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Abstract: This paper deals with the problem of choosing the optimum criterion for selecting the best
model out of a set of overlapping binary models. The criteria we studied were the well-known AIC
and SBIC, and a third one called C2. Special attention was paid to the setting where neither of the
competing models was correctly specified. This situation has not been studied very much but it is the
most common case in empirical works. The theoretical study we carried out allowed us to conclude
that, in general terms, all criteria perform well. A Monte Carlo exercise corroborated those results.
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1. Introduction

This work focused on the analysis of model selection criteria within the framework of
binary choice models (BCM), where the endogenous variable is binary (Yi), representing
the choice of the decision-maker (i) between two options which are quantified by the values
1 and 0. These models are usually expressed as pi = F

(
x′i β
)
, F being the cumulative distri-

bution function (c.d.f.), xi the regressors vector and pi the probability that Yi = 1. The c.d.f.
can be normal or logistic, leading to a probit model or a logit model, respectively. Although
the common analysis procedure for these models is to apply the maximum likelihood
estimation (MLE) method, they can also be implemented from a Bayesian framework using
Gibbs Sampling Markov Chain Monte Carlo (MCMC) methods [1,2]. Nevertheless, in this
work, we considered the conventional context; thus, the MLE procedure was used.

This paper compares several models in order to select the “best” of them. In a general
context, and following [3], the compared models can be nested, overlapping and non-
nested models. In the specific framework of BCM, two binary models are nested if they
possess the same c.d.f. (both probit or both logit) and the regressors of one of the models
are included in the other one. Two binary models are overlapping if both possess the
same c.d.f. (both probit or both logit) with some common explanatory variables and other
specific variables. Finally, the compared models are non-nested if they possess only specific
regressors. Moreover, the models are also non-nested when they possess different c.d.f.
(probit versus logit), even if there are some common regressors. Many works define nested
and non-nested models, and describe the way of working in every situation [4–6], while the
overlapping models have been the least analyzed. In this paper, we compared overlapping
models, and we found that they were equivalent or that one of them was better than the
other (non-equivalent).

Although the hypothesis testing procedures (HTP) are widely used to discriminate
between models, we can only use them to choose between pairs of models. In comparison,
the selection criteria allowed us to select the best model from quite a large set. This is
an important advantage in empirical econometric works. The latter approach allows
researchers to express their objectives in the form of a loss function, or by using the
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discrepancy concept. As [7] established, the discrepancy concept is a particular case of loss
function. For non-linear regression models (our framework), the procedures developed
by [3,8,9] belongs to the first category (HTP). The second category involves the well-known
AIC [10] and SBIC [11], where the discrepancy was obtained from the Kullback–Leibler
distance. Additionally, the use of the mean square error (MSE) of prediction as a discrepancy
enabled us to derive another criterion, denoted as C2 (see [12]).

Many works have studied the behaviour of selection procedures in linear regression
models. However, this subject has been less analysed in a non-linear regression context,
and the nested framework is nearly always assumed [13–15]. The performance of some
selection procedures has also been studied in phylogenetics, where partitioned models
were used [16–19]. Specific references for discrete choice models are [12] for nested models,
and [20] for non-nested models.

In this paper, the competing models we selected from were overlapping models. The
purpose was to investigate the discriminatory power of certain model selection criteria
assuming two situations: (i) at least one of the models was correctly specified; (ii) neither of
the models was correctly specified. According to [21], a well-specified model can include
irrelevant variables together with the set of regressors of the data generating process
(DGP). In our opinion, situation (ii) is the most interesting in practice but the least studied
in the literature. Given that, in this case, no model was well-specified, we could not
consider consistency as the condition that makes a given selection criterion adequate. The
requirement we proposed is that the criterion selects the closest model to the DGP.

The article is organised as follows. In Section 2, we establish the general context and
the methodology. Section 3 is dedicated to study the theoretical behaviour of the criteria.
Section 4 presents and discusses the results from a Monte Carlo experiment. Conclusions
are presented in Section 5.

2. Materials and Methods

Consider the following DGP:

M0 : pi = F
(

x′i β
0
)
= F(β0 + β1x1i + β2x2i) (i = 1, . . . , N) (1)

and a pair of overlapping models which, in general terms, are defined as follows:

M1 : pi = F
(
a′iγ
)

M2 : pi = F
(
b′iδ
) (i = 1, . . . , N) (2)

where F(·) is the cumulative distribution function (c.d.f), which can be normal or logistic,
leading to the probit model or the logit model, respectively. The two competing models
have the same c.d.f.; a′i and b′i are the 1× k1 and 1× k2 explanatory variables vectors of M1
and M2, for the i-observation; γ and δ are the corresponding parameter vectors. Given the
definition of overlapping models, a′
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a′ are satisfied, and both vectors have some
common variables.

