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IntroductionAn arti�cial satellite is an object that orbits around a celestial body due to naturalgravitational forces. Satellites are launched to the space by humans to overcome dif-ferent spacial missions. The �rst arti�cial satellite, orbiting around the Earth, waslaunched in 1957 by the Soviet Union, and its name was Sputnik I. After that event,thousands of satellites have been launched into di�erent orbits around the Earth. Thereare di�erent ways to classify the satellites, depending on their weight, their altitude,sort of mission, etc. [1]In many occasions one satellite is not enough to succeed in a spacial mission, and agroup of satellites is required. In this case we have a group of arti�cial satellites, inthe same or di�erent inertial orbit, working together and following the same goal. Thisis called a satellite constellation. In the last decades, humans have designed satelliteconstellations for di�erent purposes [32,42]; Global Positioning System (GPS), Galileoor GLONASS are examples of satellite constellations whose purpose is navigation andgeodesy. Orbcomm constellation, operated by the American satellite communicationscompany Orbcomm, Inc. has a total of 29 operational satellites today, in Low EarthOrbits. The main goal of this constellation is to provide communication betweendi�erent data centers. Iridium and Globalstar are the direct competitors of Orbcomm.Molniya and Tundra are communication satellite constellations using highly ellipticorbits. The purpose of other satellite constellations are human protection such asDisaster Monitoring Constellation, Earth observation, etc. These are, among others,examples of satellite constellations.The existing constellations use, in general, circular orbits. However, as Draim indicatesin his work [21], eccentric orbits could be better than circular ones. Thus, another wayto design satellite constellations without the requirement of circular orbits was neces-sary. Thus, Dr. Daniele Mortari developed around the year 2004, the Flower Constel-lations [34, 35, 50] that solve this problem by leaving the eccentricity as other designvariable. These constellations were expanded in the Harmonic Flower Constellations(HFC) [8], the 2D Lattice Flower Constellations (2D-LFC) [7,12], which are the maintool in this work and, �nally, the 3D Lattice Flower Constellations (3D-LFC) [18].Global and regional coverage problems are the main topic of research in satellite con-stellations. In particular, the global positioning problem consists of determining theposition of a user with a few centimeters of accuracy. This problem requires a min-imum of four visible satellites from any point on the Earth surface at any instantiii



iv INTRODUCTIONof time [31, 52]. For that purpose a constellation with a rather complex geometry isrequired.The �rst goal of this work consist of searching 2D-LFCs whose geometry will be optimalfor solving the problem of global positioning. The Geometric Dilution of Precision(GDOP) [28] is the metric that quanti�es how good the geometry of a constellation isfor �nding the exact position of a user and the time o�set that exists between systemand user clock. Therefore, the metric which de�nes the optimality of the 2D-LFCs inour problem is the maximum value of the GDOP experienced from any point on theEarth surface during the propagation time. For practical purposes, we discretize thetime in steps of 60.0 sec and we consider 30, 000 ground stations randomly distributedover the Earth surface with uniform probability density. Evolutive algorithms [49] arethe main tool used to solve this optimization problem. In particular, in this thesiswe use Genetic Algorithms and the Particle Swarm Optimization. We found 2D-LFCs whose maximum GDOP value is better than the existing Galileo or GLONASSconstellations during the entire propagation time. Due to the high computational costrequired to propagate a constellation and the huge size of the search space, we havedeveloped several techniques to reduce the search space and the propagation time beingmathematically correct. Furthermore, we use certain parallelization techniques whenimplementing the evolutive algorithms.Through the analysis of this problem we have compared di�erent optimization tech-niques, concluding that the Particle Swarm Optimization Algorithm is the methodthat gives better results in our search. In this work we searched among all possible2D-LFCs varying the number of satellites between 18 and 40. We have obtained sur-prising results, such as our 27-satellite constellation has a better GDOP than the bestcon�guration found with 28 satellites. Since the GDOP of our 27-satellite 2D-LFC canonly be improved by adding at least two satellites, we conclude that it is one of the bestconstellations. Thanks to the 2D-LFCs, we have been able to include eccentric orbitsin our search, �nding some optimal con�gurations whose orbits have an eccentricityaround 0.3. In this study we compared the evolution of the GDOP of our best 2D-LFCswith respect to the existing GLONASS and Galileo, noting that our constellations areslightly better because the maximum GDOP value experienced at any time is alwayslower. In our optimization approach the collision problem is automatically excludedbecause alignment of satellites will imply a large GDOP and the constellation will beexcluded automatically of the search.The previous study was made in a purely Keplerian model. The next step is to bringour constellations to a more realistic situation consists of introducing the perturbedtwo-body problem [45]. In the Keplerian model the Earth is considered as a perfectsphere. However, as a �rst approximation to a more realistic model, we consider theEarth as a solid of revolution �attened at the center (ellipsoid). This leads us toinclude the zonal harmonic J2 in the potential function. The introduction of higherzonal harmonics is disregard since they are at least 3 orders of magnitude smaller than
J2 [1].The introduction of the J2 term in the potential function leads to the second problem



vconsidered in this thesis. The problem consists of �nding parameters to have a stable2D-LFC, meaning that the satellites of the constellation are a�ected by the J2 e�ect butall in the same way. Thus, the relative position between the satellites in the osculatingelements space will remain almost constant, thus we obtain Rigid Constellations.Most of the literature deals with the perturbed two body problem average the non-secular perturbations in one orbital period [10]. Thus, they only consider long periodicand secular perturbations. In this thesis, we consider the secular and non-secularperturbations that a�ect the acceleration of the satellite. Thus, instead of averagingthe expression of the potential in an orbital period, we consider the full expression ofthe potential function [1]. By using the full expression of the potential and LagrangePlanetary Equations [45] we can study the evolution of the orbital elements over time.The main goals consist of; controlling the secular perturbation in order to be identical inall the satellites of the constellation, and minimizing the non-secular perturbation thata�ects the satellites. If we succeed in these two goals, the satellites in the constellationwill be disturbed by J2, but all of them in the same way. Thus, the relative positions ofthe satellites will be almost constant (in the osculating elements space) so the structureof Flower Constellation will be preserved over time, what we call Rigid Constellation.To control the secular part of the satellites in a constellation, we consider a referencesatellite. We study �rst the dependency of the secular components of the osculatingelements as a function of the initial Ω and M . We observe that none of the secularcomponents depend on Ω, but there is a strong dependency onM . In the particular caseof a 2D-LFC, all satellites have the same values of a, e, i, ω, but have di�erent valuesof Ω and M . Therefore, a priori, the secular component of the osculating elements willbe di�erent for each satellite. To ensure that they are identical, we apply a correctionmethod. The method consists of modifying the semi-major axis of all satellites a fewkilometers. Thus, the period (Tp) will be changed and in particular the slope of themean anomaly since Ṁsec = 2π/Tp. With this correction, we get that the secularcomponent of the osculating elements of all the satellites in the constellation matchup to an order of 10−11. With this technique, we can control the secular perturbationof our satellites. Trying to control the non secular perturbation is somewhat morecomplicated. First, we apply to each osculating element q ∈ {a, e, i, ω,Ω,M} linearinterpolation on the data set (t, q(t)) which have been previously obtained to calculatethe exact position of the satellites. Through these linear functions of the osculatingelements we can calculate at each instant of time what we called linear or approximateposition of the satellite. So that, the distance between the two positions (real andlinear) will be due to the non-secular perturbations that a�ect our reference satellite.The last goal consist of searching among the possible values of the eccentricity andinclination those that reduce this deviation as much as possible. In this way, weminimize the non-secular perturbation that a�ects our reference satellite. These valuesextrapolate to the remaining satellites of our constellation.This work shows that it is possible to obtain 2D-LFCs whose con�guration remainconstant under the J2 e�ect, i.e. Rigid Constellations. The theory we developedhas two direct applications. First, it validates the theory of the 3D Lattice Flower



