short section, we recall the definition of the precrowns and the crown associated with
a non-Frattini chief factor and their main properties.

Definition 2.1 Let H/K be a supplemented chief factor of a group G. Assume that M is a
maximal subgroup ofG supplementing H/K inG such thatG/MG is a monolithic primitive
group.We say that the chief factor Soc(G/MG) = HMG/MG is theprecrown ofG associated
with M and H/K , or simply a precrown of G associated with H/K .

Note that if C/R is the precrown of G associated with the maximal subgroup M and the
supplemented chief factor H/K of G, then G/R is the primitive quotient group G/MG of G
associated with M .

Definition 2.2 Let H/K be a non-Frattini chief factor of a group G. Let E denote the set of
all cores MG of all maximal subgroups M of G such that the quotient G/MG is a monolithic
primitive group and M supplements chief factors G-connected to H/K , let

R =
⋂

{N | N ∈ E},
and let C∗ = C∗

G(H/K ). We say that the factor C∗/R is the crown of G associated with
H/K .

Here C∗
G(H/K ) = HCG(H/K ) denotes the inneriser of a chief factor H/K of G.

The crown associated with a supplemented chief factor H/K of G possesses the following
properties.

Theorem 2.3 (see [2, Theorem 1.3.2]) Let C∗/R be the crown of G associated to the sup-
plemented chief factor H/K. Then C∗/R = Soc(G/R). Furthermore,

1. every minimal normal subgroup of G/R is a supplemented chief factor of G which is
G-connected to H/K, and

2. no supplemented chief factor of G over C∗ or below R is G-connected to H/K.

Unless otherwise stated, we will follow the notation of the books [2,3]. Detailed infor-
mation about primitive groups and chief factors, crowns, and precrowns of a group can be
found in [2, Chapter 1].
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3 Proofs of the theorems

We begin by proving Theorem B. In order to show that in a primitive group of type 2 the
only chief factor isomorphic to the socle is the socle itself, we use the following elementary
result.

Lemma 3.1 Let n be a natural number. Then 2n does not divide n!.
Proof Suppose that the result is false. Note that 21 does not divide 1!. Suppose that n is the
smallest natural number such that 2n divides n!. We have that n > 1 and that n must be even.
Hence 2n divides the product

2 · 4 · 6 · 8 · · · n = 2n/2(n/2)!.
Therefore 2n/2 divides (n/2)!. This contradicts the minimality of n. ��
Theorem 3.2 Let G be a monolithic primitive group in which B = Soc(G) is non-abelian.
Then G/B has no chief factors isomorphic to B.

Proof Let B = S1×· · ·×Sn be the decomposition of B as a product of isomorphic non-abelian
simple groups Si ∼= S, 1 ≤ i ≤ n. Let Y = ⋂n

i=1 NG(Si ). By [2, Remarks 1.1.40 (13)],
G is isomorphic to a subgroup of X 	 Pn , which is in turn isomorphic to a subgroup of
Aut(S) 	 Sym(n) ∼= Aut(Sn), where Pn is a transitive subgroup of the symmetric group
Sym(n) and X = NG(S1)/CG(S1) is isomorphic to a subgroup or Aut(S) containing the
inner automorphism group. Hence we can assume that G is in fact a subgroup of W =
Aut(S) 	 Sym(n). Let M be the intersection of G with the base group of W , then M/B =
(G∩W �)/B is isomorphic to a subgroup of Aut(S)�/B ∼= (

Out S
)n , which is a soluble group

by the Schreier conjecture, whose validity has been checked with the classification of finite
simple groups (see [12, page 151]).

