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RESUMEN 
 

Bajo la premisa de utilizar forrajes de calidad suplementados con el mínimo aporte 

de concentrado en la alimentación de vacas lecheras en condiciones de pastoreo, 

como una medida para afrontar la actual situación en la que se encuentra inmerso el 

sector lechero, y con la necesidad de encontrar nuevos cultivos alternativos más 

respetuosos con el medio ambiente, se ha planeado el presente trabajo de 

investigación para evaluar el ensilado de un cultivo asociado de una leguminosa 

(haba forrajera) y una crucífera (colza forrajera; HC) como una alternativa al ensilado 

de raigrás italiano (RI) en la alimentación de vacas frisonas durante el periodo de 

transición en condiciones de pastoreo. 

 

Se establecieron sobre dos parcelas semejantes y colindantes de 1,7 ha cada una, 

los dos cultivos invernales puestos en cuestión. El cultivo asociado HC fue manejado 

con criterios de sostenibilidad medioambiental (fertilización orgánica y bajos imputs 

de herbicidas) mientras que el RI con un manejo convencional (uso de fertilización 

sintética y herbicidas). El RI se cosechó en dos cortes para ensilar, siendo su 

segundo corte coincidente con el corte único del HC. Los resultados mostraron una 

producción forrajera del HC en un solo corte numéricamente superior a la producción 

acumulada de los dos cortes del RI tanto en materia seca (9,82 vs. 7,88 tMS/ha 

respectivamente; P>0,05) como en proteína bruta (1,63 vs. 1,11 tPB/ha 

respectivamente; P>0,05) e inferior en materia orgánica digestible (8,51 vs. 11,71 

tMS/ha respectivamente; P<0,01) y energía (89 vs. 93 GjEM/ha respectivamente; 

P>0,05). El crecimiento de adventicias asociadas al cultivo de verano posterior (maíz 

en ambas parcelas) fue significativamente menor tras el forraje de invierno HC que 

el RI (0,28 vs. 1,42 tMS/ha respectivamente; P<0,01), ello a pesar de la aplicación 

de una menor dosis de herbicida, lo que demuestra el poder herbicida de la colza. La 

evolución del contenido en potasio (K) del suelo refleja el efecto de la fertilización 

orgánica, rica en K, así como la extracción de K de las capas profundas del suelo 

por parte de la colza. 

 

La estimación del índice de ensibilidad de los forrajes clasificó al RI como forraje de 

alta ensilabilidad mientras que el de la asociación HC como de media ensilabilidad. 

Con estos ensilados se elaboraron dos dietas TMR que fueron ofertadas ad libitum a 

dos grupos de vacas frisonas: grupo HC (TMR a base de ensilado de HC; 5 vacas) y 

grupo RI (TMR en base de ensilado de RI; 4 vacas), desde cuatro semanas antes de 
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la fecha prevista del parto hasta cuatro semanas después. Las vacas tenías acceso 

al pasto entre 12 y 16 horas por día. Los animales en el grupo HC tuvieron un 

consumo de TMR inferior al observado en el grupo RI (P<0,001). Esto se vio 

compensado por una mayor ingestión de hierba en pastoreo durante las cuatro 

semanas preparto, sin embargo esta compensación no continuó en el postparto, lo 

que se manifestó en la recuperación de la ingestión de materia seca total después 

del parto que fue numéricamente mayor en el grupo RI que en el grupo HC. La 

menor ingestión de materia seca del grupo HC no afectó la producción de leche 

(28,14 vs. 28,49 kg leche/d; en el grupo HC y RI respectivamente) ni al contenido 

proteico de la leche producida (3,31 vs. 3,26%, respectivamente), ahora bien, el 

porcentaje de grasa en la leche producida fue superior en grupo RI respecto al grupo 

HC (4,36 vs. 3,91% respectivamente; P<0,05). No obstante, la grasa obtenida de 

leche del grupo HC fue más rica en ácidos grasos poliinsaturados que la grasa de la 

leche del grupo RI (3,48 vs. 2,03 gAGPI/100gAG, respectivamente; P<0,001), sobre 

todo en proporción de ácido linoleico (1,86 vs. 1,36 g/100gAG, respectivamente; 

P<0,01), CLA (0,74 vs. 0,31 g/100gAG, respectivamente; P<0,001) y linolénico (0,86 

vs. 0,35 g/100gAG, respectivamente; P<0,001). 

 

La sustitución del raigrás italiano por le cultivo asociado de haba y colza forrajeras 

proporciona la ventaja agronómica de una mayor producción por hectárea, a la vez 

que permite reducir el uso de fertilizantes químicos y herbicidas. El uso de esta 

asociación forrajera ensilada en la alimentación de vacas en preparto permite reducir 

el aporte de concentrado en la ración e incrementa el consumo de hierba de 

pastoreo, lo que permitiría reducir los costes de alimentación en el preparto. 

Utilizando la misma ración tras el parto, se observa que no afecta a la producción de 

leche y mejora notablemente el perfil lipídico de la grasa de la misma. No obstante, 

se observa una limitación en la ingestión de materia seca tras el parto que podría 

afectar a la producción de leche a medio y largo plazo y a la reactivación de la 

reproducción, por lo que debería estudiarse la posibilidad de su aporte conjunto con 

otros forrajes y/o su ensilado con aditivos que permitieran incrementar su 

digestibilidad e ingestión voluntaria tras el parto. 

 

 



IV 
 

 

SUMMARY 
 

The present research work were planned to evaluate a crop silage including a 

legume (fava bean forage) and crucifer (rapeseed forage, HC) as an alternative to 

Italian ryegrass silage (RI) in the diet of Friesian cows during the transition period in 

grazing conditions, under the premise of using quality forages supplemented with a 

minimal contribution of concentrate in the diet, in order to cope the current situation in 

which the dairy sector is immersed, and the necessity to find new alternative crops 

environmental friendly.  

 

Two winter crops (HC and RI) were grown on two similar and adjoining plots, with 1.7 

ha each one. The intercropping HC was managed with sustainable environmental 

conditions (organic fertilizer and low herbicide imputs) while the RI were managed 

under conventional management (use of synthetic fertilizer and herbicides). The RI 

was harvested for silage in two cuts, and the HC in an unique cut. Forage production 

of HC in a single cut was higher than the RI accumulated production of the two cuts, 

for dry matter (9,82 vs. 7,88 tDM/ha respectively; P>0,05) and for crude protein (1,63 

vs. 1,11 tCP/ha respectively; P>0,05) and lower organic matter digestible content 

(8,51 vs. 11,71 tOMD/ha respectively; P<0,01) and energy production (89 vs. 93 

GjME/ha respectively; P>0,05). The growth of weeds associated with subsequent 

summer crops (maize in both plots) was significantly lower in the HC plot than in RI 

plot (0,28 vs. 1,42 tMS/ha, respectively, P <0,01), despite the application of a lower 

dose of herbicide in the HC plot, which demonstrates the herbicide activity of 

rapeseed. The potassium (K) evolution in soil reflects the effect of organic fertilization 

(rich in K) and K extraction from deep soil layers by rapeseed. 

 

The estimation of the ensilability index of both winter crops classified the RI as high 

ensilability while the HC as of half ensilability. With these silages, two Total Mixed 

Rations (TMR) were prepared and offered ad libitum to two groups of Friesian cows: 

HC group (TMR based on HC silage, 5 cows) and RI group (TMR silage based on RI; 

4 cows), from 4 weeks before the expected calving date until 4 weeks after calving. 

The cows had access to pasture between 12 and 16 hours per day. The HC-group 

animals had lower TMR intake than RI-group animals (P <0,001). This low intake 

was offset by an increased grass intake on pasture during the four weeks before 

calving. However this compensation did not continue in the postpartum period, 

therefore the recovery of the total postpartum dry matter intake was affected and was 
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numerically higher in RI group than in the HC group. The lower dry matter intake in 

the HC-group did not affect milk yield (28,14 vs. 28,49 kg milk / d, in HC and RI group 

respectively) or protein content (3,31 vs. 3,26%, respectively) however, the fat 

content was higher in RI group than HC group (4,36 vs. 3,91%, respectively, P 

<0,05). Nevertheless, the HC-group fat milk was richer in polyunsaturated fatty acids 

than the milk fat of RI group (3,48 vs. 2,03 gAGPI/100gAG respectively, P <0,001), 

especially in the proportions of linoleic (1,86 vs. 1,36 g/100gAG, respectively, 

P<0,01), CLA (0,74 vs. 0,31 g/100gAG, respectively, P<0,001) and linolenic acids 

(0,86 vs. 0,35g/100gAG, respectively, P <0,001). 

 

Replacement of Italian ryegrass by the intercropping of fava bean and rapeseed 

provides the advantage of increasing the production per hectare and reducing the 

use of chemical fertilizers and herbicides. The use of fava bean-rapeseed silage in 

grazing dairy cows feeding during the prepartum period can reduce the concentrate 

contribution in the ration and increase the pasture grass intake, thereby, it could 

reduce feed costs during this period. The use of the same ration based on the HC 

silage after calving, had not effect on milk production and improves greatly the fatty 

acids profile of the fat, compared with the RI group. However, there is a limitation on 

dry matter intake after calving, which could affect milk production at medium and long 

term and the recovery of the reproduction activity. Hence, it should be research its 

contribution together with other forages and / or silage additives that allow increase 

its digestibility and voluntary intake after delivery. 
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RESUME 
 

Dans le cadre du principe de l’utilisation des fourrages de qualité, complétés par la 

contribution minimale des concentrés dans la ration des vaches laitières dans des 

conditions de pâturage, comme une mesure visant à remédier à la situation difficile 

dans laquelle le secteur laitier se trouve actuellement, et sous la nécessité de trouver 

nouveaux fourrages alternatifs plus respectueux envers l'environnement, l’objectif de 

ce travail a été l’évaluation de l’ensilage d’un forages qui associe une légumineuse 

(haricot fourrage) et crucifères (fourrage de colza, HC) comme une alternative a 

l’ensilage de ray-grass italien (RI) dans l'alimentation des vaches frisonnes pendant 

la période de transition au pâturage. 

 

Les deux fourrages en question ont été cultivés sur deux parcelles similaires et 

adjacent de 1,7 ha chacune. La culture de l’association fourragère HC a été traitée 

avec des critères de durabilité environnementale (engrais organique et faible imputs 

d’herbicide), tandis que le RI a reçu une gestion conventionnelle (utilisation d'engrais 

synthétiques et herbicides). Le RI a été récolté pour l'ensilage en deux coupes, 

coïncidant sa deuxième coupe avec la coupe unique de HC. Les résultats ont montré 

une production fourragère de HC en un seul de coupe numériquement supérieure à 

la production accumulée en deux coupes de RI, en matière sèche (9,82 vs. 7,88 

tMS/ha, respectivement, P>0,05) et de protéine brute (1,63 vs. 1,11 tPB/ha, 

respectivement, P>0,05) et une production plus faible de matière organique 

digestible (8,51 vs. 11,71 tMS/ha, respectivement, P<0,01) et de l'énergie (89 vs. 93 

GJEM/ha, respectivement, P>0,05). La croissance des mauvaises herbes associée 

aux cultures d'été (maïs ultérieures dans les deux parcelles) était significativement 

plus faible dans la parcelle où le fourrage d’hiver avait été le HC que dans la parcelle 

de RI (0,28 vs. 1,42tMS/ha, respectivement, P<0,01) malgré l'application d'une faible 

dose d'herbicide, ce qui démontre le pouvoir herbicide de colza. L'évolution de 

potassium du sol (K) reflète l'effet de la fertilisation organique (riche en extraction K) 

et l’extraction de K par le colza des couches profondes du sol. 

 

L’estimation de l’indice de l’aptitude à l’ensilage des deux fourrages a classé le RI 

comme un fourrage de haute aptitude à l'ensilage tandis que l'association fourragère 

HC comme un fourrage de moyen d'aptitude à l'ensilage. A partir de ces deux 

ensilages, deux TMR ont été préparés et offerts ad libitum à deux groupes de vaches 
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frisonnes: groupe HC (TMR a base d'ensilage HC, 5 vaches) et le groupe IR (TMR a 

base d'ensilage de RI; 4 vaches), à partir de quatre semaines avant la date prévue 

de vêlage jusqu'à 4 semaines après le vêlage. Les vaches ont eu accès au pâturage 

durant 12 et 16 heures par jour. Les animaux dans le groupe HC avaient une 

ingestion de TMR inférieur a celle observée dans le groupe RI (P<0,001). Cela a été 

compensé par une ingestion accrue de l'herbe au pâturage, durant les quatre 

semaines avant le vêlage, mais cette compensation n'a pas continué dans la période 

post-partum, ce qu’il s'est traduit par une récupération de l'ingestion total de matière 

sèche numériquement plus importante dans le groupe RI que dans le groupe HC. La 

faible ingestion de MS dans le groupe HC n'a pas eu d’impact sur la production de 

lait (28,14 vs. 28,49 kg de lait/j, dans les groupes HC et RI respectivement) ni sur la 

teneur protéiques du lait produit (3,31 vs. 3,26%, respectivement), cependant, le taux 

butyreux de lait était plus élevé dans le groupe RI par rapport au groupe HC (4,36 vs. 

3,91% respectivement; P<0,05). Cependant, la matière grasse du lait de groupe HC 

était plus riche en acides gras polyinsaturés que celui de groupe RI (3,48 vs. 2,03 

gAGPI/100gAG respectivement, P<0,001), en particulier la proportion l'acide 

linoléique (1,86 vs. 1,36 g/100gAG, respectivement, P<0,01), CLA (0,74 vs. 0,31 

g/100gAG, respectivement, P<0,001) et linolénique (0, 86 vs. g/100gAG 0,35, 

respectivement, P<0,001). 

 

La substitution de ray-grass italien par l’association fourragère haricot-colza comme 

un fourrage d’hiver présente l'avantage d’augmenter la production fourragère par 

hectare, tout en réduisant l'utilisation d'engrais et d'herbicides chimiques. En effet, 

l'utilisation de l’ensilage de cette association HC dans l’alimentation des vaches 

laitières avant le vêlage permet de réduire l’apport du concentré dans la ration et 

d'augmenter la consommation de l'herbe au pâturage, ce qu’il pourrait réduire, ainsi, 

les coûts de l'alimentation durant ce période. L’utilisation de la même ration à base 

de l’ensilage de HC après le vêlage n'affecte pas la production de lait et améliore 

considérablement le profil lipidique de la graisse dans le lait. Cependant, il ya une 

limitation de l’ingestion de matière sèche après le vêlage ce qu’il pourrait affecter 

probablement la production laitière à moyen et long terme et la reprise de l’activité 

reproductrice. Donc, il faudrait envisager son combinaison avec d'autres fourrages 

et/ou additifs pour l'ensilage qui permettent d'augmenter sa digestibilité et l'ingestion 

volontaire après parturition. 
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1. INTRODUCCIÓN Y OBJETIVOS: 

 

Uno de los momentos cruciales en el ciclo productivo de la vaca lechera es el 

periodo de transición, definido como las tres últimas semanas antes del parto (parte 

del periodo seco preparto) y las tres primeras semanas después del parto (postparto 

temprano) (Grummer, 1995). El final de la gestación y el inicio de la lactación se 

acompañan de cambios endocrinos importantes que superan cualquiera de los que 

se producen en todo el ciclo productivo de las vacas. Al mismo tiempo que estos 

cambios, se producen cambios metabólicos que facilitan la movilización de 

nutrientes desde las reservas maternas hacia la síntesis de leche (Hayirli et al, 

2002). Las necesidades nutricionales de las vacas durante estas seis semanas se 

incrementan drásticamente conforme empieza la producción de leche hasta llegar al 

pico de lactación. En contraste, la capacidad de ingestión de alimento en este 

periodo es la más baja en toda la lactación, lo que ocasiona un déficit nutricional y 

un estrés importante en el animal. A pesar de que las vacas responden a estas 

demandas mediante el aumento de la ingestión de materia seca, la respuesta suele 

retrasarse, y por lo tanto, entran en un balance negativo de nutrientes durante este 

periodo (Rastani y Grummer, 2003). El más destacado es el balance negativo de 

energía que puede generar trastornos metabólicos y problemas de salud serios 

como el hígado graso y la cetosis, además de repercusiones sobre la actividad 

reproductiva y complicaciones tales como la retención de placenta, desplazamiento 

de abomaso y una mayor susceptibilidad a la infección relacionada con 

inmunodepresión alrededor del parto. Por estos motivos, el periodo de transición ha 

cobrado relevancia en el campo científico en la medida de que los especialistas en 

nutrición de vacuno lechero reconocen la importancia de este periodo para asegurar 

un correcto desarrollo de de la unidad feto-placental al final de gestación y optimizar 

la producción de leche posterior. 

 

Por otro lado, la producción de leche se encuentra inmersa en una crisis de 

rentabilidad generada por los elevados costes de las materias primas y los bajos 

precios de la leche (Álvarez et al, 2008). Esta complicada situación está forzando el 

sector a buscar estrategias para reducir costes, sobre todo en alimentación, que 

representa una parte muy importante de los gastos de producción de leche. Si 

tenemos en cuenta que la utilización de los forrajes en dietas de vacas lecheras es 

indispensable, pudiendo integrar hasta la totalidad de la dieta en algunos momentos 

del estado fisiológico de los animales (Roca-Fernández et al, 2012), la solución al 
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problema puede estar en reconducir los sistemas de alimentación, potenciando la 

utilización de forrajes de calidad en busca de una mejora en la eficiencia de 

utilización de los recursos propios. En este sentido, la zona del norte de España, 

denominada la Cornisa Cantábrica, se caracteriza por tener suelos fértiles que, junto 

a las condiciones edafoclimáticas, de gran pluviometría distribuida a lo largo del año 

y un clima templado con temperaturas suaves, favorecen la producción forrajera. 

Así, en las explotaciones lecheras de la zona, la producción de forraje ha ido 

intensificándose en los últimos años, utilizando variedades forrajeras de alto 

rendimiento vinculadas con el uso de fertilizantes químicos y pesticidas. Este manejo 

de modo repetitivo ha tenido con consecuencias negativas sobre los recursos 

naturales, como pérdida de fertilidad del suelo, contaminación de los recursos 

hídricos, eutrofización de aguas superficiales y balance de carbono negativo. De 

modo habitual, la rotación de cultivo que se repite continuamente por su elevada 

productividad es el maíz forrajero en verano y raigrás italiano en invierno. Esta 

rotación anual de dos gramíneas repetida de forma continua se ha manifestado muy 

exigente en cuanto a fertilización nitrogenada, lo que está poniendo en peligro la 

salud del suelo. Teniendo en cuenta estas consideraciones, y con el propósito de 

potenciar la utilización de forrajes de calidad en la alimentación de vacas lecheras, 

es necesario plantear estrategias de manejo menos agresivas con el medio 

ambiente y buscar cultivos alternativos menos exigentes pero sin pérdida en la 

producción forrajera o de el valor nutritivo. Asimismo, es necesario que estas 

alternativas forrajeras puedan ser utilizadas eficientemente por el vacuno lechero sin 

menoscabo en la producción y calidad de la leche. 

