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Abstract: Plastidic ferredoxin-NADP+ reductase (FNR) transfers two electrons from two ferredoxin or
flavodoxin molecules to NADP+, generating NADPH. The forces holding the Anabaena FNR:NADP+

complex were analyzed by dynamic force spectroscopy, using WT FNR and three C-terminal Y303
variants, Y303S, Y303F, and Y303W. FNR was covalently immobilized on mica and NADP+ attached
to AFM tips. Force–distance curves were collected for different loading rates and specific unbinding
forces were analyzed under the Bell–Evans model to obtain the mechanostability parameters associ-
ated with the dissociation processes. The WT FNR:NADP+ complex presented a higher mechanical
stability than that reported for the complexes with protein partners, corroborating the stronger affinity
of FNR for NADP+. The Y303 mutation induced changes in the FNR:NADP+ interaction mechanical
stability. NADP+ dissociated from WT and Y303W in a single event related to the release of the
adenine moiety of the coenzyme. However, two events described the Y303S:NADP+ dissociation that
was also a more durable complex due to the strong binding of the nicotinamide moiety of NADP+ to
the catalytic site. Finally, Y303F shows intermediate behavior. Therefore, Y303, reported as crucial for
achieving catalytically competent active site geometry, also regulates the concerted dissociation of
the bipartite nucleotide moieties of the coenzyme.

Keywords: ferredoxin NADP+ reductase; atomic force microscopy; dynamic force spectroscopy; NADP+;
protein–ligand (substrate) interactions; single-molecule methods; flavoproteins; functionalization;
nanomechanics; mechanical stability

1. Introduction

In living cells, enzymatic processes are catalyzed by the cooperation of a number of
enzymes and coenzymes that, in successive steps, transform metabolites into a variety of
products. Furthermore, enzymes are exploited in a variety of manufacturing processes such
as the synthesis of medicines [1], food processing, purifying factory effluents, and pollution
in water and soils [2], among others. Despite the great power of enzymatic processes,
their potential has not been fully exploited, mainly due to the limited understanding of
the mechanisms regarding the assembly and dissociation between reacting molecules.
Recent advances in imaging methods have demonstrated that it is possible to make direct
observations of the dynamic behavior of single molecules [3,4] and to determine the
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mechanisms of action at the single-molecule level [5–7]. Among the available single-
molecule methods, those designed to measure forces between molecules or within an
individual molecule stand out [8]. The most broadly used technique in this area is atomic
force microscopy (AFM) [9] in force spectroscopy mode [10], with other techniques also
available, such as biomembrane force probes [11], laminar flow chambers [12], optical
tweezers [13], and magnetic tweezers [14]. These approaches allow us to manipulate and
measure signals from individual entities and follow their motions at the nanometer scale,
as well as to apply and measure forces over a large range, from pico to milli Newtons,
depending on the method used. This research area in the dynamic force spectroscopy
(DFS) modality tackles the complex relationship between force, lifetime, and chemistry in
single molecular bonds, and it is used to analyze the dynamics of the observed process
by measuring force as a function of the velocity at which it is applied, termed the loading
rate R. The processes that are accessible with this approach range from the stretching of
nucleic acids [15], protein unfolding [16], dissociation of ligand–receptor complexes under
force [10], and even unraveling enzyme catalysis mechanisms [17], among others. The
results given by the use of these techniques have the potential to provide fundamental
insights into biological processes, which are critical for a better understanding of molecular
dynamics and function.

In this study, DFS by AFM was used to analyze the dissociation under the force of
ferredoxin–NADP+ reductase (FNR) from its nicotinamide adenine dinucleotide phosphate
(NADP+) substrate at the single-molecule level. During photosynthesis, ferredoxin−NADP+

reductase (FNR) catalyzes the electron transfer from ferredoxin (Fd), or flavodoxin (Fld)
in case of iron deficiency in the medium, to NADP+ via its FAD cofactor to provide re-
ducing power to the energetic metabolism in the form of NADPH [18–20]. Indeed, the
overall process for NADPH formation involves at least two transient Fd:FNR:NADP+

