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Abstract

Light-matter interaction problem is for sure one of the most important topics
in physics. Nowadays it is possible to deal experimentally with few photons, where
quantum effects arise. From a theoretical point of view, immediately, numerical
approximated methods are necessary. During this work, we study the Matrix
Product States (MPS) technique and its application to 1D light-matter interaction
problems.
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1 Introduction

Light-matter interaction is a highly important topic in physics. At the quantum level, it is
a very rich field, since these systems have a lot of potential (or even real) applications in,
for example, quantum cryptography, quantum computing, etc. One of the main problems
is to be able to manipulate few photons in the laboratory. Then, in spite of the fact that
the field is very interesting, it did not attract too much attention from the theoretical
physics community because the theory could not be compared to experimental results.



Nevertheless, a lot of effort was put during the last decades from the experimental point of
view and these systems are nowadays accessible. For example, interaction of a photon with
a single molecule [I] or a superconducting qubit [2] [3] can be implemented in a laboratory,
observation of interesting effects like Electromagnetic Induced Transparency (EIT) for
a single photon was observed [4], or a problem so exotic as light propagating through
a complex network [5] has been studied; even systems mimicking this dynamics, like
quantum plasmonics ones [6], have been implemented experimentally, and characteristic
quantum properties, like entanglement, have been observed. Consequently the theoretical
research has increased exponentially.

When studying this kind of problems, usually the analytical models are continuous,
but as soon as one wants to study more complicated problems, where analytical tools
are not valid, numerical methods are necessary and they require a discretisation of the
system, e.g., the space is not continuous but it is just a discrete set of points. Then, the
problem becomes a many-body physics one on a lattice. A generic N sites (that is, a
lattice with N constituents) state is given by:

dy,....dN

|\Ij> = Z Cil,...,iN’i:b e ’iN>’ (1)

i1,einy=1

where {|i)}%, is an orthonormal basis for the Hilbert space H, of the single site n,
d, = dim(H,) and ¢;, . ;, € C. The Hilbert space of the whole system is H = ®7]j:1 H,
and its dimension is dim(#H) = [[\_, d.. So, note that we need a number of coefficients
which increases exponentially with the number of particles. For simplicity, we can consider
d, =2 V¥n and N = 1000. Then, dim(H) = 2'%% > 103, We cannot work with such a
large number of coefficients, since it is impossible to store them and, if it were possible,
the computations would take unapproachable times. So, it is not possible to handle
numerically with the exact expressions, but it is necessary to use approximated methods.

In this work we have used the MPS technique to study several light-matter interaction
problems in 1D. In the chapter II, we introduce and develop the MPS method. In the
chapter III, we present the results. Finally, we present some conclusions and future
projects.

2 MPS

One of the most celebrated approximated methods in the case of 1D systems with short
range interactions is that of Matrix Product States (MPS). As we will see, in the beginning
it is shown that any many-body state can be written exactly in such a way that a set of
matrices define it. After that, the way in which one takes wisely the approximation will
be explained. Lastly, we explain how to deal with this kind of states.



2.1 Theoretical fundamentals

First of all, the set of coefficients ¢;, . ;, can be stored in a matrix Cj ,,..y)- On the
other hand, every matrix n x m admits a singular value decomposition (SVD) [7], that
is, a matrix A can be written as:

A=UxVT, (2)

where U is an unitary n x n matrix, X is a diagonal n x m matrix with non negative
entries called singular values o;, and V' is unitary m x m. This is applied over C"

Do
Cirfimin) = D UinsOns Vs inyma (3)
na=1
with Dy := min{dy,dods...dx}. Now, we define (Af)y,, = U n, and d, iy
OnaViiy,. in)me- Lhen, the state can be written as:
d1,.dy Do

Z Z (Aill)l,mcizg,ig ..... iN|i17 T 7iN> (4)

i1,...7iN:1 ng=1

We set C’ ( = - and we take the SVD of C":
(na,i2) zg,...,zN) N2,12,...,IN
Céng i2),(i3,-... Z Un2 i2),m3 ng‘/( LN )3 (5)
nz=1
with Dy = min{Dady, d3ds...dy}. As before, we set (AZ)n,ns = Upmpi)ms and
Crrgioin = 0’3‘/(’.’,k ... Then:
13,83 ,.00y0 n 13,...,iN),N3

di,...dy  D2,Ds3

Z Z (Alf)l,nz (Aé2)n27n30’lr;3,i3,‘..,i]\/ iy 7iN> (6)

115N =1ng,nz=1

Repeating the same procedure again and again:

di,..,dny Da,....Dn

Z > (AP (AN iy it lin, i) (7)

SinN=1ng,..ny=1

Now, defining (A”V) = VU,

ny,l NN,IN

di,...dy Da2,....Dn

Z Z AZI 1 2 Aw)nz n3 - (Aé\]fv—_ll)nzv—hnzv (Aé\lfv)nzv,lﬁlﬂ s JN) (8)

11,0t N=1n2,....,nN=1

Note that the sums over ns, ..., ny are in fact products of the matrices Azf, A?, etc.
Then, we rewrite the state:

dy,....dn
> AR AW, i) (9)
i1,eiN=1



We have shown that every ¢;, ;. can be written as a product of matrices D; x
Dy, ...,Dy X Dyn.1, with Dy = Dyo1(= 1 in this case). This is called a matrix product
state. Because of the way in which we have derived the MPS, D; = 1, but, in general,
D, can take other values (e.g., when working with periodic boundary conditions). So,
considering D; not necessarily equal to 1:

di,..,dy Di,Da,...,Dy

UENSY > AN (A g milin, o in), (10)
i1,..iN=1n1,n2,..,nny=1

but it is exactly the same as before, that is, a product of matrices, except finally we take
the trace over the resultant matrix. Then:

di,...dN

U) = > Tr(AY AP i) (11)

11, iN=1

This is the most general form of a MPS. If a given element of A,, is (A )y, nmess
1, is called the physical index corresponding to m, since it is related to the local Hilbert
space, and the remaining ones are the virtual indices.