vi INTRODUCTIONConstellation [19] (3D-LFC) under the full expression of the potential function withthe J2 term, assuming that the semi-major axes are corrected and the value of thedeviation is small. Second, it shows that in the Global Coverage Problem (with J2) itwill be enough to �nd a Rigid Constellation that minimizes a slightly modi�ed �tnessfunction (computable using Keplerian propagation).Our last goal consist of reducing the unpractical high number of satellites that most2D-LFCs need to obtain full symmetry. We provide a methodology to compute all thesubsets of the 2D-LFC that still have symmetric phasing distributions [14].To achieve this goal we have identi�ed the �rst orbit of our constellation, which has
Nso admissible positions with a necklace of Nso pearls [15]. We took a number Nrso(Nrso < Nso) representing the actual satellites per orbit. Thus, we consider the �rstorbit of the constellation as a necklace of Nso pearls, of which Nrso are black and theremaining ones are white. That is, an orbit with Nso admissible positions, of which
Nrso are occupied by a satellite and the others are not. The distribution of satellitesin the remaining orbits is identical to the �rst, but shifted k pearls.In this way a Necklace Flower Constellation (NFC) is characterized by a pair (G, k).However, not all such pairs produce a valid NFC, nor two distinct pairs produce distinctNFC. These two problems are called consistency and minimality problem, respectively.They are completely solved by using number theory [3]. Finally, we introduce severalcounting theorems for determining the possible pairs (G, k) from the phasing parametersof a 2D-LFC.Satellite constellations are a current topic for the possibilities that they can provide,for commercial and institutional applications, such as telecommunications, positioningdetermination or Earth observation, with reasonable costs. The results obtained inthis thesis encourage the future study of satellite constellations, which may result moree�cient than the current ones.



IntroducciónUn satélite arti�cial es un objeto diseñado por el ser humano y lanzado al espaciomediante un vehículo espacial con el objetivo de sobrellevar una misión especí�ca. Elprimer satélite arti�cial, orbitando en torno a la Tierra, fue lanzado in 1957 por laUnión Soviética, y su nombre es Sputnik I. Después de dicho evento, miles de satélitesarti�ciales han sido lanzado en diferentes orbitas en torno a la Tierra. Hay diferentesformas de clasi�car estos satélites, dependiendo de su peso, su altura, el tipo de misión,etc. [1]En muchas ocasiones, un satélite no es su�ciente para tener éxito en una misión es-pacial, por lo que un grupo de satélites es necesario. De�niremos una constelación desatélites como un conjunto de satélites persiguiendo un objetivo común y operando demanera conjunta. En las últimas décadas el ser humano ha diseñado constelaciones desatélites con diferentes objetivos [32, 42]; Global Positioning System (GPS), Galileo oGLONASS son ejemplos de constelaciones de satélites cuya �nalidad es la navegacióny la geodesia. La constelación estadounidense Orbcomm formada actualmente por 29satélites operativos situados en órbitas bajas es un sistema de telecomunicación. Irid-ium y Globalstar son las competidoras directas de Orbcomm. Las constelaciones rusasMolniya y Tundra son sistemas de telecomunicación famosas por su gran excentricidad.Otros objetivos de las constelaciones pueden ser la observación de la Tierra, aplicacionesmilitares, la protección del ser humano (Disaster Monitoring Constellation), etc. Estos,entre muchos otros, son ejemplos concretos de constelaciones de satélites.Las constelaciones existentes utilizan, en general, orbitas circulares. Sin embargo, comoDraim indica en su trabajo [21], las orbitas excéntricas podrían ser mejores que las cir-culares. Así, otra forma de diseñar constelaciones de satélites, sin la necesidad de tenerórbitas circulares, era necesaria. Por ello, el Dr. D. Daniele Mortari desarrollo en tornoal año 2004 las Flower Constellations [34,35,50] que solucionan este problema dejandola excentricidad como otra variable libre. Estas constelaciones fueron extendidas en losaños posteriores a las Harmonic Flower Constellations (HFC) [8], las 2D Lattice FlowerConstellations (2D-LFC) [7, 12], que serán la principal herramienta en este trabajo, y�nalmente las 3D Lattice Flower Constellations (3D-LFC) [18].Los problemas de cobertura regional y global constituyen el principal tema de in-vestigación en torno a las constelaciones de satélites. En particular, el problema deposicionamiento global consiste en la determinación de la posición de un usuario conunos pocos centímetros de error en la precisión. Este problema requiere de al menosvii



viii Introduccióncuatro satélites visibles desde cualquier punto de la esfera terrestre en cualquier in-stante de tiempo, para lo que se requiere una geometría de la constelación bastantecompleja [31, 52].El primer objetivo de este trabajo consiste en la búsqueda de 2D-LFCs cuya geometríasea óptima para la resolución del problema de posicionamiento global. El GDOP, delinglés Geometric Dilution of Precision [28], es la métrica que determina cómo de buenaes la geometría de una constelación para encontrar la posición exacta de un usuario yel desfase horario entre el reloj del satélite y el del usuario. Por lo tanto, la métricaque de�ne la optimalidad de las 2D-LFCs en nuestro problema es el máximo valor delGDOP experimentado desde cualquier punto de la super�cie terrestre durante el tiempode propagación. Por motivos prácticos, discretizamos el tiempo de propagación en pa-sos de 60.0 sec y consideramos 30000 estaciones terrestres aleatoriamente distribuidassobre la super�cie terrestre con probabilidad uniforme. Los algoritmos evolutivos [49]son la principal herramienta para tratar este problema de optimización. En particular,en este trabajo utilizamos Algoritmos Genéticos y los Particle Swarm OptimizationAlgorithms. Mediante este análisis, encontramos 2D-LFCs cuyos satélites presentancon�guraciones que mejoran ligeramente el máximo valor del GDOP experimentadocon respecto a las constelaciones existentes de Galileo y GLONASS. El gran costocomputacional requerido para propagar las constelaciones y el enorme tamaño de nue-stro espacio de búsqueda nos ha llevado a desarrollar diferentes técnicas que reducen eltiempo necesario para encontrar las soluciones óptimas. Dichas técnicas consisten enla reducción del espacio de búsqueda, así como la reducción del tiempo de propagaciónde manera que todo siga siendo matemáticamente correcto. Además, hemos utilizadotécnicas de paralelización en la implementación de los algoritmos evolutivos.El análisis de este problema ha permitido comparar las diferentes técnicas de opti-mización empleadas, concluyendo que el Particle Swarm Optimization Algorithm esel método que mejores resultados proporciona en nuestra búsqueda. En este trabajohemos realizado una búsqueda entre todas las 2D-LFCs posibles variando el número desatélites entre 18 y 40. Hemos obtenido resultados sorprendentes como sería el hechode que con 27 satélites encontramos mejores con�guraciones que con 28 satélites pararesolver el problema de posicionamiento global. Puesto que nuestra 2D-LFC de 27satélites sólo puede mejorarse añadiendo al menos dos satélites, concluimos que es unade las mejores constelaciones. Además, gracias a las 2D-LFCs hemos podido incluirórbitas excéntricas en nuestra búsqueda, encontrando algunas con�guraciones óptimascuyas órbitas presentan una excentricidad en torno a 0.3, muy distinta de la excentri-cidad nula que presentan las órbitas más usuales. En este trabajo hemos comparadola evolución del GDOP de nuestras 2D-LFCs óptimas con respecto a las existentesGLONASS Y Galileo, observando que nuestras constelaciones son ligeramente mejoresdebido a que el máximo valor del GDOP que obtenemos en cada instante es siempremenor. El estudio de las colisiones entre satélites en la constelación, es un problema in-trínseco en nuestro problema de optimización puesto que si hay próxima una alineaciónde satélites, el GDOP en ese instante es elevado y automáticamente dicha constelaciónqueda excluida en nuestra búsqueda.El estudio previo ha sido realizado en un modelo puramente kepleriano. El siguiente



