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Abstract: This work presents three novel speech recognition architectures evaluated on the Spanish
RTVE2020 dataset, employed as the main evaluation set in the Albayzín S2T Transcription Challenge
2020. The main objective was to improve the performance of the systems previously submitted by
the authors to the challenge, in which the primary system scored the second position. The novel
systems are based on both DNN-HMM and E2E acoustic models, for which fully- and self-supervised
learning methods were included. As a result, the new speech recognition engines clearly outper-
formed the performance of the initial systems from the previous best WER of 19.27 to the new best
of 17.60 achieved by the DNN-HMM based system. This work therefore describes an interesting
benchmark of the latest acoustic models over a highly challenging dataset, and identifies the most
optimal ones depending on the expected quality, the available resources and the required latency.

Keywords: automatic speech recognition; deep learning; Spanish; convolutional neural networks;
recurrent neural networks; embedded systems; quartznet; Wav2vec2.0; self-supervised learning

1. Introduction

The Albayzín-RTVE 2020 Speech to Text Transcription Challenge (http://catedrartve.
unizar.es/s2tc2020.html, accessed on 28 December 2021) called for Automatic Speech Recog-
nition (ASR) systems that were robust against realistic TV shows. Nowadays, applying
speech to text technologies to the broadcast domain is a growing trend that aims to ap-
proach ASR technology to automate different applications such as subtitling or metadata
generation for archives. Although most of this work is still performed manually or through
semiautomatic methods (e.g., re-speaking), the current state of the art (SoA) in speech
recognition suggests that this technology can be exploitable autonomously without or with
minor post-edition effort, mainly on contents with optimal audio quality and clean speech
conditions. The use of Deep Learning algorithms along with the increasingly availability
of speech data have made it possible to introduce this technology in such a complex sce-
nario through the use of systems based on Deep Neural Networks (DNNs) or more recent
architectures based on the End-To-End (E2E) principle.

Besides the broadcast domain, the significant increase in the ASR field has brought
special interests to integrate this technology in many other applications and devices. For in-
stance, considering speech as the most natural means of communication between humans,
conversational assistants have acquired great relevance in our daily lives, both in the per-
sonal and professional environments [1]. In addition, other main sectors such as Industry,
Healthcare or Automotive have already discovered the usability of speech technologies
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mainly with the use of voice control applications integrated in machines, medical instru-
ments or technical devices. These interests have triggered special challenges for the current
ASR technology, mainly related to the need to optimise and reduce neural models in order
to be integrated in devices with low computational power but without a noticeable loss
of quality. With the aim of meeting the requirements of embedded systems, the most
common optimisation techniques rely on architecture and format optimisation as well as
quantisation [1].

In addition to the compression of neural models, another big topic in the ASR field to-
day corresponds to the use of large pre-trained models generated with self-supervised learn-
ing methods and a big amount of unlabelled data. The main idea behind is that these models
can provide a solution in those challenging scenarios in which the amount of labelled data
are scarce in any language or domain. Self-supervised models like Wav2vec2.0 [2] and
HuBERT [3] learn first from a large scale unlabelled speech corpus in different languages.
The knowledge acquired during this initial training is usually then transferred to down-
stream tasks by using the model as a feature extractor or by fine-tuning it with in-domain
labelled data in the target language.

In this paper, we explore and evaluate three novel ASR architectures on the Span-
ish RTVE2020 database [4]. The first system is based on the Kaldi toolkit [5], and it was
constructed on the novel Multistream CNN architecture designed for robust acoustic mod-
elling in speech recognition tasks. This architecture processes input speech with diverse
temporal resolutions by having stream-specific dilation rates to convolutional neural net-
works (CNNs) across multiple streams. The second system presented in this paper is
based on the NVIDIA’s Quartznet E2E architecture [6], designed by the need to reduce
the size and complexity of the ASR E2E models and to make them lighter, faster and
more feasible to deploy on embedded hardware while maintaining the SoA-level accu-
racy. The Quartznet architecture is composed of multiple blocks with residual connections
in between. Each block consists of one or more modules with 1D time-channel separable
convolutional layers, batch normalisation, and ReLU layers. Finally, for the last architec-
ture presented, we explored the application of the self-supervised E2E model Wav2vec2.0
proposed by Facebook AI [2] as the pretrained model. This model was then fine-tuned with
the same in-domain labelled data employed to train the first two ASR systems described
above. The Wav2vec2.0 model encodes speech audio via a multi-layer convolutional neural
network and then it masks spans of the resulting latent speech representation, which are
fed to a Transformer network to build contextualised representations.

Throughout the paper, we compared the performance of these three novel architectures
with the ones obtained by the primary system and the third contrastive system previously
presented by the authors [7] to the Albayzín-RTVE 2020 Speech to Text Transcription Chal-
lenge. The primary system, which reached the second position in the competition, was
trained with the Kaldi toolkit and included a hybrid CNN-TDNN-F acoustic model, whilst
the third contrastive system was based on a lighter Quartznet acoustic model [6]. The com-
parison presented in this work demonstrated not only an evolution and improvement of
similar architectures, such as the DNN-HMM or Quartznet systems, but also the inclusion
of a new architecture based on self-supervised learning methods evaluated over the same
evaluation set. All the systems were built by using the same speech labelled data to train
and/or fine-tune the corresponding acoustic models. Likewise, we used the same text data
to construct the different language models to perform the decoding and rescoring processes
of the initial hypothesis.