In order to describe the relationship of each of the competing models with the true
model (DGP) we used the Kullback–Leibler distance (KLIC) to the DGP:

KLIC (M0, Mj) = E0 ln

[
f0

f j

]
(j = 1, 2) (3)

being f0 the density function of the DGP and f j corresponding to model Mj.
From (3), we can write:

KLIC (M0, M1)−KLIC(M0, M2) = E0 [ln f (y | b, δ∗ ) ]− E0 [ ln f (y | a, γ∗) ]= E0[`
∗
2 − `∗1 ] (4)

where γ∗ and δ∗ are the corresponding pseudo-true parameter vectors (see [22]).
It is well-known that if this statistic (expression (4)) is positive, then M2 is the preferred

model, M1 being preferred if (4) is negative. If it is null, the two models are equivalents.
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Given the DGP of (1), and following [21], any model which is correctly specified can
be written as:

pi = F

γ0 + γ1x1i + γ2x2i +

kj

∑
j=3

γjdji


where dj are additional regressors, including the particular case, where dj do not exist.

It is worth noting that, for each competing model, the maximum likelihood estimation
of the parameter vectors satisfies:

γ̂
p→ γ∗

δ̂
p→ δ∗

(5)

We can distinguish two cases: the case where at least one of the competing models
was correctly specified, and the case where neither of them was correct.

2.1. Case 1: At Least One of the Competing Models Is Correctly Specified

Then, the situations we considered are:

• Case 1.1: Both models were well-specified (or both models included the DGP):

M1 : pi = F

(
γ0 + γ1x1i + γ2x2i +

k1
∑

j=3
γjdji

)
M2 : pi = F(δ0 + δ1x1i + δ2x2i + δ3zi)

(6)

with z 6= dj ∀j.

• Case 1.2: Only one of them was well-specified (or only one of them included the DGP):

M1 : pi = F

(
γ0 + γ1x1i + γ2x2i +

k1
∑

j=3
γjdji

)
M2 : pi = F(δ0 + δ1x1i + δ2zi)

(7)

Let β0+ be the parameter vector extended with elements equal to zero in the places
corresponding to the variables that are not included in the DGP, that is,

(
β0+)′ =

(
β0
∣∣0)′.

From the convergence result (5), and according to [23], in case 1.1, the equality γ∗ = δ∗ =
β0+ held, implying that both models are equivalent. However, in case 1.2 γ∗ = β0+ but
δ∗ 6= β0+, M1 being better than M2.

2.2. Case 2: Neither of the Models Is Correctly Specified (or Neither of the Models Includes
the DGP)

In this situation the compared models are:

M1 : pi = F(γ0 + γ1x1i + γ2wi)
M2 : pi = F(δ0 + δ1x2i + δ2wi)

(8)

We again used the convergence result (5) to conclude that, in this case, γ∗ 6= β0+ and
δ∗ 6= β0+, it being possible that the competing models are equivalent or not. Specifically,
according to [3], there are two possible situations:

• Case 2.1: f (yi; γ∗, ai) = f (yi; δ∗, bi) that is, the density functions of yi in M1 and M2,
evaluated at the corresponding pseudo-true parameter vectors, were observationally
identical. It implies that M1 and M2 are equivalent specifications.

• Case 2.2: f (yi; γ∗, ai) 6= f (yi; δ∗, bi). In this situation the models can be:

(a) Equivalent, which means that E0[`
∗
1 ] = E0[`

∗
2 ].

(b) Non-equivalent, or E0[`
∗
1 ] 6= E0[`

∗
2 ].

Now, we present the selection criteria, whose behaviour was the aim of our paper.
Specifically, we are discussing the well-known information criteria (IC) of Akaike (AIC)
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and Schwarz (SBIC), and another criterion we call C2. To obtain them, we adopted the
discrepancy concept (see [7]). As we can see in [12], “A discrepancy measures the lack of fit
between the proposed model and the DGP, in the aspect which the researcher considers
the most relevant”. Then, the discrepancy for model M1 could be written as ∆(F1, F0), and
we wished to minimize the “overall discrepancy”, expressed as ∆

(
Fγ̂, F0

)
, or equivalently

∆(γ̂), with Fγ̂ the estimated model M1 (that is, p̂i = F(a′ iγ̂)). The estimation of the
expected overall discrepancy, Ê0∆(γ̂), constitutes the selection criterion. Details about
this procedure can be found in [7] and [12]. We assume two discrepancies, called ∆1 and
∆2. The first one is the Kullback–Leibler distance. For a model Mj, it is expressed as
∆1
(

Fj, F0
)
= KLIC(Mj, M0), and leads to the information criteria (IC) AIC and SBIC:

IC(Mj) = −
ˆ̀ j

N
+

KN(Mj)
N

(9)

where ˆ̀ j (j = 1, 2) denotes the log-likelihood of model Mj, evaluated at the corresponding
vector of estimates, k j is the number of parameters of Mj, KN(Mj) is the correction factor

(k j for AIC and
kj log N

2 for SBIC).
The second discrepancy is the mean square error (MSE) of prediction. For model M1,

this discrepancy is ∆2(F1, F0) = E0(YN+1 − F(a′N+1γ))2, with “N + 1” indicating an out-
sample observation. For any Mj model, and following the previously mentioned procedure,
the expression of the criterion is:

C2(Mj) =
SSDj

N

(
1 +

2k j

N

)
(10)

and SSDj =
N
∑

i=1

(
Yi − F̂ji

)2, the squared sum of the differences between the binary variable

and the estimated probability with model Mj. The proof of (10) is developed in [24].
The model having the criterion with the lowest value was chosen, so different criteria

could have led to a different choice. Nevertheless, we were interested in analysing if the
criteria worked well, that is, if the selection was correct, in the sense we define in the
following section.