 

En este sentido, las leguminosas forrajeras, por su capacidad de fijar nitrógeno 

atmosférico, son especialmente atractivas para la producción sostenible de 

alimentos para el ganado. Trabajos anteriores realizados en el SERIDA destacan el 

papel de las habas forrajeras como cultivo invernal por su elevada producción, 

grandes nódulos de Rizhobium fijadores de nitrógeno atmosférico, porte erguido, 

aporte de proteína y alta digestibilidad (Martínez et al, 2002). A diferencia de la 

mayoría de las leguminosas, su baja capacidad tampón y adecuado contenido en 

azúcares solubles les confiere una ensilabilidad aceptable (de la Roza et al, 2004, 

Martínez-Fernández et al, 2010).  

 

Por otra parte, es sabido que la utilización de abonos verdes promueve la 

recuperación y reequilibrio mineral en los cultivos, así como una mayor eficiencia en 

el reciclaje de nutrientes mediante su movilización y solubilización. La colza forrajera 
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pertenece a este grupo de cultivos llamado abonos verdes. La peculiaridad de la 

colza consiste en disponer de un sistema radicular potente y profundo que moviliza 

nutrientes de las capas profundas a las superficiales, especialmente fósforo y 

potasio, liberándolos gradualmente durante el proceso de descomposición de la 

materia orgánica. (Vance et al, 2003). Además, la colza es rica en isotiocianatos con 

efectos alelopáticos sobre la flora adventicia, por lo que su utilización como forraje 

puede ser efectiva para suprimir el desarrollo de malas hierbas (Grundy et al, 1999) 

y mantener la fertilidad del suelo (Liebman y Davis, 2000). Desde el punto de vista 

nutritivo, la colza tiene un contenido medio de proteína y un alto porcentaje de 

ácidos grasos poliinsaturados, lo que le aporte un especial valor por la posibilidad de 

ser usada por su potencial a la hora de transferir estos ácidos grasos insaturados a 

la leche. Las numerosas variedades de la colza que se comercializan en el mercado 

han reducido su contenido en ácido erúcico, que constituye la principal fuente de 

ácidos grasos trans de los productos de los rumiantes cuando consumen semillas de 

colza. Asimismo, estas variedades presenten bajos contenidos de ácido prúsico y 

glucosinolatos, que actúan como factores antinutritivos que provocan baja 

palatabilidad y un descenso en la eficiencia productiva. 

 

Asociar diferentes familias botánicas da mayor cantidad y calidad forrajera que los 

monocultivos de las mismas especies en una superficie equivalente (Jolliffe, 1997). 

Los cultivos forrajeros mixtos a base de leguminosas y otras familias, además de 

abaratar los costes de producción, proporcionan una mayor cantidad y calidad de 

ensilado, incrementando significativamente el contenido proteico de la dieta (Anil et 

al, 1998). Sus principales beneficios radican en una mayor productividad en la 

rotación de cultivos (Doltra y Olesen, 2013) como consecuencia del incremento de 

fertilidad del suelo a largo plazo y en el aumento de la diversidad.  

 

Considerando todo lo anterior, se ha planteado el presente trabajo cuyo principal 

objetivo ha sido evaluar la utilización del pastoreo complementado c on dietas 

unifeed elaboradas con ensilados de alto valor nutritivo, obtenidos con bajos 

inputs en fertilizantes, y con el mínimo aporte de concen trado posible, en la 

alimentación de vacas lecheras en período de transi ción. 

 

Para alcanzar este objetivo general se proponen los siguientes objetivos parciales: 

1. Evaluar la asociación forrajera de habas con colza como cultivo de invierno 

alternativo al raigrás italiano. 
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2. Evaluar sobre vacas frisonas durante el periodo de transición y en 

condiciones de pastoreo, el uso en la ración de ensilado de haba y colza 

forrajera en sustitución de la alimentación convencional sobre la ingestión de 

materia seca y la producción y la calidad de la leche tras el parto. 
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2. REVISIÓN BIBLIOGRÁFICA: 
 

2.1. El periodo de transición 
 

2.1.1. Definición y delimitación temporal  
 

Según el diccionario de la Real Academia Española, el término “transición” significa 

“Acción y efecto de pasar de un modo de ser o estar a otro distinto”. En este sentido, 

las vacas lecheras sufren, a lo largo de su vida, varias transiciones. Las más 

destacadas son el nacimiento, el destete y el parto. Este último representa el 

acontecimiento central de un periodo en el que ocurren muchos cambios de 

importancia considerable tanto por su naturaleza como por su magnitud. 

 

Goff y Horst (1997), describen la transición en periparto como el paso de un estado 

de preñez no lactante (vaca en preparto) a un estado de no preñez y lactante (vaca 

en postparto) y es a menudo una experiencia desastrosa para la vaca lechera. Entre 

el final de gestación y el comienzo de lactación, la vaca necesita una atención 

especial en cuanto a su confort, nutrición y manejo sanitario para una transición 

exitosa. Este periodo ha cobrado gran relevancia en el campo científico en la última 

década, pero su determinación temporal ha sido un desacuerdo en la literatura. 

Algunos lo definen como el periodo que se extiende entre un mes antes del parto y 

un mes después, momento en el que se llega al pico de lactación (DeGaris y Lean, 

2008). No obstante, la mayoría de los trabajos revisados estrechan este rango entre 

los 21 días previos y 21 días posteriores al parto (Grummer, 1995). Aunque seis 

semanas parecen un rango de tiempo corto, las vacas están predispuestas a varios 

problemas sanitarios y metabólicos que pueden afectar al animal 

desproporcionadamente, lo que hace de este periodo, el más importante en el ciclo 

productivo y reproductivo de la vaca lechera (Ingvartsen et al, 2003). 

 

2.1.2. Final de gestación e inicio de lactación 
 
En el último trimestre de la gestación, la producción láctea disminuye 

progresivamente cuando la vaca se prepara para un nuevo ciclo productivo. Por eso, 

un manejo constante que fue recomendado la primera vez muchos años atrás (Dix 

Arnold y Becker, 1936) y que ha sido ampliamente adoptado durante décadas, 

consiste en interrumpir la producción láctea, entre dos lactaciones consecutivas, 

entre 50 a 60 días antes del parto (Schaeffer y Henderson, 1972; Dias y Allaire, 

1982; Makuza y McDanlel, 1996; Bachman y Schairer, 2003). Este tiempo, conocido 

como periodo seco, es una medida necesaria para renovar y preparar el tejido 
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mamario y el tracto digestivo a un nuevo ciclo lácteo y maximizar, por lo tanto, la 

producción de leche (Rémond et al, 1997). Sin embargo, el periodo seco junto al 

periodo entre el nacimiento y su primer parto representan los días improductivos que 

diluyen la función de maximizar las ganancias de la producción por día de vida 

(Lormore y Galligan, 2001). Así, se han realizado muchos estudios con el fin de 

evaluar su validez como un estándar apropiado en la industria lechera moderna e 

identificar su duración mínima óptima.  

 

Kuhn et al (2005) realizaron un estudio destinado a evaluar el efecto de varias 

longitudes del periodo seco en la lactación subsecuente y reportaron un máximo de 

producción de leche aplicando un periodo de secado entre 60 y 65 días. En 

contraste, Sørensen y Enevoldsen (1991), Gulay et al (2003), Pezeshki et al (2007) y 

Santschi et al (2011), concluyeron que un acortamiento de hasta menos de 40 días 

de secado sería más adecuado, ya que no se vieron efectos significativamente 

negativos sobre la producción posterior y, además, un secado más corto significa 

una duración de transición menos drástica. De otra parte, acortar el período seco 

hasta 30 días no tiene efectos negativos sobre la salud de la glándula mamaria, 

medida como infecciones intramamarias y recuentos de células somáticas (Church 

et al, 2008; Steeneveld et al, 2013). 

 

Otros trabajos (Rémond et al, 1997; Sawa et al, 2012; Steeneveld et al, 2013) han 

estudiado el efecto de omitir completamente el secado sobre la lactación posterior, 

partiendo del hecho de que los rebaños comerciales actuales son altamente 

productivos y de la teoría de que es más estresante forzar el secado de vacas de 

alto rendimiento que todavía pueden estar dando 25 kg de leche por día que 

mantener la lactación (Rémond y Bonnefoy, 1997). También se ha argumentado que 

el ordeño continuo no debe ser visto como un acortamiento extremo del secado, ya 

que no hay paro de la producción de leche, lo que implica, en principio, ningún 

proceso de involución y, así, no hay necesidad de la regeneración posterior. 

 

Sin embargo, los ensayos de lactación continúa señalaron una perdida diaria de 

leche que osciló entre 3,2 y 9,1 kg/día en vacas sin periodo seco comparadas con 

sus compañeras de rebaño con un periodo de seco convencional. Estas pérdidas 

son el equivalente de 10 hasta 30% del rendimiento de la siguiente lactación. Dicha 

pérdida de leche se achacó a la reducción de la funcionalidad del parénquima 

mamario (Annen et al, 2004). 
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En la Tabla 2.1 se muestra que, independientemente de la edad de la vaca, un 

secado de menos de 30 días o de más de 70 días es negativo para la productividad 

de la lactación posterior. 

 

Tabla 2.1. : Pérdida potencial de la producción de leche según la duración del 
secado después de la primera y segunda lactación (K uhn et al, 2006) 
 

Duración del secado  Primera lactación  Segunda lactación  

< 30 días -1000 a -2600 kg -1570 a -3450 kg 

> 70 días -2400 a -4700 kg -2700 a -4500 kg 

 

En definitiva, el tejido mamario de la vaca altamente productiva requiere un periodo 

de no-lactación antes del parto y es mucho más eficiente permitir a las vacas tener 

un periodo de descanso entre dos lactaciones que puede oscilar entre 40 y 60 días 

(Andersen et al, 2005; Klusmeyer et al, 2009; Mantovani et al, 2010). 

 

2.2. Características fisiológicas y nutricionales d el periodo de transición 

 

2.2.1. Necesidades nutricionales e ingestión de mat eria seca 

 

El periodo de transición se caracteriza por marcados cambios fisiológicos, 

metabólicos y digestivos. Durante las 2 a 4 últimas semanas de gestación se 

produce un aumento sustancial de las necesidades energéticas del animal debido al 

desarrollo fetal y a la necesidad de producir calostro. Esto se aplica tanto a las vacas 

primíparas como a multíparas, aunque las primíparas todavía están en crecimiento y 

tienen, por lo tanto, mayores requerimientos que las multíparas (Friggens et al, 

2004). 

 

Las necesidades del crecimiento mamario al final de la gestación podrían ser 

también consideradas, aunque la última versión del NRC (2001) no las tiene en 

cuenta porque se han realizado pocos trabajos para definir dichos requerimientos. 

En el último trimestre de gestación, el feto pasa de representar el 45% del peso total 

del útero el día 190 de gestación al 80% el día 270 de la gestación (Bell et al, 1995). 

Este rápido crecimiento centralizado, al final de gestación, implica unas demandas 

energética, proteica y mineral altas, estimadas por Bell (1995) como una subida del 
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30% al 50% de las necesidades de gestación. De hecho, el NRC (2001) asume 

como nulas estas necesidades cuando los días de gestación son inferiores a 190. A 

partir de entonces, siguen un patrón cuadrático hasta el día 270 de gestación, 

suponiendo un costo sustancial al animal al final de la preñez, ya que en este 

momento el desarrollo de la masa placento-fetal requiere diariamente 0,82 Mcal de 

EM, 117 gr de proteína, 10,3 gr de Ca, 5,5 gr de P y 0,2 gr de Mg. En esta fase, la 

densidad energética de la dieta debería ser en torno de 1,40 Mcal de energía neta 

de leche (ENl) por kg de materia seca (MS) y el aporte proteico de la ración de 

alrededor de 14 - 16 % y de 15 - 17% de proteína bruta (PB) para vacas y novillas de 

primer parto respectivamente.  

 

La iniciación de la síntesis de calostro provoca un marcado aumento en las 

necesidades de energía. La producción de 10 litros de calostro el primer día 

postparto ocasiona un gasto de 11 Mcal de energía neta de lactación. En los 

primeros días de lactación, cada kg de calostro producido necesita 1,1 Mcal de 

energía metabolizable, 14 gr de proteína bruta, 2,3 gr de Ca, 0,9 gr de P y 0,1 gr de 

Mg. A continuación, la demanda nutricional después del parto sigue intensificándose 

conforme aumenta la producción de leche hasta llegar a su máximo en el pico de 

lactación de manera que cada kg de leche producido requiere entre 0,7 y 0,8 Mcal 

de ENl (Figura 2.1). En este estadío, la densidad energética de la dieta debería ser 

de 2,2-2,4 Mcal ENl/kgMS, el porcentaje de proteína bruta del 16-18 %, con el 38-45 

% como proteína no degradable en el rumen.  

 

Para resumir estos importantes cambios, se han calculado a partir de las 

recomendaciones de NRC (2001) las necesidades (en energía neta de lactación; 

ENl) de una novilla y una vaca multípara dos días antes y dos días después del 

parto (Tabla 2.2), asumiendo que en el segundo día las vacas producen 25 kg de 

leche postparto y las novillas 20 kg, ambas con una tasa de grasa de 4%. Las vacas 

pierden en el parto un peso promedio de 80 kg y las novillas 60 kg, que representan 

el peso del ternero y los anejos placentarios. Se puede observar claramente que en 

un rango de tiempo de cuatro días las necesidades en energía neta de lactación se 

duplican. 
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Figura 2.1. Incremento de las necesidades energétic as durante el periodo de 

transición 

 
Tabla 2.2. : Comparación entre los requerimientos e nergéticos en ENl (Mcal/d) 
dos días antes (preparto) y dos días después del pa rto (posparto), en vacas y 
novillas lecheras según NRC (2001). 
 

Vaca (700 kg de PV) Novilla (560 kg de PV) 
Necesidades 
NEl (Mcal/d) Preparto (-2 d) Posparto (+2 d) Preparto (-2 d) Pos parto (+2 d) 

Mantenimiento 10,9 10,2 9,2 8,5 

Gestación 3,4 - 2,6 - 

Crecimiento - - 1,8 1,6 

Producción - 18,7 - 14,7 

Total 14,3 28,9 13,6 25,8 

 
 

En este periodo, no solamente aumentan drásticamente las necesidades 

energéticas, sino también los de otros nutrientes. Drackley et al (2001) 

documentaron una duplicación, incluso una triplicación de los requerimientos en 

energía metabolizable y glucosa de las tres semanas previas al parto a las tres 

semanas postparto. Las estimaciones de las necesidades de aminoácidos, ácidos 

grasos y glucosa por parte de la glándula mamaria indican aproximadamente un 
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aumento de dos veces en la demanda de aminoácidos, cinco veces en los ácidos 

grasos y 2,5 veces la demanda de glucosa (aproximadamente de 1000 g/día a 2500 

g/día) desde los últimos días de gestación al día 21 postparto. En el caso de la 

glucosa las necesidades en el período postparto exceden al suministro a partir del 

consumo de energía dietética en más de 500 g/día (Bell, 1995; Overton et al 1999). 

 

Esta situación de incremento de necesidades nutricionales al final de gestación y 

principio de la lactación se acompaña de una disminución del consumo de materia 

seca. Estas dos circunstancias son, con frecuencia, responsables del desarrollo de 

un balance energético negativo (BEN) (Figura 2.2), que se inicia unos días antes del 

parto. Durante las primeras semanas de secado, el consumo de materia seca es de 

aproximadamente el 2% del peso vivo en vacas adultas y el 1,7% en novillas 

primíparas, pero disminuye en una función exponencial en las últimas dos semanas 

antes de la parto. 
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Figura 2.2. Estado energético de las vacas lecheras  al final de gestación y al 

inicio de lactación (Grummer, 2008) 

 

Resulta paradójico que el incremento en la demanda de nutrientes esté acompañado 

de una disminución en la capacidad de ingestión de materia seca (IMS) 

fundamentalmente en las ultimas tres semanas de preñez, siendo la ingestión de 

alimento en este momento crítico, la más baja en todo el ciclo lactación-gestación 

(Grummer et al, 2004). Hayirli et al (2002) observaron que vacas Holstein en 
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transición reducían un 32% la IMS durante las tres últimas semanas de gestación, 

ocurriendo el 89% del descenso en la última semana y siendo este descenso más 

gradual en las vacas que en las novillas. En las primeras semanas posparto, la IMS 

sigue estando por debajo del nivel de satisfacción de la demanda de nutrientes 

debido a que el aumento del consumo de materia seca es más lento que el aumento 

del ritmo de producción de leche (Bell, 1995). Como consecuencia, la magnitud del 

desafío metabólico que deben afrontar las vacas lecheras en el comienzo de la 

lactación es asombrosa. Este desajuste entre la ingestión de alimento y la 

producción de leche es el resultado de décadas de selección genética para alta 

producción de leche. De hecho, Gurmmer et al (2004) estima que actualmente las 

vacas producen 10 veces más de leche que lo requerido para satisfacer las 

necesidades alimenticias de su cría.  

 

Es sabido que todas las vacas sufren un proceso normal de movilización de tejidos y 

grasa corporal en el postparto, pero si las necesidades de mantenimiento y lactación 

exceden la capacidad de la vaca para consumir suficiente cantidad de energía, 

aparece el balance energético negativo. Sin embargo, Drackely (2005) ve que este 

reto puede ser superado, ya que las vacas son mayoritariamente capaces de 

responder al BEN sin dificultad, porque las adaptaciones metabólicas necesarias 

para apoyar la producción de leche son un componente de los factores que están 

genéticamente seleccionados. Frente al déficit energético, el organismo reacciona 

movilizando reservas corporales, aumentando la glicogénesis hepática a partir de 

sustratos endógenos y disminuyendo el uso no esencial de la glucosa en los tejidos 

no-mamarios (Bell, 1995).  