The remainder of this paper is organised as follows: Section 2 introduces recent
advances in speech recognition technology. Section 3 describes the corpora used to train
and evaluate the systems, whilst in Section 4 we describe the different speech transcription
systems, including the three novel architectures and the two systems previously submitted
to the challenge. Section 5 presents the results of the systems on the same evaluation set of
the RTVE2020 database, in addition to the number of resources and processing time needed
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per system to process the whole test set. Finally, Section 6 draws the main conclusions and
the lines of future work.

2. Recent Advances in Speech Recognition

During the last few years, ASR systems have positively evolved at acoustic mod-
elling with the integration of DNNs in combination with Hidden Markov Models (HMMs)
to outperform traditional approaches [8]. More recently, new attempts have been focused
on building E2E ASR architectures [9], which directly map the input speech signal to char-
acter sequences and therefore greatly simplify training, fine-tuning and inference [10–14].
Once the potential of the E2E architectures for speech recognition was demonstrated [9],
and considering the need to reduce the size and complexity of the ASR models due to their
large hardware requirements, new architectures arose to make these models more optimal
to be deployed on embedded hardware without loss of quality. More recently, driven
by the increasing availability of data in major languages and the scarcity of annotated
data in minority languages or specific domains, novel approaches have emerged focused
on training big neural models through self-supervised learning methods and making use
of hundreds of thousands of unlabelled acoustic data. Nowadays, most of the efforts
in the field seem to be focused on this last direction, given the availability of pre-trained
models and their high performance when being used as a feature extractor or when they
are fine-tuned with in-domain data [15].

Nevertheless, the more conventional hybrid acoustic models also continue to evolve,
improving benchmark results over well-known datasets like LibriSpeech [16]. Within the Kaldi
community, a novel neural network architecture was recently presented, known as Multistream
CNN [17]. The Multistream CNN acoustic model was inspired in the work presented in [18]
but leaving out the multi-headed self-attention layers. This model processes input speech
with diverse temporal resolutions by having stream-specific dilation rates to CNNs across
multiple streams to achieve the robustness. A factorised time-delay neural network (TDNN-F)
is stacked in each stream, while the dilation rate for the TDNN-F layers in each stream is
chosen from multiples of 3 of the default sub-sampling rate for both training and decoding.
The output embedding vectors from each stream are concatenated and followed by ReLU, batch
normalisation and a dropout layer, which is finally projected to the output layer via a couple of
fully connected layers. This hybrid model achieved very competitive results on the Librispeech
test-clean/other sets in combination with the efficient self-attentive SRU [19] language model.
Specifically, WER values of 1.75 and 4.46 were reported on the test-clean/other partitions of
the Librispeech dataset, respectively [19].

With the aim of building lighter but competitive E2E models for speech recognition,
NVIDIA proposed Quartznet [6], based on the main Jasper architecture [20]. This archi-
tecture consists of a new E2E neural acoustic model composed of multiple blocks with
residual connections in between. Each block consists of one or more modules with 1D
time-channel separable convolutional layers, batch normalisation, and ReLU layers. They
reached near-SoA error rates on the LibriSpeech dataset, for which WER values of 2.69 and
7.25 were achieved on the test-clean/other sets [6], respectively. These results were reached
with the model 15 × 5 Quartznet, which contained 18.8 million parameters, in contrast
to other larger E2E architectures such as 10 × 5 Jasper (333 million) [20], PaddlePaddle
Deep-Speech2 (49 million) [9] or Wav2Vec2.0 (95 to 317 million) [2].

Nowadays, many of the recent works in the ASR field seem to be focused on taking
advantage of big acoustic models trained with self-supervised learning methods and a
large amount of unlabelled data. Facebook AI demonstrated for the first time that learning
powerful representations through self-supervised methods from big amounts of unlabelled
speech and then fine-tuning on transcribed speech can enhance neural models trained
with semi-supervised techniques [2]. Their experiments demonstrated the great potential
of using large pre-training models estimated with unlabelled data and the impact of
employing a different amount of labelled data for fine-tuning the model. For instance,
using a large model pre-trained on 60,000 h and fine-tuned on 10 min of labelled training



Appl. Sci. 2022, 12, 1889 4 of 16

data, they reached Word Error Rates (WER) of 4.8 and 8.2 on test-clean/other of Librispeech,
respectively, using a Transformer language model (LM). Increasing the labelled data to
100 h and using the same LM, they achieved a WER of 2.0 and 4.0 on the same test set.

