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Resumen

Los actuadores de reluctancia se utilizan ampliamente debido a sus altas densidades de
fuerza y baja disipación de calor. En particular, los actuadores de reluctancia simples
de una sola bobina de carrera corta, como los relés electromecánicos y las electroválvu-
las, son la mejor opción para operaciones de conmutación de encendido y apagado en
muchas aplicaciones debido a su bajo coste, tamaño y masa. Sin embargo, un inconve-
niente importante es el fuerte impacto al final de cada conmutación, que provoca rebotes,
desgaste mecánico y ruido acústico. Son fenómenos muy indeseables que restan valor a
las ventajas evidentes de estos actuadores y limitan su rango de aplicaciones potenciales.

Esta tesis se centra en el desarrollo y estudio de soluciones de control de aterrizaje
suave para actuadores de reluctancia de carrera corta, con el objetivo de minimizar sus
velocidades de impacto. Es importante indicar que la eficiencia de dichos dispositivos se
produce a costa de serios retos teóricos y prácticos en cuanto a su control, por ejemplo,
dinámicas rápidas, híbridas y altamente no lineales, fenómenos electromagnéticos com-
plejos, variabilidad entre unidades y falta de medidas de posición durante el movimiento.

El punto de partida es lamodelización del sistema, teniendo en cuenta sus subsistemas
interconectados eléctricos, magnéticos y mecánicos. El objetivo principal de los modelos
es servir para el desarrollo de métodos de control y estimación. Por lo tanto, se trata de
modelos de parámetros concentrados expresados como representaciones del espacio de
estados. Se especifican diferentes fenómenos electromagnéticos, con especial atención
a la histéresis magnética. Se proponen dos tipos de modelos de diferente complejidad
según se incorpore o se desprecie el fenómeno de la histéresis magnética.

El primer enfoque para el control del aterrizaje suave es el diseño óptimo de las trayec-
torias de posición y sus correspondientes señales de entrada. La propuesta tiene en cuenta
la incertidumbre en la posición del contacto y, por tanto, las soluciones obtenidas son
más robustas. Mientras que las señales de entrada generadas son eficaces para las estrate-
gias de control en lazo abierto, las trayectorias de posición generadas pueden utilizarse
controles de prealimentación o de retroalimentación.

Para mejorar la robustez de los controladores de lazo abierto, también proponemos
una estrategia run-to-run que adapta iterativamente las señales de entrada. En concreto,
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está diseñada para trabajar conjuntamente con un controlador de prealimentación basado
en las mencionadas trayectorias de posición construidas de forma óptima. Para el algo-
ritmo de aprendizaje ciclo a ciclo, se elige una técnica de optimización, se ajusta y se
compara con dos alternativas.

Otro enfoque explorado es el control de retroalimentación para el seguimiento de
trayectorias predefinidas de posición. La solución propuesta es un controlador estricta-
mente conmutativo en modo deslizante. Está enfocado en la simplicidad para facilitar
su implementación, al tiempo que se tiene en cuenta la dinámica híbrida. Los análisis
teóricos y simulados demuestran que el aterrizaje suave es posible con tasas de muestreo
razonables.

Los controladores de retroalimentación y otros controladores de seguimiento re-
quieren mediciones o estimaciones precisas de la posición. Como la medición de la posi-
ción raramente es práctica, parte de la investigación se dedica al diseño de estimadores
de estado. La principal propuesta es un suavizador Rauch-Tung-Striebel ampliado para
sistemas no lineales, que incluye varias ideas nuevas relacionadas con el modelo discreto,
las entradas y las salidas. Los análisis simulados demuestran que el efecto combinado de
las nuevas adiciones da lugar a mucho mejores estimaciones de la posición.
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Abstract

Reluctance actuators are widely used due to their high force densities and low heat dis-
sipation. In particular, simple short-stroke single-coil reluctance actuators, such as elec-
tromechanical relays and solenoid valves, are the best choice for on-off switching opera-
tions in many applications because of their low cost, size and mass. However, a major
drawback is the strong impact at the end of each commutation, which provokes bounc-
ing, mechanical wear and acoustic noise. They are very undesirable phenomena that
detract from the evident advantages of these actuators and limit their range of potential
applications.

This thesis focuses on the development and study of soft-landing control solutions
for short-stroke reluctance actuators, aiming at minimizing their impact velocities. It
is important to indicate that the efficiency of the aforementioned devices comes at the
cost of serious theoretical and practical challenges regarding their control, e.g., fast, hy-
brid and highly nonlinear dynamics, complex electromagnetic phenomena, unit-to-unit
variability and lack of position measurements during motion.

The starting point is the system modeling, accounting for their interconnected elec-
trical, magnetic and mechanical subsystems. The main purpose of the models is to
be used for the development of control and estimation methods. Therefore, they are
lumped-parameter models expressed as state-space representations. Different electromag-
netic phenomena are specified, with special attention to the magnetic hysteresis. Two
model types of different complexities are proposed depending on whether the magnetic
hysteresis phenomenon is incorporated or neglected.

The first approach for soft-landing control is the optimal design of position trajec-
tories and their corresponding input signals. The proposal considers uncertainty in the
contact position, and hence, the obtained solutions are more robust. While the gener-
ated input signals are effective for open-loop control strategies, the generated position
trajectories can be used in feedforward or feedback control.

In order to improve the robustness of open-loop controllers, we also propose a run-
to-run strategy that iteratively adapts the input signals. Specifically, it is designed to
work in conjunction with a feedforward controller based on the aforementioned opti-
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Abstract

mally constructed position trajectories. For the cycle-to-cycle learning algorithm, an
optimization technique is chosen, adjusted and compared to two alternatives.

Another explored approach is feedback control for tracking predefined position tra-
jectories. The proposed solution is a purely switching sliding-mode controller. The focus
is on simplicity to facilitate its implementation, while also taking into account the hy-
brid dynamics. Theoretical and simulated analyses show that soft landing is achievable
with reasonable sampling rates.

Feedback and other tracking controllers require accurate measurements or position
estimations. As measuring the position is rarely practical, part of the research is devoted
to the design of state estimators. The main proposal is an extended Rauch–Tung–Striebel
smoother, which includes several new ideas regarding the discrete model, the inputs and
the outputs. Simulated analyses demonstrate that the combined effect of the novel addi-
tions results in much better position estimations.
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ā Mean value
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Chapter 1

Introduction

1.1 Motivation

Electromagnetic actuators constitute a class of electromechanical devices where the posi-
tioning of their movable components rely on forces produced by electrical and magnetic
fields. Depending on the working principle of the magnetic forces, they can be classified
as Lorentz or reluctance actuators. In particular, reluctance actuators rely on attractive
magnetic forces between ferromagnetic movers and stators, which are magnetized by
means of current coils and thus become electromagnets. The working principle of the
reluctance-based magnetic force is the variation of magnetic reluctance with respect to
the relative displacement between movable and fixed magnetic core parts. The main ad-
vantage of reluctance over Lorentz actuators is that they can achieve larger forces with
lighter cores and reduced heat losses [1]. Thus, there is an increasing interest in in-
corporating this type of actuators in many applications, for instance, fast tool servos
for diamond turning [2], propulsion systems for elevators [3], beam pointing and sta-
bilization in optical systems [4], anti-vibration systems [5], linear compressors [6], or
flexure-guided nanopositioning [7].

More specifically, switch-type reluctance actuators are characterized by having con-
strained motion. They are mostly used for opening and closing electrical, pneumatic or
hydraulic circuits. On the one hand, contactors and electromechanical relays are utilized
for power switching operations. Some examples of current applications are drive by wire
[8], induction heating [9], battery charging [10] and wireless power transfer [11]. On
the other hand, solenoid valves are used for fluid flow control in many applications, such
as automotive internal combustion engines [12]–[15] or electronic-stability control [16],
[17]. A well-known problem of the switching actuation is the strong landing impacts
that cause mechanical wear, bouncing and acoustic noise. In addition, in electrical con-
tacts, theymay provoke contact welding [18], or arcing that exacerbates the erosion [19].
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Thus, there is a great interest in designing and implementing soft-landing controllers to
reduce the impact velocities during switching.

The efficiency of reluctance over Lorentz forces comes at the cost of more difficult
control. While in Lorenz actuators there is a linear relation between the current and
the force [20], reluctance actuators rely on a force that is dependent on both the mag-
netic flux and the position in a highly nonlinear fashion. Furthermore, regarding the
control of reluctance actuators, it is important to distinguish between simple reluctance
actuators, with a single-coil and no permanent magnets (see Fig. 1.1a); and more com-
plex actuators, which may include permanent magnets or a second coil (see Figs. 1.1b
and 1.1c). The advantage of the first type is its lower cost and size. However, having a
single coil is very limiting from a control viewpoint. It can only generate magnetic force
in one direction (attractive), which means that the actuator must rely on a source of an
uncontrollable force (most commonly a spring) for moving in the opposite direction.
Moreover, a second coil would provide more electrical information about the system
that could be exploited for more accurate estimation and control of the actuator posi-
tion. Despite the challenges, the research of soft-landing solutions for simple low-cost
actuators is worthwhile, as it potentially extends their service life, makes them operate
more quietly, and opens them to a wider range of applications.

coil

stator

spring

mover

(a) Simple actuator.

second
stator

second coil

(b) Double actuator.

permanent
magnet

S N

(c) Hybrid actuator.

Figure 1.1: Schematic diagrams of short-stroke reluctance actuators with different complexities.

This thesis is framed in the context of collaboration between the University of Zara-
goza and BSH Home Appliances Group. The shared goal lies in the research and de-
velopment of technologies for the products of the company. In a process of continued
improvement, BSH intends to put in the market home appliances with a wide range of
prices and features, covering the needs of the biggest spectrum of users, while maintain-
ing or extending their useful life and quality. In that regard, the study of soft-landing
control strategies for simple short-stroke actuators is aligned with the interests of BSH.
On the one hand, electromechanical relays are essential components in many home ap-
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pliances (Fig. 1.2), but, due to their mechanical operation, these devices are subject to the
deterioration of their contacts, whose main cause is the impact forces during each com-
mutation. In some cases, these devices are gradually being replaced by semiconductor de-
vices, which have no mechanical components and can perform similar functions. How-
ever, the relays still have advantages over semiconductor components: they are cheaper,
have a lower cost power dissipation, admit voltages and currents in both directions, have
no leakage currents when they open the circuit, and provide galvanic isolation between
the activation and the power circuits. Therefore, improving their performance during
switching while maintaining their advantages is of great interest. On the other hand,
solenoid valves are primarily used as safety elements in gas stoves (Fig. 1.3), to stop the
gas output in case there is no flame. The mitigation of switching impacts and bounces
may open solenoid valves to applications that require a higher number of commutations,
such as the regulation of the gas flow.

(a) Induction cooktop. (b) Electromechanical relay. (c) Relay diagram.

Figure 1.2: Electromechanical relays are used in electric appliances, such as induction cooktops.

(a) Gas cooktop. (b) Solenoid valve. (c) Valve diagram.

Figure 1.3: Solenoid valves are used in gas appliances, such as gas cooktops.

In any case, most of the presented work has been generalized, so that it can be ap-
plied to any simple short-stroke reluctance actuator, regardless of its type and intended
application. Furthermore, even though the focus is on the simplest reluctance actuators,
which present the most obvious challenges regarding their control, most solutions of
this thesis are also valid for many other more complex and expensive actuators.
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1.2 Objectives

The research aim of this thesis is the proposal of soft-landing solutions for short-stroke
reluctance actuators, based on theory of control systems. More specifically, we focus on
the control of single-coil actuators with no permanent magnets, such as electromechani-
cal relays and solenoid valves. To achieve themain goal, several objectives are formulated:

1. Dynamical modeling. The starting point should be the design of dynamical mod-
els of reluctance actuators, accounting for their interconnected mechanical and
electromagnetic systems, with their nonlinear relations and discontinuities. The
purpose is to use the models for the development of control and estimation meth-
ods and, given the typically fast dynamics of reluctance actuators, special emphasis
is devoted to the trade-off between accuracy and computational efficiency. In that
regard, there is an interest in the design and comparison of models with varying
levels of complexity and accuracy, considering or neglecting different phenomena.

2. Identification. For validation and comparison purposes, the models should be
particularized to a real actuator. Many parameters and variables cannot be mea-
sured or directly estimated, which complicates the adjustment of the model. Thus,
it is convenient to reduce the number of parameters, ideallywithout further simpli-
fications of the dynamical system. It is also necessary to perform tests and adjust
the parameter values from the available information (mainly electrical measure-
ments) through optimization methods.

3. Control. As the main research focus, control strategies will be developed in or-
der to reduce impact velocities during commutations and, as a consequence, the
acoustic noise and the mechanical wear. An important effort will be made to pro-
pose and evaluate control strategies, from conventional open-loop and feedback
control techniques to more specialized alternatives. Given the repetitive nature of
the switching actuation, iterative techniques will be taken into consideration.

4. Estimation. Robust control strategies require information of the state of the sys-
tem for feedback. The most important variable for motion control is the posi-
tion of the movable part, especially for closed-loop controllers. Considering that
position sensors are most commonly unavailable for low-cost actuators, another
relevant research objective is the design and analysis of position estimators.

1.3 Thesis outline

The main content of the thesis has been divided into seven chapters. Chapter 1 is the
current introduction, while Chapter 7 includes the main conclusions drawn from the
investigation, as well as recommendations for continuing it. The main body is composed
of five chapters, each one focusing on one research topic:
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• In Chapter 2, the modeling of reluctance actuators is discussed. Firstly, the gen-
eralized differential equations for the electromagnetic and mechanical dynamics
are derived. Then, the model is specified by including different electromagnetic
phenomena—flux fringing, magnetic saturation and magnetic hysteresis—as well
as the hybrid dynamics of the mechanical subsystem—combining behavior from
continuous and discrete dynamical systems. Consequently, different models can
be constructed depending on the selected specifications. For control purposes,
the dynamical models are expressed as state-space representations. In particular,
two main model types are considered, depending on whether the magnetic hys-
teresis phenomenon is incorporated or neglected. After that, model reductions
are proposed for the electromagnetic subsystem of both types, thus decreasing the
number of parameters and making them identifiable from easily measurable elec-
trical signals. Lastly, the models are fitted to measurements from a real actuator
and compared with respect to a more complex state-of-the-art model.

• Chapter 3 focuses on the optimal design of position trajectories for soft landing,
and their corresponding input signals. Firstly, the problem is formulated as an
optimal control problem and transformed into a two-point boundary value prob-
lem for its numerical resolution. On the one hand, the generated input signals
are useful for open-loop control strategies. Simulated and experimental tests are
performed using a dynamical model and a commercial short-stroke solenoid valve,
comparing the open-loop proposal with a state-of-the-art alternative. On the other
hand, the generated position trajectories are useful for other types of control, such
as feedforward and feedback, which are presented in the following chapters.

• A run-to-run (R2R) strategy is proposed in Chapter 4. This type of control
method exploits the repetitive functioning of the devices to adapt and improve
a noncyclic controller, e.g. open-loop, feedforward or feedback controller. Specif-
ically, it is designed to work in conjunction with a feedforward controller based
on the position trajectories previously designed in Chapter 3. Moreover, a method
is proposed for reducing the dimension of the decision vectors, thus simplifying
and expediting the convergence. For the cycle-to-cycle learning algorithm, an op-
timization technique is chosen, adjusted and compared with Monte Carlo simu-
lations to two alternatives. To further validate the proposal, experimental results
are presented as well.
This thesis also includes appendices that provide additional information in relation
to the R2R control. Specifically, in Appendix A, the alternative R2R search func-
tions are described. In Appendix B, an alternative input generation is presented. It
is valid for R2R voltage control. The resulting R2R strategies are tested and com-
pared through a Monte Carlo method. Lastly, in Appendix C, the application of
the proposed R2R dimension reduction algorithm is detailed. In addition, a sim-
ulated comparison is included to showcase the advantage of reducing the number
of decision variables.
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• Chapter 5 explores the possibility of real-time tracking of the position with a feed-
back controller for soft landing. The proposed solution is a sliding-mode con-
troller (SMC), whose design is focused on simplicity to facilitate its implementa-
tion, while taking into account the hybrid nature of the system dynamics. Then,
theoretical and simulation analyses are presented to demonstrate its convergence
and its performance in terms of the sampling rate.

• Chapter 6 deals with the state estimation, with special attention to the position.
It is required for tracking control in many cases, as measuring the position during
motion is rarely practical. Firstly, an efficient discrete model is constructed, based
on the simplest model from Chapter 2. Then, the state estimation algorithm is
presented. It is a smoother, which is divided into two parts: the first one is a
forward filter, which serves as a conventional observer for real-time control; while
the second part is a backward filter, which corrects past data and is very useful
for cycle-to-cycle learning-type controllers. Finally, different states estimators are
compared through a Monte Carlo method in which the simulations incorporate
modeling and measurement errors.

1.4 Contributions and publications

Most contributions are the result of research work carried out in the Department of
Computer Science and Systems Engineering, in the School of Engineering and Architec-
ture of the University of Zaragoza; and in the BSH Competence Center for Induction
Development in Zaragoza, Spain. Additional contributions originated from a three-
month research stay that was conducted at the Department of Electrical Engineering of
the Eindhoven University of Technology, in the Netherlands.

For clarity, the main contributions are divided into categories corresponding to dif-
ferent chapters of the thesis:

2 System modeling. Two model types have been proposed. On the one hand, the
first model was proposed for the first time and presented at the 56th IEEE Confer-
ence on Decision and Control [21]. The main contribution regarding this model
is the system representation with a hybrid automaton which accounts for the dis-
crete behavior of the mechanical dynamics. On the other hand, the second model
was proposed in a paper that has been accepted for its publication in Mechatron-
ics [22]. The main contributions of the second proposal are the gap reluctance
function and, most notably, the dynamical equation of the magnetomotive force
in the core, which characterizes magnetic hysteresis and saturation phenomena.
Another idea is the model reduction, which transforms the electromagnetic sub-
system and ensures that their parameters are identifiable from measurements of
electrical signals.
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3 Optimal control design. On the one hand, our main optimal control proposal
is published in the IEEE Transactions on Control Systems Technology [23]. The
primary contribution is the addition of probability functions in the problem for-
mulation. Specifically, uncertainty in the contact position is included and the soft-
landing optimal control is formulated in order to minimize the expectations of the
contact velocity and acceleration. Furthermore, the advantages of utilizing the
electrical current as the control input for reluctance actuators are discussed and,
in consequence, the optimization of the current signal is included in the formu-
lation of the problem. On the other hand, we have also collaborated on the de-
sign of open-loop control signals solving deterministic optimal control problems.
The contribution is the analysis of the open-loop control strategies on perturbed
systems via a Monte Carlo method. It has been presented at the 17th European
Control Conference [24].

4 Run-to-run control. The first main contribution of the R2R proposal is the
search algorithm, based on Bayesian optimization. In the preliminary proposal,
presented at the 17th European Control Conference [25], several adjustments are
introduced to the algorithm: the limitation of the number of stored data by means
of the combination or removal of observations, and the definition of a new acquisi-
tion function. For the final proposal, published in the IEEE/ASME Transactions
on Mechatronics [26], new ideas are introduced regarding the search function, e.g.
adaptive search bounds and an improved acquisition function. Moreover, as the
second main contribution, the input signals are parameterized based on a feedfor-
ward controller, which relates the decision variables to parameters of the dynam-
ical model. It exploits the flatness property of the dynamical model to derive a
simple algebraic expression to calculate the input signal from the model parame-
ters.

5 Sliding-mode control. A robust SMC controller has been developed for reluc-
tance actuators and presented at the 21st IFAC World Congress [27]. The first
contribution is the design of the controller as a switching model-free SMC, which
works for every dynamic mode of the system. The second contribution is the
analysis of the influence of the sampling rate on the impact velocities.

6 State estimation. The final contribution of the aforementioned paper presented
at the 56th IEEE Conference on Decision and Control [21] is a stochastic state
observer based on a discretized version of one of the proposed models and the
unscented Kalman filter. Two patent applications have been submitted in rela-
tion to its application for electromechanical relays [28] and solenoid valves [29]
in cooking appliances. Moreover, the stochastic observer has served as the foun-
dation for the main estimation proposal. It is described in a manuscript, which
is under review at the time of writing [30]. It introduces two ideas that have not
been previously explored for this class of actuators. Firstly, the state estimation
is approached as a smoothing problem of a stochastic process, in which the state
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at a given time is refined by using future observation samples. Regarding the sec-
ond main contribution, the estimator is designed using a novel set of observable
variables. In addition to the electrical signals, commonly considered as the input
and output of the system, the proposed estimator directly exploits discrete infor-
mation related to its state, in particular, whether the mover is resting at one of the
contacts or moving. In the context of state estimation, we have also collaborated
on the development of two novel techniques to estimate in real time the magnetic
flux and other electromagnetic variables of reluctance actuators. They have been
published in the IEEE Transactions on Industrial Electronics [31].
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Chapter 2

System Modeling
Two dynamical models of different complexities are proposed. Different electromagnetic phe-
nomena are specified, with special attention to the magnetic hysteresis. Equivalent models
with fewer parameters are also presented. They are identifiable from electrical measurements.
Lastly, the models are fitted and compared.

2.1 Introduction

Dynamical modeling is an essential step in the design of controllers and estimators. Con-
cerning electromagnetic modeling, there are two main approaches. On the one hand,
finite element models (FEM) [14], [32]–[34] allow representing the dynamic behavior
of these devices with great accuracy, but they are too computationally demanding for
control applications. On the other hand, although analytical lumped-parameter mod-
els are less accurate, they are much less complex and thus may be suitable for real-time
estimation and control.

There is considerable literature concerning the representation of reluctance actuators
with lumped-parameter models. Most works neglect the effect of the magnetic hystere-
sis [35]–[38]. Some works do propose hysteresis models for actuators but neglect the
motion dynamics [39]–[41]. Recently, Ramirez-Laboreo et al. [42] proposed a model
of the mechanical and electromagnetic dynamics, with special emphasis on the derived
hysteresis solution based on the generalized Preisach model (GPM) to characterize the
magnetic hysteresis. This state-of-the-art approach is treated as the reference point, and
it is used for comparison.

The major drawback of the GPM is its computational complexity. It requires nu-
merical integration in each time step, even if it is implemented in an efficient state-space
form [43]. A simpler and, thus, more efficient dynamical model will give relevant ad-
vantages for control applications. From a more general perspective, there are numerous
hysteresis models in the literature for ferromagnetic materials, e.g. Jiles–Atherton ( JA)
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model [44], play and stop models [45], or the generalized positive-feedback model [46].
The JAmodel is one of the most widespread physics-inspired techniques. It is a relatively
simple macromagnetic model, only requiring five parameters to describe the hysteresis
phenomenon [47]. Regarding control applications, it has been used for hysteresis com-
pensation of electromagnets [43]. However, to the best of the authors’ knowledge, the
JA solution has not yet been incorporated in a dynamical model of reluctance actuators.

In this chapter, two types of hybrid lumped-parameter models are presented for char-
acterizing the dynamics of reluctance actuators. The first model includes the simplest
electromagnetic phenomena (eddy currents, flux fringing, magnetic saturation), while
the second one also incorporates magnetic hysteresis. Then, equivalent models are de-
rived with a reduced number of parameters, ensuring that they are identifiable solely
frommeasurements of electrical signals. Lastly, the models are fitted and compared with
the state-of-the-art alternative.

2.2 General dynamical equations

In this section, the generalized dynamical model is presented, which serves as the basis
for the more specific models presented in Section 2.3.

2.2.1 Description of reluctance actuators

The devices under study are simple low-cost actuators, with a single coil and no perma-
nent magnets. For example, Fig. 2.1 depicts schematic representations of some of these
actuators. For each one, the magnetic core is divided into two parts: a fixed part (stator)
and a movable part (mover or armature). The air gaps between the core parts are depen-
dent on the position of the mover z, which is restricted between a lower and an upper
limit. The motion may be linear (Figs. 2.1a and 2.1b) or angular (Fig. 2.1c).

The electrical current through the coil ιcoil generates a magnetic flux φ through the
core parts and the air gaps between them, which results in a magnetic force. With a
single coil and no permanent magnets, it is only possible to generate a magnetic force in
one direction. Consequently, there are two asymmetrical types of operation depending
on the movement direction. On the one hand, in a making (closing) operation, the coil
is energized to increase the magnetic force and attract the mover toward the stator. On
the other hand, in a breaking (opening) operation, the magnetic force is reduced so that
passive—most commonly elastic—forces move the armature in the opposite direction.

In order to derive computationally efficient lumped-parameter models, the complex
distributed system must be approximated by a limited set of time-dependent scalar vari-
ables. On the one hand, anymovable part is assumed a rigid body, defined by its position
z and velocity v. On the other hand, the magnetic flux density is assumed to be constant
within each core and gap section normal to the magnetic field lines. In other words, even
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Figure 2.1: Schematic representation of single-coil reluctance actuators.

if the area of the cross-section varies along the magnetic field path, the magnetic flux is
uniform within it.

2.2.2 Electromagnetic subsystem

The magnetic equivalent circuit (MEC) approach [48], [49] provides the perfect baseline
for modeling the electromagnetic subsystem with lumped parameters. A MEC is analo-
gous to an electrical circuit, in which the current, electromotive force and resistance are
replaced by the magnetic flux, magnetomotive force and reluctance, respectively. In this
approximation, it is assumed that the magnetic flux strictly follows a path along the core
and air gaps (see Fig. 2.2). In other words, flux leakage is neglected. It is a reasonable and
widely accepted assumption, especially if the air gaps are small because the ferromagnetic
core has a much greater magnetic permeability than the air around it.

δΣc

ιeddy

δΣg

N ιcoil

Figure 2.2: Schematic representation of the electromagnetic subsystem. The flux path is divided
into δΣc (dashed line) and δΣg (dotted line).

The electromagnetic subsystem represented in Fig. 2.2 is governed by twomain equa-
tions. The first one is the electrical circuit equation of the coil,

υcoil = R ιcoil +N φ̇, (2.1)
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Chapter 2. System Modeling

where υcoil, ιcoil, R and N are the coil voltage, current, resistance and number of turns,
respectively. The second equation is Ampère’s circuital law, which relates the total free
current density Jfree passing through a surface Σ with the magnetic field strength H
across its closed boundary curve δΣ. Formally, it can be expressed as∫∫

Σ

Jfree dS =

∮
δΣ

H dl, (2.2)

being Jfree the free current density. Note that the original Ampère’s law, as presented
above, is only correct in a magnetostatic scenario. Nonetheless, it is a valid approxima-
tion for relatively low frequencies—around 1MHz, which is orders of magnitude higher
than the dynamics of this type of actuators [50].

By defining δΣ as the path of the magnetic flux (see Fig. 2.2), the left-hand side of
(2.2) is ∫∫

Σ

Jfree dS = N ιcoil + ιeddy, (2.3)

where ιeddy is the net eddy current through the core. To model the eddy currents, it
is assumed that the magnetic flux is uniform within the cross section of the core. This
first-order approximation results in eddy currents proportional to the time derivative of
the magnetic flux,

ιeddy = −keddy φ̇, (2.4)

in which keddy is a positive constant that depends on the geometry and conductivity of
the core. For detailed derivations of (2.4), see Section 6.3 of [50] and Section 2.7 of [51].

Regarding the right hand of (2.2), it is convenient to separate the integral into two
components, ∮

δΣ

H dl =

∫
δΣg

H dl +

∫
δΣc

H dl, (2.5)

because the model must take into account different magnetic phenomena in the air and
the core. Note that there may be several air gaps across δΣ but, for convenience, they
are grouped together as in Fig. 2.2

In general, the relation between the magnetic field strength and the flux density is
given by the magnetic permeability µ,

B = µH. (2.6)

This relation is analogous to the microscopic Ohm’s law in electrical circuits J = σ E
(being J , σ and E the current density, conductivity and electric field, respectively). As
in Ohm’s law, there is also a macroscopic relation for magnetic circuits, known as Hop-
kinson’s law,

F = Rφ, (2.7)
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2.2. General dynamical equations

where F is the magnetomotive force and R is the magnetic reluctance (counterparts of
the electromotive force and resistance in electrical circuits, respectively). The magneto-
motive force is defined in terms of the magnetic field strength as follows:

F =

∫
H dl. (2.8)

In consequence, the reluctance term must be

R =

∫
H dl

φ
=

∫
dl

µA
, (2.9)

where A is the cross-sectional area. Note that, under the assumption that the magnetic
flux is uniform, φ = BA.

In the air gaps, the length of δΣg depends on the position of the mover. Additionally,
the magnetic permeability can be considered constant (µ ≈ µ0 ≈ 4π × 10−7 NH/m).
Then, Hopkinson’s law results in∫

δΣg

H dl = Rg(z)φ, (2.10)

where the magnetic reluctance of the air gaps Rg depends solely on the mover position
z.

Regarding the core term from (2.5), the relation between the magnetic flux and the
field strength is not only nonlinear, but it presents also a hysteretic behavior. Thus, Hop-
kinson’s law can only be applied if themagnetic hysteresis phenomenon is neglected. For
now, the integral is simplified to a sum of an arbitrary number of different magnetomo-
tive force terms Fci, where each term corresponds to a core part with a length lci and
cross-sectional area Aci, such that its average magnetic field strength is Hci∫

δΣc

H dl =
∑
i

Hci lci =
∑
i

Fci. (2.11)

The characterization of Fci will be detailed in Section 2.3.2.

Finally, substituting (2.3), (2.4), (2.5), (2.7) into (2.3), and isolating φ̇, the following
differential equation is derived,

φ̇ = −
Rg(z)φ+

∑
i Fci

keddy
+

N

keddy
ιcoil, (2.12)

where ιcoil would be the input.

However, it is more common to control the actuators with υcoil. Then, from (2.1)
and (2.12),

φ̇ = −
R
(
Rg(z)φ+

∑
i Fci

)
N2 +Rkeddy

+
N

N2 +Rkeddy
υcoil. (2.13)
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Regardless of the chosen input, the dynamics of the magnetic flux is given by an
input-affine nonlinear function, denoted as fφ,

φ̇ = fφ(z, φ,Fc, u). (2.14)

Note that, for simplifying this and subsequent expressions, the variablesFci are grouped
in the vector Fc =

[
Fc1 Fc2 · · ·

]T.
Once the input is selected, the other electrical variable may be considered the system

output. If υcoil is the input, the output ιcoil is calculated as

ιcoil =
N (Rg(z)φ+

∑
i Fci)

N2 +Rkeddy
+

keddy

N2 +Rkeddy
υcoil. (2.15)

If, instead, ιcoil is the input, the output υcoil is

υcoil = −
N (Rg(z)φ+

∑
i Fci)

keddy
+
N2 +Rkeddy

keddy
ιcoil. (2.16)

In any case, the output equation can be expressed as

y = h(z, φ,Fc, u), (2.17)

being y the output and h the output function.

2.2.3 Mechanical subsystem

During motion, the dynamical equation of the armature is given by Newton’s second
law,

mmov z̈ = Fpas(z, ż) + Fmag(z, φ), (2.18)

where mmov is the movable mass. Notice that total force is separated into the magnetic
force Fmag, and the passive total force Fpas, which encompasses the rest of the forces
acting on the mover. The passive force may include elastic, gravitational and friction
forces. Regarding the friction, it can be approximated as an ideal Coulomb or viscous
friction. Alternatively, if deemed necessary, more complex models can be used [52].