 

Un estudio de Bertics et al (1992) fue citado con frecuencia durante muchos años 

para ilustrar la importancia de maximizar el consumo voluntario de materia seca 

durante la preparación del parto. En este estudio, un grupo de vacas fueron 

alimentadas normalmente y mostró la caída típica de IMS cerca del parto. Sin 

embargo, en otro grupo de vacas durante las tres semanas previas del parto se 

introdujeron, vía fístula ruminal, los rechazos de la dieta, imitando un alto consumo 

mantenido durante todo el período de preparto. Se observó que la infiltración de 

grasa en el hígado de las vacas en alimentación "forzada" fue significativamente 

menor que en vacas del grupo control. Este hecho fue interpretado como una 

indicación de la necesidad de maximizar la IMS antes del parto y/o de aumentar la 

densidad energética de la dieta. Sin embargo, algunos estudios más recientes 

muestran que esto tal vez no es totalmente correcto, ya que lo importante no es 
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realmente la cantidad absoluta de la materia seca y la energía consumida, sino la 

magnitud de la disminución de la IMS en las últimas semanas antes del parto. Así, la 

palabra clave en este periodo pasó de ser “aumento del consumo” a ser 

"mantenimiento del consumo”. Es decir que la alimentación en el periodo de 

transición tendría que ser formulada de forma que los animales eviten grandes 

cambios en la dieta y en la condición corporal. De hecho, el NRC (2001) recomienda 

que las vacas no deben ganar peso vivo durante el período seco, a excepción del 

incremento de peso asociado al crecimiento del feto y las membranas fetales. En 

efecto, un análisis estadístico retrospectivo de varios estudios que comparan 

diferentes estrategias nutricionales para las vacas secas, mostró que los niveles de 

ácidos grasos no-esterificados (un indicador directo de la movilización de las 

reservas corporales) y la acumulación de lípidos en el hígado se ven influenciados 

más por la magnitud en la caída de IMS en las dos semanas antes del parto que por 

el nivel de IMS (Grummer et al, 2004). 

 

2.2.2. Adaptación durante el periodo de transición 

 

Desde que la vaca es secada hasta llegar al pico de lactación, ocurren muchos 

cambios y adaptaciones fisiológicas y metabólicas, principalmente causadas por el 

cambio cuantitativo y cualitativo en la alimentación y exacerbadas por las 

variaciones endocrinas que caracterizan el momento del parto.  

 

2.2.2.1. Adaptación Digestiva  

 

Convencionalmente, ocho semanas antes de la fecha esperada del parto, se deja de 

aportar cereales a la ración con el fin de reducir la síntesis de leche. Por lo tanto el 

pH ruminal y el perfil y la cantidad de nutrientes resultantes de la fermentación 

ruminal y absorbidos por el animal cambian drásticamente. Esto implica reajustes en 

el metabolismo y en el sistema digestivo para acomodar el parto y la lactación 

siguiente. 

 

Los forrajes favorecen el crecimiento en el rumen de una flora celulolítica y la 

producción de metano, mientras que los concentrados favorecen el desarrollo de las 

bacterias amilolíticas y la síntesis de ácido propiónico. Una vaca tras del secado 

recibe una dieta fibrosa (alto contenido en FND y FAD) y de baja densidad 

energética, pobre en hidratos de carbono no estructurales, lo que modifica la 

microflora dominante y el epitelio ruminal. La microbiota ruminal cambia hacia una 
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flora fundamentalmente celulolítica, acompañada de una destacada reducción de 

microorganismos aminolíticos que son los responsables de la conversión de la 

mayor parte del lactato, producto de la fermentación de almidón, en propionato. Su 

desaparición reduce la capacidad de convertir el lactato, un ácido con una capacidad 

acídica más fuerte que el propiónico.  

  

Otro efecto de una dieta de baja densidad energética durante el primer periodo del 

secado de la vaca, es una reducción en la longitud de las papilas ruminales. La 

pared del rumen sirve para el transporte de grandes cantidades de ácidos grasos 

volátiles (AGV): acetato, propionato y butirato (la principal fuente de energía 

absorbida por el tracto gastrointestinal) y ejerce una extensa labor en el transporte 

de los iones necesarios para apoyar el transporte de AGV. El decrecimiento del 

tamaño de las papilas del rumen origina una menor superficie de absorción de los 

AGV, habiéndose calculado que durante las primeras siete semanas del periodo de 

vaca seca, se puede perder hasta el 50% de la capacidad de absorción de AGV por 

la mucosa ruminal (Bannink et al, 2012). El crecimiento del epitelio ruminal está 

condicionado por la presencia de los AGV, fundamentalmente el ácido propiónico, y 

es un proceso que tarda entre 3 a 4 semanas en establecerse.  

 

En la segunda parte del secado y al principio de lactación, las vacas suelen recibir 

en la dieta cantidades importantes de concentrados. Cuando esto sucede de forma 

repentina, se desencadena un crecimiento en poco tiempo (3 – 5 días) de la flora 

amiliolitica productora de lactato, como Streptococcus bovis y Lactobacillus spp 

(Reddy et al, 2008). En contraste, las bacterias utilizadoras del lactato, como 

Megasphaera elsdenii y Selenomonas ruminantium, que lo metabolizan a AGV, 

presentan un crecimiento relativamente lento, entre 3 y 4 semanas. 

  

Por consiguiente, la súbita introducción de concentrado inmediatamente después del 

parto, tiene varias consecuencias negativas. El ácido láctico tiene mayor capacidad 

para reducir el pH del rumen que los ácidos grasos volátiles, y éstos podrían ser 

absorbidos con mayor rapidez en un medio ácido, pero al no haber tenido las papilas 

ruminales suficiente tiempo para regenerarse, la absorción es limitada. La escasa 

presencia de ácido propiónico, principal estimulador del crecimiento papilar, retrasa 

la recuperación del tamaño de papila óptimo, y los AGV, que normalmente se 

absorben con relativa facilidad, no pueden absorberse a velocidad adecuada. Zitnan 

et al (1999) documentaron una longitud necesaria de 1-1,5 cm de las papilas 

ruminales para conseguir una plena absorción. 
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Por lo tanto, en el periodo de transición, se dan en el rumen una combinación de 

producción masiva del ácido láctico, adaptación retrasada de la población 

microbiana que lo metaboliza y una reducción en la capacidad de absorción de la 

pared ruminal que favorece el desarrollo de acidosis. 

 

2.2.2.2. Adaptación endocrina  

 

Como se ha detallado anteriormente, el periodo de transición se caracteriza por una 

baja IMS que requiere de una cuidadosa coordinación del metabolismo para 

alcanzar los requerimientos de energía, glucosa, aminoácidos y calcio por la 

glándula mamaria después del parto. La baja IMS genera una fuerte disminución de 

la concentración de glucosa en la sangre. La primera adaptación del metabolismo de 

la glucosa a la lactación es el incremento de la gluconeogénesis hepática (Reynolds 

et al, 2003). El organismo de una vaca de alta producción busca una fuente para la 

síntesis de glucosa dirigida a la síntesis de lactosa en la glándula mamaria, y 

simultáneamente disminuye la oxidación de glucosa por tejidos periféricos. Las 

hormonas que actúan aumentando la gluconeogénesis en el hígado en el periparto 

son la insulina, el glucagón, la somatotrofina y el cortisol. La baja concentración 

sanguínea de glucosa disminuye la estimulación de las células pancreáticas β para 

liberar la insulina.  

 

La adaptación del metabolismo lipídico en la transición se destaca principalmente 

por la movilización grasa corporal o lipólisis, para cubrir el déficit energético que 

caracteriza el inicio de la lactancia en vacas. 

 

 El metabolismo del calcio esta bajo un estricto control endocrino regulado por la 

absorción intestinal del mineral, resorción y deposición ósea, reabsorción renal y 

excreción urinaria, reciclaje por la saliva, deposición fetal (animal preñado) y 

secreción en la leche (animal lactando) y excreción fecal. Como ya se mencionó 

anteriormente, la demanda de calcio posparto se triplica respecto al preparto. Por lo 

tanto, la estrategia nutricional para minimizar la hipocalcemia posparto se basa en el 

control de estos mecanismos endócrinos, privilegiando la absorción intestinal y 

resorción ósea del calcio para que la vaca maneje más eficientemente este período 

de balance negativo del mineral. 
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2.2.3. Balance energético negativo (BEN) 

 

Es muy frecuente que durante el período de transición, dada las crecientes 

necesidades nutricionales por parte del feto y de la glándula mamaria, las vacas de 

alta producción entren en un estado de balance energético negativo que va 

acompañado por una gran movilización de ácidos grasos no esterificados (AGNE) 

desde el tejido adiposo hacia el hígado y el resto de los tejidos para satisfacer las 

demandas energéticas.  

 
Antes el parto (los últimos 10 a 14 días de gestación), las vacas lecheras pueden 

experimentar el BEN debido, principalmente, a la caída de ingestión de materia seca 

y en menor medida al incremento de la demanda energética consecuente del 

crecimiento fetal. El BEN es más evidente en novillas que en vacas (Grummer et al, 

2004) debido a que las primeras presentan un requerimiento energético adicional 

para el propio crecimiento esquelético (VandeHaar y Donskin, 1999). El grado de 

movilización de estos ácidos grasos no esterificados antes del parto tiene relación 

directa con los desórdenes metabólicos posparto (Dyk et al, 1995). 

 

Todas las vacas lecheras pasan por un estado de BEN las primeras semanas que 

siguen el parto (Herdt, 2000) causado por el incremento de la demanda provocado 

por la secreción de leche y el inadecuado incremento en el consumo de alimento 

(Figura 2.2) y generalmente recuperan un balance energético positivo hacia la 

séptima semana de la lactación (Rastani y Grummer, 2003).  

 

Una movilización excesiva de grasa del animal, libera en la sangre una fuerte 

concentración de AGNE lo cual conduce a la aparición de trastornos metabólicos y 

enfermedades de periparto, principalmente hipercetonemia e hígado graso 

(Grummer, 1993; Ingvartsen y Moyes 2013). Además, cuando la energía es escasa, 

los mecanismos fisiológicos que distribuyen la energía favorecen aquellos procesos 

que aseguran la viabilidad del individuo, en detrimento de aquellos procesos que 

promueven el crecimiento, la longevidad y la reproducción. Como consecuencia a la 

afección de la actividad reproductiva, las vacas con BEN tardan habitualmente en 

restablecer la actividad ovárica.  

 

La oxidación de glucosa en todo el organismo disminuye después del parto y 

aumenta la entrada de glucosa respecto al período preparto. La mayor parte del 

aumento en los requerimientos de glucosa debe ser cubierta vía gluconeogénesis 
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hepática a partir de los aminoácidos absorbidos en el intestino y desde sustratos 

endógenos como aminoácidos, lactato y glicerol (Reynolds et al, 2003). Se ha 

observado una contribución máxima a la gluconeogénesis del 32 a 73% a partir del 

propionato, 10 a 30% a partir de los aminoácidos, en torno del 15% a partir del 

lactato y sólo un ligero porcentaje a partir del glicerol (Seal y Reynolds, 1993). 

 

No solamente la grasa, el musculo esquelético también está sujeto a movilización en 

casos más avanzados de BEN. Diversos trabajos señalan que el músculo 

esquelético es el principal proveedor de aminoácidos que sustenta el aumento de la 

gluconeogénesis durante el período de postparto (Bell, 1995; Bell et al, 2000). Los 

resultados de Overton et al (1998) confirman lo anterior, al encontrar que la 

conversión de propionato a glucosa los días 1 y 21 postparto fueron el 119 y 129% 

de la conversión el día 21 preparto, siendo la conversión de alanina a glucosa en los 

mismos días postparto de 198 y 150% de la conversión el día 21 preparto. Similares 

resultados fueron obtenidos en hepatocitos aislados de corderos a los que se les 

administró fluorizina para aumentar la pérdida urinaria de glucosa, donde la 

conversión de alanina a glucosa fue un 285% mayor que el control, mientras que la 

conversión de propionato a glucosa aumentó sólo un 166% (Overton et al, 1999). 

 

Comúnmente se usa la condición corporal como indicador del balance energético del 

animal porque medir este último a nivel de campo es prácticamente imposible ya que 

requiere una determinación diaria del peso corporal, la IMS y la composición y la 

producción de leche. La técnica de determinación de la condición corporal, tal como 

la define Edmonson (1989), es una herramienta sencilla, rápida y económica para 

cuantificar el estado de engrasamiento del animal y su evolución en el tiempo. 

Existen otras técnicas de medir el balance energético como evaluar la composición 

láctea, pues se ha observado que la relación grasa:proteína de la leche está 

negativamente correlacionada con el balance energético (Grieve et al, 1986). Es 

decir que las vacas en postparto que sufren un déficit energético tenderán a 

presentar altos contenidos de grasa y/o bajos contenidos en proteína en leche. Hay 

otra correlación negativa entre el porcentaje de grasa en la leche del primer día de 

lactación y el balance energético (De Vries y Veerkamp, 2000) es decir que las 

vacas que empiezan la lactación con elevado porcentaje de grasa en la leche 

pueden padecer un BEN más pronunciado. 

 

Los animales en BEN se caracterizan por niveles sanguíneos elevados de hormona 

de crecimiento y ácidos grasos no esterificados, y bajos del factor de crecimiento 
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similar a la insulina tipo I (IGF-I), insulina, y glucosa (Canfield y Butler, 1991; 

Whitaker et al, 1993).  

 

En definitiva, para una vaca lechera de alto rendimiento en periparto, es de mayor 

importancia que se reduzca la extensión y la duración de este balance negativo de 

energía. Esto se puede lograr mediante la maximización de la ingesta de energía, 

por la disminución de la relación entre nutrientes lipogénicos y nutrientes 

glucogénicos (Van Knegsel et al, 2007a, b), o por la disminución de los output de 

energía en la leche, usando el ácido linoleico conjugado en la alimentación, aunque 

éste no siempre mejora el balance energético de la vaca (Castañeda Gutiérrez et al, 

2005). 

 

2.2.4. Consecuencias del balance energético negativ o 

 

2.2.4.1. Cetosis  e hígado graso 

 
La movilización excesiva del tejido adiposo conduce a un trastorno metabólico 

relacionado con los lípidos. Éstos, liberados en la sangre en forma de AGNE, son 

sustratos para oxidación y son usados por los tejidos como fuente de energía 

durante periodos de BEN. 

 

La captación de AGNE por el hígado esta condicionado por el flujo sanguíneo y la 

concentración de los mismos en la sangre, con una estimación aproximada de 25% 

de la captación total del cuerpo (Drackley et al, 2001). Después de ser captados, los 

AGNE en el hígado siguen una de las siguientes tres rutas metabólicas: 1) Oxidación 

completa a dióxido de carbono, 2) Oxidación parcial dando lugar a la aparición de 

cuerpos cetónicos o 3) re-esterificación a triglicéridos (TG; Drackley, 2005). La 

primera ruta se ve muy comprometida por la limitada capacidad del hígado de oxidar 

completamente los ácidos grasos. Además, el hígado de los rumiantes es 

notoriamente lento en la exportación de los TG hacia otros tejidos extra hepáticos en 

forma de lipoproteínas de muy baja densidad (Kleppe et al, 1988). Por lo tanto, si su 

capacidad de tomar de la sangre los AGNE y sintetizar TG excede su capacidad de 

deshacerse de ellos, se almacenan en el parénquima hepático causando un 

engrasamiento del órgano llamado “hígado graso”. Reid (1980) reportó que la grasa 

puede ocupar hasta un tercio del parénquima hepático tras una sola semana 

postparto. Como consecuencia, las funciones metabólicas del hígado tales como la 
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gluconeogénesis, ureogénesis y la síntesis de colesterol y prostaglandina se 

reducen (Gurmmer, 1995). 

 

Está demostrado que incrementar la densidad energética y proteica (más de 1,6 

Mcal de ENl/kg y más de 16% de proteína bruta, respectivamente) en dietas durante 

el último mes de preñez, aumenta la IMS y baja la concentración plasmática de 

AGNE y la concentración hepática de los TG (VanderHaar et al, 1999). Con una 

dieta de densidad proteo-energética aproximadamente similar, Janovick et al (2011) 

observaron que los animales alimentados ad libitum, tuvieron en preparto menos 

concertación plasmática de AGNE que en animales de alimentación restringida al 

80% de los requerimientos recomendados por el NRC (2001). Sin embargo, en 

postparto, el primer grupo presentó más AGNE en sangre y más TG en los 

hepatocitos que el grupo de alimentación restringida, y más frecuencia de cetosis y 

desplazamiento de abomaso. El estado metabólico de las vacas cuya ingestión de 

energía fue restringida durante la transición, resultó sorprendentemente similar en 

pre y postparto. Una concentración energética por debajo de 10,5 MJ de EM/kgMS 

fue relacionada con una mayor probabilidad de cetosis en vacas lecheras en periodo 

de transición (Vicente et al, 2005). 

 

Hay datos que sugieren que, en vacas frisonas, la concentración de AGNE en la 

sangre aumenta una semana antes el parto si la IMS cae debajo del 11 kg/d 

(French, 2006). Durante el BEN hay una elevada movilización lipídica y los AGNE 

elevados en la sangre por el hígado son oxidados a cuerpos cetónicos o 

almacenados como TG. Como resultado, las vacas están predispuestas a cetosis e 

hígado graso. En ensayos de alimentación forzada para mantener la IMS durante el 

preparto de vacas canuladas, se reportaron bajas concentraciones de TG en el 

hígado en el primer día postparto respecto a vacas que padecieron el típico 

descenso de IMS antes el parto (Bertics et al, 1992). Sin embargo, en el mismo 

estudio, se observó que la alimentación forzada comparada con alimentación normal 

no daba diferencias significativas en cuanto a la concentración de AGNE en la 

sangre. Por lo tanto, las vacas alimentadas forzadamente no evitaron la subida de 

los AGNE tras el parto. 

 

Se supone que las vacas con mayor concentración sanguínea de AGNE han 

movilizado más tejido adiposo para apoyar la producción de leche y pierden más 

condición corporal en comparación con vacas con menor concentración de AGNE en 

sangre (Beever, 2006). Como consecuencia, las vacas con concentraciones 
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sanguíneas de AGNE y cuerpos cetónicos por encima del umbral crítico pueden 

estar predispuestas a tener una gran incidencia de enfermedades en el periparto 

como la cetósis clínica y el desplazamiento del abomaso (Ospina et al, 2010). La alta 

necesidad del organismo de glucosa al principio de la lactación impide el suministro 

de la misma a varios tejidos y órganos, incluso aquellos relacionados con la 

reproducción. 

 

Vickers et al (2013) han demostrado que alimentar las vacas en periodo de 

transición con una dieta altamente fibrosa puede ser una solución a estos trastornos 

fisiológicos, ya que, las vacas alimentadas durante el preparto con forraje al 87% de 

la dieta presentaron menos concentración de β-hidroxibutirato (BHBA) tras del parto 

que las vacas alimentadas con 77% de forraje, observando también una menor 

incidencia de cetósis en vacas alimentadas con alto nivel de forraje durante el 

preparto.  