Nevertheless, self-supervised approaches are challenging mainly because there is not
a predefined lexicon for the input sound units during the pre-training phase. Moreover,
sound units can be variable in length since an explicit segmentation is not provided [21].
In order to deal with these problems, Facebook AI released HuBERT (Hidden-Unit BERT),
a new approach for learning self-supervised speech representations [3]. Unlike Wav2vec2.0,
the HuBERT model learns not only acoustics, but also language models from continuous
inputs. First, the model encodes unmasked audio inputs into meaningful continuous latent
representations, which map to the classical acoustic modelling problem. In a next step,
the model captures the long-range temporal relations between learned representations
to reduce the prediction error. This work mainly focuses on the consistency of the k-
means mapping from audio inputs into discrete targets, which enables the model to focus
on modelling the sequential structure of input data. HuBERT has shown that it can
overcome other SoA approaches on speech representation learning for speech recognition.
In the work presented in [21], WER values of 1.8 and 2.9 were reported on test-clean/other
of the LibriSpeech dataset, respectively, using a Transformer LM.

On the other hand, at the language model level, deep Transformers or LSTM-RNN
based language models have shown better performance than the traditional n-gram models
especially during the re-scoring of the initial lattices [22]. More recently, the novel network
architecture Self attentive simple Recurrent Unit (SRU) shows interesting improvements
on the rescoring of the initial hypothesis [19].

The ASR engines presented in this work were built following the hybrid DNN-HMM,
Quartznet, and Wav2vec2.0 architecture basis, in order to compare the performance of
the systems trained with the same corpora as well as their feasibility to be deployed
in different platforms, from high-performance servers to embedded systems.

3. Corpora Description

In this section, the training and evaluation corpora are described in detail. With respect
to the training corpora, all the systems presented in this work shared the same acoustic and
text data to train and/or fine-tune the initial models. On the other hand, the evaluation
data are composed entirely of the RTVE2020 database [4].

3.1. Training Corpora
3.1.1. Acoustic Corpus

The acoustic corpus was composed by annotated audio contents from seven different
datasets, summing up a total of 743 h and 35 min. The following Table 1 presents the final
number of hours containing only speech in each of the datasets.

Table 1. Duration of the speech segments for each dataset with their corresponding licenses.

Dataset Duration License

RTVE2018 112 h 30 min Non-Commercial
SAVAS 160 h 58 min Commercial/Research

IDAZLE 137 h 8 min Non-Commercial
A la Carta 168 h 29 min Non-Commercial

Common Voice 158 h 9 min Mozilla Public License 2.0
Albayzin 5 h 33 min Commercial/Academic
Multext 0 h 47 min Commercial/Academic

Total 743 h 35 min

The RTVE2018 dataset [23] was released by RTVE and comprises a collection of TV
shows drawn from diverse genres and broadcast by the public Spanish National Television
(RTVE) from 2015 to 2018. This dataset was originally composed by 569 h and 22 m of
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audio with a high portion of imperfect transcriptions and, thus, they could not be used
as such for training. Therefore, a forced-alignment was applied in order to recover only
the segments transcribed with a high literality, obtaining a total of 112 h and 30 min of
nearly correctly transcribed speech segments.

The SAVAS corpus [24] is composed of broadcast news contents in Spanish from 2011
to 2014 of the Basque Country’s public broadcast corporation EiTB (Euskal Irrati Telebista),
and includes annotated and transcribed audios in both clear (studio) and noisy (outside)
conditions. The IDAZLE corpus is integrated by TV shows from the EiTB broadcaster as
well, and it comprises a more varied and rich collection of programs of different genres and
styles. TV shows are also the contents which compose the A la Carta (https://www.rtve.
es/alacarta/, accessed on 28 December 2021) the acoustic corpus, including 265 contents
broadcasted between 2018 and 2019 by RTVE.

The Common Voice dataset [25] is a crowdsourcing project started by Mozilla to create
a free and massively-multilingual speech corpus to train speech recognition systems. Fi-
nally, the well-known and clean Albayzin [26] and Multext [27] datasets were also included,
mainly to favour the initial training steps and alignments of the systems.

3.1.2. Text Corpus

Regarding text data, different sources were employed to obtain the enough language
and domain coverage as close as possible to the contents of the RTVE2020 database. The fol-
lowing Table 2 presents the number of words provided by each of the text corpora.

Table 2. Description of the text corpus.

Corpus #Words

Transcriptions 7,946,991
RTVE2018 56,628,710
A la Carta 106,716,060
Wikipedia 489,633,255

Total 660,925,016

A total of almost 661 million words were thus compiled and used to estimate the lan-
guage models for decoding and rescoring purposes. The Transcriptions text corpus corre-
sponds to the text transcriptions of the all audio contents used to train the acoustic models.
The RTVE2018 text corpus contains all the text transcriptions and re-spoken subtitles in-
cluded within the RTVE2018 dataset, whilst the A la Carta corpus is integrated by subtitles
taken from the “A la Carta” web portal, as a result of a collaboration between RTVE and
Vicomtech. Finally, the Wikipedia corpus contains texts of the Wikipedia portal gathered
in 2017 from Wikimedia (https://dumps.wikimedia.org/, accessed on 28 December 2021).

3.2. Evaluation Data
RTVE2020 Database

The RTVE2020 database served as the principal evaluation test of this work and
the Albayzín Speech To Text Transcription Challenge 2020. It is composed of a series of TV
shows of different genres which were broadcast by the public Spanish Television (RTVE)
from 2018–2019. The database is composed of a total of 55 h and 40 min of audio, and it
was fully transcribed by humans to obtain literal references. These references are presented
in STM format, which contain time marked segments each including the waveform’s
filename and channel identifier, the speaker, the begin and end time, optional subset label
and the literal transcription of the segment. The type of TV shows included in the database
are presented in Table 3.

https://www.rtve.es/alacarta/
https://www.rtve.es/alacarta/
https://dumps.wikimedia.org/


Appl. Sci. 2022, 12, 1889 6 of 16

Table 3. TV shows included in the RTVE2020 dataset. This information was partially gathered
from [4].