Introducción ixpaso para acercar nuestras constelaciones a una visión más realista consiste en intro-ducir el problema de los dos cuerpos perturbado [45]. La Tierra es considerada comouna esfera perfecta en el modelo kepleriano. Sin embargo, como una primera aproxi-mación a un modelo más realista, consideramos la Tierra como un sólido de revoluciónachatado por el centro (elipsoide). Esto nos lleva a incluir el zonal harmónico J2 enla función potencial. La introducción de zonales harmónicos de ordenes superiores nose considera en este trabajo ya que estos harmónicos son al menos tres ordenes demagnitud menores que el J2 [1].La introducción del zonal harmónico J2 nos conduce a plantearnos el segundo problematratado en esta tesis. Este problema consiste en la búsqueda de parámetros de una2D-LFC para conseguir que sea estable, esto es, que los satélites de la constelaciónse vean afectados por las perturbaciones pero todos de la misma manera. De estaforma la posición relativa entre los satélites de la constelación (en el espacio de loselementos osculadores) quedará inalterada, obteniendo así las constelaciones que tienenpor nombre Rigid Constellations.La mayoría de autores que trabajan el problema principal del satélite promedian lasperturbaciones no seculares en un periodo orbital, considerando únicamente las per-turbaciones de largo periodo y las perturbaciones seculares [10]. En este trabajo,consideramos las perturbaciones seculares y no seculares (de largo y corto periodo)que afectan a la aceleración del satélite. Por ello, en lugar de promediar la expresióndel potencial en un periodo orbital, consideramos la expresión completa de la funciónpotencial [1]. Con la expresión completa del potencial y haciendo uso de las Ecuacionesde Lagrange [45] podemos estudiar la evolución de los elementos orbitales en el tiempo.Los objetivos principales son; controlar la perturbación secular para que sea idénticaen todos los satélites de la constelación y minimizar las perturbaciones no seculares queafectan a nuestros satélites. Si logramos estos objetivos los satélites de la constelaciónse verán perturbados por el efecto del J2 de la misma manera. De esta forma lasposiciones relativas de los satélites serán prácticamente constantes (en el espacio delos elementos osculadores) y la estructura de Flower Constellation se mantendrá conel paso del tiempo, lo que denominamos como Rigid Constellation.Para controlar la parte secular de los satélites de la constelación consideramos unsatélite de referencia. Primero estudiamos la dependencia de la parte secular de loselementos osculadores con respecto a los valores iniciales de Ω y M . Observamos queninguna de las componentes seculares depende del valor de Ω, pero observamos unafuerte dependencia con respecto al valor de M . En el caso particular de una 2D-LFC,todos los satélites tienen los mismos valores de a, e, i, ω, pero tienen distintos losvalores de Ω y M . Por lo que, a priori, la componente secular de los elementos oscu-ladores de cada satélite será distinta. Para conseguir que sea idéntica, aplicamos unmétodo de corrección. Dicho método consiste en modi�car el semieje mayor de todoslos satélites unos pocos kilómetros. De esta forma el periodo (Tp) se verá modi�cado yen particular la componente secular de la variación de la anomalía media en el tiempo
Ṁsec = 2π/Tp. A través de esta corrección, conseguimos que la componente secular delos elementos osculadores de cada uno de los satélites de la constelación coincida hasta



x Introducciónun orden de 10−11. Con esta técnica, conseguimos controlar la perturbación secular denuestros satélites. Tratar de controlar la parte no secular resulta algo más complicado.En primer lugar, aplicamos para cada elemento osculador q ∈ {a, e, i, ω,Ω,M} inter-polación lineal sobre los pares de datos (t, q(t)) que han sido obtenidos previamentepara calcular la posición exacta de los satélites. A través de estas funciones linealesde los elementos osculadores somos capaces de calcular en cada instante de tiempouna posición aproximada o lineal. De tal manera que la distancia entre ambas posi-ciones (real y lineal) será debida a las perturbaciones no seculares que afectan a nuestrosatélite de referencia. El objetivo �nal consiste en analizar entre los posibles valoresde la excentricidad y la inclinación aquellos que minimicen esta distancia (desviación).De esta forma, minimizamos la perturbación no secular que afecta a nuestro satélitede referencia. Estos valores serán extrapolables al resto de satélites de nuestra con-stelación. Consecuentemente, la perturbación no secular que afecta a los satélites dela constelación queda minimizada.Mediante este trabajo somos capaces de diseñar 2D-LFCs cuya con�guración se mantienebajo los efectos del J2, obteniendo las denominadas Rigid Constellations. La teoría quehemos desarrollado tiene dos aplicaciones directas. La primera consiste en validar lateoría de las 3D-LFCs, en el caso en que la función potencial no sea promediada en unperiodo orbital, asumiendo que los semiejes son corregidos y el valor de la desviación eslo más pequeño posible. La segunda aplicación sirve para resolver problemas de cober-tura global en los que se incluye el efecto del zonal J2 en el potencial. Será su�cientecon encontrar una Rigid Constellation que minimice una función �tness ligeramentemodi�cada y podremos propagar los satélites en un modelo kepleriano.Nuestro último objetivo consiste en reducir el elevado número de satélites que porlo general componen una constelación simétrica. Proporcionamos un método paradeterminar todos los subconjuntos de satélites de las 2D-LFCs de tal forma que siganmanteniendo las simetrías que las caracterizan [14].Para conseguir este objetivo hemos identi�cado la primera órbita de nuestra con-stelación, que posee Nso posiciones admisibles con un collar (G (en inglés, necklace)de Nso perlas [15]. Tomamos un número Nrso (Nrso < Nso) representando los satélitesreales por órbita. De esta forma consideramos la primer órbita de la constelación comoun necklace de Nso perlas, de las cuales Nrso son negras y el resto blancas. Esto es, unaórbita con Nso posiciones admisibles, de las cuales Nrso están ocupadas por un satélitey el resto no. La distribución de los satélites en las restantes órbitas es idéntica a laprimera, pero desplazados k perlas.De este modo una Necklace Flower Constellation (NFC) se caracteriza mediante unpar (G, k). Notar que, no todos los pares producen NFC validas, ni dos pares distintosproducen distintas NFC. Estos dos problemas se denominan problema de consistenciay de minimalidad, respectivamente. Utilizando teoría de numeros [3] somos capacesde resolverlos completamente. Finalmente, desarrollamos diversos teoremas de con-teo para determinar la cantidad de pares posibles (G, k) que existen a partir de losparámetros de distribución de una 2D-LFC.



Introducción xiLas constelaciones de satélites son un tema de candente actualidad por las posibilidadesque pueden proporcionar para los servicios comerciales e institucionales en aplicacionescomo las telecomunicaciones, el posicionamiento dinámico o la observación de la Tierra,con costos razonables. Los resultados obtenidos en este trabajo estimulan el estudio delas mismas, que pueden resultar, en un futuro próximo, en constelaciones más e�cientesque las actuales para diversas misiones espaciales.