3. Theoretical Results

In this section, we study the theoretical behaviour of the criteria, in order to prove if
they perform well. All proofs of the results we present in this section can be seen, in detail,
in [24].

We carry out an asymptotic analysis, which needs a set of initial assumptions, the
results and definitions that we state below.

Assumption 1. The x′i , a′i and b′i regressor vectors of the models specified in (1) and (2) are non
stochastic. The variables of these vectors have sample means and variances with finite limits.

Lemma 1. Let be yi a variable, which is not i.i.d., but heterogeneous (non-identical means and
non-identical variances). Then:

N−1
N

∑
i=1

a(yi, θ̃)
p→ E

[
1
N

N

∑
i=1

a(yi, θ0)

]
(11)

Proof. The proof of (11) is based on the law of large numbers for heterogeneous variables,
together with a lemma of [25].
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The law of large numbers for heterogeneous variables is expressed in the following
terms [26]: “Let the sequence {yi− µi} be independent with E (yi− µi) = 0. If E |yi − µi|1+δ≤

B < ∞ ∀i with δ > 0, then 1
N

N
∑

i=1
(yi − µi)

p→0”.

The lemma of [25] (p. 2156) is expressed as follows: “If zi is i.i.d., a (z, θ) is continuous
at θ0 with probability one, and there is a neighbourhood Γ of θ0 such that E [supθ∈Γ‖a(z, θ)‖]

< ∞, then for any θ̃
p→ θ0, N−1

N
∑

i=1
a(zi, θ̃)

p→ E[a(z, θ0)]”. This lemma, together with the

law of large numbers, allows us to write (11). �

Definition 1. M1 and M2 are equivalent models if

E0

[
log

f (yi; ai, γ∗)

f (yi; bi, δ∗)

]
= 0 (12)

which leads to: [
F0i log

F1i
F2i

+ (1− F0i) log
1− F1i
1− F2i

]
= 0 (13)

where F0i = F
(

x′i β
)
, F1i = F

(
a′iγ
∗) and F2i = F

(
b′iδ
∗).

Definition 2. M1 is closer to the DGP than M2 if:

E0

[
log

f (yi; ai, γ∗)

f (yi; bi, δ∗)

]
> 0 (14)

which leads to: [
F0i log

F1i
F2i

+ (1− F0i) log
1− F1i
1− F2i

]
> 0 (15)

Definition 3. Let R(·) be a model selection criterion. It is said that R(·) is adequate when:

(i) If M1 and M2 are equivalent, plim [R(M1)] = plim [R(M2)].
(ii) If M1 is closer than M2 to the DGP, then plim [R(M1)] < plim [R(M2)].

Now, for every case we enuntiated in the previous section, we must prove whether the definition
of “adequate criterion” is satisfied.

Result 1. The IC criteria behave well in all settings.

Proof. The basic tool for achieving this result is the comparison of Definitions 1 and 2
with Definition 3. In this sense, Definitions 1 and 2 establish the condition that must be
met when the compared models are equivalent or non-equivalent, respectively. On the
other hand, Definition 3 tells us the requirements for determining if a specific criterion is
adequate in each context (of equivalence or not).

Expression (9) can be written as:

IC(Mj) = − 1
N

N

∑
i=1

[
yi log F̂ji + (1− yi) log

(
1− F̂ji

)]
+

KN(Mj)
N

j = 1, 2 (16)

with F̂1i = F
(
a′iγ̂
)

and F̂2i = F
(
b′i δ̂
)
.

Using Lemma 1 and the convergences given in (5) for the first term, we obtain:

ˆ̀ j

N
p→ 1

N

N

∑
i=1

E0
[
yi log Fji + (1− yi) log

(
1− Fji

)]
j = 1, 2 (17)

The correction factor KN(Mj)
N converges to zero for every model.
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When the competing models are equivalent (cases 1.1, 2.1 and 2.2.(a)), the IC criteria
will be adequate if equality of Definition 3 (i) holds, which, using (17), leads to the following
expression:

1
N

N

∑
i=1

[
F0i log

F1i
F2i

+ (1− F0i) log
(1− F1i)

(1− F2i)

]
= 0 (18)

This result is always satisfied, given Definition 1, so we can say that the IC criteria
performed well.

When the models are non-equivalent, and assuming M1 is always better than M2
(cases 1.2 and 2.2.(b)), the IC criteria will be adequate if equality of Definition 3 (ii) holds,
which, using (17), leads to:

1
N

N

∑
i=1

[
F0i log

F1i
F2i

+ (1− F0i) log
(1− F1i)

(1− F2i)

]
> 0 (19)

this result being identical to Definition 2. Thus, the IC criteria performed well. �

It should be noted that KN(Mj)
N converges to zero faster for the model with a lower k j.

Additionally, expression (19) shows that AIC and SBIC are asymptotically identical, which
is not strictly true when k1 6= k2. In this situation, for a given pair of competing models,
the difference between both criteria is due to the different rate of convergence to zero
between AIC(M1)− AIC(M2) and SBIC(M1)− SBIC(M2). This difference is caused by
the corrector factor.