The only controllable force—albeit in an indirect way—is the magnetic force, which
mainly depends on the magnetic flux. The magnetic force may be derived through an
energy balance (see Chapter 2.8 of [51]), resulting in the following equation:

Fmag(z, φ) = −1

2
R′g(z)φ2, (2.19)

whereR′g(z) represents the partial derivative of the magnetic reluctance of the gap with
respect to the position,

R′g(z) =
∂Rg(z)

∂z
. (2.20)
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In general, themagnetic force tends to attract themover toward the position ofminimum
reluctance which, in the majority of simple reluctance actuators, corresponds to the
minimum air gap. Note that the direction of the magnetic force cannot be controlled,
because it depends on the square of the magnetic flux. To be able to move the armature
in the opposite direction to the magnetic force, passive forces are essential (e.g., elastic
forces).

In the case of angular motion, the dynamics are given by a completely analogous
equation,

Imov ω̈ = τpas(ω, ω̇) + τmag(ω, φ), τmag(ω, φ) = −1

2

∂Rg(ω)

∂ω
φ2, (2.21)

where ω, Imov, τpas, τmag are the angular position, the moment of inertia, the passive
torque and the magnetic torque, respectively. Regardless, to unify the expressions, the
dynamical equation for angular motion may be transformed into (2.18) by defining the
position z as the arc length with radius r, i.e. z = ω r. Then, the equivalent moving
mass and forces are defined as follows:

mmov =
Imov

r2
, Fpas(z, ż) =

τmag(z/r, ż/r)

r
, Fmag(z, φ) =

τpas(z/r, φ)

r
. (2.22)

Note that, in this case, mmov does not represent the actual moving mass, but a lumped
mass concentrated at the point corresponding to the angle ω and radius r. Accordingly,
Fpas and Fmag are not the forces acting on the moving mass but instead represent forces
perpendicular to ω and directed to the point with concentrated massmmov.

Following a state-space representation, both the position z and velocity v are treated
as state variables. Then, their dynamical equations during motion are

ż = v, (2.23)

v̇ = fv(z, v, φ) =
1

mmov

(
Fpas(z, v) + Fmag(z, φ)

)
. (2.24)

Note, however, that the position of this class of actuators is restricted between a
lower and an upper limit (z ∈ [zmin, zmax]). Evidently, when the armature reaches one
of its limits, a normal force acts on the armature due to contact. Furthermore, there is a
velocity change at impact that is almost instantaneous—i.e. the elasto-plastic dynamics
of the collision is much faster than the dynamics of the armature during unconstrained
motion—therefore it is reasonable to characterize it as a discrete event. In general, the
velocity jump (from v to v+ ) due to a collision can be modeled in terms of the coefficient
of restitution γ = γ(v) ∈ [0, 1],

v+ = −γ(v) v, (2.25)

where γ = 0 would indicate a perfectly inelastic collision, with no bouncing, and γ = 1
would indicate a perfectly elastic collision, with no energy losses due to the impact. The
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bouncing is in fact one of the main motivations for the research of soft-landing solutions
for this class of actuators. Nevertheless, in most cases, modeling this phenomenon is
not necessary because the intention is to control the actuator before the first impact
in order to reduce the velocity at that event. Then, reduction of the impact velocities
leads to a reduction of bouncing and subsequent impact velocities. Furthermore, the
effect of the bouncing is barely appreciable in the output (current or voltage). Hence, a
position sensor would be required to properly characterize the function γ. This would
unnecessarily complicate the models and their identification. In consequence, for the
most of this thesis, the collisions are assumed perfectly inelastic.

The mechanical subsystem is hybrid, as it is a combination of both continuous and
discrete-time dynamics. Specifically, this type of hybrid system can be represented as a
hybrid automaton, which separates the state into a continuous and a discrete state [53].
The diagram is presented in Fig. 2.3. It has three dynamic modes, which correspond to
the lower limit, motion and upper limit, respectively. On the one hand, the continuous
state variables are the position z and velocity v, whose continuous dynamics must be
specified for each mode. On the other hand, the discrete state is q ∈ {1, 2, 3}, which
designates the dynamic mode. The possibility of bouncing is determined by the guard
conditions and reset rules of the transitions from the motion mode (q = 2), which
depend on the coefficient of restitution.

q = 2 (motion)

ż = v

v̇ = fv(z, v, φ)

q = 1 (lower limit)

ż = 0

v̇ = 0

q = 3 (upper limit)

ż = 0

v̇ = 0

z = zmin ∧ v < 0 ∧ γ(v) = 0

⇒ v+ = 0

z = zmax ∧ v > 0 ∧ γ(v) = 0

⇒ v+ = 0

fv(z, v, φ) > 0

fv(z, v, φ) < 0

z = zmax ∧ γ(v) > 0

⇒ v+ = −γ(v) v
z = zmin ∧ γ(v) > 0

⇒ v+ = −γ(v) v

Figure 2.3: Diagram of the hybrid automaton modeling the mechanical subsystem of reluctance
actuators. Each transition between modes (yellow blocks) occurs when the corresponding guard
condition (green text) is satisfied. In some transitions, the continuous state jumps according to the
corresponding reset rule (red text).
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2.3 Specifications

This section presents specific expressions for the magnetic reluctance of the gap and
the magnetomotive force of the core, considering different electromagnetic phenomena.
They are required for fully defining the dynamical equation of the magnetic flux (2.12)
or (2.13), as well as the output equation (2.15) or (2.16).

2.3.1 Magnetic reluctance of the air gaps

For the calculation of the total gap reluctance, the integral (2.9) can be approximated by
a sum of different reluctance terms, corresponding to different air gaps,

Rg(z) =
∑
i

lgi(z)

µ0Agi(z)
, (2.26)

where the gap lengths lgi may depend on the mover position, and each effective areaAgi
augments with its corresponding gap length. This is due to the flux fringing effect, in
which the flux spreads out in the air gaps because there is no magnetic core to provide a
path with high permeability. It can be approximated using fringing flux factors for each
gap, such as McLyman’s [54],

Agi(z) = Ag,0i

(
1 +

lgi(z)√
Ag,0i

ln

(
2 lw
lgi(z)

))
, (2.27)

where each Ag,0i is the effective area when the gap length tends to zero, and lw is the
coil winding length.

The resulting function of the gap reluctance (2.26) and (2.27) cannot be simplified
further without loss of generality. Still, we propose a simplification that is useful for
characterizing most reluctance actuators. It is assumed that all position-dependent gaps
are identical and proportional to the position,

Ag,0i = Ag,0, lgi = l′g z, (2.28)

being l′g a positive constant. The assumption holds for most linear-travel reluctance
actuators—e.g., Figs. 2.1a and 2.1b. Furthermore, it may be a good approximation for
short-stroke actuators with angular positioning—e.g., Fig. 2.1c—because the angles are
very small and the motion is almost linear.

Then, their total reluctance is equal to
ng∑
i=1

Rgi(z) = ng

l′g z

µ0

(
1 +

l′g z√
Ag,0

ln

(
2 lw
l′g z

)) , (2.29)
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where ng is the number of position-dependent gaps. On the other hand, there may be
gaps that are not dependent on the mover position. In that case, their reluctance terms
can be grouped in the constantRg,0. Then, by combining all constant parameters from
(2.29) and adding Rg,0, the total gap reluctance is expressed as

Rg(z) = Rg,0 +

ng∑
i=1

Rgi(z) = Rg,0 +
R′g,0 z

1 + k1 z ln(k2/z)
, (2.30)

where

R′g,0 =
ng l
′
g

µ0
, k1 =

l′g√
Ag,0

, k2 =
2 lw
l′g
. (2.31)

The constants Rg,0, R′g,0, k1 and k2 are to be fitted through identification from experi-
mental or FEM data.

Note that the partial derivative of the gap reluctance, necessary for determining the
magnetic force (see Section 2.2.3), can be easily derived from (2.30),

R′g(z) =
∂Rg(z)

∂z
=

R′g,0 (1 + k1 z)(
1 + k1 z ln(k2/z)

)2 . (2.32)

Note also that (2.30) and (2.32) are indeterminate for z = 0 so, in that event, Rg and
R′g must be calculated in the limit from the right,

lim
z→0+

Rg(z) = Rg,0, lim
z→0+

R′g(z) = R′g,0. (2.33)

2.3.2 Magnetomotive forces in the core

Regarding the definition of the magnetomotive forces, two solutions are proposed. The
first one is simpler. It takes into account the magnetic saturation in the core, but ne-
glects entirely the magnetic hysteresis phenomenon. The second one is more complete,
but also much more complex. It also takes into account the magnetic hysteresis phe-
nomenon.

Magnetic saturation

In this subsection, we derive a relation between the force and themagnetic fluxφ based on
the Fröhlich–Kennelly(FK) equation [55]. In the following reformulation of the original
FK equation, the magnetic flux density B is defined in terms of the field strength H ,

B =
c1H

1 + c2 |H|
, (2.34)
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where c1 and c2 are positive constants. This alternative FK equation includes an absolute
value in the denominator, making it an odd function (B(−H) = −B(H)) and thus
extending its domain from the positive to the whole real number line [37]. The function
is represented in 2.4a.

(a) Magnetic flux density. (b) Magnetomotive force.

Figure 2.4: General B–H and Fci–φ curves with saturation.

Then, taking into account that sgn(H) = sgn(B), the magnetic permeability µ can
be defined as a function of the magnetic flux density B,

µ =
B

H
=

c1
1 + c2 |B|/µ

⇒ µ = c1 − c2 |B|. (2.35)

From there, an inverse version of the FK equation (2.34) is derived,

H =
B

µ
=

B

c1 − c2 |B|
, (2.36)

Having an explicit definition of the magnetic permeability, H may now be directly
related to the state variable φ. For consistency, Hopkinson’s law (2.7) may be used again
to obtain the macroscopic counterpart, resulting in the following relation:

Fci = Fci(φ) = Rci(φ)φ, Rci(φ) =
Rc,0i

1− |φ|/φsati

, (2.37)

where each Rci is the magnetic reluctance of a core part, whose parameters are

Rc,0i = c1
lci
Aci

, φsati =
c1
c2
Aci. (2.38)

The reluctance parameters have an intuitive meaning: each Rc,0i represents the core
reluctance when φ = 0, while each φsati represents the saturation value of the magnetic
flux, ensuring that |φ| < φsati (see Fig. 2.4b).

Finally, the magnetic flux dynamical equation which incorporates magnetic satura-
tion is fully defined by replacing (2.37) into the corresponding function fφ (2.12)—if
u = ιcoil—or (2.13)—if u = υcoil. Note that, with the chosen formulation, the total re-
luctance has been partitioned into a term that is dependent on the position—Rg(z)—and
one or more terms that are dependent on the magnetic flux—Rci(φ).
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Magnetic hysteresis

In the previous approach, the B–H relation is assumed one-to-one. It is sufficient for
modeling magnetic saturation. However, for modeling the magnetic hysteresis phe-
nomenon, a surjective mapping H 7→ B cannot be constructed, so the concepts of
magnetic permeability and reluctance must be discarded.

A different type of model is proposed, based on the JA theory. The original formula-
tion [44] permits calculating the magnetizationM from its field strengthH . Specifically,
an ordinary differential equation of the form

dM

dH
= fJA(M,H, Ḣ) =

{
fJA+(M,H), if Ḣ ≥ 0

fJA−(M,H), if Ḣ < 0
(2.39)

is solved to obtainM . Then, by definition, B can be calculated fromM and H ,

B = µ0 (H +M). (2.40)

However, in this case, it is more appropriate to determine H from B. Thus, the inverse
JA model [56] is used, in which an alternative differential equation is proposed, which
can be expressed compactly as

dM

dB
= fiJA(M,B, Ḃ) =

{
fiJA+(M,B), if Ḃ ≥ 0

fiJA−(M,B), if Ḃ < 0
. (2.41)

The complete process is described below.

The effective flux density Be is defined as

Be = µ0 (H + αM), (2.42)

where the constant α represents the interdomain coupling. The effective flux densityBe

depends on both the core field strengthH and magnetizationM , which can be obtained
from (2.40), resulting in the following equation:

Be = B − µ0 (1− α)M. (2.43)

Then, the anhysteretic magnetization of the coreMan and its derivative are obtained
by using a modified Langevin function [57],

Man = Msat

(
coth

(
Be

b

)
− b

Be

)
, (2.44)

dMan

dBe
=
Msat

b

(
1− coth2

(
Be

b

)
+

(
b

Be

)2
)
, (2.45)
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where Msat and b are positive constants, which determine the saturation value of Man

and the initial value of dMan/dBe, as can be seen in Fig. 2.5. Note that the functions
are indeterminate for Be = 0, so they should be calculated as limits,

lim
Be→0

Man = 0, lim
Be→0

dMan

dBe
=
Msat

3 b
. (2.46)

(a) Anhysteretic magnetization. (b) Derivative of anhysteretic magnetization.

Figure 2.5: Anhysteretic magnetization and its derivative as functions of the effective flux density.

Secondly, the irreversible magnetization Mirr is given by the following differential
equation,

dMirr

dBe
=
Man −Mirr

µ0 κ
sgn

(
Ḃ
)
, (2.47)

where κ is the spinning factor.

Thirdly, the total magnetization M can be expressed as a weighted sum depending
on the reversibility factor c,

M = (1− c)Mirr + cMan. (2.48)

Then, the differential equation (2.41) is given by

dM

dB
= fiJA(M,B, Ḃ) =

dM/dBe

dB/dBe
, (2.49)

where dM/dBe and dB/dBe are obtained by deriving (2.48) and (2.43), respectively,

dM

dBe
= (1− c) dMirr

dBe
+ c

Man

Be
, (2.50)

dB

dBe
= 1 + µ0 (1− α)

dM

dBe
. (2.51)

Note that the resulting differential equation can be used to obtainM fromB. This is
not directly applicable to the proposed models, which depend on macroscopic variables
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φ and Fci. Nonetheless, each Fci can be defined in terms of the corresponding magnetic
flux density Bci and magnetizationMci,

Fci = Hci lci =

(
Bci

µ0
−Mci

)
lci. (2.52)

Then, the time derivative of each Fci can be defined following the same structure as the
magnetic flux differential equation (2.14),

Ḟci = fFci
(z, φ,Fc, u) =

(
1

µ0
− fiJA(Mci, Bci, Ḃci)

)
lci Ḃci, (2.53)

where

Bci =
φ

Aci

, Mci =
φ

µ0Aci

− Fci

lci
, Ḃci =

fφ(z, φ,Fc, u)

Aci

. (2.54)

2.3.3 State-space representation

Full state-space hybrid models can be constructed by incorporating the derived expres-
sions for the magnetic reluctance of the gap (Section 2.3.1) and themagnetomotive forces
of the core (Section 2.3.2). Following a state-space representation, any dynamical model
is expressed compactly with a dynamical and an output equation,{

ẋ = fq(x, u),

y = h(x, u).
(2.55)

The complete continuous state vector is represented by x, and its dynamical function—
i.e., flow map—is fq, where q is the discrete state variable presented in Section 2.2.3. On
the other hand, y and h are the output and its corresponding function, respectively. The
input u is an argument of both functions fq and h.

The models can be categorized based on the characterization of Fc (Section 2.3.2).
Then, the dynamic and output equations (2.55) are specified for each alternative.

Reluctance actuator model based on Fröhlich–Kennelly (RAM-FK)

The first model accounts for magnetic saturation in the core by means of the φ—Fci

relation derived from the FK expression (see Section 2.3.2). This results in the simplest
solution, where the state vector is

x =

zv
φ

. (2.56)
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The dynamical functions for the motion (q = 2) and resting positions (q = 1 or q = 3)
must be

fq(x, u) =

 v
fv(z, v, φ)

fφ(z, φ,Fc(φ), u)

, if q = 2, (2.57a)

fq(x, u) =

 0
0

fφ(z, φ,Fc(φ), u)

, if q 6= 2. (2.57b)

where the function fv is described in (2.24), and fφ is (2.12) or (2.14), depending on the
input choice.

Then, with some abuse of notation for convenience, the output function in this state-
space representation is defined based on its generalized form (2.17),

h(x, u) = h
(
z, φ,Fc(φ), u

)
. (2.58)

Reluctance actuator model based on Jiles–Atherton (RAM-JA)

A more complete model can be constructed by incorporating the expressions derived
from the JA model (see Section 2.3.2), thus accounting for the magnetic hysteresis in the
core. Note that, in this case, there is not a one-to-one relation between the magnetomo-
tive forces in the core Fci and the magnetic flux φ. Instead, all of these terms must be
treated as state variables. Thus, the complete continuous state vector is

x =


z
v
φ
Fc

, (2.59)

where the dimension ofFc =
[
Fc1 Fc2 · · ·

]T corresponds to the number of distinct
core elements, with different cross-sectional areas Aci and their corresponding lengths
lci.

Consequently, the flow maps for every dynamic mode (q ∈ {1, 2, 3}) are

fq(x, u) =


v

fv(z, v, φ)
fφ(z, φ,Fc, u)
fFc(z, φ,Fc, u)

, if q = 2, (2.60a)

fq(x, u) =


0
0

fφ(z, φ,Fc, u)
fFc(z, φ,Fc, u)

, if q 6= 2. (2.60b)
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where fFc =
[
fFc1

fFc2
· · ·
]T. Lastly, analogously to (2.58), the output function

depends on every state variable except the velocity,

h(x, u) = h
(
z, φ,Fc, u

)
. (2.61)

Both models allow separating the core into multiple parts to calculate their corre-
sponding magnetomotive forces. However, given its increased complexity, its identifi-
cation and subsequent design and implementation of control strategies is much more
challenging. Thus, going forward, only the simpler scenario is considered, in which the
core geometry is simplified into a single part, with a total length lc and an average area
Ac, resulting in a single scalar magnetomotive force Fc.

2.4 Model reduction and identifiability

Although the presented characterization of the magnetic hysteresis is simpler than other
state-of-the-art alternatives, the more complete model (RAM-JA) is much more com-
plex than analogous lumped-parameter models that neglect this phenomenon, and the
number of parameters is quite large. In order to fit the model to any device, the parame-
ters must be estimated using data from different sources, e.g., measured electrical signals,
FEM simulations, or direct measurements of parameters.

Ultimately, identification with only electrical signals is not possible, as even the sim-
pler model (RAM-FK) is over-parameterized. However, by performing various manipu-
lations to the dynamical equations, it is possible to derive equivalent models that depend
on smaller sets of parameters, i.e. reduced models.

2.4.1 Reduced models

For these equivalent models, the voltage υcoil and current ιcoil, being the measurable
electrical signals, must remain as input and output—or vice versa. In addition, for con-
venience, the variables of interest for control applications, the position z and velocity v,
are kept as state variables. By contrast, the magnetic flux φ and magnetomotive force Fc

are replaced by auxiliary variables that permits simplifying the dynamical equations.

To improve the readability, the parameters of the electromagnetic models, and their
corresponding reduced forms, are summarized in Table 2.1. The superscript # is used for
indicating auxiliary parameters of the reduced models, which replace the corresponding
ones from the original models. For clarity, the auxiliary parameters that are identical to
the original ones are denoted without the aforementioned superscript.
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Table 2.1: Parameters of the electromagnetic subsystem: summary.

(a) RAM-FK.

Original Reduced

R R
keddy k#

eddy = keddy/N
2

Rg,0 R#

g,0 = Rg,0/N
2

R′g,0 R′#g,0 = R′g,0/N2

k1 k1

k2 k2

Rc,0 R#

c,0 = Rc,0/N
2

φsat λsat = N φsat

N

(b) RAM-JA.

Original Reduced

R R
keddy k#

eddy = keddy/N
2

Rg,0 R#

g,0 =
(
Rg,0 + lc/(µ0 Ac)

)
/N2

R′g,0 R′#g,0 = R′g,0/N2

k1 k1

k2 k2

Msat M#
sat = lc Msat/N

b b# = N Ac b
c c
κ κ# = N Ac κ
α α# = N2 Ac (1− α)/lc
N
Ac

lc

Reduction of RAM-FK

Regarding the basic model (Section 2.3.3), we propose to replace φ with the flux linkage
λ. It is a widely used extension of the magnetic flux, and particularly useful for multi-
turn coils. It is defined as follows:

λ = N φ. (2.62)

Then, the dynamical equation of the flux linkage is derived from (2.12) or (2.13),
depending on the input choice,

λ̇ = f#

λ (z, λ, u) = −
(
R#

g (z) +R#
c (λ)

)
λ

k#

eddy

+
1

k#

eddy

ιcoil, (2.63)

λ̇ = f#

λ (z, λ, u) = −
R
(
R#

g (z) +R#
c (λ)

)
λ

1 +Rk#

eddy

+
1

1 +Rk#

eddy

υcoil, (2.64)

where u = ιcoil or u = υcoil, respectively. Note that k#

eddy is a new parameter, defined in
Table 2.1. Notice also the dependence on the new functions R#

g and R#
c , related to the

reluctance definitions (2.30) and (2.37). Both are defined following the same structure
as their standard counterparts,

R#

g (z) = R#

g,0 +
R′#g,0 z

1 + k1 z ln(k2/z)
, R#

c (λ) =
R#

c,0

1− λ/λsat
. (2.65)

Note that the counterpart of φsat is precisely the saturation value of the flux linkage λ,
thus it is denoted as λsat.
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With respect to the mechanical part, the dynamical equation of the velocity (2.24)
must be modified considering that φ and Rg(z) have been replaced by λ and R#

g (z),
respectively. The derived expression is

v̇ = f#

v (z, v, λ) =
Fpas(z, v) + F#

mag(z, λ)

mmov
, (2.66)

where

F#

mag(z, λ) = −1

2
R′#g (z)λ2, R′#g (z) =

∂R#
g (z)

∂z
. (2.67)

Lastly, the new output function is obtained from (2.15) or (2.16), depending on the
input choice,

y = h#(z, λ, u) = −
(
R#

g (z) +R#
c (λ)

)
λ

k#

eddy

+
1 +Rk#

eddy

k#

eddy

ιcoil, (2.68)

y = h#(z, λ, u) =

(
R#

g (z) +R#
c (λ)

)
λ

1 +Rk#

eddy

+
k#

eddy

1 +Rk#

eddy

υcoil, (2.69)

where u = ιcoil and y = ιcoil, or u = υcoil and y = ιcoil, respectively.

As a result of the above manipulations, the number of parameters in the dynamical
equations of the electromagnetic system (2.64) and (2.63) and output equations (2.68)
and (2.69) is reduced. In this simple case, every parameter from the original model has
a counterpart in the reduced form, except for the number of coil turns N .

Reduction of RAM-JA

For the reduction of the complete model (Section 2.3.2), we propose to replace the elec-
tromagnetic state variables φ and Fc with the flux linkage λ and the new auxiliary vari-
ableM#

c , respectively,

λ = N φ, M#

c =
lc
N
Mc. (2.70)

Analogously to (2.63) or (2.64), the dynamical equation of flux linkage is

λ̇ = f#

λ (z, λ,M#

c , u) = −
R#

g (z)λ−M#
c

k#

eddy

+
1

k#

eddy

ιcoil, (2.71)

λ̇ = f#

λ (z, λ,M#

c , u) = −
R (R#

g (z)λ−M#
c )

1 +Rk#

eddy

+
1

1 +Rk#

eddy

υcoil, (2.72)

52



2.4. Model reduction and identifiability

where the input is u = ιcoil or u = υcoil, respectively. Notice again the auxiliary param-
eter k#

eddy and function R#
g , which are defined in the same way. However, in this case,

the constant R#

g,0 is defined differently (see Table 2.1).

Furthermore, the equations (2.44)–(2.53) are tweaked to obtain the dynamical equa-
tion of the auxiliary variableM#

c , resulting in the following function:

Ṁ#

c = f#

Mc
(z, λ,M#

c , u) =
dM#

c

dλ
f#

λ (z, λ,M#

c , u), (2.73)

where the intermediary steps are

λe = λ− µ0 α
#M#

c , (2.74a)

M#

an = M#

sat

(
coth

(
λe

b#

)
− b#

λe

)
, (2.74b)

dM#
an

dλe
=
M#

sat

b#

(
1− coth2

(
λe

b#

)
+

(
b#

λe

)2
)
, (2.74c)

M#

irr =
M#

c − cM#
an

1− c
, (2.74d)

dM#

irr

dλe
=
M#

an −M
#

irr

µ0 κ#
sgn(λ̇), (2.74e)

dM#
c

dλe
= (1− c) dM#

irr

dλe
+ c

dM#
an

dλe
, (2.74f)

dλ

dλe
= 1 + µ0 α

#
dM#

c

dλe
, (2.74g)

dM#
c

dλ
=

dM#
c /dλe

dλ/dλe
, (2.74h)

which, in turn, depend on new auxiliary parameters M#

sat, b#, κ# and α#. Note that
these intermediary steps consist in the calculation of values and derivatives of new time-
dependent variables: the effective flux linkage,

λe = N AcBe; (2.75)

and scaled versions of the anhysteretic and irreversible magnetization,

M#

an =
lc
N
Man, M#

irr =
lc
N
Mirr. (2.76)

In relation to the mechanical subsystem, the resulting equations are exactly the same
as in the reduction of RAM-FK (2.66) and (2.67). And, finally, the new output function

53



Chapter 2. System Modeling

is, depending on the input choice,

y = h#(z, λ,M#

c , u) = −
R#

g (z)λ−M#
c

k#

eddy

+
1 +Rk#

eddy

k#

eddy

ιcoil, (2.77)

y = h#(z, λ,M#

c , u) =
Rg(z)λ−M#

c

1 +Rk#

eddy

+
k#

eddy

1 +Rk#

eddy

υcoil, (2.78)

where u = ιcoil and y = ιcoil, or u = υcoil and y = ιcoil, respectively.

As a consequence, the number of parameters in the dynamical equations of the elec-
tromagnetic system (2.71) and (2.72) and output equations (2.77) and (2.78) is reduced
by three. Specifically, the number of coil turns N , the average core section area Ac and
the core length lc are used for defining new auxiliary parameters, but they do not have
counterparts in the reduced model.

2.4.2 Identifiability analyses

A local structural identifiability analysis is performed to demonstrate that the reduced
models are identifiable with only electrical signals, and no further reductions are possi-
ble. The models are quite complex for this type of analysis, so it is convenient to separate
them into the electromagnetic and mechanical subsystems. As the novel ideas of the pro-
posal are in the electromagnetic subsystem, this analysis is focused on that part. Thus,
the position is assumed to be fixed, effectively nullifying the mechanical subsystem1.

For a local identifiability analysis, an observability-identifiability matrix is con-
structed. For a given instant, output derivatives are derived as functions of the variables,
parameters, and input derivatives.

Identifiability of RAM-FK

Formally, the expression for each output derivative can be obtained recursively.

y(i+1) =
∂y(i)

∂λ
f#

λ (·) +

i∑
j=1

∂y(i)

∂u(j)
u(j), (2.79)

being y(0) = h#(·) from (2.68) or (2.69). Then, a vector of outputs is constructed,

Y (θ) =
[
y(0) y(1) · · · y(5)

]T
, (2.80)

where θ is the vector of unknown variables and parameters,

θ =
[
λ R k#

eddy R#

c,0 λsat R#
g

]T
. (2.81)

1Note that the gap reluctance depends on the position. In practice, to fully identify that part of the model,
the identification process should be performed for several fixed positions.
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Note that, as the position is assumed to be fixed, the gap reluctanceRg is considered here
an unknown constant. Then the Jacobian J of Y (2.80) should be constructed, where
each element is

Jij(θ) =
∂Yi
∂θj

, (2.82)

Then the model is locally identifiable for θ∗ if the Jacobian J , evaluated at θ = θ∗

has full rank. Using a computer algebra system, the full-rank condition of the symbolic
matrix can be checked, concluding that the reduced electromagneticmodel is structurally
locally identifiable. Furthermore, for a specific case, values can be given to the variables
and parameters to numerically check the rank of J .

Identifiability of RAM-JA

Analogously to (2.79), the time-derivatives of the output are derived recursively as fol-
lows:

y(i+1) =
∂y(i)

∂λ
f#

λ (·) +
∂y(i)

∂M#
c
f#

Mc
(·) +

i∑
j=1

∂y(i)

∂u(j)
u(j), (2.83)

being y(0) = h#(·) from (2.77) or (2.78). Then, a vector of outputs is constructed,

Y (θ) =
[
y(0) y(1) · · · y(9)

]T
, (2.84)

where θ is the vector of unknown variables and parameters.

θ =
[
λ M#

c R k∗eddy M∗sat b∗ c κ∗ α∗ R∗g
]T
. (2.85)

As before, the rank of a Jacobian of Y (2.84) should be evaluated. However, constructing
and evaluating the rank of such a large matrix is intractable. To circumvent this problem,
the particularities of the proposed model can be exploited to reduce the complexity of
the problem.

The electromagnetic variables are λ andM#
c . WhileM#

c is a hidden variable, λ can
be assumed known because it can be directly estimated from the electrical signals, as
explained in [21] and [31].

Then, it is easy to prove that the internal resistance of the coil R is identifiable inde-
pendently of the other model parameters. Assuming that υcoil, ιcoil, λ̇ are known, it can
be directly calculated from (2.1). E.g., in a steady state, it is simply

R = υcoil/ιcoil, if λ̇ = 0. (2.86)

Moreover, consider the following differential equation, derived from the output function
h#:

dy =

(
∂h#

∂λ
f#

λ (·) +
∂h#

∂M#
c
f#

Mc
(·)
)

dt+
∂h#

∂u
du. (2.87)
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Evidently, a step in the input results in a step in the output, dependent only on the second
addend. This can be checked in the limit as dt tends to zero. Then, from (2.77) or (2.78),
R and k#

eddy can be related to the ratio of steps in the voltage and current, regardless on
the input choice. Specifically,

lim
dt→0

dυcoil

dιcoil
=

1 +Rk#

eddy

k#

eddy

. (2.88)

Therefore, the value of k#

eddy can be uniquely calculated from the electrical signals and
R, which is also known.

AsR, k#

eddy and λ are assumed known, the new parameter vector has seven elements,

θ′ =
[
M#

c M#

sat b# c κ# α# R#
g

]T
. (2.89)

Still, the symbolic computation of seven consecutive derivatives is memory intensive.
To further simplify the process, we can consider that there is one step in the input so
that the flux changes direction. Formally, it can be expressed as

y± = h#(z, λ,M#

c , u
±), sgn(λ̇−) 6= sgn(λ̇+), (2.90)

where u±, y± and λ± are the input, output and flux linkage derivative immediately
before (−) and after (+) the step. This distinction is usually useless for identifiability
analysis of dynamical models, as they do not add new information to determine the
unknown parameters and variables. However, in this case, the dynamic behavior ofMc

changes with the sign of the magnetic flux (2.47). Thus, it is possible to construct an
output vector with smaller derivatives,

Y ±(θ′) =
[
y+(0)

y−
(1)

y+(1)
y−

(2)
y+(2)

y−
(3)

y+(3)
]T
. (2.91)

Then the model is locally identifiable for θ∗ if the Jacobian J ,

Jij(θ
′) =

∂Y ±i
∂θ′j

, (2.92)

evaluated in θ′ = θ∗, has full rank. Given the proposed simplifications, this can be
checked easily by using a computer algebra system. Equivalently to RAM-FK, the sym-
bolic matrix is full-rank, so the proposed reduced electromagnetic model is structurally
locally identifiable.

2.5 Model fitting and comparison

The presented models introduce two new ideas with respect to previous works: the gap
reluctance approximation, and the characterization of the magnetic hysteresis. To show
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the adequacy of these proposals, they are identified using data from an actual reluctance
actuator, and the results are evaluated with respect to a state-of-the-art alternative [42].

