000117136 001__ 117136
000117136 005__ 20240319080952.0
000117136 0247_ $$2doi$$a10.1016/j.fluid.2022.113435
000117136 0248_ $$2sideral$$a128439
000117136 037__ $$aART-2022-128439
000117136 041__ $$aeng
000117136 100__ $$aLomba, Laura
000117136 245__ $$aThermophysical characterization of choline chloride: Resorcinol and its mixtures with water
000117136 260__ $$c2022
000117136 5060_ $$aAccess copy available to the general public$$fUnrestricted
000117136 5203_ $$aThe study of deep eutectic solvents has increased in recent years. This is because of their great solubility ability and lower toxicity than usual organic solvents. In this work, deep eutectic solvents formed by choline chloride and resorcinol in the mole ratio 1:2 and its mixtures with water, e.g., choline chloride:resorcinol:water 1:2:1.05 (water mass fraction = 0.05) and choline chloride:resorcinol:water 1:2:2.22 (water mass fraction = 0.1), have been studied. Several physicochemical properties (density, speed of sound, isentropic compressibility, refractive index, surface tension, isobaric molar heat capacity, viscosity, and electrical conductivity) have been obtained and analysed at atmospheric pressure in the range of 283.15–338.15 K. The starting temperature for the speed of sound measurements was 308.15 K. The effects of temperature and water inclusion have been evaluated. The obtained results have shown a linear correlation between density, speed of sound, refractive index, surface tension and isobaric molar heat capacity and temperature. Additionally, the viscosity and electrical conductivity data can be adjusted using the Vogel-Fulcher-Tammann equation. Finally, the inclusion of water was analysed to check how the thermophysical properties were modified. These modifications had greater effects on transport properties, viscosity and electrical conductivity. © 2022
000117136 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E31-20R
000117136 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000117136 590__ $$a2.6$$b2022
000117136 592__ $$a0.549$$b2022
000117136 591__ $$aTHERMODYNAMICS$$b24 / 63 = 0.381$$c2022$$dQ2$$eT2
000117136 593__ $$aChemical Engineering (miscellaneous)$$c2022$$dQ2
000117136 591__ $$aCHEMISTRY, PHYSICAL$$b113 / 161 = 0.702$$c2022$$dQ3$$eT3
000117136 593__ $$aPhysics and Astronomy (miscellaneous)$$c2022$$dQ2
000117136 591__ $$aENGINEERING, CHEMICAL$$b83 / 141 = 0.589$$c2022$$dQ3$$eT2
000117136 593__ $$aPhysical and Theoretical Chemistry$$c2022$$dQ2
000117136 594__ $$a5.4$$b2022
000117136 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000117136 700__ $$aTucciarone, Federica
000117136 700__ $$0(orcid)0000-0001-8669-2789$$aGiner, Beatriz
000117136 700__ $$0(orcid)0000-0003-1810-9488$$aArtal, Manuela$$uUniversidad de Zaragoza
000117136 700__ $$0(orcid)0000-0003-3632-6822$$aLafuente, Carlos$$uUniversidad de Zaragoza
000117136 7102_ $$12012$$2755$$aUniversidad de Zaragoza$$bDpto. Química Física$$cÁrea Química Física
000117136 773__ $$g557 (2022), 113435 [12 pp.]$$pFluid phase equilib.$$tFLUID PHASE EQUILIBRIA$$x0378-3812
000117136 8564_ $$s1665695$$uhttps://zaguan.unizar.es/record/117136/files/texto_completo.pdf$$yVersión publicada
000117136 8564_ $$s2620510$$uhttps://zaguan.unizar.es/record/117136/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000117136 909CO $$ooai:zaguan.unizar.es:117136$$particulos$$pdriver
000117136 951__ $$a2024-03-18-13:13:50
000117136 980__ $$aARTICLE