complexes, where the initially preformed FNRox:NADP+ complex subsequently binds two
Fd (or Fld) molecules successively; the first reduces the enzyme to the semiquinone state,
FNRsq, and the second reduces the enzyme to the fully reduced hydroquinone state, FNRhq.
Finally, upon production of the Fdox:FNRhq:NADP+ organization, hydride transfer (HT)
from FNRhq to NADP+ takes place [20]. The very first steps in this process include the
recognition of the NADP+ coenzyme by FNRox. Three FNR sites are relevant to achieve
specific and catalytically competent NADP+ binding (Figure 1) [21]. The 2′-P-AMP moiety
of NADP+ is recognized by Ser, Arg, and Tyr residues (Ser223, Arg224, Arg233, and Tyr235
in Anabaena FNR (AnFNR)) and this induces conformational changes that facilitate the
subsequent binding of the pyrophosphate (accommodated by loops 155–160 and 261–268
in AnFNR) and the nicotinamide mononucleotide (NMN) moieties of the coenzyme [22,23].
Eventually, the efficiency of the HT event depends on the final proper orientation of the
N5 of the FAD isoalloxazine ring and the C4 of the coenzyme nicotinamide ring [20].
To achieve such organization, the C-terminal Tyr (Y303 in AnFNR) has to be displaced
(Figure 1) [21,24,25]. Site-directed mutagenesis and biocomputational simulations have
shown that the side chain of this C-terminal Tyr is key to providing the optimum geometry
between reacting rings to provide arrangements compatible with HT (Figure 1) [26,27].
Thus, the replacement of this Tyr by Phe, Trp, or Ser has shown that, despite not being
involved in the HT itself, this C-terminal residue modulates the flavin midpoint reduction
potential, the NADP+⁄H binding affinity, and the selectivity for NADPH, as well as the
formation of the catalytically competent complex and release of the NADPH product once
the HT reaction takes place [24,28,29].
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Figure 1. Proposed steps for the interaction of NADP+ with AnFNR to attain a catalytically competent
complex as depicted by available structural models. (a) Detail of the FNR active site in three
models of ternary complexes. C-I and C-II are crystallographic models for FNRox:NADP+ complex
(PDBs 1quf and 1gjr, respectively) related with the initial recognition and binding of the 2-P-AMP
moiety, and the subsequent binding of the pyrophosphate moiety of the coenzyme NADP+. In
none of these structures, the nicotinamide redox moiety of the coenzyme attaches a catalytically
competent association to the flavin isoalloxazine ring, because the C-terminal Y303 stacks against
the isoalloxazine. C-III shows the organization at the active site of a computationally optimized
model that allows stacking of the coenzyme nicotinamide to the isoalloxazine, compatible with
HT, and where Tyr303 contributes to nicotinamide allocation [27,30]. (b) C-Y303S stands for the
crystal structure of the Y303S FNRox:NADP+ crystallographic complex (PDB 2bsa), where strong
isoalloxazine–nicotinamide stacking prevents the photosynthetic HT [29]. FAD and NADP+ are
represented in CPK sticks with carbons colored in orange and green, respectively. The C-terminal
residue (Y303 or S303) is shown in CPK with carbons in violet purple. The bottom panel on the right
shows the corresponding structure of WT AnFNR (PDB 1que), where the studied region in the rest of
the panels is highlighted inside a square.

AFM has been previously used to determine the conformational changes in novel
flavoenzyme families upon redox partner binding [31]. Nevertheless, the changes in AnFNR
upon NADP+ binding are not large enough to be visualized and discerned by AFM imaging.
The dissociation under force of FNR complexes with Fd and Fld has been successively
analyzed exhaustively by DFS [32–34]. The interaction of FNR with Fd rendered longer
lifetimes, indicating a much stronger and specific interaction than within the complex
formed with Fld. The Fld:FNR complex showed a higher bond probability and two possible
dissociation pathways, contrary to the one-event dissociation kinetics observed for the
Fd:FNR complex. These results agreed with former functional characterizations and with
a more promiscuous recognition process for the Fld:FNR interaction, closer to a dynamic
ensemble model, but depicting greater Fd:FNR specificity in the interaction [33,34]. Here,
we aim to better understand the very first complex formed in the process, FNRox:NADP+,
by evaluating its dissociation process under force by DFS. In addition to the WT enzyme, we
characterize three different mutants at the C-terminal Tyr of FNR to evaluate its implication.
As DFS requires the strong immobilization of molecules of receptors and ligands in a
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nano-flat substrate and the AFM tip apex, respectively, some functionalization procedures
were designed in advance. As far as we know, this is the first enzyme:coenzyme complex
analyzed nanomechanically at the single-molecule level, giving a new analytical perspective
to the study of enzymes, and providing new methods for the study of other transient
complexes that involve coenzyme binding.

2. Materials and Methods
2.1. Protein Labeling and Immobilization of FNR on Mica

The recombinant WT FNR from Anabaena PCC7119 and its Y303S, Y303F, and Y303W
variants used in this study were prepared as previously described [29]. FNR molecules in
50 mM Tris/HCl, pH 8.0 were modified with 20 mM sulfosuccinimidyl 6-(3′-[2-pyridyldithio]
propionamido) hexanoate (Sulfo-LC-SPDP; Thermo Scientific Pierce, Waltham, MA, USA)
to obtain the FNR-PDP tagged proteins, as elsewhere reported [35,36]. FNR–PDP was
purified from the excess of non-reacted crosslinker molecules by using Sephadex G-25
size-exclusion PD-MiniTrap chromatography columns (GE Healthcare, Chicago, IL, USA)
with 50 mM Tris/HCl, pH 8.0. Labeled proteins were quantified by spectrophotometry and
filtered with Microcon-10 kDa Centrifugal Filter Units (Millipore, Burlington, MA, USA)
by spinning at 4000 rpm for 15 min in PBS. Marked proteins were quantified by UV–Vis
spectroscopy and stored at 4 ◦C until use.