The device is a plunger-type solenoid valve, as shown in Fig. 2.6. It has a cylindrically
symmetrical steel core, where the fixed part is the stator and the plunger is the mover.
There are essentially two gaps between these parts: one below the plunger—whose length
is equal to the plunger position—and one around the plunger—whose length is constant.
It has a single copper coil wrapped around the core, whose current generates a magnetic
flux through the core parts and the air gap between them that, in turn, generates a mag-
netic force. It also has a coil spring designed for compression, which generates an elastic
force. These forces act in opposing directions, resulting in two types of operation: in a
making operation, the gap is closed via the magnetic force; whereas in a breaking oper-
ation, the gap is opened by reducing the magnetic force and allowing the spring force to
move the plunger.

(a) Photo. (b) Longitudinal section.

fixed core

plunger

coil

spring

z

(c) Schematic representation.

Figure 2.6: Solenoid valve.

Regarding the fitting process and comparison, only the parameters related to the gap
reluctance and the magnetization curve are estimated, while the common mechanical
and electromagnetic parameters of all models are assumed to be known (see Table 2.2).
For this device, the passive force is primarily generated by a spring. Then, assuming an
ideal spring, it is defined as

Fpas(z, v) = ksp (z − zsp), (2.93)

where ksp and zsp is the spring stiffness and resting position, respectively.

Note that, in this case, identifying the original models is equivalent to identifying
the reduced models because there are enough known parameters. Thus, for clarity, the
fitting process is performed for the original model forms, as presented in Sections 2.2
and 2.3.
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Table 2.2: Known parameters.

Parameter Value

N 1200
keddy 1630 Ω−1

lc 0.055 m
Ac 1.26× 10−5 m2

γ 0

Parameter Value

mmov 1.6× 10−3 kg
ksp 55 N/m
zsp 0.015 m
zmin 0 m
zmax 9× 10−4 m

2.5.1 Gap reluctance

The gap reluctance and its derivative have been previously characterized for different
positions from FEM simulations using the software COMSOL Multiphysics and the
geometry presented in Fig. 2.6b [34]. In order to make use of these data in simulations
with the dynamical model, the reluctance for any feasible position can be approximated
through some type of interpolation. Alternatively, the proposed algebraic expression
(2.30) can be used. In that case, its parameters must be fitted.

Given the parameter vector,

θ =
[
Rg,0 R′g,0 k1 k2

]T
, (2.94)

the objective is to find the one that minimizes the errors of bothRg andR′g. Formally,
it is expressed as

min
θ

(
NRMSERg

2 + NRMSER′g
2
)
, (2.95)

where NRMSERg is the normalized root-mean-square error of the simulated values
Rg

sim with respect the experimental ones Rg
exp,

NRMSERg
=

√√√√∑i

(
Rg

sim
i −Rg

exp
i

)2∑
i

(
Rg

exp
i

)2 , (2.96)

and NRMSER′g is defined in an equivalent manner. The optimized parameters are pre-
sented in Table 2.3.

Table 2.3: Estimated parameters of the gap reluctance model.

Parameter Value

Rg,0 5.594× 106 H−1

R′g,0 1.105× 1011 H−1/m
k1 1318 m−1

k2 9.735× 10−3 m
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2.5. Model fitting and comparison

Fig. 2.7 shows that the algebraic expression with the fitted parameters matches very
well the experimental data. Specifically, the errors are

NRMSERg
= 0.436 %, NRMSER′g = 0.226 %. (2.97)

Figure 2.7: Gap reluctance and its derivative with respect to the armature position. The markers
represent the experimental data and the lines represent the approximated results.

2.5.2 Magnetic hysteresis and saturation

The most novel modeling idea is the characterization of the magnetic hysteresis and
saturation in RAM-JA. To identify this part of the model, the curve ιcoil–λ is fitted us-
ing the same measurements as [42]. The experimental setup consists of a 4-quadrant
power supplier (Toellner TOE 7621), a current probe (Tektronix TCP312A) with its
corresponding amplifier (TCPA300), a USB oscilloscope with an arbitrary waveform
generator (Picoscope 4824), a computer with MATLAB and the Instrument Control
Toolbox installed, and the solenoid valve (Fig. 2.6). As only the electromagnetic subsys-
tem is being fitted, the plunger position of the valve is fixed (z = zmin ). Voltage signals
are constructed in MATLAB, which are then sent out to the waveform generator of the
USB oscilloscope. The generated signal is amplified by the power supplier and applied
to the solenoid valve. The applied signals are pulse waves with a frequency of 10 Hz and
several amplitudes (1 V, 2 V, 4 V, 6 V, 9 V). The applied voltage and current signals are
measured with the oscilloscope at a sampling rate of 100 kHz and sent to the computer.
They are depicted in Fig. 2.8. Then, from those measurements, the magnetic flux is
estimated following the method presented in [31].

Given the vector of parameters,

θ =
[
Msat b c κ α

]T
, (2.98)

the objective is to find the one that minimizes the errors of the simulated signals φ and
ιcoil, which are obtained by using the measured voltage signals as input u. Formally, the
optimization problem is formulated as

min
θ

(
wNRMSEφ,|φ̇|

2 + wNRMSEιcoil,|φ̇|
2
)
, (2.99)

59



Chapter 2. System Modeling

(a) Measured voltage. (b) Measured current.

Figure 2.8: Experimental signals used for model fitting.

where wNRMSEφ,|φ̇| is the weighted normalized root-mean-square error of φ, with |φ̇|
acting as the weight,

wNRMSEφ,|φ̇| =

√∑
i |φ̇

exp
i | (φ sim

i − φ exp
i )2∑

i |φ̇
exp
i | (φ exp

i )2
, (2.100)

and wNRMSEιcoil,|φ̇| is defined equivalently. Note that |φ̇| is used as the weight in order
to avoid overfitting the slowly varying intervals (especially the steady-state intervals in
which φ̇ = 0).

The optimization process results in the parameter values presented in Table 2.4b.
The simulated results fit fairly well the experimental data, as shown in Fig. 2.9b. For a
comprehensive comparison, the parameter fitting procedure is executed in the sameman-
ner for RAM-FK, resulting in the parameter values of Table 2.4a. As expected, there is a
muchmore noticeablemismatch between the simulated and experimental curves. Notice
in Fig. 2.9a that there is an apparent hysteretic behavior. However, it is completely due
to the eddy currents, as the model does not include magnetic hysteresis. Lastly, for ref-
erence, the GPM from [42], which is much more computationally demanding, has also
been fitted using the same procedure, and the simulated data is represented in Fig. 2.9c.
There is no significant improvement over the proposed complete model. To summa-
rize the simulation results, the average errors wNRMSEλ,|λ̇| and wNRMSEιcoil,|λ̇| are
presented in Table 2.5.

Table 2.4: Estimated parameters of the magnetic saturation and hysteresis models.

(a) RAM-FK.

Parameter Value

R#

c,0 1.950× 106 H−1

φsat 1.907× 10−5 Wb

(b) RAM-JA.

Parameter Value

Msat 1.45× 106 A/m
b 2.45× 10−3 T
c 0.736
κ 943 A/m
α 3.66× 10−3
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(a) RAM-FK. (b) RAM-JA. (c) RAM-GP.

Figure 2.9: Experimental and simulated ιcoil–φ curves.

Table 2.5: Model comparison.

NRMSEλ,|λ̇| NRMSEιcoil,|λ̇|

RAM-FK 9.536 % 11.752 %
RAM-JA 2.055 % 3.218 %
RAM-GP 2.671 % 2.104 %

2.5.3 Model comparison

The main advantage of the proposed models is their low computational requirements.
To justify this statement, simulations are performed with the full dynamical models,
including their mechanical subsystem. Thus, the plunger is allowed to move between its
position limits zmin and zmax. Note that the coefficient of restitution is set to zero—in
accordance to the discussion in Section 2.2.3—so collisions are assumed to be perfectly
inelastic. The proposals RAM-FK and RAM-JA use the reluctance gap approximation
presented in Section 2.3.1, while RAM-GP directly interpolates from the experimental
data (see Fig. 2.7). For this comparison, the parameters from Table 2.4 are fine-tuned to
fit the simulated current and magnetic flux using the RAM-GP (see Fig 2.9c), following
the same procedure as in Section 2.5.2.

Then, the simulations are carried out by using as input a voltage signal with four
rectangular pulses (see Fig. 2.10a). The current is calculated as the output and plotted
in Fig. 2.10b. Then, the state variables magnetic flux, magnetomotive force of the core
and plunger position are displayed in Figs. 2.10c, 2.10d and 2.10e, respectively. Note
that, for RAM-FK, the magnetomotive force is not a state variable, because it is directly
calculated as a function of the magnetic flux. Nonetheless, it is included in Fig 2.10d. As
expected, the larger discrepancy corresponds to the RAM-FK simulations with respect
to the other more complex models. In contrast, the simulated current and state variables
of RAM-JA and RAM-GP match fairly well.

61



Chapter 2. System Modeling

(a) Voltage (input).

(b) Current (output).

(c) Magnetic flux.

(d) Magnetomotive force in the core.

(e) Position.

Figure 2.10: Simulation results. The first voltage pulse is not sufficient to displace the mover.
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2.6. Discussion

The simulations are performed using MATLAB standard variable-step ordinary
differential equation solver, ode45—which uses the Runge–Kutta Dormand–Price
method [58]—with default options; and a computer with a 2.4GHz Intel Core i7-5500
CPU. After 1000 repetitions, the mean computation time of RAM-GP is 209.37 ms.
In contrast, the mean computation time of RAM-FK and RAM-JA are 14.37 ms and
26.06 ms, respectively. This last comparison shows the main advantage of RAM-JA over
RAM-GP.

2.6 Discussion

We have proposed dynamical models of reluctance actuators, characterizing both me-
chanical and electromagnetic dynamics. They are lumped-parameter models that ac-
count for the most relevant electromagnetic phenomena: magnetic saturation, flux fring-
ing, eddy currents and, optionally, magnetic hysteresis. They are state-space representa-
tions, where every differential equation can be computed analytically. Thus, it can be
used for designing observers or controllers with state-of-the-art techniques.

After some assumptions and simplifications, the generalized models are reduced to
two distinct ones. For the simpler model, the FK relation is adapted, accounting for
magnetic saturation, but neglecting magnetic hysteresis. This model is the least accurate
one, but its simplicity is advantageous for designing and implementing algorithms, e.g.,
for identification, estimation or control. On the other hand, the more complete model
adapts the JA theory, accounting for both magnetic saturation and hysteresis. It is an
efficient alternative to the state-of-the-art reluctance actuator model [42], which adapts
the GPM to describe the magnetic hysteresis. In the end, there is always a compromise
between computational complexity and accuracy. Thus, the best model choice depends
on several factors, e.g., the actuator characteristics, the type of controller or estimator
and the implementation requirements.
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Chapter 3

Optimal Control Design
This chapter presents a novel design method of position trajectories and input signals for soft-
landing control. The solutions are derived from optimal control problems that consider un-
certainty in the contact position. The results show a significant improvement relative to past
deterministic solutions.

3.1 Introduction

The design of a tracking trajectory and its corresponding input signal is a key point
for both feedback and feedforward control. The generation of trajectories is discussed in
previous works for different actuators, and it is common to assume that errors in models,
observers and measurements are negligible. On that assumption, soft landing is achieved
by setting the final velocity and acceleration to zero, as bound conditions. Trajectory
planning is therefore focused on finding feasible solutions [59]–[61] or on optimizing
some particular variables, e.g. transition time [62] or mean power consumption [63].
However, in practice, and especially for low-cost actuators, the system representation is
not perfect and therefore the generated optimal input signals do not result in real soft
landing when the control is implemented.

In this chapter, a novel approach for soft-landing trajectory design and open-loop
control is developed. Probability functions are incorporated in the optimal control prob-
lem for trajectory planning. Specifically, the contact position is assumed to be a random
variable, and the soft-landing optimal control is formulated in order to minimize the
expectations of the contact velocity and acceleration. Furthermore, the advantages of
utilizing the electrical current as the control input for reluctance actuators are discussed
and, in consequence, the optimization of the current signal is included in the formulation
of the problem. Simulated and experimental tests have been carried out to analyze the
applicability of the designed trajectories in an open-loop controller and the improvement
due to the inclusion of uncertainty.
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3.2 Problem statement

The first step of the proposed method is the definition of the motion dynamics. The
proposed representation is a generalized lumped parameter model, accounting for the
mechanical subsystem and additional dynamics influencing the system. It is expressed as
a set of two or more differential equations,

ż = v, (3.1a)
v̇ = fv(z, v,ϑ,u), (3.1b)

ϑ̇ = fϑ(z, v,ϑ,u), (3.1c)

where z and v are the position and velocity of the movable part. Additional state vari-
ables are condensed in the vector ϑ ∈ Rn−2, being n ≥ 2 the order of the dynamical
system. The input vector u may affect directly the acceleration v̇ or the dynamics of ϑ,
which in turn influences v̇. Note that the model is general enough to represent a wide
range of switch-type devices. For example, apart from reluctance actuators, this model
form can be used for microelectromechanical system switches, for which there is also a
great interest and extensive literature regarding soft landing [64]–[68].

To simplify later expressions, the set of equations (3.1) is expressed compactly as

ẋ = f(x,u), (3.2)

where the state vector x ∈ Rn is

x =

zv
ϑ

. (3.3)

Secondly, the soft-landing trajectory planning is formulated as a standard optimal
control problem, where the cost is a functional of a scalar function V of the state and
the input, i.e.

J =

∫ tf

t0

V
(
x(t),u(t)

)
dt, (3.4)

where t0 and tf are the initial and final time, respectively. The definition of V for soft
landing is specified in Section 3.3. The optimization problem is then solved via Pon-
tryagin’s Minimum Principle [69]. Provided that β ∈ Rn is the costate vector and the
Hamiltonian is

H
(
x,β,u

)
= V(x,u) + βTf

(
x,u

)
, (3.5)

the optimal control u∗ must satisfy the following condition:

u∗ = u∗
(
x∗,β∗

)
such that H

(
x∗,β∗,u∗

)
≤ H

(
x∗,β∗,u

)
, ∀u ∈ U , (3.6)

where x∗ and β∗ are the optimal state and costate vectors, andU is the set of permissible
values foru. Then, the optimal control problem is reformulated as a two-point boundary
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3.3. Soft-landing cost functional

value problem (BVP), with the differential equations for the optimal state and costate
vectors,

ẋ∗ = f
(
x∗,u∗(x∗,β∗)

)
, β̇∗ = −

∂H
(
x∗,β∗,u∗(x∗,β∗)

)
∂x∗

, (3.7a)

subject to a set of 2n boundary conditions. The initial time t0 is defined as the beginning
of the motion (takeoff) from the initial position z0. So, the corresponding boundary
conditions must be

z(t0) = z0, ż(t0) = v(t0) = 0, . . . , z(n−1)(t0) = 0. (3.8)

Given the assumption that the model is a perfect representation of the dynamical
system, soft landing could be achieved by setting to zero the final velocity v(tf)—and
higher position derivatives if n > 2—as boundary conditions. However, the model is
always a simplification of the system. To account for expected uncertainty and obtain a
more conservative trajectory, the actual contact position is assumed a random variable
Zc. Since the contact position is random, so it is the contact instant Tc, velocity Vc and
other state variables, and hence they cannot be set as boundary conditions. Therefore,
the boundary conditions for t = tf correspond to a free-final state, except for the final
position, which is set to zf ,

z(tf) = zf , β2(tf) = 0, . . . , βn(tf) = 0. (3.9)

As the actual contact position is unknown, the solution does not terminate when
z = Zc. Instead, the choice of zf establishes the probability that the contact occurs
before tf . For example, in the case that the contact position is a normal deviate (Zc ∼
N (µz, σ

2
z)), the final position could be set as its expectation µz , which means that there

would be a 50 % probability of Tc ≤ tf . Alternatively, setting zf = µz + 3 sgn(Vc)σz
would guarantee a contact with a 99.87 % confidence. This is preferable because, by
definition, the trajectories beyond tf are not optimized. Note also that the differential
equation (3.2) represents the unconstrained system dynamics assuming the contact has
not happened yet (t < Tc ). As the contact velocity is not affected by the dynamics after
that event, there is no need to consider the dynamical system for the case t > Tc. In other
words, it is not necessary to take into account the hybrid dynamics of the switch-type
actuator, as in Section 2.2.3.

3.3 Soft-landing cost functional

In this section, a cost J is defined to obtain an optimal position trajectory and its cor-
respondent input signal, given the assumption that the contact position is random. The
total cost functional is divided into several terms Ji,

J =
∑
i

Ji =
∑
i

∫ tf

t0

Vi
(
x(t),u(t)

)
dt, (3.10)
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and each function Vi is defined in Sections 3.3.1, 3.3.2 and 3.3.3.

In many devices, there are two asymmetrical switching operations, depending on the
direction of movement. The optimal control problem is formulated to be solved sepa-
rately for each operation type. Nevertheless, the following reasoning and expressions
are generalized in order to be used for both.

3.3.1 Expected contact velocity

In an elastic collision, the bouncing velocity depends on the velocity just before contact.
Therefore, to reduce both impact forces and bouncing, the contact velocity should be
minimized. The contact velocity is a function of a random variable, and thus its ac-
tual value is unknown. However, its expected value can be expressed as a conditional
expectation and calculated based on some reasonable assumptions.

Assumption 3.1. The actual contact position is a random variable Zc with a probability
density function (PDF) ρZc that is continuously differentiable on the time interval,

∃ ∂
2ρZc

(z)

∂z2
, ∀z(t) such that t ∈ [t0, tf ]. (3.11)

Assumption 3.2. The position is a monotonic function of time during the interval. Specif-
ically, it may be nondecreasing,

z(t1) ≤ z(t2), ∀t1, t2 such that t0 ≤ t1 ≤ t2 ≤ tf , (3.12)

or nonincreasing,

z(t1) ≥ z(t2), ∀t1, t2 such that t0 ≤ t1 ≤ t2 ≤ tf , (3.13)

Assumption 3.2 might seem restrictive, but it is completely reasonable. If it is not
satisfied, there would be at least one time interval in which the movable part goes back-
ward, away from the final position. This is clearly not an expected behavior in an optimal
trajectory.

Lemma 3.1. The contact instant Tc is a random variable whose PDF is

ρTc
(t) =

∣∣v(t)
∣∣ ρZc

(
z(t)

)
. (3.14)

Proof. Since the contact position is a random variable, the contact instant Tc is also
random,

Tc =
(
t | z(t) = Zc

)
. (3.15)

Thus, its PDF must be related to the PDF of the contact position. As an intermediary
step, we define Pc as the probability that at an arbitrary instant t ≥ t0 the contact has
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3.3. Soft-landing cost functional

already occurred,

Pc(t) =

∣∣∣∣∣
∫ z(t)

z(t0)

ρZc
(z) dz

∣∣∣∣∣. (3.16)

Depending on the motion direction, z(t) ≤ z(t0) or z(t) ≥ z(t0). Thus, the abso-
lute value simply ensures that the probability is nonnegative for both cases. Moreover,
integration by substitution permits transforming (3.16) into a time integral,

Pc(t) =

∣∣∣∣∫ t

t0

ρZc

(
z(τ)

)
ż(τ) dτ

∣∣∣∣. (3.17)

Note that the PDF is nonnegative by definition. In addition, according to Assump-
tion 3.2, the time derivative of the position is always nonnegative or nonpositive. Then,
the integrand is always nonnegative or nonpositive and, consequently, the absolute value
can be moved inside the integral,

Pc(t) =

∫ t

t0

∣∣∣ρZc

(
z(τ)

)
ż(τ)

∣∣∣dτ. (3.18)

From (3.18) and (3.1a), the PDF ρTc can be calculated as

ρTc
(t) =

dPc(t)

dt
=
∣∣v(t)

∣∣ ρZc

(
z(t)

)
. (3.19)

Proposition 3.1. The contact velocity Vc is a random variable whose expectation is

E[Vc] =

∫ tf

t0

1

P(t0 ≤ Tc ≤ tf)
v(t)

∣∣v(t)
∣∣ ρZc

(
z(t)

)
dt. (3.20)

Proof. The contact velocity is a function of the contact instant

Vc = v(Tc). (3.21)

Thus, its expected value can be expressed as a conditional expectation,

E[Vc] = E
[
v(Tc) | t0 ≤ Tc ≤ tf

]
, (3.22)

which can be calculated as

E[Vc] =
1

P(t0 ≤ Tc ≤ tf)

∫ tf

t0

v(t) ρTc(t) dt. (3.23)
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Then, based on Lemma 3.1, the PDF of the contact instant can be related to the PDF
of the contact position which, according to Assumption 3.1, is known. The resulting
expression is

E[Vc] =
1

P(t0 ≤ Tc ≤ tf)

∫ tf

t0

v(t)
∣∣v(t)

∣∣ ρZc

(
z(t)

)
dt. (3.24)

Note that P(t0 ≤ Tc ≤ tf) is a probability constant, so it can be moved inside the
integral, as in (3.20).

The derived expression for the expected contact velocity (3.20) has the form of a
standard optimal control performance index. Since the goal is to minimize the absolute
value of the contact velocity, the proposed cost functional J1 is defined as proportional
to the expectation of |Vc|, and as the velocity cannot change sign (Assumption 3.2), it
can be expressed as

J1 = w1 E
[
|Vc|
]

= w1 sgn(Vc) E[Vc], (3.25)

where w1 is a weight constant. This constant and the following ones determine the
importance of each cost functional and should be chosen accordingly. Substituting (3.20)
from Proposition 3.1 into (3.25) the final expression is obtained,

J1 =

∫ tf

t0

V1

(
x(t)

)
dt, V1(x) =

w1

P (t0 ≤ Tc ≤ tf)
v2 ρZc

(z). (3.26)

Note that the absolute values are removed because sgn(v) = sgn(Vc) except when v = 0,
and then V1 = 0.

3.3.2 Expected bounced acceleration

In the case that the system is second order (n = 2), the acceleration can be directly
controlled by the input u, and therefore it is sufficient to minimize the expected contact
velocity. However, in most cases, n > 2 and position derivatives of higher order (accel-
eration, jerk, jounce...) should be minimized as well to achieve soft landing. The reason
is that, if their sign is opposite to the motion direction, they tend to separate the movable
part from the final position, even in a completely inelastic collision. In this subsection,
the cost functional for the minimization of the bounced acceleration is derived. In the
rare cases in which n > 3, the same line of reasoning should be followed for higher-order
derivatives of the position.

As stated in (3.1b), the acceleration v̇ may depend on the velocity, which can change
abruptly in the contact instant. Thus, the bounced acceleration ab after contact should
be calculated from the bounced velocity vb,

ab(z, vb,ϑ,u) = fv(z, vb,ϑ,u). (3.27)
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3.3. Soft-landing cost functional

If contact occurs at t, the bounced velocity, in the most general form, is a function of the
state and the input at that instant. In the case there is no accurate model of the bouncing
phenomenon, it is possible to conservatively estimate vb as

v̂b(x,u) = arg max
vb∈Vb

−sgn(Vc) ab(z, vb,ϑ,u), (3.28)

where Vb is the set of possible bouncing velocities. For the worst-case scenario, it is
defined as

Vb =
{
− γ v | γ ∈ [0, 1]

}
, (3.29)

where γ represents the coefficient of restitution, as in Section 2.2.3.

It is important to notice that the bounced acceleration is only detrimental in the
direction that separates the armature from the final position. In other words, in the
opposite direction of the velocity. Taking that into account, the saturated bounced ac-
celeration ab,sat is defined as an auxiliary variable, in the case of contact,

ab,sat(x,u) =

{
ab(z, v̂b,ϑ,u), Vc ab(z, v̂b,ϑ,u) ≤ 0 (take off)
0, Vc ab(z, v̂b,ϑ,u) > 0 (hold)

. (3.30)

Note that the saturation is required for calculating the cost functional. The uncon-
strained acceleration v̇ is still calculated from (3.1b). Furthermore, to numerically solve
the problem, ab,sat should be differentiable. This condition is not satisfied in (3.30), thus
a smooth saturation function should be used instead.

Proposition 3.2. The saturated bounced acceleration at contact Ab is a random variable
whose expectation is

E[Ab] =

∫ tf

t0

1

P(t0 ≤ Tc ≤ tf)
|v(t)| ab,sat

(
x(t),u(t)

)
ρZc

(
z(t)

)
dt. (3.31)

Proof. The bounced acceleration depends on the contact instant,

Ab = ab,sat

(
x(Tc),u(Tc)

)
. (3.32)

As was the case for the contact velocity in Section 3.3.1, its expected value can be defined
as a conditional expectation,

E[Ab] = E
[
ab,sat

(
x(Tc),u(Tc)

)
| t0 ≤ Tc ≤ tf

]
, (3.33)

which can be computed as

E[Ab] =
1

P(t0 ≤ Tc ≤ tf)

∫ tf

t0

ab,sat

(
x(t),u(t)

)
ρTc(t) dt. (3.34)
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Then, the ρTc
expression (3.14) from Lemma 3.1 is substituted in (3.34),

E[Ab] =
1

P(t0 ≤ Tc ≤ tf)

∫ tf

t0

ab,sat

(
x(t),u(t)

)
|v(t)| ρZc

(
z(t)

)
dt. (3.35)

Finally, in an equivalent manner to Section 3.3.1, the constant probability
P(t0 ≤ Tc ≤ tf) can be moved inside the integral, resulting in (3.31).

In this case, the objective is to minimize the absolute value of Ab. In consequence,
the cost functional term should be

J2 = w2 E
[
|Ab|

]
= −w2 sgn(Vc) E[Ab], (3.36)

where w2 is the corresponding weight term. Substituting (3.31) from Proposition 3.2
into (3.36), the final expression is obtained,

J2 =

∫ tf

t0

V2

(
x(t),u(t)

)
dt, (3.37a)

V2(x,u) = − w2

P(t0 ≤ Tc ≤ tf)
v ab,sat(x,u) ρZc

(
z
)
. (3.37b)

3.3.3 Regularization terms

Many switch-type systems are input-affine, including the dynamical models of reluctance
actuators presented in the previous chapter1. For this class of systems, the cost functional
terms V1 and V2 are also input-affine, which means that, until this point, the Hamilto-
nian (3.5) would also be affine with respect to the input u. Thus, the optimal control u∗
(3.6) would have discontinuities, which means the problem is ill-defined, complicating
its numerical resolution. A simple and common workaround, firstly introduced by Ja-
cobson et al. [70], is to add as a regularization term a quadratic expression with respect
to u, making the optimal control continuous. We propose the following alternative:

J3 =

∫ tf

t0

V3

(
x(t),u(t)

)
dt, V3(x,u) = w3

(
dh#(x)

dt

)2

, (3.38)

wherew3 is the correspondingweight term andh#(x) is an auxiliary output signal whose
quadratic derivative is minimized. The cost functional term can be expressed as

V3(x,u) = w3

(
∂h#(x)

∂x
f(x,u)

)2

. (3.39)

1More rigorously, the dynamical function of the complete model (RAM-JA) is a piece-wise function where
each of the two pieces is input-affine, and there is no discontinuity between them.
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In general, it serves as a regularization term because it is not an affine function of u.
However, note that a regularization term is only strictly required for the cases in which
f is input-affine with respect to u. In that case, V3 is quadratic with respect to u, which
greatly simplifies the calculation of the optimal control u∗ from (3.6).

In particular, for reluctance actuators, h#(x) can be the current ιcoil. Reducing its
time derivative would be advantageous if its optimal signal is used as reference or input.
(The motivation for using the current as input is discussed in Section 3.4.1). The sig-
nal h#(x) obtained this way is less steep and therefore easier to follow accurately in the
implementation. Therefore, V3 is not only useful for the numerical resolution of the
problem, because reducing h#(x) may be also desirable from a theoretical or from an
implementation perspective. Note, however, that it is not possible to minimize simulta-
neously the output signal derivative and the expected values of the contact velocity and
acceleration. There is a trade-off that depends on the chosen cost weights w1, w2 and
w3.

3.4 Application

As an example, and for later analysis, the proposed optimal control problem is solved
for a dynamical model based on a real reluctance actuator. The details are presented in
this section.

3.4.1 Actuator description and dynamical model

The actuator is a small solenoid valve (Fig. 3.1a). It is slightly different from the one used
for model fitting and comparison in Section 2.5. Most distinctively, it has a plastic ring
between the plunger and the spring, in order to limit the minimum gap zmin to 0.4mm.

(a) Valve. (b) Experimental setup.

Figure 3.1: Linear-travel short-stroke solenoid valve and experimental setup with the valve, a
micrometer to limit the maximum gap and an electret microphone to measure the impact noise.
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Regarding the state-space differential equations from (3.1), they are particularized for
this device based on the basic model (RAM-FK) with the voltage as input, as presented
in Chapter 2. Thus, ϑ and fϑ correspond to the magnetic flux φ and its dynamical
function fφ, respectively. To be consistent with the previous and following chapters, the
later notation is chosen to represent the third state variable. The dynamical functions
are defined as follows:

fv(z, v) =
1

mmov

(
ksp (zsp − z)− cf v −

1

2

∂Rg(z)

∂z
φ2

)
, (3.40a)

fφ(z, φ, u) = −
R
(
Rg(z) +Rc(φ)

)
N2 +Rkeddy

φ+
N

N2 +Rkeddy
u, (3.40b)

where the gap and core reluctance terms are

Rg(z) = Rg,0 +
R′g,0 z

1 + k1 z ln(k2/z)
, Rc(φ) =

Rc,0

1− |φ|/φsat
. (3.41)

Note that the mechanical subsystem is modeled as a mass-spring-damper system, with
the newly defined damping coefficient cf to model the frictional losses. Furthermore,
the estimated bounced velocity (3.28)—needed only for the calculation of the expected
bounced acceleration—is chosen conservatively. From (3.40a), it is easy to see that the
acceleration increases if the velocity decreases, so the worst-case scenario corresponds to
γ = 0, so that v̂b = 0. All the model parameters are specified in Table 3.1.

Table 3.1: Solenoid valve parameters.

Parameter Nominal value

R 50 Ω
keddy 1630× 103 Ω−1

Rc,0 4.41× 106 H−1

φsat 2.63× 10−5 Wb
Rg,0 5.594× 106 H−1

R′g,0 1.105× 1011 H−1/m
k1 1318 m−1

k2 9.735× 10−3 m

Parameter Nominal value

N 1200
mmov 1.63× 10−3 kg
ksp 61.8 N/m
zsp 1.92× 10−2 m
cf 0.806 Ns/m
zmin 3.99× 10−4 m
zmax 1.60× 10−3 m
γ 0

To justify the use of the current as the control input (see Section 3.3.3), notice that the
dynamical equation of the magnetic flux φ with voltage as input (3.40b) depends on the
internal resistance R of the copper coil, which in turn depends greatly on temperature.
Typically, the resistance dependence on temperature is negligible during an operation but
not after a large number of operation cycles. This means that the control with the voltage
as input is not robust, i.e., a supplied voltage signal that achieves the desired behavior at
a certain temperature is not guaranteed to work when that temperature changes. On the

74



3.4. Application

other hand, the relation between the current and the state of the device does not depend
on the resistance,

ιcoil =
Rg(z) +Rc(φ)

N
φ+ keddy φ̇. (3.42)

Therefore, we propose to control the actuator by applying an optimal current sig-
nal. It is important to remark that the optimal control problem is still solved with the
voltage as the control signal. The optimal current signal can then be easily calculated.
Notice that the current derivative depends on φ̈ so, in order to accurately calculate it, an
auxiliary variable ϑ2 = φ̇ should be added to the state vector x. Alternatively, it can be
approximated by setting keddy = 0. Thus, the auxiliary output function is defined as

h#(z, φ) =
Rg(z) +Rc(φ)

N
φ. (3.43)

As the effect of the eddy currents is neglected, the solution is suboptimal. The error of the
approximation will be illustrated in the following section. Note that this approximation
only affects the output function used in the cost term V3, the dynamical function fφ
(3.40b) still considers the eddy current phenomenon due to the parameter keddy.