 

2.2.4.2. Alteraciones en la reproducción  

 

Normalmente, la primera ovulación después del parto se observa tres semanas 

después del parto en aproximadamente el 50% de las vacas sanas (Kawashima et 

al, 2007a, b). La recuperación de la actividad ovárica está generalmente relacionada 

con la alta fertilidad (Darwach et al, 1997) y la precocidad de la recuperación del 

ciclo ovulatorio está muy relacionada con tasa de concepción (Butler, 2001). Uno de 

los mayores factores que retrasan la reanudación de la ciclicidad ovárica en las 

vacas de alta producción es el BEN (Lucy 2001). Butler y Smith (1989) observaron 

que el BEN en postparto estaba directamente relacionado con el intervalo “parto-

primera ovulación”. Butler et al (2006) demostraron que las vacas que tuvieron una 

reanudación tardía son aquellas que tenían mayor BEN entre la primera y la 

segunda semana postparto comparadas con vacas de ciclicidad normal. En este 

sentido, en casi el 50% de las vacas, los folículos dominantes no son capaces de 

ovular y quedan atrésicos o quísticos (Sakaguchi et al, 2004; Kawashima et al, 

2007a).  

 

Como se ha detallado anteriormente, el BEN causa una combinación metabólica 

caracterizada por altas concentraciones de la hormona de crecimiento y bajas 

concentraciones de glucosa, insulina y IGF-1 en la sangre (Gross et al, 2011). Estos 

factores están obviamente relacionados con la actividad reproductiva (Butler et al, 

2006; Lucy 2003; Armstrong et al, 2003). En particular, el IGF-1 y la insulina son 
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claves porque estimulan la producción del estradiol en las células de la granulosa 

(Glister et al, 2001) y la proliferación de las células folicularias (Butler et al, 2006). 

Kawashima et al (2007 b) observaron que, durante la primera onda folicular 

postparto, los niveles de circulación de IGF-1 fueron más altos en vacas ovulatorias 

que vacas no-ovulatorias.  

 

A nivel del hipotálamo, la principal consecuencia del BEN se manifiesta por la 

reducción de la frecuencia de los pulsos de la GnRH, lo cual retrasa la liberación 

pulsátil de LH y FSH necesaria para la estimulación de los folículos ováricos, la 

producción de estradiol y la ovulación (Butler et al, 2006). 

 

Por otro lado, el hígado en esta fase está encargado de soportar el déficit glucósico 

vía oxidación de AGNE. Este órgano juega un papel importante como la principal 

fuente del factor de crecimiento similar a la insulina (IGF-I), y la baja concentración 

sanguínea de insulina es responsable de baja producción de IGF-I. Este último 

estimula el desarrollo folicular en los ovarios y en su ausencia, la actividad funcional 

de dichos tejidos se ve negativamente influenciada (Butler, 2003).  

 

Todo ello, ha conducido a una baja fertilidad y tasa de concepción en las vacas 

lecheras actuales, situándose en al 35-40% en vacas adultas comparada con 51% 

para vacas de primera lactación y más de 65% en novillas, lo que indica una 

disminución de fertilidad con el número de lactaciones (Butler, 2005). Stevenson 

(2001) reportó un número alto (28-50%) de vacas en anoestro después los 50 días 

postparto que fracasan a la primera inseminación y concluyen que el BEN fue el 

principal factor. Butler (2001) complementó las conclusiones de Stevenson y reportó 

una disminución del 10% en la tasa de concepción por cada 1/5 punto de condición 

corporal perdido.  

 

2.2.5. Factores de variación de ingestión de materi a seca durante la 

transición 

 

La mayoría de los problemas de salud en vacas lecheras altamente productivas, 

sean metabólicos o infecciosos, ocurren al principio de la lactación y se han 

relacionado con un consumo de MS relativamente bajo justo antes del parto. Los 

factores que afectan y regulan la IMS son numerosos y complejos y abarcan desde 

niveles celulares hasta niveles macroambientales (Allen, 2000). Grummer et al 

(2004), recopilando en una revisión los factores que afectan la IMS, empezaron el 
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artículo mencionando que “no hay otro momento en la vida de la vaca más 

tumultuoso que la transición entre final de la gestación y principio de lactación (…) 

Durante este periodo crítico, la IMS está en nivel el más bajo de todo el ciclo 

lactación-gestación”.  

 

2.2.5.1. Factores animales 

 

Como se observó anteriormente, el número de parto influye sobre la IMS en el 

preparto, pues es más baja en primíparas (expresada como % del peso corporal) 

que multíparas. Sin embargo, la disminución de IMS en preparto comienza antes y 

es más gradual en multíparas (French, 2006). 

 

Una condición corporal excesiva antes del parto disminuye la IMS (Garnsworthy y 

Topps, 1982; Holter et al, 1990). Este descenso en las vacas grasas comienza antes 

y es más grave que en las vacas con condición corporal moderada (Hayirli et al, 

2002). Por esta razón, es importante gestionar el balance energético durante la 

transición para que las vacas alcancen el período seco con una condición corporal 

inferior o igual a 3,5.  

 

2.2.5.2. Restricción del volumen ruminal 

 

La reducción del consumo de materia seca en el preparto coincide con el incremento 

del peso feto-placental, lo que permite pensar que puede estar relacionado con la 

limitación del espacio en la cavidad abdominal en general y con la compresión del 

rumen en particular (Stanley et al, 1993). La presencia del feto (además de sus 

membranas y líquidos) ocupa hasta el 30% de la cavidad abdominal. Sin embargo, 

la expansibilidad de ésta última es suficiente para acomodar el desarrollo fetal sin 

restringir excesivamente el rumen, pues su capacidad de llenado aumenta 

linealmente (p<0,01, R2=0,74) a lo largo del periodo del transición (Park et al, 2001). 

Además, la reducción de volumen del rumen al final de la gestación provoca un 

aumento en la tasa de paso de las partículas en el rumen evitando así el descenso 

de IMS (Park et al, 2011). 

 

2.2.5.3. Factores alimentarios 

 

Los factores dietéticos tienen la mayor influencia sobre la ingestión voluntaria de 

materia seca en el periodo de transición. El principal factor es el contenido en fibra 



26 

neutro detergente (FND) en la dieta (Hayilrli et al, 2002). De acuerdo con los datos 

de este estudio, la IMS se maximiza (2% del peso corporal) cuando la dieta contiene 

aproximadamente 30% de FND, mientras que para concentraciones de 42 y 54% de 

FND, la IMS es 1,68 y 1,64% de peso corporal, respectivamente. 

 

El contenido proteico de la dieta tiene una influencia menor sobre la IMS en 

preparto. No obstante, el exceso de proteína en este período parece tener efectos 

adversos que se reflejan sobre la IMS en postparto (Grummer et al, 2004). 

 

Holcomb et al (2001) y Douglas et al (2006) demostraron que al restringir la 

alimentación en vacas en preparto al 80% de los requerimientos en energía neta de 

lactación, se mejora la IMS en postparto. Estas observaciones llevaron a hacer 

recomendaciones de dieta con más fibra y menos energía en la ración en lugar de 

restringir el consumo total de las raciones digestible y con una densidad energética 

moderada: alrededor de 1,40 a 1,50 Mcal / kg (Grummer et al, 2004; Varga, 2004). 

Estas dietas contienen necesariamente una cantidad significativa de fibra de forraje 

y para conseguir esta densidad energética en la ración, varias combinaciones de 

ingredientes han sido propuestas. Algunos prefieren el ensilado de maíz combinado 

con paja picada (Drackley y Janovick-Guretzky, 2007). Otros sugieren que las 

gramíneas forrajeras combinadas con una fuente de almidón altamente fermentable 

son favorables (Bradford y Allen, 2008a). Grummer et al (2004) propone otra 

estrategia de alimentación en el periodo de transición. Se trata de alimentar las 

vacas con una dieta única en todo el ciclo gestación-lactación, lo cual podría eliminar 

los cambios dietéticos perjudiciales, minimizando los cambios y posiblemente 

reduciendo los efectos potencialmente adversos que puede tener sobre la IMS. 

 

Allen et al (2009) establecieron una teoría que describe los mecanismos de control 

de la IMS y se basa en la suposición de que la oxidación de sustratos por el hígado 

sirve como una señal de saciedad y por lo tanto limita la IMS. Los principales 

sustratos oxidados por el hígado son los ácidos grasos (ya sea a partir de la 

movilización de las reservas corporales o por la absorción intestinal de los lípidos de 

la dieta) y propionato (derivado de la fermentación ruminal) y en menor medida los 

aminoácidos, el ácido láctico y el glicerol. En transición, como se ha comentado 

anteriormente, la contribución de los ácidos grasos como fuente de oxidación 

hepática es mayoritaria. Las vacas demasiado grasas, al tener gran cantidad de 

reservas corporales, presentan una movilización lipídica más destacada, lo que 

aumenta los niveles de ácidos grasos en la sangre y la oxidación hepática de los 
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mismos y como consecuencia, el hígado envía más señales de saciedad y la IMS 

cae (Allen y Bradford, 2008b). Además, el aumento de la secreción de leptina, una 

hormona peptídica del tejido adiposo que controla el apetito secretada en mayor 

abundancia cuando el tejido es más abundante, también podría contribuir a la 

reducción de la IMS (Ingvartsen, 2006). 

 

La IMS está regulada por fenómenos biológicos complejos e integrada con el 

metabolismo animal. Sin embargo, hasta la última década, el papel del componente 

metabólico en la regulación de la IMS fue infravalorado en los modelos de predicción 

del consumo (Ingvartsen y Andersen, 2000). En este sentido, y dado el cambio 

metabólico drástico que ocurre alrededor del parto, la pérdida del apetito en esta 

fase puede ser explicada por los cambios en el conjunto metabólico: estado 

fisiológico (particularmente en las concentraciones sanguíneas de las hormonas 

esteroides), metabolitos y señales de citokinas. 

 

2.2.6. Balance mineral negativo (BMN) 

 

Como se detalló anteriormente, en el periodo de transición ocurren una serie de 

adaptaciones metabólicas a las exigencias de la lactación en energía, proteína y 

minerales. Las necesidades en minerales alrededor del parto aumentan rápidamente 

de igual forma que las necesidades energéticas y proteicas. En efecto, el desarrollo 

fetal al final de la gestación requiere diariamente 10,3 g de calcio, 5,4 g de fósforo, y 

0,2 g de magnesio (House y Bell, 1993; Goff y Horst, 1997). A continuación, la 

síntesis de calostro y luego la leche impone a la vaca un gasto creciente, pues la 

producción de 10 kg de calostro en el día del parto requiere 23 g de calcio, 9 g de 

fósforo, y 1 g de magnesio, cantidades importantes que deben ser suministradas con 

la dieta o ser llevado a la glándula mamaria a partir de las reservas corporales. Sin 

embargo, dichas necesidades superan las capacidades de la vacas en la mayoría de 

los casos generando un balance mineral negativo (BMN) y resultando en la 

manifestación de trastornos metabólicos como la hipocalcemia. 

 

El control hormonal del metabolismo fosfático no se conoce completamente, pero se 

cree que esta estrechamente relacionado con el del Ca. El metabolismo cálcico está 

bajo regulación de la hormona paratifoidea, y la vitamina D es un metabolito que 

estimula la resorción del Ca y P en caso de hipocalcemia. La absorción intestinal del 

Ca y P se produce vía difusión pasiva cuando la dieta contiene cantidades 

suficientes de los mismos. La hipocalcemia y la hipofosfatemia activa el 1,25-
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dihidroxicolecalciferol renal que, juntamente con la vitamina D, promueve el 

transporte activo del Ca y el P a través del epitelio intestinal (Goff, 2006). Las vacas 

presentan un BMN en los 10 primeros días de lactación por la lenta adaptación de 

los mecanismos de absorción de Ca en respuesta al súbito aumento en la demanda 

(Moreira et al, 2009). 

 

Se ha sugerido que entre 0,8 y 1,3 kg de Ca se pueden movilizar a partir de los 

huesos de las vacas adultas para hacer frente a las deficiencias de absorción 

(dietético o fisiológico) y con alta producción de leche al principio de la lactación 

(Liesegang et al, 2000; NRC, 2001). La incidencia media de la fiebre puerperal 

clínica en vacas de leche en Europa es aproximadamente el 6,2% (DeGaris y Lean, 

2008).  

 
2.3. Cultivo asociado habas forrajeras y colza en a gricultura sostenible 
 

2.3.1. Características agroclimáticas de la Cornisa  Cantábrica 
 

La zona del norte de España, también conocida como “Cornisa Cantábrica” se 

caracteriza por sus peculiares condiciones edafoclimáticas. Su clima, 

fundamentalmente oceánico es húmedo, con una pluviometría entre los 1000 y 1500 

litros/m2, distribuidos a lo largo del año y temperaturas suaves sin grandes 

oscilaciones como se puede observar en la Figura 2.3. Estas condiciones climáticas 

favorecen la producción forrajera y la instalación de un paisaje amable con 

predominio de praderías destinadas a la ganadería. En este sentido, las cifras del 

MAPA sobre el destino de las superficies agrarias en el año  2005 destacan que la 

España húmeda con tan solo un 12% de la superficie de España, dispone del 20% 

de la superficie destinada a pastos, lo que confirma la especialización territorial de la 

zona.  

 

En contraste, desde la integración de España a la Unión Europea y la aparición de 

de la “cuota láctea”, el sector productor de leche ha ido modificándose 

progresivamente hacía un sistema más intensivo. Esta progresiva intensificación de 

la producción de leche dio lugar a la introducción de considerables cantidades de 

cereales en la alimentación de los animales, cuyo elevado coste ha motivado un 

importante incremento de los costes de alimentación, estos, representan hasta el 

80% de los gastos variables de la misma (Pérez Alvarez, 2010) y aunque las vacas 

lecheras de alta producción pueden amortiguar en parte el aumento en gastos, hay 

que busca la manera de independizar la producción animal de la oscilación de los 
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precios del mercado con la finalidad de mejorar la rentabilidad y de implantar una 

estructura productiva más sostenible. Esto conlleva inevitablemente la necesidad de 

aprovechamiento de los recursos naturales que abundan la región, garantizando la 

máxima inclusión de los forrajes de alta calidad nutritiva en la alimentación animal. 

Es decir, es necesario buscar estrategias de alimentación que incorpore forraje de 

calidad obtenidos a través de manejos sostenibles ya que estas estrategias 

condicionan tanto la calidad como la cantidad de la leche producida. 
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Figura 2.3. Parámetros climáticos medios de la esta ción meteorológica de 

Villaviciosa (Asturias) en el periodo 1978-2011.  

 

Como casi siempre, la implantación de nuevas estrategias enfrenta un conjunto de 

dificultades. En el caso de la Cornisa Cantábrica, la base territorial reducida y 

estacionalidad de la producción forrajera son los principales factores limitantes.  

 

La superficie dedicada a los pastos en esta zona está explotada generalmente en 

forma de praderas dedicadas al pastoreo o en forma de rotación estacional de 

cultivos utilizando especies y variedades bien adaptados a los peculiares 

condiciones edafoclimáticas. Varios trabajos reportaron la importancia de las 

praderas en un agroecosistema estable que abarca desde un beneficio ambiental 

(evitar la erosión del suelo y captar CO2; Stefani et al, 2007) hasta un beneficio 
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cualitativo de la producción de leche (enriquecimiento natural en ácidos grasos 

poliinsaturados; González-Rodríguez et al, 2010; Morales-Almaráz et al, 2011).  

 

2.3.2. Rotación de los cultivos  
 

2.3.2.1.  Importancia del maíz forrajero como culti vo de verano 
 

La rotación estacional entre cultivos forrajeros (forraje de verano y forraje de 

invierno) ha sido utilizada ampliamente en las últimas décadas conforme ha ido 

incrementándose el tamaño de las explotaciones lecheras. Con el propósito de 

intensificar la producción vegetal, el maíz forrajero (Zea mays L) se manifestó el 

cultivo ideal de verano por su importante rendimiento forrajero ya que es el único 

forraje que puede dar entre 12 y 20 tMS/ha si necesidad de regadío y en solo cuatro 

a cinco meses. Es un alimento de alto contenido energético debido al elevado 

contenido en almidón y presenta una buena digestibilidad de sus partes verdes. 

Además, su perfecta ensilabilidad es indiscutible aunque su contenido proteico es 

escaso. Ahora bien, su baja tasa de degradación ruminal permite una mejor 

actividad de la microbiota ruminal, liberando energía lentamente, lo que posibilita un 

incremento en la eficacia de síntesis de proteína microbiana cuando hay 

disponibilidad de nitrógeno. Conservado en forma de ensilado, es el principal 

ingrediente en la alimentación de vacas lecheras durante una gran parte del otoño y 

todo el invierno como suplemento a la baja producción de pasto.  

 

Algunos trabajos han buscado un posible sustituto, como el sorgo, Resch et al 

(2013) documentaron una producción inferior a la del maíz. En Asturias según los 

datos del Gobierno del Principado de Asturias (2011), la superficie destinada a la 

producción de maíz forrajero en los últimos 25 años está en aumento, en detrimento 

de la superficie destinada a producir maíz grano. En granjas gallegas, el ensilado del 

maíz proporciona aproximadamente el 40% de la MS de la ración diaria de las 

vacas. 

 

2.3.2.2. Necesidad de un forraje invernal sostenibl e 
 

El uso de un cultivo forrajero invernal para rotar con el maíz, aparte de su ventaja de 

evitar la erosión del suelo en terrenos dejados en baldío, completa la rotación anual 

y dependiendo del cultivo elegido puede proporcionan hasta 8 tMS/ha en el periodo 

de invierno.  
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En este sentido, se realizaron investigaciones en búsqueda del forraje el que más se 

adapta a las características de las explotaciones lecheras de la Cornisa Cantábrica. 

El raigrás italiano (Lolium multiflorum L.) se ajusta perfectamente a la demanda 

ganadera en cantidad de forraje (Martínez-Fernández et al, 2008) y en valor 

alimenticio. Sin embargo, esa rotación de dos gramíneas es muy exigente en 

fertilización nitrogenada y productos químicos como los herbecidas y los 

insecticidas. Esto, provoca un agotamiento del suelo, pérdida de su fertilidad, 

contaminación de los recursos hídricos, eutrofización de aguas superficiales, 

impacto negativo sobre la atmósfera y balances negativos de carbono y otros 

nutrientes. Por ello, para potenciar la utilización de forrajes de calidad, es necesario 

plantear estrategias de manejo menos agresivas con el medio ambiente. 

 

Las leguminosas forrajeras, por su capacidad de fijar nitrógeno atmosférico, son 

especialmente atractivas para la producción sostenible de alimentos para el ganado. 