Assume now that there exists a chief factor F of G/B such that F ∼= B. Since M/B is
soluble, there exist normal subgroups N , K of G such that M ≤ N ≤ K and K/N ∼= B. In
particular,

G/M = G/
(
G ∩ (

Aut(S)
)�

) ∼= G
(
Aut(S)

)�
/
(
Aut(S)

)�
,

which is a subgroup of Pn ≤ Sym(n). It follows that the order of G/M divides n! and, in
particular, |K/N | divides n!. Since K/N ∼= S1 ×· · ·× Sn and all non-abelian simple groups
have order divisible by 2, 2n divides |K/N |. Consequently, 2n divides n!. This contradicts
Lemma 3.1. ��

Now let us consider non-Frattini abelian chief factors. Recall that a Fermat prime is a
prime of the form 22

n +1 for some n ≥ 0. We apply the following consequence of a result of
Giudici, Glasby, Li, and Verret [9, Theorem 1]. We thank one of the referees for drawing our
attention to this beautiful result. Without it, we would not have been able to prove Theorem B
in its current form and the proofs would have been longer.

Theorem 3.3 If G is a primitive group with a unique minimal normal subgroup of order
q = pd , where p is a prime, then the number of composition factors of G of order p is at
most d + εpd−1

p−1 , where

εp =
{

p
p−1 if p is a Fermat prime,

1 otherwise.
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Corollary 3.4 Let G be a prime and let G be a primitive group in which B = Soc(G) is an
elementary abelian p-group of order pd . Then G/B has no chief factors isomorphic to B.

Proof By Theorem 3.3, the number of composition factors of order p of G is bounded by

d + εpd − 1

p − 1
≤

{
d + d−1

2−1 = 2d − 1 < 2d, if p = 2,

d + (3/2)d−1
p−1 < 2d, if p ≥ 3.

Hence the number of composition factors of order p of G/B is less than d . If G/B had a
chief factor of order pd , then by refining the corresponding chief series to a composition
series we would obtain that the number of composition factors of order p of G/B is at least
d . This contradiction shows that G/B does not have chief factors isomorphic to B. ��

We are now in a position to prove Theorem A.

Proof of Theorem A We will construct a sequence

(C0, R0), (C1, R1), (C2, R2), . . . , (Cl , Rl)

of pairs of subgroups of G satisfying the following conditions:

1. Ci and Ri are normal subgroups of G with Ri ≤ Ci , 1 ≤ i ≤ l, and C0 = R0 = G.
2. Ci/Ri = (Ni,1/Ri ) × · · · × (Ni,i/Ri ), where Ni, j/Ri is a non-Frattini minimal normal

subgroup of G/Ri isomorphic to A.
3. Ci = ⋂i

j=1 C
∗
G(Ni, j/Ri ).

This will be done by induction on i . For i = 0, we construct C0 = R0 = G. Assume that
for some i ≥ 0 we have constructed (Ci , Ri ) satisfying the previous conditions. Consider a
chief series of G passing through Ri and suppose that in this series there exists a non-Frattini
chief factor H/K ofG isomorphic to A such that H ≤ Ri . LetC/R be a precrown associated
to H/K . Let Ri+1 = Ri ∩ R. Note that C = C∗

G(H/K ) = C∗
G(C/R). Let Ci+1 = Ci ∩ C .

The unique minimal normal subgroup of G/R is C/R. Since HR = C , H is not contained
in R and so Ri is not contained in R. Since G/R is monolithic, we have that

R < C ≤ Ri R = RiC .

Therefore

(C ∩ Ri )/(R ∩ Ri ) = (C ∩ Ri )/(C ∩ Ri ∩ R)

∼=G R(C ∩ Ri )/R = (C ∩ RRi )/R = C/R.

Consequently (C ∩ Ri )/Ri+1 is a normal subgroup of G/Ri+1 that is G-isomorphic to C/R.
Consider now 1 ≤ j ≤ i , then

Ni, j R/RRi = Ni, j RRi/RRi ∼=G Ni, j/(Ni, j ∩ RRi ).