Freshly cleaved 1 cm2 V-5 muscovite mica pieces (Electron Microscopy Sciences, Hat-
field, UK) were exposed to vapors of 3-aminopropyl triethoxysilane (APTES; Sigma-Aldrich,
San Luis, MO, USA) and N,N-diisopropylethylamine (Hünig’s base; Sigma-Aldrich, San
Luis, MO, USA) at a 3:1 volume ratio for 2 h under an argon atmosphere (Figure 2). Then,
150 µL of 20 mM Sulfo-LC-SPDP in PBS/EDTA-azide (Thermo Scientific Pierce, Waltham,
MA, USA), pH 8.3, was added to each aminated mica piece, previously fixed on 6-well
ELISA plates (Thermo Scientific Nunclon, Waltham, MA, USA) with vacuum grease, and
incubated for 50 min at room temperature (RT). The pieces were then washed three times in
the same buffer under mild stirring to release the excess of the incubated linker molecules.
The PDP groups exposed at the surfaces were reduced to sulfhydryl reactive groups by
incubation with freshly prepared 150 mM dithiothreitol (DTT; Sigma-Aldrich, San Luis,
MO, USA) in PBS/EDTA-azide, pH 8.3, for 30 min (Figure 2), and later washed with the
same buffer under stirring [35,36].

Figure 2. Procedure followed for the covalent immobilization of FNR on mica pieces. Mica surfaces
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were exfoliated with a piece of sellotape and exposed to APTES/Hünig’s base vapors in argon
atmosphere to aminate the hydroxyl groups on its surface. Sulfo-LC-SDP crosslinker was then
incubated with mica to transform amine groups into PDP groups, which, in the presence of DTT, were
reduced to sulfhydryl reactive groups. FNR molecules were labeled with Sulfo-LC-SDP crosslinker,
and then made to react with the thiolated mica to establish disulfide bonds.

Different amounts of the FNR-PDP samples were added on each thiolated mica piece
and then incubated overnight at RT under mild stirring in darkness to form covalent
disulfide bridges between them (Figure 2). The amount of enzyme-PDP was estimated
to be in excess, as DFS measurements require saturated enzymatic layers to increase the
specific events corresponding to the rupture of the complexes. The enzyme-functionalized
mica surfaces were extensively washed under mild stirring with PBS, 0.2% Tween 20
(Panreac Química SLU, Castellar del Vallés, Spain), and 0.1% SDS (Panreac Química SLU,
Castellar del Vallés, Spain), pH 8.3, to remove the loosely attached FNR molecules that
might affect the AFM measurements.

2.2. Functionality of the Enzyme Samples

As a first control, the functionality of FNR after tagging with Sulfo-LC-SDP was
ensured by evaluating its FNR cytochrome c reductase activity, as previously described [35].
Then, AFM topography images were obtained in a MultiMode 8 system (Bruker, Santa
Barbara, CA, USA) using a soft silicon nitride 2 nm final tip radius SNL-D AFM cantilevers
with a nominal spring constant of 0.06 N/m and a resonance frequency of 18 kHz in
air (Microlever; Bruker Probes, Santa Barbara, CA, USA). Imaging measurements were
performed using the tapping operation mode based on the cantilever oscillation near its
respective resonance frequency in a liquid cell using PBS, pH 8.3. The height of the layers
was analyzed by scratching experiments consisting of scraping the surface at a high loaded
force in contact mode, dragging the functionalized groups throughout the surface using
SNL-A probes with 0.35 N/m stiffness constant. By controlling the normal force applied to
the probe, hole-type patterns can be fabricated and the mica surface can be uncovered so
that a clear height profile can be obtained from an image of a larger area [37]. Analysis of
the images was performed using the WxSM free software for SPM [38].

2.3. AFM Tip Functionalization with NADP+

DFS requires the strong immobilization of the molecules at the cantilever probe for them
not to unbind while withdrawing in force scans. Prefunctionalized maleimide-terminated
flexible polyethyleneglycol (PEG) linker silicon nitride AFM cantilevers (MW 3400; Novascan
Technologies Inc., Ames, IA, USA) were used. Nominal stiffness constant values of cantilevers
ranged from 0.02 to 0.06 N/m. For NADP+ functionalization, a 2 mg/mL 2-iminethiolane
solution (Traut’s Reagent; Thermo Scientific Pierce, Waltham, MA, USA) in 5 mM PBS/EDTA
pH 7.2 was prepared. NADP+ (Sigma-Aldrich, San Luis, MO, USA) and Traut’s Reagent
solution were mixed in a 1:10 molar ratio and incubated for 2 h at RT in the absence of
light (Figure 3). Then, 150 µL of the aforementioned NADP+ mixture was added to the
maleimide–PEG cantilever fixed on a capsule, and incubated overnight at 4 ◦C in the absence
of light (Figure 3). AFM tips were washed three times (5 min each) with the same buffer and
kept at 4 ◦C in the absence of light until use.

2.4. Dynamic Force Spectroscopy Measurements

AFM measurements were performed in a MultiMode 8 AFM (Bruker Digital Instru-
ments, Santa Barbara, CA, USA) using the specialized PicoForce scanner (Bruker, Santa
Barbara, CA, USA). Several hundred force–distance (Fz) cycles were registered for NADP+-
tip/FNR-mica from different sample locations at each different loading rate (R) [39]. Fz
curves were collected varying the velocity of 50–4000 nm/s. The loaded force between
the functionalized tip and the sample was kept constant at 1.25 nN. These data translate
into R, varying from 3 to 80 nN/s. The Fz curves were collected as voltage versus distance
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scans [39]. In order to convert the voltage into force units, the spring constant of the func-
tionalized cantilever and the deflection sensitivity (inverse of the optical lever sensitivity,
in nm/V) were used [39]. Measurements were performed inside a liquid cell in PBS/EDTA,
pH 7.2 at RT. In control experiments, samples were incubated with 2.6 mM NADP+ in
PBS/EDTA-azide, pH 8.3, for 15 min at R 10 nN/s in order to block the available FNR sites.

