Estudios
I+D+I
Institución
Internacional
Vida Universitaria
Repositorio Institucional de Documentos
Buscar
Enviar
Personalizar
Sus alertas
Sus carpetas
Sus búsquedas
Ayuda
EN
/
ES
Página principal
>
Artículos
> Cascade or Direct Speech Translation? A Case Study
Estadísticas de uso
Gráficos
Cascade or Direct Speech Translation? A Case Study
Etchegoyhen, T.
;
Arzelus, H.
;
Gete, H.
;
Alvarez, A.
;
Torre, I. G.
;
Martín-Doñas, J. M.
;
González-Docasal, A.
;
Fernandez, E. B.
Resumen:
Speech translation has been traditionally tackled under a cascade approach, chaining speech recognition and machine translation components to translate from an audio source in a given language into text or speech in a target language. Leveraging on deep learning approaches to natural language processing, recent studies have explored the potential of direct end-to-end neural modelling to perform the speech translation task. Though several benefits may come from end-to-end modelling, such as a reduction in latency and error propagation, the comparative merits of each approach still deserve detailed evaluations and analyses. In this work, we compared state-of-the-art cascade and direct approaches on the under-resourced Basque–Spanish language pair, which features challenging phenomena such as marked differences in morphology and word order. This case study thus complements other studies in the field, which mostly revolve around the English language. We describe and analysed in detail the mintzai-ST corpus, prepared from the sessions of the Basque Parliament, and evaluated the strengths and limitations of cascade and direct speech translation models trained on this corpus, with variants exploiting additional data as well. Our results indicated that, despite significant progress with end-to-end models, which may outperform alternatives in some cases in terms of automated metrics, a cascade approach proved optimal overall in our experiments and manual evaluations. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
Idioma:
Inglés
DOI:
10.3390/app12031097
Año:
2022
Publicado en:
Applied Sciences (Switzerland)
12, 3 (2022), 1097 [24 pp]
ISSN:
2076-3417
Factor impacto JCR:
2.7 (2022)
Categ. JCR:
PHYSICS, APPLIED
rank: 78 / 160 = 0.488
(2022)
- Q2
- T2
Categ. JCR:
ENGINEERING, MULTIDISCIPLINARY
rank: 42 / 90 = 0.467
(2022)
- Q2
- T2
Categ. JCR:
CHEMISTRY, MULTIDISCIPLINARY
rank: 100 / 178 = 0.562
(2022)
- Q3
- T2
Categ. JCR:
MATERIALS SCIENCE, MULTIDISCIPLINARY
rank: 208 / 343 = 0.606
(2022)
- Q3
- T2
Factor impacto CITESCORE:
4.5 -
Engineering
(Q2) -
Materials Science
(Q2) -
Chemical Engineering
(Q2) -
Computer Science
(Q2) -
Physics and Astronomy
(Q2)
Factor impacto SCIMAGO:
0.492 -
Fluid Flow and Transfer Processes
(Q2) -
Materials Science (miscellaneous)
(Q2) -
Engineering (miscellaneous)
(Q2) -
Instrumentation
(Q2) -
Process Chemistry and Technology
(Q3) -
Computer Science Applications
(Q3)
Tipo y forma:
Artículo (Versión definitiva)
Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
Exportado de SIDERAL (2024-03-18-13:55:10)
Enlace permanente:
Copiar
Visitas y descargas
Este artículo se encuentra en las siguientes colecciones:
Artículos
Volver a la búsqueda
Registro creado el 2022-05-27, última modificación el 2024-03-19
Versión publicada:
PDF
Valore este documento:
Rate this document:
1
2
3
4
5
(Sin ninguna reseña)
Añadir a una carpeta personal
Exportar como
BibTeX
,
MARC
,
MARCXML
,
DC
,
EndNote
,
NLM
,
RefWorks