000117206 001__ 117206
000117206 005__ 20240319080951.0
000117206 0247_ $$2doi$$a10.1103/PhysRevD.105.055025
000117206 0248_ $$2sideral$$a128790
000117206 037__ $$aART-2022-128790
000117206 041__ $$aeng
000117206 100__ $$aO''Hare, C. A. J.
000117206 245__ $$aSimulations of axionlike particles in the postinflationary scenario
000117206 260__ $$c2022
000117206 5060_ $$aAccess copy available to the general public$$fUnrestricted
000117206 5203_ $$aAxions and axionlike particles (ALPs) are some of the most popular candidates for dark matter, with several viable production scenarios that make different predictions. In the scenario in which the axion is born after inflation, its field develops significant inhomogeneity and evolves in a highly nonlinear fashion. Understanding the eventual abundance and distribution of axionic dark matter in this scenario therefore requires dedicated numerical simulations. So far the community has focused its efforts on simulations of the QCD axion, a model that predicts a specific temperature dependence for the axion mass. Here, we go beyond the QCD axion, and perform a suite of simulations on lattice sizes of 30723, over a range of possible temperature dependencies labeled by a power-law index n0, 6]. We study the complex dynamics of the axion field, including the scaling of cosmic strings and domain walls, the spectrum of nonrelativistic axions, the lifetime and internal structure of axitons, and the seeds of miniclusters. In particular, we quantify how much the string-wall network contributes to the dark matter abundance as a function of how quickly the axion mass grows. We find that a temperature-independent model produces 25% more dark matter than the standard misalignment calculation. In contrast to this generic ALP, QCD axion models are almost six times less efficient at producing dark matter. Given the flourishing experimental campaign to search for ALPs, these results have potentially wide implications for direct and indirect searches. © 2022 authors. Published by the American Physical Society.
000117206 536__ $$9info:eu-repo/grantAgreement/ES/AEI-FEDER/PGC2018-095328-B-I00$$9info:eu-repo/grantAgreement/ES/DGA/E12-7R$$9info:eu-repo/grantAgreement/EC/H2020/674896/EU/The Elusives Enterprise: Asymmetries of the Invisible Universe/ELUSIVES$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 674896-ELUSIVES
000117206 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000117206 590__ $$a5.0$$b2022
000117206 592__ $$a1.639$$b2022
000117206 591__ $$aPHYSICS, PARTICLES & FIELDS$$b7 / 29 = 0.241$$c2022$$dQ1$$eT1
000117206 593__ $$aPhysics and Astronomy (miscellaneous)$$c2022$$dQ1
000117206 591__ $$aASTRONOMY & ASTROPHYSICS$$b15 / 69 = 0.217$$c2022$$dQ1$$eT1
000117206 593__ $$aNuclear and High Energy Physics$$c2022$$dQ1
000117206 594__ $$a9.2$$b2022
000117206 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000117206 700__ $$aPierobon, G.
000117206 700__ $$0(orcid)0000-0002-1044-8197$$aRedondo, J.$$uUniversidad de Zaragoza
000117206 700__ $$aWong, Y. Y. Y.
000117206 7102_ $$12004$$2405$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física Teórica
000117206 773__ $$g105, 5 (2022), 055025 -[27 pp]$$pPhys. rev. D$$tPhysical Review D$$x2470-0010
000117206 8564_ $$s15984623$$uhttps://zaguan.unizar.es/record/117206/files/texto_completo.pdf$$yVersión publicada
000117206 8564_ $$s2852815$$uhttps://zaguan.unizar.es/record/117206/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000117206 909CO $$ooai:zaguan.unizar.es:117206$$particulos$$pdriver
000117206 951__ $$a2024-03-18-13:06:11
000117206 980__ $$aARTICLE