Figure 3. Procedure designed for the covalent attachment of NADP+ to AFM tips. 2-Iminothiolane
reacted with the primary amine of the adenine in NADP+ molecules, creating amidine derivatives
with reactive sulfhydryl groups. These were made to react with maleimide-PEG prefunctionalized
AFM tips, producing the thiosuccinimide derivatives.

2.5. Analysis of the Force Curves: Mechanostability Parameters

Statistical analysis is mandatory, since complex formation is a stochastic process.
Histograms of the frequency of the forces versus the corresponding rupture forces of the
specific unbinding events were built for each loading rate. Peak force data were only
processed from Fz curves when they met two specificity requirements: (i) Fz curves were
produced at a distance coinciding with the length of the stretched PEG spacer that binds
the NADP+ molecule to the tip; and (ii) their shape coincides with the stretching function
of the corresponding PEG molecule [39,40] (Figure 4). The value for the stretched PEG
spacer used in this work is around 20 nm [41].

Figure 4. Representative experimental retraction force curve showing a specific unbinding event
corresponding to the rupture of a single AnFNRox:NADP+ complex. Starting from the zero-force point,
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the tip is moved closer to the sample with an increment in the force until tip and sample come into
contact (approach curve not shown for picture clarity. See [36]). Pushing the tip further towards
the surface requires higher forces, causing the bending of the cantilever. If a bond is formed during
approach, a sharp jump (the peak seen in the curve at 40 nm) is produced during retraction of the tip
(blue line), indicating that a sudden release has occurred between tip and sample. To attribute this
force peak (Fu) to a specific unbinding event, the rupture of the bond between the two interacting
molecules should present an unbinding length (Lu) or tip–sample separation close to the length of
the stretched linker, around 20 nm, given by the piezo displacement encompassing the non-linear
portion of the retraction curve before unbinding. The black continuous curved line represents the
corresponding PEG stretch according to the WLC function [40]. The shape of the force peak and the
distance at which it occurs ensure that measured forces come from recognition events and not from
artifacts or non-specific tip–sample adhesion.

Histograms unbinding force distributions were fitted with Gaussian functions without
shifting or using zero-truncated strategies. Fitted maxima with lower values were assigned
to the most probable unbinding force for a single rupture event (F*) at the measured R.
Finally, the representation of the most probable unbinding forces versus the logarithm of
R following the Evans–Ritchie expression (1) [42] allowed us to estimate the dissociation
rate constant at zero force, koff, and the distance of the energy barrier with respect to the
ordinate axis, xβ, to characterize the mechanostability of the complexes and the number of
transitions in the process.

F∗ =

(
kB T
xβ

)
ln

(
R xβ

koff kB T

)
(1)

3. Results
3.1. Analysis of the Enzymatic Samples

The study of the dissociation of biomolecular complexes by DFS requires the strong
attachment of both biomolecules of interest: one to the AFM substrate and the other to the
AFM cantilever tip. This requires molecules to be labelled in advance while preserving their
catalytic function. The UV–Vis absorption spectra of FNR-PDP solutions displayed all the
UV–Vis absorption features of the unmarked enzymes, showing the flavin band-II maxima
at 459, 456, 460, and 456 nm for WT, Y303S, Y303F, and Y303W, respectively (not shown),
indicating that their overall conformations were not affected significantly by the labeling.
In addition, the labeled WT-FNR retained ~70% of its activity under steady-state conditions.
Thus, the labeling procedure has no major effect on either the FNR conformations or on
their catalytic activity.

AFM imaging was also used as a tool to further monitor FNR samples at the nanometer
level after successive chemical modification steps. Different amounts of FNR solutions
were incubated on the thiolated mica pieces (Figure 2). A minimum of 4 µg of FNR per
mica piece was required to fully cover the functionalized mica surfaces (not shown), so
higher amounts were added. Detergent treatment was shown to efficiently avoid the
protein aggregation effects that might detrimentally affect the DFS measurements. The
height of the protein monolayers was precisely determined from the cross-sectional profiles.
The average height in all the samples was 8 nm (Figure 5a,b). Scratching experiments
were performed in addition to confirm that the thickness of the protein layers was the
same (Figure 5c,d). These data were in accordance with the molecular size, of around
2.9 × 5.4 × 5.7 nm in 3D, for WT FNR (PDB 1que) and Y303S (PDB 2bsa), and the different
chemical functionalization steps, estimated as 0.6 nm for APTES-modified mica and 1.2 nm
for thiolated-modified mica [35]. Thus, they correspond to the sub-monolayers of enzyme
molecules in all the immobilized samples.
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Figure 5. Analysis of the enzymatic samples through AFM. (a) Representative AFM topography
image of a sub-monolayer Y303S sample used to perform the DFS measurements. (b) Height profile
of the corresponding blue line in (a). (c) Topography image of a Y303S sample after scratching an
area of 500 × 500 nm. (d) Height profile of the corresponding blue line on the center on the scratched
area in (c), exhibiting a hole corresponding to a monolayer of FNR.