Specifically, we can write:

SBIC(M1)− SBIC(M2)
AIC(M1)− AIC(M2)

=
O
(

log N
N

)
O
(

1
N

) = O(log N) (20)

which means that, when N increases, the distance between the convergence rate of the nu-
merator and the denominator of expression (20) becomes larger. This implies that SBIC will
tend toward one of the models more than AIC. Which model? It is evident that, if k1 > k2,
the tendency will be toward M2, given that both AIC and SBIC selects the model with a
lower value of the criterion. It is important to remark that plim(IC(M1)− IC(M2)) = 0 is
not contradictory with a higher tendency to the model that is more parsimonious, given
that both models are equivalent.

Result 2. The C2 criterion is adequate, except in a specific situation.

Proof. Expression (10) can be written as:

C2(Mj) =

N
∑

i=1

(
yi − F̂ji

)2

N

(
1 +

2k j

N

)
j = 1, 2 (21)

Applying Lemma 1 together with convergences (5) we obtain:

SSDj

N
=

1
N

N

∑
i=1

(
yi − F̂ji

)2
p→

N
∑

i=1
E0
(
yi − Fji

)2

N
j = 1, 2 (22)

Additionally, the term
(

1 +
2kj
N

)
(j = 1, 2) converges to 1 when N→ ∞.

When the compared models are equivalent and well-specified (case 1.1), the probability
limit (22) is the same for both models. It implies that Definition 3 i) is satisfied, in other
words, the C2 criterion performed well. Note that the convergence rate is different between
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M1 and M2 when k1 6= k2. The term
2kj
N is O

(
1
N

)
and converges to zero faster for models

with a lower k j.
When the compared models are non-equivalent and only M1 is well-specified (case 1.2),

the probability limit (22) is different for each model:

SSD1

N
p→

N
∑

i=1
F0i(1− F0i)

N
= h1 (23)

SSD2

N
p→

N
∑

i=1
F0i(1− F0i)

N
+

N
∑

i=1
(F0i − F2i)

2

N
= h1 + h2 (24)

being h1 and h2 positive terms. It is straightforward to see that Definition 3 (ii) is satisfied,
so the C2 criterion performed adequately.

If neither of the competing models is correctly specified (case 2), the probability limits
of (22) for each model can be written as:

SSD1

N
p→

N
∑

i=1
F0i (1− F0i)

N
+

N
∑

i=1
[F0i − F1i]

2

N
= h1+h3 (25)

SSD2

N
p→

N
∑

i=1
F0i (1− F0i)

N
+

N
∑

i=1
[F0i − F2i]

2

N
= h1+h2 (26)

with hi (i = 1, 2, 3) being positive constants.
Now, the final conclusions depend on the relationship between the density functions.

Then, in Case 2.1, where the density functions were observationally identical (equivalent
models), F1i = F2i is satisfied. It implies that h3 = h2, so Definition 3 is verified, and the C2
criterion behaved well.

In Case 2.2. (a), with non-observationally identical density functions and equiva-
lent models, the only possibility for achieving h3 = h2 is that, on average, [F0i − F1i] =
−[F0i − F2i], or, equivalently, 2F0i = F1i + F2i. Therefore, there can be empirical works
where the criterion C2 did not behave well. The Monte Carlo experiment will allow us a
more specific analysis of the behaviour of the criterion.

Finally, in Case 2.2.(b), where the competing models were non-equivalent, we assumed
that M1 was better than M2. In order to study the power of the criterion, we applied a
strategy similar to that used in the IC criteria. That is, we related Definitions 2 and 3 (ii).
Definition 2 can be written as: (

F1i
F2i

)F0i

>

(
1− F2i
1− F1i

)1−F0i

(27)

We wanted to find the combinations of F0i, F1i and F2i that satisfy (27). The results we
obtained are summarized in Table 1.
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Table 1. Combinations of F0, F1 and F2 which leads to M1 be better than M2.

Value of F0 Condition Satisfied When M1 Is Better than M2

F0i = 0 F1i < F2i and F1i 6= 0

F0i∈ (0, 0.5]
F1i < F2i and F1i + F2i > 1

F1i > F2i and F1i + F2i < 1 and F0i ∼= 0.5
F1i < F2i and F1i + F2i < 1 and F0i ≈ 0

F0i∈ (0.5, 1)
F1i > F2i and F1i + F2i < 1

F1i > F2i and F1i + F2i > 1 and F0i ≈ 1
F1i < F2i and F1i + F2i > 1 and F0i ≈ 0.5

F0i = 1 F1i > F2i and F1i 6= 1

Definition 3 (ii) establishes that the C2 criterion behaves well if h3 < h2, that is to say:

N
∑

i=1
[(F1i − F2i)(F1i + F2i − 2F0i)]

N
< 0 (28)

For every combination presented in Table 1, we get the previous result, so the C2
criterion is adequate. �

4. Simulation Study and Discussion

The objective of the Monte Carlo experiments is twofold: confirm the theoretical
results and assess the performance of all criteria with finite samples.