TV Program Duration Description

Ese programa del que Ud. habla 01:58:36 A TV program that reviews daily political, cultural, socialand sports news
from the perspective of comedy.

Los desayunos de RTVE 10:58:34 The daily news, politics, interviews and debate program.

Neverfilms 00:11:41 A webseries that parody humorously trailers of series and movies
well-known to the public.

Si fueras tú 00:51:14 Interactive series that tells the story of a young girl.

Bajo la red 00:59:01 A youth fiction series whose plot is about a chain of favours on the internet.

Comando actualidad 04:01:31 A show that presents a current topic through the choral gaze of
several street reporters.

Boca norte 01:00:46 A story of young people who dance to the rhythm of trap.

Wake-up 00:57:28 A story that combines science fiction, a post-apocalyptic Madrid and lots
of action inspired in video games.

Versión española 02:29:12 Program dedicated to the promotion of Spanish and Latin American cinema.

Aquí la tierra 10:26:02 A magazine that deals with the influence of climatology and meteorology
both personally and globally.

Mercado central 08:39:47 A Spanish soap opera set in a today’s Madrid market.

Vaya crack 05:06:00 A contest where contestants take multiple quiz designed to test
their abilities in several disciplines.

Cómo nos reímos 02:51:42 A program dedicated to the great comedians and their work on RTVE programs.

Imprescindibles 03:12:31 A documentary series on the most outstanding figures of Spanish culture
in the 20th century.

Millennium 01:56:11 Debate show for the spectators of today, accompanying them
in the analysis of everyday events.

Total duration 55:40:16

As it can be observed in the description of the programs shown in Table 3, most
of the TV shows include content with spontaneous speech, thus significantly increasing
the difficulty of automatically transcribing this database. Despite the fact that the database
is not correctly balanced with respect to the duration of each TV program, most of them
share similar artefacts typical of informal speech.

Los desayunos de RTVE and Aquí la tierra are the two shows with the longest duration
in the database. Although in the former some segments with orderly and formal speech
can be found, it also includes interviews and political debates. Similarly, Aquí la tierra
include formal and informal speech segments as well, combining weather reports usually
performed by one speaker with interviews in which spontaneous speech is much more
present. The soap opera Mercado central is the third in duration, and its main difficulty
is related to the acted and emotional speech, which ASR engines are not usually trained
with. Nevertheless, probably the most complex contents correspond to Cómo nos reímos,
Vaya crack and Ese programa del que usted me habla, which together sum up a total of almost
ten hours in the database. These contents are composed entirely of spontaneous speech,
including sketches, overlapping speech, artistic performances, laughs, fillers, among other
artefacts. Comando actualidad adds the difficulty of including spontaneous interviews and
reports on the street, whilst Imprescindibles incorporates multi-channel and far-field low
quality recordings. Finally, programs like Millenium and Versión española, which sum up
to less than five hours, expose a priori a lower difficulty, since they include content with
more formal speech, although the latter could integrate parts of movies.
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In summary, the RTVE2020 database is a challenging evaluation set of Spanish TV
shows in which the types of content that generate the greatest problems to the ASR engines
today predominate.

4. Systems Description and Configuration

In this section, all the systems presented in this work are described in more detail.
In the first subsection, the three novel ASR architectures are described. These architectures
include systems built on the top of (1) the Kaldi toolkit, (2) the Quartznet Q15×5 architecture
of NVIDIA, and (3) the Wav2vec2.0 model.

On the other hand, the two systems selected as baseline systems are presented
in the second subsection. These baseline systems correspond to the DNN-HMM based
primary system presented to the Albayzín S2T Challenge 2020, which scored the second
position in the competition, and the third contrastive system based on the Quartznet
Q5×5 architecture.

4.1. Novel ASR Architectures
4.1.1. Multistream CNN Based System

The Multistream CNN based ASR engine was built on the top of the Kaldi toolkit through
the nnet3 DNN setup and following the egs/librispeech/s5/local/chain/run_multistream_
cnn_1a.sh recipe from the ASAPP Research repository (https://github.com/asappresearch,
accessed on 28 December 2021).

The Multistream CNN architecture is illustrated in Figure 1. The acoustic model
is composed by an initial set of five 2D-CNN layers in charge of processing the given
input speech frames augmented dynamically through the SpecAugment [28] technique.
Each embedding vector outputted from the single-streamed set of CNN layers in each time
step is then inserted as the input of each of the three stacks of TDNN-F layers, combined
with a dilation rate configuration of 6-9-12. Each stack is composed of 17 TDNN-F
layers, with an internal cell-dimension of 512, a bottleneck-dimension of 80 and a dropout
schedule of ‘0,0@0.20,0.5@0.5,0’. The number of training epochs was set to six, with
an initial and final learning rates of 10−3 and 10−5, respectively, and a mini-batch size of 64.
The input vector corresponded to a concatenation of 40-dimensional high-resolution MFCC
coefficients, augmented through speed (using factors of 0.9, 1.0, and 1.1) [29] and volume
(with a random factor between 0.125 and 2) [30] perturbation techniques, and the appended
100 dimensional i-Vectors.