3.2. Mechanical Stability of the FNR Complexes

Thousands of Fz curves were collected for the WT AnFNRox:NADP+ complexes, as
well as for those of its C-terminal Y303 variants at several R values. Their analysis was
consistently performed in order to discard all those force peaks that do not reflect specific
interactions or ambiguous ones that are technically considered as “false events”. The
percentage of specific events ranged from 5 to 18% with respect to the total attempts for
all samples, despite using saturated samples to enhance encounter and bond probabilities
between both molecules. These values are common for this type of experiment using ran-
dom labelling procedures. Thus, only peak force data that fit the requirements described in
Section 2.4 and Figure 4 were considered for the composition of force histograms at different
R values [39]. Figure 6 summarizes the histograms obtained for the unbinding forces of
WT AnFNRox:NADP+ complexes at several R values. The most probable unbinding forces
estimated for WT AnFNRox:NADP+ range from 103 ± 27 to 588 ± 188 pN at R values from
6 to 78 nN/s (Figure 6).
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Figure 6. Force histogram distributions for WT AnFNRox:NADP+ complexes. Data force obtained
operating at R values of 6 (a), 13 (b), 20 (c), 25 (d), 30 (e), 40 (f), 60 (g), 65 (h), and 78 (i) nN/s. The
width of the bars varies in each case, depending on the optimum fit, with the Gaussian function
shown in red. Data from R 10 nN/s were also measured, but are shown below. Each fitting provides
the most probable unbinding force corresponding to the rupture of a single complex and is shown on
the corresponding graphic.

Sometimes, as seen with the analysis of FNR complexes with its protein partners, Fd
and Fld [33], each asymmetrical force histogram might be grouped under one or more
different peaks fitted to Gaussian curves. However, in this study of the interaction of FNR
with the coenzyme, it was rare to find rupture events corresponding to multiple complexes.
Therefore, for clarity, only those attributed to individual complexes are evaluated here. The
same methodology was used to analyze the mechanostability of the three complexes formed
by the coenzyme and the C-terminal Y303 FNR variants. The mean value of unbinding
forces ranges from 78 ± 11 to 159 ± 60 pN for Y303S FNRox:NADP+ at R from 3 to 88 nN/s
(Figure 7); 53± 3 to 165± 30 pN for Y303F FNRox:NADP+ at R from 3 to 96 nN/s (Figure 8);
and 68 ± 15 to 91 ± 13 pN for Y303W FNRox:NADP+ at R from 10 to 78 nN/s (Figure 9).
The gathered data estimated at 10 nN/s indicate that the complex WT AnFNRox:NADP+ is
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1.6, 1.8, and 2.0 times stronger than Y303S AnFNRox:NADP+, Y303F AnFNRox:NADP+, and
Y303W AnFNRox:NADP+, respectively. The frequency of successful events of the latter was
particularly low for all conditions, suggesting that the tryptophan residue in that position
does not favor recognition of the coenzyme.

Figure 7. Force histogram distributions for Y303S AnFNRox:NADP+ complexes. Data force obtained
operating at R values of 3 (a), 20 (b), 31 (c), 43 (d), 50 (e), 61 (f), 69 (g), 79 (h), and 88 (i) nN/s. The
width of the bars varies in each case, depending on the optimum fit with the Gaussian function
shown in red. Data from R 10 nN/s were also measured, but are shown below. The fitting provides
the most probable unbinding forces corresponding to the rupture of a single complex and is shown
on the corresponding graphic.

Force data acquired at R 10 nN/s are commonly used to compare the estimated
unbinding forces across different systems (Figure 10, Table 1). The specificity of the mea-
surements was also evaluated by blocking experiments at this loading rate (Figure 10).
The probability of complex formation is reduced by the binding of free ligand to the same
enzyme binding site. The fitting of the resulting histograms has very similar maximal data
to those from non-blocked samples at the same conditions, but shows a decreasing event
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frequency. This is not visually evident in the histograms as they only show the relative
frequency between specific forces, without including the non-specific ones. However,
the frequency of the rupture events decreased 3-fold—from 12 to 4% (non-blocked and
blocked samples, respectively)—highlighting the specificity of the intermolecular inter-
action forces measured. The results obtained from the blocking experiments are clearly
indicative of the specificity of the measurements, as can be seen in Figure 10. The calculated
most probable rupture forces for non-blocked/blocked samples are 136 ± 36/147 ± 18;
86 ± 22/81 ± 11; 74 ± 17/77 ± 20 and 68± 15/67± 15 pN for WT AnFNRox:NADP+, Y303S
AnFNRox:NADP+, Y303F AnFNRox:NADP+, and Y303W AnFNRox:NADP+, respectively.

Figure 8. Force histogram distributions for Y303F AnFNRox:NADP+ complexes. Data force obtained
operating at R values of 3 (a), 21 (b), 28 (c), 46 (d), 57 (e), 65 (f), 77 (g) and 96 (h) nN/s. The width
of the bars varies in each case, depending on the optimum fit with the Gaussian function shown in
red. Data from R 10 nN/s were also measured but are shown below. The fitting provides the most
probable unbinding forces corresponding to the rupture of a single complex and is shown on the
corresponding graphic.
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Figure 9. Force histogram distributions for Y303W AnFNRox:NADP+ complexes. Data force obtained
operating at R values of 20 (a), 31 (b), 40 (c), 52 (d), 58 (e), and 75 (f) nN/s. The width of the bars varies
in each case, depending on the optimum fit with the Gaussian function shown in red. Data from R
10 nN/s were also measured, but are shown below. The fitting provides the most probable unbinding
forces corresponding to the rupture of a single complex and is shown on the corresponding graphic.