Although not required for solving the optimal control problem, a model for simula-
tions must also consider the position constraints between zmin and zmax. This is accom-
plished by defining a hybrid automaton, as in Section 2.2.3. Note that, as the generated
magnetic force is an even function of the magnetic flux (see (2.19)), there is no need to
work with negative values of magnetic flux. Moreover, in most control strategies, it is
advantageous to restrict the current and thus the magnetic flux to nonnegative values.
In practice, this would be implemented with diodes, which only allow one current flow
direction. In the model, this is achieved by the addition of dynamic modes in which the
magnetic flux is static. Ultimately, the automaton presents six dynamic modes, with the
corresponding guard conditions and reset rules, as illustrated in Fig. 3.2. The discrete
state q ∈ {1, 2, . . . , 6} designates the dynamic mode: positive current and plunger in
the lower limit, motion or the upper limit (q = 1, 2 or 3, respectively); or current satu-
rated to zero and plunger in the lower limit, motion or the upper limit (q = 4, 5 or 6,
respectively).

Notice that the automaton includes two additional functions: h and ϕφ. On the one
hand, h represents the output function (2.15), where the output is the current. Particu-
larizing to the RAM-FK reluctance model, it is defined as

ιcoil = h(z, φ, u) =
N
(
Rg(z) +Rc(φ)

)
N2 +Rkeddy

φ+
keddy

N2 +Rkeddy
u. (3.44)

On the other hand, ϕφ represents the dynamical function of the magnetic flux when
the current is saturated to zero. It is derived from (3.42) by setting ιcoil = 0,

ϕφ(z, φ) = −Rg(z) +Rc(φ)

keddy
φ. (3.45)
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q = 3

ż = 0
v̇ = 0

φ̇ = fφ(z, φ, u)

q = 2

ż = v
v̇ = fv(z, v, φ)

φ̇ = fφ(z, φ, u)

q = 1

ż = 0
v̇ = 0

φ̇ = fφ(z, φ, u)

q = 6

ż = 0
v̇ = 0

φ̇ = ϕφ(z, φ)

q = 5

ż = v
v̇ = fv(z, v, φ)

φ̇ = ϕφ(z, φ)

q = 4

ż = 0
v̇ = 0

φ̇ = ϕφ(z, φ)

z = zmax ∧ v > 0
⇒ v+ = 0

z = zmin ∧ v < 0
⇒ v+ = 0

h(z, φ, u) < 0

fv(z, v, φ) < 0

h(z, φ, u) < 0

fv(z, v, φ) > 0

h(z, φ, u) < 0

z = zmax ∧ v > 0
⇒ v+ = 0

z = zmin ∧ v < 0
⇒ v+ = 0

h(z, φ, u) > 0

fv(z, v, φ) < 0

h(z, φ, u) > 0

fv(z, v, φ) > 0

h(z, φ, u) > 0

Figure 3.2: Diagram of the hybrid automaton modeling the full system of the actuator, including
the output saturation to zero. Each transition between modes (yellow blocks) occurs when the
corresponding guard condition (green text) is satisfied. In some transitions, the continuous state
jumps according to the corresponding reset rule (red text).

3.4.2 Optimal voltage signal

According to (3.6), the optimal control u∗ for this particular case is defined as

u∗(x∗,β∗) = arg min
ulb≤u≤uub

H(x∗,β∗, u), (3.46)

where ulb and uub are the lower and upper limits of the optimal voltage input. In the case
the voltage is used as the input in the implementation, they could be set directly to umin

and umax respectively, which represent the minimum and maximum supply voltage.
However, if the current is used as input, the real voltage changes with the resistance,
as noted in Section 3.4.1. This means that the values of ulb and uub must be selected
conservatively to guarantee that the designed current is actually obtainable with a voltage
between umin and umax and a real resistance Rreal ranging from Rmin to Rmax.

Assumption 3.3. The current is always nonnegative, as in the dynamical model presented
in Section 3.4.1.

Assumption 3.4. The voltage and real resistance are bounded as follows:

υcoil ∈ [umin, umax], Rreal ∈ [Rmin, Rmax]. (3.47)

76



3.4. Application

Proposition 3.3. If the lower and upper limits of the optimal voltage input satisfy

uub ≤
R

Rmax
umax, ulb ≥

R−Rmin

R
uub + umin, (3.48)

where R is the resistance used in the optimal control equations, then the designed current is
actually obtainable with an arbitrary voltage υcoil and any resistance Rreal.

Proof. Given the electrical circuit equation,

u = R ιcoil +N φ̇, (3.49)

it is possible to determine the worst-case scenarios, according to Assumption 3.47,

−Rreal ιcoil + umin ≤ −R ιcoil + u∗ ≤ −Rreal ιcoil + umax. (3.50)

Then, the bounding condition of the optimal input u∗ is

umin + max
(
(R−Rreal) ιcoil

)
≤ u∗ ≤ umax + min

(
(R−Rreal) ιcoil

)
. (3.51)

Note that, considering that the current must be nonnegative (Assumption 3.3), the lower
and upper bounds of u∗ must satisfy

uub ≤ umax + (R−Rmax) ιmax, ulb ≥ umin + (R−Rmin) ιmax. (3.52)

Moreover, the maximum value fo the current can be conservatively calculated as
ιmax = uub/R. With some manipulations, the derived conditions are (3.48).

Then, to solve (3.46) algebraically, an auxiliary variable is defined,

u#(x∗,β∗) = arg min
u

H(x∗,β∗, u) = u such that
∂H(x∗,β∗, u)

∂u
= 0, (3.53)

which is unique and easily solvable because ∂H/∂u is an affine function of u.

Proposition 3.4. The optimal control u∗ can be obtained by simply saturating u# between
the control limits,

u∗ = u∗(x∗,β∗) =


ulb, ulb > u#(x∗,β∗)

u#(x∗,β∗), ulb ≤ u#(x∗,β∗) ≤ uub

uub, u#(x∗,β∗) > uub

. (3.54)

Proof. Notice that u# is the global minimum ofH and ∂2H/∂u2 does not depend on u.
Therefore, ∂H/∂u > 0 for any u < u# and ∂H/∂u < 0 for any u > u#. Thus, for any
u ∈ (ulb, uub) and u# 6∈ [ulb, uub],

u# < ulb < u ⇒ H(x∗,β∗, ulb) < H(x∗,β∗, u) ⇔ u∗ = ulb, (3.55a)
u# > uub > u ⇒ H(x∗,β∗, uub) < H(x∗,β∗, u) ⇔ u∗ = uub. (3.55b)
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Analogously to the acceleration in Section 3.3.2, the saturation of u# in (3.54) should
be approximated with a differentiable function.

3.4.3 Compared solutions

The optimal control problem may be solved for both operation types: making (zf < z0 )
and breaking (zf > z0 ). The common parameters are specified in Table 3.2. To account
for the uncertainty, the contact position Zc is considered a normal random variable,

Zc ∼ N
(
µz, σ

2
z

)
, (3.56)

where µz is the expected contact position and σz is its standard deviation. The proba-
bility density is therefore

ρZc
(z) =

1

σz
√

2π
exp

(
− (z − µz)2

2σ2
z

)
. (3.57)

Then, the initial and expected contact positions are defined as follows:

z0 = zmax, µz = zmin, (making operation) (3.58)
z0 = zmin, µz = zmax. (breaking operation) (3.59)

Table 3.2: Optimization parameters.

Parameter Value

ulb −45 V
uub 45 V
t0 0 s
tf 3.5× 10−3 s

Parameter Value

σz 2× 10−5 m2

w1 106

w2 103

w3 1000

To analyze the probability-based optimal solutions (POS), they are compared with
an energy-optimal solution (EOS) for soft landing with no uncertainty considerations.
For the latter case, there are essentially two differences: the boundary conditions for tf ,
which force the velocity and acceleration to be zero,

fv
(
z(t), vb(t), φ(t), u(t)

)
= 0, v(tf) = 0; (3.60)

and the cost functional, which corresponds to an energy-optimal control problem,

J =

∫ tf

t0

u2(t) dt. (3.61)

Then, to make a fair comparison between EOS and POS, we set zf = µz . This means
that, for both solutions, there is a 50 % probability of no contact in the optimal control
time interval, i.e.,

P(t0 ≤ Tc ≤ tf) = 0.50. (3.62)
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3.5 Analyses

In this section, simulated and experimental tests are performed to compare our proposed
POS with the state-of-the-art EOS in which the position randomness is not taken into
account. The trajectories are obtained by solving the BVP with MATLAB function
bvp4c [71], integrating with an adaptive step size.

3.5.1 Theoretical comparison

The simulated results of EOS and POS are presented in Fig. 3.3 for the making (left-
hand side) and breaking (right-hand side) operations. Although our trajectory-optimal
proposal presents a term for the minimization of the current derivative, its weight is
purposely set to be much smaller than the others, in order to prioritize the minimization
of the expected contact velocity and acceleration. For that reason, the current (Figs. 3.3c
and 3.3d), as well as the voltage signals (Figs. 3.3a and 3.3b), are steeper than the ones
from EOS. Note also that both voltage signals saturate to ulb = −45 V and uub = 45 V.

Although the model takes into account the eddy currents, they are neglected in the
calculation of V3 (3.39). In Figs. 3.3c and 3.3d, the auxiliary output h#(x) (3.43) is
compared against the current (3.44). There is a noticeable discrepancy, but it is small
enough to justify the approximation.

As seen in Figs. 3.3k and 3.3l, the position of the EOS has a steadier transition than
POS, which shifts abruptly toward the final position, but slows down quickly when the
probability of contact stops being negligible. This can be checked as well in the velocity
(Figs. 3.3i and 3.3j) and acceleration (Figs. 3.3g and 3.3h) plots. The expectations of the
velocity and acceleration in the case of contact are therefore smaller in absolute value
(see Table 3.3). This improvement comes at the expense of an energy consumption
increase duringmotion, whichmay be relevant for applications with very high switching
frequencies, but, otherwise, can be neglected.

Table 3.3: Comparison of optimal control solutions: summary.

(a) Making operation.

E
[
|Vc|
]

E
[
|Ab|

]
Energy

EOS 0.0989 m/s 353.6439 m/s2 0.0467 J
POS 0.0463 m/s 75.1087 m/s2 0.0524 J

(b) Breaking operation.

E
[
|Vc|
]

E
[
|Ab|

]
Energy

EOS 0.1183 m/s 516.0612 m/s2 0.0298 J
POS 0.0470 m/s 78.4155 m/s2 0.0355 J
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(a) Voltage (making operation). (b) Voltage (breaking operation).

(c) Current (making operation). (d) Current (breaking operation).

(e) Magnetic flux (making operation). (f) Magnetic flux (breaking operation).

(g) Acceleration (making operation). (h) Acceleration (breaking operation).

(i) Velocity (making operation). (j) Velocity (breaking operation).

(k) Position (making operation). (l) Position (breaking operation).

Figure 3.3: Comparison of simulated results from EOS and POS.
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To better comprehend the advantage of our proposal, it is useful to visualize the
velocity v and acceleration ab,sat trajectories with respect to position z, as in the state
planes presented in Fig. 3.4. The arrows show the direction of their evolution over time,
as z approaches zf . Notice that only a small interval of z is shown in each graphic
(around z = zmin and z = zmax for the making and breaking operations, respectively)
because for other positions the probability of contact is negligible. Note also that ac-
celeration ab,sat (Figs. 3.4c and 3.4d) is saturated to zero, as explained in Section 3.3.2.
These graphics represent the contact velocity and bounced acceleration for every possi-
ble contact position. The probability density function of the contact position for each
operation is also presented in Figs. 3.4e and 3.4f. The EOS velocity and acceleration are
exactly zero in the expected contact position, z = µz , but their values change steeply as
the position does. POS, instead, keeps a small and steady velocity and acceleration in the
position interval in which the probability of contact is significant. This behavior results
in considerably better expectations of the contact velocity and bounced acceleration.

(a) Contact velocity (making operation). (b) Contact velocity (breaking operation).

(c) Bounced acceleration (making operation). (d) Bounced acceleration (breaking operation).

(e) Contact position PDF (making operation). (f) Contact position PDF (breaking operation).

Figure 3.4: Contact velocity, bounced acceleration and PDF in terms of the contact position.

Additionally, to make a more complete comparison, multiple simulations are per-
formed by modifying the contact position variance, while the rest of the parameters are
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kept as specified in Section 3.4.3. As the range of standard deviations utilized in the sim-
ulations is very wide, the horizontal axis is presented in a logarithmic scale. The results,
displayed in Fig. 3.5, show a persistent improvement of POS in the expected velocities
and accelerations with respect to EOS, for both types of operations. Unsurprisingly,
as the uncertainty decreases, i.e., σz is reduced, the expectations of velocity and accel-
eration in the contact tend to zero for both solutions. This is more prominent in the
case of the expected contact velocities, which are very close to zero for both methods
if σz < 10−7 m (see Figs. 3.5a and 3.5b). However, the expected accelerations from
the EOS solutions are still substantial for small values of σz , whereas the ones from the
proposed solutions are insignificant (see Figs. 3.5c and 3.5d).

(a) E
[
|Vc|

]
(making operation). (b) E

[
|Vc|

]
(breaking operation).

(c) E
[
|Ab|

]
(making operation). (d) E

[
|Ab|

]
(breaking operation).

Figure 3.5: Absolute values of expected contact velocities and bounced accelerations for different
standard deviations σz .

3.5.2 Comparison via a Monte Carlo method

The most straightforward application of the optimal control design is open-loop con-
trol strategies, in which the input signal is directly applied to the actuators to achieve
soft landing. The main disadvantage of open-loop control compared to other more com-
plex and expensive alternatives is the lack of any feedback or adaptation loop to correct
disturbances. Thus, to analyze this type of control, modeling errors are taken into ac-
count.

Firstly, complete input signals are constructed based on the optimal control solu-
tions and are presented in Fig. 3.6. They correspond to a making and breaking cycle.
With regards to the voltage signal (Fig. 3.6a), there is an interval previous to the start
of motion in which the voltage is constant (uub and ulb for the making and breaking
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operations, respectively). It is necessary for increasing or decreasing the magnetic force
so it balances the spring force and the plunger can take off and start the motion. The
time interval required cannot be calculated analytically, so the differential equation is
solved by numerical integration. There is also an interval at the end of each operation
with constant voltage (uub and 0 for the making and breaking operations, respectively),
which is large enough to ensure that the armature always reaches the desired position.
On the other hand, the corresponding current signal (3.6b) is calculated by integrating
the state vector with the voltage as input, based on the hybrid automaton from Fig. 3.2
and then using the output function (3.44). For these and the following simulations, the
initial state is initialized assuming a de-energized coil,

x(0) =

zmax

0
0

, q(0) = 6. (3.63)

(a) Voltage.

(b) Current.

Figure 3.6: Open-loop soft-landing control signals for making and breaking cycles.

Monte Carlo simulations are performed to analyze the performance of the control
strategies. They serve to demonstrate the improvement of our proposal over the standard
solution in a more realistic scenario. They are also used to show the advantage of using
the current as the input of the open-loop control, instead of the voltage. We perform
50 000 simulations of making and breaking commutations for each case. The simulations
depend on the parameter vector p, which is defined as

p =
[
zmin zmax ksp zsp cf N Rc,0 φsat keddy mmov

]T
. (3.64)

To emulate unit-to-unit variability, the model parameters are perturbed. Specifically,
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each parameter pi is defined as a normal deviate,

pi ∼ N
(
pnom
i ,

(
(z nom

min − z nom
max )σp

)2) (3.65)

if pi is zmax or zmin; otherwise,

pi ∼ N
(
pnom
i , (pnom

i σp)
2
)
, (3.66)

where the superscript nom is used for denoting the corresponding nominal value, as
specified in Table 3.2. The relative standard deviation is set as σp = 0.01 and serves to
emulate the unit-to-unit variation. The resistanceR is also perturbed, but it is considered
a special case because its variation is predominantly caused by temperature changes in
a single device, instead of unit-to-unit variability in the coil characteristics. Thus, the
perturbed resistance for each nth run is defined as the following normal deviate:

R ∼ N
(
Rnom, (αR σT )2

)
, (3.67)

where αR is the temperature coefficient of the copper coil resistance (αR = 0.004 K−1 )
and σT is the standard deviation of the temperature, assuming a normal distribution.
Simulations are performed for different σT to see its influence when controlling with
the voltage. Note that, when controlling with the current, the position trajectory is
independent on the resistance.

To summarize the simulated results, an equivalent contact velocity is calculated for
each commutation, as suggested in [24]. It is defined as follows:

vc,eq =

√
mmov

m nom
mov

∑
i

vci
2, (3.68)

where {vci} is the set of contact velocities. Note that vc,eq corresponds to the contact
velocity of the nominal system that would result in the same dissipated kinetic energy as
the perturbed system on all the bounces. Note also that, although the dynamical model
does not incorporate elastic bounces by means of a coefficient of restitution, there may
be several bounces if the acceleration at contact is positive (for making operations) or
negative (for breaking operations). This is the motivation for incorporating the expected
bounced acceleration in the cost functional, as discussed in 3.3.2.

The results are presented in Fig. 3.7 for the making operations and in Fig. 3.8 for
the breaking operations. For any input choice and temperature variance, the results
with POS are considerably better than EOS. This indicates that, even though POS only
theoretically accounts for uncertainty in the contact position, the resulting input signals
are more robust to errors of other parameters. Additionally, notice in the histograms
that the cases with no bounces (light areas) are separated from the ones with bounces
(dark areas). In average, the simulations in which there are bounces are notably worse. In
this respect, there is also a clear advantage of POS over EOS, as the proportion of results
in which there are no bounces is larger for any case. This is an expected consequence of
minimizing a cost functional with a term related to the bounced accelerations.
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(a) EOS (u = υcoil, σT = 0). (b) POS (u = υcoil, σT = 0).

(c) EOS (u = υcoil, σT = 5 ◦C). (d) POS (u = υcoil, σT = 5 ◦C).

(e) EOS (u = υcoil, σT = 10 ◦C). (f) POS (u = υcoil, σT = 10 ◦C).

(g) EOS (u = ιcoil ). (h) POS (u = ιcoil ).

Figure 3.7: Relative frequency histograms of the equivalent velocities of the optimal control EOS
and POS for the making operation. The dark areas of the histograms correspond to the cases with
no bounces.
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(a) EOS (u = υcoil, σT = 0). (b) POS (u = υcoil, σT = 0).

(c) EOS (u = υcoil, σT = 5 ◦C). (d) POS (u = υcoil, σT = 5 ◦C).

(e) EOS (u = υcoil, σT = 10 ◦C). (f) POS (u = υcoil, σT = 10 ◦C).

(g) EOS (u = ιcoil ). (h) POS (u = ιcoil ).

Figure 3.8: Relative frequency histograms of the equivalent velocities of the optimal control EOS
and POS for the breaking operation. The dark areas of the histograms correspond to the cases
with no bounces.
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Focusing on the making operations (Fig. 3.7), the best results are obtained with the
voltage as input and no temperature changes (Figs. 3.7b and 3.7a). However, there is a
worsening trend as the temperature variance increases, while the results with current as
input remain unchanged by definition (Figs. 3.7h and 3.7g). For deviations of 5◦C or
larger, which are completely reasonable, the current is a better input. Notice also that
there is a significant fraction of commutations with bounces due to the bounced acceler-
ation and, as expected, their results are worse in average. This is more prominent in the
EOS cases, as the expected bounced acceleration is not included in the cost functional.
Regarding the breaking operations (Fig. 3.8), the results are much better in general, with
smaller vc,eq. Nonetheless, the conclusions related to the choice of input and optimal
control solution are analogous.

3.5.3 Experimental comparison

To validate the improvement in a real application, the optimal solutions are applied to the
solenoid valve presented in Section 3.4.1. The lack of a position sensor is an important
limitation for the experimental testing, but instead, it is possible to measure the impact
noises. Thus, the experimental setup incorporates an electret microphone, as can be seen
in Fig. 3.1b.

Three different current signals for the making operation are alternately applied to
the valve, 500 times each. The first one is simply set to 0.8 A (no control) and serves
as a reference for the other two. The second and third ones correspond to the EOS and
POS current signals (see Fig. 3.9). For each one, there is a constant-slope transition from
0 A to the initial current value in 2 ms and another constant-slope transition from the
final current value to 0.8 A in 2 ms. The current is then kept at 0.8 A for a sufficiently
long time interval to ensure the commutation and to completely measure the audio with
the microphone. We focus on the making operations, which present the most notable
impact noises in this device.

Figure 3.9: Open-loop soft-landing control signals for making operations in experimental tests.

For supplying the desired current signals to the device, we use in our experiments
a voltage to current converter. The diagram is presented in Fig. 3.10. The actuator
coil is represented by the resistance R in series with the inductance L. The shunt
resistor is Rshunt = 2 Ω, the input is a voltage proportional to the desired current
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υref = Rshunt ιcoil, and the operational amplifier is an Apex PA92, with supply volt-
ages of −60 and +60 V.

−

+υref

R L Rshunt

Figure 3.10: Circuit diagram of the voltage to current converter used in the experiments.

To process the voltage signals from the microphone, the following energy is obtained
for each one,

Es =

∫ ttrig+∆t

ttrig

υaudio
2(t) dt, (3.69)

where ttrig is established as the first instant t where υaudio(t) > max(υaudio)/5 and
∆t = 0.01 s. The energies are then normalized by dividing each one by 1.52×10−3 V2 s,
which is the average of the 500 runs with no control (its relative standard deviation is
0.1561).

The results from the optimal control solutions are summarized in the histograms
shown in Fig. 3.11. Both reduce considerably the impact sound with respect to the
average operation with no control. The results from POS are appreciably better, with
an average of 0.161 and a standard deviation of 0.0795, in contrast with the average of
0.2242 and standard deviation of 0.0947 from the energy-optimal solution.

(a) EOS. (b) POS.

Figure 3.11: Relative frequency histograms of the normalized energies from the audio signals.
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3.6 Discussion

In this chapter, we have proposed a new optimal approach to design soft-landing trajec-
tories of reluctance actuators. For the case of reluctance actuators, the advantage of using
the current as input has been discussed and a term has been added to the cost functional
to minimize the square of the current derivative. The choice of the current as input is
also validated by the results of the Monte Carlo simulations.

Note that, although only the contact position is considered a random variable in
the optimal control design, the overall solution is able to compensate for uncertainty of
other model parameters. This is also demonstrated in the experimental results, which
show the improvement of considering uncertainty in the contact position, even though
there are other sources of uncertainty. Additionally, the aforementioned results help to
highlight how challenging these types of devices are to soft-landing control when there
is no position sensor or observer. Notice that, even though the same current signal is
applied to the device repeatedly, the resulting impact noise has a notable dispersion.

The designed input signals has been proven advantageous for open-loop control im-
plementations. Furthermore, the position trajectories are also useful for other types of
control, such as the ones explored in the following chapters: run-to-run adaptive feed-
forward control (Chapter 4) and position-tracking feedback control (Chapter 5).
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Chapter 4

Run-to-Run Control
A run-to-run control is proposed for soft landing. The search method is based on Bayesian
optimization, and several ideas are introduced for its application in run-to-run strategies.
Additionally, methods for the input parametrization and dimension reduction are presented.
Lastly, the control is analyzed through simulated and experimental tests.

4.1 Introduction

Cycle-to-cycle learning-type strategies may be used for improving the robustness of open-
loop or feedforward soft-landing controllers by taking advantage of the repetitive func-
tioning of these switching devices and adapting the input profiles. Examples of propos-
als found in the literature include iterative learning [13], [72] and extremum seeking
controllers [73], [74]. Run-to-run (R2R) control, in contrast with other learning-type
strategies, only requires one evaluation value for each cycle [75]. The most popular ap-
plication is semiconductor manufacturing [76], [77] for the control of properties that
cannot be measured during each operation, e.g. wafer thickness. It is also suitable for
controlling low-cost reluctance actuators because, although it is difficult to measure the
position in real time, other variables can be measured or derived to evaluate each cycle,
for example, the duration of the bouncing [78] or the sound intensity of the impact.

R2R controllers can be classified as direct and indirect. In direct R2R methods, the
input is directly calculated in an optimization process of the evaluation variable [79],
[80]. On the other hand, indirect R2R consists in calculating some decision variables
that indirectly affects the system input. For example, the decision variables may be used
to determine the reference [81], parameters of an online feedback controller [82], time
intervals of an open-loop input profile [15], [78] or an input offset [83]. This chapter
focuses on the design of indirect R2R strategies. It allows separating the optimization
process from the input generation.

The optimization problem can be formulated as the minimization of a cost function,
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whichmaps the decision (input) with the evaluation (output) variables. In that regard, an
important distinction is between implicit and explicit methods [84]. On the one hand, an
explicit optimization depends on a process model, which may be fixed or refined in each
iteration. On the other hand, an implicit method treats the cost function as a black box.
Designing a model-based R2R strategy for reluctance actuators is very challenging, as it
needs an explicit definition of the cost function to be optimized. Therefore, the R2R
strategies that are studied in this chapter are implicit. Without an explicit definition
of the cost function, each evaluation must be performed on the real device. Hence,
the optimization convergence speed is of great importance. As stated by Srinivasan et
al.[84], the gradient of the cost function can be approximated by disturbing the d decision
variables. However, the estimated derivatives are very sensitive to noise and need at least
d+ 1 function evaluations in each iteration. A better solution for this type of problem,
proposed by Ramirez-Laboreo et al. [78], is based in a derivative-free pattern search
(PS) method [85]. However, the optimization still requires several function evaluations
in each iteration.

Besides the optimization algorithm, the input signal selection is critical for the con-
trol performance. Furthermore, the signal must be parametrized in a way that permits
modifying it in each iteration from a limited set of decision variables. If the voltage is
chosen as the input, open-loop bang-bang or bang-bang-off signals are adequate for soft
landing and very easily parametrizable. On the other hand, controllers with the current
as input are more robust to changes in the temperature, as shown in Chapter 3. How-
ever, the parametrization of open-loop current signals is more challenging because of its
relatively slow dynamics, which is comparable to the mechanical dynamics.

The main proposal presented in this chapter is an R2R strategy with a search func-
tion based on Bayesian optimization (BO) and a flatness-based feedforward controller
for the input generation. To demonstrate the effectiveness of the proposal, multiple sim-
ulations are performed with a dynamical model that fits a commercial solenoid valve,
as in Chapter 3. The proposed R2R control is compared with two alternatives. The
first one uses a PS method and was previously proposed for bounce reduction of relays
[78]. The second one uses a Nelder–Mead (NM) search method, which requires fewer
function evaluations in each iteration than the PS method. Then, to validate the control
applicability in real devices, the R2R strategies are applied to solenoid valves using an
experimental setup.

4.2 Problem statement

Most commonly in R2R optimization problems, the system dynamics is formulated
with a conventional state-space representation [86], but it is not accurate enough in this
scenario. As mentioned in previous chapters, switch-type actuators have three different
dynamic modes, corresponding to the upper and lower position boundaries and the mo-
tion between those limits. Furthermore, other dynamical or output variables may also
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have discrete behaviors. Therefore, the dynamical system cannot be considered a con-
tinuous dynamical system, but a hybrid automaton. Similarly to the generalized form
presented in [53], it can be formulated as

d

dt
x j(t) = fq

(
x j(t), u j(t), d j(t)

)
, x j(t) ∈ Cq, (4.1)(

x j(t+), q j(t+)
)

= Gq

(
x j(t)

)
, x j(t) ∈ Dq, (4.2)(

x j(0), q j(0)
)

= (x0, q0), (4.3)

where x j(t) the continuous state vector, q j(t) ∈ {1, 2, . . .} the discrete state, u j(t)
the input vector, d j(t) the disturbance vector, fq the flow map, Gq the jump map, Cq
the flow set,Dq the jump set, and (x0, q0) the initial states. Note that, for cycle-to-cycle
controllers, it is important to explicitly discern between iterations, hence the superscript
j represents the iteration number. Note also that, to simplify the problem statement, the
usual continuous output vector is not directly defined. It can be included in—or derived
from—x j(t), so there is no loss of generality.

Secondly, the input signal is parameterized into a discrete set of decision variables, as
is required for R2R control. For any instant t, the input is obtained as

u j(t) = U
(
χ j , t

)
, (4.4)

where χ j ∈ Rd is the decision vector and U is the function that generates the input
signals.

Thirdly, the variable to be optimized in each repeated cycle is defined. It is obtained
directly or indirectly from measurements, which means the optimization problem is
measurement-based. This variable may be related to the impact noise level, the bouncing
duration, the transient time, or a combination of them. It can be defined as a terminal
cost ψ jr to be optimized,

ψ jr = J
(
x j(tf)

)
, (4.5)

being J the cost function and tf the operation final time.

The optimization process exploits the stored data from previous iterations, which
are the decision vectors χ i and their corresponding observed costs ψ i, for all i =
1, 2, . . . , j − 1. Note that, due to possible measurement errors, there is a distinction
between observed costs ψ i and real ones ψ ir .

Finally, the general measurement-based terminal-cost optimization under uncer-
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tainty can be formulated as follows:

min
χ j

ψ jr = J
(
x j(tf)

)
, (4.6)

such that (4.1) − (4.4),

S
(
x j(t), u j(t), q j(t)

)
≤ 0, (4.7)

T
(
x j(tf), q

j(tf)
)
≤ 0, (4.8)

given D j−1 =
{

(χ i, ψ i) | i = 1, 2, . . . , j − 1
}
, (4.9)

where ψ i = ψ ir + ν i, (4.10)

being S and T the path and final state constraint functions,D j−1 the data set composed
of the previous decision vectors and observed costs, ν i the ith observation noise, and 0
a column vector of all zeros.

As an implicit R2R optimization, the cost function and system dynamics are treated
as a black box. To simplify the optimization formulation, the input generation may be
included in the black-box function, resulting in the following reformulation,

min
χ j

ψ jr = J
(
χ j
)

+ δ j , (4.11)

such that S
(
χ j
)
≤ 0, (4.12)

given D j−1 =
{

(χ i, ψ i) | i = 1, 2, . . . , k − 1
}
, (4.13)

where ψ i = ψ ir + ν i, (4.14)

where the new black-box cost function J maps the decision vector to the cost, δ j is the
additive effect of the disturbance d j(t) from (4.1), and the new constraint function S
acts as a replacement of S and T .

4.3 Run-to-run algorithm

This section presents the R2R control strategy with the proposed search method.

4.3.1 Main algorithm

Firstly, the generalized R2R control algorithm is presented. It must be iterative to ac-
count for and exploit the cyclic operations. In particular, reluctance actuators are char-
acterized by having two distinct operation types depending on the motion direction:
making and breaking. These two operation types act alternatively, which means that a
complete commutation cycle consists of one operation of each.

The R2R solution (see Algorithm 4.1) consists in a loop in which every iteration j
comprises the generation of the input signals for the making and breaking operations
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(u jm and u jb, respectively) from their corresponding decision vectors (χ jm and χ jb ), the
application of these signals and the observation of the costs (ψ jm and ψ jb ), and lastly, the
optimization process in which the next decision vectors (χ j+1

m and χ j+1
b ) are obtained

from previous data (D jm and D jb ).