Trabajos realizados en el SERIDA destacan el papel de las habas forrajeras por su 

elevada producción, grandes nódulos de Rizhobium fijadores de nitrógeno, porte 

erguido, aporte de proteína y alta digestibilidad. A diferencia de la mayoría de las 

leguminosas, su baja capacidad tampón y alto contenido en azúcares solubles les 

confiere una ensilabilidad aceptable (de la Roza et al, 2004, Martínez-Fernández et 

al, 2010).  

 

Por otra parte, es sabido que la utilización de abonos verdes promueve la 

recuperación y reequilibrio mineral en los cultivos, así como una mayor eficiencia en 

el reciclaje de nutrientes mediante su movilización y solubilización. La colza, por 

ejemplo, dispone de un sistema radicular potente y profundo que moviliza nutrientes 

(especialmente P y K) de las capas profundas a las superficiales liberándolos 

gradualmente durante el proceso de descomposición de la materia orgánica (Vance 

et al, 2003). Su utilización como forraje puede ser efectiva para suprimir el desarrollo 

de malas hierbas (Grundy et al, 1999) y mantener la fertilidad del suelo (Liebman y 

Davis, 2000). Además, tras aprovechar su parte aérea como forraje, su sistema 

radicular puede ser aprovechado como abono verde para mejorar la estructura del 

suelo. Otra alternativa es la asociación de cultivos, con los que se obtienen 

producciones de mayor cantidad y calidad que los monocultivos de las mismas 

especies en superficies equivalentes (Jolliffe, 1997) y cuyo principal beneficio es el 

incremento de fertilidad del suelo. 
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En base a estas consideraciones se ha elegido un cultivo asociado de Habas 

forrajeras (Vicia faba L.) y Colza (Brassica napus L.) como alternativa sostenible al 

Raigrás Italiano (Lolium multiflorum L.) como forraje de invierno en rotación con el 

maíz. Los aspectos más destacados de estos cultivos se describen a continuación. 

 

El haba forrajera (Vicia faba L.) es una especie muy productiva (5-8 t MS/ha/año). 

Fija de 150 a 320 kg de nitrógeno/año que, posteriormente, libera durante su 

crecimiento. Además, actúa ayudando a tomar elementos minerales des suelo, 

mejora las propiedades físicas del mismo, enriqueciendo en humus y en nutrientes y 

mejorando su capacidad de intercambio catiónico. 

 
La colza forrajera (Brassica napus L.) es la más productiva de las crucíferas 

forrajeras (11 t MS/ha/año) destinándose toda la planta a la alimentación animal. Es 

un cultivo de rápida implantación en el campo. La existencia de un gran número de 

variedades hace que el periodo de siembra sea muy amplio. Además, la colza 

dispone de un sistema radical muy potente y profundo, que moviliza nutrientes como 

el fosforo y el potasio (P y K) devolviéndolos a la superficie (Vance et al, 2003) y 

secuestra nitratos (52 kg N/ha; Jackson et al, 1993), evitando que estos se pierdan 

por lixiviación en suelos permeables en los intervalos entre cultivos principales. Otro 

efecto destacado de la colza es que tiene un gran potencial para el control 

alelopático de malas hierbas (rico en isotiocianatos, exuda ácidos cítricos y málicos). 

Desde el punto de vista nutritivo, la colza tiene un contenido medio de proteína y un 

alto porcentaje de ácidos grasos poliinsaturados, lo que le aporte un especial valor 

por la posibilidad de ser usada por su potencial a la hora de transferir estos ácidos 

grasos insaturados a la leche. Las numerosas variedades de la colza que se 

comercializan en el mercado han reducido su contenido en ácido erúcico, que 

constituye la principal fuente de ácidos grasos trans de los productos de los 

rumiantes cuando consumen semillas de colza. Asimismo, estas variedades 

presenten bajos contenidos de ácido prúsico y glucosinolatos, que actúan como 

factores antinutritivos que provocan baja palatabilidad y un descenso en la eficiencia 

productiva. 
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3. MATERIALES Y METODOS 
 

 
3.1 Lugar experimental y duración 

 
El presente trabajo se llevó a cabo en las instalaciones de la Unidad de Leche del Área 

de Nutrición Animal, Pastos y Forrajes del Servicio Regional de Investigación y 

Desarrollo Agroalimentario (SERIDA) del Principado de Asturias, Villaviciosa (España) 

ubicada geográficamente en la zona costera centro oriental de Asturias (latitud 43º 28’ 

50’’, longitud 5º 26’ 27’’ y una altitud de 10 msnm). El ensayo tuvo una duración de 10 

meses aproximadamente, desde el inicio del trabajo experimental hasta la finalización 

del proceso de análisis de las muestras y redacción de la memoria.  

 
3.2 Animales 

 

Se seleccionaron 9 vacas frisonas (3 primíparas y 6 multíparas) en preparto con un 

peso vivo medio de 635±25 kg. Los animales se distribuyeron al azar en dos grupos 

uno de cuatro y otro de cinco vacas, atendiendo al número de parto, días de gestación 

y peso vivo. El ensayo experimental se llevó a cabo bajo los estándares de la directiva 

europea 86/609/EEC sobre le uso de los animales en experimentación. 

 

3.3 Planteamiento del ensayo 

 

Se evaluaron dos manejos basados en la complementación del pastoreo, con dos 

dietas unifeed o ración completa mezclada (TMR) elaboradas en base a ensilados de 

cultivos invernales (tratamientos HC y RI) y ofrecidas ad libitum en el pesebre. 

 

Los cultivos forrajeros utilizados para elaborar los ensilados (HC y RI) se sembraron 

en parcelas semejantes y colindantes y fácilmente mecanizable de 1,7 ha cada una. 

Una de ellas manejada con criterios de sostenibilidad medioambiental (abonado 

orgánico, HC) y otra bajo manejo convencional (RI). La siembra de los cultivos de 

invierno se realizó en septiembre de 2011. La parcela HC se sembró con un cultivo 

asociado de habas forrajeras y colza (Vicia faba cv. Prothabon y Brassica napus cv. 

Fricola, HC) con dosis de siembra de 150 kg/ha y 8 kg/ha respectivamente y la RI con 

45 kg/ha de raigrás italiano no alternativo (Lolium multiflorum cv. Barextra, RI), que no 

produce espigas el primer año. El raigrás italiano recibió dos cortes para silo en 

primavera, el primero de ellos, la segunda semana de marzo, cuando el forraje tenía 7 

semanas de crecimiento y el segundo, tras 8 semanas de crecimiento, se realizó la 

segunda semana de mayo coincidiendo con el corte único de la asociación habas 
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forrajeras y colza, estando las habas forrajeras en un estado vegetativo de vainas con 

grano. 

 

En términos de abonado, la parcela RI recibió 60 UF de N, 40 UF de P2O5 y 120 UF de 

K2O en presiembra y 70 UF de N en cobertera después del primer corte para ensilado 

en forma de fertilizantes de síntesis. En la parcela HC se utilizó estiércol y purín como 

fertilizantes orgánicos. Ambos se analizaron previamente a ser utilizados, a fin de 

determinar su contenido en nitrógeno (N), fósforo (P) y potasio (K) y determinar las 

dosis de aplicación necesarias para equilibrar los aportes de N en ambos manejos y si 

fuese preciso complementar con abonos químicos. Con este criterio, se aportaron 36 

t/ha de estiércol y 32 m3/ha de purín para el cultivo de invierno.  

 

En el momento de las cosechas se realizaron controles de producción delimitando dos 

zonas de muestreo en cada parcela, lo suficientemente distanciadas entre sí para ser 

consideradas como repeticiones. En la parcela RI se realizó un control de producción 

antes de cada uno de los dos cortes para el ensilado, lanzando un listón de 2 m cinco 

veces al azar, segando una franja de 0,10 m de anchura. La parcela HC se muestreó 

antes de la cosecha, delimitando en cada zona una superficie de 1m2. Las muestras 

de RI y HC, fueron secadas en estufa a 60ºC durante 24 h, registrándose su peso 

seco y posteriormente molidas a 0,75 mm y almacenadas hasta su análisis. 

 

El RI fue ensilado en rotopacas de aproximadamente 500-600 kg y el cultivo asociado 

HC en dos silos trinchera de 30 m3 de capacidad cada uno. 

 

A partir de los ensilados HC y RI se formularon dos raciones unifeed isoenergéticas e 

isoproteicas según el NRC (2001). Las raciones fueron elaboradas diariamente con 

carro mezclador. Los ingredientes utilizados en la formulación se detallan en la Tabla 

3.1. Además del consumo en el pesebre, los animales recibieron dos concentrados 

(pienso L y pienso S) como suplementos energéticos en una estación de alimentación. 

 

El pienso L se ofertó durante todo el ensayo con una cantidad fija de 3 kg de materia 

fresca/vaca/día, mientras que el pienso S fue ofertado a 1 kg de materia fresca/vaca y 

día tras el parto. 
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Tabla 3.1: Composición de ingredientes de la TMR y de los concentrados 

comerciales (porcentaje sobre materia seca) 

 

TMR Concentrados  
Ingredientes (%MS)  

HC RI Pienso L  Pienso S  

Ensilado de Haba y Colza 75,33 - - - 

Ensilado de Raigrás Italiano - 68,45 - - 

Paja de cebada 9,38 11,99 - - 

Copos de maíz  3,87 4,95 - - 

Cebada 2,83 3,62 3,00 15,00 
Maíz 1,14 1,46 50,00 40,00 
Centeno 0,72 0,92 2,00 9,10 
Harina de soja tostada (44%) 3,21 4,11 35,00 19,00 
Cáscara de haba soja 0,46 0,58 2,00 2,00 
Harina de semilla de girasol (28%) 1,27 1,63 1,80 4,20 
Sales de ácidos grasos vegetales 0,49 0,62 2,55 2,19 
Semilla de algodón  0,23 0,29 - - 
Pulpa de remolacha 0,23 0,29 - - 
Melaza de remolacha - - 1,00 2,00 
Salvado de trigo - - - 2,00 
Carbonato de calcio 0,44 0,57 - 0,78 
Bicarbonato de sodio 0,26 0,33 1,00 2,00 
Cloruro de sodio 0,09 0,12 - 0,60 
Fosfato bicálcico 0,02 0,03 - 0,87 
Óxido de magnesio - - 1,00 - 
Aditivos1 0,03 0,04 0,65 0,26 

1 Vitaminas (A, D3, E), Oligoelementos (Hierro, Yodo, Cobalto, Cobre, Manganeso, 
Zinc, Selenio), Antioxidantes (Galato de propilo, Etoxiquina, Butil-hidroxianisol, Butil-
hidroxitolueno), Otros (Extracto de Yucca schidigera) 
 

Con el propósito de aprovechar los recursos naturales disponibles en la propia 

explotación, los animales pasaban entre 12 y 16 h/día según las condiciones 

meteorológicas en parcelas manejadas con pastoreo rotacional, con una carga 

ganadera máxima de 2,5 UGM/ha, delimitadas por cierres eléctricos. Se utilizaron 8 

praderas de una superficie aproximada de 1 ha, establecidas sobre suelos de textura 

franco arcillosa y con una composición botánica en la que predominan las gramíneas 

(Lolium perenne, 45 %; Agrostis capilaris,13 %; Bromus erectus, 12 %; Poa annua, 3 

%; Poa trivialis, 2% y Dactylis glomerata, 2 %) y las leguminosas (Trifolium repens, 

17% y Trifolium pratensis, 2 %) y en menor proporción otra especies (Capsella bursa 

pastoris, Diplotaxis erucoides, Stellaria media, Cerastium arvense, Rumex obtusifolius 
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y Taraxacum officinale). Los animales, tanto en la estabulación como en las parcelas, 

tuvieron libre acceso al agua. 

 

El día previo a la entrada de las vacas en cada parcela de pastoreo, se realizó el 

muestreo y control de producción del forraje según la metodología descrita por 

Martínez-Fernandez (1995) para forrajes verdes bajo sistemas de pastoreo rotacional. 

La técnica consiste en lanzar al azar, en sentido perpendicular de la pendiente y 

recorriendo en zig-zag sobre la parcela, un listón metálico de 2 metros de longitud en 

cinco puntos de la pradera. En cada lanzamiento se segó a ras de tierra, utilizando un 

cortacéspedes manual con un peine de 10 cm de anchura de corte (Bosch AGS 70), a 

lo largo de la vara metálica acumulando por lo tanto una muestra correspondiente a un 

área de 1 m2 de los 5 puntos de muestreo (2 m * 0,10 m * 5 submuestras). Las 

muestras fueron pesadas para estimar la producción de hierba y posteriormente fueron 

procesadas en el laboratorio de Nutrición animal del SERIDA para conocer su 

contenido en principios nutritivos, digestibilidad y aporte energético. 

 

3.4 Desarrollo experimental 

 

3.4.1. Manejo de los animales 

 

El experimento con los animales se puso en marcha la segunda semana de octubre 

hasta la segunda semana de diciembre 2012. Las vacas se seleccionaron cuando 

estaban a 6 semanas de la fecha prevista por el parto, considerando las 2 primeras 

semanas como adaptación a las condiciones del experimento. Las diferencias entre 

las fechas de parto predichas y reales fueron de 5 ± 3 días. 

 

En este periodo, las vacas tuvieron acceso a su correspondiente TMR desde las 7:00 

h hasta las 13:00 h, posteriormente siempre que las condiciones metrológicas 

permitieron el acceso al pasto fueron trasladas a las praderas hasta las 19:00 h tras lo 

cual fueron conducidas nuevamente a la cuadra hasta las 21:00. Finalmente las vacas 

fueron trasladas a las praderas donde permanecieron hasta las 7:00 h del día 

siguiente, permaneciendo por lo tanto entre 12 y 16 h por día en pastoreo y 

recorriendo una distancia de 600 m/día entre la estabulación y las parcelas. 

 

Las vacas se alojaron en estabulación libre con cubículos de suelo de goma y un patio 

de 335 m2 con libre acceso a los bebedores y comederos. Los animales fueron 

ordeñados tras el parto dos veces al día a las 07:30 h y a las 19:30 por medio de un 



39 

sistema voluntario de ordeño que distribuye automáticamente los piensos L y S 

registrándose el consumo y la producción de leche diaria de cada vaca. 

 

Los animales fueron pesados cada 7 días y los terneros al nacimiento.  

 

3.4.2. Control de ingestión  

 

3.4.2.1. Ingestión de TMR 

 

El consumo de las TMR fue registrado mediante un sistema de monitorización de la 

ingestión voluntaria basado en el descrito Bach et al (2004). El sistema consiste en el 

uso de 10 balanzas (Mettler Toledo IND 425-CC300), de 300 kg de capacidad de 

pesada con una resolución de ± 100 g, instaladas en la zona de alimentación frente a 

cada puesto de alimentación. Encima de cada balanza se colocó un cajón de fibra 

vidrio de 150 L de capacidad, que se llenaba con la oferta diaria de TMR. La entrada a 

cada comedero está dotada de un lector de presencia (CP-15 de Circontrol) en la parte 

superior derecha. Dicho lector detecta el paso de un transponder, colocado en la oreja 

derecha de cada vaca, cada vez que ésta accede al comedero. Registrando el tiempo 

de entrada y de salida, el lector permite determinar el tiempo utilizado para comer de 

cada animal. Simultáneamente, se registra el peso del alimento a la entrada del animal 

y a su salida, lo que permite, por diferencia de pesos, determinar el consumo de 

alimento. Los datos fueron procesados usando un programa informático desarrollado 

por Asturlan de Comunicaciones, SL (Gijón, Asturias). 

 

3.4.2.2. Ingestión de piensos 

 

El consumo de los concentrados por animal se registró automáticamente por 

dispensador de pienso instalado en el robot de ordeño.  

 

3.4.2.3. Ingestión de forraje verde 

 

La estimación de la ingestión de forraje fresco de los animales en pastoreo fue 

realizada por el método de estimación del consumo según los requerimientos y la 

respuesta productiva de los animales (energía neta) y el valor energético de todos los 

alimentos ofertados, descrito por Macoon et al (2003). La estimación de kg de MS de 

pasto es la diferencia entre energía neta requerida de cada animal y la energía neta 
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aportada por su consumo de alimento en la estabulación, dividiendo por la 

concentración energética de la hierba. 

 

Los requerimientos de energía neta de los animales fueron estimados a partir de la 

aplicación de las ecuaciones de predicción del NRC (2001). Para dicha estimación se 

aplicó el siguiente procedimiento de ecuaciones donde los requerimientos de energía 

neta total del ganado lechero incluyen las necesidades de energía neta para: 

 

1. Gestación (NElg) o lactación (NElL): según fuese el estado fisiológico de las 

vacas, una de las siguientes ecuaciones fue aplicada: 

 

• NElg = [(0,00318 * D - 0,0352)*(PTN/45)] / 0,218, donde: 

D = días en gestación entre 190 y 279 días.  

PTN = Peso de ternero al nacimiento en kg. 

 

• NElL = kg de leche por día * [0,3512 + (0,0962 * % grasa en leche)] 

 

2. Mantenimiento (NElm): se calculó en base al piso vivo del animal (PV) y el 

numero de partos: 

a) Vacas primiparas: NElm = 1,2 (0,080 * PV 0,75) 

b) Vacas de segundo parto: NElm = 1,1(0,080 * PV0,75) 

c) Vacas de tercer parto o más = NElm = 0,080 * PV0,75 

 

3. Cambio de peso corporal (NElpv): De acuerdo con el cambio de PV se 

calcularon demandas en términos de necesidades energéticas para los 

animales según NRC (2001). Por cada kg de PV ganado fue asignado el 

requerimiento de 5,12 Mcal de ENL, mientras que en el caso contrario, se 

restaron de las necesidades totales 4,92 Mcal de ENL por cada kg de PV 

perdido. 

 

4. Actividad de Pastoreo (NElp): calculada según la ecuación sugerida por 

Rochinotti (1998): 

 

NElp = 1,2 kcal * tiempo de pastoreo (h) * PV 0,75 

 

5. Actividad de desplazamiento (NEld): los animales tuvieron que caminar una 

distancia diaria promedio de 600 metros (recorriendo desde o a la parcela de 
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pastoreo a la sala de ordeño una distancia de 300 metros dos veces por día). 

