000117238 001__ 117238
000117238 005__ 20240319080955.0
000117238 0247_ $$2doi$$a10.1021/acs.jpcc.1c08867
000117238 0248_ $$2sideral$$a128644
000117238 037__ $$aART-2022-128644
000117238 041__ $$aeng
000117238 100__ $$aChuliá-Jordán, R.
000117238 245__ $$aShort Photoluminescence Lifetimes Linked to Crystallite Dimensions, Connectivity, and Perovskite Crystal Phases
000117238 260__ $$c2022
000117238 5060_ $$aAccess copy available to the general public$$fUnrestricted
000117238 5203_ $$aTime-correlated single photon counting has been conducted to gain further insights into the short photoluminescence lifetimes (nanosecond) of lead iodide perovskite (MAPbI3) thin films (~100 nm). We analyze three different morphologies, compact layer, isolated island, and connected large grain films, from 14 to 300 K using a laser excitation power of 370 nJ/cm2. Lifetime fittings from the Generalized Berberan-Santos decay model range from 0.5 to 6.5 ns, pointing to quasi-direct bandgap emission despite the three different sample strains. The high energy band emission for the isolated-island morphology shows fast recombination rate centers up to 4.8 ns-1, compared to the less than 2 ns-1for the other two morphologies, similar to that expected in a good quality single crystal of MAPbI3. Low-temperature measurements on samples reflect a huge oscillator strength in this material where the free exciton recombination dominates, explaining the fast lifetimes, the low thermal excitation, and the thermal escape obtained. © 2022 American Chemical Society. All rights reserved.
000117238 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/TEC2014-53727-C2-1-R/2-R$$9info:eu-repo/grantAgreement/EC/H2020/704998/EU/Long Range Surface Plasmon Polaritons as an Alternative Information Carrier for Nanoscale Quantum Circuitry/QuP$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 704998-QuP$$9info:eu-repo/grantAgreement/ES/MCIU/PID2019-107314RB-I00
000117238 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000117238 590__ $$a3.7$$b2022
000117238 592__ $$a1.028$$b2022
000117238 591__ $$aCHEMISTRY, PHYSICAL$$b76 / 161 = 0.472$$c2022$$dQ2$$eT2
000117238 593__ $$aElectronic, Optical and Magnetic Materials$$c2022$$dQ1
000117238 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b157 / 343 = 0.458$$c2022$$dQ2$$eT2
000117238 593__ $$aEnergy (miscellaneous)$$c2022$$dQ1
000117238 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b62 / 107 = 0.579$$c2022$$dQ3$$eT2
000117238 593__ $$aSurfaces, Coatings and Films$$c2022$$dQ1
000117238 593__ $$aPhysical and Theoretical Chemistry$$c2022$$dQ1
000117238 593__ $$aNanoscience and Nanotechnology$$c2022$$dQ2
000117238 594__ $$a7.0$$b2022
000117238 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000117238 700__ $$0(orcid)0000-0001-6040-1920$$aJuárez-Pérez, E.
000117238 773__ $$g126, 7 (2022), 3466-3474$$pJ. phys. chem., C$$tJournal of physical chemistry. C.$$x1932-7447
000117238 8564_ $$s2049744$$uhttps://zaguan.unizar.es/record/117238/files/texto_completo.pdf$$yVersión publicada
000117238 8564_ $$s3049590$$uhttps://zaguan.unizar.es/record/117238/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000117238 909CO $$ooai:zaguan.unizar.es:117238$$particulos$$pdriver
000117238 951__ $$a2024-03-18-13:29:46
000117238 980__ $$aARTICLE