The generation of the binary variable yi is based on the latent linear model that
underlies any binary model:

y∗i = x′i β + ui (29)

where y∗i is a latent (unobservable) variable which generates yi through:

yi =

{
1
0

i f
i f

y∗i > 0
y∗i ≤ 0

(30)

Under the assumption established in Section 3, and following the procedure of [27],
we obtained the values of yi. We considered different sets of parameter values and dif-
ferent kinds of explanatory variables (continuous and dummy) and the standard normal
distribution function was chosen for the error term, implying exclusive focus on probit
models. Two sample sizes N = 200 and 2000 were used; we carried out 500 replications for
each experiment. Additionally, the intercept was fixed at a value of −2, in order to avoid
a non-balanced number of ones in the sample of yi, which would lead to problems when
estimating and interpreting results.

In each of the 500 replications, we estimated M1 and M2, and calculated the value of
the IC and C2 criteria in each replication. The corresponding tables for every experiment
show the number of times that each criterion selected M1. Note that we only present tables
for N = 2000 and comment the differences from N = 200 if such differences exist. In all
cases, the DGP is pi = F(β0 + β1x1i + β2x2i).

4.1. Montecarlo Exercise When Both Models Are Correctly Specified (Case 1.1)

We consider the following well-specified models M1 and M2:

M1 ≡ pi = F(γ0 + γ1x1i + γ2x2i + γ3wi + γ4si)
M2 ≡ pi = F(δ0 + δ1x1i + δ2x2i + δ3zi)
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Firstly, we assumed γ4 = 0, so we chose between models with the same number
of parameters and, afterwards, we assumed γ4 6= 0. These settings are called A and B,
respectively; the results are presented in Table 2.

Table 2. Behaviour of the selection criteria in Case1.1 N = 2000.

DGP Specified Models

β
′ x1 x2 w z s AIC SBIC C2

Setting A

(−2,3,1) U U U N(3,1) 273 273 275
(−2,1,3) U U U N(3,1) 236 236 240
(−2,1,1) U U U N(3,1) 234 234 244
(−2,3,1) χ2 χ2 U N(3,1) 240 240 252
(−2,1,3) χ2 χ2 U N(3,1) 273 273 261
(−2,1,1) χ2 χ2 U N(3,1) 236 236 238
(−2,3,1) U χ2 U N(3,1) 247 247 245
(−2,1,3) U χ2 U N(3,1) 231 231 245
(−2,1,1) U χ2 U N(3,1) 243 243 260
(−2,3,1) U dummy U N(3,1) 259 259 269
(−2,1,3) U dummy U N(3,1) 231 231 245
(−2,1,1) U dummy U N(3,1) 242 242 261
(−2,3,1) χ2 dummy U N(3,1) 255 255 251
(−2,1,3) χ2 dummy U N(3,1) 248 248 257
(−2,1,1) χ2 dummy U N(3,1) 251 251 234

Setting B

(−2,3,1) U U U N(3,1) χ2 144 10 179
(−2,1,3) U U U N(3,1) χ2 133 10 151
(−2,1,1) U U U N(3,1) χ2 126 2 144
(−2,3,1) χ2 χ2 U N(3,1) χ2 128 12 215
(−2,1,3) χ2 χ2 U N(3,1) χ2 140 10 230
(−2,1,1) χ2 χ2 U N(3,1) χ2 130 11 185
(−2,3,1) U χ2 U N(3,1) χ2 128 9 165
(−2,1,3) U χ2 U N(3,1) χ2 106 2 192
(−2,1,1) U χ2 U N(3,1) χ2 120 5 161
(−2,3,1) U dummy U N(3,1) χ2 144 12 177
(−2,1,3) U dummy U N(3,1) χ2 145 7 153
(−2,1,1) U dummy U N(3,1) χ2 141 7 162
(−2,3,1) χ2 dummy U N(3,1) χ2 147 10 200
(−2,1,3) χ2 dummy U N(3,1) χ2 136 8 185
(−2,1,1) χ2 dummy U N(3,1) χ2 143 12 185

For setting A, we can see that the number presented in each cell was around 250 (50%
of 500 times), which is the correct behaviour for equivalent models. However, if we consider
setting B, where M1 had more irrelevant regressors than M2, we could see that the criteria
tended to select the model with fewer parameters, that is, it selected the more parsimonious
model (M2), and that this tendency grew with the sample size. This behaviour was also
correct given that both specifications were equivalent. Specifically, the most parsimonious
criterion is SBIC, so the Monte Carlo exercise corroborated this theoretical aspect of the
previous section. Additionally, we observed that neither the kind of variables nor the set of
values of the DGP parameter vector seemed to affect the behaviour of the criteria.

4.2. Montecarlo Exercise When Only One of the Models Is Correctly Specified (Case 1.2)

In these experiments, M1 and M2 are expressed as follows:

M1 ≡ pi = F(γ0 + γ1x1i + γ2x2i + γ3wi)
M2 ≡ pi = F(δ0 + δ1x1i + δ2zi)
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The theoretical results were corroborated, so all the criteria tended to select M1 for
whatever kind of explanatory variables. The corresponding table has been omitted, given
that the value in all cells was 500.