De acuerdo con el AFRC (1993), la estimación de la energía neta de esta 

actividad puede ser calculada usando la ecuación : 

 

NEld = 0,62 cal/ (kg PV * distancia en metros) 

 

El sumatorio de las cinco estimaciones anteriores representa el requerimiento de 

energía neta total de cada animal. La diferencia entre los requerimientos totales de EN 

y la EN aportada por el consumo del TMR y los concentrados en la estabulación 

representa la EN desde el forraje consumido en praderas. Para realizar esta 

estimación, fue necesario estimar el contenido en EN de cada alimento (TMR, 

concentrados y forraje) y que fue calculada de la siguiente manera: 

 

a) Forraje fresco: 

 

La energía neta del forraje fresco fue determinada aplicando la ecuación de predicción 

de NRC (1988): 

 

 EN = (0,1569 * EM) - 0,07.  

Donde: 

EM: Energía Metabolizable (MJ/kg de MS) 

 

El valor de la EM fue estimado según el modelo de MAFF (1984) donde se expresó el 

coeficiente de digestibilidad de la materia orgánica (DMO) como porcentaje de materia 

orgánica digestible sobre materia seca (MOD):  

  

 EM = K * MOD 

Donde: 

EM = Energía Metabolizable (MJ/kg de MS) 

K = 0,16 (para forrajes frescos y ensilados en vacas lecheras) 

MOD = Materia Orgánica Digestible (%), calculada con la formula: 

  

MOD = % Materia Orgánica * (DMO/100) 

Donde: DMO es la Digestibilidad en vivo de la materia orgánica (%) que se fue 

estimada por el método de fibra neutro detergente y celulasa (Riveros y Argamentería, 

1987). 
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 DMO = 5,76 + (0,57 * De) + (0,36 * FND) + (0,5 * PB). 

Donde:  

De = Digestibilidad Enzimática de la materia orgánica (%). 

FND = Fibra Neutro Detergente (% MS). 

PB = Proteína Bruta (% MS). 

 

b) TMR y Concentrados : 

 

Igual que en el forraje verde, se utilizó la misma ecuación para calcular la energía neta 

de lactación de las mezclas unifeed y los concentrados: 

EN = 0,1569 * EM – 0,07 

Donde la EM (energía metabolizable en MJ/kg de MS) fue determinada tomando el 

valor promedio de la energía metabolizable calculada según dos ecuaciones diferente, 

MAFF (1984) y ADAS (1985) 

 

 EMMAFF = 10 * (0,012 * PB + 0,031 * EE + 0,005 * FB + 0,014 * MELN) 

 EMADAS = 11,78+(0,0654*PB)+(0,0665*EE2)-(0,0414*EE*FB) - (0,018 * CEN) 

 

Donde: 

EMMAFF = Energía Metabolizable determinada según el MAFF (1984) 

EMADAS = Energía Metabolizable determinada según el ADAS (1985) 

PB = Proteína Bruta (%MS) 

EE = Extracto Etéreo (%MS) 

FB = Fibra Bruta (%MS) 

CEN =cenizas (en % sobre MS) 

MELN = Materiales extractivos libres de nitrógeno (%), calculados a partir de la 

fórmula: 

 

 MELN = 100 – CEN – PB – EE – FB 

 

3.5 Toma y conservación de muestras 

 

3.5.1. TMR 

 

Las raciones TMR fueron muestreadas semanalmente, recién elaboradas, 

directamente de la descarga del carro mezclador antes de ser distribuidas en los 

comederos individuales. Para asegurar la representatividad, el peso de las muestras 
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siempre fue mayor de 2 kg. Las muestras fueron procesadas en el laboratorio de 

Nutrición Animal para lo cual se secaron a 60 ºC durante 24 h para determinar el 

contenido en MS y posteriormente se molieron a 0,75 mm (Fritsch Pulverisette 25) 

para su posterior análisis de laboratorio. 

 

3.5.2. Concentrados suplementarios  

 

En cuanto a los concentrados suplementarios y dada su gran homogeneidad, se 

realizó un solo muestreo durante todo el periodo del ensayo. Las muestras fueron 

molidas a 1 mm de diámetro (Fritsch Pulverisette 14). 

 

3.5.3. Forraje verde pastoreado 

 

Como fue descrito anteriormente, el muestreo de las praderas se hizo según el método 

de Martínez Fernandez (1995) el día anterior del cambio de la entrada a la parcela. La 

pesada de las muestras fue importante para estimar la producción forrajera. Después 

de ser pesadas, se secaron a 60 ºC durante 24 h para determinar su contenido de MS, 

se molieron en un molino Fritsch Pulverisette 25 provisto de un tamiz de 0,75 mm de 

diámetro y se almacenaron en bolsas de plástico para su posterior análisis. 

 

3.5.4. Leche 

 

Las muestras de leche fueron tomadas cada semana; después el ordeño de tarde del 

martes y del ordeño de mañana del miércoles, mediante un muestreador automático 

acoplado al robot de ordeño en botes de polipropileno con Azidiol como conservante y 

se envió refrigerada a 4ºC para su análisis de macrocomponentes al Laboratorio 

Interprofesional Lechero de Asturias (LILA, Llanera, Asturias).  

 

Otra muestra fue tomada sin conservante y se envió al Laboratorio de Nutrición Animal 

del SERIDA donde se le extrajo la grasa por centrifugación (17800 durante 30 min a 

4ºC, Biofuge Stratos, Heraeus Instruments) según la técnica descrita por Feng et al 

(2004) y se conservó la nata en congelación (-40ºC) hasta el análisis cromatográficos 

del perfil de los ácidos grasos. 
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3.6 Análisis de laboratorio 

 

3.6.1. Alimentos 

 

Todas las muestras de los alimentos (TMR, concentrados y forraje) fueron analizados 

en el laboratorio de Nutrición Animal del SERIDA, Laboratorio Oficial del Principado de 

Asturias en materia de análisis de alimentos destinados al ganado, acreditado por la 

Entidad Nacional de Acreditación (ENAC) conforme a los criterios recogidos en la 

norma UNE-EN-ISO/IEC 17025 (Nº de expediente LE 930). 

 

El contenido de materia seca, cenizas, proteína bruta (PB), fibra bruta (FB), extracto 

etéreo (EE) y almidón de la TMR y piensos, fibra neutro detergente (FND) y fibra ácido 

detergente de los forrajes, se determinó por espectroscopia en el infrarrojo cercano 

(NIR), utilizando un equipo NIRSystem 5000. en los forrajes verdes destinados a la 

elaboración de ensilados en ambos manejos (HC y RI) se determinaron los parámetros 

que definen la ensilabilidad: MS tras 24 horas de prehenificación, azúcares solubles 

(Hoffman, 1937) y capacidad tampón (Playne y McDonald, 1966). 

 

El forraje verde HC, su ensilado y las muestras de la mezcla unifeed basada en HC, al 

no existir ecuaciones de predicción NIR, fueron analizadas por vía húmeda para su 

fraccionamiento Weende (AOAC, 1984) y Van Soest (Van Soest et al, 1991) 

 

3.6.2. Leche 

 

El análisis general del contenido de la leche en macronutrientes: proteína, grasa, 

lactosa, extracto seco magro y urea se realizó en el Laboratorio Interprofesional 

Lechero de Asturias (LILA, Llanera, Asturias) mediante equipos de reflectancia de 

infrarrojo medio FTIR (infrarrojo por transformada de Fourier) acreditados por ENAC 

(Nº de expediente 246/LE476). 

 

El perfil de los ácidos grasos de la leche fue determinado por cromatografía de gases 

de la grasa extraída por centrifugación a 17800xg durante 30 min a 4 ºC (Biofuge 

Stratos, Heraeus Instruments). Un gramo de esta nata fue trasvasado a viales 

eppendorf de 1,5 ml y sometido a una ultracentrifugación a 19300xg durante 20 min a 

temperatura ambiente (Eppendorf centrifuge 5415R). Tras eso, se formaron tres fases: 

capa inferior de agua, capa intermedia de proteína y otros sólidos insolubles y capa 

superior de lípidos. Se tomó una alícuota de 40 mg de la capa superior para llevar a 
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cabo un proceso de metilación básica (Christie, 1982) que consiste en agregar 2 ml de 

hexano (solvente orgánico) y 40 µl de metil acetato y agitar medio minuto. 

Posteriormente, se adicionan 40 µl de metilato de sodio, agitar otro medio minuto y 

dejar reaccionar 10 min. Finalmente, se adiciona 60 µl de reactivo de terminación (1,75 

ml de metanol, 0,4 ml de metilato de sodio 5,4 M). La muestra se centrifugó 5 minutos 

a 2400 g y a 5ºC. Después la centrifugación, una alícuota de la capa orgánica superior 

fue tomada, de la cual de prepararon diluciones (30 µl de la muestra + 3920 µl de 

Hexano + 50 µl de C19:00 como estándar interno) para ser filtradas posteriormente por 

un filtro de 0,20 µm y analizadas finalmente por cromatógrafo de GC-MS (Varian 3800 

GC- 400 MS Varian, Inc. Palo Alto, CA, USA) dotado de inyector automático y columna 

capilar (CP Sil 88 8100 m, 0,25 mm d.i., 0,20 mm film). Se utilizó Helio como gas 

transportador a un flujo de 1 ml/min. Se inyectó 1 µl de muestra en modo Split 1:100. 

La programación de la temperatura de la columna fue: 40ºC durante 1,20 minutos, 

elevado a 140ºC con un gradiente de 30ºC/m y manteniendo durante 25 minutos, 

posteriormente elevada a 190ºC con un gradiente de 1ºC/m y manteniendo durante 15 

minutos, después, otra elevación hasta los 215ºC con un gradiente de 1ºC/m durante 8 

minutos. Finalmente, elevada con un gradiente de 30ºC/m hasta los 240ºC y 

manteniendo durante 1 minuto. La temperatura del detector se mantuvo a 225ºC. Los 

picos cramatográficos fueron identificados utilizando estándares de ésteres metílicos 

(Me Matreya Inc., Sigma Aldrich Inc). 

 

3.7 Análisis estadísticos  

 

Los análisis estadísticos fueron realizados mediante el paquete estadístico SAS (1999) 

utilizando las vacas como unidad experimental. Los datos fueron analizados usando el 

PROC MIXED con las vacas como efecto aleatorio y la semana como medida repetida. 

Semana y tratamiento (HC y RI) y su interacción fueron incluidos en el modelo como 

efecto fijo. Las diferencias entre medias fueron comparadas utilizando el test de Tukey. 
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3. RESULTADOS 

 

En el año agronómico 2012, cuando se llevó a cabo tanto el cultivo forrajero y su 

ensilado y el ensayo in vivo, la temperatura media fue de 13,5ºC, con una media de las 

máximas de 17,6ºC y de las mínimas de 9,6ºC. La precipitación fue de 720 mm 

distribuidos en 196 días de lluvia. Mientras que los valores térmicos se situaron dentro 

de la normalidad, la cantidad de lluvia caída fue un 36% inferior al dato medio de los 

valores históricos desde 1978. 

 

4.1. Producción forrajera 

 

En la tabla 4.1 se muestra la producción forrajera del cultivo de invierno (HC vs. RI), 

del cultivo de verano y de la rotación completa en dos manejos diferentes: 

convencional y sostenible. 

 

En el cultivo de invierno, la parcela sostenible sembrada con la asociación forrajera de 

habas y colza (HC) presentó mayor producción de materia seca por hectárea en un 

solo corte que los dos cortes acumulados del RI (9,82 vs. 7,88 tMS/ha 

respectivamente), aunque sin diferencias estadísticamente significativas (p>0,05). El 

primer corte del RI realizado en la segunda semana de marzo, produjo 3,69 tMS/ha y 

el segundo corte realizado ocho semanas después, produjo 4,20 tMS/ha (Figura 4.1) 

 

En el cultivo de verano, el rendimiento de materia seca del maíz resultó un 22% 

superior en el manejo sostenible que en el convencional (12,95 vs. 10,59 tMS/ha 

respectivamente) aunque esta diferencia no llegó a ser significativa.  

 

Tabla 4.1: Producción forrajera durante el año agro nómico del estudio (cultivo 

de invierno + cultivo de verano) en dos sistemas de  manejo: Convencional vs. 

Sostenible 

 

 Sostenible  Convencional  rsd 2 P 3 

Cultivo de invierno (t/ha) 1 9,82 7,88 0,921 NS 

Maíz (t/ha)  12,95 10,59 1,050 NS 

Malas hierbas (t/ha)  0,28 1,42 0,170 ** 

Producción total (t/ha)  22,77 18,47 0.923 NS 
1 Convencional: Raigrás italiano, Sostenible: Haba-Colza. 2 Desviación estándar residual. 3 Nivel de 
significación: NS = P>0,05; ** = P<0,01 
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El crecimiento de la flora adventicia asociada al cultivo de verano fue 

significativamente menor (p<0,01) en el manejo sostenible (0,28 tMS/ha) comparado 

con el manejo convencional (1,42 t MS/ha), lo que se puede achacar al poder 

herbicida de la colza del cultivo asociado anterior, que demostró más efectividad que 

los herbecidas sintéticos teniendo en cuenta, además, que la dosis de herbicida en el 

manejo sostenible fue la mitad que en el manejo convencional. En la separación 

botánica de las muestras de especies arvenses (malas hierbas) destacó la presencia 

significativa de especies como Amaranthus retroflexus, Convolvulus arvensis, 

Chenopodium album, Chenopodium spp., Agropyron repens, Digitalia sanguinalis, que 

compitieron con el maíz por la disponibilidad de los nutrientes. 

 

Considerando la producción de materia seca de la rotación completa, la asociación 

forrajera HC en rotación con el maíz forrajero y manejado con un sistema sostenible 

(fertilización orgánica y bajo imputs de herbicidas) permitió obtener 4 toneladas 

anuales más de materia seca por hectárea que la rotación RI con el maíz en el manejo 

convencional, considerando como no aprovechable la biomasa seca de las malas 

hierbas (22,8 vs. 18,5 tMS/ha respectivamente; P=0,08). 
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Figura 4.1: Producción forrajera (tMS/ha) de los cu ltivos forrajeros de invierno 

(asociación haba y colza en manejo sostenible o rai grás italiano en manejo 

convencional), de verano (maíz) y flora arvense. ** =P<0,01 
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4.2. Valor nutritivo y aporte energético de los for rajes  

 

Se puede observar en la Tabla 4.2, la calidad nutritiva de los cultivos de invierno (HC y 

RI) y de verano (maíz) según su manejo: convencional o sostenible.  

 

Tabla 4.2.  Valor nutritivo y aporte energético de los forrajes  en corte directo en 

manejo convencional (raigrás italiano + maíz) y man ejo sostenible (habas-colza + 

maíz). 

 

 Sostenible  Convencional  rsd 2 P 3 

MS (%) 15,05 15,84 0,287 NS 

CEN (%MS) 11,73 8,54 0,615 * 

PB (%MS) 16,57 10,00 1,040 * 

FND (%MS) 51,27 41,08 1,539 * 

FAD (%MS) 43,75 19,19 0,524 *** 

DMO (%) 64,06 80,80 0,834 *** 

Cultivo 
de 

Invierno 
1 

EM (MJ/kg MS)  9,05 11,82 0,052 *** 

MS (%) 28,13 29,87 0,797 NS 

CEN (%MS) 4,46 3,67 0,247 NS 

PB (%MS) 7,93 7,46 0,300 NS 

FND (%MS) 50,07 49,38 1,486 NS 

ALM (%MS)  21,47 21,01 1,293 NS 

DMO (%) 72,72 72,91 0,854 NS 

Cultivo 
de 

verano  
(Maíz) 

EM (MJ/kg MS)  11,12 11,24 0,120 NS 
1 Convencional: Raigrás Italiano (RI); Sostenible: Cultivo asociado de habas forrajeras y colza (HC); 
2 Desviación estándar residual; 3 Nivel de significación: NS = P>0,05, no significativo; * = P<0,05; 
** = P<0,01; *** = P<0,001. MS: materia seca, CEN: cenizas, PB: proteína bruta, FND: fibra neutro 
detergente, FAD: fibra ácido detergente, ALM : almidón, DMO: digestibilidad estimada in vivo de la materia 
orgánica. EM: energía metabolizable. 
 

El cultivo asociado HC mostró una mayor proporción de cenizas que el promedio de 

los dos cortes de RI (11,7 vs. 8,5% respectivamente. P<0,05). Como cabría esperar, el 

forraje HC dio un porcentaje de PB superior al 16% debido a la presencia de la 

leguminosa. En cambio, el RI ese año tuvo un contenido proteico un poco inferior a lo 

habitual (10% de PB, P<0,05). Esto, lo atribuimos a las condiciones climáticas que 
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acompañaron la fase final del desarrollo del cultivo con una importante sequía. La 

colza es una planta crucífera caracterizada por unos tallos de hasta 150 cm, 

ramificados en la parte superior. Dichos tallos son fibrosos y su presencia en la 

asociación forrajera repercutió en un mayor contenido de FND y FAD en HC en 

comparación con el RI (51,3 vs. 41,1% FND para HC y RI respectivamente; P<0,05 y 

43,8 vs. 19,2% FAD para el HC y RI respectivamente; P<0,001). Como consecuencia, 

el cultivo de la asociación forrajera de HC presentó un valor de digestibilidad de 

materia orgánica significativamente inferior respecto al RI (64,1 vs. 80,8% 

respectivamente; P<0,001) y por lo tanto un menor aporte energético (9,1 vs. 11,8 MJ 

EM/kg MS para el HC y RI respectivamente; P<0,001).  

 

La estimación del coeficiente de fermentabilidad según la ecuación propuesta por 

Weissbach y Honig (1996) resulta igual para ambos tipos de forraje (35,9) por lo que 

se pueden clasificar como forrajes de alta ensilabilidad. Ahora bien, aplicando el 

modelo cuantitativo de índice de ensilabilidad adaptado a forrajes de áreas templado-

húmedas (Martínez-Fernández et al, 2013), la menor concentración de azúcares 

solubles de la asociación forrajera de haba y colza frente al raigrás italiano en 

monocultivo (8,5% vs. 29,8% respectivamente) clasifica a este forraje como de media 

ensilabilidad, mientras que el raigrás italiano queda enmarcado como forraje de alta 

ensilabilidad. 

 

Respecto al maíz, no se apreciaron diferencias significativas entre ambos tipos de 

manejo (P>0,05) resultando el valor nutritivo de los dos manejos prácticamente 

iguales. 

 

En las Figuras 4.2, 4.3 y 4.4 se muestran el rendimiento de las rotaciones completas 

en base a producciones de PB, EM y MOD por hectárea según manejo. Los kg de 

PB/ha en el manejo sostenible fueron un 46% y un 30% superiores a los obtenidos en 

el manejo convencional con los forraje de invierno y el maíz respectivamente (Figura 

4.2). Estas producciones indujeron una tendencia (P=0,08) a una mayor producción 

total de proteína bruta por hectárea en la rotación completa.  