Chapter 1PreliminariesThis chapter introduces the background needed to understand all the remaining chap-ters of the thesis. A brief introduction to orbital mechanics is presented, not veryextensive due to the wide and excellent bibliography that authors such as Vallado [45],Battin [10], Junkins [43], Chobotov [16], Arnold [6] or Abad [1], just to name a few,have written. One of the main subjects of this thesis is summarized, the theory ofFlower Constellations developed by Mortari, Wilkins and Bruccoleri in [34], expandedby Mortari and Avendaño in [7], and also by Davis in [18]. Finally, two main toolsare presented; the Dilution of Precision (DOP) which is a powerful accuracy metricof the observer-satellite geometry used by the Global Positioning System (GPS), andEvolutive algorithms, which are a novel way to solve certain optimization problems.1.1 Orbital mechanics1.1.1 Keplerian motionIn this work we are concerned in satellites orbiting around the Earth, hence the refer-ence frames used to locate the position of the satellites have the Earth center as origin.The most commonly used reference frames with the previous property are:
• Earth Centered Inertial [45] (ECI): It has the origin at the center of the Earth,as the name implies, and it is designated with the letters IJK. The I and J axesare contained in Earth's equatorial plane. The I axis points towards the vernalequinox; the J axis is 90◦ to the East in the equatorial plane; the K axis extendsthrough the North Pole.
• Earth Centered Earth Fixed [45] (ECEF): It is �xed to the rotating Earth andis designated with the letters XY Z. It has the origin at the center of the Earth.The X and Y axes are contained in Earth's equatorial plane. The X axis pointsto the Greenwich meridian; the Y axis is 90◦ to the East in the equatorial plane;the Z axis points to the North Pole.Newton's laws of motion describe the relationship between the satellite motion and theforces acting on it. The three laws of motion were �rst compiled by Sir Isaac Newton1



2 CHAPTER 1. PRELIMINARIESin his work Philosophiae Naturalis Mathematica [37], �rst published in 1687. Theselaws are [17, p.44]:Newton's First Law: Every particle continues in a state of rest or uniform motionin a straight line unless it is compelled by some external force to change thatstate.Newton's Second Law: The rate of change of the linear momentum of a particleis proportional to the force applied to the particle and takes place in the samedirection as the force.Newton's Third Law: The mutual actions of any two bodies are always equal andoppositely directed.In The Principia of Newton [37] was also published in the Proposition 75, Theorem35, the Newton's Gravitational law which states [17, p.135]:Newton's Gravitational Law: Any two point masses attract one another with aforce proportional to the product of their masses and inversely proportional tothe square of the distance between them.The starting points for studying the orbital motion are Newton's Laws. We examinethe force that the Earth exerts on a satellite. If the satellite mass is msat, the Earthmass is M⊕, and the distance to the satellite from the center of the Earth is r, thenthe force that the Earth exerts on a satellite following the Gravitational Law is:F = −GM⊕msat

r2
r̂ = −GM⊕msat

r3
r, (1.1)where G is the gravitational constant [45, p.136]

G = (6.67259± 0.00085)·10−20 km3 kg−1 sec−2,

r̂ is the unit vector pointing from the Earth center to the satellite, and r representsthe modulus of vector r.By using the Newton's Second Law, the acceleration that the Earth exerts to thesatellite is given by: r̈ = F
msat

. (1.2)All together this translates into the keplerian two-body equation of motion:r̈ = − µ

r3
r, (1.3)where

µ = GM⊕ = 398, 600.4405± 0.001 km3 sec−2.The discovery of the law of universal gravitation by Newton was motivated by theprevious work done by Kepler. Newton was fascinated by the beauty and precision ofKepler's laws and set about the task of discovering what force law must be existingbetween bodies in the Solar system to be consistent with kepler's experimentally veri�edlaws of planetary motion. The Kepler's laws are [45, p.10]:



1.1. ORBITAL MECHANICS 3First Law: The orbit of each planet is an ellipse with the Sun at one focus.Second Law: The line joining the planet to the Sun sweeps out equal areas in equaltimes.Third Law: The square of the period of a planet is proportional to the cube of itsmean distance to the Sun.These laws were published by Johannes Kepler, derived using Tycho Brahe's observa-tions of Mars. We will show below that Kepler's Laws can be derived from Newton'sLaws.The angular momentum of the satellite is de�ned by:h = r× v,where r and v are its position and velocity vector, respectively. We denote h the normof the vector h. The angular momentum in the keplerian motion is constant [41, p.2]:
dh
dt

=
d(r× v)

dt
= r× r̈+ ṙ× v

︸ ︷︷ ︸

=0

= r×− µ

r3
r = 0. (1.4)The sweep velocity of the satellite is given by [4, p.594]:

Vsweep =
1

2
|r× v|, (1.5)and it represents half of the modulus of the angular momentum. The property of havinga constant angular momentum implies that the sweep velocity is constant, which provesKepler's second law. Note that, we always have r⊥h by de�nition of h. Then, if theangular momentum h 6= 0 the motion is not rectilinear and it takes places on a plane.The eccentricity vector e is de�ned as [45, p.106]:

µe = v× h− µ

r
r.We denote e the norm of the vector e. In the keplerian motion the eccentricity vectoris constant:

d(µe)
dt

=
dv
dt

× h+ v× dh
dt

︸ ︷︷ ︸

=0

−µ
d(r−1r)

dt

= − µ

r3
r× h− µ

d
(
(r · r)−1/2 · r)

dt

= −µ
r · v
r3

r+ µ
r · r
r3

v− µ

(

−r · v
r3

r+ 1

r
v)

= 0. (1.6)
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Earth

Satellite

r

e

ϕFigure 1.1: True anomaly.The three components of h and the three of e are not independent since:h · e = h · 1
µ

(v× h− µ

r
r)

=
1

µ
h · (v× h)
︸ ︷︷ ︸

=0

−1

r
h · r
︸︷︷︸

=0

= 0. (1.7)The energy of the satellite is de�ned as:
E =

v2

2
− µ

r
, (1.8)which is another constant:

dE

dt
=

1

2

dv2

dt
− µ

d(r−1)

dt

= v · v̇− µ
d
(
(r · r)−1/2

)

dt

= v ·
(

− µ

r3
r)− µ

r3
r · v

= 0. (1.9)By taking the dot product of the eccentricity vector with the position, we get:r · e =
1

µ
r · v× h− r · r

r

=
(r · r)(v · v)− (r · v)(v · r)

µ
− r

=
h2

µ
− r. (1.10)If e 6= 0 we de�ne the true anomaly ϕ, illustrated in Figure 1.1, as the angle betweenvector e and the position vector r,r · e = re cos(ϕ). (1.11)
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rpra

Figure 1.2: Elliptical orbit geometry.By using Eq. (1.10) and Eq. (1.11) we obtain:
r =

p

1 + e cos(ϕ)
, (1.12)where p = h2/µ. This is the polar equation of a conic section of eccentricity equal to ewith focus at the origin. This together with the fact that the motion is planar provesKepler's First Law. The eccentricity indicates whether the conic intersection is elliptic(0 ≤ e < 1), parabolic (e = 1) or hyperbolic (e > 1).In the case of an ellipse we have a maximum and a minimum value of r in two pointsnamed perigee (ϕ = 0) and apogee (ϕ = π), respectively. The distances to the focusfrom these two points are given by:

rp =
p

1 + e
, ra =

p

1− e
. (1.13)Figure 1.2 [12] illustrates a satellite S orbiting the Earth on an elliptical orbit O ofsemi-major axis a and eccentricity e. It shows the perigee and apogee distances, thesemilatus rectum p, the semi-minor axis b, and the constant c = ae:

p = a(1− e2), b = a
√
1− e2, c = ae =

pe

1− e2
. (1.14)Finally, the Kepler's Third Law can be derived as follows:

Tp =
Ellipse areaSweep velocity =

πab
1
2
h

=
2πab√
µp

=
2πa(a

√
1− e2)

√

µa(1− e2)



6 CHAPTER 1. PRELIMINARIES
=

2πa3/2√
µ

. (1.15)In the elliptic case, the Energy equation (1.8) is [17, p.65]:v2 = µ

(
2

r
− 1

a

)

. (1.16)Squaring the angular momentum [17, p.131] we get:
h2 = (

√
µp)2 = µa(1− e2),

h2 = |r× v|2 = v2r2 − (r · v)2 = v2r2 − (rv)2.Then,
µa(1− e2) = v2r2 − (rv)2. (1.17)Substituting the expression of v2 given in Eq. (1.16) in Eq. (1.17), we obtain:

µa(1− e2) = µ

(
2

r
− 1

a

) r2 − (rv)2. (1.18)De�ne E by
r = a(1− e cos(E)), (1.19)where E is named the eccentric anomaly. As true anomaly ϕ, already introduced,varies from 0◦ to 360◦, E also varies in the range 0◦ to 360◦. Di�erentiating Eq. (1.19)we get:
ṙ = v = aeĖ sin(E). (1.20)Substituting into Eq. (1.18) and rearranging, we obtain:

a3

µ
Ė2(1− e cos(E))2 = 1. (1.21)Now the orbit is described so that dE/dt is positive, so that

dt =

√

a3

µ
(1− e cos(E))dE. (1.22)Integrating over a complete revolution we get for the period:

Tp = 2π

√

a3

µ
=

2π

n
, (1.23)where n =

√

µ/a3 is the mean motion. Thus, Eq. (1.22) can be written, as:
n dt = (1− e cos(E))dE, (1.24)



1.1. ORBITAL MECHANICS 7which can be integrated immediately to give:
n(t− t0) = E − e sin(E), (1.25)where t0 is the time of passage through the perigee. Eq. (1.25) is named Kepler'sEquation usually written in the form:

M = E − e sin(E), (1.26)where M is the mean anomaly, de�ned by
M = n(t− t0). (1.27)The relation between the true anomaly (ϕ) and the eccentric anomaly (E) can beobserved in Figure 1.2, and they are related by the formula:

tan
(ϕ

2

)

=

√

1 + e

1− e
tan

(
E

2

)

. (1.28)At this point, the position and velocity of a satellite can be obtained from the followingsix integrals of motion, called in Astrodynamics the classical orbital elements; two ofthem describe the shape of the orbit, the semi-major axis (a) and the eccentricity (e).Three of them situate the orbital plane, the inclination (i), which is the angular distancebetween the orbital plane and the plane of reference (Equatorial plane), the argument ofperigee (ω), which is the angle between the orbit's perigee (the point of closest approachto the Earth) and the orbit's ascending node (the point where the satellite crosses theEquatorial plane from South to North), and the Right Ascension of the Ascending Node
(Ω), which represents the angular distance between the orbit's ascending node and thereference axis of our inertial system (pointing to Greenwich meridian). Finally, a sixthparameter which determines the position of the body on its orbit. This parameter isone of the three angular variables presented above; true anomaly, mean anomaly oreccentric anomaly. Figure 1.3 illustrates the orbital elements.1.1.2 Perturbed motionA conservative force �eld is one with the property that the work done in moving aparticle from a point A to a point B is independent of the path taken. The gravitational�eld around the Earth is the sum of conservative force �eld corresponding to each ofits particles, hence conservative. It is shown in [5] that any conservative force �eld canbe expressed as:

F (r) = −msat · ∇V (r). (1.29)where V (r) is the potential function [29], which measures how much work has to bedone to the satellite from rest in a reference position r0 close to in�nity to rest atposition r.The Earth is not a perfect sphere, it has the shape of an oblate spheroid with anequatorial diameter that exceeds the polar diameter by about 20 km. The perturbation
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ϕ

Figure 1.3: Orbital elements.
(P) produced by this fact is about three orders of magnitude smaller than the centralattraction described before using Newton's law of universal gravitation. Then, Eq. (1.3)can be reformulated as: r̈ = − µ

r3
r+P, (1.30)which is known in Astrodynamics as the perturbed two-body problem. Then, the key ofthe particular problem of a satellite orbiting around the Earth consists of determiningthe potential function that a�ects to the satellite to determine its acceleration.The satellite motion represented by the second order equation (1.30) can be expressedas a �rst order system of equations:

{ṙ(t) = v(t),v̇(t) = −∇V (r(t)), (1.31)where r(t) and v(t) represent the position and velocity of the satellite at time t, re-spectively.If we consider the Earth as a perfect sphere with constant density (keplerian model),the potential function must be:
Vkep(r) = −µ

r
, (1.32)to satisfy Eq. (1.3).However, if we consider each point of the Earth, then the potential function is [45]:

V (r, φsat, λsat) = −µ

r

[

1−
∞∑

l=2

Jl

(r⊕

r

)l
Pl (sin(φsat))+

+

∞∑

l=2

l∑

m=1

(r⊕

r

)l
Pl,m (sin(φsat)) [Cl,m cos(m · λsat) + Sl,m sin(m · λsat)]

]

,

(1.33)



1.1. ORBITAL MECHANICS 9where Pl(t) is the l-order Legendre Polynomial, Pl,m is the l-order, m-degree asso-ciated Legendre Polynomial, which are de�ned from the derivatives of the LegendrePolynomial as follows:
Pl(t) =

1

2l l!

dl

dtl
(t2 − 1)l, Ql,m(t) =

dm

dtm
Pl(t), Pl,m(t) = (1− t2)m/2Ql,m(t),and (λsat, φsat) ∈ [0, 2π] × [−π/2, π/2] represents the longitude and latitude of thesatellite from the center of the Earth, respectively.Note that, in Eq. (1.33) the potential is inversely proportional with respect to thedistance to the Earth. The terms Jl are called zonal harmonics, the terms Cl,m and

Sl,m when m 6= 0 and l 6= m are called tesseral harmonics, and the terms Cl,m and Sl,mwhen m 6= 0 and l = m are called sectorial harmonics. Zonal and tesseral harmonicsare illustrated in Figure 1.4, while sectorial harmonics are illustrated in Figure 1.5.See [29] for more precise information.
Figure 1.4: Zonal and Tesseral harmonics.In our study we consider the Earth as a revolution body, then the tesseral and sectorialharmonics will be zero, and the potential will have only zonal harmonics. Table 1.1shows the values of the zonal harmonics [1, p.228]:1.1.2.1 Evolution of position and velocity in the perturbed problemThe expression of the potential considering only the zonal harmonics (Jl) is:

V (r) = −µ

r

[

1−
∞∑

l=2

Jl

(r⊕
r

)l

Pl (sin(φsat))

]

, (1.34)
Figure 1.5: Sectorial harmonics.
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J2 1.08263 ·10−3

J3 -2.53243 ·10−6

J4 -1.61933 ·10−6

J5 -2.27716 ·10−7

J6 5.39648 ·10−7... ...Table 1.1: Zonal harmonic coe�cients for Earth perturbed potential.and it is usually split in several parts: the Keplerian component Vkep and the zonalharmonic components, RJ2 , RJ3 , etc:
V (r) = Vkep +R

= Vkep +RJ2 +RJ3 + . . . (1.35)We apply the gradient operator to the potential function:
∇V =

(
∂V

∂x
,
∂V

∂y
,
∂V

∂z

)

=

(
∂Vkep

∂x
+

∂RJ2

∂x
+

∂RJ3

∂x
+ . . . ,

∂Vkep

∂y
+

∂RJ2

∂y
+

∂RJ3

∂y
+ . . .