Algorithm 4.1 Run-to-run control

1: Initialize: χ1
m, χ

1
b

2: for j ← 1 to num. commutations do
3: u jm(t)← Generate Input(χ jm )
4: u jb(t)← Generate Input(χ jb )
5: Apply u jm(t) and measure ψ jm
6: Apply u jb(t) and measure ψ jb
7: χ j+1

m ←Search(D jm )
8: χ j+1

b ←Search(D jb )
9: end for

Notice that the frequency of the cycles is limited by the computation time of the
functions Generate Input and Search. If that time is not small enough, it will be
necessary to adapt the algorithm towork around this issue, e.g. by commuting the device
several times in each iteration without updating the decision vectors, or by computing
in parallel the function algorithms for the making and breaking operations.

While the function Generate Input must be specifically defined for each situation,
the following description of optimization function Search is generalized for any actua-
tor.

4.3.2 Optimization method

Different optimization methods have been explored for the Search function. While al-
ternatives are described in Appendix A, this section focuses on explaining the main pro-
posal. It is based on BO,which is a well-knownmethod of black-box global optimization,
and has proven to be effective in real-time control applications, e.g. maximum power
point tracking [87], or altitude optimization of airborne wind energy systems [88]. In
each iteration, it approximates the black-box function with a random process regressor—
which is typically Gaussian [89]—depending on data from previous iterations. Through
the regressor, it predicts the output for any point χ. Then, through the maximization
of a utility or acquisition function facqn of the predicted output, it selects the following
points to be evaluated χ j+1.

The proposed function is described in Algorithm 4.2. Its inputs are the current point
(decision vector χ j ), which has been obtained in the previous iteration, and its evalu-
ation ψ j . Its output is the next point χ j+1. Some parameters are set as constant (for
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Algorithm 4.2 Optimization

1: function Search(χ j , ψ j )
2: Constant: σ2

n, d, kmax

3: Persistent: X, Ψ, Σ, k

. Learning
4: k ← k + 1
5: (Xk, Ψk, Σk,k)←

(
χ j , ψ j , σ2

n

)
. Data size constraining

6: (X, Ψ, Σ, k)←Merge(X, Ψ, Σ, k)
7: (χlb, χub)← Bounds(X, Ψ, Σ)
8: if k > kmax then
9: (X,Ψ,Σ, k)← Remove(X, Ψ, Σ, k, χlb, χub )
10: end if

. Acquisition
11: χ j+1 ← arg maxχlb≤χ≤χub

facqn(χ | X,Ψ,Σ)

12: return χ j+1

13: end function

example, the observation noise variance σ2
n ). Also, there are some persistent variables

(for example, the number of stored points k), which are changed inside the function but
are not required outside of it. Note that these variables are different for each operation
type, but, for the sake of simplicity, that distinction is omitted. For clarity, the algorithm
is divided into three steps:

1. Learning. Updating the stored points X ∈ Rd×k and their evaluations Ψ ∈ R1×k

by the addition of the jth decision vector χ j and its cost ψ j . The variance of the
last observation σ2

n is added to the covariance Σ.

2. Data size constraining (k ≤ kmax ). Observations are merged or removed if
necessary. Furthermore, the search space lower and upper bounds (χlb and χub,
respectively) are modified in each iteration. These processes are further discussed
in Section 4.3.4.

3. Acquisition. Selection of next decision vectorχ j+1 bymaximizing an acquisition
function, given the previous data (X, Ψ and Σ). The search is restricted between
the lower bound χlb and the upper bound χub. The proposed acquisition func-
tion is defined in Section 4.3.5.

4.3.3 Prior and posterior distributions

The selected model for regression is the Gaussian process. It is the most popular one in
the context of BO because it only requires algebraic operations to determine the corre-
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sponding posterior distribution. In general, it is completely specified by a mean function
m(χ) and covariance or kernel function k(χ,χ′) [89],

f(χ) ∼ GP
(
m(χ), k(χ,χ′)

)
. (4.15)

For convenience, m is assumed to be constant. On the other hand, the chosen co-
variance function is squared exponential,

k(χ,χ′) = σ2
f exp

(
−1

2
(χ− χ′)T diag(l)−2 (χ− χ′)

)
, (4.16)

where σ2
f is the characteristic variance and diag(l) ∈ Rd×d is a diagonal matrix with the

length scales for each dimension.

In a given iteration, we have the training outputs Ψ = f(X)+ε. The output noise ε
is an independently distributedGaussian random vector whose covariance is the diagonal
matrix Σ. Given the properties of Gaussian processes, the joint distribution of Ψ and
an output f for an arbitrary χ is multivariate normal,[

ΨT

f

]
∼ N

(
m,

[
K + Σ k

kT k(χ,χ)

])
, (4.17)

where the mean vector m ∈ R(k+1)×1, kernel matrix K ∈ Rk×k and kernel vector
k ∈ Rk×1 are

mi = m, Ki,i′ = k(Xi,Xi′), ki = k(Xi,χ), ∀i, i′ ≤ k. (4.18)

The posterior predictive distribution for f is also Gaussian,

f | X,Ψ,χ ∼ N (µ, σ2), (4.19)

where the mean µ and variance σ2 depend on previous data,

µ = µ(χ) = (Ψ−m) (K + Σ)−1 K + m, (4.20)

σ2 = σ2(χ) = k(χ,χ)− kT (K + Σ)−1 k. (4.21)

4.3.4 Data size constraining

For the application of the optimization method for cycle-to-cycle learning type con-
trol, it is imperative to constrain the size of stored data in order to prevent the ceaseless
increase of computational requirements. For that purpose, three adjustments are intro-
duced, corresponding to the functions in Algorithm 4.2.
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Merge

The first measure considers that, if two or more observations are performed for the same
input, there is no need to store them separately. By using Bayesian inference, those cost
evaluations can be merged and the equivalent cost mean and variance are obtained.

Assumption 4.1. The ith and kth columns of X are equal (Xi = Xk ).

Proposition 4.1. Their corresponding costs are Ψi and Ψk, with variances Σi,i and Σk,k
are equivalent to ψeq and σ2

eq respectively, which are defined as

ψeq =
Σk,k Ψi + Σi,i Ψk

Σi,i + Σk,k
, σ2

eq =
Σi,i Σk,k

Σi,i + Σk,k
. (4.22)

Proof. From the first observation (Ψi, Σi,i ), the prior probability density for an arbi-
trary ψ is proportional to

ρ(ψ) ∝ exp

(
− (ψ −Ψi)

2

2 Σi,i

)
, (4.23)

and the likelihood of the second observation (Ψk, Σk,k ) given ψ is proportional to

ρ(Ψk | ψ) ∝ exp

(
− (Ψk − ψ)2

2 Σk,k

)
. (4.24)

Therefore, the posterior probability density is proportional to

ρ(ψ | Ψk) ∝ ρ(ψ) ρ(Ψk|y)

∝ exp

(
− (ψ −Ψi)

2

2 Σi,i
− (Ψk − ψ)2

2 Σk,k

)
∝ exp

(
− (ψ − ψeq)

2

2σ2
eq

)
, (4.25)

where the mean ψeq and variance σ2
eq correspond to (4.22).

As Bayesian inference is used, the substitution of (Ψi, Σi,i) with (ψeq, σ
2
eq) and the

removal of (Ψk, Σk,k)will result in the same posterior Gaussian probability distribution
(see (4.19)) for the optimization phase. Note that the condition Xk = Xi can be relaxed
to allow some tolerance. A straightforward and effective way is to round all decision
vectors, so two points that are very close together are treated as equal.
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Bounds

The second idea is making the search space adaptive, closing around the best pointχbest

when it does not change in consecutive runs, and expanding otherwise. The function
is described in Algorithm 4.3. The space expansion in an iteration j is related to the
variation of χbest from the previous iteration j − 1. Firstly, the current one χ jbest is
selected based on its mean value (see (4.20)). Secondly, the variations are filtered with
an exponentially weighted moving average (EWMA), where w ∈ (0, 1) is the filtering
factor. Thirdly, the bound length vectorL ∈ Rd is updated in each iteration, shrinking if
Dχ is small and expanding otherwise (where cshrink ∈ (0, 1) is the shrinkage coefficient,
|Dχ| is the element-wise absolute value, and satLmin

Lmax
denotes an element-wise saturation

function between the chosen Lmin and Lmax ). Finally, the bounds χlb and χub are
calculated around the best point χ jbest, ensuring that they do not surpass the absolute
ones χlb,abs and χub,abs.

Algorithm 4.3 Adaptive search bounds

1: function Bounds(X, Ψ, Σ)
2: Constant: χlb,abs, χub,abs, w, cshrink

3: Persistent: L, Dχ, χ jbest

4: χj−1
best ← χ jbest

5: χ jbest ← Xi such that i = arg mini′ µ(Xi′)

6: Dχ ← (1− w)Dχ + w
(
χ jbest − χ

j−1
best

)
7: L← satLmax

Lmin

(
cshrink

(
L+ |Dχ|

))
8: χlb ← max(χlb,abs, χ

j
best −L)

9: χub ← min(χub,abs, χ
j
best +L)

10: return χlb, χub

11: end function

Remove

Merging observations does not guarantee that the size of data history is bounded. Thus,
in the case that the number of stored points k surpasses a chosen limit kmax, the third
measure consists in a two-step removal of points. For the first step, note that the effect of
points that are far away from the bounded space—depending on the characteristic length
scales l (see (4.16))—can be considered negligible. Thus, any pointXi that does not meet

χlb − 3 l ≤ Xi ≤ χub + 3 l (4.26)

is removed. The shrinkage and removal of distant points are especially useful for high-
dimensional inputs, in which the limited number of stored data is not enough to generate
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a regressor of the entire search space. However, in any case, the data size constraining is
still not guaranteed. Then, as the second step, a removal criterion is defined to ensure
that k ≤ kmax. One way of approximating the Gaussian process for large data sets is
by selecting a subset. The selection criterion introduced by Lawrence et al. [90] aims at
keeping the most information of the function by maximizing the differential entropy.
However, in the presented problem, only one point at most is needed to be removed
from the set in each iteration. Consequently, instead of a selection criterion, it is more
straightforward and computationally efficient to define a removal criterion. Considering
that, the objective is to find the index i which minimizes the increment of entropy due
to the removal of Xi from X,

arg min
i

(
Hf

(
σ2
\i
)
−Hf

(
σ2
i

))
, (4.27)

being Hf (σ2
i ) and Hf (σ2

\i) the entropy values of f (4.19) before and after the removal
of Xi from X, respectively. Note that the differential entropy of a normal distribution
depends solely on the variance,

Hf (σ2) =
1

2

(
1 + ln

(
2π σ2

))
. (4.28)

Furthermore, there is no need to evaluate the differential entropy functions for every
i. If Xi were removed, for any i, the resulting posterior variance σ2

\i would increase,
depending on the observation noise Σi,i,

σ2
\i =

Σi,i σ
2
i

Σi,i − σ2
i

. (4.29)

By disregarding the constants, the derived entropy increment is proportional to

Hf (σ2
\i)−Hf (σ2

i ) ∝ ln

(
σ2
\i

σ2
i

)
∝ − ln

(
1− σ2

i

Σi,i

)
, (4.30)

which monotonically increases with respect to σ2
i /Σi,i. Also, for each point Xi, the

posterior variance is calculated as σ2
i = σ2(Xi) from (4.21). Therefore, the index to be

removed is simply obtained as follows:

arg min
i

(
σ2(Xi)

Σi,i

)
. (4.31)

4.3.5 Acquisition

The last step is the selection of the next point χ j+1 to evaluate, with a trade off between
obtaining the most information of the function (exploration) and attempting to mini-
mize it (exploitation). As f is a random variable, the selection of χ j+1 must be carried
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out by the maximization of an acquisition function dependent on µ and σ2, defined
in (4.20) and (4.21). One of the most common acquisition functions is the expected
improvement, which is appropriate in regular optimization problems, as it manages to
balance exploration and exploitation.

Firstly, the improvement of the Gaussian random variable f can be expressed as a
function,

I(f) = max(µmin − f, 0), (4.32)

where µmin is the best observation so far, according to their predictive posterior mean
values,

µmin = min
i
µ(Xi). (4.33)

The expected improvement is the mean of I(f), which can be expressed as

E[I(f)] = σ
(
ρNS

(fn) + fn PNS
(fn)

)
, fn =

µmin − µ
σ

, (4.34)

where ρNS
and PNS

are the standard probability density and cumulative distribution
functions, respectively,

ρNS
(fn) =

1√
2π

exp

(
−fn

2

2

)
, (4.35)

PNS
(fn) =

1

2
+

1√
2π

∫ fn

0

exp

(
−f

2

2

)
df. (4.36)

The reasoning behind (4.32) is that, if the obtained cost f is worse than the best
µmin, there is no improvement but also no loss, so I(f) is zero. This is suitable for
optimization problems in which there is no regret. However, for R2R control, there
must be a penalty for obtaining worse outputs than µmin, as this is conducted in real
time. Assuming that there are ∆j remaining commutations, an improvement over µmin

wouldmean a potential improvement for the remaining∆j commutations. On the other
hand, a worsening over µmin would only mean a worsening for the next commutation,
because in the following one it would be possible to commute with an expected cost of
µmin. Taking that into consideration, the net improvement is defined,

Inet(f) =

{
∆j (µmin − f), if f ≤ µmin

µmin − f, if f > µmin

. (4.37)

Then, the expected net improvement is derived, which can be expressed in relation
to the expected improvement E[I(f)],

E[Inet(f)] = µmin − µ+ (∆j − 1) E[I(f)]. (4.38)
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Note that, if ∆j = 1, the maximization of E[Inet(f)] is equivalent to the minimiza-
tion of µ. As ∆j decreases, the acquisition favors exploitation over exploration, which is
the intended behavior. Also, notice that as∆j increases, E[Inet(f)]/∆j tends toE[I(f)],
which would correspond to a regret-free optimization. Moreover, if the number of com-
mutations is not known, ∆j can be set as an expectation.

In this control problem, the objective is to minimize a cost related to absolute or
nonnegative values, e.g. contact velocities, impact sound intensities, or bouncing dura-
tions. Taking that into account, the acquisition function can be further improved. For
convenience, f is kept as a Gaussian random variable given by (4.19) and an auxiliary
variable fsat is defined by saturating f and ensuring its nonnegativity,

fsat = max(f, 0). (4.39)

Substituting f with fsat in (4.37), the net improvement of the saturated fsat is

Inet(fsat) =


∆j µmin, if 0 < f

∆j (µmin − f), if 0 ≤ f ≤ µmin

µmin − f, if f > µmin

. (4.40)

and its expected value, which is the proposed acquisition function facqn, can be expressed
in terms of the already defined E[Inet(f)],

facqn = E[Inet(fsat)] = E[Inet(f)]−∆j σ

(
ρNS

(
−µ
σ

)
− µ

σ
PNS

(
−µ
σ

))
. (4.41)

Note that the subtracting term is always positive, i.e. E[Inet(fsat)] < E[Inet(f)], and
increases with respect to the variance, prioritizing exploitation over exploration.

4.4 Input definition

The input function (4.4) must be defined, relating the decision vectorχ to the continuous
input signal u(t). Using the current as input is more robust to temperature variations,
as shown in Chapter 3, but its parametrization is more challenging. When using the
voltage as input, bang-bang signals can be constructed from the time intervals, which
would act as the decision variables. For more details about the voltage parametrization,
see Appendix B.1. In contrast, the current dynamics is slower, and must be taken into ac-
count. Therefore, this section presents a model-based feedforward controller, exploiting
its flatness property.

4.4.1 Flatness-based feedforward control

Flatness is a structural property of nonlinear dynamical systems, which may be regarded
as an extension of Kalman’s controllability of linear systems [91]. (A linear system
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is flat if and only if it is controllable). Proving that a system is flat simplifies greatly
the design of many types of controllers. Regarding feedforward control, the flatness
property implies that both the state and input variables can be expressed as an algebraic
function of a fictitious (flat) output and a finite number of its derivatives [92]. This is
extremely useful if the flat output trajectory is set as the reference because the input can
be calculated without the numerical integration of any differential equation.

The goal of the proposed feedforward controller is to calculate the input signal (cur-
rent) from a reference trajectory (desired position). The motion dynamics of a generic
reluctance actuator must be represented by a flat system. For this purpose, we select the
dynamical function of RAM-FK, as defined in Section 2.3.3. Then, the system is defined
by three dynamical functions,

ż = v, (4.42a)

v̇ =
Fpas(z, v) +R′g(z)φ2/2

mmov
, (4.42b)

φ̇ = −Rc(φ) +Rg(z)

keddy
φ+

N

keddy
u, (4.42c)

while the fictional output is the reference,

y = z. (4.43)

To prove the flatness property, the state variables are defined as functions of the
output and a finite number of its derivatives. Through simple manipulations of (4.42)
and (4.43), the following relations are derived:

z = y, (4.44a)
v = ẏ, (4.44b)

φ = φ(y, ẏ, ÿ) =

√
2
(
Fpas(y, ẏ)−mmov ÿ

)
R′g(y)

. (4.44c)

Note that there are theoretically two φ solutions, but only one is necessary, so the posi-
tive one is selected. Furthermore, the input can be defined in the same manner,

u = u
(
y, ẏ, ÿ, y(3)

)
=
Rc(φ) +Rg(y)

N
φ+

keddy

N
φ̇ (4.45)

where φ is replaced by its function from (4.44c). Similarly, the function for φ̇ can be
obtained by calculating the time derivative of (4.42b) and isolating it,

φ̇ = φ̇
(
y, ẏ, ÿ, y(3)

)
=

1

R′g(y)φ

(
∂Fpas(y, ẏ)

∂y
ẏ +

∂Fpas(y, ẏ)

∂ẏ
ÿ −mmov y

(3) − 1

2
R′′g(y) ẏ φ2

)
. (4.46)
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Thus, for the system to be flat, Fpas must be differentiable and Rg twice differen-
tiable. There are also singularities for φ = 0 and R′g(y) = 0. Overall, the flatness
condition is

Fpas(y, ẏ)−mmov ÿ

R′g(y)
> 0 ∧ ∃ ∂

2Rg(y)

∂y2
,
∂Fpas(y, ẏ)

∂y
,
∂Fpas(y, ẏ)

∂ẏ
,

∀ y(t), ẏ(t), ÿ(t) such that t ∈ [t0, tf ],

(4.47)

where the times t0 and tf correspond to the motion start and end, respectively.

We propose to define the predefined position trajectory z(t) as the reference for each
operation type. The trajectories can be designed by solving a soft-landing optimal con-
trol problem, as in Chapter 3. They can also be established in any other way, as long
as they are feasible. Then, they are modified with computationally efficient linear trans-
formations to obtain the output. The first parameters that are considered for decision
variables are the initial and final position values, y0 and yf . Then, the nominal position
trajectory z ∈ [z0, zf ] is linearly transformed into y ∈ [y0, yf ],

y = y′ (z − z0) + y0, y′ =
∂y

∂z
=
yf − y0

zf − z0
, (4.48)

where the partial derivative y′ is a positive constant. The position derivatives up to the
jerk v̈ are transformed as well,

ẏ = y′ v, ÿ = y′ v̇, y(3) = y′ v̈. (4.49)

Then, the input can be calculated from (4.45). However, it is possible that, for a
poorly chosen set of parameters and position trajectory, the first flatness condition from
(4.47) is not guaranteed. That would mean that, in some interval, the required magnetic
force is positive, which is not physically possible, or zero, which is a singularity. In those
cases, as the closest feasible approximation, φ and φ̇ are set to zero. The input definition
is finally expressed as

u =


Rc(φ) +Rg(y)

N
φ+

keddy

N
φ̇, if φ2 > 0

0, if φ2 ≤ 0
, (4.50)

where φ and φ̇ are calculated from (4.44c) and (4.46), respectively, depending on y and
its derivatives.

Thus, the current signal depends on the nominal position trajectory z, its derivatives
v, v̇, v̈, and the model parameters, including y0 and yf . On the one hand, the nominal
position and its derivatives are established prior to the control. Moreover, depending on
the case, some of the parameters are considered constants, because they have been iden-
tified accurately and their variability between units is negligible. On the other hand, the
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remaining parameters are assumed unknown and will be treated as decision variables,
which can be modified in each cycle. As their magnitudes may differ greatly, it is con-
venient to normalize each one. Consider θ to be the vector of unknown parameters.
Assuming that each parameter is bounded such that θi ∈ [θlbi, θubi], the normalization
is achieved through a linear transformation,

χi =
2 θi − θubi − θlbi

θubi − θlbi

. (4.51)

Thus, the decision variables are bounded such that χi ∈ [−1, 1].

Note that this resembles an online identification process, as the parameter-related
decision variables are optimized in an iterative fashion. However, the parameters are
not optimized to reduce estimation errors, but solely to improve the performance, i.e.
minimize the defined cost. Thus, the parameters may not converge to their real values
if it is not necessary for the control. This is not a limitation but a design choice: the
objective is to minimize a certain cost, not to identify the system. Note also that, in
an R2R application, the data is very limited (only one cost value per iteration), so it
would not be possible to guarantee that the model parameters converge to the real values.
Furthermore, the parameter-related decision variables are optimized independently for
each operation, so they may be able to correct certain phenomena that are not taken into
account by the dynamical model and act differently in each operation type, e.g. magnetic
hysteresis.

Note that the input has only been defined for the operations, i.e. during motion.
Then, the signal for the complete cyclemust be constructed. After each operation, steady
current values must be applied to maintain the actuator in its position (zmin after the
making operation and zmax after the breaking operation). Also, there need to be feasible
transitions between the steady and the operation currents, and vice versa.

4.4.2 Dimension reduction

The convergence rate of the optimization process is strongly dependent on the dimension
of the decision vector. Thus, it is highly recommendable to remove redundant decision
variables whose effect on the input can be replicated through a combination of other
variables. Some of these redundancies may be easy to spot through an examination of
the input function (see (4.44c), (4.46) and (4.50)). In that case, through some change
of variables, an equivalent input function with fewer parameters can be derived. To
ensure that there are no more redundant decision variables, the input function (4.4) can
be interpreted as a discrete-time system, where the decision variables constitute the state
vector, {

χ(ti+1) = χ(ti),

u(ti) = U(χ(ti), ti).
(4.52)
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Then, its local observability matrix O ∈ Rd×d for consecutive time samples t1, t2, . . .,
td is constructed,

O =



∂U(χ, t1)

∂χ1

∂U(χ, t1)

∂χ2
· · · ∂U(χ, t1)

∂χd
∂U(χ, t2)

∂χ1

∂U(χ, t2)

∂χ2
· · · ∂U(χ, t2)

∂χd
...

...
. . .

...

∂U(χ, td)

∂χ1

∂U(χ, td)

∂χ2
· · · ∂U(χ, td)

∂χd


. (4.53)

If the matrix is full-rank—except for singularities—the effect of the decision variables
χi are independent. Even so, it may be still possible to approximate the effect of one
or several decision variables with a combination of the remaining ones. This analysis is
very complex, due to the highly nonlinear input function (4.45). Thus, we propose to
perform a local sensitivity analysis, at χ = 0, which is equivalent to assuming the errors
of the first-order Taylor series negligible,

U(χ, t)− U(0, t) ≈
d∑
i=1

∂U(χ, t)

∂χi

∣∣∣∣
χ=0

χi = ∇U(t)χ. (4.54)

The sensitivities are set as the partial derivatives of U , which can be calculated for the
nominal caseχ = 0 for every t. Just by comparing these partial derivatives, it is possible
to determine which pair of parameters have very similar effects on the input, or which
parameters have a negligible effect. Still, there may be other cases of near collinearity
between sensitivities that are not apparent. One relatively simple way to analyze it is
to sample the time (t1, t2, . . .) and create a Jacobian matrix such that each ith row is
∇U(ti). Then, the rank of the matrix with a chosen tolerance can be calculated and, if
the rank is not full, the decision variables to be removed can be detected with a singular
value decomposition. However, this method does not take into account the bounds of
each parameter. Instead, we propose the following method:

A decision variableχi is a candidate for removal if the variation of u due toχi is nearly
the same as a variation of u with a certain χ, where its ith element is zero. Formally,
the set of all possible solutions is

X \i =
{
χ | χi = 0 ∧

(
∇Ui(t)−∇U(t)χ

)2 ≤ χtol
2, ∀t

}
. (4.55)

where χtol is an arbitrary tolerance. If X \i is empty, the effect of the decision variable
χi is not redundant and thus it should not be removed. Otherwise, χi is a candidate for
removal. As the size X \i may be larger than one—i.e. multiple solutions—we select the
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one with the smallest euclidean norm,

χ\i = arg min
χ∈X\i

‖χ‖2. (4.56)

This is performed for every decision variable χi. Then, the one whose χ\i has the
minimum euclidean norm is removed. Note that, due to the removal of a decision vari-
able, the allowed variations of the input are reduced. To be able to vary it as much as
before the removal of χj , the bounds θub and θlb of the remaining parameters must
be augmented depending on χ\j . Note that ∇U is proportional to (θub − θlb), so it
must also be augmented. Note also that the inputs are still normalized (χi ∈ [−1, 1]).
The complete method is presented in Algorithm 4.4, which must be performed for the
making and breaking inputs separately.

Algorithm 4.4 Dimension reduction

1: loop
2: for i← 1 to d do
3: Calculate X \i . Equation (4.55)
4: end for
5: if X \i = ∅ ∀i then
6: break loop
7: end if
8: Calculate χ\i . Equation (4.56)
9: j ← arg mini ‖χ\i‖2
10: for i← 1 to d do
11: ∆θ ← (θubi − θlbi)

∣∣(χ\j)i∣∣
12: θubi ← θubi + ∆θ/2
13: θlbi ← θlbi −∆θ/2

14: ∇U ← ∇U
(

1 +
∣∣(χ\j)i∣∣)

15: end for
16: (χ, θlb, θlb)← Remove(χj , θlb,j , θub,j )
17: d← d− 1
18: end loop

4.5 Analyses

The run-to-run control with the proposed search function (Section 4.3) is compared
with alternatives based on state-of-the-art direct search methods. In a preliminary anal-
ysis (Appendix B), we have performed simulations of run-to-run strategies with voltage
signals as input, due to their simpler parametrization. This section, however, focuses
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on analyzing the main R2R proposal, using the current as input and thus requiring the
input definition described in Section 4.4.

4.5.1 Specification of model and input functions

The device used in the tests is the linear-travel solenoid valve specified in Section 3.4.1.
The model is characterized in the same way, with equations (3.40) and (3.41), and the
hybrid automaton from Fig. 3.2. While the dynamical model during motion is required
for particularizing the feedforward control from Section 4.4.1 to the studied device, the
entire model presented in the hybrid automaton is also useful for performing analyses
through Monte Carlo simulations, similarly to Section 3.5.2. The nominal values of
the parameters are directly taken from Table 3.1. The only modification is the posi-
tion upper limit, which has been set with the micrometer (shown in Fig. 3.1) so that
zmax = 1.4× 10−3 m.

For the feedforward control, the input is parametrized following the process pre-
sented in Section 4.4.1. Firstly, the desired position trajectories have been optimally
calculated following the procedure presented in Chapter 3, using the same optimiza-
tion parameters (Table 3.2). Correspondingly, the initial and final position values are
z0 = zmax and zf = zmin for the making operation, and vice versa for the breaking
operation. Fig 4.1 depicts the desired position and the nominal current signals for both
operations.

(a) Making operation. (b) Breaking operation.

(c) Making operation. (d) Breaking operation.

Figure 4.1: Desired position trajectories and nominal current signals.

Secondly, the input function is defined. To simplify the final expression, auxiliary
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variable φ# = φ/
√
mmov and its derivative are used,

u =


Rc,0/(1− φ#/φ#

sat) +Rg(y)

N#
φ# +

keddy

N#
φ̇#, φ#2 > 0

0, φ#2 ≤ 0
, (4.57)

being N# = N/
√
mmov and φ#

sat = φsat/
√
mmov auxiliary parameters. The auxiliary

variable φ# can be derived from (4.44c),

φ# =
1

√
mmov

φ(y, ẏ, ÿ) =

√
2 (k#

sp (zsp − y)− c#f ẏ − ÿ)

R′g(y)
, (4.58)

where k#
sp = ksp/mmov and c#f = cf/mmov. Equivalently, φ̇# can be obtained from

(4.46),

φ̇# =
1

√
mmov

φ̇
(
y, ẏ, ÿ, y(3)

)
= −

k#
sp ẏ + c#f ÿ + y(3) +R′′g(y) ẏ φ#2/2

R′g(y)φ#
. (4.59)

Thus, the input depends on these parameters:

θ =
[
y0 yf k#

sp zsp c#f N# Rc,0 φ#

sat keddy

]T
, (4.60)

which then are normalized (see (4.51)) to obtain the decision vector χ. The parameter
bounds are set to ±10 % of the nominal values θnom

i . Specifically, if θi is z0 or zf ,

θlbi = θnom
i − 0.1 lnom

z , θubi = θnom
i + 0.1 lnom

z , (4.61)

where lnom
z = zmax

nom − zmin
nom is the nominal travel distance. Otherwise,

θlbi = θnom
i − 0.1 θnom

i , θubi = θnom
i + 0.1 θnom

i . (4.62)

Note there was a redundant degree of freedom related to mmov, which has been re-
moved thanks to the change of variables (4.57) and the definition of auxiliary parameters
(4.60). Theoretically, there are no other redundancies, because the observability matrix
O—as defined in Section 4.4.2—is full-rank. However, there may be some decision vari-
ables whose effect can be approximated from a combination of the others. Thus, to
detect other candidates for removal, we use Algorithm 4.4, which has been presented in
Section 4.4.2. The tolerance is set to χtol = 10−3 A. Then, the decision variables to be
removed are the ones related to k#

sp, Rc,0 and keddy, for both operation types. (A step-
by-step description of the algorithm execution is included in Appendix C.1.) Therefore,
those parameters are kept constants, and the bounds of the decision variables related to
the remaining parameters are augmented to compensate for the removal of degrees of
freedom. The dimension of the new decision vectors is d = 6.
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4.5.2 Compared strategies

The proposed R2R control based on BO is compared with two alternatives. They use
the same input definition but different optimization methods.

Run-to-run based on pattern search (R2R-PS)

The first strategy is based on the PS method, a direct-search method previously proposed
for soft landing of actuators [78]. The algorithm is described in Appendix A.1. It has the
same features as the state-of-the-art approach and also incorporates an additional measure
that increases its convergence speed. The function requires evaluating a mesh of 2 d+ 1
points in each iteration (one being the previous best point and the other being around
it). The starting meshes X ∈ Rd×(2 d+1) are equally set for both operations, centered at
χ = 0,

X =
[
0 I −I

]
, (4.63)

Correspondingly, the rest of persistent variables required inAlgorithmA.1 are initialized
as

χbest = 0, ∆X =
[
0 I −I

]
, k = 1. (4.64)

Moreover, the expansion and contraction coefficients are set as follows:

cexp = 2, ccon = 0.5, (4.65)

meaning that the mesh size is halved or doubled if the new best point is the same or not,
respectively, as the previous one. The mesh contraction and expansion are restricted by
∆Xmin and ∆Xmax, respectively. They are set as

∆Xmin = 10−3
[
0 I −I

]
, ∆Xmax = 2

[
0 I −I

]
. (4.66)

Run-to-run based on Nelder–Mead (R2R-NM)

The second strategy is based on the NM method, which is also a direct search
method [93]. Compared to PS, it requires fewer evaluations per iteration. It has been
previously applied for other types of learning controllers, for example, a cyclic adaptive
feedforward approach controller for solenoid valves in internal combustion engines [94].
For its application in R2R control, several modifications are introduced to the algorithm:
the definition of a minimum simplex volume Vmin, the modification of the shrink step,
and the rearrangement of the algorithm to allow only one evaluation per iteration. For
more information about the algorithm, see Appendix A.2. The initial points are set such
that they form a regular simplex, centered at χ = 0, with every vertex at a unit distance
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from it, and randomly rotated. The simplex is updated depending on three constant co-
efficients for its reflection, expansion and contraction (cref , cexp and ccon respectively).
The constants of the method are set as follows:

Vmin = 0.005d, cref = 1, cexp = 2, ccon = 0.5. (4.67)

Run-to-run based on Bayesian optimization (R2R-BO)

Concerning our main proposal, the first 2 d+ 1 points are preset as (4.63), gaining some
knowledge across the search space before starting the optimization. Regarding the Gaus-
sian process regression, the prior mean values and kernel hyperparameters from (4.16)
are specified for each case so the optimization process works efficiently. Then, the fol-
lowing variables are initialized:

L = 1, Dχ = 0, (4.68)

where 1 denotes a vector of all ones.

Several combinations of the constants cshrink andw have been tested in a preliminary
simulated analysis. The selected ones for the final comparison are

cshrink = 0.98, w = 0.1. (4.69)

The remaining constants are set as follows:

kmax = 50, Lmini = 10−3, Lmaxi = 2, ∀i = 1, 2, . . . , , d. (4.70)

Note that the number of stored data kmax depends on the implementation but should be
chosen as large as possible. Themaximum bound lengthLmax should be selected conser-
vatively, ensuring that any point is reachable from any other. On the other hand, Lmin

should be small enough to ensure that the smallest region can be properly approximated
with kmax points.

4.5.3 Simulation results

The strategies are compared through aMonte Carlomethod, performing 500 simulations
of 200 making and breaking commutations for each case. The simulations depend on the
parameter vector p, which is defined as

p =
[
zmin zmax ksp zsp cf N Rc,0 φsat keddy mmov

]T
. (4.71)

Then, to emulate variability, each model parameter pi is perturbed in every commu-
tation. Thus, for each jth commutation of the nth simulation, the parameter pn,ji is
defined as a random deviate. Specifically,

pn,ji ∼ N
(
p̄ni , (l nom

z σp)
2
)
, (4.72)
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if pi is zmax or zmin. Otherwise,

pn,ji ∼ N
(
p̄ni , (pnom

i σp)
2
)
, (4.73)

where the superscript nom is used for denoting the corresponding nominal value (see
Table 3.1). The relative standard deviation σp serves to emulate the cycle-to-cycle per-
turbation. Additionally, to emulate unit-to-unit variability, the mean p̄n is randomly
modified in each simulation n, given a continuous uniform distribution,

p̄ni ∼ unif(pnom
i − 0.07 l nom

z , pnom
i + 0.07 l nom

z ), (4.74)

if pi is zmax or zmin. Otherwise,

p̄ni ∼ unif(0.93 pnom
i , 1.07 pnom

i ). (4.75)

The objective is to minimize the impacts. Therefore, the output or cost ψ is de-
fined as the sum of squared velocities during contact. Note that the elastic bouncing
phenomenon is not considered in the proposed model, but bouncing will still occur if
the impact acceleration has the opposite sign to the impact velocity. Then, for every
simulation, the average cost ψ̄ is calculated for each number of commutations j,

ψ̄ =
1

j

j∑
i=1

ψ i. (4.76)

This way, we determine how good each control is for any number of commutations,
and how it improves as the number of commutations increases. In Fig. 4.2, the mean
and 25th-75th percentile intervals of ψ̄ are represented as functions of the number of
commutations. Figs. 4.2a and 4.2b show the average costs for σp = 10−3. Then, σp
is increased to 2 × 10−3 (Figs. 4.2c and 4.2d), 5 × 10−3 (Figs. 4.2e and 4.2f), and 10−2

(Figs. 4.2g and 4.2h). R2R-BO andR2R-PS have the same 13 starting points, so their costs
are the same up until that point (the R2R-NM results at the start are also very similar).
However, from that point forward the costs from the different strategies start to diverge:
the R2R-BO costs are the smallest, following by the costs from R2R-NM, which is still
much better than the R2R-PS. As expected, all costs get worse as σp increases, and the
difference between R2R-BO and R2R-NM augments. In the breaking operations, the
costs are generally smaller than in the making operations, and the improvement of R2R-
BO over R2R-NM is less significant.

On the one hand, note that R2R-PS and R2R-NM do not require any knowledge of
the black-box functions, which makes their implementation for different actuators more
straightforward than R2R-BO. They are also more computationally efficient. Between
those two, the best strategy is clearly R2R-NM. On the other hand, the best results are
obtained with R2R-BO. Moreover, R2R-BO takes into account the stochasticity, so the
improvement over R2R-NM is more appreciable for larger cycle-to-cycle variabilities.
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(a) Making operations (σp = 10−3 ). (b) Breaking operations (σp = 10−3 ).

(c) Making operations (σp = 2× 10−3 ). (d) Breaking operations (σp = 2× 10−3 ).

(e) Making operations (σp = 5× 10−3 ). (f) Breaking operations (σp = 5× 10−3 ).

(g) Making operations (σp = 10−2 ). (h) Breaking operations (σp = 10−2 ).

Figure 4.2: Comparison of results (mean values and 25th-75th percentile intervals) from R2R-PS,
R2R-NM and R2R-BO, for different σp.
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4.5.4 Experimental results

To validate the proposed solution for R2R control, experimental testings are performed
with five solenoid valves. They are supposedly equal to the one used for identification
(see Section 2.2), but unit-to-unit variability is expected. Each control strategy is tested
ten times for each device. The impact velocities are unavailable, due to the lack of a
position sensor. Instead, an electret microphone is used to measure the impact sound
(Fig. 3.1a). The cost is then calculated from the microphone voltage signals,

ψ =

∫ ttrig+∆t

ttrig

υaudio
2(t) dt, (4.77)

where ttrig is established as the first instant twhere υaudio(t) > max(υaudio)/5 and∆t =
0.01 s. For reference, a noncontrolled case is also evaluated, with squared voltage signals
of 0 and 60 V. Then, the controlled costs y are divided by the average noncontrolled one,
resulting in normalized costs. This analysis is focused on the making operations, which
present the most notable impact noises. The normalized costs of the making operations
are summarized in the histograms from Fig. 4.3.

(a) R2R-PS

(b) R2R-NM

(c) R2R-BO

Figure 4.3: Histograms of normalized costs for the first 25, 50, 100 and 200 commutations of each
R2R control.
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If the control is applied for only 25 commutations, there is a slight improvement
over the noncontrolled case: in average 13 % (R2R-PS), 15 % (R2R-NM) and 25 % (R2R-
BO). As expected, the results improve as the number of commutations increases. For
200 commutations, the average improvements are 35 % (R2R-PS), 44 % (R2R-NM) and
64 % (R2R-BO). Note that the results of R2R-NM are worse than expected from the
simulated analysis. In the fist 100 commutations, the difference between R2R-PS and
R2R-NM is not very significant. This indicates that the strategy has a slower conver-
gence rate when applied to the real system. Nevertheless, equivalently to the simulated
results, the worst strategy is R2R-PS. Note also that R2R-NM is able to obtain normal-
ized costs below 0.10 more often than R2R-BO, but it also obtains normalized costs
larger than 0.35 much more frequently. R2R-BO, on the other hand, is more conserva-
tive, keeping most normalized costs around 0.25. Thus, its results are the most robust.
Moreover, in average, R2R-BO is better than the other two alternatives for any number
of commutations.

4.6 Discussion

R2R control is very useful for cycle-to-cycle adaptation of open-loop and feedforward,
allowing the correction of initial discrepancies, due to, for instance, unit-to-unit vari-
ability, inaccurate model, or poor identification process. It is also useful for correcting
slowly varying perturbations (for instance, mechanical wear), or any kind of perturba-
tion that is replicated in every cycle. We have proposed a new run-to-run strategy based
on Bayesian optimization for soft-landing control of short-stroke reluctance actuators.
The control does not use position feedback, which makes it useful for applications in
which position sensors or observers are not feasible. The complete algorithm has been
separated into different parts, most notably the input definition and the search algorithm.

The current has been selected as the input and an input function has been defined. It is
a feedforward controller based on a flat dynamical model, so it requires prior knowledge
of the system dynamics. Methods for current parametrization and parameter reduction
have been proposed for simple reluctance actuators, and they have been put into effect
with the dynamical model of a plunger-type solenoid valve. Using the current as input
makes the position dynamics independent on the coil resistance. Thus, the controller
is more robust to temperature changes. This is an improvement over previous works,
which propose to use the voltage as input (see Appendix B).

Although the proposed input definition is based on a model, the cost function is
still a black box. Thus, the cycle-to-cycle search process is a black-box optimization.
The proposed algorithm is completely generalized. It is based on Bayesian optimization,
which has been adapted in several ways for its application in the run-to-run control. The
simulated and experimental results show the improvement of our proposal R2R-BO over
the alternatives, which use direct search methods (R2R-PS and R2R-NM).
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Chapter 5

Sliding-Mode Control
This chapter presents a proposal of a switching model-free sliding-mode controller for position
tracking and soft landing, taking into account the hybrid dynamics of short-stroke reluctance
actuators. Theoretical and simulated analyses show that soft landing is achievable with rea-
sonable sampling rates.

5.1 Introduction

The main drawback of R2R strategies with open-loop or feedforward controllers is the
inability of correcting nonperiodic perturbations. Provided that the actuator position
can be measured or estimated in real time, a more robust approach to soft landing is feed-
back control, in which the position is directly tracked, based on a predefined trajectory.

There is extensive literature regarding position tracking of switch-type reluctance ac-
tuators with feedback controllers, although most works deal with more complex and
expensive devices, e.g. those having permanent magnets or multiple coils and springs.
Many types of controllers have been proposed, such as proportional-integral-derivative
[95], proportional-integral with time-varying coefficients [96], linear-quadratic [13],
[97], backstepping [98]–[101], or flatness-based feedback linearization [102]–[106].

One important consideration for controlling mass-market single-coil reluctance ac-
tuators is the manufacturing variability among devices from the same ensemble. It is es-
pecially important for low-cost applications, because the accurate identification of every
unit may impose a prohibitive cost. One major approach to deal with model uncertain-
ties is the sliding-mode control (SMC) theory [107]. Several works take this approach.
Most commonly, the control law is divided into two terms: an equivalent and a switching
control term [108]–[112]. Alternatively, [113] proposed a SMC with only a switching
term, which is then approximated to a proportional one. One important aspect that
is omitted in these works is the definition of the tracking trajectory, which directly af-
fects the robustness conditions for the SMC. Another important issue is the influence
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of the sampling rate. In general, the sliding accuracy is proportional to the square of
the switching delay [114]. Still, its effect on the resulting impact velocities needs to be
evaluated.

This chapter presents a robust SMC controller for single-coil reluctance actuators.
It is initially designed for tracking the position during motion, but it is extended for
the entire hybrid system, including the resting positions before and after motion. It
is purely a switching controller, which results in a very simple and computationally
efficient implementation. Although the resulting controller is model-free—i.e. it does
not depend on anymodel functions or parameters—a dynamical model is required during
the design process to guarantee its robustness. A convergence condition is derived, which
depends on the system dynamics and the position trajectory. It is then evaluated for a
specific dynamical model, based on a commercial solenoid valve, and several trajectories.
We also present an analysis of the influence of the sampling rate on the impact velocities.

5.2 Control design

5.2.1 Control for motion dynamics

The controller is initially designed based on the dynamical equations of themotionmode
from RAM-FK detailed in Section 2.3.3. For clarity, it is expressed compactly as follows:

ẋ = f(x) +B u, (5.1)

where

x =

zv
φ

, f(x) =

 v
fv(x)
fφ(x)

, B =

 0
0
Bφ

, (5.2)

and the input u is the voltage. Note that the dynamical system is affine with respect to
the input. The functions fv and fφ and constant Bφ are defined as

fv(x) =
Fpas(z, v) +R′g(z)φ2/2

mmov
, (5.3a)

fφ(x) = −
R
(
Rg(z) +Rc(φ)

)
φ

N2 +Rkeddy
, (5.3b)

Bφ =
N

N2 +Rkeddy
, (5.3c)

where the passive forceFpas must be a differentiable function of the position and velocity,
the gap reluctance Rg must be a twice-differentiable function of the position, and the
core reluctance Rc must be a differentiable function of the magnetic flux.
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As stated in the introduction, our proposal relies on SMC theory. It is assumed that
the position z, velocity v, and acceleration a can be obtained either through measure-
ment or estimation. The proposed sliding surface is defined in terms of their errors,

s =

(
%1 +

d

dt

)(
%2 +

d

dt

)
z̃ = ã+ (%1 + %2) ṽ + %1 %2 z̃, (5.4)

where %1 and %2 are positive constants; and z̃, ṽ, and ã are the position, velocity and
acceleration error, respectively,

z̃ = z − zref , ṽ = v − vref , ã = a− aref . (5.5)

Note that the differential equation s = 0 from (5.4) has an unique solution, z̃ = 0. To
achieve that goal, we propose the following model-free control:

umotion = umax sgn(s) sgn(φ), (5.6)

where umax is a positive constant.

Proposition 5.1. If the control (5.6) is applied to the system (5.1) such that u = umotion,
and the controller constant umax satisfies

umax ≥ max

(
|fa(x)− ȧref + ε|+ η

|Ba(x)|

)
, (5.7)

where

ε = (%1 + %2) ã+ %1 %2 ṽ, (5.8a)

fa(x) =
∂fv(x)

∂x
f(x) =

1

mmov

(
∂Fpas

∂z
(z, v) v +

∂Fpas

∂v
(z, v) fv(x)

−1

2
R′′g(z)φ2 v −R′g(z)φ fφ(x)

)
, (5.8b)

Ba(x) = −∂fv(x)

∂x
B =

N R′g(z)φ

mmov (N2 +Rkeddy)
, (5.8c)

then the sliding surface s (5.4) converges to zero in finite time.

Proof. The following Lyapunov function is defined:

V =
1

2
s2. (5.9)

Thus, to ensure that s converges to zero in finite time, the following condition must be
satisfied:

V̇ = s ṡ ≤ −η |s|, (5.10)
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being η a positive constant that determines the minimum convergence speed ( |ṡ| ≥ η).
Then, by deriving (5.4) and substituting into (5.10),

V̇ = s
(
ȧ− ȧref + (%1 + %2) ã+ %1 %2 ṽ

)
, (5.11)

where ȧ is the jerk and ȧref is the reference jerk. The jerk ȧ can be derived from the
dynamical equations as

ȧ =
dfv(x)

dt
=
∂fv(x)

∂x
f(x) +

∂fv(x)

∂x
B u = fa(x)−Ba(x)u. (5.12)

Note that ȧ depends on the control u. Thus, the convergence condition (5.10) can be
expressed in terms of it,

s
(
fa(x)− ȧref + ε−Ba(x)u

)
≤ −η |s|. (5.13)

Then, with some manipulations,

sgn(s)Ba(x)u ≥ sgn(s) (fa(x)− ȧref + ε) + η. (5.14)

AssumingR′g(z) > 0 for all z ∈ [zmin, zmax], it is obtained that sgn
(
Ba(x)

)
= sgn(φ).

Furthermore, if u = umotion, the convergence condition is

umax ≥
sgn(s) (fa(x)− ȧref + ε) + η

|Ba(x)|
, (5.15)

which is guaranteed according to (5.7).

5.2.2 Control for hybrid dynamics

In the previous section, we have proposed a controller and proved its convergence for
the motion dynamics. Now, we ensure that it works for the full hybrid system, which is
presented in Fig. 5.1. It is assumed that the position trajectory is defined properly before
and after the motion. Formally,

zref(t) = z0, ∀t ≤ t0, zref(t) = zf , ∀t ≥ tf , (5.16)

where t0 and tf represent the initial and final time of the motion, while z0 and zf are the
desired resting positions before and after the motion, respectively.

Tracking the position before motion is quite trivial because it is static when the ar-
mature is resting on one of the physical limits. However, in order to start tracking the
position at t = t0, the magnetic flux should be φref , defined as

φref = φ such that fv(z, v, φ) = 0. (5.17)
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q = 2 (motion)

ż = v

v̇ = fv(x)

φ̇ = fφ(x) +Bφ u

q = 1 (lower limit)

ż = 0

v̇ = 0

φ̇ = fφ(x) +Bφ u

q = 3 (upper limit)

ż = 0

v̇ = 0

φ̇ = fφ(x) +Bφ u

z = zmin ∧ v < 0

⇒ v+ = 0

z = zmax ∧ v > 0

⇒ v+ = 0

fv(x) ≥ 0 fv(x) ≤ 0

Figure 5.1: Diagram of the hybrid automaton modeling the full dynamical system. Each transi-
tion between modes (yellow blocks) occurs when the corresponding guard condition (green text)
is satisfied. In each transition from the motion mode, the continuous state jumps according to the
corresponding reset rule (red text).

Therefore, the controller should be designed in order to track also the magnetic flux
when t ≤ t0 so that φ = φref . For that, we propose the following generalization of the
sliding surface s:

ς = s+ fv(x)− a = fv(x)− aref + (%1 + %2) ṽ + %1 %2 z̃. (5.18)

Note that ς is equal to s in the case of motion, because a = fv(x). In contrast, ς = fv(x)
before the start of motion (t ≤ t0 ). Therefore, the sliding condition ς = 0 implies that
φ = φref . As a result, if ς = 0, the system behaves as desired before and after the start of
motion.

Nonetheless, to keep the controller model-free, the proposal cannot use ς due to its
dependence on the function fv. Instead, it should be a function of s. We generalize the
proposed control (5.6),

uhybrid = umax sgnq(s) sgn(φ), (5.19)

where the new function sgnq is defined as

sgnq(s) =

{
−1, if s < 0 ∨ (s = 0 ∧ q = 1)

+1, if s > 0 ∨ (s = 0 ∧ q 6= 1)
. (5.20)

Proposition 5.2. Consider that the control (5.19) is applied to the hybrid system from
Fig. 5.1 such that u = uhybrid, and that the controller constant umax satisfies (5.7). Then, a
sufficient condition for the convergence of ς to zero is

sgnq(s) = sgn(ς). (5.21)

Proof. The following Lyapunov function is defined:

V =
1

2
ς2. (5.22)
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Then, following the same line of reasoning as in Section 5.2.1, finite-time convergence
to ς = 0 requires

sgn(ς)Ba(x)u ≥ sgn(ς) (fa(x)− ȧref + ε) + η. (5.23)

Moreover, if u = uhybrid, the convergence condition is

umax sgnq(s) sgn(ς) ≥ sgn(ς) (fa(x)− ȧref + ε) + η

|Ba(x)|
, (5.24)

which is true according to (5.7) and (5.21).

Based on the sufficient condition (5.21), convergence is studied in three separate cases.

1. If q = 2, the convergence condition is directly guaranteed because s = ς .

2. If z = zref = zmax or z = zref = zmin, s is always zero, but ς may be not. Note
that aref = ṽ = z̃ = 0. Then,

sgn(ς) = sgn
(
fv(x)

)
. (5.25)

Note also that fv(x) < 0 if q = 1 and fv(x) > 0 if q = 3, otherwise the hy-
brid system would make a transition to q = 2 (see guard conditions in Fig. 5.1).
Therefore,

sgn(ς) = sgn
(
fv(x)

)
=

{
−1, if q = 1

+1, if q = 3
. (5.26)

Then, given the proposed definition of sgnq(s) (5.20), condition (5.21) holds, so
convergence is still guaranteed.

3. We still need to check the convergence of the controller in the case that the position
is in one of the limits (q 6= 2), but the reference is not. In that event, (5.18) is
simplified into

ς = fv(x) + s, (5.27)

where
s = −aref − (%1 + %2) vref − %1 %2 (zref − z). (5.28)

Assuming that the position trajectory is defined smoothly at the start of the move-
ment, condition (5.21) is satisfied because, when z0 = zmin (breaking operation),

fv(x) < 0, (zref − z0), vref , aref ≥ 0. (5.29)

Equivalently, when z0 = zmax (making operation),

fv(x) > 0, (zref − z0), vref , aref ≤ 0. (5.30)
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On the other hand, at the end of the movement, if z has reached the limit but zref

not yet, the condition is not necessarily satisfied. This may seem like a limitation,
but, if themover has reached the final position prematurely, it is actually preferable
keep it in the resting position instead of separating it to continue following the
trajectory. Thus, expert rules are added to the controller so the mover is kept at
zf = zmin (making operation) or zf = zmax (breaking operation),

u =


umax sgn(φ) if z = zf = zmin

0, if z = zf = zmax

umax sgnq(s) sgn(φ), otherwise

. (5.31)

5.3 Analyses

5.3.1 Convergence

For the given dynamical model, it is impossible to guarantee convergence in general, for
any feasible state. As a clear counterexample, setting φ = 0 makes Ba(x) = 0, and
the convergence condition (5.7) becomes umax ≥ ∞. Therefore, the convergence must
be studied for a given trajectory. To illustrate this, three different position trajectories
are defined. Each one of them consists of a making operation, followed by a breaking
operation. The motion intervals are defined with fifth-degree polynomials, satisfying
the boundary conditions

zref(t0) = z0, vref(t0) = 0, aref(t0) = 0,

zref(tf) = zf , vref(tf) = 0, aref(tf) = 0.
(5.32)

Moreover, for the sake of simplicity, the time intervals are defined in terms of the
motion duration τmov = tf − t0, where τmov = 3, 4, 5 ms, for each case. There are also
short time intervals equal to τmov/4 before and after each operation where zref = z0 and
zref = zf , respectively.

The actuator model is particularized to the commercial solenoid valve depicted in
Fig. 3.1a, whose estimated parameters are presented in Table 3.1. To be consistent with
Chapter 4, the upper limit is set as zmax = 1.4 × 10−3 m. Moreover, the passive force
Fpas is modeled based on an ideal mass-spring-damper system; whereas the gap and core
reluctance terms Rg and Rc are modeled as explained in Sections 2.3.1 and 2.3.2,

Fpas(z, v) = ksp (zsp − z)− cf v,

Rg(z) = Rg,0 +
R′g,0 z

1 + k1 z ln(k2/z)
, Rc(φ) =

Rc,0

1− |φ|/φsat
.

(5.33)

The desired position zref and its derivatives vref and aref are displayed in Fig 5.2a,
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5.2c and 5.2e, respectively. Three additional useful signals are calculated and shown in
Fig. 5.2:

1. The reference magnetic force (Fig. 5.2b), defined as the required magnetic force to
track zref ,

Fmag, ref = mmov aref − Fpas(zref , vref). (5.34)

2. The absolute value of Ba(xref ) (Fig. 5.2d), where the function Ba is defined in
(5.8c) and xref is the reference state vector,

xref =

zref

vref

φref

. (5.35)

Note that there are two symmetric φref solutions (positive and negative),

φref = ±
√

2Fmag, ref

R′g(zref)
. (5.36)

They result in two also symmetric solutions of Ba(xref ), because Ba is an odd
function with respect to φ. Thus, |Ba(xref )| is unique.

3. The absolute value of the reference action uref (Fig. 5.2f), which is defined as the
action u to be able to track zref in an ideal scenario (no perturbations or errors),

uref =
fa(xref )− ȧref

Ba(xref )
. (5.37)

As Rc is an even function, fa (5.8b) is also an even function with respect to the
magnetic flux. Therefore, |uref | is equal for both φref solutions.

Note in Fig. 5.2b that, if τmov = 3 ms, Fmag, ref is positive in a small interval in the
breaking operation (around t/τmov = 2). Thus, this trajectory is infeasible. This can be
checked in Fig. 5.2f as well, where |uref | tends to infinity as Fmag, ref approaches zero.
Then, as the motion duration increases, the requirements are less demanding, because
vref and aref are reduced. Therefore, the maximum values of u∗ are also reduced.

A necessary condition for convergence is umax > max(|uref |). It is sufficient for
perfect tracking in the ideal case, in which ε = 0. Otherwise, in general, a sufficient
condition for convergence can be derived from (5.7),

umax ≥ max
(
|uref |

)
+

max
(
|ε|
)

+ η

min
(
|Ba(xref )|

) , (5.38)
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(a) Reference position. (b) Reference magnetic force.

(c) Reference velocity. (d) Reference Ba.

(e) Reference acceleration. (f) Reference voltage.

Figure 5.2: Simulation results. Notice that the time axis is normalized with respect to τmov.

where ε is bounded, assuming that ṽ and ã are bounded,

max
(
|ε|
)
≤ (%1 + %2) max

(
|ṽ|
)

+ %1 %2 max
(
|ã|
)
, (5.39)

Some assumptions must be made about the bounds of errors ṽ and ã to satisfy the
previous condition. As an example, the controller constants are set as

%1 = %2 = 3000 s−1, η = 105 m/s3. (5.40)

And, for the sake of simplicity, very conservative assumptions are made about the error
bounds,

|ṽ| ≤ 0.1 max(|vref |), |ã| ≤ 0.1 max(|aref |). (5.41)

Thus, from (5.38) and (5.39), the convergence condition is umax ≥ 45.56 V (if
τmov = 4 ms), or umax ≥ 35.82 V (if τmov = 5 ms). As expected, the condition is
less restrictive when the motion duration is increased.
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Note that, to ensure that the controller is robust tomodeling disturbances, the model
parameters used to derive the convergence criteria (5.38) should represent the worst-case
scenario, assuming the bounds of eachmodel parameter are known. In practice, however,
determining the combination of parameters that results in the worse-case scenario may
be too cumbersome, due to the immense number of possibilities. Alternatively, a Monte
Carlo evaluation could be performed, permuting all parameters inside their bounds, and
then selecting umax such that (5.38) holds for every case.

5.3.2 Sampling rate analysis

We have proved that convergence can be guaranteed under some reasonable operating
conditions. Still, the sampling rate may be a limiting factor, and its influence should be
analyzed. Thus, the proposed controller is tested with different sampling periods Ts. As
the reference, the second position trajectory from Section 5.3.1 is used (τmov = 4 ms).
The model parameters and controller constants are set as in Section 5.3.1, with umax =
50 V. The dynamical system is simulated using the hybrid automaton from Fig. 2.3.

The impact velocities on contact are obtained for different sampling periods, separat-
ing the making and breaking operations. Analogously to (3.68), an equivalent contact
velocity is calculated for each case,

vc,eq =

√∑
i

vci
2, (5.42)

where {vci} is the set of contact velocities. The results are depicted in Fig. 5.3.

(a) Making operations. (b) Breaking operations.

Figure 5.3: Equivalent contact velocities as in terms of the sampling period.

With a sampling rate of 100 kHz, the results are very good, especially in the mak-
ing operation. For larger sampling periods, the results increasingly worsen. Still, with
a sampling rate of only 10 kHz, the impact velocities are better than the ones in a non-
controlled scenario. For reference, using a square voltage of 50 V and 0 V, the impact
velocities are −1.572 m/s and 0.873 m/s, for the making and breaking operations re-
spectively.
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Fig. 5.4 presents the resulting state variables for three illustrative sampling periods.
With a sampling rate of 1 MHz, the tracking is almost perfect. With a sampling rate
of 100 kHz, there is a slight error in the position (almost imperceptible in the graphic
presented in Fig. 5.4a), but the impact velocities are appreciably larger (as can be inferred
from the velocity graphic in Fig. 5.4b). Still, the performance is very good. With a
sampling rate of 10 kHz, the results are much worse. The high ripple of the magnetic
flux (represented in Fig. 5.4c) is filtered but leads to significant tracking errors. Even
though the position errors may seem small, the velocity errors and, more importantly,
the impact velocities are much larger than in the other cases with larger sampling rates.

(a) Position.

(b) Velocity.

(c) Magnetic flux.

Figure 5.4: Simulated state variables using the controller with three different sampling periods.
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5.4 Discussion

We have addressed the soft-landing control of single-coil reluctance actuators, proposing
a sliding-mode controller that does not use information about the dynamical system.
We have also derived the convergence criteria, based on a generalized dynamical model.
This controller requires to know the position and its derivatives, as well as the sign
of the magnetic flux. Alternatively, the current through the coil can be restricted to
nonnegative values. That way, the magnetic flux is always nonnegative, simplifying the
control.

Due to the fast dynamics, the sampling rate must be large enough to track the prede-
fined position and achieve low impact velocities. Note that the position errors may be
small with low sampling rates, but the resulting impact velocities are significant. In the
end, the sampling rate of the controller itself is not a limiting factor because the designed
SMC is very simple. Furthermore, even if a faster control cannot be implemented, the
results are still better than in noncontrolled scenarios.
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Chapter 6

State Estimation
A novel state estimator is presented for position tracking of reluctance actuators. It is an
extended Rauch–Tung–Striebel smoother, which includes several new ideas regarding the dis-
crete model, the inputs and the outputs. The effect of the novel additions is evaluated through
a simulated analysis.

6.1 Introduction

Most of the soft-landing solutions for reluctance actuators found in the literature use
some kind of position feedback loop [95]–[106], [115]–[119], including the proposal
from Chapter 5. However, measuring the position during motion is impractical in many
scenarios, especially when using low-cost reluctance actuators. In those cases, position
sensors tend to be too expensive in relation to the devices themselves. Alternatively, the
position may be estimated from other measurements.

Different estimation techniques have been designed for reluctance actuators. One
approach is to estimate the inductance of the coil from the electrical measurements, and
then relating it to a certain position using an inverse model [120], a lookup table [121]
or a neural network with additional estimated parameters as inputs [122]. A similar
idea is calculating the position from a measured current and an estimated magnetic flux
[123], or relating the position to the current and its derivative through a polynomial
curve fitting technique [124]. These techniques are open loop and rely solely on the
characterization of the inductance, magnetic flux or current derivative for every posi-
tion and current values. Therefore, they are very sensitive to errors in the mapping.
Furthermore, generating bijective maps between position and inductance—or flux—is
only possible when neglecting certain phenomena, e.g. eddy currents and magnetic hys-
teresis. Then, some proposals directly account for the motion dynamics by including a
model of the mechanical subsystem. These are based on traditional state observers, such
as sliding-mode observers [38], or Kalman filter (KF) extensions for nonlinear systems
[125]. Nonetheless, these observers still neglect certain electromagnetic phenomena,
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most notably the magnetic hysteresis. Still, there are examples of position estimators
that take into account this complex phenomenon using heuristic models. For example,
Straußberger [126] proposes an open-loop estimator based on a Preisach model.

Nevertheless, designing position estimators for low-cost reluctance actuators is still
a very challenging problem. Ideally, they should be based on a complex and accurately
identified model. However, as their dynamics are very fast—commutations typically last
few milliseconds—, the implementation cost of these complex estimators with a high
enough sampling rate is usually prohibitive. Additionally, simplified models are much
easier to identify. This is especially relevant for cost-effective manufacturing processes
in which each ensemble of actuators has a substantial unit-to-unit variability, which, in
turn, implies that model parameters must be estimated or adapted for every single device.

Then, this chapter proposes a novel position estimator for reluctance actuators, in-
troducing two ideas that have not been previously explored for these devices. Firstly, the
state estimation is approached as a smoothing problem of a stochastic process, in which
the state at a given time is refined by using future observation samples. Secondly, the
estimator is designed using a novel set of inputs and outputs. In addition to the electrical
signals, the proposed estimator uses discrete information related to its state, in particular
whether the armature is resting at one of the contacts, or moving.

6.2 Discrete model for estimation

The complete model presented in Chapter 2 (RAM-JA) is very accurate. It is also compu-
tationally efficient compared to other models of similar accuracy (i.e. includingmagnetic
hysteresis, saturation and eddy currents). However, it is still quite complex, with many
parameters that need to be identified. Thus, the discrete model used for estimation is
based on the basic model (RAM-FK) presented also in the aforementioned chapter.