Figure 10. Control experiments showing histograms obtained at R 10 nN/s for AnFNRox:NADP+

complexes and the corresponding blocked samples with excess ligand. Unbinding force data obtained
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for (a) WT AnFNRox:NADP+, (b) Y303S AnFNRox:NADP+, (c) Y303F AnFNRox:NADP+, and
(d) Y303W AnFNRox:NADP+. Data obtained from blocked samples appear to the right in the
corresponding panel. The width of the bars varies in each case, depending on the optimum fit
with the Gaussian function shown in red. The fitting provides the most probable unbinding forces
corresponding to the rupture of a single complex and is shown on the corresponding graphic.

3.3. Dissociation Kinetics for AnFNRox:NADP+ Complexes

A typical energy landscape is a one-dimensional plot that represents the energy of the
system versus the reaction coordinate. In the case of dissociation under force, a force-driven
pathway along the pulling direction upon tip retraction defines the bond rupture [10,43].
The shape of this particular landscape is defined by the height of the energy barrier,
characterized by the dissociation rate constant at zero force, koff, and the energy barrier
width between the valley and the summit of the peak, the xβ parameter.

Representation of the most probable unbinding forces (F*) versus the logarithm of
R for the WT FNRox:NADP+ complex indicated a linear dependence (Figure 11a). Such
behavior can be traced back to a single-step dissociation process of NADP+ from the
FNR:NADP+ complex. Conversely, the same representation gives two linear regimes for
complexes formed by Y303S and Y303F mutants with NADP+ (Figure 11b,c). Such behavior
is attributed to the presence of two events, with the appearance of one intermediate state
in the dissociation process. This suggests that NADP+ molecules dissociate from FNR
through two energy barriers [44]. Finally, force data from the dissociation of the Y303W
FNRox:NADP+ complex was a better fit to a single straight line (Figure 11d). When two
events or loading rate regimes are observed, the inner energy barrier is expected to be
crossed first and then followed by the crossing of a second outer energy barrier [44]. In
addition, it is accepted that the application of a linear force on a bond causes the outer
energy barrier of the energy landscape to decrease. Consequently, when present, the inner
energy barrier can be observed by applying higher R [42].

Table 1 summarizes the main parameters obtained from fittings of the graphics in
Figure 11, including the half-life, τ(s), which is the inverse of koff [45]. The koff value for the
single detected event in the dissociation of NADP+ from WT FNRox indicates a considerably
slower process than the previously reported dissociation of complexes of the enzyme with
its protein partners, Fd and Fld [33,34]. Dissociation of the coenzyme from the Y303W
mutant, also characterized by a single dissociation event, occurs with a koff that decreases by
only two-fold compared to the WT. Dissociation of the coenzyme from complexes of Y303S
and Y303F variants occurs in two steps and these processes are therefore characterized by
two koff values. Notably, these values differ from the two steps within a particular mutant,
as well as among both mutants (Table 1).

Table 1. Mechanical parameters for the dissociation of FNRox:NADP+ complexes. The values were
obtained from fitting of data shown in Figure 11. Values for the AnFNRox:Fdox/Fldox complexes
were previously reported [33] and added here to facilitate discussion. Assays were performed in
PBS/EDTA pH 7.2.

Complex Unbinding Force (pN) * Events koff (s−1) τ (s) xβ (nm)

WT FNRox:NADP+ 135.7 ± 36.4 1 barrier 0.02020 49.42 0.021

Y303S FNRox:NADP+ 85.7 ± 22.4 inner barrier
outer barrier

0.10490 9.53 0.073
0.00002 50,838.84 0.524

Y303F FNRox:NADP+ 74.4 ± 17.0 inner barrier
outer barrier

0.01810 56.13 0.157
0.09410 10.61 0.071

Y303W FNRox:NADP+ 68.0 ± 14.7 1 barrier 0.01020 98.29 0.267
WT FNRox:Fdox 57 ± 16 1 barrier 21.2 0.047 0.27
WT FNRox:Fldox 21 ± 8 inner barrier 253.3 0.004 0.18

outer barrier 55.7 0.018 0.47

* Values corresponding to the rupture of a single complex, at R 10 nN/s.
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Figure 11. Loading-rate dependence of the most probable unbinding forces. Unbinding forces
corresponding to the rupture of single complexes that result from the Gaussian fit to the histogram
distributions of WT FNRox:NADP+ (a), Y303S FNRox:NADP+ (b), Y303F FNRox:NADP+ (c), and
Y303W FNRox:NADP+ (d). Force statistical errors are given by standard deviation. The solid lines
correspond to numerical fit of experimental data to the Evans–Ritchie expression [42]. Data from
WT and Y303W FNRox:NADP+ complexes optimally fit to one straight line (red), whereas data
from Y303S and Y303F FNRox:NADP+ complexes optimally fit to two straight lines (red and blue).
Best-fitting nanomechanical parameters are shown in Table 1.