. . . ,
∂Vkep

∂z
+

∂RJ2

∂z
+

∂RJ3

∂z
+ . . .

)

.

(1.36)
Then, by using Eqs. (1.31) it is possible to derive the state vector of the satellite fromthe following system of equations:







ẋ = vx,

ẏ = vy,

ż = vz,

v̇x = −∂V

∂x
,

v̇y = −∂V

∂y
,

v̇z = −∂V

∂z
.

(1.37)
This system of equations can be solved numerically by using a Runge-Kutta Methodof order 4. The solution represents the evolution of position and velocity over time.Note that, the more terms we include in the potential function, the more precise theestimation of the position and velocity will be.1.1.2.2 Evolution of the orbital elements in the perturbed problemIn the keplerian motion, all the orbital elements except M are constant. The evolutionof them over time can be represented as a straight line, since M increases linearly:
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M(t) = nt where n =

√

µ/a3 is the mean motion. When some perturbations appear,the orbital elements are not longer constant. However, the model can be consideredinstantaneously as a keplerian model, i.e. at each instant of time is possible to describethe movement as a keplerian motion, using six orbital elements which depend on time.These parameters are named osculating elements; a(t), e(t), i(t), ω(t), Ω(t) and M(t).Lagrange planetary Equations [45, pg. 585]: are a powerful tool to compute the varia-tion of the osculating elements over time:






ȧ = − 2

na

∂R

∂M
,

ė = −1− e2

na2e

∂R

∂M
+

√
1− e2

na2e

∂R

∂ω
,

i̇ =
1

na2
√
1− e2 sin(i)

∂R

∂Ω
− cos(i)

na2
√
1− e2 sin(i)

∂R

∂ω
,

ω̇ = −
√
1− e2

na2e

∂R

∂e
+

cos(i)

na2
√
1− e2 sin(i)

∂R

∂i
,

Ω̇ = − 1

na2
√
1− e2 sin(i)

∂R

∂i
,

Ṁ = n+
2

na

∂R

∂a
+

1− e2

na2e

∂R

∂e
.

(1.38)
where R represents the perturbing part of the potential presented in Eq. (1.35).Note that, Lagrange Planetary Equations only consider the perturbed part of thepotential, R. This system of equations can be solved using a Runge-Kutta Methodof order 4. The solution represents the evolution of the orbital elements over time.Note that, the more terms we include in the potential function, the more precise theestimation of the position and velocity will be.1.2 Satellite ConstellationsThe initial position of a satellite orbiting around the Earth is determined using theclassical orbital elements. Then, the �rst idea to describe a satellite constellation of nsatellites, may consist of giving the orbital elements of each one. However, choosing 6nindependent, continuous parameters is something prohibitive if the constellation hasmore than 20 satellites. One solution to deal with this curse of dimensionality mayconsist of having some common orbital parameters for each satellite, thus the numberof design variables are strongly reduced.J.G. Walker developed around 1970s a method to design satellite constellations [47,48].The satellites in this kind of constellations, called Walker Constellations, have the samesemi-major axis (a), the same inclination (i) and they are distributed in circular orbits
(e = 0). The Right Ascension of the Ascending Node (RAAN) and the true anomalyof each satellite is determined using these three integer parameters:
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• T is the total number of satellites in the constellation.
• P is the number of orbital planes.
• F is a phasing parameter.Walker hypothesized [18, p.12] that optimal constellations would be symmetrical anduniform in their distributions of satellites. Thus, he designs the constellation as follows:the RAAN of the satellites in the P orbital planes are equally distributed around theequator. The satellites within a given orbital plane are also uniformly distributed inmean anomaly. De�ning the Pattern Unit (PU) 1PU = 360◦/T , when a satellite ona given plane passes through the ascending node, the satellite on the next adjacentplane to the east has advanced F · PUs past its ascending node. The values of F arelimited to the range [0, P−1]. Consequently, three integer parameters (T, P, F ) and twocontinuous parameters (a, i) are enough to describe this kind of satellite constellations.1.2.1 The Flower ConstellationsAs Draim shows in his work [21], eccentric orbits may be better than circular ones.Thus, another way of designing satellite constellations, without the necessity of havingcircular orbits, is required. D. Mortari developed around 2004 The Flower Constella-tions [34, 51] which solve this problem by leaving the eccentricity as a design variable.In this section we brie�y describe the evolution of the theory.The original theory of Flower Constellations has all the satellites in the same repeti-tive ground-track, or in other words, the same repetitive ground-track relative to therotating reference frame of the Earth. All the orbits have the same eccentricity (e),inclination (i), and argument of perigee (ω). In order to have all the satellites in thesame ground track the compatibility (or resonant) condition must be satis�ed:

Np Tp = Nd Td, (1.39)where Np is the number of orbital periods before repetition, Tp is the keplerian orbitalperiod, Nd is the number of revolutions of the rotating reference frame before repetition,and Td is the period of the rotating reference frame, which in the case of the Earth isa sidereal day. Note that, given the values of Np, and Nd the value of the semi-majoraxis (a) is automatically determined. In addition, the e�ect of J2 perturbation can beaccounted for in the values of Td and Tp to maintain repeating ground tracks under the
J2 e�ect [34].Once the orbit is described the following step is to de�ne the Right Ascension of theAscending Node (Ωk) and Mean anomaly (Mk) of the Nsat satellites of the constellation.For that purpose three integers (phasing parameters) must be chosen: Fn, Fd and
Fh. Finally, the values of Ωk and Mk are determined using recursively the followingequations [35, 50]:

Ωk+1 = Ωk + 2π
Fn

Fd

, k ∈ [0, Nsat − 1].
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Mk+1 = Mk − 2π

NpFn + FdFh(k)

FdNd
, k ∈ [0, Nsat − 1]. (1.40)Note that, Fh(k) could be any sequence of numbers from the set [0, Nd − 1] but it istypically chosen to be constant. Then, with the three continuous parameters (e, i, ω)and the six integer parameters (Nsat, Np, Nd, Fn, Fd, Fh) the constellation is completelydescribed. The parameters Ω0 and M0 are usually set to zero, but they can be alsoconsidered design variables.The Flower Constellations evolved into the Harmonic Flower Constellations after prov-ing that the number of satellites in a Flower Constellation can not exceed [9]:

NdFd

gcd(Nd, NpFn + FdFh)
.This constraint about the maximum number of satellite per orbit allows to reduce one ofthe integer parameters that de�nes a Flower Constellation, and reformulate the othersto have more understandable and physical parameters. Since the maximum number ofsatellites is known, and the number of orbits is represented by the parameter Fd, it ispossible to infer that the number of satellites per orbit is:

Nso =
Nd

gcd(Nd, NpFn + FdFh)
.Furthermore, a new parameter called con�guration number is de�ned as [9]:

Nc = En
NpFn + FdFh

gcd(Np, NpFn + FdFh)
mod (Fd),where En and Ed are any integers such that EnFn + EdFd = 1. This parameter is thekey to characterize Harmonic Flower Constellations. However, a requirement for theexistence of an Harmonic Flower Constellation is,

gcd(Fd, Nso, Nc) = 1.The Harmonic Flower Constellations are visualized through the (Ω,M)-space [8], wherethe admissible locations for the satellites in the constellation are described. The Har-monic Flower Constellations solved the problem of equivalency (two HFC are said tobe equivalent if and only if their (Ω,M)-space representations coincide) and similarity,but a simple procedure to compute the (Ω,M)-space from the parameters Fd, Nso and
Nc is necessary. The extension of the theory into the 2D Lattice Flower Constellation(2D-LFC) [7] solves this problem.The 2D Lattice Flower Constellations can be described by �ve integer parameters andthree continuous ones. The integer parameters can be broken into two sets, the �rstdescribing the phasing of the satellites and the second describing the orbital period(or semi-major axis). The �rst set is {No, Nso, Nc} where No is the number of orbital



