000117211 001__ 117211
000117211 005__ 20230519145553.0
000117211 0247_ $$2doi$$a10.1021/acs.jpclett.1c03418
000117211 0248_ $$2sideral$$a126753
000117211 037__ $$aART-2021-126753
000117211 041__ $$aeng
000117211 100__ $$aBugallo D.
000117211 245__ $$aTuning coherent-phonon heat transport in LaCoO3/SrTiO3 superlattices
000117211 260__ $$c2021
000117211 5060_ $$aAccess copy available to the general public$$fUnrestricted
000117211 5203_ $$aAccessing the regime of coherent phonon propagation in nanostructures opens enormous possibilities to control the thermal conductivity in energy harvesting devices, phononic circuits, etc. In this paper we show that coherent phonons contribute substantially to the thermal conductivity of LaCoO3/SrTiO3 oxide superlattices, up to room temperature. We show that their contribution can be tuned through small variations of the superlattice periodicity, without changing the total superlattice thickness. Using this strategy, we tuned the thermal conductivity by 20% at room temperature. We also discuss the role of interface mixing and epitaxial relaxation as an extrinsic, material dependent key parameter for understanding the thermal conductivity of oxide superlattices. © 2021 The Authors. Published by American Chemical Society.
000117211 536__ $$9info:eu-repo/grantAgreement/EC/H2020/734187/EU/Spin conversion, logic storage in oxide-based electronics/SPICOLOST$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 734187-SPICOLOST$$9info:eu-repo/grantAgreement/ES/MICINN-FEDER/PID2019-104150RB-I00$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2016-80762-R
000117211 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000117211 590__ $$a6.888$$b2021
000117211 592__ $$a2.009$$b2021
000117211 594__ $$a9.8$$b2021
000117211 591__ $$aPHYSICS, ATOMIC, MOLECULAR & CHEMICAL$$b5 / 36 = 0.139$$c2021$$dQ1$$eT1
000117211 593__ $$aNanoscience and Nanotechnology$$c2021$$dQ1
000117211 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b88 / 345 = 0.255$$c2021$$dQ2$$eT1
000117211 593__ $$aMaterials Science (miscellaneous)$$c2021$$dQ1
000117211 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b41 / 109 = 0.376$$c2021$$dQ2$$eT2
000117211 591__ $$aCHEMISTRY, PHYSICAL$$b46 / 165 = 0.279$$c2021$$dQ2$$eT1
000117211 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000117211 700__ $$aLangenberg E.
000117211 700__ $$aCarbó-Argibay E.
000117211 700__ $$aVarela Dominguez N.
000117211 700__ $$aFumega A.O.
000117211 700__ $$aPardo V.
000117211 700__ $$0(orcid)0000-0003-0271-8713$$aLucas, I.$$uUniversidad de Zaragoza
000117211 700__ $$0(orcid)0000-0003-3724-508X$$aMorellón, L.$$uUniversidad de Zaragoza
000117211 700__ $$aRivadulla F.
000117211 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000117211 773__ $$g12, 49 (2021), 11878-11885$$pJOURNAL OF PHYSICAL CHEMISTRY LETTERS$$tJournal of Physical Chemistry Letters$$x1948-7185
000117211 8564_ $$s5324167$$uhttps://zaguan.unizar.es/record/117211/files/texto_completo.pdf$$yVersión publicada
000117211 8564_ $$s2914296$$uhttps://zaguan.unizar.es/record/117211/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000117211 909CO $$ooai:zaguan.unizar.es:117211$$particulos$$pdriver
000117211 951__ $$a2023-05-18-15:52:05
000117211 980__ $$aARTICLE