Thus, koff values for the dissociation of NADP+ from the Y303S FNR complex indicate
that while one of the events occurs 5 times faster than the single event observed for the WT
complex, the other is up to 1000 times slower. However, in the case of the Y303F complex,
one of the processes is in the same range as in for the WT complex, and the other is 5 times
faster. These parameters show that the WT complex has the shortest half-life, followed
closely by the Y303F and Y303W complexes, whereas one of the two dissociation events for
the Y303S complex lasts so long that it hardly occurs (Table 1). It is worth noting that all
mutations, particularly Y303S, produce considerably higher xβ values. This suggests the
need for an increase in the distance among dissociation elements when Y303 is substituted
by Phe, Trp and, particularly, Ser.

4. Discussion

The great biological significance of enzyme:substrate interactions contrasts with the
absence of nanomechanical data for these complexes that, to the best of our knowledge,
exists to date. Fz scans provide reliable data about the interaction and dissociation processes
and represent the large variability associated with their stochastic nature (random or non-
deterministic processes).

The mechanical parameters estimated by DFS demonstrated the strong and specific
interactions that governs the physiological WT AnFNRox:NADP+ complex: (i) a high
most-probable unbinding force, 135.7 ± 36.4 pN at R 10 nN/s; (ii) a single event in the
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dissociation process; and (iii) a stable complex, koff 0.0202 s−1, and τ 49.42 s. The WT
AnFNRox:NADP+ complex is mechanically stronger than most of the measured biological
systems reported so far. The three enzyme variants decrease the mechanical strength of
their corresponding complexes to a similar extent, to approximately half the value of the
WT, highlighting the relevance of the Tyr residue at C-terminus for the formation of a stable
complex of the enzyme with NADP+.

The mechanostability of the WT AnFNRox:NADP+ complex is remarkably higher
(by almost 3.5 and 6.5 times) than that estimated for the complexes of AnFNR with its
protein redox partners [33,34]. This agrees with data accumulated over the years showing
that the interaction of FNR with the coenzyme is stronger and more specific than with
these proteins [18–20]. Even the forces found for the three variants are higher than those
for protein complexes (Table 1). These observations can be explained since FNR binds
specifically to NADP+—its affinity for NAD+ is negligible [22]—but exchanges efficiently
electrons with either Fd or Fld, two dissimilar proteins that bind to FNR at the same
site. Close to the mechanical strength found for the WT AnFNRox:NADP+ complex, we
find azurin:cytochrome c551 [46] (140 pN) and p53:Mdm2 (130 pN) complexes [47] (at
R 10 nN/s).

One striking finding in our study is the high value of the dissociation rate of the WT
FNRox:NADP+ complex, 0.0202 s−1, which is among published typical values of cell adhe-
sion complexes, around 0.1 s−1, and antigen:antibody pairs, around 0.001 s−1. These values
are far from those reported for transient complexes, typically between 10–1000 s−1, as is
the case for the FNR:Fd/Fld redox pairs [33]. The constant koff, related to the height
of the energy barrier, strongly depends on the interaction properties of the partners.
Similar koff values were estimated for strong pairs such as P-selectin:P-selectin ligand
(0.022 s−1) [48]; anti-digoxigenin:digoxigenin (0.015 s−1) [49]; p53:azurin (0.09 s−1) [50];
and erythrocyte:fibrinogen complexes (0.025 s−1) [51]. FNR variants that retain an aromatic
residue at the 303 C-terminal position, Y303F and Y303W, did not change koff significantly
compared to the WT value (Table 1). In the case of Y303S, one of the koff values decreased
drastically, to 0.00002 s−1, forming a complex as stable as the streptavidin:biotin system,
0.000017 s−1 [44], one of the strongest known non-covalent protein:ligand complexes in
nature (measured to date).

Moreover, the Bell–Evans interpretation of the energy landscape [42] may provide useful
information related to the chemistry of binding. For instance, a small energy barrier width,
xβ ≤ 0.1 nm, likely involves the rupture of hydrogen bonds or salt bridges from a rigid
ligand [52], while a high xβ,≥1 nm, presumably implies a deformation of one or both partners
before the rupture. According to this, the value of xβ for the WT AnFNRox:NADP+ complex,
0.021 nm, suggests a small deformation in the dissociation or just the breaking of some bonds,
that gets larger in all the variants: first Y303F, second Y303W, and finally, Y303S FNR. This
indicates the biggest conformational change before dissociation—0.524 nm—of one or both
partner molecules and it is similar to those reported for FNR protein complexes [33].

In WT AnFNR, the nicotinamide is only expected to gain access to the active site
to couple with the FAD isoalloxazine when flavin reduction has occurred by accepting
electrons from the protein partner, thus enabling transient competent binding for cataly-
sis [18–20]. Therefore, the determined parameters for the single dissociation event detected
for the WT FNRox:NADP+ complex must correspond to C-I and/or C-II conformations in
Figure 1a, where coenzyme binding is mainly attributable to the 2′-P-AMP moiety. The
Tyr residue at the C-terminus of plastidic WT FNRs forms a parallel π–π stacking inter-
action with the FAD isoalloxazine, preventing access of the coenzyme nicotinamide to
the active site, and is key to maintaining a high enzyme turnover by contributing to the
coenzyme release from the active site [23,24,29,30,53]. The removal and substitution of the
Tyr side-chain for Ser considerably increases the enzyme affinity for NADP+ by particularly
favoring nicotinamide allocation at the enzyme active site [23,24,29]. In such mutants, the
strong stacking between the flavin isoalloxazine and the nicotinamide coenzyme has been
proposed to lead the interaction (Figure 1b), as shown by the breaking in selectivity for
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NADP+ versus NAD+ and the full occupancy of the active site by the nicotinamide [29].
Thus, the two-event process observed here when plotting the most probable unbinding
forces versus R for the NADP+ dissociation from Y303S FNR (Figure 11b) can be assigned
to the dissociation of the 2′-P-AMP and nicotinamide moieties from their corresponding
enzyme bipartite binding sites (Figure 12). Therefore, these plots allow us to determine for
the first time the mechanical parameters at each of these sites, which is very different at the
bipartite sites of Y303S. This could be similar to the proposed existence of two binding sites
associated to two well-distinct linear regimes for the interaction between holo-transferrin
and its receptor and a single site for the apo-form that corresponds to a single loading rate
regime [54].

Figure 12. Scheme of force dissociation kinetics steps for (a) WT AnFNRox:NADP+ and (b) S303
AnFNRox:NADP+. NADP+ is covalently bound to the AFM tip (grey color) through the primary
amine of its adenine; therefore, the flexible AFM cantilever pulls from the adenine to dissociate the
coenzyme from the enzyme. The FNR enzyme bipartite binding sites for NADP+ are coloured in
green (2′P-AMP site (1)) and in pink (nicotinamide site (2)). The koff values related to each dissociation
step are depicted above the arrows. Yellow arrows indicate where pulling forces are proposed to
cause dissociation at each step. Protein structures are based on crystallographic structures with
the corresponding PDB codes underneath, except 2BSA* where the intermediate state with NADP+

dissociated only from the 2′P-AMP site has been modeled.

Considering that NADP+ is anchored to the AFM tip through the adenine of its
2′-P-ADP nucleotide, we can predict that the dissociation of its nicotinamide moiety is
the event exhibiting the largest xβ value and, therefore, the lowest koff (Figure 12). This
agrees with studies confirming that Y303S FNR favors the strong stacking of the coenzyme
nicotinamide to the FAD isoalloxazine at the active site [26]. Such a strong coupling has a
negative impact on the enzyme turnover [24,29]. Thus, in the WT, displacement of Y303
has to occur for the catalytically isoalloxazine–nicotinamide competent orientation to be
achieved, but Y303 remains at the active site to reduce the stacking probability between the
reacting rings that takes place in the Y303S FNR:NADP+ complex [30,53]. Parameters for
the other event indicate a shorter xβ and a faster koff, and should therefore correspond to
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the dissociation of the 2′-P-AMP moiety. Intermediate behaviors between WT and Y303S
were observed for NADP+ dissociation from the two remaining mutants. Y303W exhibited
a single event for the NADP+ dissociation as in WT FNR, whereas stabilization of one
intermediate characterizes the dissociation from Y303F. This agrees with previous studies
showing that the estimated occupancy of the NADP+ nicotinamide at the FNRox active
site is up to 100% and 71% for Y303S and Y303F, respectively, while these values drop to
15% and 0% for Y303W and WT [29]. Moreover, the parameters related to the dissociation
of either the nicotinamide or 2′-P-AMP moieties differ among variants. This observation
is not strange, since coupling of the nicotinamide to the active site also influences the
conformation of the 2′-P-AMP and pyrophosphate moieties and of their corresponding
binding cavities (Figure 1) [27].

Beyond the specific information regarding the dissociation of AnFNRox:NADP+ com-
plexes and the role of Y303 in blocking nicotinamide access to the access site, this study
paves the way to use DFS by AFM to characterize, at the single-molecule level, the occur-
rence and relevance of bipartite binding sites in pyridine nucleotide-dependent enzymes.
In line with this, by considering plastidic and bacterial FNRs, we can envision different
profiles among family members with different adaptation of their active sites to divergent
dynamics and organizations during catalysis, with recognition mechanisms that either
favor the initial binding of either of the two nucleotide moieties of the coenzyme [55,56]. To
complete the study of the interactions in this electron transfer chain, it would be desirable to
operate DFS also by preserving the FAD cofactor and the NADP+ substrate, in the oxidized
and in the reduced state, respectively. This will require complex technical developments
enabling AFM measurements while maintaining only one of these molecules in the reduced
state, which is not currently available.

5. Conclusions

The presented data provide a comprehensive dissection of the FNR:NADP+ dissocia-
tion process. They lead to novel conclusions about the kinetics and energetics of the binding
of the NADP+ substrate to FNR, and highlight the bipartite coenzyme binding/dissociation
mode and the role of the enzyme C-terminal Tyr residue in the process. In addition, the
study further shows DFS by AFM is a powerful technique for providing new insights
and unraveling the molecular mechanisms underlying the formation and dissociation
of enzyme:coenzyme or enzyme:ligand systems. As far as we know, it is remarkable
that the present work tackles the first enzyme:substrate system analyzed by DFS at the
single-molecule level. Therefore, not only does it contribute to better understanding of this
particular FNR system, but it also opens the door to the analysis of other enzyme:ligand
systems. Additionally, the method designed here to immobilize NADP+ can be used for
DFS, as well as for any other approach that requires it to be anchored to a surface. The
acquired knowledge is not only interesting from the molecular point of view but can also be
useful to design artificial enzymatic systems offering enhanced catalytic performances for
the production of useful molecules or with higher sensitivity for bio-sensing applications.
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