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Prologue 

I well over remember the moment when my application to the EM3E was accepted and 

EM3E master committee announced a favourably advise on it. Since two years, me and all 

my colleagues did experienced an offspring program becoming reality and membrane 

engineering is ending to give finally its first alumni.  

Working on my master thesis, I mainly worked on dye industry wastewater treatment with 

conventional methods and membrane processes. We handled several unexpected difficult 

tasks mainly on membranes embedded with carbon nanotubes, a quite innovative field. In 

this manuscript, successful experiments and conclusions are reported. The subject raises 

high expectations and I conclude that it should steadily get across lab scale to large scale 

applications. 

I am grateful to professors Christakis Paraskeva, George Voyiatzis and Reyes Mallada who 

offered me the opportunity making my project on this subject and undoubtedly to all the 

people involved to my project, especially phD candidates of Patras University, Giannis 

Anastasopoulos, Spyros Kontos, Zagklis Dimitris, Eleni Moschopoulou. My warmer 

acknowledgements also are addressed to my EM3E colleagues, all my professors and master 

organizers and secretaries. Last, but not least, both my family and my husband who stand by 

me during Erasmus experience. This is the line dropped to express my gratitude to them. 

Abstract 

Membranes are used for particles or molecules separation in plethora processes of 

extraction, adsorption and filtration for liquid-liquid, gas-liquid, gas-solid, liquid-solid or gas-

gas separation. In sector of wastewater works, membranes are already commercial applied 

for reverse osmosis, ultrafiltration, nanofiltration and bioreactors. Crucial drawbacks in 

membrane filtration technology are both irreversible fouling of membranes and high energy 

dissipation usually applied for pressure drop. Innovative membranes with embedded carbon 

nanotubes can be an optimal solution to overpass these drawbacks.  

In industry, the first water treatment involves processes of a purely physical, mechanical 

and chemical nature to reduce the solid content. The technological evolution has led to 
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widespread mechanisation of the systems. The quality of water supplies has gradually 

declined largely because of excessive consumption of natural water and the abuse of ground 

soil as a recipient of wastewater. Pollution has also contributed to this effect.  An existing 

physicochemical treatment is tried to be optimized controlling different parameters of 

sedimentation part and raw materials use. Wastewater from the industry is collected and 

characterised. The first batch is treated using a coagulation-flocculation process to remove 

large particles remaining in the sludge (primary treatment). The product is completely 

separated in supernatant solution and sludge. Supernatant is sampling for different 

flocculants concentration. A new polyelectrolyte (PDADMAC) is tested in terms of alkalinity 

and the results are compared with current electrolyte (PAC). All samples before and after 

the process are characterised using zeta size and particle size measurements together with 

COD and total solids measurements. The supernatant from primary treatment process is fed 

to ultrafiltration unit (UF) (secondary treatment). The permeate outlet from UF is fed to 

nanofiltration (NF) where almost all organics and solids are removed. The final NF permeate 

shows very high purity containing only mono and divalent ions of salts. A tertiary treatment 

refines the water product of nanofiltration membranes using commercial polymeric 

membranes with embedded aligned carbon nanotubes (CNTs). Before applying the hybrid 

membranes a full detailed study has been carried out in terms of CNTs embedment, water 

and wastewater flux permeability and SEM microscopy. Polymeric membranes embedded 

with CNTs have been made in the laboratory with spin coating method and by ultrafiltration 

unit size exclusion is tested using PEG solutions. 

Nomenclature 

DWCNTs  Double Walled Carbon Nanotubes 

CNTs  Carbon Nanotubes 

CVD  Carbon Vapor Deposition 

GPC  Gel Permeation Chromatography 

MD  Monte Carlo Simulation 

MTWW  Model Textile Waste Water  

MWCO Molecular Weight Cut Off 

PAC  Poly(aluminum chloride) 
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PDADMAC Poly(diallyldimethylammonium chloride)  

PEG  Polyethylene glycol 

SDS   Sodium Dodecyl Sulfate  

TS  Total Solids 

PART A: Dye industry wastewater treatment 

1. Theoretical background 

1.1 Paint industry wastewater 

The main sources of wastewater in dye industry are tanks of dye solution (baths), reflux 

water, washing water and run-off rain water. In the current work, treated waste is mainly 

the washing waters of the polymerization tanks and contains the products of the industry 

diluted, which are polyvinyl acetate and poly(acrylic esters). The concentration of pollutants 

can widely vary and quantities generally differ also depending on the batch. The different 

sorts of pollutants can be divided in organic, inorganic molecules and metal ions. Some 

compounds are highly toxic and mutagenic and many studies have shown relation between 

this kind of wastes and carcinogenic amines (1), (2). The presence of residual chemicals is 

strongly undesirable especially if wastewater is disposed in natural sources due to depletion 

of the dissolved oxygen. Dye industry wastewater can contain impurities, dispersed solids, 

additives such as sodium chloride, sodium carbonate, sulphate cellulose etc changing in 

batch mode. Organic molecules containing in the dye wastewater can be chromophore, 

auxochrome and also heavy metals as chromium, lead, iron, aluminium. In common 

practice, it is not a matter of only one step dye wastes purification and more than two steps 

are usually used (2).  

1.2 Coagulation – Flocculation 

Coagulation is the destabilization of solution via minimizing zeta potential. Coagulants can 

be classified into two main categories: metal coagulants and polymers. Flocculation is the 

process of whereby destabilized particles from larger agglomerates due to surficial 

tendencies (2). Both practices are well known since hundreds of years (4). In dye industry 
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coagulation/flocculation offers a low cost treatment method and several 

coagulants/flocculants are applied (see Table 1).  

Table 1 Dye removal using inorganic coagulants with organic polymers as flocculant aids (2) 

Type of dyes Inorganic 
coagulants 

Type of polymer Condition Performance 

Real textile 
wastewater 

Aluminium based 
(2g/l) 

Cationic polymer – 
Cyanoguanidine – 
formaldehyde 
(500mg/L) 

Final pH: 5 

40oC 

Mixing time 
=11min 

Settling time =  
30min 

Colour 
removal=60% 

Turbidity 
removal =80% 

COD removal= 
28% 

100mg/L 
reactive blue 
STE 

Polyferric chloride Cationic 
(polyDADMAC*) 
(dosage of 
composite=20mg/L) 

Initial pH:7 

Ambient 
temperature 

Mixing 
time=15min 

Settling 
time=12min 

Colour 
removal=90% 

Real 
wastewater 
from fabric 
dyeing 
industry 

Aluminium oxide, 
Al2O3 (1800mg/L) 

Cationic (polyDADMAC) 
(dosage of 
composite=30mg/L) 

Initial pH:5.7-
5.9 

Ambient 
temperature 

Mixing 
time=11min 

Settling 
time=30min 

Colour 
removal=69% 

Turbidity 
removal =99% 

 

 

Optimization of coagulation/flocculation process is an intriguing target given that industrial 

dyes prove high water solubility and consist of complex usually not well known substances. 

All the methods and systems must be designed for large scale applications. Many references 

show large differences above ferrous or aluminium flocculants. Aboulhassan et al. (5) have 

achieved a COD reduction of 91% with the use of FeCl3 combined with high molecular 

weight polyelectrolytes (flocculants). Other coagulants like FeSO4, Al2(SO)4, and 
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poly(aluminum) chloride have been used in combination with high molecular weight 

polymers, yielding high COD reduction.  

1.3 Polyelectrolytes 

The first polyelectrolyte that is used is poly(aluminum chloride) (commercial named PAC) 

and anionic poly -(acrylamide) that are supplied by the physicochemical treatment routinely 

applied at the industrial plant. The new polyelectrolyte that also used is 

poly(diallyldimethylammonium chloride) (PDADMAC) with average Mw<100000, 35wt% in 

H2O, CAS 26062-79-3, supplied by Sigma Aldrich. 

2. Experimental procedure 

2.1 Characterization of wastewater 

In all cases pH, particle size, organic load and ζ potential values of the raw materials are 

measured before the decision of the appropriate treatment. The products of studied plant 

are alkyd and acrylic resins, unsaturated polyester resins and resins for powder coatings, 

and PVA homopolymers & copolymers. The initial organic load of wastewater is given as 

COD 20.000-30.000mg/L, residual of raw compound as monomers, polyacrylic esters and 

others. Alkalinity of dye wastewater is slightly basic of pH 5.5-7. For the conducted 

experiments, four samples (sample 1, 2, 3 4) of wastewater are used taken from the 

equalization tank of the industry. 

Table 2 Properties of Wastewater Samples 

Parameter 1st sample 2ond sample 3rd sample 4th sample 

COD (mg/L) 16710±280 19887±70 960±212 22167±462 

TS (g/l) 11.5±0.01 10.21±0.61 5.64±0.08 9.65±0.21 

ζ potential (mV) mean 

values 

-1.02 -30.7 -2.52 
-29.6  

Particle size (nm) 

mean values 

3797 (82%) 285 

(18%) 

187 (100%)  83 (100%)  
200.9 
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Sample 1st, 2ond and 4th are treated with the coagulation/flocculation process, while the 

third one is tested in membrane system. Sample 3rd is coming from existing treatment plant 

of industry with 1000mg/l PAC and flocculant. 

2.2 Coagulation/Flocculation 

The coagulation/flocculation experiments are carried out in a jar test apparatus, with six 

beakers of 1 L in volume. Initially a sample of waste is placed in each beaker, and their pH is 

adjusted with solutions of NaOH and HCl. Solubility of aluminium hydroxide increases in 

basic pH values and PAC gives better results in this area. The initial pH is near 6 and is 

increased to 12 for most of the coagulation experiments, except for the group of 

experiments for the optimization of pH in PDADMAC case, where it is set from 3 to 12.  

In next step, coagulant is added and rapid mixing for 3 min makes ζ potential destabilization 

and then agglomeration process. Waste is then homogenised and suspended particles are 

neutralized. In case of flocculant addition, mixing goes for more 10 min where further 

agglomeration of formed flocs takes place (4). In the experiments that no flocculant is used, 

the step of slow mixing is preserved. The waste is finally left for its sedimentation and after 

two hours, samples are collected by supernatant phase for measurements.  

The first treatment step is the implementation of different polyelectrolytes for the 

coagulation of the wastewater and the definition of the optimum treatment conditions. The 

target of dye wastewater treatment is the reuse of final product in the production line of 

the company. According to the literature, the reuse standards are gathered in Table 3: 

Table 3 General requirement for reused water (2) 

Parameter Textile Carpet 

industry 

COD (mg/L) 60-80 8-40 

Conductivity (μS/cm) 1000 - 

pH 6-8 - 

Turbidity (NTU) 1 15 

Colour (Pt-Co) None 0-20 

Suspended solids (mg/L) 5 - 

Dissolved solids (mg/L) 500 500 

Total hardness (mg/L as CaCo3) 25-50 60 
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2.3 PAC optimization  

The first step of the present work is the optimization of the existing process, in terms of 

coagulant/flocculant dosage and pH. The coagulant used is poly (aluminium chloride) (PAC), 

and anionic poly-(acrylamide) is used as flocculant, at pH 12. In the current physicochemical 

treatment of the industry, coagulation/flocculation method is applied using polyaluminium 

chloride (PAC) as coagulant and polyvinylochloride as flocculant. The concentration is 

1000mg/L of PAC and unknown value of flocculant. The final effluent of the industry is 

100m3/day. 

 

 

 

 

Figure 1 Jar test samples varying PAC concentration, sedimentation (PAC varying flocculant 10 mg/L, 

2h, pH 12) 

The first set of experiments is performed for constant pH 12 and flocculant dosage 10 mg/L 

(pH and flocculant concentration as suggested by industry). Polyecelectrolyte concentration 

(PAC) varied from 1 to 956mg/L (Table 4). 

Table 4 Experimental Conditions for PAC optimization 

PAC optimization 

Flocculant 

dosage(mg/L) 

Coagulant dosage 

(mg/L) 

pH 

10 1 12 

10 192 12 

10 384 12 

10 766 12 

10 956 12 

 

Figure 2 illustrates the variation of ζ potential, COD, and TS with polyelectrolyte (PAC) 

concentration. It is apparent that ζ potential is near zero at a coagulant dosage of 427 mg/L, 

and at the same area high reduction of COD and TS is obtained.  
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Figure 2 ζ-potential, COD and TS variation in function of polyelectrolyte concentration (PAC varying 

flocculant 10 mg/L, 2h, pH 12)  

2.4 PDADMAC optimization 

After the optimization of the existing treatment process, new polyelectrolyte is examined. 

The purpose is the replacement of PAC and anionic poly(acrylamide) with one 

polyelectrolyte that plays the role of both coagulant and flocculant at the same time. Also 

the possibility of higher COD and TS reduction is examined. The experiments with PDADMAC 

are carried out with Sample 4.  PDADMAC is an organic polymer with cationic behaviour and 

it is because of that its encapsulating properties. It is product of dimethyldiathyl-ammonium 

chloride polymerization (p-DADMAC). High molecular mass of 3*106Da enhances more 

coagulation and flocculation mechanisms. CAS name is 2-Propen-1-aminium, N, N-dimethyl-

N-Propenyl-, chloride homopolymer and CAS number is 26062-79-3 and molecular formula 

(C8H16NCL)n, other commercial names can also be PDMDAAC. 

 

Figure 3 Structure formula of poly (dimethyl diallyl ammonium chloride) (6) 
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Figure 4 Proton binding isotherms of PDADMAC at five different ionic strengths: ○ 0.01M □ 0.05M  

0.10M 0.5M ◊1.00M (6) 

In the first batch of experiments, PDADMAC is tested at suggested pH value (12). The results 

(Table 5) verifies that at basic environment enhances electrolyte performance. Even though 

pH 12 is said to be optimal, proton binding isotherm (Figure 4) express charge of 

polyelectrolyte in function of pH.  As it is illustrated in Figure 4, charge is independent of pH 

for different solutions. Hence, it is decided to control pH effect in PDADMAC efficiency. The 

summary table of the experiments are displayed below. 

Table 5 Summary of experiments for PDADMAC optimization in function of pH 

Parameter Initial 

solution 
pH 3 pH 6 pH 8 pH 10 pH 12 

COD 

[mg/L] 
22167±462 22892±605 7054±225 2157±42 1379±46 1295±56 

TS [g/l] 9.65±0.21 6.55±1.20 0.65±0.92 0.6±0.14 0.95±0.07 2.3 

Particle 

size [nm] 

mean 

value 

200.9 
223.9 (95.7%)  

4660 (4.3%) 

824.3 

(65.5%)  

196.3 

(34.5%) 

122.9 376.5 356.3 

z-

potential 

[mV] 

-29.6±17.4 8.61±9.69 9.37±5.04 4.4±3.82 -1.52±4 -5.57±7.75 
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Figure 5 COD in function of pH for PDADMAC optimization experiments (500mg/L PDADMAC, 2h 

sedimentation, and varying pH) 

In acid environment, polymeric electrolyte is not activated at all and both pH 3 and 6 give 

organic load values, 22892mg/L and 7054mg/L, definitely inappropriate towards reuse or 

disposal. 

 

 

Figure 6 ζ-potential in function of pH for PDADMAC optimization experiments (500mg/L PDADMAC, 

2h sedimentation, varying pH) 

Total solids for pH 10 are 0.5g/L when for pH 12 are 2.3g/L and ζ-potential shows also lower 

for pH 10 than pH 12. 
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Figure 7 Particle size in function of pH for PDADMAC optimization experiments (500mg/L PDADMAC, 

2h sedimentation, varying pH) 

In pH 6, particle size even increased to 824.3 nm. For pH, COD is still high (2157 mg/L) when 

TS decrease to 0.6mg/L and particle size is relatively well control (122.9nm). Interest is 

pointed to higher pH values, 10 and 12 where PDADMAC works in the industry. For pH 10, 

COD is 1370 mg/L slightly higher than 1295mg/L for pH 12. Particle size cannot be taken into 

account given that for both pH are measured higher than initial solution particle size 

(376.5nm and 356.3nm respectively) probably made by electrolyte molecules.  

 

 

Figure 8 Total solids size in function of pH for PDADMAC optimization experiments (500mg/L 

PDADMAC, 2h sedimentation, varying pH) 

 



16 
 

Results regarding to total solids and particle size cannot be totally trustable and organic load 

need to be the main benchmarking for electrolyte evaluation.  

In case of tertiary waste treatment, pH 10 can be a balanced choice requiring smaller 

amount of NaOH and saving chemicals in industrial scale applications.  

 

 

Figure 9 Dye industry wastewater (sample 3) treated with 500mg/L PDADMAC, stirring and after 2 

hours of sedimentation 

Comparing PDADMAC and PAC results, polymeric polyelectrolyte and metal coagulant, 

organic load decrease 94% for PDADMAC instead of 80% for PAC coagulant, ζ potential is 

significantly destabilized for both cases. Particle size is, though, higher for PDADMAC case 

(356nm) than 187nm for PAC because of larger organic agglomerates and high molecular 

size of polymeric electrolyte. Total solids appear less for PDADMAC (2.3g/l) than PAC case 

(4.7g/l). In overview, polymeric electrolyte gives better results for wastewater purification 

via coagulation/flocculation process.    

2.5 Membrane Filtration 

In literature, review paper present in abundance successful use of nanofiltration 

membranes in textile industry (1). Organic load and total solids can readily be removed by 

membrane modules given that waste is primary treated by coagulation/flocculation 

systems. The final target of a tertiary treatment as filtration membranes usually is related to 

recycling or disposal of the effluent. Organic load might differ from 30 to 100 mg/L and thus 

coagulation flocculation process does not fulfil disposal and reuse requirements (7).  In next 

paragraphs, the results of membrane filtration are described. The pilotic systems are 

illustrated in the image below. The inlet of membrane step is provided by industrial 

wastewater treatment method.  
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2.6 Ultrafiltration 

Initially the waste (sample 3), which is the final effluent of the existing physicochemical 

treatment process of the industry with the use of poly(aluminium chloride) and anionic 

poly(acrylamide), is treated with an ultrafiltration unit, in different transmembrane 

pressures (TMP) from 2.5 to 4 bar. Concentration of total solids is about 5 mg/L, and the 

mean particle size is close to 80 nm thanks to the efficient coagulation/flocculation process 

that is preceded.  

                                                                   

Figure 10 Image Laboratory ultrafiltration unit 

UF (Figure 10 Image Laboratory ultrafiltration unit) is implemented only to play an auxiliary 

role before the use of a more effective membrane (NF or RO). Because the mean size of 

suspended particles is 80 nm, and the mean pore of UF membrane modulus is 100 nm, TS 

reduction is practically zero and only particles with size larger than 100 nm are removed. 

However, UF led to the removal of 20% of the organic matter. An unpleasant result is that 

the flux that is acquired is low for an ultrafiltration process, which might have been caused 

by clogging of membrane pores by the suspended polymers. A high flux rate is recovered 
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after a thorough cleaning of the membranes with a NaOH solution for half an hour (85% of 

the initial flux rate). 

Table 6 Experimental conditions and results for ultrafiltration 

Parameter 
Initial 

solution 

Transmembrane pressure (ΔP) in filtrated solution 

   2.5 bar             3 bar             3.5 bar            4 bar 

COD mg/L 950 ±17.3 818 ±15 765 ±55 828 ±10.8 792 ±148 

T.S. g/l 4.93 ±0.07 4.82 ±0.28 5.18 ±0.08 5.14 ±0.23 5.04 ±0.06 

 

2.7 Reverse Osmosis  

The permeate stream of ultrafiltration is fed to a reverse osmosis unit. The results are very 

encouraging with COD and TS reduction being around 90−100%. Initial COD values at 960 

mg/L are reduced to 16 mg/L after treatment with the RO process. TS is reduced 

dramatically and their value in permeate stream do not exceeded the value of 0.5 mg/L. On 

the other hand, irreversible fouling phenomena are observed, as the flux of clear water is 

not the same before and after the treatment of the waste, even after chemical cleaning of 

the membrane module. Implementation of membranes shall take place after a complete 

evaluation of all operational parameter values and of the problems related to their 

performance (flux decline, cleaning procedure, long-term behavior, etc). 
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Figure 11 Laboratory reverse osmosis unit 

Table 7 Experimental conditions and results for reverse osmosis filtration 

Parameter 
Initial 

Solution 

Transmembrane pressure in filtrated solution (bar) 

     10 bar      20 bar      30 bar      40 bar 

COD mg/L 792±148 16±25 76±34 83±32 43±21 

T.S. g/L 5.04±0.06 -0.09±0.07 0.23±0.04 0.39±0.18 0.42±0.25 

 

2.8 Conclusions of Part A 

Through a parametric study, the optimization of the existing physicochemical treatment 

process of a paint industry has been carried out, in terms of coagulant concentration and 

pH. In the first set of experiments, the coagulants and flocculants implemented are the ones 

that are currently in use in the wastewater treatment unit of the factory. It is found that 

higher removal efficiency could be achieved if lower concentration, compared to the one 

used by the industry, of polyelectrolytes is used (400 mg/L instead of 1000 mg/L). By 

working at higher concentrations of positive polyelectrolytes the negative ζ potential value 

of suspended particles is inverted to positive, stabilizing again the solution and the particles 
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remained under suspension. It is proved that the coagulant, if used in excess, can have 

negative effects on the separation. Moreover, a new polyelectrolyte that can cause the 

coagulation and flocculation of the suspended solids is proposed, which leads to higher COD 

and TS reduction than the reductions possible with the existing process. An extra step is 

taken for the treatment of the waste with the implementation of membrane technology. 

Ultrafiltration did not alter significantly the waste but removed all the larger suspended 

solids, preparing it for the step of reverse osmosis. 

With the use of a reverse osmosis membrane, the organic content of the waste is 

dramatically reduced to a value of around 30 mg/L, and the final effluent is suitable for 

recycling, irrigation, or disposal to water banks. Fouling phenomena are apparent, but 

further experiments must take place in order to find the experimental conditions that 

minimize such problems. 
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PART B: Carbon nanotubes and polymeric membranes 

3. Theoretical background 

Since thirty years of research, carbon nanotubes abbreviated by CNTs acronym are 

dominating in the new materials world and they are revealing an enormous potential of 

hundred different possibilities and applications. Andre Geim and Konstantin Novoselov were 

awarded 2010 Nobel Prize for their work on carbon sheet of graphene and this is not a 

matter of chance but fact of a real new age beginning for material engineering. Membranes 

of different polymers embedded with clouds of single or multi walled carbon nanotubes 

raise new efficiency standards and expectations. The innovative membranes can be 

considered as a good alternate solution for both tap water and wastewater treatment via 

already applied processes as ultrafiltration, nanofiltration and reverse osmosis. 

3.1 Carbon nanotubes 

Carbon nanotubes (CNTs) are hollow and more than 50.000 times thinner than a human hair 

(15).  CNT is simply a nanometer-sized rolled-up atomically smooth graphene sheet that 

forms a perfect seamless cylinder capped at the ends by fullerene caps (8). 

A single-walled carbon nanotube (SWCNT) is a single graphene sheet rolled into a seamless 

cylinder with either open or closed ends. Multi-walled carbon nanotubes (MWCNTs) are two 

or more concentric cylinders of graphene sheets of successively larger diameter, forming a 

layered composite tube bonded together by van der Waals forces, with a distance of 

approximately 0.34 nm between layers. In the market, average diameter of a single-wall 

carbon nanotube typically ranges of 0.6 nm to 100 nm.  The aspect ratio, i.e., length to 

diameter, typically ranges from 100 to 1000. A nanotube of 2 nm diameter has a length of 

100 to about 1000 nm. In preferred embodiments, the average length is from about 200 nm 

to about 1000 nm.  
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Figure 12 Different types of pristine carbon nanotubes and inner diameter (9) 

For reverse osmosis, and notably for water desalination, a preferred inner diameter range is 

about 0.4 nm to about 5 nm (Figure 12), and a most preferred range is from about 0.4 nm to 

about 1.2 nm. For nanofiltration membranes, a preferred size range is from about 1 nm to 

about 10 nm. For ultrafiltration membranes, a preferred size ranges from approximately 5 

nm to about 200 nm (8). 

3.2 Modification 

Carbon nanotubes are modified by alcoholic group –COOH in their external part leading to 

hydrophilicity nature and improving water contact on the surface of the membrane. 

Therefore modified CNTs offer improved electrostatic effect with metal ions containing in 

water and wastewater and more chirality effect with functionalized groups are appeared 

(11). Certain improvements are observed as a function of CNT functionalization and most 

importantly CNT volume fraction. It is proved in the literature that CNTs with larger 

diameter are more effective to remove organic molecules (11), (18). For water the pore 

diameter is related to the higher flow through the pores. Deprotonation reaction modifies 

COOH to COO- with negative charge. CNTs with  COO- functional group causes charge 

effects, improves stabilization of solution, has better water dispersion and probably 

rejection factor for some sorts of foulants and pollutants. 

3.3 The four mechanisms model 

Mixed matrix membranes are created on the cross point of different physical phenomena 

enable to provide them with great separation properties. The inner cavity of CNTs forms a 

natural pore with very small diameter that can in some instances be smaller than 2 nm.  This 

pore works as a both side passage for fluids and retain greater molecules by size exclusion 

mechanism and diffusion solution model explains water movement inside the pores. 
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Moreover, smooth hydrophobic surfaces of the nanotubes lead to nearly frictionless flow of 

water through them, enabling transport rates orders of magnitude higher than transport in 

conventional pores (11), (15). The structure of CNTs permits targeted specific modifications 

of the pore entrance without destroying the unique properties of the inner nanotube 

surface. Charge effects occur between functional groups attached carbon nanotubes edges 

contributing increasing molecules interactions (12). The combination of these three factors: 

size exclusion, hydrophobic environment and charge effects make mixed matrix membranes 

or membranes embedded with CNTs enable membranes efficiency in numerous applications 

improving rejection factor, extending lifetime and improving flux permeability (13). Another 

mechanism which appears quite often is sorption of molecules inside CNTs empty sites 

depending on the nature of molecules of pollutants.  

In details, the four mechanisms which act simultaneously are described below:  

 Size exclusion: Ultrafiltration applications 

The membrane is in this case a filter plate with holes (pores) that are too small for the 

particles to pass but big enough for the fluid to permeate easily. Permeation of a molecule 

through an ideally permeable membrane occurs without energy dissipation. In 

ultrafiltration, the carbon nanotube wall acts as a filter for all particles larger than 0.01 

micron: pollen, algae, parasites, bacteria, viruses, germ and large organic molecules (15). In 

literature, CNTs membranes prove selectivity close to 100% for different molecules (15). 

 Surface interactions: Adsorption effects 

Filtration by CNTs pores occurs for the larger sized macromolecules, but sorption 

dominating for the medium molecular weight organics. On the surface of CNTs, free spaces 

provide adsorption sites for small molecules in solution (13). The data for the hydrocarbons 

show some evidence for sorption effects occurring inside the pores. In wastewater of paint 

industry metallic ions can be adsorbed or retained in these pores (12). 

 Ion exclusion: Charge effect 

Polar groups (eg –COOH) are attached on the surface of membrane or in the end of carbon 

nanotubes by chemical modification (see modification part) in order to improve charge 

interactions in case of charged molecules (metal ions). Polar groups enhances adsorption 

desorption and ion exchange in high pH solution (17) and increase the flux. Mesoporous 

membranes that have a charged pore surface in salt solutions may exhibit significant ion 
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retention by a space charge effect if pore size is smaller than the Debye length of the 

solution. 

 Water transition: Hydrophilicity-Hydrophobicity effects 

In case of mixed matrix membranes or membranes embedded with CNTs the water 

molecules just fit inside the pore and apparently have significant mobility with respect to 

the pore wall (18). By simulation models, water appears to move like a solid (19) inside the 

tube making a hydrogen bond wire wherein the hydrogen bonds literally move between the 

hydrophobic walls and they try desperately to escape. Water molecules inside and outside 

the nanotubes are in thermodynamic equilibrium (15).  

3.4 Computer simulations 

The flux of charged and neutral molecules is studied thoroughly using modelling tools by 

Luca and Voyiatzis group in Institute of Chemical Engineering Sciences in Patras (19). The 

first question one may ask is why does water wet CNTs. The study showed that water flow is 

limited mainly by particle entry and exit events, and that tube length had hardly any effect. 

For far small SWNT studied by Hummer et al., carbon nanotubes of very small diameter 

(0.8nm) have so narrow passage that only a single water molecule could be inserted, 

forming a single file water chain (19). Hummer et al. further noted that this wall friction 

appears to be exceedingly small, as in the gas-diffusion case. Indeed, graphite is an 

industrial-grade solid lubricant. Monte Carlo simulations show that a defining feature of the 

water structure in CNTs is the formation of the hydrogen-bonded “water wires” oriented 

along the nanotube axis (12).  

3.5 Sonication 

Sonication is the process of converting an electrical signal into a physical vibration that can 

be directed toward a substance and it is the act of applying sound (usually ultrasound) 

energy to agitate particles in a sample (21). Sonication effect enhances formation, growth, 

and implosive collapse of bubbles in a liquid. In the laboratory, it is usually applied using an 

ultrasonic bath or an ultrasonic probe, colloquially known as a sonicator.  The primary part 

of a sonication device is the ultrasonic electric generator. This device creates a signal 

(usually around 20 KHz) that powers a transducer. This transducer converts the electric 

signal by using piezoelectric crystals, or crystals that respond directly to the electricity by 
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creating a mechanical vibration. This vibration, molecular in origin, is carefully preserved 

and amplified by the sonicator, until it is passed through to the probe. The sonication probe 

transmits the vibration to the solution being sonicated. Probe is a carefully constructed tip 

that moves in time with the vibration, transmitting it into the solution. The probe moves up 

and down at a very high rate of speed, although the amplitude can be controlled by the 

operator and is chosen based on the qualities of the solution being sonicated. The rapid 

movement of the probe creates an effect called cavitation. Cavitation occurs when the 

vibrations create a series of microscopic bubbles in the solution, pockets of space wedged 

between the molecules that form and then collapse again under the weight of the solution, 

sending out tiny shockwaves into the surrounding substance. Thousands of these bubbles 

forming and collapsing constantly create powerful waves of vibration that cycle into the 

solution and break apart i.e. cells or in case of carbon nanotubes, long chain of carbon 

nanotubes are separated (21).  

At the beginning of sonication, MWCNTs exist as big aggregates and bundles in solution that 

are strongly entangled, and no absorption is evident in the UV–vis spectrum (24). During 

sonication, the provided mechanical energy can indeed overcome the van der Waals 

interactions in the MWCNTs bundles and lead to their disentanglement and dispersion. 

3.6 Carbon nanotubes dispersion 

The sonication-driven dispersion of carbon nanotubes in deionized water and aqueous 

surfactant solution has been monitored by UV–vis spectroscopy in water and surfactant 

solutions of CNTs after 5 months maturing. Time dependent sonication experiments reveal 

that the maximum achievable dispersion of CNTs corresponds to the maximum UV–vis 

absorbance of the solution (24). With higher surfactant concentration the dispersion rate of 

CNTs increases and less total sonication energy is required to achieve maximum dispersion. 

Dispersion of higher CNT concentrations requires higher total sonication energy. The 

surfactant molecules are adsorbed on the surface of the CNTs and prevent re-aggregation of 

CNTs so that a colloidal stability of CNT dispersions could be maintained for several months. 
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4. Experimental Procedure 

4.1 Carbon nanotubes 

In this project, carbon nanotubes are made by catalytic chemical vapour deposition using 

quartz probe CVD (13). Single carbon nanotubes (SWCNTs) have 1-2nm external diameter 

and 0.8-1.2 internal diameter. Thin multi walled carbon nanotubes (Thin-MWCNTs) have 

1.0-6.5nm and 6-15nm inner and outer diameter respectively. SWCNTS and Thin-MWCNTs 

with different functional groups (COOH and COO-) were provided from Nanothinx Inc when 

only SWCNTs are made by Cheaptubes company. 

Table 8 Carbon nanotube types, physical and cost parameters used in the project 

 SWCNT 

*Cheaptubes 

SW-
COOH 

SW-
COO- 

Thin – 
MWCNT  

*Nanothinx  

T– MWCNT-
COOH  

T– 
MWCNT-
COO- 

Carbon Purity (%) >90 >90 >90 94 94 94 

External Diameter 
(nm) 

1-2  1-2  1-2  6 – 15  6 – 15  6 – 15  

Internal Diameter 
(nm) 

0.8 – 1.6 0.8 – 
1.6 

0.8 – 1.6 1.0 – 6.5 1.0 – 6.5 1.0 – 6.5 

Length 5-30μm  ≤ 1μm ≤ 1μm ≥ 10μm ≤ 1μm ≤ 1μm 

Price (1 gram) 84 € 93 € 117 € 16 € 31 € 40 € 

 

4.2 Dispersion of carbon nanotubes solutions 

The surfactant used for the dispersion of the CNTs was pluronic F-127 (SDS; 90%) provided 

by Sigma Aldrich. All dispersion experiments were carried out with distilled water. All 

solutions were prepared by mixing a certain amount of CNTs with aqueous PF 127 solution 

in a flask, after which the resulting mixture was sonicated for different times under mild 

conditions. It is also notice that either via chemical or mechanical functionalization final 

length of carbon nanotubes reach 320nm and 550nm respectively and thus they can easily 

tuned in embeddement procedures (28).  
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Figure 13 Evolution of UV–vis spectra of an aqueous 0.1 wt.% MWCNT–0.15 wt.% SDS solution as a 

function of sonication time at continuous power of 20 W (solutions are diluted by a factor of 150) 

In spectrum made by UV spectrometer, bundled CNTs, however, are hardly active in the 

wavelength region between 200 and 1200 nm – their photoluminescence is quenched – 

most probably because of carrier are tunnelling between the nanotubes. Therefore, it is 

possible to establish a relationship between the amount of CNTs individually dispersed in 

solution and the intensity of the corresponding absorption spectrum. Moreover, UV-vis 

spectroscopy can be used to monitor the dynamics of this dispersion process of CNTs, 

allowing the determination of the optimal sonicating time. UV–vis absorption spectra were 

recorded with a Hitachi U-3000 spectrometer operating between 200 and 1100 nm. The 

blank used was deionized water. 

Figure 14 illustrates UV–vis spectra of CNTS – water and PF 127 solutions. After sonication 

the absorbance of MWCNT solutions shows a maximum between 200 and 300 nm and 

gradually decreases from UV to near-IR, which is partly due to scattering, especially in the 

lower wavelength range. Similar results are reported for UV–vis absorption spectra of 

SWCNTs by Jiang et al. (24). The increasing amount of dispersed MWCNTs results in an 

increasing area below the spectrum lines representing the absorbance. Thin MW-COOH and 

SW-COOH CNTs in water exhibit lower absorbance – or either higher light transmission and 
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COO- both SW and Thin MW in surfactant and water permit higher absorbance and lower 

UV transparency. Consequently, Thin MW-COO- in water and SW-COO- in surfactant can be 

considered as best dispersed and stable mixtures of CNTs after 5 months.  

 

 

Figure 14 CNTs dispersion in water solutions after 5months (Thin Multi Walled CNTs where 1) Thin-

MW-COO- 2)Thin-MW-COOH 3) Thin-MW-COOH and surfactant 4) Thin-MW-COOH 5) Thin-MW and 

surfactant & Singe Walled CNTs 1) SW-COOH and surfactant 2) SW-COO0 and surfactant 3) SW-COO- 

4) SW-COOH 

4.3 Deprotonation 

MWCNTs and SWCNTs are functionalized in a mixture of NaOH to increase their dispersion 

in organic solvents (11). The typical approach is as follows; 500mg Thin-MW-COOH are 

washed in 400mL 3times deionised water before and left to dry at room temperature in 

ultrafiltration unit using polycarbonate filter. Washing is repeating for three times.  
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Figure 15 Deprotonation method by (a) smashing dried CNTs -COOH (b) washing CNTs with water (d) 

rinsing with NaOH solution (d) filtrated CNTs in ultrafiltration unit with polycarbonate filter 

The dried MWCNTs are then refluxing in 50mL NaOH (10%wt NaOH in water) and mixture is 

then ultrasonicated for 10min. Step is repeating three ties. Finally, the Thin-MW-COO- CNTs 

are washed and filtered until the pH value of the solution reached 7.0  and again dried in 

oven at 60oC overnight. 

4.4 Ultra sonication 

All sonication processes in this project carried out with a horn sonicator (Sonic Vibracell 

VC750) with a cylindrical tip (10 mm end cap diameter). The output power was fixed at 

20 W, thus delivering energy of 1100–1200 J/min.  
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Figure 16 Sonication pin over ultrafiltration unit in laboratory 

5. Membranes embedded with carbon nanotubes 

5.1 Polyvinylidene Fluoride (PVDF) membranes 

Commercial Polyvinylidene Fluoride (PVDF) membranes are used in ultrafiltration 

configuration varying carbon nanotubes concentration in tip sonication solution. Durapore® 

membranes are provided by Sigma Aldrich and product specifications are given as following: 

PVDF membranes, pore size 0.1μm and 47mm diameter, white colour and plain surface, 

thickness 125μm, sterilization by autoclave at 121oC, operating temperature 85oC, bacterial 

endotoxins 0.5EU/mL (22). Durapore give low extractability and broad chemical 

compatibility. Hydrophilicity of PVDF membranes in water solution is hydrophilic binding 

less than nylon, nitrocellulose or PTFE membranes.  
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Figure 17 PVDF membranes embedded with carbon nanotubes solution of concentration: 0.1μg/L (b) 

0.3 μg/L (c) 0.5 μg/L (d) 0.7 μg/L (f) 0.9 μg/L (e) 1.1 μg/L (f) 1.3 μg/L 

 

Figure 18 Ultrafiltration unit in laboratory (pressure supply, vessel, and membrane) 

The membranes have been embedded with CNTs solution of different concentrations from 

0.1μg/l to 1.3μg/l. Embeddement with several concentrations of thin MW-COOH carbon 

nanotubes has been made at 0.2bar.  The results are grouped in next figure.  
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Table 9 Measured permeability for distilled water through bare PVDF membranes and PVDF 

membranes embedded with different concentration of Thin MW-COOH CNTs 

Concentration 
(μg/mL) 

Permeability 
before CNTs 
[L/m2·h·bar] 

Permeability 
after CNTs 

[L/m2·h·bar] 

0.1 5141 5126 

0.3 5340 5340 

0.5 5423 5066 

0.7 4957 4773 

0.9 5149 5103 

1.1 5149 5315 

1.3 5141 4901 

 

 

Figure 19 Flux increase (%) in function of CNTs concentration in solution of embeddement 

By Figure 19, highest flux is observed at 0.5μg/L carbon nanotubes. Τhe flux increases 27% 

using carbon nanotubes in PVDF pores by tip sonication embeddement and water 

permeability increases 6.5%. By literature (23), low or super low concentration proves 

better result and main cause can be fouling effects inside the pores of polymeric 

membranes. Although 27% higher flux of PVDF membrane, the result cannot get beyond 

normal polymeric membranes efficiency or either in terms of cost and environmental risks.  

Repetition of experiment for 0.3μg/L tried to optimize the process and verify CNTs 

contribution. Under same experimental conditions, 0.2bar and thin MW-COOH CNTs three 

more PVDF membranes have been tested for 0.3μg/L CNTs concentration. The flux 

reduction is measured in ultrafiltration configuration and new results show no increase of 
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flux in any case and either decrease of flow, approximately 4%.   Fouling effects and typical 

measurement errors might be the source of insufficient results.  

5.2 Sonication effect 

In order to evaluate tip sonication impact in pores geometry, a series of experiment with 

two different duration of sonication has been carried out. PVDF membranes have been 

sonicated for 2min and 7min. Flux has been measured in both cases and in both cases flux 

after sonication is lower. Consequently, there is not positive impact in flux increase by the 

tip probably because of spreading effect of sonication in membranes pores or crack effects.  

Table 10 Results of permeability change for distilled water in ultrafiltration unit before and after tip 

sonication 

 Permeability before tip 
sonication [L/m2·h·bar] 

Permeability after tip 
sonication [L/m2·h·bar] 

2min of sonication 4245 3995 

7min of sonication 4233 4150 

PVDF membranes shown poor results and further study on PVDF membranes embeddement 

is not imposed at this point. However other type of polymers need be tested in terms of 

CNTs fouling effect, permeability and pollutants exclusion.  

5.3 PES/PET membranes 

Commercial PES/PET membranes are used for embeddement with CNTs. Microdyn Nadir 

Membranes UP150 purchased by Microdyn Nadir company have nominal properties as 

following: Ultrafiltration, PES side, 150kDa molecular weight cut off (MWCO), 40nm pore 

size, 200μm thickness and they combine PES and PET layers. PES side works like filter and 

PET is the support layer. Nominal water flux of UP150 is 200L/(m2h).Geometry of PES/PET in 

terms of pores is conical where PET has large diameter pores and PES smaller one.   
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Figure 20 UP150 PES/PET membrane geometry of pores and PES/PET layers in SEM image 

Target pore size is defined to 1.5-2nm and 0.1-3kDa MWCO. Appropriate carbon nanotubes 

need to have diameter in scale of target pore size as Thin MWCNTs functionalized with OH, 

COOH 1.0-6.5nm of internal diameter, DWCNTs 1-2nm of internal diameter and SWCNTs of 

0.8-1.6nm internal diameter. Target pore size need to be in same size with internal diameter 

of carbon nanotubes. Due to UP150 conical structure, CNTs attached at PES are able to stay 

on PES side or might stack there. Otherwise, if CNTs move on PET side and PET side 

embeddement take place, CNTs cross the path inside PET-PES pore and appear on the PES 

side of the membrane. In the laboratory, experiments have already proved last argument. 

 

 

Figure 21 UP150 Active layer PES side cross section image by SEM. Thickness of active layer 

measured to 2.488μm 

The optimal case is to infiltrate CNTs across PES selective thin layer. However, due to 

anisotropic, sponge like character of the porosity of this thin layer, infiltration is quite 

demanding and thus optimization of the method is required. 
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The configuration of rectangular membranes embeddement consists of lab made vessel in 

scale of UP150 membranes 1600mL, pressure supply, ultrafiltration configuration, 

membrane, metallic sieve, sealer made by silicone.  

 

Figure 22 Tip sonication and ultrafiltration configuration. Rectangular vessel contains CNTs solution 

which by pressure difference is driven through membrane pores 

5.4 Optimization of PES/PET embeddement 

Experiments have been carried out in the past also by PET side. In that case carbon 

nanotubes have emerged in PES side with 2μm distance and this is what called the active 

side of the membrane. In older experiments of the group, PES side and SWCNTs 2.5 μg/ml 

gave 14.6% increase in water flux permeance when for PET side and SWCNT’s 2.5 μg/ml 

percentage raised to 32.40%.    

In this project, different concentrations of CNTs are applied aim to optimize water flux and 

rejection properties of UP150 membranes. Thin MW COO- CNTs and SW have shown fine 

dispersion behaviour, suspension concentration is 100μg/mL and CNT density is 384μg/cm2. 

Isopropanol water solution (1:4) is prepared to enhance opening pore of membranes.  
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Figure 23 UP150 PES/PET membranes infiltrated with (a) SWCNTs and (b) Thin MW-COO- by PES side 

Before tip sonication of CNTs solution, SWCNTs are mixed with Sodium Dodecyl Sulphate 

(SDS) surfactant 1:1.5 and for Thin MW-COO- dispersion experiments have proved no 

surfactant is needed. For SWCNTs tip sonication took 5 min in order to open CNTs paths and 

for Thin MW-COO- tip sonication took 7 min. Pressure supply for embeddement is 0.5bar. 

Tip sonicator stand slightly high and CNTs solution is adding drop by drop in order to achieve 

better dispersion, opening and homogeneity of solution. Tap water is used (10mL containing 

667μg CNTs, hence final solution is 0.312 μg/mL at 1600mL). Ultrafiltrating membrane with 

300mL dispersion is embedded, thus final density on membrane surface is 1.6μg/cm2. 

Ultrafiltration of 300mL takes 2.5min and PES side starts change to grey because of CNTs.  

Table 11 Suspension concentration and composition for PES/PET membranes embeddement 

 CNT type Surfactant Suspension 
concentration 
[μg/mL] 

CNT 
[μg/cm2] 

REMARKS 

Infiltration parameter 
from PES side  

Rectangular UP150 
membrane 6.5x12cm 

Thin 
MW-
COO- 

SDS 0.312 1.6 5 items 

SWCNTS  0.312 1.6 5 items 
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Figure 24 Images of cross sections of PET side of membranes infiltrated through the support, with 

Thin-MW-COOH or SW CNTs (10) 

 

Figure 25 Images of the surface exposed to the feed from membranes infiltrated through the thin 

selective layer side, with Thin-MW-COOH or Thin-MW-COO- 

In Figure 25 the embeddement of carbon nanotubes inside the pores and over the PES area 

is well illustrated. A homogenous distribution of carbon nanotubes is also achieved. 
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Figure 26 UP150 membrane infiltrated with Thin-MW-COO- CNTs 0.312 μg/mL (1.6 μg/cm2 ) from 

PES side 

Membranes incorporated with Thin MW-COO- CNTs 50μg/mL can be covered with PVDF 

layer 0.1% w/v in MeOH have shown tendency to increase pure water permeability in 

comparison with commercial UP150 PES/PET membrane. Experiments are repeated in order 

to evaluate Thin MW-COOH CNTs geometry over PES layer. Tip sonication to the mixture 

took 25min in order to separate sufficiently carbon nanotubes. Surfactant used was PF127 

1:1. Isopropanol solution (1:4 in water) removed glycerine layer over PES/PET membranes 

before ultrafiltration. PVDF coating tried to apply over PES/PET embedded membranes with 

spin coating – phase inversion method (see below). However process is simple and 

promising, PVDF does not show enough adhesion over PES and other methods might need 

to be studied.  

5.5 Permeability of deprotonated CNTs incorporated from PES and PET sides of 

UP150 membranes 

The UP150 membranes with PES on the surface and PET as support layer were infiltrated 

with deprotonated thin walled CNTs (Thin MW-COO-) and were tested on laboratory 

OSMOTA test unit at HSKA, Karlsruhe, Germany for the pure water flux as well as for the flux 

with model textile wastewater (MTWW).  The flux from the deprotonated CNTs 

incorporated inside PES and PET surface were compared to the commercial membranes 

under similar operating conditions of 1.5-2 bar pressure and 0.4 L/min of cross-flow velocity. 

For functionalized CNTs incorporated from PES side of UP150 results verified an increase of 

permeability in pure water relatively high (above 1400 L/m2·h·bar) initially. Need to point 
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out that a great loss of deprotonated CNTs was noticed while treating with glycerol as well 

in the solution from these set of CNTs embedded membranes. The pure water flux as well as 

the flux from the MTWW, tested on our laboratory unit was compared to the pure water 

flux from commercial membranes as shown in Figure 27. 

 

 

 

Figure 27 Permeability vs time plot of commercial and CNTs embedded MN membranes 

(com:commercial UP150, CNTs_PES:UP150 with CNTs incorporated from PES side) 

The permeability of deprotonated CNTs incorporated through PES side was around 409 

L/m2·h·bar while that of commercial membranes is 323 L/m2·h·bar when treated and 

operated under similar conditions. The permeability with MTWW was around 160 

L/m2·h·bar while that for commercial membrane was 80 L/m2·h·bar. Infiltration of 

functionalized CNTs from PES side showed significantly higher permeability when compared 

to the commercial membranes. However, the rejections of red and blue colour from UV-vis 

spectrometer measurements display 0.8 and 1.65 % respectively while that of commercial 

membranes was noticed to be 17.55 % for red while 22.35 % for blue respectively.  

Carbon nanotubes incorporated from PES side (small pore hydrophilic surface) give 

promising results in permeability. Losses of CNTs during permeability experiments need high 

concern in case of membrane use in potable water purification applications. SEM images 
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pose important questions on CNTs penetration inside PES pores and thus further 

optimization is needed. Thin MW COO- CNTs have slightly better consistency than SWCNTs 

given imaging characterization. Low concentration of embeddement solution is indeed an 

optimal choice at this point of study in terms also of cost saving in raw materials.  

5.6 PES membranes with CNTs with Spin coating method 

Single walled and thin multi-walled COO- carbon nanotube and polyethersulfone blend 

membranes (also called as mixed matrix membranes) are synthesized via the phase 

inversion method (25). The resultant membranes are then characterized by scanning 

electron microscopy (SEM), gel permeation chromatography (GPC), ultrafiltration flux and 

water vapour permeability method. The mixed matrix membranes appeared to be more 

hydrophilic, with a higher pure water flux than the polyethersulfone (PES) membranes and 

give better size exclusion results for model foulants of PEGs. Therefore, it was noticed that 

the amount of CNTs in the blend membranes was an important factor affecting the 

morphology and their permeation properties.  

Polyethersulfone (PES) membranes are synthesized via the phase inversion method using 

spin coater to create PES thin layer. A PES solution is prepared with 7%w/v polyethersulfone 

in dimethylformamide (DMF) solvent. The mixture was well stirring for 2h at room 

temperature. Two different solutions of SWCNTs and Thin MW-COO- are prepared with N-

Methyl-2-pyrrolidone (NMP) solvent to obtain 0.5% wt. CNTs respect to PES (0.035gr of 

CNTs for 7gr of PES in 100mL of solution). CNTs solution are mixed on stirring apparatus at 

room temperature and mixed are sonicated for good dispersion of CNTs. After dispersing 

CNTs in solvent, PES (20 wt. %) was dissolved in the dope solution by continuous stirring and 

heating at 60oC until the solution became completely dissolved and homogenous. Mixtures 

are finally mixed and well stirring overnight.  
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Figure 28 Spin coater and phase inversion in water for PES-CNTs membrane preparation (a) drop by 

drop PES-CNTs mixture over spin coater (b) fast round movement 300m/min for some seconds (d) & 

(c) phase inversion in water 

Some attempts on spin coating shown that 7% solution of PES was quite thin and no dense 

layer could be created over spin coater because polymer was splitting around. Thus, 

increase of PES density is decided to 10% and new experiments show good adhesion of 

solution over metallic base of spin coater.  Three different mixtures (PES% wt., PES with 

SWCNTs, PES with Thin MW-COO-) are prepared. Over thin metallic layer, mixture is 

dropped in each case and spin coating run for approximately 20sec in 300m/min circular 

velocity. Metallic plates are directly immersed in tap water and phase inversion appeared 

after first seconds. The formed membranes were subsequently washed with deionised (DI) 

water and stored in DI water until use.  
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Figure 29 Lab made membrane with phase inversion and spin coating method with bare PES 10%w/v 

(left side) and SWCNTs 0.5%wt. (right side) 

Results of carbon nanotube penetration via PES polymeric channels are tested via four 

different characterization methods: Water permeability in ultrafiltration unit, SEM images, 

water vapour permeability and gel permeation chromatography (GPC). 

 

A. Water permeability 

Water permeability is measured via lab ultrafiltration unit with 0.2bar pressure supply filling 

1L water in vessel and measuring water reduction in 12min. Membrane area is considering 

0.078m2. 

Table 12 Water permeability results for PES-CNTs membranes made by phase inversion method 

Spin coating 
membranes 

Thickness [μm] Tap water permeability 
[L/m2·h·bar] 

PES membrane 95 737  

 95 1923 

 35 1041 

PES Thin MWCOO- 70 2500 

 70 1000 

 40 3205 

PES SW-COOH 130 4006 
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Spin coating 
membranes 

Thickness [μm] Tap water permeability 
[L/m2·h·bar] 

 27 2082 

  

By Table 12, though tap water permeability does not follow a clear relation in function with 

thickness or membrane material, it is clearly assumed that mixed matrix membranes with 

carbon nanotubes give higher permeability. For PES Thin MWCOO- membrane, thinner 

membrane (40μm) show highest permeability (3205 L/m2·h·bar) where for PES SW-COOH, 

thick membrane (130μm) achieve a quite high permeability (4006 L/m2·h·bar). Hence, 

thickness cannot be considered as a crucial factor though it is quite important in terms of 

commercial use of layer. In case that PES Thin MWCOO- layer need to cover UP150 PES/PET 

membrane need to have less than half support layer thickness (200μm).  

Β. SEM images 

In SEM images, carbon nanotubes appeared to be penetrated on polymer channels. 

However in cross section shots bulk material has no noticeable carbon nanotubes inside.  

 

Figure 30 Mixed matrix membrane PES/Thin MW-COO- 0.312μg/mL 
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Figure 31 Mixed matrix membrane PES/SW-COOH 0.312μg/mL 

Pore size of PES-SWCNTs has well defined with value of 10-15nm and clear pore channel of 

polymer. For PES-Thin MWCNTs COO- pores are slightly larger, around 40nm when for pure 

PES membrane stable porosity can be concluded. Dye industry molecules and 

macromolecules vary in size but start above 60-80nm thus membranes blended with CNTs 

should be a physical barrier apart from sorption or chare phenomena. 

C. Water vapour permeability 

Pressure difference (ΔP) in stable temperature conditions in the two sides of the membrane 

comes from humidity difference and works like driving force for water vapour permeation 

through the membrane (26). The final result of the process is the weight losses of water 

existing in the container. Protocol of the method is described in ASTM E-96. Water Vapour 

Transmission Pressure (WVTR) is expressed via following equation (26): 

                                (  )  
                    (  )

     (   )                (  )
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Figure 32 Water Vapour Transmission Permeability Apparatus in Laboratory  

One PES membrane and one PES-SW-COOH membrane are tested in one day water vapour 

permeability measurement. WVTR is calculated to be higher in case of PES-SWCOOH 

membranes. Supposing same diameter of pore size, water permeability can be product of 

hydrophobic effect inside membrane channels. Carbon nanotubes have an impact on WVTR 

and further experiments need to be carried out.   

D. Molecular Weight Cut Off  

The primary basis of solute retention is molecular size. Therefore, in general, the retention 

of a solute is proportional to its molar mass. Most UF membranes are described by their 

nominal molecular weight cut-off (MWCO), which is usually defined as the smallest 

molecular weight species for which the membrane has more than 90% rejection (27). 

In UP150 PES/PET membrane brochure, MWCO is given 150.000Da and wastewater model 

solutions varied from 164-991Da molecular weights. Ideal target is considered to create a 

nanofiltration membrane with MWCO threshold 100-1000Da (28).  

The MWCO of a membrane can be determined from the permeation of dilute solutions 

containing uncharged solutes. Non-ionized Polyethylene glycols (PEG) are usually chosen to 

characterize a membrane (27). They are water soluble and can be readily obtained with 

narrow molecular weight distributions. Although there is a certain accumulation of solute at 

the membrane surface, the use of low feed concentrations eg. 0.03% PEG (3 mg/L in water), 
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assures that the solute accumulation is not high enough for consideration of gelation or 

osmotic contributions. For these low concentrations, viscosity and density can be taken as 

substantially equal to the pure water values. Concentration polarization factor is neglected.   

A PEG solution is prepared with several molecular weights in water. In details, 3gr of PEGS 

with 200.000Da, 100.000Da, 35.000Da, 10.000Da are soluted in 1L deionized water (0.03% 

PEG). Mixture is ultrafiltrated in operating pressure 2barsultrafiltration unit in laboratory by 

PES, PES-SWCOOH and PES-Thin COO- membrane prepared by spin coating method. Results 

are gathered below. Filtrated solution is characterized in Gel Permeation Chromatography 

(GPC) unit. As assumed, the PEG did not foul the membrane extensively because the PEG is 

non-ionized and it has a low solute membrane surface interaction. 

Gel Permeation Chromatography (GPC) is a chromatographic technique that separates 

dissolved molecules on the basis of their size by pumping them through specialized columns 

containing a microporous packing material. As the sample is separated and eluted from the 

column, it can be characterized by a single concentration detector (Conventional 

Calibration) or series of detectors (Universal Calibration and Triple Detection) (29). 

 

 

Figure 33 GPC results for molecular weight cut off value of mixed matrix PES-CNTs membranes using 
200, 100, 35 and 10 kDa 
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Three different membranes have been picked up by laboratory made PES membranes and 

tested in GPC apparatus. The results show an overall promising retention of high molecular 

weights and even the sample cannot be totally representative a clear tendance is illustrated 

(Figure 33). The retention of high MW PEGs is close to 100% for PES/Thin MW CNTs 

membranes (sample (a) and (b)). Sample (b) has a significant cut off on 35kDa. One only 

value cannon express retention it can though contribute to plan new experiments for 

further study. 

5.7 Conclusions of Part B 

Measurements results report the performance of mixed matrix and asymmetric 

polyethersulfone ultrafiltration flat sheet membranes with carbon nanotubes. Three 

different types of membranes are prepared. Pure PES membranes, PES blended with 

SWCNTs membranes and PES blended with Thin MW-COO- membranes. The membranes are 

prepared by phase inversion process containing polyethersulfone (PES) as polymer (10% wt., 

N,N-dimethylformamide (DMF) as solvent of polymer, SWCNTs in N-Methyl-2-pyrrolidone 

(NMP) as a solvent (0.5%wt. respect to polymer) or Thin MW-COO- CNTs in NMP (0.5%wt. 

respect to polymer).  

Blend membranes displayed a higher flux and slower fouling rate than the PES membranes. 

Subsequent analyses of the desorbed foulants showed that the amount of foulant on bare 

PES membranes was higher than the blend membrane for 0.5% SWCNTs content. Thus, the 

carbon nanotube content of membranes is shown to alleviate the membrane fouling caused 

by natural water. 

SWCNTs show also far higher water permeability than Thin MW-COO- incorporated in PES 

membrane and in all the cases mixed matrix membranes had better efficiency than pure PES 

membrane.  

As the method can considered as comparatively easy and low cost, further study is needed 

to optimized the different amount of components and evaluate the scale up possibility. 
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