However, for N = 200 the results were not so evident, although they tended towards
adequate behaviour. Specifically, differences were found when the variables x1 and x2 were
both uniform and the weight of x2 was not greater than that of x1; this difference was more
evident for the SBIC criterion.

4.3. Montecarlo Experiment When Neither of the Models Is Correctly Specified (Case 2)

We needed to analyse each of the situations defined in Case 2 of Section 2 separately.
The two compared models are:

M1 ≡ pi = F(γ0 + γ1x1i + γ2wi)
M2 ≡ pi = F(δ0 + δ1x2i + δ2wi)

The implementation of the experiments for 2.1 and 2.2.(a) required using the re-
lationship between the true parameter vector (β0) and each of the pseudo-true param-
eter vectors (γ∗ and δ∗). In case 2.1, we should have been able to obtain the value
of β0 from them, satisfying the equality of density functions. In other terms, if we
had γ∗ = m1(β0) and δ∗ = m2(β0), we were interested in obtaining β0 that makes
f (Yi; m1

(
β0), ai) = f (Yi; m2

(
β0), bi). The same idea could be used in 2.2.(a) in order to

make E(`∗1) and E(`∗2) equal, that is, E
[
`1
(
m1
(

β0))] = E
[
`2
(
m2
(

β0))]. Nevertheless, the
non-linear equation system that we needed to solve possessed insurmountable problems.
Given that we could not obtain the exact relationship, we needed to approximate the
equalities of densities and likelihoods. To this end, we generated several DGPs modifying
the value of the parameter vector β0 and the kind of explanatory variables. Again, the
intercept was fixed at a value of −2, while β1 and β2 took values in the range of (−2, 2)
counting by 0.5 s; additionally, they took values 3, 4, 5 and 7. As a result of this strategy,
we generated 132 different DGPs. Each of the outlined DGPs lead to a specific relationship
between models M1 and M2: equivalent models (with identical or non-identical densities)
or non-equivalent models.

In order to classify the 132 experiments into the two categories, we used the following
indicators:

absel =
1
N

N

∑
i=1
|deli| (31)

AM1 ≡ times (of the N observations) that deli > 0 (32)

absdi f den =
1
N

N

∑
i=1
|di f deni| (33)

with deli = E
(
`∗1i
)
− E

(
`∗2i
)

and di f deni = f (yi; γ∗, x1, x2)− f (yi; δ∗, x1, x2).
Firstly, we classified the experiments into “containing equivalent models”, or “con-

taining nonequivalent models”. Secondly, in the first group, we distinguished identical
from non-identical densities. Finally, we classified the non-equivalent models depending
on their closeness to the DGP. The following three stages were carried out:

Step
1.

The two requirements for considering the models as equivalents are:

(R.1) A value of absel close to zero.
(R.2) A value of AM1 close to N/2.

Taking into account absel, two models will tend to be equivalent if, for most of the
observations, deli ≈ 0, which should lead to absel ≈ 0. Could we have used only this
measure to affirm that the models were equivalent? The answer is no, because we could
find absel ≈ 0 but with most of the observations satisfying E

(
`∗1i
)
> E

(
`∗2i
)
, which means

that M1 was closer to the DGP. Using AM1 instead of absel, two models will tend to be
equivalent if AM1 ≈ N/2. Could we have used only AM1 to classify the models? Again,
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the answer is no, because it could happen that AM1 ≈ N/2 but with a large value of absel,
due to large values of |deli|. Then, we need the two requirements (R.1) and (R.2).

Step
2.

To consider that two equivalent models have identical densities, a value of difden close
to zero is required.

Step
3.

If model M1 is better than M2, N/2 < AM1 < N must be satisfied, while M2 will be
better if 0 < AM1 < N/2.

Each experiment was numbered from 1 to 132, and was classified in type A, B or C, as
we can see in Table 3.

Table 3. Number of every experiment in Case 2, and types of x in the DGP (A,B,C) 1.

Number DGP Number DGP Number DGP Number DGP

A,B,C (β1,β2) A,B,C (β1,β2) A,B,C (β1,β2) A,B,C (β1,β2)

1,45,89 (1,−2) 12,56,100 (1,7) 23,67,111 (3,5) 34,78,122 (7,1)
2,46,90 (1,−1.5) 13,57,101 (3,−2) 24,68,112 (3,7) 35,79,123 (−2,3)
3,47,91 (1,−1) 14,58,102 3,−1.5) 25,69,113 (−2,1) 36,80,124 (−1.5,3)
4,48,92 (1,−0.5) 15,59,103 (3,−1) 26,70,114 (−1.5,1) 37,81,125 (−1,3)
5,49,93 (1,0.5) 16,60,104 (3,−0.5) 27,71,115 (−1,1) 38,82,126 (−0.5,3)
6,50,94 (1,1) 17,61,105 (3,0.5) 28,72,116 (−0.5,1) 39,83,127 (0.5,3)
7,51,95 (1,1.5) 18,62,106 (3,1) 29,73,117 (0.5,1) 40,84,128 (1.5,3)
8,52,96 (1,2) 19,63,107 (3,1.5) 30,74,118 (1.5,1) 41,85,129 (2,3)
9,53,97 (1,3) 20,64,108 (3,2) 31,75,119 (2,1) 42,86,130 (4,3)

10,54,98 (1,4) 21,65,109 (3,3) 32,76,120 (4,1) 43,87,131 (5,3)
11,55,99 (1,5) 22,66,110 (3,4) 33,77,121 (5,1) 44,88,132 (7,3)

1 In type A both variables are U(0,1), in B x1 ∼ U(0,1) and x2 ∼ χ2
1, and C has both variables χ2

1.