 

El menor aporte energético de la asociación HC se vio compensado por la mayor 

producción obtenida, de manera que no se observaron diferencias estadísticamente 

significativas en el valor energético producido (93 vs. 89,9 GJ/ha, para RI y HC 

respectivamente) la mayor producción de maíz en el manejo sostenible indujo a una 

producción de 26 GJ/ha más que en el manejo convencional. Los GJ de EM/ha de la 
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rotación completa fueron un 10% superiores en el manejo sostenible que en el 

convencional, aunque sin diferencias significativas respecto al manejo convecional 

(P>0,05). 

 

Comparando el rendimiento anual de materia orgánica digestible (MOD) en dos 

manejos, se puede observar que la baja digestibilidad del forraje de la asociación 

habas-colza resultó en 3 t/ha de MOD menos en el manejo sostenible que en le 

manejo convencional (P<0,01). En contraste, en el cultivo de verano, el rendimiento de 

MOD en el manejo sostenible fue numéricamente mayor que en el manejo 

convencional de forma que en la rotación completa no se observaron diferencias 

significativas (P>0,05). 
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Figura 4.2: Rendimiento en Proteína Bruta (PB) en k g/ha de los cultivos 

forrajeros de invierno (asociación haba y colza en manejo sostenible o raigrás 

italiano en manejo convencional) y de verano (maíz) . 
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Figura 4.3: Rendimiento en Energía Metabolizable (E M) en GJ/ha de los cultivos 

forrajeros de invierno (asociación haba y colza en manejo sostenible o raigrás 

italiano en manejo convencional) y de verano (maíz) . 
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Figura 4.4: Rendimiento en Materia Orgánica Digesti ble (MOD) en t/ha de los 

cultivos forrajeros de invierno (asociación haba y colza en manejo sostenible o 

raigrás italiano en manejo convencional) y de veran o (maíz). **=P<0,01. 
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4.3. Características del suelo agrícola  

 

En la analítica del suelo, se observó que la evolución de la materia orgánica (MO) a lo 

largo del año agronómico no se vio afectada por el tipo de manejo, ya que no mostró 

diferencias entre cultivos, estando siempre encima del 2%, dato que refleja una buena 

fertilidad del suelo y garantiza una correcta implantación y desarrollo de los cultivos en 

ambos manejos (Figura 4.5). El pH en la parcela convencional bajó gradualmente un 

punto (de 7 a 6), sin diferencias significativas comparado con su evolución en la 

parcela sostenible que se mantuvo estable. 

 

En la Figura 4.6 se observa que la concentración del fósforo asimilable (P) en el suelo 

se mantuvo estable independientemente del tipo del manejo durante el año 

agronómico, indicando niveles elevados de fertilidad. No obstante, la concentración del 

potasio (K) en manejo sostenible, se incrementó significativamente a lo largo del 

período de estudio, pasando de un suelo clasificado como de fertilidad baja a fertilidad 

alta según Martínez-Fernández y Argamentería (2012). La evolución del contenido en 

K refleja el efecto de la fertilización orgánica, rica en K, así como la extracción del 

mismo de las capas profundas del suelo por parte de la colza. 
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Figura 4.5: Evolución en el suelo de la materia org ánica y el pH según manejo 

convencional vs. sostenible. 
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Figura 4.6: Evolución en el suelo de las concentrac iones de fósforo (P) y el 

potasio (K) según el manejo convencional vs. sostenible 

 

4.4.  Composición química de las dietas 

 

La composición química y el contenido energético de los dos ensilados elaborados a 

partir de la asociación forrajera de haba y colza (HC) y a partir del raigrás italiano (RI) 

se presentan en la tabla 4.3. Conforme a lo observado sobre los forrajes verdes de 

partida, el ensilado del HC presentó un mayor contenido en proteína que el ensilado 

del RI, y mayor contenido en FND y por lo tanto menor digestibilidad de la materia 

orgánica y contenido energético. 

 

El diferente valor nutritivo de los ensilados condujo a formular la ración TMR basada 

en RI con un 21,8% más de concentrado que cuando se utilizó ensilado HC para que 

ambas raciones fueran isoenergéticas e isoproteicas (Tabla 4.4). Por lo tanto, la 

relación forraje:concentrado en la TMR HC fue de 85:15, mientras que en la TMR RI 

fue de 80:20. 
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Tabla.4.3: Valor nutritivo (%MS) y contenido energé tico estimado de los 

ensilados de haba+colza (HC) y raigrás italiano (RI ).  

 

Ensilado (%MS)  HC RI 

Materia Seca *  30,05 24,20 

Materia Orgánica  91,54 89,60 

Proteína Bruta  14,48 10,71 

Fibra Neutro Detergente  63,29 47,55 

Digestibilidad de materia orgánica  58,20 72,41 

Energía Metabolizable (MJ/kg MS)  8,52 10,37 

Energía Neta de lactación (Mcal/kgMS)  1,27 1,56 

* El forraje en ambos manejos fue ensilado tras 24 horas de prehenificación  

 

Tabla 4.4: Composición de ingredientes, valor nutri tivo (%MS) y aporte 

energético estimado de las mezclas TMR. 

 

Mezclas TMR  HC RI 

Ingredientes (%MS)  

Ensilado de Haba+Colza  75,33 --- 

Ensilado de raigrás italiano  --- 68,45 

Paja de cebada  9,38 11,99 

Concentrado 1 15,29 19,56 

Valor nutritivo (%MS)  

Materia Seca  34.39 29.66 

Materia Orgánica  89,45 89,43 

Proteína Bruta  12,03 12,20 

Fibra Neutro Detergente  61,79 53,34 

Energía Neta de lactación (Mcal/kgMS)  1,38 1,42 
1 Ver Tabla 3.1 para la composición de ingredientes del concentrado. 

 

En la estabulación, las vacas además de su correspondiente TMR según el 

tratamiento HC o RI al que fueron asignadas, recibieron dos tipos de concentrados 
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comerciales: L y S. El concentrado L fue ofertado a cantidad fija durante todo el 

ensayo y el S a partir del parto. En la Tabla 4.5 se muestra la composición química de 

dichos concentrados. Se muestra asimismo, la composición química de la hierba 

pastada según las muestras tomadas durante el ensayo. 

 

Tabla 4.5: Valor nutritivo (%MS) y aporte energétic o estimado de los 

concentrados suplementarios L y S y de la hierba pa storeada. 

 

 Conc. L  Conc. S  Pasto  

Materia Seca  87,46 87,75 19,42 

Materia Orgánica  92,82 91,87 87,89 

Proteína Bruta  19,71 18,37 19,66 

Fibra Neutro Detergente  20,94 22,95 55,32 

Energía Neta de lactación (Mcal/kgMS)  1,88 1,83 1,43 

 

 

Ambas raciones TMR resultaron, como estaba previsto, isoenergéticas (1,40 Mcal 

ENl/kgMS) e isoproteicas (12,1% de PB sobre MS), según la composición de 

ingredientes utilizados. Los dos concentrados estaban formulados con el objetivo de 

incrementar el valor proteico y energético de la dieta completa. La composición de la 

hierba resultó dentro de los parámetros habituales de la hierba de pradera de otoño.  

 

4.5. Consumo de materia seca 

 

Las dos mezclas unifeed fueron ofertadas ad libitum, observándose en ambos casos 

una buena aceptabilidad por los animales, algo superior en las vacas que consumieron 

mezcla unifeed basada en ensilado de raigrás italiano. El porcentaje de rehúso de la 

mezcla RI fue de 2,8% y el de la mezcla HC de 5,7%. Antes del parto, el consumo de 

materia seca (Tabla 4.6) de la mezcla unifeed RI fue mayor que la ingestión de mezcla 

unifeed HC (10,3 vs. 6,8 kgMS/día; P<0,001). Los consumos de concentrado L fueron 

similares entre tratamientos. Sin embargo, las vacas que consumían la mezcla unifeed 

HC compensaron la diferencia de ingestión de unifeed con una mayor ingestión de 

hierba (7,1 kg MS/día), mientras que los animales que consumían la mezcla unifeed RI 

presentaron una baja ingestión de hierba durante el preparto (3,2 kg MS/día), aunque 
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la elevada variabilidad individual entre animales, impidió la aparición de diferencias 

significativas a pesar de la gran diferencia numérica entre tratamientos. Por lo tanto, el 

consumo total de MS se compensó en ambos tratamientos, con unas ingestiones 

totales de materia seca de 15,7 y 13,2 kg al día en los tratamientos HC y RI 

respectivamente (P>0,05). 

 

Tras el parto, se observó un descenso en la ingestión de mezcla RI (10,3 vs. 8,7 kg 

MS/día antes y después del parto respectivamente; P<0,05), mientras que se mantuvo 

la ingestión de mezcla HC (6,8 vs. 6,9 kg MS/día antes y después del parto 

respectivamente; P>0,05). La ingestión de concentrado L se incrementó 

significativamente tras el parto en ambos tratamientos (1,7 vs. 2,4 kg MS/día en el 

preparto y postparto respectivamente, P<0,001) sin diferencias entre ellos. El consumo 

de concentrado S, que se ofertó tras el parto, también fue igual en ambos tratamientos 

(0,69 kg MS/día). 

 

La ingestión de hierba mostró una interacción entre el tratamiento y el periodo de la 

transición. La ingestión de hierba tras el parto descendió un 45% en el tratamiento HC, 

mientras que en el tratamiento RI se incrementó un 80%, pasando de 3,2 kg MS/día 

antes del parto a casi 8 kg MS/día tras el parto. 

 

Tabla 4.6: Consumo diario (kgMS/d) de mezclas TMR, concentrados 

suplementarios (L y S), hierba y total en cada uno de los tratamientos (HC y RI), 

antes y después del parto. 

 

Dieta (D) 1 HC RI  Sig. 3 

Periodo (P) 2 Preparto  Postparto  Preparto  Postparto  rsd 3 D P D*P 

TMR 6,84 6,91 10,25 8,66 0,335 *** NS NS 

L 1,80 2,38 1,56 2,36 0,035 NS *** NS 

S - 0,70 - 0,68 0,021 NS *** NS 

Hierba  7,10 3,20 1,65 7,93 0,801 NS NS ** 

Total  15,73 13,19 13,46 19,62 0,796 NS NS ** 
1 Efecto dieta: TMR con haba y colza (HC); TMR con Raigrás Italiano (RI); 2 Efecto periodo: Pre y 
postparto; 3 Desviación estándar residual; 3 Nivel de significación: NS = P>0,05, no significativo; 
** = P<0,01; *** = P<0,001. 
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En la Figura 4.7 se muestra la evolución desde la semana 4 antes del parto a la 

semana 4 después del parto de la ingestión de cada uno de los componentes de la 

dieta completa. Se puede observar que el consumo de la mezcla unifeed RI fue 

superior que el de la mezcla unifeed HC en todas las semanas del ensayo, con un 

descenso tras el parto de la mezcla unifeed RI, cuya ingestión se mantiene estable 

posteriormente. En lo que respecta al consumo de hierba, éste fue siempre superior en 

el tratamiento HC que en el RI en las semanas previas al parto. Ahora bien, tras el 

parto, las vacas del grupo RI incrementaron rápidamente el consumo de hierba, 

mientras que las vacas del grupo HC mostraron una ingestión relativamente baja de 

hierba. Tras el parto, en ambos grupos la ingestión de materia seca total fue 

recuperándose, si bien, los animales que consumían HC mostraron un menor ritmo de 

recuperación de la ingestión, por lo que tras 4 semanas postparto, la ingestión total en 

el tratamiento RI fue mayor que en tratamiento HC (18,9 vs. 15,5 kg MS/día 

respectivamente, P<0,01; Figura 4.7). 
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Figura 4.7: Consumo semanal (kg MS/d) de las mezcla s TMR, de los 

concentrados L y S y de la hierba en los dos tratam ientos (HC y RI) 
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4.6. Variación de peso vivo y condición corporal  

 

La Figura 4.8 muestra la evolución del peso medio del grupo en los dos tratamientos. 

Al final de gestación, se puede ver que las vacas tanto en tratamiento HC como en el 

tratamiento RI ganaron peso vivo (50-90 kg) debido al crecimiento fetal, sin diferencias 

significativas entre tratamientos. Tras el parto se produjo el esperado brusco descenso 

del peso vivo. Ahora bien, mientras que los animales con el tratamiento RI 

mantuvieron el peso durante las siguientes cuatro semanas, las vacas con el 

tratamiento HC mostraron un descenso continuo en el peso vivo. 
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Figura 4.8: Evolución del peso vivo de los animales  en dos manejos durante las 

cuatro semanas antes y después del parto. 

 

La condición corporal de los animales se mantuvo estable a lo largo del ensayo y sin 

diferencias entre tratamiento. En las semanas previas al parto fue de 2,75 y descendió 

tras las dos primeras semanas de lactación a 2,25. 

 

 



62 

 

4.7.  Producción y composición de la leche tras el parto  

 

En cuanto a la producción de leche, medida a partir del tercer día postparto, se puede 

observar en la Figura 4.9 que no se apreciaron diferencias entre tratamientos. La 

primera semana de lactación, ambos grupos, produjeron 24 kg leche/día, elevándose a 

29 kg/día la segunda semana y a 30 kg/día a partir de la tercera. La producción media 

diaria de ambos grupos en las cuatro primeras semanas de lactación fue de 28,3 

kg/día, sin diferencias entre tratamientos (Tabla 4.7). La concentración de grasa en las 

vacas con tratamiento RI fue superior a la de las vacas con tratamiento HC (4,4 vs. 3,9 

% de grasa respectivamente, P<0,05). Esta diferencia se mantuvo constante a lo largo 

de las cuatro primeras semanas de lactación (Figura 4.10). Tanto la concentración de 

proteína como de lactosa y extracto seco magro no se vieron afectadas por el 

tratamiento (3,3 % de proteína, 4,7% de lactosa y 8,8% de extracto seco magro). La 

concentración de proteína mostró una evolución descendente en las primeras 

semanas de lactación, con valores de 3, 7% la primera semana, descendiendo 

posteriormente hasta el 3,0% de proteína en la última semana del ensayo (P<0,05).  

 

Tabla 4.7: Producción diaria, composición y rendimi ento de la leche en las 

cuatro primeras semanas de lactación en cada uno de  los tratamientos (HC y RI). 

 

 HC RI rsd 1 P2 

kg Leche/d  28,14 28,49 0,562 NS 

% Grasa  3,91 4,36 0,083 * 

% Proteína  3,31 3,26 0,072 NS 

% Lactosa  4,68 4,71 0,044 NS 

% ESM 8,98 8,87 0,082 NS 

kg Grasa/d  1,10 1,24 0,032 * 

kg Proteína/d  0,92 0,92 0,024 NS 

kg Lactosa/d  1,32 1,35 0,034 NS 
1 desviación estándar residual. 2: nivel de significación; NS: P>0,05; *: P<0,05;  

 

Aunque la producción de leche fue igual en ambos tratamientos, la mayor 

concentración de grasa de la leche en el tratamiento RI indujo a un mayor rendimiento 

lechero medido como kilos de grasa producida (1,10 vs. 1,24 kg grasa/día para los 
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tratamientos HC y RI respectivamente, P<0,05). No se observaron diferencias cuando 

se calculó el rendimiento en proteína y lactosa. 
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Figura 4.9: Evolución de la producción de leche seg ún tratamiento (dieta HC o 

dieta RI) en 4 semanas posparto. 
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Figura 4.10: Evolución del contenido lechero en gra sa y proteína (en %) según 

tratamiento (dieta HC o dieta RI) durante las prime ras 4 semanas posparto. 
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4.8. Perfil de ácidos grasos de la leche tras el pa rto  

 

El efecto de la alimentación con dietas basadas en haba y colza forrajeras o raigrás 

italiano sobre el perfil de ácidos grasos de la grasa de la leche de las vacas frisonas 

tras el parto se describe en la Tabla 4.8. Los ácidos grasos de cadena corta (de 6 a 13 

átomos de carbono) no se vieron afectados por el tratamiento, mientras que la 

concentración de ácidos grasos de cadena media (entre 14 y 16 átomos de carbono) 

fue significativamente superior en el tratamiento RI (51,0 vs. 56,7 gAG/100gAG para 

los tratamientos HC y RI respectivamente; P<0,001). Esta diferencia es debida 

fundamentalmente a la elevada concentración de ácido palmítico en el tratamiento RI 

(38,1 gAG/100gAG) frente al tratamiento HC (33,8 gAG/100gAG; P<0,01). 

 

El total de ácidos grasos de cadena larga (más de 18 átomos de carbono) se vio 

igualmente afectado por el tratamiento (P<0,05) con una mayor concentración en el 

tratamiento HC (35,5 gAG/100gAG) que en el RI 28,5 gAG/100gAG). La concentración 

individual de todos los ácidos grasos de cadena larga en la grasa de la leche fue 

mayor en las vacas alimentadas con la dieta HC. La concentración de ácido linolénico 

(18:3 n-3) se duplicó con dicho tratamiento (0,9 vs. 0,4 gAG/100gAG para los 

tratamientos HC y RI respectivamente; P<0,001) y la de ácidos linoleico (18:2 n-6; 

P<0,01) y oleico (P<0,05) también resultaron superiores. Los productos intermedios de 

la biohidrogenación ruminal de los ácidos linolénico y linoleico también duplicaron su 

concentración en la grasa de la leche de los animales alimentados con la asociación 

forrajera de haba y colza (0,7 gAG/100gAG de CLA (18:2cis9-trans12) y 1,7 

gAG/100gAG de ácido vaccénico) que en la leche de los alimentados con raigrás 

italiano (0,3 gAG/100gAG de CLA; P<0,001, y 0,9 gAG/100gAG de ácido vaccénico; 

P<0,001). El producto final de la biohidrogenación, el ácido esteárico, también 

presentó una concentración mayor (P<0,05) en el tratamiento HC (19,0 gAG/100gAG) 

que en el tratamiento RI (16,1 gAG/100gAG).  

 

No se observaron diferencias en la proporción de ácidos grasos saturados entre 

tratamientos. Tampoco se observaron diferencias en el total de ácidos grasos 

monoinsaturados, sin embargo, la proporción de ácidos grasos poliinsaturados fue 

superior en los animales alimentados con ensilado de haba y colza forrajera que en 

aquellos alimentados con ensilado de raigrás italiano (3,5 vs. 2,0 gAG/100gAG 

respectivamente; P<0,001). 
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Taba 4.8: Perfil de ácidos grasos (g AG/100g AG) de  la grasa de leche en los dos 

tratamientos (HC y RI). 

 

  HC RI rsd 1 P2 

Ácido Capróico 6:0 3,10 2,90 0,105 NS 

Ácido Caprílico 8:0 1,29 1,23 0,051 NS 

Ácido Cáprico 10:0 4,59 4,99 0,257 NS 

Ácido Undecenoico 11:1 cis10 0,06 0,05 0,006 NS 

Ácido Laurico 12:0 4,64 5,40 0,298 NS 

Ácido Tridecenoico 13:1 cis2 0,05 0,10 0,014 NS 

Ácido Mirístico 14:0 13,93 15,21 0,504 NS 

Ácido Miristoleico 14:1 cis9 0,70 0,70 0,056 NS 

Ácido Pentadecanoico 15:0 1,17 1,47 0,095 NS 

Ácido Palmítico C16:0 33,81 38,05 0,651 ** 

Ácido Palmitoleico 16:1 cis9 0,74 0,66 0,049 NS 

Ácido Heptadecanoico 17:0 0,80 0,81 0,050 NS 

Ácido Heptadecenoico 17:1 cis10 0,13 0,12 0,014 NS 

Ácido Esteárico 18:0 18,98 16,11 0,727 * 

Ácido Oleico 18:1 cis9 13,75 11,27 0,611 * 

Ácido Elaídico 18:1 trans9 0,07 0,03 0,017 ** 

Ácido Vaccénico 18:1 trans11 1,68 0,91 0,068 *** 

Ácido Linoleico 18:2 cis9 cis12 1,86 1,36 0,086 ** 

Ácido Ruménico (CLA) 18:2 cis9 trans11 0,74 0,31 0,044 *** 

Ácido Linolénico 18:3 cis6 cis9 cis12 0,86 0,35 0,039 *** 

Ácido Araquídico 20:0 0,17 0,07 0,040 NS 

Ácido Eicosanoico 20:1 cis11 0,13 0,03 0,073 NS 

Ácido Araquidónico 20:4 cis5 cis8 cis11 cis14 0,06 0,02 0,008 NS 

AGS3  82,18 86,08 1,164 NS 

AGMI4  14,36 11,75 1,144 NS 

AGPI5  3,48 2,03 0,119 *** 
1 desviación estándar residual. 2 significación estadística. NS: P>0,05; *: P<0,05; **: P<0.01; ***: P<0.001 
3 Ácidos grasos saturados.4 Ácidos grasos mono-insaturados.5 Ácidos grasos poliinsaturados. 
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4.9. Efecto sobre el parto y la fertilidad en el si guiente ciclo reproductivo  

 

En la Tabla 4.9 se muestran los parámetros reproductivos de los animales alimentados 

con dietas basadas en ensilado de haba y colza forrajera (HC) o en ensilado de raigrás 

(RI). El 60% de los partos del grupo HC fueron calificados como difíciles no distócicos, 

esto es, las vacas necesitaron ayuda para la extracción del ternero pero sin utilización 

de equipos obstétricos. Todas las vacas del grupo RI parieron sin necesidad de ayuda 

externa. Aunque no se observaron diferencias entre tratamientos, los terneros nacidos 

de madres en el grupo HC pesaron un 10% menos que los terneros nacidos de las 

madres del grupo RI. La supervivencia de los terneros fue del 100%. 

 

Tabla 4.9: parámetros reproductivos de las vacas en  los dos tratamientos 

 

 HC RI rsd 1 P2 

Partos difíciles (%)  60 0 -- -- 

Hembras nacidas (%)  40 40 -- -- 

Peso al nacimiento (kg)  34,8 38,3 2,82 NS 

Días al primer celo  76,4 54,6 9,37 NS 

Nº IA hasta la preñez 3 2,0 1,8 0,31 NS 

Días hasta Inseminación efectiva  143,4 105,4 16,12 NS 
1 desviación estándar residual. 2 significación estadística. NS: P>0,05. 3 IA: Inseminación artificial  

 

Aunque el ensayo terminó a las cuatro semanas del parto, se realizó un seguimiento 

de la reactivación ovárica para un nuevo ciclo productivo. Las vacas que habían 

estado englobadas en grupo RI mostraron síntomas de celo a los 55 días tras el parto, 

mientras que en las del grupo HC aparecieron como media 22 días más tarde. Se 

necesitaron 2,0 y 1,8 inseminaciones en los grupos HC y RI respectivamente para que 

las vacas quedaran preñadas, siendo la inseminación fértil del grupo HC a los 143 días 

tras el parto y la del grupo RI a los 105 días. 

. 
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5. DISCUSION 
 
La producción de la asociación de haba y colza forrajera resultó muy superior a la 

obtenida por de la Roza et al (2004) para las habas forrajeras cuando estudiaron su 

evolución en asociación con triticale como cereal de invierno. El corte único de haba y 

colza presentó una producción de materia seca similar a la producción acumulada de 

los dos cortes de raigrás italiano, de forma concordante con los resultados de 

Martínez-Fernández et al (2005), cuando compararon habas forrajeras en monocultivo 

frente a raigrás italiano. La presencia de adventicias asociadas al maíz mostró 

diferencias significativas entre manejos, demostrando la poca efectividad del herbicida 

sintético frente al poder herbicida de la colza. El valor de pH del suelo (>6) y su 

contenido en MO (>2%), garantizan un correcta implantación y desarrollo de los 

cultivos en ambos manejos. El contenido en P asimilable indica niveles elevados de 

fertilidad del suelo, mientras que el incremento en la concentración en K en manejo 

sostenible a lo largo del período de estudio, es indicativo de que el suelo pasa de una 

clasificación de fertilidad baja a fertilidad alta según Martínez-Fernández y 

Argamentería (2012). La evolución del contenido en K refleja el efecto de la 

fertilización orgánica, rica en K, así como la extracción de K de las capas profundas, 

por parte de la colza. 

 

Según NRC (2001), la concentración dietética necesaria en la ración de vacas 

multíparas en las 3 últimas semanas de gestación para cubrir sus requerimientos está 

alrededor de 12% de proteína bruta con un aumento de una o dos unidades en los 7 

últimos días de gestación. Para novillas en su primera gestación se recomienda un 

14% de proteína bruta en la ración, elevando el nivel proteico hasta el 17% en la última 

semana. Para subsanar cualquier eventual déficit proteico, tanto el pienso L (ofrecido 

en cantidad fija de 3kg de materia fresca por día durante todo el experimento) como la 

hierba pastada presentan un alto contenido de PB (19,71 y 19,66% respectivamente). 

Por lo tanto, las raciones formuladas en este ensayo cubrirían en principio dichas 

necesidades ya que todas las vacas utilizadas en el ensayo tenían al menos una 

lactación previa. 

 

El aporte energético de las mezclas HC y RI fueron de 1,38 y 1,42 Mcal ENl/kg MS 

respectivamente, y parecen adecuadas para vacas en el final de gestación 

(recomendación de NRC, 2001: 1,25 Mcal ENl/kgMS).  
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En la segunda parte del periodo de transición y cuando las vacas entran en lactación, 

las necesidades nutricionales se incrementan y el organismo del animal recurre a la 

movilización de las reservas corporales. Los animales del ensayo en esta fase 

recibieron dos tipos de piensos suplementarios para cubrir la limitada densidad 

energética y proteica de las dos dietas TMR ensayadas, además, las vacas tuvieron 

un acceso al pasto.  

 

En el presente ensayo, las dietas fueron únicas para cada grupo de manejo, sin 

variaciones sustanciales antes y después del parto, excepto la oferta de 1 kg/d de 

pienso S tras el parto. La oferta de los diferentes componentes de la dieta: ración 

TMR, concentrado L, concentrado S y hierba, por separado permiten a las vacas 

autoregular la ingesta, de modo que pueden cubrir sus necesidades en cada período 

de la transición. Efectivamente, considerando las ingestiones de materia seca de cada 

uno de los componentes de la dieta y su aporte proteico y energético vemos que la 

dieta completa alcanza en 16% de PB con los dos manejos antes y después del parto 

(16,4% y 16,0% PB para los manejos HC y RI, respectivamente, antes del parto y 

15,6% y 16,3%PB para los manejos HC y RI, respectivamente, tras del parto). De 

modo similar, se observó una regulación de la ingestión de energía en ambos 

tratamientos y periodos: (1,46 y 1,47 Mcal ENl/kgMS para los manejos HC y RI, 

respectivamente, antes del parto y 1,51 y 1,49 Mcal ENl/kgMS para los manejos HC y 

RI, respectivamente, tras del parto). Además, la ingestión de materia seca asociada 

con la TMR esta relacionada negativamente con la ingestión de hierba en pastoreo. Es 

decir las vacas del grupo HC en preparto tuvieron una IMS de TMR numéricamente 

inferior a la del grupo RI y una IMS en pastoreo superior forma concordante con los 

resultados de Morales-Almaráz et al (2010). 

 

Calculando la diferencia entre la ingestión de energía y las necesidades de la misma 

(calculadas según las ecuaciones de NRC, 2001) en Mcal de ENl por día, durante las 

semanas 1, 2, 3 y 4 de postparto, las vacas en el tratamiento HC presentaron un 

balance energético más negativo que las vacas en el tratamiento RI (-13; -6; -11 y -11 

McalENl/d vs. -8; -3; -3,2 y -5 McalENl/d, respectivamente). Rastani et al (2005) 

reportaron en vacas alimentadas con dietas basadas en ensilado de maíz, un balance 

energético durante las tres primeras semanas de lactación inferior al observado en 

vacas HC y superior a lo observado en el tratamiento RI (-8, -12, -8,5 en las semanas 

1, 2 y 3 postparto respectivamente). No obstante, la densidad energética de la dieta 

usada en su trabajo fue superior a las de las dietas de nuestro ensayo (1,7 Mcal/kg vs. 

1.5 Mcal/kg en su ensayo y en el nuestro respectivamente). Por otro lado, el BEN tiene 
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una menor incidencia cuando la duración de secado es más corta (Grummer, 2011), 

así, en nuestro ensayo, las vacas habían sido secadas 60 días antes del parto 

previsto, mientras que las vacas en el trabajo de Rastani et al (2005) tuvieron un 

periodo de secado más corto (50 días). 

 

La ingestión de materia seca de los animales en porcentaje del peso vivo fue similar 

en los dos grupos, siendo alrededor de 2,5% del PV en preparto y con una disminución 

al 1,8% en el periparto. Posteriormente, este porcentaje de consumo en relación al PV 

se recuperó en ambos tratamientos, estimándose una ingestión de materia seca a las 

cuatro semanas del parto del 2,4% del PV en el tratamiento HC, siendo algo superior 

en el tratamiento RI (3,3%). En la segunda semana postparto, la relación ingestión:PV 

dio valores anormalmente altos en el tratamiento RI. Ello ha sido achacado a un error 

en el registro del peso de los animales en esa semana, lo que conllevó, probablemente 

a una sobreestimación de la ingestión de hierba en pastoreo. 

 

Los animales de ambos manejos, HC y RI, llegaron al parto con una condición corporal 

de 2,75 de media. Ésta puede considerarse algo baja comparada con las 

recomendaciones de manejo, que la sitúan en torno a 3,00-3,50. Tras el parto, las 

vacas de ambos grupos mostraron una condición corporal de 2,25, lo que es indicativo 

de una movilización de reservas corporales destinadas a la obtención de energía para 

la producción de leche y posible indicación de un balance negativo de energía. 

Efectivamente, las vacas alcanzaron tras el parto una alta producción de leche, por 

encima de 29 kg de leche al día y con una proporción de grasa elevada (3,91% en las 

vacas con el manejo HC y 4,36% en las vacas con el manejo RI, P<0,05). La elevada 

producción de leche junto a un alto porcentaje de grasa en los primeros días tras el 

parto está correlacionada negativamente con el balance energético (Van Vries y 

Veerkamp, 2000). Ahora bien, la relación grasa/proteína es de 1,18 en el manejo HC y 

de 1,34 en el RI, dentro del rango de valores recomendados (1,1-1,5), lo que es 

indicador de que los animales no entraron en balance negativo de energía en este 

período. Por otra parte, la relación de grasa/proteína fuera de ese rango, es indicativa 

de una posible acidosis ruminal subaguda (SARA). Como los valores obtenidos en 

esta relación en nuestro ensayo están dentro de los parámetros normales, nos indica 

que los animales no entraron en el proceso patológico de SARA, aun considerando 

que el modo de ofertar los concentrados suplementarios L y S en dos tomas puede 

suponer un riesgo de acidosis momentáneo. Además, la estrategia de alimentación 

utilizada, consistente en alimentar las vacas durante toda la transición con la misma 



72 

ración reduce los cambios bruscos de alimentación que pueden agravar el estado de 

estrés de las vacas y minimizar el grado y la extensión del BEN (Grummer et al, 2004).  

 

El perfil de ácidos grasos de cadena corta no se vio afectado por el tipo de tratamiento, 

sin embargo la concentración de AG de cadena media fue superior en el tratamiento 

RI que en el tratamiento HC (56,7 vs. 51,0 gAG/100gAG respectivamente) debido a la 

gran concentración del ácido palmítico (38,05 vs. 33,81 % respectivamente). Morales-

Almaráz et al (2010) encontraron una concentración de palmítico parecida en vacas en 

pastoreo (12 horas) suplementadas con TMR en base a ensilado de maíz y ensilado 

de haba forrajera. En cuanto a los ácidos grasos de cadena larga (18 átomos de 

carbono y más), el grupo HC presentó concentraciones superiores respecto al grupo 

RI. Además, estas concentraciones fueron superiores a las reportadas Morales-

Almaráz et al (2010) en vacas pastoreando 12 horas al día con suplemento de TMR en 

base a ensilado de maíz y haba forrajera. Ello, puede se debido a que nuestro ensayo 

las vacas permanecían entre 12 y 16 horas en el pasto. 

 

Las vacas alimentadas con una mezcla TMR basada en la asociación forrajera 

haboncillos-colza presentaron un mejor perfil de AG en la leche especialmente con 

una mayor concentración de AGPI (3,48gAGPI/100gAG), que las vacas alimentadas 

con TMR en base a RI (2,03gAGPI/100gAG) en el presente ensayo o en base a la 

mezcla ensilados de maíz y haba forrajera (3,09gAGPI/100gAG; Morales-Almaráz et 

al, 2010). No obstante el grado de saturación de la grasa de la leche en ambos grupos 

tratamientos (84,1 gAGS/100gAG), fue superior al reportado en la bibliografía 

(Dewhurst et al, 2006; Morales-Almaráz et al, 2011). Esta mayor saturación en los 

ácidos grasos es debido a que, mientras los ensayos habitualmente se llevan acabo 

en primavera, se ha observado que en otoño e invierno la proporción de AGS en la 

leche es superior al observado en primavera-verano (Roca-Fernandez y Gonzalez-

Rodriguez, 2013). Por lo tanto, la relación AGS:AGI de la leche supera en ambos 

tratamientos las actuales recomendaciones dietéticas (OMS, 1997). La relación entre 

los AG W6 y W3 fue superior en el tratamiento RI que en el HC (4,2 vs. 2,2 

respectivamente, P<0,01), debido a la mayor ingestión de hierba en el tratamiento RI 

en postparto. Estos resultados son concordantes con la bibliografía (Dewhurst et al, 

2006; Morales-Almaráz et al, 2011). Ahora bien, la proporción de AGI considerados 

como saludables en la alimentación humana (ácidos vaccénico, linoleico, linolénico y 

CLA) son superiores en el tratamiento HC debido a la riqueza de estos AG en la 

semilla de colza, a pesar de tener una menor ingestión de hierba en este tratamiento 

(Côrtes et al, 2010). 
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6. Conclusiones 
 
A partir de los en el presente trabajo en el que se evaluó la posibilidad de la utilización 

de dietas unifeed elaboradas con ensilados de alto valor nutritivo, obtenidos con bajos 

inputs en fertilizantes, y con el mínimo aporte de concentrado posible, 

complementarias al pastoreo en la alimentación de vacas lecheras en período de 

transición se puede concluir que: 

 
1. El cultivo asociado de haba y colza forrajeras puede ser una alternativa viable 

al raigrás italiano como forraje de invierno, dando mayor producción forrajera 

por hectárea y sin diferencias significativas relativas a los rendimientos en 

proteína y energía. No obstante, el forraje asociado de haboncillos y colza 

presenta un menor rendimiento en materia orgánica digestible. 

 
2.  El manejo sostenible permite reducir los inputs en fertilización de síntesis y 

herbicidas, lo que puede abaratar los costes de producción. A la vez, el manejo 

sostenible mejora el equilibrio del suelo a través de un aumento en los 

contenidos de potasio. 

 
3. El ensilado de la asociación forrajera haba-colza presenta un buen valor 

nutritivo y puede ser una alternativa al ensilado de raigrás italiano en la 

alimentación de vacas de leche en condiciones de pastoreo, permitiendo 

reducir el aporte de concentrado en la TMR. 

 
4. Las vacas en periodo de transición presentan un consumo de la mezcla unifeed 

en base al ensilado de la asociación forrajera HC menor que la mezcla unifeed 

en base a ensilado de RI. Ahora bien, durante el preparto compensaron el 

menor consumo de la misma con el mayor consumo de la hierba en pastoreo. 

Sin embargo, no se observó esta compensación en el postparto, lo que condujo 

a una menor ingestión de materia seca total por día tras el parto.  

 
5. La producción de leche no se ve afectada por el menor consumo de MS en el 

tratamiento HC en las primeras cuatro semanas postparto. La grasa de la leche 

producida por vacas alimentadas con el ensilado de haba-colza fue inferior a la 

de las vacas alimentadas con el ensilado de raigrás italiano, pero contiene una 

mayor proporción de ácidos grasos insaturados (vaccénico, linoleico, CLA y 

linolénico) a pesar de tener un menor consumo de hierba en pastoreo.  
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Síntesis final 

 

La sustitución del raigrás italiano por el cultivo asociado de haba y colza forrajeras 

proporciona la ventaja agronómica de una mayor producción por hectárea, a la vez 

que permite reducir el uso de fertilizantes químicos y herbicidas. El uso de esta 

asociación forrajera ensilada en la alimentación de vacas en preparto permite reducir 

el aporte de concentrado en la ración e incrementa el consumo de hierba de pastoreo, 

lo que permitiría reducir los costes de alimentación en el preparto. Utilizando la misma 

ración tras el parto, se observa que no afecta a la producción de leche y mejora 

notablemente el perfil lipídico de la grasa de la misma. No obstante, se observa una 

limitación en la ingestión de materia seca tras el parto que podría afectar a la 

producción de leche a medio y largo plazo y a la reactivación de la reproducción, por lo 

que debería estudiarse la posibilidad de su aporte conjunto con otros forrajes y/o su 

ensilado con aditivos que permitieran incrementar su digestibilidad e ingestión 

voluntaria tras el parto. 
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