14 CHAPTER 1. PRELIMINARIESplanes, Nso is the number of satellites per orbit, and Nc is the con�guration number.The second set is {Np, Nd} which satis�es the compatibility equation (1.39), whichenforces the repeating space-track requirement.The location of all the satellites of a 2D-LFC corresponds to a Lattice in the (Ω,M)-space [7], which can be regarded as a 3D torus (both axes, M and Ω, are modulo 2π)and coincides with all the solutions of the following system of equations:
(

No 0
Nc Nso

)(
Ω
M

)

≡ 0 mod (2π). (1.41)The solutions of Eq. (1.41) can be parameterized as follows:
(

No 0
Nc Nso

)(
Ωij

Mij

)

= 2π

(
i
j

)

, (1.42)where i = 0, · · · , No − 1, j = 0, · · · , Nso − 1, and Nc ∈ [0, No − 1]. Satellite (i, j) is the
j-th satellite on the i-th orbital plane. Consequently, the total number of satellites inthe constellation Nsat = NoNso.We represent two di�erent (Ω,M)-spaces to show how the parameter Nc in�uences thedistribution of the satellites. In Figure 1.6 we plot the (Ω,M)-space of a 24-satelliteconstellation with parameters No = 4, Nso = 6, Nc = 0, while in Figure 1.7 we plot the
(Ω,M)-space of a 24-satellite constellation with parameters No = 4, Nso = 6, Nc = 2.
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Figure 1.6: 2D-LFC with No = 4, Nso = 6, Nc = 0, Ω00 = 45.0, and M00 = 0.0Note that, the Mean anomalies of the satellites of the second and fourth orbits inFigure 1.7 are shifted with respect to those shown in Figure 1.6 due to the e�ect of theparameter Nc.



1.2. SATELLITE CONSTELLATIONS 15

0 60 120 180 240 300 360
0

60

120

180

240

300

360

RAAN[Deg]

M
ea

n 
A

no
m

al
y 

[D
eg

]

Figure 1.7: 2D-LFC with No = 4, Nso = 6, Nc = 2, Ω00 = 45.0, and M00 = 0.0The remaining parameters required to de�ne the constellation are continuous and thesame for all orbits in the constellation: the inclination, the eccentricity, and the argu-ment of perigee. Since all satellites of a 2D-LFC have the same a, e, i, and ω, whenthe (Ω,M)-space is provided the constellation is completely de�ned.To sum up, a 2D-LFC can be viewed as a vector in N3 × R6 containing the 3 integerparameters (No, Nso, Nc) describing the layout of the satellites in the (Ω,M)-space, andthe 6 continuous orbital parameters (a, e, i, ω, Ω00, M00) of the reference satellite. Itcan also be regarded as a function FC(t) that gives the position of the NsoNo satellitesat time t.Note that, since the 2D-LFC theory separates the satellite phasing from the orbit size,non-repeating space-tracks can be used without a�ecting the uniformity of the satellitedistribution. However, the condition that all satellites belong to the same repeatingground track can be recovered by choosing any two coprime integers µ and λ, de�ning:
Nd = λNso,

Np = µNo + λNc,and adjusting the semi-major axis according to Eq. (1.39).For practical applications, we are assuming that the period of the rotational referenceframe Td is constant. Furthermore, the semimajor axis of the satellites is �xed depend-ing on the sort of mission, this means that Tp is known. Thus, the interest of havingall the satellites in the same ground-track disappeared, and we can adopt two di�erentpoints of view. The �rst case consists of considering that there always exist integers
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Np, Nd such that the ratio Np/Nd approximates the ratio Td/Tp. In the second casethe constellation may not be compatible with respect to the rotating reference frame(ECEF), since Tp is not necessarily a rational multiple of Td, but there are in�nitelymany rotating frames compatible with the constellation. In these rotating frames thetrajectory of the satellites is static, but respect to the inertial frame the trajectoryrotates with angular velocity:

ωd =
2πNd

NpTp

. (1.43)As an illustration, the same 2D-LFC is presented in two di�erent rotating referenceframes. The phasing parameters are No = 3, Nso = 8, and Nc = 2. The continuousparameters are a = 28000 km, e = 0, and i = 55◦. It is possible to observe thatthe number of relative trajectories followed by the satellites varies depending on thevelocity of the rotating reference frame, or in other word, depending on the parameters
Np and Nd.In Figure 1.8 the 2D-LFC has parameters Np = 1 and Nd = 0. Then, using Eq. (1.43)the velocity of the rotating reference frame is ωd = 0, i.e. the inertial frame (ECI). Onthe other hand, in Figure 1.9 the 2D-LFC has parameters Np = 3 and Nd = 12, andusing (1.43) the ground track rotates with angular velocity ωd = 5.39 · 10−4 rad/sec.Consequently, none of them is compatible with the Earth rotating reference frame sincethe angular velocity is ω⊕ = 7.2722 · 10−5 rad/sec.

Figure 1.8: A 2D-LFC with three relative trajectories.In the 2D-LFC theory elliptic orbits are generally avoided due to the rotation of theapsidal line due to Earth's oblateness (the J2 e�ect). The 3D Lattice Flower Con-stellation (3D-LFC) theory [18, 19] utilize, rather than avoid, the J2 e�ect to produceuniform constellations of elliptic orbits.The rotation of the argument of perigee is only meaningful in elliptic orbits. Further-more, if the critical inclination is considered 63.4◦ or 116.6◦ the argument of perigee
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Figure 1.9: A 2D-LFC with all the satellites in the same ground track.experiences no rotation, but one of the design variables is eliminated. This theory pro-poses that the satellites within a given orbital plane be placed in multiple orbits witharguments of perigee distributed evenly in the range [0◦, 360◦]. Since all orbits havethe same inclination, eccentricity and semi-major axis, their rate of perigee rotationwill be approximately equal. Thus, as they each rotate, the relative perigee spacingremains constant, and periodically the constellation resumes its original structure. Theconcept is illustrated in Figure 1.10.

Figure 1.10: 3D-LFC concept.The mathematical formulation of the 3D-LFC requires six integer parameters and sixorbital elements of a reference satellite. We use No to represent the number of or-bital planes, Nω to represent the number of unique orbits (with di�erent argumentsof perigee) on each plane, and N ′
so to represent the number of satellites on each ofthose orbits. Thus, the total number of satellites of the constellation is represented by

Nsat = NoNωN
′
so. The remaining three integers are the phasing parameters: N1

c , N
2
cand N3

c .Following the notes of Davis [19], the distribution of the satellites in the (Ω, ω,M)-space