Those experiments with an extreme percentage of zeros in the sample of the binary
variable were omitted. Table 4 presents the experiments with the lowest value of absel, the
values of AM1 closer to 1000, and the values of absdifden near zero.

Table 4. Experiments sequenced by each of the three indicators (absel, AM1 and absdifden).

Experiments with the Lowest
Value of absel Experiments with AM1 around 1000 Experiments with the Lowest

Value of absdifden

Exp. absel AM1 Exp. AM1 absel Exp. absdifden

3 0.00716535 1001 57 1011 0.17489579 27 0.0224
27 0.00716886 1003 27 1003 0.00716886 3 0.0227
28 0.00731291 505 3 1001 0.00716535 28 0.0257
4 0.00737039 1498 6 1000 0.01854382 4 0.0261
5 0.01279404 1514 63 995 0.25329468 48 0.0325
29 0.0127966 510 21 991 0.13463303 47 0.0341
48 0.01515962 1035 109 980 0.44042798 46 0.0349

45 0.0354
29 0.0510

We concluded that experiments 27, 3 and 6 included equivalent models, 27 and 3
having identical densities. The rest of the experiments corresponded to non-equivalent
models, and we needed to classify them according to their closeness to the DGP. Given that
AM1 was the adequate indicator, Table 5 shows all the experiments sequenced from the
highest to the lowest value of this measure.
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Table 5. Behaviour of the selection criteria in Case 2. N = 2000 1.

Exp. AM1 IC C2 Exp. AM1 IC C2 Exp. AM1 IC C2 Exp. AM1 IC C2

104 1868 500 500 20 1393 500 500 129 805 0 0 84 315 0 0

34 1861 500 500 76 1366 500 500 47 786 2 22 37 315 0 0

17 1846 500 500 119 1365 500 500 65 764 0 0 50 261 0 0

16 1834 500 500 30 1359 499 499 112 719 0 0 123 245 0 0

33 1827 500 500 13 1342 500 500 128 708 0 0 124 232 0 0

92 1825 500 500 107 1321 500 500 96 705 0 0 51 226 0 0

103 1809 500 500 88 1292 500 500 22 701 0 0 10 224 0 0

91 1807 500 500 42 1288 500 500 66 686 0 0 114 209 0 0

90 1794 500 500 118 1268 500 500 7 685 2 2 125 208 0 0

102 1779 500 500 59 1252 500 500 46 668 0 5 52 204 0 0

89 1779 500 500 132 1219 500 500 35 662 0 0 11 195 0 0

101 1753 500 500 108 1188 500 500 41 636 0 0 113 194 0 0

32 1751 500 500 131 1156 500 500 67 601 0 0 69 190 0 0

105 1691 500 500 62 1154 67 244 45 589 0 2 115 180 0 0

18 1691 500 500 94 1112 441 451 117 583 0 0 53 170 0 0

15 1675 500 500 58 1112 352 494 97 576 0 0 39 170 0 0

78 1641 500 500 130 1093 500 500 23 537 0 0 38 170 0 0

122 1606 500 500 87 1067 447 496 68 518 0 0 116 167 0 0

44 1582 500 500 48 1035 72 195 98 513 0 0 54 162 0 0

121 1556 500 500 57 1011 41 322 29 510 1 1 70 162 0 0

19 1540 500 500 27 1003 245 240 28 505 10 13 126 161 0 0

120 1538 500 500 3 1001 250 245 8 504 0 0 79 157 0 0

31 1524 500 500 6 1000 249 252 36 494 0 0 12 137 0 0

77 1516 500 500 63 995 0 0 74 491 0 0 71 133 0 0

5 1514 499 498 21 991 240 223 99 486 0 0 56 131 0 0

93 1510 500 500 109 980 357 324 40 475 0 0 55 129 0 0

14 1504 500 500 86 932 0 2 85 444 0 0 80 128 0 0

4 1498 484 484 110 891 0 0 100 414 0 0 73 104 0 0

60 1492 500 500 64 877 0 0 49 390 0 0 81 97 0 0

106 1474 500 500 95 835 0 0 24 385 0 0 72 84 0 0

43 1438 500 500 111 813 0 0 127 329 0 0 83 80 0 0

61 1429 500 500 75 813 0 0 9 325 0 0 82 57 0 0
1 Experiments 1, 2, 25 and 26 are omitted, due to extreme percentage of ones/zeros in the samples.

The variable w is always generated as N(3,1) and IC groups AIC and SBIC together,
because the results of both criteria were identical.

We find the experiments with equivalent models at the middle of this table. Above
them (the upper part of the table), we see the experiments where M1 was better and, below
them (the lower part), those where M2 was the best model. The results showed that, in the
upper end of the table, the values in columns IC and C2 tended towards 500 and, in the
lower end, tended towards zero, corroborating the theoretical conclusions.