By the minimality of Ni, j/Ri , we have that either Ni, j = Ni, j ∩ RRi or Ni, j ∩ RRi = Ri .
Assume that the second case holds for a given j with 1 ≤ j ≤ i . Hence (Ni, j/Ri ) ∩
(RRi/Ri ) = 1 and so R < C ≤ RRi ≤ CG(Ni, j/Ri ) ≤ C∗

G(Ni, j/Ri ). But now in a chief
series of G/C∗

G(Ni, j/Ri ) there are no chief factors isomorphic to A. Moreover, C/R ∼= A
and RRi < RNi, j ≤ C∗

G(Ni, j/Ri ) with RNi, j/RRi ∼= A. It follows that there are at least
two chief factors isomorphic to A in a chief series of the primitive group associated with
C/R, which is isomorphic to the primitive group associated with H/K . This contradicts
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Theorem B. Consequently, for all j with 1 ≤ j ≤ i , the condition Ni, j = Ni, j ∩ RRi holds,
that is, Ni, j ≤ RRi . Therefore, Ci ≤ RRi . Now

(Ci ∩ R)/(Ri ∩ R) = (Ci ∩ R)/(R1 ∩ Ci ∩ R)

∼=G R1(Ci ∩ R)/R1 = (Ci ∩ RRi )/Ri = Ci/Ri .

Moreover, (Ci∩R)∩(C∩Ri ) = R∩Ri = Ri+1. It follows thatG/Ri+1 has a normal subgroup
Ni+1,i+1/Ri+1 = (C ∩ Ri )/Ri+1 G-isomorphic to C/R, which is in turn G-isomorphic to
H/K , and another normal subgroup (Ci ∩ R)/Ri+1 which is G-isomorphic to Ci/Ri . Hence
(Ci ∩ R)/Ri+1 is isomorphic to a direct product of minimal normal subgroups Ni+1, j/Ri+1

of G/Ri+1 G-isomorphic, respectively, to Ni, j/Ri , 1 ≤ j ≤ i . By construction,

Ci+1 = Ci ∩ C =
i⋂

j=1

C∗
G(Ni, j/Ri ) ∩ C∗

G(H/K ) =
i+1⋂

j=1

C∗
G(Ni+1, j/Ri+1).

This construction can be done until we reach an i = l such that there are no non-Frattini
chief factors isomorphic to A below Rl . Note that, in this case, l = k, because all primitive
groups associated to non-Frattini chief factors isomorphic to A have no chief factors isomor-
phic to A and, hence, G/C∗

G(H/K ) has no chief factor isomorphic to A, consequently, there
are no chief factor of G isomorphic to A that could appear above Ci . ��

Finally, we prove Corollary 1.4.

Proof of Corollary 1.4 The normal section C/R obtained in Theorem A is the product of k
minimal normal subgroups of G/R isomorphic to A, hence k ≤ rA(G). Since obviously
rA(G) ≤ k, we obtain the result. ��
Example 3.5 Let S be a non-abelian simple group, then the group H = Inn(S) ∼= S of inner
automorphisms of S acts on S and we can consider the corresponding semidirect product
G = [S]H . As a consequence of Theorem A we can obtain the well-known fact that G is
isomorphic to the direct product S × S of two copies of S.

Example 3.6 Consider the group

G = 〈(1, 2, 3), (1, 4, 5), (1, 2), (6, 7, 8), (6, 9, 10), (6, 7)〉
isomorphic to the direct product of two copies of the symmetric group of degree 5 acting
naturally on the sets {1, 2, 3, 4, 5} and {6, 7, 8, 9, 10}. ThenG has two crowns corresponding
to chief factors isomorphic to the alternating group Alt(5) of degree 5, namely C1/R1 with

C1 = 〈(1, 2, 3), (1, 4, 5), (6, 7, 8), (6, 9, 10), (6, 7)〉
and

R1 = 〈(6, 7, 8), (6, 9, 10), (6, 7)〉
and C2/R2 with

C2 = 〈(1, 2, 3), (1, 4, 5), (1, 2), (6, 7, 8), (6, 9, 10)〉
and

R2 = 〈(1, 2, 3), (1, 4, 5), (1, 2)〉.
We note that the chief factorsC1/R1 andC2/R2 correspond to different crowns because their
innerisers, C1 and C2, respectively, are different. In this case, Theorem A gives the normal
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section C/R with C = 1 and R = 〈(1, 2, 3), (1, 4, 5), (6, 7, 8), (6, 9, 10)〉 isomorphic to the
direct product of two copies of the alternating group of degree 5.
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