At the moment, this description is exact for a general many-body state, so it is useless
in principle. For simplicity, let d; = d and D; = D, Vi. Then, one has dD?*N numbers
to encode dV coefficients, so, D will be an exponentially large number if we want the
description to be exact. As it can be supposed, the approximated method will consist in
a truncation of the matrix sizes D;. The question is why we can give a reliable description
by doing so.

When looking at the expression , Dy is the maximum of {d;,dsds...dy} (in
principle, dads . .. dy), but some of the singular values could vanish. If y» is the quantity
of non-vanishing o;, one could truncate the value of Dy to xs and the description would
be still exact. By repeating the same argument again and again, finally one achieves a
state of the following type:

di,...dN  X1,X25--XN '

|‘I}> = Z Z (Alll)m,nz s (AKIV)”N,M |i17 s 7iN> (12)
i1t N=1Mn1,n2,....,nNy=1

Then, if one has states of this type, it is possible to reduce the values of D; to x;
and, hopefully, one will not need anymore an exponential quantity of coefficients. What
is more, the singular values could show a huge decay such that it would be possible to
truncate D; in such a way that the error committed would remain under control. Anyway,
at the moment we do not know if the singular values follow this kind of behaviour. In
order to shed light on it, it is not very hard to check that y; is the rank |I| of the reduced
density matrices E| corresponding to the subsystems consisting of the sites {1,...,:} and

'Recall: the rank of a matrix is the number of non vanishing eigenvalues.
2A quantum system can be described by a statistical mixture of pure states, which mathematically is
represented by a density matrix [§].



{i+1,..., N} [Jif we consider 1D systems [9]. This is related to one of the most surprising
properties of quantum systems: entanglement. A system consisting of two subsystems A
and B is said to be entangled if the state is not a tensor product, that is, if it cannot be
written in the following way:

(W) = |®4)|¢B) (13)

If a system is entangled, there is not a pure state corresponding to each of the
subsystems, but they are described by mixed states, that is, non trivial reduced density
matrices. For sure, entanglement is one of the most genuine quantum characteristics,
since if one has a classical system consisting of several subsystems, there is a definite
state describing each one, instead of having statistical combinations.

Obviously, if x is the rank of the density matrices, it is an increasing measurement of
the entanglement: if it is one, the state is not entangled since the reduced density matrix
corresponds to a pure state, whereas if it increases, the subsystems are further of being
pure states, so the system becomes more and more entangled. y has other interesting
properties in such a way that it becomes a good entanglement measurement [9]. Then,
coming back to the many-body state written as a MPS , we define y = max;{y;}
as the entanglement measurement. It is reasonable to think that the description of a
given slightly entangled state will be faithful if one truncates the values of D;. Actually,
x is directly related to the Von Neumann entropy, probably the main entanglement
measurement for pure states [10]:

S = —Tr(plogp), (14)

where p is the reduced density matrix corresponding to one of the subsystems (.S does not
depend on which subsystem one chooses) and the basis of the logarithm uses to be 2 or e.
The relation between x and S'is very close: x sets an upper bound for the Von Neumann
entropy [9]. S turns out to be the capital parameter to justify the MPS method: in [11]
they prove that if we want to approximate the ground state of a 1D system with short
range interactions by using a MPS, the value of D = max;{D;} is always bounded by the
Von Neumann entropy in the sense that the distance between the most optimal MPS and
the true ground state is exponentially small if D increases polynomially with the number
of particles. It makes perfectly sense; what we are saying is that it is possible to simulate
the system via classical computation (because we do not need an exponential quantity of
resources) instead of needing quantum computation and it happens when entanglement
is small enough, that is, when the system is not so far of being classical in some sense.

Thus, that is why MPS method works, even for slightly excited states or time evolution.
On one hand, it is widely accepted that physical states live on a tiny subspace of the whole
Hilbert space. For instance, when considering time evolution of a given state over a time
which scales polynomially with the number of particles, the evolved state samples an
exponentially small volume in Hilbert space [12]. On the other hand, ground states of

3If one has a system and considers a partition, the reduced density matrices corresponding to the
subsystems have the same rank.



local Hamiltonians are slightly entangled, in connection to what we said in the previous
paragraph. What is more, they follow the area law [I3]. This law arose in the context
of black holes theory [14], but it turned out to be a highly general law for quantum field
theories and condensed matter physics [I3]. It says that if we consider the entanglement
entropy S; between two parts of the system in such a way that the linear size of the
boundary between both parts is [, S; is proportional to the area: S; ~ [P~!, where D is
the spatial dimension, instead of increasing with the volume of the partition, as it does for
a general state [l It confirms the fact that the ground states entanglement is small and it
is even much smaller than that of random states. Obviously, the ground state belongs to
the little subset of physical states, so it may be expected that the other physical states
have small entanglement in such a way that y increases with some polynomial of the
number of sites.

MPS is highly related to some older methods, like Numerical Renormalization Group
(NRG) [15] and Density Matrix Renormalization Group (DMRG) [16], which were very
successful (mainly DMRG) for describing ground states of 1D quantum many-body
systems with short range interactions, even though those methods were not very justified
in the beginning. Those studies showed that the singular values of ground or even slightly
excited states decay exponentially; in other words, these states are slightly entangled,
which again is in agreement with the previous analysis.

It is important to remark that this method is just valid for 1D systems. On one hand,
this is related to the area law, since it means that entanglement is smaller when the
spatial dimension decreases. On the other hand, note that the construction of a MPS is
adapted to the geometry because of the fact that D; measures the entanglement between
the piece of the chain at the left of ¢ (including i) and the rest, whereas it does not have
this meaning if the system has more dimensions. Anyway, there are similar methods
well suited to higher dimensional cases [11], like Projected Entangled Pair States (PEPS)
method, but they do not give so good results.

In order to illustrate all this stuff, dN numbers are needed to represent a product
state and it agrees with D = 1, which is the minimum possible value for D; i.e., if no
entanglement (remember that a product state does not have entanglement), D takes the
smallest possible value.

Finally, we have argued that MPS represent well enough low-energy states of some kind
of systems. In the following, we will explain how to compute expected values, consider
time evolution, find ground states, write some simple states in its MPS form, etc.

2.2 Expected values

When one considers different operations with MPS, it is much easier to consider

diagrammatic representations. A general coefficient ¢;, ;. , so the whole state, can be

4(Critical systems have logarithmic corrections to the area law. In any case, the entropy is still much
smaller than that of random states.



represented as a network, as it can be looked at the figure . There, the boxes are the
tensors, the legs pointing up correspond to the physical indices and the others are the
virtual ones. The reader can look at other examples of such representations in [17] and
[18]. Anyway, it is not so hard to develop the relations by considering the general formula
of a MPS, but having the graphical representations is useful to develop a deeper intuition.
The coefficients of the state in the chosen basis are:

Ciyyoiy = TI"(A? .- A?\va) = (Ail)khkz (Aéz)klk’?’ S (A%VMNJCN (15)
that is, we have N tensors with three indices and we contract the virtual ones. Note that
here the repeated indices are summed; from now on, we will consider this convention.

Looking again at the figure (1)), one can realise that a contraction corresponds to a link
between the virtual indices of neighbours sites.

" &0 ©

Ay

Figure 1: A general coefficient of a state with free boundary conditions is a
set of boxes with three legs, except the first and the last ones, where the virtual
legs are contracted. This image, and the others of this section, were taken from

[1s].

Now, if one computes, for example, the square of the norm, it is:

<\IJ’\IJ> = C;,...,iz\]cilwwiN = (Ail);::hkz (AZQQ);:JQ,]{:E} tet (AKy)ZN,kl (Azll)lLIQ (A122)127l3 ttt (A,vah]\l(,ll )
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So, it is just a contraction over the physical indices. The graphical representation is

in the figure . Note that the physical indices are contracted. Then, we see that it is

not necessary to compute all the coefficients, but it is possible to compute things like the
norm by processing directly the tensors.

()

Figure 2: When considering the square of the norm, or, more generally, a
scalar product, one has to take the graphical representation of both states and
contract the physical indices.

On the other hand, usually an operator can be written as a sum of products of local
operators, that is, a sum of objects like this:



O:Ol®02®“'®0Na (17)

where O, is an operator acting just on the site n. If O := (i,,|O,|j,) and (E,);jx1 =
(A ); O (Alr);a, where n is not summed, the expected value of such a product of
local operators is:

(0) = (AM);, 1, O (A1) 1100 (AZ )2 3082 (AP )i2gs - - - (AN )k i O (AR iy (18)
= (E1D)ky 1 ko do (B2) koo sty - - (BN )k i ka (19)

Then, it is possible to compute the expected value of the typical operators without
having to obtain explicitly the coefficients, just via the tensors. Now, the graphical
representation is in . Note that each red box corresponds to one of the O; and has two
physical indices, which are contracted with the ones of |U) and (¥|. Finally, this scheme
can not be very efficient. In such a case, as we will explain later, an operator can be
written in such a way (its MPO representation) that the expected value can be obtained
directly, without having to decompose the operator in a sum of operators like .

Figure 3: In this case, one contracts the physical indices of the state with
those of the local operators.

2.3 Truncation procedure

One of the keys of the MPS technique is the truncation, that is, the approximation of
a given state by a new one with smaller tensors. Theoretically, the problem is just to
minimise the distance between the initial state |¥) (with tensors A,) and a generic one
with smaller tensors |®) (with tensors B,,), that is, we want to minimise:

d*(|9), 1)) = (U] — (2)(|) — |®)) = 1+ (P|®) — 2Re((¥|D)) (20)

Then, one has to compute (®|®) and (V|®) and both quantities are calculable. The
question is how to minimise such a function in terms of the tensors of |®). A possibility
is to minimise it iteratively, that is, we start by the first site of the lattice. Then, all the
tensors remain constant, except the one corresponding to the first site and the function
is minimised with respect to By; after that, the tensors B, Bs, By, etc. remain constant
and the function is minimised with respect to By, and so on. When minimising with
respect to B, if v and v? are the vectorisations of A, and B, respectively, it can be
shown (appendix A) that we have to minimise the following quadratic form:

f(A, By) =1+ (vp) Erof — 2Re ((v)) Eqvy) | (21)

9



where E; and F, are matrices depending on the rest of tensors. Note that f is d?, but its
variables are just the tensors linked to the site n. f achieves its minimum value when v

fulfils the following system of linear equations (the proof is omitted because it is trivial):

Epw? = ElyY (22)

When the end of the chain is achieved, it is possible to come back in the opposite
direction and realise a new sweep over the whole lattice, and so on, until some convergence
criteria is fulfilled. For instance, when the distance takes a value smaller than a desired
tolerance. As we indicated above, the reader can find how FE; and E5 are defined and
more information about the truncation algorithm in the appendix A.

2.4 Time evolution

This part is based mainly on [19].

We are going to consider just the case where the Hamiltonian is time-independent.
Then, the time evolution operator is:

U(t) = exp(—iHt), (23)

where we take A = 1. In many-body physics, usually the Hamiltonians are:

N
H=>Y"h (24)
=1

where h; takes into account the interaction between the site ¢ and some of its neighbours.
Here, we just consider the case where we have 2 bodies interaction between nearest
neighbours, so h; encodes the interaction between ¢ and i + 1 E]

Computing U(t) and applying it over a MPS is not feasible, because the result is not
a MPS anymore. Then, we have to handle with some approximations. First of all, we
split the Hamiltonian: H = Hp 4+ Hg. The most typical option is to take Hp equal to
the Hamiltonian corresponding to the odd links and Hpg that corresponding to the even
edges. Both of them are sums of commuting Hamiltonians, so, assuming N even:

exp(—iHopt) = exp(—ihit) exp(—ihst) . ..exp(—ihy_1t) (25)
exp(—iHpgt) = exp(—ihat) exp(—ihyt) . ..exp(—ihyt) (26)

Here, h, takes into account the interaction between m and n + 1, or it is a free
Hamiltonian for the site n. Then, the application of w,(t) := exp(—ih,t) over a MPS is
trivial [9]. In the case of one-body operators, once applied, the result is again a MPS. On
the other hand, it is true that the new state is not a MPS if u,(t) is a two-body operator,
since it mixes the tensors corresponding to the sites n and n + 1, so the new state has a

hy considers the interaction between N and 1 if periodic boundary conditions (pbc) are implemented,
whereas it is just a free Hamiltonian for the site N if free boundary conditions (fbc) are imposed.

10



tensor linked to the couple of sites (n,n + 1), whereas a MPS has a tensor corresponding
to each site. However, a MPS is recovered by doing a singular value decomposition (SVD)
of this new tensor.

Now, a question arises: how to express exp(—i(Hg + Hp)t) in terms of exponentials
of Hg and Hp. With this purpose, we take hand of the Suzuki-Trotter decompositions.
The second order one is:

exp (—i(Hg + Ho)At) = exp(—iHpAt) exp(—iHoAt) + O(At?) (27)
There are improved versions. For example, the third order one is:
exp (—i(Hg + Ho)At) = exp(—iHpAt/2) exp(—iHoAt) exp(—i HgAt/2)+O(At?) (28)

In [19], there are versions until O(At°). Now, the point is that, after applying the
time evolution, the tensors are bigger than the ones of the initial state. Then, if we want
to be able to handle with the evolved states, we have to truncate them, so we take hand
of the truncation procedure explained above.

There exist other ways to implement the time evolution, as Runge Kutta and Arnoldi-
like methods, for example. They are considered in [19)].

2.4.1 Imaginary evolution

If one considers evolution with imaginary times (with negative imaginary part), the state
tends to the ground state by normalising the final state. It is not difficult to see it. First,
given a state, it can be decomposed as a sum of eigenstates of the Hamiltonian {|¢,)},
whose eigenvalues {E,,} are in increasing order starting at n = 0 (that is, the ground state

is |¢g) and Ey < By < ...):

w(0)) = 3 calén) (29)
If time evolution is applied: ’
(1)) = e W(0)) = Y cue™ ) (30)
Now, if t = —i7, with 7 € R*:

(U(r)) = cne () (31)
Since the time evolution is not unitary in this case, we normalise again the state and
we call it |p(7)):

o)) — |\I/(T)> _ chne_E"T ¢n> 39
o) = TN Vs e (32

Taking the limit 7 — oo, the leading terms both in the numerator and in the
denominator are those corresponding to the ground state, that is, to n,m = 0. Then:

11



lim () = — o), (33)

which is equal to the ground state. So, this is a useful tool to find ground states.
Knowing the ground state is really important for a lot of interesting problems. In our
case, it will be necessary since experimental implementations of scattering problems work

at extremely low temperatures, so, before sending the excitations, the wave guide is really
close to the ground state.

As a final remark, there are other methods to find the ground state. For example, it
is possible to minimise the expected value of the Hamiltonian [11].

2.5 Matrix Product Operators (MPO)

In the same way that a state can be written like a product of matrices, we can do the
same for every operator O [20]:

O = Te(CPC7> ... O fiyiy .. i) (jaja - - - 1] (34)

This is very useful, because it is possible to apply an operator over a MPS trivially
and the result is still a MPS. Let’s show it, by applying O over a general MPS |¥) ([10):

o) =
(Cilm ni,na (Alfl)mhmz S (OzL,jL)nL,m (AIZL)mL,ml |i1 o 2L><]1 o 'jL‘kl s kL) =
A7

)
(Ci’hh)nl,m( )ml,mQ SR (CZL’]’L%L,M (A1L>mL,m1 ’il . 'iL>

Defining now (B(ia)[na,ma]y[na+1»ma+l] = (szmja)na,naﬂ(Aga)ma,maw where [n,, m,| and
[na, mg] are dealt as single indices. Then:

O|\Ij> - (Bi‘l)[m,mﬂ,[m,mz](B;Z)[nz,mz},[ng,m:s] s (BQL)[nL,mL],[nl,mﬂ |i1i2 . 'iL>a (35)

which is a MPS. Now, the question is if it is possible to write easily typical operators as
MPO. In the case of sums of one-body or two-body operators, it is feasible with small
size of the matrices. In the first case, the operator is:

O1=> X, (36)

If (X0)ingn = (in|Xnl|jn), it can be shown trivially that the following matrices are
valid:

12



whereas C;'7' = ((X1)i,1,0i,.5,) and C327% = (83, 4, (X1)i, 5,)"- In the case of two-body
operators:

L
02 = Z XTLYTL+17 (38)
n=1
it accepts this MPO representation:
. iy i 0 0
C;n’j" = (Yn)in,jn 0 0 n=23,...,L—1, (39)

0 (Xn)ingn  Oinin

C’i“jl = (0, (X1)iy,j159i,,5,) and CZL’jL = (6,4, (YL)Z»LJ-L,O)T. As before, (Y},);, ., are the
matrix elements of Y,,.

This is really useful for several reasons. First, when doing dynamics, we need to write
the initial condition in its MPS representations and this can help us, as we will explain in
the next subsection. On the other hand, as we said above, calculating expected values of
some operators, like H?, is not very efficient by using the standard procedure explained
before. However, one can construct |V ) = H|V) if the system has just one and two-body
terms. Then the square of the norm will be (¥ |Wy) = (H?).

2.6 Writing states as MPS

Given a state, if one wants to know its MPS representation, the general procedure is quite
complicated (or impossible), because it is necessary to apply SVD over exponentially huge
matrices. As we want to perform time evolution, we need to write the initial state as MPS.
Luckily, there are some tools to write some kinds of states as MPS. In this section we
consider some examples.

2.6.1 Product states
We start by the most simple case, that is, product states:

dydo,dr,
W) = Z C1,i,C2yig - - - CLyiy |11, 92, - - L) (40)

11,82,...,0 =1

By comparing with , it is trivial that this state already is a matrix product state
where D =1 for all the matrices, with A" = ¢; .

2.6.2 Case with several excitations

When working with transport problems, the initial conditions do not use to be states so
simple as the one used above. Usually, one considers a wave guide in its ground state and
some incident bosons. In order to create an excitation, it is necessary to apply:

L
C = chaﬁ, (41)

n=1

13



over the ground state of the chain. But C'is a sum of one-body operators, so an excitation
can be created by acting with this operator in its MPO representation over the desired
state and the result will be still a MPS, as we explained in the last section. In the same

way, if one wants to work with more excitations, one just has to apply more operators
like C.

3 Physical systems

Once we have explained the method, we apply it to several physical problems about

propagation of bosons through one-dimensional systems moving freely or coupled to
qubits. The codes are written in MATLAB 7.9.0 (R2009b).

3.1 Tight Binding Model

First of all, we have studied the bosonic tight binding model. The Hamiltonian with fbc
reads:

L L-1
H = GZ ailan - JZ(aLan—&-l + a]:H-lan)a (42)
n=1 n=1

where ¢ is called the eigenenergy, J is the hopping constant and {a}} ({a,}) is the set of
bosonic creation (annihilation) operators. It will be the cornerstone of our work, since it
is the discretisation of the electromagnetic Hamiltonian in one dimension [}

Here, the chosen basis is:

L (@)t (ad)® .. (a})(0) (43)

We consider an initial state belonging to the one excitation subspace. Concretely, we
take the following one:

|217227"‘7ZL>: 1 —
1119 ...1[,:

[W(0)) = af|0) (44)

The time evolution of the system for a chain of length L = 20 was studied and
it was compared to results obtained via exact diagonalisation of the Hamiltonian with
Mathematica software. The agreement is really good (not shown).

Secondly, we study the case with two bosons in the same state in a chain of length
L = 60. Concretely, we generate a state with 2 bosons with Gaussian profiles around a
given momentum:

6Strictly, this is not true, since if k is the dimensionless momentum, the dispersion relation of the
electromagnetic field says that wy is a linear function of k, whereas now it is wy = ¢ — 2J cos k if pbc are
imposed. However, working around k = 7/2, wy tends to be linear, so the description will fulfil that of
the continuum model.
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1

W) = E Z CnCmahal, |0), (45)

n,m=1

with:

)2
¢, = Nexp (—% + ikon) , (46)

where N is a normalisation constant. We choose kg = 7/2, ¢ = 8 and ny = 12. We
plot N, = (ala,) as a function of n for different values of time in (4). In this case,
both bosons propagate freely. As the state is close to an eigenstate El, the shape of the
profile remains more or less constant. However, when it arrives to the boundary, it suffers
interference effects, bounces and it recovers in broad strokes the original shape. Anyway,
what happens after the reflection is not too important because we will not consider this
kind of effects. In addition, we show the total number of excitations, that is, the sum of
N, for all n in . As it can be seen, it is always equal to 2.
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Figure 4: Number of excitations at t = 0, t = 30, t = 60 and ¢ = 90 from left
to right and from up to down.

"Remember that, if we had periodic boundary conditions and ¢ — oo, it would be an eigenstate, since
it would be a state with definite momentum. In addition, if one looks at the discrete Fourier transform
of ¢, the momentum distribution remains almost constant around 2kq (not shown).
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3.2 Decay of an excited qubit coupled to a tight binding model
of bosons

After that, we applied the MPS method to a qubit coupled to a tight binding chain of
bosons with dipole interaction. So, the Hamiltonian is:

L L-1
H= ez al a, — JZ(aLanH + aLHan) +Qoto™ + gax(aTLO +ar,), (47)
n=1 n=1

where Ly = (L +1)/2 (L is taken odd), Q is the energy splitting of the qubit, g is the
coupling constant between the qubit and the guide, o, is the Pauli matrix z and o* are
the ladder operators of the qubit. The interacting term is a point-like dipole interaction:
first, the term ar, + aTLO is the electric field in the Coulomb gauge [2I]. On the other
hand, we suppose that the square modulus of the wave functions corresponding to the
states of the qubit ¥y(r) := (r|0) and ¢ (r) := (r|1) are even functions of r, as well as the
wave functions can be chosen as real ones. Taking into account that the dipole operator is
proportional to r, obviously its diagonal elements will vanish, whereas those non-diagonal
will be equal. So, the matrix corresponding to the dipole operator is proportional to o,.

The used basis is the same as before , except for the site coupled to the qubit,
where besides the usual states, we have to add those where the qubit is excited, that is,
the local basis is (aTLO)iLo ()™0)/Vigo!, with n =0 or 1.

We consider the initial condition |¥(0)) = o|0), that is, there are not bosons and the
qubit is excited. Even though (¥(0)|N|¥(0)) = 1, this dynamics does not preserve the
number of excitations, so in principle, it is necessary to consider the whole Hilbert space
for the bosons. It would be an unapproachable problem, since the dimension of the space
is infinite. However, for the parameters chosen here, it is more than enough with d = 6
(with except d = 12 for Ly, since the local Hilbert space is the one corresponding to the
boson and the qubit).
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Now, the local Hamiltonians are:

h, = €eala, — J(al any1 + anaLH) (n # L, Ly) (48)
hr, = €GTLOGL0 - J(aTLOaLOH + aLOaTLOH) + Qoto™ + gax(aTLo +ar,) (49)
hr = eaTLaL (50)

We fix the size of the system to L = 21 (so Ly = 11). We take € = 1, so the hopping
factor is fixed to J = 1/, since the dispersion relation becomes wy = 2k/m. For the
qubit we take 2 = 1 and for the interaction g = 0.05 and g = 0.5. Other details of the
simulations are: At = 0.01 and we consider the evolution until ¢ = 10 and the tolerance
is 1079, but the matrices are now allowed to increase, since it is necessary in the case of
large g for the chosen tolerance.

The case with g = 0.05 is shown in the figure []] The gray curve corresponds to
the number of excitations and it remains almost equal to 1 (the corrections are at most
around 107%). In such a case, when ¢/€ is small enough, the rotating wave approximation
(RWA) [22] works well enough; it consists in replacing o.(a + a') by ota + o~al (it is
said that we are neglecting the counter rotating terms, c~a+ o+a'; in some sense, in this
regime, these induce short time dynamics compared to the rotating terms). The number
of excitations is a conserved quantity in this regime, which is in agreement with our
results. On the other hand, the black curve corresponds to the population of the excited
state of the qubit calculated with MPS. They have been compared to data obtained via
exact diagonalisation by using Mathematica and the overlap between both data is total,
as it is expected, since the RWA works really well in this case.

The case with ¢ = 0.50 is plotted in [7]] Again, the gray curve is the number of
excitations and it does not remain constant, but it increases. So it is clear that the
RWA does not work anymore when g/ is large enough. The black one is the population
of the qubit computed with MPS. The agreement with [23] seems to be clear and the
difference with the RWA results are obvious (not shown). In addition, as well as some of
the excitations propagate, others stay close to the qubit, whereas in the case of low g/(2,
all the excitations propagate, nothing remains joined to the qubit (not shown).
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g =0.50

3.3 Scattering of an incident photon in the RWA regime

Now, we study the scattering problem in the RWA regime through different systems.
First, we consider that the scatterer is a qubit and after that we shall deal with the case
where there are 2 qubits in order to look for EIT.

3.3.1 One qubit

The Hamiltonian for a single qubit coupled to the chain is:
L L—1
H=c¢ Z ala, — JZ(aLanH +ayal )+ Qoto +g(o7al, +o0tar,)  (51)
n=1 n=1
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As it was said, the smaller is g/, the better is the RWA. In addition, when considering
this kind of problems, the closer is the energy of the incident wave packet to the qubit
splitting (€2), the finer is the approximation.

We choose e = Q =1, J = 1/7, g = 0.50 ﬂ L =170 and Ly = 90. Here, the error
remains under 107'2, because the system stays in the one particle subspace. We take
At = 0.01 and the final time is 230. As initial state we considered the qubit in its ground
state and an incident Gaussian wave packet:

(n —ng)?
202

[T(0)) = caaf|0), ¢ =Nexp (— + ikon) , (52)
where ny = 30, 0 = 8 and ko ranges along the set of values {w/2 — 0.5,7/2 —
0.4,...,m/240.5}, since the interesting physical phenomena appear around the resonance
and it happens when the energy corresponding to the wave packet is close to €2. As
wr, = 1 — 2/mcos k the resonance arises at kg = 7/2.

What we measure is the qubit population as a function of time and the total current
flowing between pairs of sites after and before the qubit position. This is just the time
integral of the local current [24]

Jut) o< i{(a 410 — al@ns)) (53)

We do not care about the proportionality constant because we are interested in the
transmission coefficient, which, for a general incident state |V), is defined as the total
transmitted current over the incident one, that is:

dtjn, (t
T(w) i L 2 (t)
J dtjn, ()
where ny is a point beyond the qubit and n; is before the qubit. In the above definition,
the integral domain is the time before the photon reflects. On the other hand, it can be
computed analytically through the following expression:

ET (k)| (E)|?
> kY (k)|
where k runs over m(—1+ 2/L),n(—=1+44/L),...w, T(k) is the transmission coefficient
for a monochromatic wave packet [25] and W (k) := (k|¥).

(54)

The coefficient is shown in the figure and it is compared to the analytical results.
As it is seen, both data fit really well, but there are little errors (at most, the relative
error achieves 5%) which are due to the time evolution algorithm. The interesting aspect
is that the qubit tends to be transparent if the incident energy is far away of €2, but it
reflects almost totally the photon if it is resonant.

8Tt is true that there are not systems following the Hamiltonian ; it is just an approximation
working at small g/Q. g = 0.50Q is clearly out of the RWA regime. However, the intention of this part
is to check our method with previous results and the computation time is smaller as g increases.
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Figure 8: Transmission factor vs the central momentum for fixed o = 8. The
gray points correspond to those computed by means of MPS technique and the
black ones are the analytical results.

The qubit population is shown for central momentum /2 — 0.5, ..., 7/2 in the figure
(9 (for larger values it is not shown because for /24 0.1 the result almost fits with that
for 7/2 — 0.1 and so on). As expected, the qubit excites and after that it relaxes to its
ground state. The decay time is bigger if the wave packet is closer to the resonant case,
as well as the maximum of the population increases in such a case.
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Figure 9: Qubit excited state population for several values of the central
momentum. As it can be seen, the peak becomes narrower and higher as the
wave packet energy is more resonant.
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3.3.2 Electromagnetic Induced Transparency

Now, we consider a photon scattered by 2 different qubits separated by a distance d. In
this case, again, if the incident energy is resonant with one of the qubits, then the photon
reflects almost totally. However, a new effect appears: if the energy of the photon is in
between the energies of both qubits, the pair of qubits becomes transparent.

The Hamiltonian is of course the same as before, but now there are 2 qubits instead
of 1. The tight binding parameters are the same and those for the qubits are ; = 0.6,
2 = 14 and g1 = go = 0.5. The length of the chain is L = 220 and the qubits
positions are L1 = 109 and Ly = 111. The transmission coefficient is shown in the figure
(10). The extremal values of the momentum correspond to the resonant cases with both
qubits. In the middle, as we knew, a peak close to one appears (it becomes one for the
monochromatic case). Again, the results are really close the analytical ones, computed
with the transmission factor for this system [25].

‘e
0.6 e )
[ Analytical
S 04
= I s N
L MPS
0.2
L o o
L @ ° i
0.0 ‘.‘ ‘ - - - - "‘ o
1.0 1.2 14 1.6 1.8 2.0
k

Figure 10: Transmission factor vs the central momentum for fixed o = 8.
The gray points correspond to those computed by means of MPS technique
and the black ones are the analytical results.

3.4 Scattering in the ultra-strong regime

Here, we do not neglect the counter-rotating terms, that is, we work beyond the RWA so
we take the Hamiltonian . First, we search the ground state and after that we study
the scattering of a single excitation.

3.4.1 Ground state

As it was indicated, when studying scattering experiments, one works at really low
temperatures, so the state of the wave guide before putting the excitations is really close
to the ground one. Then we have to find it. Note that this is an interesting problem per
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se; in fact, we have not found any previous work looking for it. We search it by using
imaginary time evolution.

If g is small enough, the RWA works. In such a case, the ground state is that with
no excitations: |0). However, it is clear that |0) is not an eigenstate of H if we do not
neglect the counter rotating terms. In such a case, the RWA does not work anymore and
the system belongs to the ultra-strong coupling regime. Immediately a question arises:
are there physical systems working in this regime? The answer is yes. It is known that
ordinary systems do not present a so huge coupling, but a lot of effort has been put
during the last years and some sophisticated devices, like superconducting qubits, have
shown ultra-strong regime [26], besides there are theoretical purposes to achieve even
larger coupling constants [27].

For the simulations, we start with small g and the initial state is |0). After that, we
augment g and we use the ground state for the anterior value of g as input state, and so
on.

We work with L =20, Ly =10, e =1, J =1/m, Q@ =1 and g = 0.05,0.10,...,1.00.
The algorithm is considered to converge if the difference between subsequent values of the
energy is smaller than 1071° and the difference between subsequent values of the variance
(H?) — (H)? is smaller than 107%. On the other hand, we have again the problem of the
infinite Hilbert space on each site, since we are dealing with bosons and there can be any
number of excitations, so we have to truncate the local dimension d. We take d = 8 in
the qubit position and it decays through the line till it achieves d = 3. A posteriori, we
check that this works, since the number of excitations on each site is much smaller than
the local value of d. For the matrix sizes, we choose D = 6 in the middle, D = 1 in the
limits of the chain and D = 2 in the rest.

We show the number of excitations in the figure . It achieves its maximum at the
qubit position and decays exponentially along the chain. Furthermore, as g increases, the
maximum becomes higher. Finally, as it is seen, it practically vanishes before arriving to
the boundaries, so these ground states are the same for larger values of the length (if we
took larger values of g, we would have to take larger chains).
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Figure 11: Population of each cavity as a function of the coupling constant
g. Clearly, the peak is an increasing function of g.

We show the energy of the ground state vs the coupling constante ¢ in the figure (12]).
As one can realise, it seems the points lie over a soft curve. If it is true, it implies that
there is no crossing between the ground state and the first excited one as g increases. In
[28] they prove that this is true for L = 1 (the Rabi model). Our result would suggest that
it is true even for larger values of L. In addition, again in [28], they obtain a behaviour
of the energy as a function of g qualitatively like our result.
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Figure 12: Energy of the ground state as a function of g.

3.4.2 Scattering

Once we have the ground state, we study scattering. Since we took g = 0.50 in the RWA
case, here we choose the same value for the coupling constant in order to compare the
results. For the rest of the parameters, we take again the same values as we took in the
RWA case (length of the chain, qubit position, width of the wave packet, etc.).

Now, for the local dimensions of the Hilbert space, we take the same as we took for the
search of the ground state and we impose d = 2 in the rest of the chain, since we expect
that, even though the number of excitations is not conserved, the generated excitations
remain close to the qubit. On the other hand, we take D = 9 in the middle and it decays
until it is D = 2 in the rest of the chain, except for the limits, where D = 1. Because of
the limited computational resources, now we need to take At = 0.1. When truncating we
stop it if the error is smaller than 107% or if a whole sweep has been realised. Then, now
the results will not be so clean. This is because the error sources are bigger, since the
truncation error is higher, the time step is larger and the initial state is not the desired
state since there is a little distance between it and the ground state.

At the moment we do not have a deep comprehension of the system and we need
to gather more data, but we have found interesting behaviours for different values of
the incident momentum. We show some of the most significant results for the qubit
population in the figure . First, note that, before interacting, the qubit population is
not zero, since the ground state of the system is not |0). In addition, note that the curves
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are now slightly noisy because of the error sources which we mentioned above. Now, we
analyse the results. First, for the smallest values of k, the qualitative behaviour is that we
observed for the RWA case: the qubit population increases and after that it goes again the
its ground state (k = 1.17 in the figure). However, as it increases, the qubit experiences
some kind of slow decay (k = 1.52 in the panel). If k is increased, it exhibits again the
RWA-like behaviour (k = 1.32. However, after that it again has a new kind of behaviour:
it decays slowly but, in addition, it seems that it emits and absorbs again and again part
of the excitations (k = 1.72 in the plot).
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Figure 13: Qubit population vs time in the ultra-strong coupling regime. For
different values of the momentum, qualitatively different behaviours appear.

We graph also contour plots with the number of excitations as functions of time and
chain position in the figure . The left panels (k = 1.17 and k = 1.52) show the normal
behaviour: the wave packet splits in transmitted and reflected parts and the rest of the
system comes back to the ground state (note that the excitations in the middle are equal
before and after the interaction with the wave packet). However, in the top right graphic
(k = 1.52) clearly the system does not go immediately to its ground state, but it decays
slowly. Finally, in the bottom right panel (k = 1.72) the behaviour is even stranger, since
the state in the middle exhibits oscillations, as it happens for the qubit, and in addition
it emits subsequent pulses.
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Figure 14: Contour plots showing the number of excitations as functions of
time and position. Top left: k = 1.17, top right: k = 1.32, bottom left k = 1.52
and bottom right k = 1.72.

Currently we need to perform a deeper study of the system in order to gain a real
comprehension on the behaviour. Anyway, what is clear is that we have found qualitatively
different properties respect to those of the RWA regime.

4 Summary, conclusions and future prospects

We have studied the MPS method, one of the most celebrated and powerful numerical
techniques in 1D discrete quantum mechanical systems. We have applied it to some simple

problems about boson-qubit interactions, obtaining satisfactory results, even beyond
RWA.

This work provides some conclusions. First, it is clear that a deep experimental
improvement is fundamental to enhance the corresponding theoretical study. Secondly,
one more time it becomes evident that totally different branches in physics, as they are
black hole physics, quantum information theory or condensed matter physics, can influence
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each other.

As future prospects, we shall implement a technical but important tool: absorbing
boundary conditions in order to consider larger computation times, since otherwise our
system feels the undesired boundary effects. Between the proposals, we are thinking about
imposing complex values for the eigenenergies of the Tight Binding Hamiltonian in
both ends of the chain, since it would imply a non-Hermitian evolution and, if they were
implemented properly, the propagating wave packet would be absorbed. Another option
is to follow the proposal of [29], where they introduce a 3 level system interacting with
the wave guide via an excited and a metastable level in the RWA approximation, whereas
the excited state decays to the ground state because of a non-Hermitian interaction.

On the other hand, we will attack other systems, like scattering in the RWA with more
than one photon impinging on different qubits configurations, like one or two qubits, a
disorder distribution, etc. For example, right now we are obtaining the first results for
2 photons and 2 separated qubits. In addition, we can consider other kind of problems,
like looking for ground states in order to find quantum phase transitions of different 1D
strongly correlated systems, or even low-energy excitations spectrum.

Finally, we thank Juan José Garcia Ripoll (Instituto de Fisica Fundamental, CSIC)
for fruitful discussions and useful explanations.

A Details about the truncation

The problem consists of minimising iteratively a function which is a sum of scalar products
(20). During this section, we will consider the generic scalar product (£|y), whose MPS
tensors are A(€) and A(() respectively. First of all, since the whole function is minimised
with respect to the tensors linked to a given site, we are going to write a scalar product
between MPS in the following way:

(€l¢) = (v5) By, (56)
where v§ and v$ are the vectorisations of A(£)™ and A(¢)" respectively. Using the MPS
representation, this scalar product is:

(€16) = (AT )iy ko (A iy k- -+ (AE)E Vi by (AT 122 (AC)S Dty - - (A(C)%)zL,(h?)
5
We rewrite it in the following way:

(€1C) = (AL knta bt (AT i b (A ) 1 (AR ki b (58)

where A; and Ag are:

(AL on i = (A(§>i1)l:1,k2(A(C>§1)ll7lz = (A ik (A (59)
(AR ki sstsn s = (A s sonen (AT e - - - (A E iy ey (A )1 (60)
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Now, another tensor C' is introduced:

Chnirnitkndn = (AR k1 tnsr ot (AL k01 e (61)

Then, the scalar product becomes:

(€16) = (A ™ i s Crr i ot A 1 (62)

We introduce a Kronecker delta because of convenience:

<§‘C> - (A(g)ln )Zn,kn+1 Ckn+17ln+1,k?n7ln5in7jnA<C){:,ln+1 (63)

Another tensor is defined:

Dkn ,in 7kn+1 ,ln 7jnaln+1 = C(kn+1 7ln+1 7kn aln 57% 7jn (64)
Then:

(1) = (AL )k ko ir Drsinibn i nsimdnsr (AT )t (65)

Finally, we can define the vectorisations A(§),, by joining all the indices:

(Ufb)[kn,in,kn-‘.ﬂ = (A<§)fﬁ,n)]>::n,kn+17 (66)

and the same for v5. Here, [ky,,i,, kny1] is again a single index, in such a way that we
construct a vector from a tensor with three indices (the same for v5). In the same way,
we define a matrix F by joining the indices of the tensor D in two sets:

E[kn sin :kn+1} 7[7ln Jn 7ln+1] = Dknyinykn-kl nsdnslnt1 (67)

Then, the scalar product is:

<§|<> = (Ug)rkn,in,kn+ﬂ E[knyin7kn+1]7[7ln7jn71n+1] (USZ) [7lnyjn7ln+l] ? (68)

or, in vectorial notation:

(€1C) = (v}) By, (69)

So, we achieve a result like , as we wanted to show, as well as the form in which
the matrix F has to be constructed.
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