The experiments that contained equivalent models with identical densities (27 and 3)
corroborated the theoretical results. On the other hand, in experiment 6 (equivalent models
with non-identical densities), both IC and C2 performed well. Nevertheless, the theoretical
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results for C2 concluded that this criterion was adequate only in some situations. We can
affirm that experiment 6 belonged to one of these situations, characterized by uniform
distribution of the DGP variables, and similar (but not oversized) weights for both variables.
We think that these characteristics could cause C2 to behave well.

Finally, we observed a non-adequate behaviour of the criteria in some experiments. In
the upper part of the table, experiments 62, 48 and 57 showed values far less than 500 and
large differences between the values of the criteria columns. In the lower part of the table,
we find that experiments 21 and 109 have IC and C2 column values far from 0. Could this
atypical behaviour be due to anomalous observations? Taking into account that deli is the
main element which underlies the indicators used to classify the experiments, we studied
whether extreme values of |deli| were always associated with the same selection (same sign
of deli). We found that this happened in all the experiments, except in 21. Eliminating these
extreme values, the behaviour of the criteria became adequate, as we show in Table 6.

Table 6. Atypical experiments in Case 2. Behaviour of the selection criteria.

Experiment (β1,β2) Type of x N AM1 absdel IC C2

62 (3,1) B 1800 1144 0,1517 500 500

48 (1,−0.5) B 1750 1035 0,0097 377 499

57 (3,−2) B 1800 1003 0,12 499 500

109 (3,3) C 1925 909 0,4 0 0

As a final comment, we observed a greatly reduced number of experiments with
equivalent models. We understood that this was logical, because the experiments of Case 2
corresponded to pairs of models where the DGP was not nested in M1 or M2. Given that
model M1 contained the variable x1 and model M2 contained x2 (x1 and x2 being the only
DGP variables), it was very difficult to find cases where both the M1 and M2 models were
equivalent.

When we re-executed the analysis for a sample size of 200, the results were similar
in general terms, although the tendency toward correct behaviour of the criteria was
slower. Nevertheless, we could affirm that the three criteria performed quite well for finite
sample sizes.

5. Conclusions

Within the framework of overlapping binary models, we have studied the power of
model selection criteria: the well-known information criteria AIC and SBIC, and the C2
criterion, based on the mean square error of prediction.

As we previously mentioned, two binary models are overlapping if both have the
same functional form (both probit or both logit), with some common explanatory variables
and some specific variables. In this article, we distinguished two cases: (i) at least one
of the competing models is well-specified, and (ii) neither of them is correctly specified.
This last case is an important aspect of our work because it is not commonly considered in
empirical works.

From a theoretical point of view, we have classified the competing models as equivalent
or non-equivalent. Once this classification had been carried out, the task was to define the
requirement that a given criterion must satisfy to be considered as adequate. Specifically,
if two models are equivalent, the probability limits of a given criterion must be the same
in both models. However, if one of them is better, its corresponding limit must be lower
than that of the other model. The theoretical analysis carried out has confirmed that all the
criteria performed well in every situation. Only C2 did not, sometimes, behave well in a
specific alternative.

These theoretical results have been corroborated by a Monte Carlo experiment. The
most complicated situation to simulate was, as we expected, when neither of the two
models were well-specified. This situation can lead to three possibilities: equivalent models
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with identical densities, equivalent models with non-identical densities, and non-equivalent
models.

In order to develop this part of the Monte Carlo exercise, we had to generate 132
different DGPs, leading to 132 different experiments. Each of the experiments corresponded
to one of the three theoretical relationships mentioned above. To establish the specific
relationship, we have defined three indicators:

(a) The average of the absolute differences between the expected log-likelihoods (at the
pseudo-trues) of both models. We have denoted it as absel.

(b) The number of observations in the sample where the expected log-likelihood in model
M1 is larger than in M2. Note that we have assumed that M1 is the closest to the DGP.
This indicator is called AM1.

(c) The average of the absolute differences between the density functions (at the pseudo-
trues) of both models. We have denoted it as absdifden.

The general conclusion is that the three criteria behaved well for overlapping binary
models: when neither of the two competing models was well-specified, the criteria tended
to choose the best of them, that is, the closest to the DGP. In the most commonly studied
case, where at least one of the competing models was correct, our conclusion was that the
criteria also performed well, as we expected. Furthermore, when both models were correct,
the criteria tended to choose the most parsimonious model.

It is important to note that these criteria are also used when we compared an extensive
set of models, correctly specified or misspecified. The criteria AIC, SBIC and C2 allow us to
order them, being in the first places those correctly specified, which will be equivalent to
each other. Among them, the first one (the selected model) will be the most parsimonious
if we use the SBIC criterion. The misspecified models will be at the bottom of the ranking.

This paper has been focused on the restricted framework of overlapping binary models.
In order to complete this analysis, a future work should study the behaviour of AIC,
SBIC and C2 in the non-nested framework. Moreover, the wider context of multinomial
dependent variables could be the aim of future research. Given that the MLE procedure
was also applied to estimate these models, the formal expression of the IC would be quite
straight, while C2 would require a deeper analysis.
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