Figure 1. Architecture of the Multistream CNN acoustic model composed by an initial set of five
2D-CNN layers followed by three stacks of 17 TDNN-F layers. This figure is inspired by the one
presented in [17].

This system included a 3-gram language model for decoding and a 4-gram pruned
RNNLM model for lattice-rescoring following the work presented in [31]. The 3-gram
LM was trained with texts coming from the Transcriptions, RTVE2018 and A la Carta cor-
pora presented in Table 2, and the 4-gram pruned RNNLM model was estimated adding
the Wikipedia text corpus as well.

https://github.com/asappresearch
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4.1.2. Quartznet Q15×5 Based System

The Quartznet family of models are E2E ASR architectures completely based on 1D
Time-Channel Separable Convolutional layers with residual connections, as it is illustrated
in Figure 2. This design is based on the Jasper architecture [20] but with many modifications
focused on considerably reducing the number of parameters and, therefore, the computing
resources needed. As the most novel architecture, we trained and evaluated the Q15×5
architecture, which is described as follows.

Figure 2. Architecture of the Quartznet ASR model of NVIDIA. The input spectrogram of the audio
signal is first processed by a 1D CNN layer and then fed into a series of five groups of blocks.
Each group is composed of three blocks with residual connection between them in the Q15×5
architecture and one block for the Q5×5 architecture. Blocks are formed by a module composed of
a Time-Channel Separable CNN repeated five times. Finally, a sequence of 3 CNN feed the output
to a trainable CTC layer. This figure is based on the one presented in [6].

The model initially integrates a 1D Convolutional layer (kernel(k) = 33, output channels
(c) = 256) processing the spectrogram input from each speech frame. This layer is then
followed by five groups of blocks. On the Q15×5 architecture, each group of block is
composed of a block Bi repeated three times with residual connections in between. Each Bi
is composed of a module repeated five times and composed of (i) a k-sized depth-wise
convolutional layer, (ii) a point-wise convolution, (iii) a batch normalisation layer, and
(iv) a ReLU. The configuration of the CNN for each Bi was: B1 (k = 33, c = 256), B2 (k = 39,
c = 256), B3 (k = 51, c = 512), B4 (k = 63, c = 512) and B5 (k = 75, c = 512). Finally, there
are three additional convolutional layers C1 (k = 87, c = 512), C2 (k = 1, c = 1025) and
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a point-wise convolutional layer (k = 1, c = labels), followed by a Connectionist Temporal
Classification (CTC) layer.

During training, a CTC loss function was employed to measure the prediction errors,
in addition to the Novograd optimiser with beta values of 0.8 and 0.5 and a triangular
cyclical learning rate policy during five cycles of 60 epochs for a total of 300 epochs, as it
was described in [32]. The initial and minimum learning rates were set to 0.015 and 10−5,
respectively, whilst the weight decay was set to 10−3. The training process was performed
on four GPU cards, applying a batch size of 20 each and mixed precision training. Our
resulting Q15×5 network configuration contained 18.9 million parameters.

Additionally, a 5-gram language model was trained with the Transcriptions, RTVE2018
and A la Carta corpora. This language model was employed during decoding with a CTC
beam-search decoder based on the pyctcdecode library [33]. The decoding was performed
with a beam-width of 256, a α = 0.5 and β = 1.

4.1.3. Wav2vec2.0 Based System

Wav2vec2.0 [2] is a self-supervised E2E architecture based on CNN and Transformer
layers schematically represented in Figure 3. The Wav2vec2.0 model maps speech audio
through a multi-layer convolutional feature encoder f : χ→ Z to latent speech represen-
tations z1, . . . , zT , which are fed into a Transformer network g : Z → C to output context
representations c1, . . . , cT . These context representations are then quantised to q1, . . . , qT
to represent the targets in the self-supervised learning objective [2,34]. The feature encoder
contains seven blocks and the temporal convolutions in each block include 512 channels
with strides (5, 2, 2, 2, 2, 2, 2) and kernel widths (10, 3, 3, 3, 3, 2, 2). The Transformer used was
composed by 24 blocks, a model dimension of 1024, an inner dimension of 4096 and a total
of 16 attention heads.

Figure 3. Wav2vec2.0 architecture representation. The raw audio signal is mapped to speech repre-
sentations that are fed into a transformer network to output context representations. Context rep-
resentations are then quantised to represent targets in the self-supervised task. This figure is based
on the one presented in [2].

As the main baseline Wav2vec2.0 model, in this work, we selected the pretrained
Wav2Vec2-XLS-R-300M model (https://huggingface.co/facebook/wav2vec2-xls-r-300m,
accessed on 28 December 2021), which was self-supervised pre-trained with 436k h of
unlabelled speech data in 128 languages from the VoxPopuli [35], MLS [36], Common-
Voice [25], BABEL (corpus collected under the IARPA BABEL research program), and

https://huggingface.co/facebook/wav2vec2-xls-r-300m
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VoxLingua107 [37] corpora. The Wav2Vec2-XLS-R-300M is one of the different versions of
the Facebook AI’s XLS-R multilingual model [38] composed by 300 million of parameters.

With the aim of adapting this pre-trained model to the domain, we fine-tuned the Wav2Vec2-
XLS-R-300M model for a total of 50 epochs in two steps, and, using the acoustic corpus defined
above, augmented dynamically during training through the SpecAugment technique. First, we
evolved the pre-trained model for 30 epochs with a maximum learning rate of 10−4. We used
the cosine function as the learning rate annealing function with a warm up during the initial
10% of the training, whilst the batch-size was set to 256. This model was later fine-tuned
for 20 additional epochs by modifying the maximum learning rate to 5 × 10−5.

Finally, the decoding was performed with the same 5-gram language model employed
for the decoding of the previous Q15×5 based system, but with a beam-width of 256, α = 0.3
and β = 1.6.

4.2. Baseline ASR Architectures
4.2.1. DNN-HMM Based System

This first baseline system that we consider in this work corresponds to the primary
system [7] presented in the Albayzín-RTVE 2020 Speech to Text Transcription Challenge.
This ASR engine was built through the nnet3 DNN setup of the Kaldi recognition system,
and using the so-called chain acoustic model based on Convolutional Neural Network
(CNN) layers and a factorised time-delay neural network (TDNN-F) [39], which reduces
the number of parameters of the network by factorising the weight matrix of each TDNN
layer into the product of two low-rank matrices.

The acoustic model integrated a CNN-TDNN-F based network, with six CNN layers
followed by 12 TDNN-F layers. The internal cell-dimension of the TDNN-F layers was
of 1536, with a bottleneck-dimension of 160 and a dropout schedule of ‘0,0@0.2,0.5@0.5,0’.
The number of training epochs was set to 4, with a learning rate of 1.5 × 10−4 and a mini-
batch size of 64. The input vector corresponded to a concatenation of 40 dimensional
high-resolution MFCC coefficients, augmented through speed (using factors of 0.9, 1.0,
and 1.1) [29] and volume (with a random factor between 0.125 and 2) [30] perturbation
techniques, and the appended 100-dimensional iVectors.

This system included a 3-gram language model for decoding and a 4-gram pruned
RNNLM model for lattice-rescoring following the work presented in [31]. The 3-gram
LM was trained with texts coming from the Transcriptions, RTVE2018 and A la Carta cor-
pora presented in Table 2, and the 4-gram pruned RNNLM model was estimated adding
the Wikipedia text corpus as well.

4.2.2. Quartznet Q5×5 Based System

This ASR engine was presented as the third contrastive system to the Albayzín-RTVE
2020 Speech to Text Transcription Challenge, and we selected it as the second baseline
system in this work in order to compare its performance with the previously presented
Quartznet Q15×5 based system.

The Quartznet Q5×5 architecture is similar to the Q15×5 architecture explained
in Section 4.1.2, but, in this case, each group of block is composed of a block Bi repeated
only one time, instead of three, thus decreasing the total number of parameters from 18.9
to 6.7 M.

In contrast to the Q15×5 based system, the training of the Q5×5 was performed
for 100 epochs, with a cosine annealing learning rate using a batch-size of 40.

The decoding was realised using the same 5-gram language model described above.
The parameters of the Beam Search CTC decoder corresponded to a beam-width of 1000,
α = 1.2 and β = 0.

5. Results and Resources

In the following Table 4, the total WER values are presented for each system over all
the TV programs in the RTVE2020 database.



Appl. Sci. 2022, 12, 1889 11 of 16

Table 4. Total WER results per system on the whole Albayzin-RTVE 2020 testset. The results of
the novel and evolved ASR engines are marked in bold.

AM Architecture Model Type WER

DNN-HMM Multistream CNN novel 17.60
CNN-TDNN-F baseline 19.27

Quartznet Q15×5 novel 22.95
Q5×5 baseline 28.42

Wav2vec2.0 Wav2Vec2-XLS-R-300M novel 20.68
(fine-tuned)

The first objective of this work was focused on improving our initially best CNN-
TDNN-F based ASR engine, presented as the primary system to the Albayzín-RTVE 2020
S2T Transcription Challenge and which scored the second position among all the systems
presented to competition. Although these improvements could be focused on improving
both acoustic and language models, we decided to put our efforts into enhancing the acous-
tic model, which probably poses the most challenging task, while maintaining the same
Kaldi based ASR architecture. Moreover, one of the main conclusions of the previous
study of the authors [7] was that improving acoustic models helped our ASR engines
more than language models, since most of the evaluation contents included spontaneous
speech and our text corpus was mainly integrated by text contents with formal language.
Given the difficulty of the RTVE2020 evaluation dataset at the acoustic and phonemic level,
we decided to evaluate a more complex CNN and TDNN-F based neural network. This way,
the Multistream CNN architecture clearly improved the performance of the CNN-TDNN-F
acoustic model by tripling the stack of TDNN-F layers with diverse temporal resolutions.
Therefore, replacing the CNN-TDNN-F acoustic model by the novel Multistream CNN one
and maintaining the same lexicon and language models for decoding (3-gram model) and
rescoring (4-gram based RNNLM model) the initial lattices, the results improved from 19.27
to a very competitive 17.60 of WER.

The second objective of this work was to see how we could improve the performance
of the Nuance’s Quartznet Q5×5 based system. However, analysing the state of the art, cur-
rently these E2E systems do not perform as well as the Kaldi based engines, the Quartznet
architectures present an interesting proposal to integrate ASR functionalities in embedded
systems considering the scarce HW resources and the low inference times required. With
the aim of improving the results obtained by the Q5×5 based system, we included three
principal improvements. First, we extended the architecture by adding two more groups
of blocks and thus building a bigger Q15×5 architecture based ASR system. The second
improvement corresponded to the inclusion of a triangular cyclical learning rate policy.
This method [32] lets the learning rate vary cyclically between reasonable boundary values
instead of monotonically decreasing it during training, thus improving classification ac-
curacy. Finally, we included more training epochs by extending the 100 epochs employed
for the Q5×5 network to the 300 training epochs used for the new Q15×5 acoustic model.
Applying these evolutions, we managed to improve the error rate in 5.47 points, consider-
ing the 28.42 of WER achieved by the Q5×5 baseline and the new 22.95 of WER obtained by
the Q15×5 based novel architecture. The 5-gram based external language model remained
the same for both systems.

The last objective of this study was to evaluate the performance of the self-supervised
Wav2vec2.0 model in these challenging scenarios. Although these types of models seem
to be more focused on being applied in situations in which there is not enough annotated
in-domain data to train acoustic models from scratch, its advantages such as (i) the clarity
of the architecture, (ii) taking advantage of the extensive acoustic knowledge obtained by
the pre-trained model, and (iii) its low latency in inference, make it a very interesting ASR
system to explore. To this end, we selected the Wav2Vec2-XLS-R-300M pre-trained model,
which was pre-trained with 436k hours of unlabelled speech data from diverse corpora
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and conditions, as it was described in Section 4.1.3. In this case, it is worth mentioning
how a fine-tuned Wav2Vec2-XLS-R-300M model improved the performance of the Q15×5
model, even though the former was fine-tuned for only 50 epochs and the Quartznet
model was trained for a total of 300 epochs. This way, the Wav2Vec2-XLS-R-300M model
fine-tuned with the in-domain data reached a very promising 20.68 of WER. This result
clearly demonstrates the power of the self-supervised models trained with huge amounts of
unlabelled data, while maintaining similar inference latencies in comparison with the lighter
Quartznet architectures (see Table 4). For the language model, the same 5-gram based
external language model was employed.

In Table 5, the total WER results obtained by the systems for each TV program
in the RTVE2020 dataset are presented.

Table 5. Total WER of the ASR systems on each TV program of the RTVE2020 test set.

TV Program Multistream CNN CNN-TDNN-F Q15×5 Q5×5 Wav2vec2.0

Ese programa del que Ud. habla 23.64 25.67 29.65 36.15 26.81

Los desayunos de RTVE 9.26 10.11 12.14 14.68 11.08

Neverfilms 19.81 24.21 29.03 37.82 28.05

Si fueras tú 24.57 29.31 36.76 46.73 36.43

Bajo la red 22.41 33.31 32.99 41.06 32.33

Comando actualidad 22.58 24.68 27.34 32.70 25.6

Boca norte 32.07 37.94 43.16 52.92 40.37

Wake-up 30.87 33.96 40.81 47.71 38.19

Versión española 16.14 18.10 19.15 25.66 18.06

Aquí la tierra 14.90 16.48 19.69 24.68 17.67

Mercado central 16.44 17.83 25.43 34.05 21.91

Vaya crack 19.22 19.96 28.43 30.16 20.80

Cómo nos reíamos 46.17 48.53 54.33 61.41 53.20

Imprescindibles 30.44 34.45 37.12 44.94 29.52

Millenium 16.02 15.98 17.30 18.82 17.57

Global 17.60 19.27 22.96 28.42 20.68

As it can be observed in Table 5, the systems perform consistently along all the con-
tents in the RTVE2020 dataset. The Multistream CNN based system obtained the best
results for all the contents except for Millenium, for which the baseline CNN-TDNN-F
system performed the best, and for Imprescindibles where Wav2vec2.0 performed slightly
better. In contrast, the Quartznet Q5×5 is the system that gives the worst performance
in all the contents. The rest of the systems maintain consistency for most TV programs
with respect to each particular total WER. The Wav2vec2.0 based system outperforms
the Quartznet Q15×5 based ASR engine in all cases except one (Millenium), although
the difference of 0.27 can be considered as negligible. In the rest of the contents, the dif-
ferences between these two E2E systems are remarkable, although the Wav2vec2.0 system
was fine-tuned with six times fewer epochs than the Quartznet Q15×5 based system.
The greatest differences between both E2E systems are achieved in contents Vaya crack and
Imprescindibles, which were classified as two of the most complex programs given their
spontaneous style and far-field low quality, respectively.