18 CHAPTER 1. PRELIMINARIEScan be determined solving this system of equations:




No 0 0
N3

c Nω 0
N1

c N2
c N

′

so









Ωijk

ωijk

Mijk



 = 2π





i
k
j



 , (1.44)where
i = 0, . . . , No − 1 N1

c ∈ [0, No − 1],

j = 0, . . . , N
′

so − 1 N2
c ∈ [0, Nω − 1],

k = 0, . . . , Nω − 1 N3
c ∈ [0, No − 1].Note that, the values outside of those ranges are perfectly valid, but they describe con-�gurations equivalent to ones de�ned in the speci�ed range, as in modular arithmetic.The location of all the satellites of a 3D-LFC corresponds to a Lattice in the (Ω, ω,M)-space, which can be regarded as a 4D torus (three axis, Ω, ω, and M , are modulo 2π)and coincides with all the solutions of the system of equations given in (1.44).The 3D-LFC theory not only shares many properties with 2D-LFC. This theory gen-eralizes the 2D-LFC and other existing satellite constellations, such as Walker constel-lations or Draim constellations.1.3 Dilution of PrecisionThe Global Positioning System [38] (GPS) determines the user position using the con-cept Time-Of-Arrival (TOA), which consists of determining the user position measuringthe time-of-arrival for a signal transmitted by a satellite at a known location to reachthe user location. Multiplying the TOA by the speed of the signal transmitted, it ispossible to determine the user's position. In order to understand this problem, it willbe useful solve �rst the two-dimensional case [28].The two-dimensional position determination problem can be presented through thewell known problem of a mariner at sea determining his or her vessel's position froma foghorn. First of all, assume that the vessel's and foghorn's clocks are perfectlysynchronized. And also, assume that the mariner has an approximate idea of thevessel's position. The mariner has to take note of the time that the foghorn whistleneeds to travel from the foghorn to the mariner's ear. Then, the distance can be easilycomputed multiplying the measured time by the speed of sound.For example, if we consider that the speed of sound is 335m/sec, and the propaga-tion time measured by the mariner is 2 sec, the circumference of radio R1 = 670m,illustrated in Figure 1.11, represents all the possible mariner's locations.
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R1

Foghorn 1

Figure 1.11: Possible vessel's position.If the mariner, at the same time, computes the propagation time of a second foghornwhistle, for example 1 sec. The vessel will be at range R1 = 670m from the foghorn 1and range R2 = 335m from the foghorn 2, as we can see in Figure 1.12. As we mentionbefore, the mariner has an approximate idea of the vessel's position and it is possibleto discard one of the intersection points. If not, a third range measurement R3 from athird foghorn can be used to solve this ambiguity.
R1 

Foghorn 1 

Foghorn 2 

R2 

A 

B Figure 1.12: Two possible vessel's position.The previous problem has been solved assuming that the clocks were perfectly syn-chronized. But, this fact does not happen in a real case. On the other hand, allmeasurements will have the same time o�sets, because the mariner's clock is the samefor all the time measurements and all the foghorns clocks are synchronized. Then, thetime o�set is re�ected as an error in the ranges R1, R2, and R3. As an example, if thetime o�set between the mariner's clock and the foghorn's clock is 0.1 sec the rangesmust add an error of ε = 33.5m. This concept is illustrated in Figure 1.13. Obviously,the true vessel position is a function of the vessel's clock o�set, if this o�set couldbe removed the vessel's position will be completely precise. In the real case, must beconsidered other delay e�ects such as: atmospheric e�ects, interfering sounds, etc.The three-dimensional position determination problem [28] consists of determining theuser position (xu, yu, zu) using the location of three satellites, whose coordinates are wellknown. The idea is exactly the same as in the vessel's problem, but instead of using twofoghorns three satellites are used, and instead of intersecting circumferences, spheres
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Foghorn 3

R3 + ε

Figure 1.13: E�ect of time o�set on the measurements.will be intersected. In this case, the speed of light will be used, as opposed to thespeed of sound used in the foghorn problem. Furthermore, the time o�set (tu), whichrepresents the di�erence in time between the clocks of the receiver and the satellite, willbe another unknown. Then, four visible satellites are needed to completely determinethe four unknowns; the user position coordinates and the time o�set. We explaincarefully this problem [28].Let s be the vector from the Earth's center to the j-th satellite and be u the vector fromthe Earth's center to the user position. These vectors are illustrated in Figure 1.14.
 

s

u

j-th satellite
User

Figure 1.14: User and j-th satellite position vectors from the Earth's center.The distance between j-th satellite and the user position can be computed by measur-ing the time between the emission of a signal from the satellite, and the reception ofthat signal by the receiver. If the satellite clock and the receiver clock were perfectlysynchronized, the time ∆t, which represents the time between emitting and receiv-ing the signal, would be the propagation time. Then, the range satellite-user can be
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c =

||s− u||
∆t

. (1.45)However, the receiver and satellite clocks will generally have a bias error from systemtime. The distance between the user and the satellite, which is computed multiplyingthe signal propagation velocity by the measured propagation time, is not the realdistance and it is called pseudorange measurement. The measurement contains: (1)the geometric satellite-user range. (2) an o�set attributed to the di�erence betweensystem time and user clock. (3) an o�set attributed to the di�erence between systemtime and satellite clock. (4) other sources of error that corrupt the measurements suchas the atmosphere, because it makes the pseudorange larger than it would be if thesignal were propagated in a vacuum, the troposphere, that delays the reception time,and the ionosphere, that advances the reception of the signal. Furthermore, re�ections(i.e multipath) and hardware e�ects during the codi�cation of the signal may advanceor delay the signal transmission. δtD resumes all the errors described in (4),
δtD = δtatm + δtnoise&int + δtmp + δthw, (1.46)where:

δtatm = delays due to the atmosphere.
δtnoise&int = delays due to receiver noise and interference.
δtmp = delays due to the multipath o�set.
δthw = delays due to the hardware o�set.The relation between times are expressed in Figure 1.15 where:
∆t = geometric range time equivalent.
Ts = system time at which the signal left the satellite.
Tu = system time at which the signal would have reached the ground station without

δtD.
T ′
u = system time at which the signal reach the user receiver considering δtD.

δt = o�set of the satellite clock from the system time. Advance is positive, delay isnegative.
tu = o�set of the receiver clock from the system time.
Ts + δt = satellite clock reading at time which the signal left the satellite.
T ′
u + tu = user receiver clock reading at time when the signal reach the user receiver.

c = speed of light.
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Figure 1.15: Pseudorange time measurement.Then, the pseudorange measurement is:
ρ = c[(T ′

u + tu)− (Ts + δt)]

= c(T ′
u − Ts) + c(tu − δt)

= c(Tu + δtD − Ts) + c(tu − δt) (1.47)
= c(Tu − Ts) + c(tu − δt+ δtD)

= ||s− u||+ c(tu − δt+ δtD).The o�set δt, which represents the o�set of the satellite clock from the system clock is nolonger considered because the GPS ground-monitoring network applied the necessarycorrections within the user receiver in order to synchronize the satellite clock with thesystem clock of each signal, meaning that δt = 0. In our study, we consider that thevalue δtD = 0. Thus, Eq. (1.47) can be rewritten as:
ρ = ||s− u||+ ctu. (1.48)where s = (xj , yj, zj) represents the coordinates of the j-th satellite, u = (xu, yu, zu)represents the coordinates of the user's position, and the amount tu represents theadvance of the receiver clock with respect to the satellite clock.At this point, our problem has four unknowns (xu, yu, zu) and tu, that is why at leastfour visible satellites will be necessary to determine the unknowns. Eq. (1.48) can beexpanded into the following set of equations in the unknowns xu, yu, zu, and tu.

ρ1 =
√

(x1 − xu)2 + (y1 − yu)2 + (z1 − zu)2 + ctu,

ρ2 =
√

(x2 − xu)2 + (y2 − yu)2 + (z2 − zu)2 + ctu,

ρ3 =
√

(x3 − xu)2 + (y3 − yu)2 + (z3 − zu)2 + ctu,

ρ4 =
√

(x4 − xu)2 + (y4 − yu)2 + (z4 − zu)2 + ctu.

(1.49)We expand Eqs. (1.49) using Taylor series about an approximate user position de-noted by (x̂u, ŷu, ