000117226 001__ 117226
000117226 005__ 20240319080952.0
000117226 0247_ $$2doi$$a10.1039/d2sc00436d
000117226 0248_ $$2sideral$$a128806
000117226 037__ $$aART-2022-128806
000117226 041__ $$aeng
000117226 100__ $$aManiaki, D.
000117226 245__ $$aUnparalleled selectivity and electronic structure of heterometallic [LnLn'Ln] molecules as 3-qubit quantum gates
000117226 260__ $$c2022
000117226 5060_ $$aAccess copy available to the general public$$fUnrestricted
000117226 5203_ $$aHeterometallic lanthanide LnLn'] coordination complexes that are accessible thermodynamically are very scarce because the metals of this series have very similar chemical behaviour. Trinuclear systems of this category have not been reported. A coordination chemistry scaffold has been shown to produce molecules of type LnLn'Ln] of high purity, i.e. exhibiting high metal distribution ability, based on their differences in ionic radius. Through a detailed analysis of density functional theory (DFT) based calculations, we discern the energy contributions that lead to the unparalleled chemical selectivity of this molecular system. Some of the previously reported examples are compared here with the newly prepared member of this exotic list, Er2Pr(LA)2(LB)2(py)(H2O)2](NO3) (1) (H2LA and H2LB are two ß-diketone ligands). A magnetic analysis extracted from magnetization and calorimetry determinations identifies the necessary attributes for it to act as an addressable, conditional multiqubit spin-based quantum gate. Complementary ab initio calculations confirm the feasibility of these complexes as composite quantum gates, since they present well-isolated ground states with highly anisotropic and distinct g-tensors. The electronic structure of 1 has also been analyzed by EPR. Pulsed experiments have allowed the establishment of the quantum coherence of the transitions within the relevant spin states, as well as the feasibility of a coherent control of these states via nutation experiments. © 2022 The Royal Society of Chemistry
000117226 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2020-118329RB-I00$$9info:eu-repo/grantAgreement/EC/H2020/862893/EU/Molecular spin qudits offering new hope for quantum computing/FATMOLS$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 862893-FATMOLS$$9info:eu-repo/grantAgreement/EUR/QUANTERA/SUMO
000117226 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000117226 590__ $$a8.4$$b2022
000117226 592__ $$a2.762$$b2022
000117226 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b32 / 178 = 0.18$$c2022$$dQ1$$eT1
000117226 593__ $$aChemistry (miscellaneous)$$c2022$$dQ1
000117226 594__ $$a15.2$$b2022
000117226 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000117226 700__ $$aGaray-Ruiz, D.
000117226 700__ $$aBarrios, L. A.
000117226 700__ $$aMartins, D. O. T. A.
000117226 700__ $$aAguilà, D.
000117226 700__ $$aTuna, F.
000117226 700__ $$aReta, D.
000117226 700__ $$0(orcid)0000-0003-2095-5843$$aRoubeau, O.
000117226 700__ $$aBo, C.
000117226 700__ $$aAromí, G.
000117226 773__ $$g13 (2022), 5574 - 5581$$pChem. sci.$$tCHEMICAL SCIENCE$$x2041-6520
000117226 8564_ $$s1071835$$uhttps://zaguan.unizar.es/record/117226/files/texto_completo.pdf$$yVersión publicada
000117226 8564_ $$s2718503$$uhttps://zaguan.unizar.es/record/117226/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000117226 909CO $$ooai:zaguan.unizar.es:117226$$particulos$$pdriver
000117226 951__ $$a2024-03-18-13:12:54
000117226 980__ $$aARTICLE