In general, the behaviour of the systems regarding the content profiles is as expected.
In those programs with cleaner speech, the WER decreases significantly compared to other
programs which included adverse acoustic conditions, overlapping or spontaneous speech.
More specifically, in TV shows such as Aquí la Tierra, Los desayunos de RTVE, Millenium
and Versión Española, with controlled acoustic conditions (studio) and many segments with
formal and well-structured speech, the error rates are below the 20% border and lower
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compared to the other TV shows. In contrast, in more complicated contents like Cómo nos
Reíamos, Boca Norte or Wake-up, which include many segments with spontaneous and acted
speech, acoustically adverse conditions and overlapping, the results degrade appreciably
in all ASR engines.

Processing Time and Resources

The decoding processes of the transcription systems were performed on an Intel Xeon
CPU E5-2683v4 2.10 GHz 7xGPU server with 256 GB DDR4 2400 MHz RAM memory.
The GPUs used for decoding correspond to an NVIDIA Geforce GTX 3090Ti 24 GB graphics
acceleration card.

The following Table 6 presents the processing time and computational resources
needed by each ASR system for the decoding of the 55 h and 40 min of the RTVE2020
dataset. It should be noted that the first four systems were decoded using only one CPU
core, whilst the Wav2vec2.0 based system took advantage of 40 CPU cores.

Table 6. Processing time and computational resources needed by each submitted system in terms of
RAM memory, CPU cores, GPU memory, decoding time and Real-Time Factor (RTF).

ASR System RAM
(GB)

CPU
Cores

GPU
(GB) Time RTF

Multistream CNN 6.7 1 12 4.9 h 0.09

CNN-TDNN-F 6.7 1 12 4.9 h 0.09

Quartznet Q15×5 6 1 12 8 h 0.14

Quartznet Q5×5 6 1 12 7.5 h 0.13

Wav2vec2.0 30 40 18 8 h 0.14

In terms of RAM memory, the Kaldi based and the Quartznet based architectures occu-
pied a similar memory space, mainly related to the size of the language model. In contrast,
the Wav2vec2.0 based system took much more memory space since the pre-trained model
was composed of 300 million parameters. Even though the Multistream CNN based system
outperforms the CNN-TDNN-F in quality (see Table 5), it is worth noting that it took almost
as long to decode the whole RTVE2020 database, even though the acoustic model was much
bigger and the decodings were performed using only one CPU core. It could be sped up
by segmenting the original waveform through a Speech Activity Detection (SAD) module
and processing the segments in parallel using several CPU threads. However, the SAD
module could have additionally introduced new errors when performing this segmentation
that would have irreparably impacted the final result. Finally, it should be mentioned how
competitive the latency of the Wav2vec2.0 based system was (RTF of 0.14) despite the big
size of the model.

6. Conclusions and Future Work

In this work, three novel ASR architectures have been presented and evaluated
on the RTVE2020 database. These systems correspond to an evolution of two similar
ASR engines, previously constructed and evaluated on the same database and which were
selected as the baseline systems.

The RTVE2020 database is the result of an interesting and necessary initiative to collect
real broadcast Spanish speech data with the aim of building competitive ASR engines
in this language. In conjunction to the RTVE2018 database [40], both constitute the larger,
most complete and challenging speech corpus available for the community in the Span-
ish language.

Over this interesting and challenging dataset, we explored different alternatives to out-
perform the initial DNN-HMM and Quartznet Q5×5 based systems submitted to the Al-
bayzín S2T Transcription Challenge 2020. In total, we presented three novel ASR engines,
which clearly improved the performances of these baseline systems. The first system, based
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on the novel Multistream CNN acoustic model, reached the best results for almost all
the contents, while the Quartznet Q15×5 outperformed the Q5×5 model at almost six
points of WER, by extending the size of the model, including more training epochs and
applying a triangular cyclical method for the optimal learning rate calculation. In addi-
tion, we also evaluated the performance of the Wav2vec2.0 self-supervised model, which
achieved better results than the Quartznet based systems applying a fine-tuning process of
only 50 epochs over the pre-trained model. In summary, this work constitutes an interesting
and complete benchmark of several architectures in order to select the optimal ASR engine
depending on the required quality, the available HW resources and the latency expected.

As future work, once the acoustic models have been considerably enhanced, we will
focus on improving the language models, by incorporating new rescoring processes based
on Transformers or Self attentive simple Recurrent Unit architectures. It should also be
interesting to explore strategies to reduce the size of the Multistream CNN acoustic model,
by reducing the amount of TDNN-F layers and/or the internal cell dimensions without loss
of quality. These techniques would probably reduce the size of the model and would allow
for increasing the inference times. Moreover, bigger Wav2vec2.0 pre-trained models will
also be explored, which contained one and two billion parameters, with longer fine-tuning
processes in order to allow the model to better adapt to the application domains. Finally,
new self-supervised models like HuBERT [3] and SUPERB [41] will be also studied over
the same dataset.
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ASR Automatic Speech Recognition
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DNN Deep Neural Network
E2E End-To-End
CNN Convolutional Neural Networks
HMM Hidden Markov Model
TDNN-F Factorised Time-Delay Neural Network
SRU Self attentive simple Recurrent Unit
WER Word Error Rate
LM Language Model
AM Acoustic Model
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MFCC Mel-Frequency Cepstral coefficients
GPU Graphical Processing Unit
SAD Speech Activity Detection
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