The number of model parameters are reduced by introducing new auxiliary param-
eters and variables. The model reduction is similar to the one presented in Section 2.4.1
for the electromagnetic subsystem. In this case, however, the mechanical subsystem is
also transformed. For that purpose, the position z and velocity v are normalized,

z# =
z − zmin

lz
, v# =

dz

dt
=
v

lz
, (6.1)

where lz = zmax−zmin is the travel distance. Thus, the new position variable is bounded
such that z# ∈ [0, 1]. Moreover, the flux linkage λ = N φ is used as the third state
variable. Then, the current is calculated from a simplified output function h# which
neglects both magnetic hysteresis and eddy currents,

ιcoil = h#(z#, λ, eι) =
(
R#

g (z#) +R#

c (λ)
)
λ+ eι, (6.2)

where the auxiliary function R#
g (z#) = Rg(z)/N2 is a scaled reluctance of the gap
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(2.30), accounting for magnetic flux fringing; while R#
c (λ) = Rc(φ)/N2 is an scaled

reluctance of the core (2.37), accounting for magnetic saturation. Note also the addition
of eι, which encompasses the modeling errors of the current function.

On the other hand, the dynamics of v# is based on the acceleration function during
motion (2.24),

v̇# = f#

v (z#, v#, λ, eF ) =
1

m#
mov

(
F#

pas(z
#, v#)− 1

2
R′#g (z#)λ2 + eF

)
, (6.3)

where the auxiliary parameters and functions are

m#

mov = mmov lz
2, F#

pas(z
#, v#) = Fpas(z, v) lz, R′#g (z#) =

R′g(z) lz

N2
, (6.4)

and the variable eF is an error term. Note that the f#
v is only valid during motion, so

eF would include the normal force when the mover is in contact with one of the limits.
It can also compensate for modeling errors.

Given the newly defined functions, we express the dynamical system with a discrete-
time nonlinear model, {

xk = f(xk−1,uk) +wk,

yk = h(xk,uk) + νk,
(6.5)

where the subscript k is the sample index; xk, uk and yk are the state, input and output
vectors; wk and νk are the process and observation noise vectors; and f and h are the
transition and observation functions. The noise terms wk and νk are assumed to be in-
dependent zero-mean random vectors. Note that the errors eι and eF may be considered
part of those noise terms, but treating them as white noise is a very poor approximation.
Instead, they are incorporated to the state vector,

xk =
[
z#

k z#

k−1 λk eιk eF k
]T
. (6.6)

Then, for clarity purposes, the elements of f and wk are represented based on their
corresponding state variables,

f(·) =
[
fz#(·) fz#k−1

(·) fλ(·) feι(·) feF (·)
]T
, (6.7)

wk =
[
wz#,k wz#k−1,k

wλ,k weι,k weF ,k
]T
. (6.8)

To improve the accuracy of the estimator, we propose to use not only the voltage and
current but also the contact information. In that case, the input of the estimator may
consist of the voltage υcoil and the discrete state of the automaton q (see Fig. 2.3),

uk =

[
υcoilk

qk

]
. (6.9)
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The first element of the state function f corresponds to the position transition. The
discretization is performed using Verlet integration [127]. Then, in the case of qk = 1
or qk = 3, z#

k and v#

k are replaced by their real values. Consequently, fz# is defined as a
piece-wise function,

fz#(xk−1,uk) =


0 + Ts

2 f#
v (0, 0, λk−1, eF k−1), if qk = 1

2 z#

k−1 − z
#

k−2 + Ts
2 f#

v (z#

k−1, v
#

k−1, λk−1, eF k−1), if qk = 2

1 + Ts
2 f#

v (1, 0, λk−1, eF k−1), if qk = 3

,

(6.10)
where Ts is the sampling period, and v#

k−1 is calculated as the average velocity in the time
interval [tk−2, tk−1],

v#

k−1 =
z#

k−1 − z
#

k−2

Ts
. (6.11)

Note that, as the modeling and discretization errors are accounted for by eF k−1, there
is no need to include an additional process noise, thus wz#,k = 0 for all k.

The second element of the state function f corresponds to the transition of the pre-
vious position, which is trivial,

fz#k−1
(xk−1) = z#

k−1, wz#k−1,k
= 0. (6.12)

The third element corresponds to the flux linkage. It is defined by using the forward
Euler method to the electrical circuit equation (2.1) and replacing the current with the
simplified output equation (6.2),

fλ(xk−1,uk) = λk−1 + Ts

(
υcoilk +Rh#

(
z#

k−1, λk−1, eιk−1

))
. (6.13)

While the modeling errors in the current function are already considered given the state
variable eιk−1, the discretization errors of fλ are accounted for by the process noise
wλ,k 6= 0.

Regarding the auxiliary variables eιk and eF k, there is no prior information about
their dynamics. The best possible assumption for a generalized case, without increasing
the model complexity, is that their expectations are equal to the previous ones,

feι(xk−1) = eιk−1, feF (xk−1) = eF k−1. (6.14)

Then, the errors caused by this assumption are accounted for by their process noises
weι,k and weF ,k.

The estimator needs to compare the output of the model with the measured one, and
then correct the state vector accordingly. During motion (qk = 2), the only output is
the current. On the other hand, if qk = 1 or qk = 3, the contact information can also
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be exploited to correct the estimated position. Thus, the observed output vector is

yk =


[
ιcoilk 0

]T
, if qk = 1

ιcoilk, if qk = 2[
ιcoilk 1

]T
, if qk = 3

. (6.15)

Correspondingly, the model-based output function must be

h(xk,uk) =

{
h#(z#

k , λk, eιk), if qk = 2[
h#(z#

k , λk, eιk) z#

k

]T
, if qk 6= 2

, (6.16)

and the observation noise must be

νk =

{
νιk, if qk = 2[
νιk 0

]T
, if qk 6= 2

, (6.17)

where νιk is the observation error of the current ιcoil (not to be confused with the mod-
eling error eιk ). It is noteworthy that the dimension of the output terms depends on the
input. Apart from that unconventional aspect, it is a standard discrete-time model that
can be used to design estimators.

6.3 Estimation algorithms

Bayesian theory provides a powerful tool for the state estimation of stochastic systems.
In the most rigorous way, the complete probability distributions of the state can be re-
cursively calculated through numerical integration. However, this approach is generally
intractable in control applications. Therefore, it is necessary to simplify the Bayesian es-
timation problem and reduce its computational complexity. Specifically, we propose to
use an extension of the Rauch–Tung–Striebel smoother [128] for nonlinear systems. This
estimator consists of two processes: a forward and a backward filter. Fig. 6.1 presents a
diagram for an easier understanding of the processes and the required data for each step.

6.3.1 Forward filter

The forward filter is based on the extended Kalman filter (EKF). The original KF [129]
is an algebraic and optimal solution of the Bayesian filtering problem, provided that the
system is linear and all the random variables are Gaussian. The EKF, on the other hand,
is an approximated extension of the KF for nonlinear systems. It is arguably the most
popular stochastic observer for nonlinear systems, due to its simplicity and performance.
It may be considered a simplified version of the Bayesian filtering technique, in which the
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=

Figure 6.1: Estimator diagram. The forward and backward filters are given by the orange and
blue arrows, respectively.

transition and output functions f and h are linearized, and the probability distributions
are assumed to be normal,

(xk | u1, . . . , uk, y1, . . . ,yk) ≈ xEKF
k|k ∼ N

(
x̂k|k, Pk|k

)
. (6.18)

The algorithm for the forward filter is into three steps:

1. Prediction. The kth a priori state estimation for (x̄k|k−1, Pk|k−1 ) is predicted
from the (k − 1)th projected a posteriori state estimation (x̂k−1|k−1, Pk−1|k−1 ),

x̄k|k−1 = f
(
x̂k−1|k−1,uk

)
, (6.19)

Pk|k−1 = Fk Pk−1|k−1 Fk
T +Q, (6.20)

where Fk is the state transition matrix, obtained from the linearization of f ,

Fk =
∂f

∂x

∣∣∣∣
x̂k−1|k−1,uk

, (6.21)

andQ is the covariance of the process noise wk.

2. Update. The a priori prediction is refined by taking into account the observation
yk. The updated estimation is the a posteriori state (x̄k|k, Pk|k ),

x̄k|k = x̄k|k−1 +Kk

(
yk − h

(
x̄k|k−1,uk

))
, (6.22)

Pk|k = Pk|k−1 −KkHk Pk|k−1, (6.23)

whereHk is the observation matrix, resulted from the linearization of h,

Hk =
∂h

∂x

∣∣∣∣
x̄k|k−1,uk

, (6.24)
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andKk is the Kalman gain. It is defined as

Kk = Pk|k−1Hk
T
(
Hk Pk|k−1Hk

T +Rk

)−1

, (6.25)

being Rk the covariance of the observation noise νk. Note that Rk ∈ R1×1 or
Rk ∈ R2×2, depending on qk (6.17).

3. Projection. To increase the accuracy of the state estimation, it should be corrected
in the case that it is outside its bounds. There are multiple ways of enforcing linear
constraints in Kalman filters [130]. For this problem, a very simple and effective
approach is to project the mean state vector based on its covariance. To obtain the
maximum likelihood estimate of the state subject to inequality state constraints,
the problem is formulated as

x̂k|k = arg min
x

(
x− x̄k|k

)T
Pk|k

−1
(
x− x̄k|k

)
, subject toAx ≤ b. (6.26)

In general, this is a quadratic programming problem. In our case, only the position
needs to be constrained, which means that

A =

[
−1 0 0 0 0
+1 0 0 0 0

]
, b =

[
0
1

]
. (6.27)

This is easily solved because both constraints cannot be active at the same time.
Thus, it can be reformulated as an equality constrained quadratic programming
problem,

x̂k|k = arg min
x

(
x− x̄k|k

)T
Pk|k

−1
(
x− x̄k|k

)
, subject toAk x = bk, (6.28)

whereAk and bk correspond to the active constraint,

Ak =


[
− 1 0 0 0 0

]
, if z̄#

k|k < 0

00×5, if 0 ≤ z̄#

k|k ≤ 1[
+ 1 0 0 0 0

]
, if z̄#

k|k > 1

,

bk =


0, if z̄#

k|k < 0

00×1, if 0 ≤ z̄#

k|k ≤ 1

1, if z̄#

k|k > 1

.

(6.29)

Note that the position z̄#

k|k is the first element of the state vector x̄k|k. The solution
of the problem is

x̂k|k = x̄k|k + Pk|kAk
T
(
Ak Pk|kAk

T
)−1(

bk −Ak x̄k|k
)
. (6.30)
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6.3.2 Backward filter

The complete two-pass algorithm is based on the Extended Rauch–Tung–Striebel
smoother (ERTSS). Analogously to the EKF, the ERTSS is an approximated version
of the recursive Bayesian smoothing [131], in which the transition function is linearized
(6.21), and the probability distributions are assumed to be Gaussian,(

xk | u1, . . . , ukf , y1, . . . ,ykf
)
≈ xERTSS

k|kf ∼ N
(
x̂k|kf , Pk|kf

)
, (6.31)

where kf represents the final sample of the smoothed interval.

The algorithm includes the previous steps from the forward filter, and two additional
ones that constitute the backward filter:

4. Smoothing. As the chosen notation already suggests, the filtered estimation at
k = kf is equal to the smoothed one (x̂kf |kf , Pkf |kf ). Then, starting at kf , past
states are smoothed through a backward recursion,

x̄k|kf = x̂k|k +Gk (x̂k+1|kf − x̄k+1|k), (6.32)

Pk|kf = Pk|k +Gk(Pk+1|kf − Pk+1|k)Gk
T, (6.33)

whereGk is the smoother gain,

Gk = Pk|k Fk+1
TPk+1|k

−1. (6.34)

Notice that this process requires the EKF state estimates for all k, so they should
be stored or recalculated.

5. Projection. The smoothed state estimation x̄k|k is projected to satisfy the state
constraints, resulting in x̂k|k. The problem statement is equivalent to the one pre-
sented in the third step of the EKF algorithm. Consequently, the derived solution,
analogous to (6.30), is

x̂k|kf = x̄k|kf + Pk|kf Ck
T
(
Ak Pk|kf Ak

T
)−1(

bk −Ak x̄k|kf
)
, (6.35)

where

Ak =


[
− 1 0 0 0 0

]
, if z̄#

k|kf
< 0

00×5, if 0 ≤ z̄#

k|kf
≤ 1[

+ 1 0 0 0 0
]
, if z̄#

k|kf
> 1

,

bk =


0, if z̄#

k|kf
< 0

00×1, if 0 ≤ z̄#

k|kf
≤ 1

1, if z̄#

k|kf
> 1

.

(6.36)
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Note that the backward recursion must be computed offline, so it cannot be directly
used for feedback control. However, it can be formulated and used in repetitive op-
erations, as in the cycle-to-cycle learning strategies commonly proposed for many real
devices, including the reluctance actuators under study.

6.4 Analysis

In this section, the performance of the proposed estimator is analyzed via simulations.

6.4.1 Reference simulations

The complete model presented in Chapter 2 (RAM-JA) is a continuous-time model that
includes the most important electromagnetic phenomena. The derived expression for
the gap reluctance (2.30) takes into account the flux fringing phenomenon. Moreover,
in contrast with the basic model (RAM-FK), the dynamics of the electromagnetic force
are based on the JA hysteresis model, as explained in Section 2.3.2. Regarding the me-
chanical subsystem, the dynamics of the movable part is given by the hybrid automaton
from Fig. 2.3, where it is assumed perfectly inelastic collisions, and an ideal mass-spring-
damper system. Formally,

γ = 0, Fpas(z, v) = ksp (zsp − z)− cf v, (6.37)

As shown in Section 2.5, simulations match real measurements with high accuracy.
Thus, for analysis purposes, RAM-JA is considered the reference, emulating a real re-
luctance actuator. Its parameters are in Table 6.1.

Table 6.1: Parameters of the reference model (RAM-JA).

Parameter Value

mmov 1.6× 10−3 kg
ksp 61.8 N/m
zsp 0.0192 m
cf 0.8 N s/m
zmin 4× 10−4 m
zmax 1.4× 10−3 m
Rg,0 5.594× 106 H−1

R′g,0 1.105× 1011 H−1/m
k1 1318 m−1

k2 9.735× 10−3 m

Parameter Value

N 1200
R 48 Ω
keddy 1630 Ω−1

lc 0.055 m
Ac 1.26× 10−5 m2

Msat 1.45× 106 A/m
b 2.45× 10−3 T
c 0.736
κ 942 A/m
α 3.66× 10−3

In Fig. 6.2, we present an ideal solution of the soft-landing problem for a making
(closing) and breaking (opening) cycle. In the left-hand side, the state variables are de-
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picted. Equally to Section 5.3.1, the position trajectories for both operations are designed
with fifth-degree polynomials (see Fig. 6.2a). As boundary conditions (5.32), the initial
and final positions are set to zmax or zmin (depending on the operation type), while the
velocities and accelerations are set to zero. This can be easily checked in the velocity
graphic in Fig. 6.2c. The motion duration for each operation is set to 4 ms. Fig. 6.2e
shows the φ–Fc hysteresis curve. This phenomenon is not negligible, so the lack of a
proper hysteresis model in the estimator model will be a source of estimation errors even
when the rest of the parameters fit perfectly the ones from RAM-JA. The right-hand side
of Fig. 6.2 depicts the inputs and output of the estimator model. Fig. 6.2f presents the
required coil voltage to move the actuator as desired, and it will be treated as one of the
inputs of the system. We also show the discrete state in Fig. 6.2d, which is the second
element of the input vector defined in (6.9), and determines the dynamic mode of the
system: lower limit (q = 1), motion (q = 2) or upper limit (q = 3). Lastly, the output
of the system is the coil current, presented in Fig. 6.2b. Note that there is an interval
before the start of motion (at t = 1 ms and t = 11 ms) that allows the coil to energize
or de-energize until the magnetic force manages to compensate the spring force. Then,
after the landing (at t = 5 ms and t = 15 ms), the voltage is set to a constant value which
guarantees that the mover is fixed at the desired position.

6.4.2 Compared estimators

To showcase the usefulness of the proposed estimator, it is compared with alternatives
under the same conditions. All of them are based on the discrete model presented in
Section 6.2. It is fully specified to match RAM-JA used as the reference. Given the
definition of the passive force (6.37), the corresponding counterpart can be defined in a
similar way,

F#

pas(z
#, v#) = k#

sp (z#

sp − z#)− c#f v
#, (6.38)

and, since F#
pas(z

#, v#) = lz Fpas(z, v) (6.4), the auxiliary parameters are related to the
original ones as follows:

k∗sp = ksp lz
2, z#

sp =
zsp − zmin

lz
, c∗f = cf lz

2. (6.39)

The auxiliary function R#
c must also be defined. It is a scaled version of the core

reluctance termRc, which can be modeled based on Fröhlich–Kennelly(FK) relation, as
explained Section 2.3.2. In an analogous way, it can be expressed as follows:

R#

c (λ) =
R#

c,0

1− λ/λsat
, (6.40)

where the constant R#

c,0 is the value of the scaled reluctance when λ = 0, and λsat is
the saturation value of λ. Note that the reference model does not have a core reluctance,
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(a) Position. (b) Voltage.

(c) Velocity. (d) Discrete state.

(e) Magnetic flux–electromotive force. (f) Current.

Figure 6.2: Simulation results using RAM-JA. The wide lines correspond to the motion intervals.

so these constants cannot be directly related to the ones from Table 6.1. Instead, they
are fitted to the simulation results from Section 6.4.1. To summarize, the auxiliary pa-
rameters from the discrete model are presented in Table 6.2, with their corresponding
nominal values.

Four different estimators are designed based on the discrete model. They are:

• EKF: The first estimator is the forward filter described in Section 6.3.1.

• ERTSS: The second one is the complete proposal, in which the data from the
forward filter is smoothed using the backward recursion presented in Section 6.3.2.
As only the motion operations are of interest, the smoothing is applied only on
those intervals. In that regard, for each operation, the last motion sample (in which
qk = 2) is treated as kf , which marks the start of the backward smoothing. Then,
the algorithm stops when qk 6= 2.
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Table 6.2: Parameters of the reduced model.

Parameter Nominal value

m#
mov 1.6× 10−9 kg m2

k#
sp 6.18× 10−8 N m
z#

sp 18.8

Parameter Nominal value

c#f 8× 10−7 N m s
R#

c,0 1.75 H−1

λsat 0.0238 Wb

• ERTSS\eι: The third estimator uses the same procedure as the previous one but
with a slightly simplified model: the auxiliary state variable eι is set to zero,

feι(·) = 0, weι,k = 0. (6.41)

• ERTSS\eF : Similarly, a fourth ERTSS is designed by changing the model. In this
case, the other auxiliary variable eF is set to zero,

feF (·) = 0, weF ,k = 0. (6.42)

Note that eF does not only represent force deviations due to parametric or dis-
cretization errors but also accounts for the normal forces during contact. As such,
the transition function of the position (6.10) must also be tweaked to circumvent
the removal of eF ,

fz#(xk−1,uk) =


0, if qk = 1

2 z#

k − z
#

k−1 + Ts
2 f#

v (z#

k−1, v
#

k−1, λk−1, 0), if qk = 2

1, if qk = 3

.

(6.43)

The comparison between EKF and ERTSSwill be useful for quantifying the accuracy
increase of the smoother. On the other hand, the results from ERTSS\eι and ERTSS\eF
will serve to determine the overall improvement of the ERTSS estimations due to these
simple modifications in the model.

6.4.3 Model parameters

To compare between the proposed and the alternative estimators, their robustness to
modeling errors is analyzed. Numerous simulations are performed, in which the model
parameters for the estimators are perturbed. Consider p to be the vector of perturbed
parameters,

p =
[
m#

mov k#
sp z#

sp c#f R#

c,0 λsat mean(R#
g ) mean(R′#g )

]T
. (6.44)
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Note that the average of both the gap reluctance and its partial derivative are included.
Formally, their mean values are calculated with respect to the position,

mean(R#

g ) =

∫ 1

0

R#

g (z#) dz#, mean(R′#g ) =

∫ 1

0

R′#g (z#) dz#. (6.45)

Then, each of the parameters pi is perturbed in each run,

pi = pnom
i (1 + εi), (6.46)

being pnom
i the corresponding nominal parameter value and εi the relative error, which

is randomly selected in each run according to a continuous uniform probability density
distribution with an interval length ∆ε,

εi ∼ unif
(
1−∆ε/2, 1 + ∆ε/2

)
. (6.47)

The errors ε7 and ε8 serve to modify the mean values of the gap reluctance and its partial
derivative. Then, with some simplemanipulations, it is possible to derive their perturbed
values for any position,

R#

g (z#) = R#

g
nom

(z#) + mean
(
R#

g
nom)

ε7 + (z# − 1/2) mean
(
R′#g

nom)
ε8, (6.48)

R′#g (z#) = R′#g
nom

(z#) + mean
(
R′#g

nom)
ε8. (6.49)

Apart from the model parameters, we also need to set the covariance of the process
and observation noises. On the one hand, the process covarianceQ is highly dependent
on the errors of the parameters, so it is optimally calculated for each ∆ε. To simplify, the
process noises are assumed uncorrelated, so Q is a diagonal matrix. On the other hand,
the observation covarianceRk depends only on the measurement errors of the current.
To emulate this type of error, white noise is added to the current ιcoil every sample of
every run, with a standard deviation of σι = 2× 10−3 A. Then, according to (6.17), the
covarianceRk is defined as

Rk =


σι

2, if qk = 2[
σι

2 0

0 0

]
, if qk 6= 2

. (6.50)

Then, the initial state is initialized in each simulation. It is assumed that both current
and flux are zero at the start, so eι1 is also zero. As the coil is de-energized, the mover
is initially in the upper limit, i.e. z#

1 = 1. The initial acceleration is zero, so eF 1 must
compensate exactly the estimated force of the spring (based on the perturbed parameters
k#

sp and z#
sp ). Ultimately, the mean state and covariance are initialized as follows:

x̂1|1 =
[
1 1 0 0 −k#

sp (z#
sp − 1)

]T
, P1|1 = 0. (6.51)

Note that the initial magnetic flux is not exactly zero in the reference (see Fig. 6.2e).
Technically, its initial variance should be positive to account for that discrepancy.
Nonetheless, for the sake of simplicity, we have decided to set it to zero.
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6.4.4 Simulation results

For each one of the estimators presented in Section 6.4.2, and for different error interval
lengths ∆ε, 10 000 Monte Carlo simulations are performed. The position from Fig. 6.2a
is estimated by using the electrical signals from Fig. 6.2b and 6.2f. The chosen sampling
period is 20 µs. To summarize and compare the results, normalized root-mean-square
errors (NRMSE) of the position are calculated for each operation,

NRMSEz =

√√√√∑k

(
ẑ#

k − z
#

ref(tk)
)2∑

k

(
z#

ref(tk)
)2 , (6.52)

where ẑk is the estimated normalized position for each sample k, and z#

ref is the
normalized reference position,

z#

ref =
zref − zmin

lz
. (6.53)

Note that the position errors are zero outside the motion intervals, so only the samples
k in which qk = 2 are used to compute each NRMSEz .

The errors are presented in Figs. 6.3a and 6.3b for the making and breaking opera-
tions, respectively. The advantage of the proposed ERTSS over a more traditional EKF
is quite evident, with smaller errors for every ∆ε. There is also a notable improvement
over ERTSS\eι and ERTSS\eF , which justifies the addition of the auxiliary variables
eι and eF . On the one hand, eF mainly accounts for modeling errors in the force char-
acterization, so its usefulness is clearer for larger parameter errors. On the other hand,
the main motivation for adding eι is to account for current errors due to the lack of a
hysteresis model. Thus, as the graphics confirm, it is useful even for negligible parameter
errors. The estimation of the velocity is also very important for soft-landing control,
as the goal is to reduce impact velocities. Then, in an equivalent fashion, the velocity
estimation errors NRMSEv are calculated and presented in Figs 6.3c and 6.3d. The ve-
locity errors are consistently larger, but, for ∆ε < 10 % the proposed ERTSS are still
very accurate.

To better understand why the smoother (ERTSS) is so much better than its filter
counterpart (EKF), Fig. 6.4 depicts the full position evolution of the worst-case scenario
for ∆ε = 10 % (of all 10 000 ERTSS runs with 2 operation each, the one with the max-
imum NRMSEz is selected). As explained in Section 6.3, the forward filter recursion
of the ERTSS is precisely the EKF. The advantage of the ERTSS is that, once the land-
ing occurs, the position estimate is corrected. Then, the backward smoothing recursion
serve to refine past data based on the position correction at the contact instant.
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(a) Position errors (making operations). (b) Position errors (breaking operations).

(c) Velocity errors (making operations). (d) Velocity errors (breaking operations).

Figure 6.3: Estimation errors in the making and breaking operations, for different interval lengths
∆ε. Notice the logarithmic scale of the horizontal axis.

Figure 6.4: Worst-case result regarding the position estimation, for ∆ε = 10 %.

6.5 Discussion

We have proposed a position estimator for soft-landing control of short-stroke single-coil
reluctance actuators. It is a Rauch–Tung–Striebel smoother, which uses the electrical sig-
nals and contact information as observable variables. To facilitate its implementation, it
uses a deliberately simple model. Despite that, the simulated results show that the esti-
mation of both position and velocity are very accurate, even with large parameter errors.
This is especially evident when compared to other alternatives, proving the advantage
of the novel ideas. On the one hand, the incorporation of error terms as state variables
serves to estimate and correct modeling errors. On the other hand, the backward recur-
sion exploits the information gained after the contact instant and corrects past estimates
correspondingly.
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We have taken advantage of all the available simulated data to optimally calculate the
covariance matrices. In practice, their values should be estimated according to the avail-
able information about the actuator and its measurements, and then fine-tuned. Never-
theless, it is viable to assume that the process noises are uncorrelated, as the presented
analysis has shown. In that case, the number of nonzero elements in the process noise
covariance matrix is reduced to only three, simplifying the fine-tuning process.
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Closing
The research work for this thesis has been directed toward the soft-landing control of short-
stroke reluctance actuators. Dynamical models have been proposed, based on which con-
trollers and estimators have been designed and evaluated. This last chapter includes a sum-
mary and the main conclusions, as well as recommendations for continuing the research.

7.1 Summary and conclusions

Reluctance actuators are widely used due to their high force densities and low heat dis-
sipation. In addition, the relatively low cost of small short-stroke single-coil reluctance
actuators makes them the preferable choice for on-off switching operations in many ap-
plications. One major drawback of these and many other switching actuators is the
strong impact at the end of each commutation, which provokes bouncing, mechani-
cal wear and acoustic noise. Furthermore, the force, energy and cost efficiency of the
reluctance actuators under consideration comes at the expense of some disadvantages
regarding their control, mainly the highly nonlinear dependence of the magnetic force
with the state variables—position and magnetic flux—, the unit-to-unit variability and
the lack of position measurements for identification and control.

As stated in Section 1.2, the aim of this thesis has been the mitigation of the im-
pact velocities by using control systems theory and techniques, taking into account the
problems of limitations of this class of actuators. The main contributions and conclu-
sions of the thesis address the research objectives: modeling, identification, control and
estimation. Specifically, the first and second objectives are tackled in Chapter 2; then,
Chapters 3, 4 and 5 focus on the third and central objective; and, lastly, Chapter 6 pursues
the fourth objective.

Contributions, results and conclusions derived from the research work have been
submitted to their publication in high-impact journals. At the time of writing, most of
them are already published [23], [26], [31], one has been accepted for publication and is
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available online [22], and another is under review [30]. Other contributions have been
presented in international peer-reviewed conference [21], [24], [25], [27]. Additionally,
two patent applications have been submitted to protect inventions related to the state
estimation of reluctance actuators in cooking appliances [28], [29].

For clarity, the main conclusions of the research are divided into categories in accor-
dance with the chapters:

7.1.1 Dynamical modeling

We have presented dynamical models of reluctance actuators, characterizing both me-
chanical and electromagnetic dynamics. As the models are intended for control and es-
timation purposes, the computationally demanding finite element method is discarded.
Instead, lumped-parameter models are proposed for describing the dynamic behavior of
reluctance actuators, while still taking into account the most relevant electromagnetic
phenomena.

The two main contributions are the gap reluctance expression and the hysteresis
model. On the one hand, flux fringing is incorporated by means of the derived gap reluc-
tance expression, based onMcLyman’s factor. The generalized expression can be directly
used for actuators with an arbitrary number of position-dependent and fixed gaps. On
the other hand, the magnetic hysteresis characterization is based on the Jiles–Atherton
model. It is usually implemented in such a way that the input is the magnetization, and
the output is the magnetic flux density. In the proposed modification, however, both
the magnetic flux and magnetomotive force are internal state variables. This approach
makes the dynamical model directly applicable to control applications.

Regarding the mechanical subsystem, the limited range of motion of short-stroke
reluctance actuators results in hybrid dynamics, with both continuous and discrete dy-
namic behavior. Thus, a hybrid automaton is used to model this part of the system. It
is general enough to include the full spectrum of collision types, ranging from perfectly
inelastic to perfectly elastic. Nevertheless, modeling the bouncing phenomenon is not
deemed important in this thesis because the intention is to mitigate them by controlling
an actuator before the collision event.

Two model types are presented: a basic model (RAM-FK) [21], which neglects the
magnetic hysteresis; and a complete model (RAM-JA) [22], which includes the hystere-
sis characterization. They are both state-space representations, where every dynamical
function can be computed analytically. Moreover, the input and output are, interchange-
ably, the coil voltage and current. Thus, they can be used for designing observers or
controllers, where the voltage is the controllable input and the current is the measured
output (or vice versa).

To simplify the models and their identification, a series of transformations are sug-
gested in order to reduce the number of parameters for the electromagnetic subsystems
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of both models. Then, it is shown that all the parameters of the derived reduced models
are identifiable from measurements of voltage and current.

The main purpose of the model fitting has been to validate and compare the different
models. As expected, RAM-FK is the most efficient but also the least accurate. On the
other hand, RAM-JA adjusts much better to the experimental data. They have been
compared to a state-of-the-art solution that uses the Generalized Preisach model, which
requires to solve numerically the differential equation of the electromagnetic variable.
It has been shown that the accuracy of the proposed RAM-JA is very similar to the
state-of-the-art alternative while being much more computationally efficient.

7.1.2 Optimal control design

We have proposed a new optimal control approach to design soft-landing trajectories
of actuators, and their corresponding input signals [23]. Although the contact position
is considered a random variable, the system dynamics is still defined as a deterministic
model, which permits formulating and solving it as a regular optimal control problem.
It is also possible to include additional terms to the cost functional if it is required to
optimize other concepts, e.g., the contact time or the power consumption.

One of the most direct ways of exploiting the optimal control design is in the im-
plementation of open-loop controllers. As the main advantage of this type of control,
the implementation is simple and inexpensive because it does not require measuring or
estimating variables. However, the main disadvantage of open-loop control is its sensi-
tivity to any kind of disturbance or error. Thus, to analyze its performance, a Monte
Carlo method has been carried out, in which the model parameters are perturbed to
emulate variability and modeling errors. In general, it is shown that the open-loop con-
trol designed with the proposed method has better performance than a conventional
deterministic solution. These simulation results also show the advantage of controlling
with the current instead of the voltage. In general, current-based open-loop or feedfor-
ward controllers are preferable to the voltage counterparts because the magnetic flux,
magnetic force and, subsequently, the position dynamics do not depend on the coil re-
sistance, which changes greatly with the temperature.

7.1.3 Run-to-run control

A new run-to-run (R2R) strategy for soft-landing control has been presented [25], [26].
It can be interpreted as a cycle-to-cycle adaptation of open-loop and feedforward con-
trollers, effectively closing the loop. In contrast with conventional position feedback
controllers, the R2R algorithm does not require the position, which makes it useful for
applications in which position sensors or estimators are not feasible. Instead, it relies on
auxiliary measurements for evaluating each commutation.
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The complete algorithm has been separated into different parts, most notably the
input definition and the search algorithm. On the one hand, the current has been selected
as the input in order to make the controller more robust to temperature changes. Thus, a
flatness-based feedforward controller has been designed that permits adapting the current
signals from cycle to cycle. This is an improvement over previous works [78], which
propose to use the voltage as input (see Appendix B for more details). On the other
hand, the search algorithms are generalized, so they may be useful for other applications
of R2R control, even outside this scenario. The main proposal is based on Bayesian
optimization (BO), which has been adapted in several ways for its application in the
R2R control.

The proposed control (R2R-BO) has been compared with two alternatives, that uses
pattern search (PS) andNelder–Mead (NM) methods. One important advantage of R2R-
BO is that, as it uses Gaussian process regressors, it directly accounts for uncertainty
and hence it is more robust. Besides, it efficiently exploits previous data to select new
points and converge rapidly to an optimal solution. Simulations and experiments have
been performed, showing the improvement of R2R-BO with respect to the other R2R
strategies.

7.1.4 Sliding-mode control

This thesis has also explored the idea of tackling the soft landing problem through con-
ventional position feedback control. With this type of controllers, tracking errors can
theoretically be corrected during each commutation, instead of relying on cycle-to-cycle
adaptation. Therefore, its main advantage over the previous solutions is its robustness
to nonrepeating disturbances.

We have proposed a sliding-mode controller that does not require any information
about the dynamical system, making it very versatile [27]. We have also derived the
convergence criteria based on a generalized dynamical model with special attention paid
to the hybrid dynamics. The convergence analysis has shown the importance of the
position reference to be tracked. For simplicity, polynomial trajectories have been tested.
Nonetheless, a better choice is to obtain the trajectories through optimal control design,
as in Chapter 3, so that their feasibility is guaranteed—at least for the nominal system.

Concerning its implementation, the sampling rate must be large enough to track the
position trajectories and achieve low impact velocities. Simulation results show that the
contact velocities are significant even with sampling rates in which the tracking position
errors are seemingly insignificant. Anyway, given the simplicity of the controller, the
sampling rate should not be a limiting factor concerning its implementation. Instead, for
many actuators, the most challenging aspect of the feedback control is the acquisition of
position values in real time for the feedback loop.
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7.1.5 State estimation

A new model-based state estimation approach has been presented for soft-landing track-
ing control of reluctance actuators [30]. It is based on RAM-FK fromChapter 2, but it is
further simplified in order to facilitate its implementation. We have also proposed to use
the discrete state of the hybrid system—i.e. the dynamic mode of the system—as a second
input of the estimator model. This requires a sensor to know if the mover is in contact
with one of its limits. It is a compromise between measuring only electrical signals and
measuring directly the position. On the one hand, if only the current and voltage are
measured, the estimator must be based on a more complex and accurate model, such as
RAM-JA, presented in Chapter 2. This makes the model identification and estimator im-
plementation much more challenging and expensive. On the other hand, a full position
sensor would not be affordable, especially for low-cost solutions with simple reluctance
actuators.

The state estimation is approached as a smoothing problem of a stochastic process,
in which the state at a given time is refined by using future observation samples. The
smoother estimation is considerablymore accurate than the filter counterpart. Note that
the smoother is not causal, so it cannot be directly used for feedback control. However,
the smoothing estimations can be exploited by cycle-to-cycle learning-type strategies.
For example, the impact velocities can be estimated and be used as the evaluation vari-
ables in the run-to-run control. In a more direct way, the position estimation can be
used for position tracking with iterative learning control (ILC).

7.2 Recommendations for future work

There is potential to extend and improve the ideas and results presented in this thesis.
Several possible directions for future research are suggested:

• The dynamical system identification is very important for the application of soft-
landing controllers. On the one hand, it is essential for the design of open-loop and
feedforward policies. Although run-to-run strategies can be used to correct those,
good initial guesses would greatly improve their convergence rate. On the other
hand, regarding position tracking, even though it is possible to design model-free
feedback controllers, they still rely on position estimations when measuring the
position is not feasible. The estimation precision is greatly dependent on the mod-
eling errors. Therefore, the development of an accurate and efficient identification
procedure for any reluctance actuator would be a major contribution. Ideally, it
would fully characterize the system, including mechanical and electromagnetic dy-
namics, from easily measurable variables, e.g., the coil voltage and current. This
thesis has proposed model reductions for the electromagnetic system, and an iden-
tifiability analysis provided that the position is fixed. We suggest expanding upon

149



Chapter 7. Closing

this work, with identifiability analysis of the entire dynamical system, gaining in-
sight about the required excitation andmeasurements for estimating every relevant
parameter of the original or reduced models.

• R2R control is a combination of different components, and each one can be further
investigated. Regarding the search method, the one based on Bayesian optimiza-
tion (R2R-BO) proves to be the best in both simulated and experimental results.
However, it is the most computationally expensive, even after the adjustments in-
troduced. The most efficient alternative from the ones analyzed is based on the
Nelder–Mead method (R2R-NM). It proves to be quite effective at exploitation,
i.e., closing around the best point thus far and reaching a local minimum. How-
ever, it is not as suitable for exploration, i.e., searching the entire space for better
points and thus ultimately finding the global optimum. Thus, a combination of
R2R-BO and R2R-NM could be advantageous, e.g. exploring sporadically as in
R2R-BO while exploiting frequently as in R2R-NM.
Concerning the input generation, almost any type of controller can be incorpo-
rated in an R2R algorithm for its cycle-to-cycle adaptation. This thesis has param-
eterized the input based on open-loop input profiles and feedforward controllers
because they do not rely on measuring or estimating the position. An interesting
alternative that has not yet been tested is the R2R optimization of model parame-
ters used in a position estimator—ideally a real-time observer—, whose estimations
can be exploited by feedback controllers.

• Apart from the one presented in this thesis, there are many proposals of feed-
back controllers in the literature. For this class of actuators, the actual research
interest lies in the state observer. From the point of view of stochastic estimation,
smoothers have proven to be significantly more precise than filters. However, only
filters can be regarded as stochastic observers, because smoothers are not causal.
Thus, ways of incorporating the information of the smoothers into real-time ob-
servers should be studied. One possible approach is through a cycle-to-cycle adap-
tation of the observer parameters. Asmentioned above, it can be based on the R2R
algorithm presented in this thesis so that the model parameters are optimized for
the observer instead of—or in addition to—the feedforward controller. Nonethe-
less, a more direct usage of the smoothing estimations is for ILC, in which the
position errors during one commutation are used to adapt the input profile for the
next commutation.
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Appendix A

Run-to-Run Search Alternatives
In Section 4.3, we have proposed a run-to-run strategy with a search function based on the
theory of Bayesian optimization. For comparison purposes, two additional search functions
have been designed and are described in this appendix.

A.1 Pattern search

Pattern search (PS) is a direct-search optimizationmethod. As such, it does not require to
compute or estimate the gradient of the cost function [132]. Instead, it evaluates points
following a pattern that does not depend on the cost function [133]. Although originally
formulated for unconstrained optimization, it has been extended to constrained prob-
lems [134]. Recently, a constrained PS method has been adapted for R2R soft-landing
control of reluctance actuators [78]. This state-of-the-the-art approach is the basis for
the presented algorithm.

The mesh pattern has 2 d + 1 points (being d the dimension of the search space),
where the starting one X1 is the best point so far χbest (i.e., the point with the lowest
cost). The remaining points X2, X3, . . ., X2 d+1 are placed around it, such that they
correspond to the centers of the faces of a d-dimensional orthotope1 whose center is X1.
The points are selected one by one as χ j+1, to be evaluated outside the search function
(see Algorithm 4.1). Once the last point has been evaluated, there are two ways of
updating the mesh, depending on which one is the best point.

1. Contraction. If the best point is still X1, the mesh is contracted, reducing the
distance of the other points to X1.

2. Expansion. If the best point is any other Xi, the center of the mesh moves to that
point, so that Xi becomes the starting point of the new mesh. Also, the mesh is
expanded, augmenting the distance of the other points to the new X1.

1The orthotope is a generalization of the rectangle (d = 2) and rectangular cuboid (d = 3) for any d.
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The search function is described in Algorithm A.1. Following the notation intro-
duced in Chapter 4, its inputs are the point χ j , which has been obtained in the previous
iteration, and its evaluation ψ j . Its output is the next point χ j+1. The function relies
on some persistent variables, such as the matrices X ∈ Rd×(2 d+1) and Ψ ∈ R1×(2 d+1),
which are used to store the mesh points and their corresponding evaluations. The vari-
ables are independently updated and stored for each operation type, but, to simplify the
algorithm description, the distinction is omitted. It also depends on two constant coef-
ficients for the contracting or expanding the mesh (ccon and cexp, respectively), which
must satisfy the following conditions:

0 < ccon < 1, cexp > 1. (A.1)

Algorithm A.1 Pattern search optimization

1: function Search(χj , ψ j )
2: Constant. d, cexp, ccon, χlb, χub, ∆Xmin, ∆Xmax

3: Persistent. X, Ψ, ∆X, k
4: Ψk ← ψ j . Store current cost
5: loop
6: k ← k + 1 . Update mesh index
7: if k > 2 d+ 1 then
8: i← arg mini′ Ψi′

9: χbest ← Xi . Update best point
10: if i = 1 then
11: ∆X← sat∆Xmax

∆Xmin
(ccon ∆X) . Contraction

12: else
13: ∆X← sat∆Xmax

∆Xmin
(cexp ∆X) . Expansion

14: end if
15: k ← 1
16: end if
17: Xk ← sat

χub
χlb (χbest + ∆Xk) . Next mesh point

18: if Xk 6= Xi, ∀i < k then
19: χj+1 ← Xk

20: return χj+1

21: else
22: Ψk ←∞ . Skip evaluation of Xk

23: end if
24: end loop
25: end function

The first step of the algorithm is to store the last cost ψ j in the vector Ψ. Secondly,
if every point of the mesh has been evaluated and stored, the mesh is updated, expanding
or contracting as required. Then, the next point to be evaluated is selected. Note that a
saturation function sat is used to constrain the point to the search bounds χlb and χub.
It is therefore possible that the selected point is identical to a previous one. In that case, a
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new point is calculated and selected for evaluation. This last measure is an improvement
over the state-of-the-art search function [78], preventing the redundant evaluation of
identical points and potentially speeding up the convergence.

A.2 Nelder–Mead

For comparison purposes, an alternative search method has been developed. It is based
on the Nelder–Mead (NM) simplex method, which is one of the most widely used and
cited direct search methods [135]–[137]. The algorithm keeps a set of d + 1 evaluated
points forming the vertices of a nondegenerate simplex2. In each iteration, one or more
tasks are performed, modifying the vertices and reevaluating the function in those new
points. The tasks are illustrated in Fig. A.1 for the simple case of d = 2. They are:

1. Reflection. The worst vertex (the point that corresponds to the largest function
evaluation) is reflected with respect to the centroid of the remaining vertices.

2. Expansion. If the reflected point is the best so far, it is expanded farther from the
centroid. The best one of these two is kept.

3. Contraction. If the reflected vertex is the worst point, a contraction is performed
toward the centroid.

4. Renewal. If the contracted point is worse than its original, all vertices of the
simplex are modified and evaluated.

(a) Reflection. (b) Expansion. (c) Contraction. (d) Renewal.

Figure A.1: Tasks for updating the simplex (d = 2) and selecting the next point(s) to be evaluated.

In order to implement it in the R2R control, the standard algorithm is modified in
several ways. The first modification is related to the last task. The standard method
shrinks the simplex, fixed on the best vertex. As stated by various authors [138], [139],
the shrinkage is potentially problematic because it may rapidly converge to a nonoptimal
point. It is also inadvisable for optimizing stochastic functions, as the best point is never

2The simplex is a generalization of the triangle (d = 2) and tetrahedron (d = 3) for any d.
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reevaluated. In [138] a translation is proposed such that the previous best vertex becomes
the center of the new one. In our proposal, the simplex is also centered at the best point.
However, instead of maintaining its shape, the vertices are recalculated so they form a
randomly rotated regular simplex with the same volume. This prevents both simplex
degeneracy and retention of misleadingly good evaluations due to noisy measurements.

Secondly, instead of setting a termination condition, the algorithm is designed to con-
tinually operate. Specifically, instead of terminating the optimization when the simplex
volume is lesser than a chosen minimum Vmin, the simplex is prevented to be contracted
below that threshold. The simplex volume V is updated in each iteration, augmenting
it when expanding and reducing it when contracting, without requiring to compute it
from the vertices in every iteration. Also, the actual simplex volume is not important,
it is possible to initialize it to 1 and then set Vmin in accordance.

The function is described in Algorithm A.2. Its inputs are the point χ j , which was
obtained in the previous iteration, and its evaluation ψ j . Its output is the next point
χ j+1. In the process, several variables are updated inside the function: the simplex
vertices X ∈ Rd×(d+1) and their respective evaluations Ψ ∈ R1×(d+1), the centroid
χc ∈ Rd, and the volume V . Normally, the NMmethod is presented in a sequential way
with multiple evaluations per iteration. However, as stated in Algorithm 4.1, only one
evaluation is needed in each function call. Thus, the current step (reflecting, expanding,
contracting or rearranging) is stored in the persistent variable s ∈ {1, 2, 3, 4}. For the
same reason, the index of the vertex to be evaluated is stored in the persistent variable
k ∈ {1, 2, . . . , (d+ 1)}. Note that all these variables are different for each operation
type, but, for the sake of simplicity, that distinction is omitted. Themethod also depends
on three constant coefficients for the reflection, expansion and contraction steps (cref ,
cexp and ccon, respectively). They must satisfy the following conditions:

cexp > 1, 0 < cref < cexp, 0 < ccon < 1. (A.2)
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Algorithm A.2 Nelder–Mead optimization

1: function Search(χj , ψ j )
2: Constant. d, cref , cexp, ccon, Vmin

3: Persistent. X, Ψ, χc, V, s, k

. Update simplex X,Ψ and step s
4: switch s
5: case 1 . Reflect
6: if ψ j ≤ Ψd+1 then
7: (Xd+1,Ψd+1)←

(
χj , ψ j

)
8: end if
9: if ψ j < Ψ1 then
10: s← 2
11: else if ψ j > Ψd then
12: s← 3
13: else if ψ j > Ψd then
14: X←Renew(X1, V )
15: s← 4
16: end if
17: case 2 . Expand
18: if ψ j < Ψd+1 then
19: (Xd+1,Ψd+1)←

(
χj , ψ j

)
20: end if
21: s← 1
22: case 3 . Contract
23: if ψ j < Ψd+1 then
24: (Xd+1,Ψd+1)←

(
χj , ψ j

)
25: s← 1
26: else
27: X←Renew(X1, V )
28: s← 4
29: end if
30: case 4 . Simplex
31: Ψk ← ψ j

32: if k = d+ 1 then
33: s← 1
34: k ← 1 . Initialize index
35: end if
36: end switch

. Find next decision vector χj+1

37: switch s
38: case 1 . Reflect
39: (X,Ψ)← Sort(X,Ψ)

. Ψ1 ≤ Ψ2 ≤ . . . ≤ Ψd+1

40: χc ←
∑d
i=1 Xi/d

. Centroid of X1, . . . ,Xd

41: χj+1← χc +cref(χc −Xd+1)
42: V ← cref V . Update volume
43: case 2 . Expand
44: χj+1← χc+cexp (Xd+1 − χc)
45: V ← cexp V . Update volume
46: case 3 . Contract
47: χj+1← χc+ccon (Xd+1 − χc)
48: V ← ccon V . Update volume
49: case 4 . Simplex
50: χj+1← Xj

51: k ← k + 1 . Next vertex
52: end switch
53: return χj+1

54: end function
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Appendix B

Run-to-Run Voltage Control
This appendix presents an alternative input parametrization for the run-to-run method pro-
posed in Chapter 4. Bang-bang profiles are considered for the input signals, which are more
suitable for voltage control. Then, different run-to-run voltage control methods are compared
through simulations.

B.1 Input generation and dynamical model

When using the voltage as input, bang-bang solutions are fitting because they are very
easily parametrizable and implementable. The input profiles switch between two limit-
ing values umin and umax, so they can be defined from a finite set of switching instants or
intervals. The simplest bang-bang profile suitable for soft-landing control is one param-
eterized in terms of two time intervals (d = 2) for each operation, as shown in Fig. B.1.

m,2

max max

m,1 b,2b,1

umax

umin

u

t

j j j j

Figure B.1: Profile of the input signals for making and breaking operations of the jth iteration.

The variable time intervals are τ jm/b,1 and τ
j
m/b,2, while the constant τmax is the max-

imum time interval allowed for the commutation. The two interval parameters must be
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related to the decision vectors χ jm/b. They are normalized as follows:

χ jm/b,1 =
τ jm/b,1

τmax
, χ jm/b,2 =

τ jm/b,2

τmax − τ jm/b,1
. (B.1)

This way, every decision variable can conveniently be bounded to [0, 1], and it is ensured
that τ jm/b,1 + τ jm/b,2 ≤ τmax. The constant τmax must be set accordingly.

Note that, when umin = 0, the optimally designed soft-landing control signals that
minimize the transient time follows the aforementioned bang-bang profile [62]. How-
ever, if umin < 0, the time-optimal voltage solutions show a bang-bang-off behavior [24].
In other words, an additional interval in which u = 0 would be required for each oper-
ation. However, this interval is only necessary to ensure that the current and magnetic
flux do not change direction. Thus, to keep the input generation as simple as possible,
an alternative solution is considered: saturating the current to prevent negative values.
As discussed in Section 3.4.1, this is easily implemented with diodes or simulated with a
hybrid automaton.

In that regard, the dynamical model used in the simulations is a simplified version of
the one presented in Section 3.4.1, in which the eddy currents are neglected, i.e. keddy =
0. As such, it is described by the hybrid automaton depicted in Fig. B.2. It presents six
dynamic modes, with the corresponding guard conditions and reset rules. The discrete
state q ∈ {1, 2, . . . , 6} designates the dynamicmode: positivemagnetic flux and plunger
in the lower limit, motion or the upper limit (q = 1, 2 or 3, respectively); or current
saturated to zero and plunger in the lower limit, motion or the upper limit (q = 4, 5
or 6, respectively). Note that the automaton can be interpreted as a simplified version
of the one from Fig. 3.2. In this case, as the eddy currents are neglected, saturating the
magnetic flux to zero implies saturating also the current.

B.2 Compared search strategies

The proposed run-to-run (R2R) control is compared with two alternative strategies.

Run-to-run based on pattern search (R2R-PS)

The first one is based on the pattern search (PS) method, as explained inAppendixA.1. It
requires evaluating 2 d+1 times in each iteration, one is the reevaluation of the previous
best point and the others are evaluations around that point. As d = 2, it is necessary to
perform 5 making and 5 breaking commutations in each iteration. The starting mesh
for both operation types is

X =

[
0.5 0.75 0.5 0.25 0.5
0.5 0.5 0.75 0.5 0.25

]
. (B.2)
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q = 3

ż = 0
v̇ = 0

φ̇ = fφ(z, φ, u)

q = 2

ż = v
v̇ = fv(z, v, φ)

φ̇ = fφ(z, φ, u)

q = 1

ż = 0
v̇ = 0

φ̇ = fφ(z, φ, u)

q = 6

ż = 0
v̇ = 0

φ̇ = 0

q = 5

ż = v
v̇ = fv(z, v, φ)

φ̇ = 0

q = 4

ż = 0
v̇ = 0

φ̇ = 0

z = zmax ∧ v > 0
⇒ v+ = 0

z = zmin ∧ v < 0
⇒ v+ = 0

φ = 0

fv(z, v, φ) < 0

φ = 0

fv(z, v, φ) > 0

φ = 0

z = zmax ∧ v > 0
⇒ v+ = 0

z = zmin ∧ v < 0
⇒ v+ = 0

u > 0

fv(z, v, φ) < 0

u > 0

fv(z, v, φ) > 0

u > 0

Figure B.2: Diagram of the hybrid automaton modeling the full system of the actuator, including
the magnetic flux saturation to zero. Each transition between modes (yellow blocks) occurs when
the corresponding guard condition (green text) is satisfied. In some transitions, the continuous
state jumps according to the corresponding reset rule (red text).

Accordingly, the remaining persistent variables of Algorithm A.1 are set as follows:

χbest =

[
0.5
0.5

]
, ∆X = 0.25

[
0 I −I

]
, k = 1. (B.3)

The mesh size is halved or doubled if the new best point is the same or not, respectively,
as the previous one. Overall, the constants of the PS optimization method are set as

cexp = 2, ccon = 0.5, (B.4)

∆Xmin = 10−3
[
0 I −I

]
, ∆Xmax =

[
0 I −I

]
. (B.5)

Run-to-run based on Nelder–Mead (R2R-NM)

The second R2R control is based on the NM method. Compared to the PS method, it
requires fewer evaluations per iteration. For its application in R2R control, several mod-
ifications are introduced to the algorithm, as explained in Appendix A.2. The initial
points are set such that they form a regular simplex, i.e., an equilateral triangle, centered
at [0.5 0.5]T, with every vertex at a distance of 0.5, and randomly rotated. The sim-
plex is updated depending on three constant coefficients for its reflection, expansion and
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contraction (cref , cexp and ccon respectively). The constants of the method are set as
follows:

Vmin = 0.005d, cref = 1, cexp = 2, ccon = 0.5. (B.6)

Run-to-run based on Bayesian optimization (R2R-BO)

The last strategy uses a preliminary version of the BO search function presented in Sec-
tion 4.3. The first difference is that the search space lower and upper bounds χlb and
χub are not adaptive, i.e. the function Bounds (Algorithm 4.3) is not included. Sec-
ondly, the (4.26) is not used for removing points that are far away from the bounded
space. Lastly, the acquisition function is the next expected improvement (4.38), which
does not consider that the evaluation variables are always nonnegative. In regards to its
configuration, the first evaluated decision vector is set to [0.5 0.5]T for both making
and breaking operations. To limit the stored data, kmax is set to 50. Furthermore, the
prior mean values and kernel hyperparameters from (4.16) are specified for each case so
the optimization process works efficiently.

B.3 Simulation results

Simulations are performed to analyze the proposed R2R control and to compare the
optimization algorithm with the pattern search method. To simulate the disturbance,
white noise is added to the position constraints,

z jmin = z̄min + ε jzmin, z jmax = z̄max + ε jzmax, (B.7)

where ε jzmin and ε jzmin are independent normal random variables with zero mean and
standard deviation σz . The parameters for the input generation and the model are spec-
ified in Table B.1.

Table B.1: System dynamics and input parameters.

Parameter Value

R 55 Ω
N 1200
Rc,0 2.32× 106 H−1

φsat 2× 10−5 Wb
Rg,0 5.594× 106 H−1

R′g,0 1.105× 1011 H−1/m
k1 1318 m−1

k2 9.735× 10−3 m

Parameter Value

mmov 1.6× 10−3 kg
ksp 74.05 N/m
zsp 1.5× 10−2 m
cf 0 Ns/m
z̄min 3× 10−4 m
z̄max 1.3× 10−3 m
umin/max ∓50 V
τmax 3× 10−3 s
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The three R2R controllers are compared through aMonte Carlomethod, performing
500 simulations of 200 making and breaking commutations for each given σz . For the
first comparison, σz is set to 10−6 m and the resulting costs ψ are obtained for each
commutation and each operation type. R2R-PS requires 5 commutations per iteration
so, for better visualization, the results are grouped 5 by 5. In Fig. B.3, from each set
of 2500 costs, the mean is displayed, as well as the interval between the 25th and 75th
percentiles. R2R-PS is able to reach costs close to zero, as the 25th percentile values
indicate, but the observation randomness, albeit low, slows down the convergence rate—
especially in the making operation—, as the mean and 75th percentile values indicate. In
contrast, the other strategies converge faster, especially the proposed R2R-BO.

(a) Making operations. (b) Breaking operations.

Figure B.3: Comparison of results (mean values and 25th-75th percentile intervals) from R2R-PS,
R2R-NM and R2R-BO, for σz = 10−6 m.

For the following graphics, we display the average cost ψ̄ for each number of com-
mutations j,

ψ̄ =
1

j

j∑
i=1

ψ i. (B.8)

ψ̄ =
∑ j
i=1 ψ

i/j It varies less abruptly, making it more suitable for increasing position
deviations and eliminating the need for grouping in sets of 5. In Fig. B.4, the mean
and percentile intervals of ψ̄ are represented as a function of the number of commuta-
tions. Figs. B.4a and B.4b show the average costs for σz = 10−6 m, obtained from the
previous costs ψ (Figs. B.3a and B.3b). The σz is increased to 10−5 m (Figs. B.4c and
B.4d), 2 × 10−5 m (Figs. B.4e and B.4f), and 5 × 10−5 m (Figs. B.4g and B.4h). As ex-
pected R2R-BO is consistently better than R2R-PS. The R2R-BO results are very good
for σz ≤ 2 × 10−5 m. In particular, the R2R-BO making costs are slightly better than
the breaking ones for σz = 10−6 m because, in this specific case, the starting point is
significantly better. Despite that, for greater deviations, the breaking average costs reach
lower minimums. Notice also that, although setting σz = 5×10−5 m is merely a 5 % of
the nominal valve travel distance, it is enough to make the impact velocities vary greatly
between commutations, especially in the making operations.
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Appendix B. Run-to-Run Voltage Control

(a) Making operations (σz = 10−6 m). (b) Breaking operations (σz = 10−6 m).

(c) Making operations (σz = 10−5 m). (d) Breaking operations (σz = 10−5 m).

(e) Making operations (σz = 2× 10−5 m). (f) Breaking operations (σz = 2× 10−5 m).

(g) Making operations (σz = 5× 10−5 m). (h) Breaking operations (σz = 5× 10−5 m).

Figure B.4: Comparison of results (mean values and 25th-75th percentile intervals) from R2R-PS,
R2R-NM and R2R-BO, for different position deviations.
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Appendix C

Dimension Reduction
This appendix details step by step the process of removing redundant decision variables for the
provided example from Section 4.5.1. Then, simulated results before and after the dimension
reduction are used for validation purposes.

C.1 Algorithm execution

Firstly, the sensitivities before the dimension reduction are represented in Fig. C.1. Note
that the sensitivities with respect to the spring constants zsp and k#

sp are very similar. The
reason is that the spring resting position zsp is much larger than any z ∈ [zmin, zmax],
so the spring force is almost constant with respect to z. Therefore, the decision variable
related to one of those parameters could be omitted. Note also that the sensitivity with
respect to keddy is very low, so that decision variable could probably be discarded as well.
Nevertheless, there may be other decision variables that could be removed, even if it is
not readily apparent from observing the graphics. Thus, Algorithm 4.4 is executed.

In both making and breaking operations, the first decision variable to be removed is
the one related to Rc,0 (j = 7). The resulting χ\j is

χ\7 =
[
108 31 25 23 26 −111 0 106 −7

]T × 10−3 (C.1)

for the making operation, and

χ\7 =
[
43 103 23 29 −15 −115 0 81 −22

]T × 10−3 (C.2)

for the breaking operation.

These variables can be removed because their sensibilities can be approximately repli-
cated with the other ones (∇U(t)χ\j ≈ ∇Uk(t)). The errors of this approximation are
represented in Fig. C.2. Notice that they are bounded according to the selected tolerance
χtol = 10−3 A.
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Appendix C. Dimension Reduction

(a) Making operation. (b) Breaking operation.

Figure C.1: Sensitivities of the input to the decision variables (d = 9).

(a) Making operation. (b) Making operation.

Figure C.2: Sensitivity errors due to the first removed decision variable.

Once a decision variable is removed, the bounds θlbi and θubi of the remaining
variables χi are augmented, as explained in Section 4.4.2. Their sensitivities are also
augmented because they are directly proportional to the corresponding bound length
(θubi − θlbi). The sensitivities after the first loop iteration of the algorithm are repre-
sented in Fig. C.3. Note that, while the sensitivity related to Rc,0 is removed, the other
ones are slightly augmented to compensate for it.

After the second iteration, the 8th decision variable (related to keddy ) is selected for
removal in both operations. Specifically, the computed χ\j is

χ\8 =
[
−173 −34 −49 −56 −246 −144 41 0

]T × 10−3 (C.3)

for the making operation, and

χ\8 =
[
−169 −366 −14 −255 −184 −249 11 0

]T × 10−3 (C.4)

for the breaking operation. Note that 8th element of each of these 8th dimensional
decision vectors corresponds to the 9th element of the original 9th dimensional decision
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C.1. Algorithm execution

(a) Making operation. (b) Breaking operation.

Figure C.3: Sensitivities of the input to the decision variables (d = 8).

vectors. The sensitivity errors due to its removal are represented in Fig. C.4. Then, the
resulting sensitivities are represented in Fig. C.5.

(a) Making operation. (b) Making operation.

Figure C.4: Sensitivity errors due to the second removed decision variable.

Lastly, after the third iteration of the algorithm, the 3rd decision variable (related to
k#

sp ) is selected for removal. The calculated χ\j is

χ\3 =
[
−273 −7 0 576 177 −210 147

]T × 10−3 (C.5)

for the making operation, and

χ\3 =
[
52 −226 0 473 39 −211 141

]T × 10−3 (C.6)

for the breaking operation. The sensitivity errors due to its removal are represented in
Fig. C.6.

At the end, the algorithm has removed the 3rd, 7th and 9th decision variables (k#
sp,

Rc,0, keddy ) for both operations.

165



Appendix C. Dimension Reduction

(a) Making operation. (b) Breaking operation.

Figure C.5: Sensitivities of the input to the decision variables (d = 7).

(a) Making operation. (b) Making operation.

Figure C.6: Sensitivity errors due to the third removed decision variable.

C.2 Run-to-run comparison

Note that the parameter reduction process is optional, the original decision vector
(d = 9) can be used. Moreover, it is possible to use larger decision vectors, adding the-
oretically redundant parameters (in the presented case, the moving mass mmov ). How-
ever, this is not only detrimental to the convergence rate, but also to the computational
requirements of the control strategy.

To showcase the effectiveness of reducing the number of decision variables, an ad-
ditional simulated analysis is included in this appendix section, analogous to the one
presented in Section 4.5.3. In Fig. C.7, results of R2R-BO using the full decision vec-
tor (d = 9) are compared with the ones using the reduced decision vector (d = 6). In
the breaking operation, the results are quite similar, especially in the mean value. On
the other hand, in the making operation, which starts with a much greater cost, the
advantage of reducing d is evident.
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C.2. Run-to-run comparison

(a) Making operations (σp = 10−3 ). (b) Breaking operations (σp = 10−3 ).

(c) Making operations (σp = 2× 10−3 ). (d) Breaking operations (σp = 2× 10−3 ).

(e) Making operations (σp = 5× 10−3 ). (f) Breaking operations (σp = 5× 10−3 ).

(g) Making operations (σp = 10−2 ). (h) Breaking operations (σp = 10−2 ).

Figure C.7: Comparison of results (mean values and 25th-75th percentile intervals) fromR2R-BO
before and after the dimension reduction, for different σp.
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