000117229 001__ 117229
000117229 005__ 20240319080954.0
000117229 0247_ $$2doi$$a10.3390/ijms23063086
000117229 0248_ $$2sideral$$a128634
000117229 037__ $$aART-2022-128634
000117229 041__ $$aeng
000117229 100__ $$aMedina-Lozano, I.
000117229 245__ $$aApplications of Genomic Tools in Plant Breeding: Crop Biofortification; 35328507
000117229 260__ $$c2022
000117229 5060_ $$aAccess copy available to the general public$$fUnrestricted
000117229 5203_ $$aCrop breeding has mainly been focused on increasing productivity, either directly or by decreasing the losses caused by biotic and abiotic stresses (that is, incorporating resistance to diseases and enhancing tolerance to adverse conditions, respectively). Quite the opposite, little attention has been paid to improve the nutritional value of crops. It has not been until recently that crop biofortification has become an objective within breeding programs, through either conventional methods or genetic engineering. There are many steps along this long path, from the initial evaluation of germplasm for the content of nutrients and health-promoting compounds to the development of biofortified varieties, with the available and future genomic tools assisting scientists and breeders in reaching their objectives as well as speeding up the process. This review offers a compendium of the genomic technologies used to explore and create biodiversity, to associate the traits of interest to the genome, and to transfer the genomic regions responsible for the desirable characteristics into potential new varieties. Finally, a glimpse of future perspectives and challenges in this emerging area is offered by taking the present scenario and the slow progress of the regulatory framework as the starting point. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
000117229 536__ $$9info:eu-repo/grantAgreement/ES/DGA/A12_20R$$9info:eu-repo/grantAgreement/ES/DGA/LMP164-18$$9info:eu-repo/grantAgreement/ES/INIA/RTA2017-00093-00-00
000117229 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000117229 590__ $$a5.6$$b2022
000117229 592__ $$a1.154$$b2022
000117229 591__ $$aBIOCHEMISTRY & MOLECULAR BIOLOGY$$b66 / 285 = 0.232$$c2022$$dQ1$$eT1
000117229 593__ $$aMedicine (miscellaneous)$$c2022$$dQ1
000117229 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b52 / 178 = 0.292$$c2022$$dQ2$$eT1
000117229 593__ $$aPhysical and Theoretical Chemistry$$c2022$$dQ1
000117229 593__ $$aComputer Science Applications$$c2022$$dQ1
000117229 593__ $$aInorganic Chemistry$$c2022$$dQ1
000117229 593__ $$aSpectroscopy$$c2022$$dQ1
000117229 593__ $$aOrganic Chemistry$$c2022$$dQ1
000117229 593__ $$aMolecular Biology$$c2022$$dQ2
000117229 593__ $$aCatalysis$$c2022$$dQ2
000117229 594__ $$a7.8$$b2022
000117229 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000117229 700__ $$0(orcid)0000-0001-7297-1699$$aDíaz Bermúdez, A.$$uUniversidad de Zaragoza
000117229 7102_ $$15011$$2705$$aUniversidad de Zaragoza$$bDpto. CC.Agrar.y Medio Natural$$cÁrea Producción Vegetal
000117229 773__ $$g23, 6 (2022), 3086 [33 pp]$$pInt. j. mol. sci.$$tInternational Journal of Molecular Sciences$$x1661-6596
000117229 8564_ $$s1531051$$uhttps://zaguan.unizar.es/record/117229/files/texto_completo.pdf$$yVersión publicada
000117229 8564_ $$s2729938$$uhttps://zaguan.unizar.es/record/117229/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000117229 909CO $$ooai:zaguan.unizar.es:117229$$particulos$$pdriver
000117229 951__ $$a2024-03-18-13:27:42
000117229 980__ $$aARTICLE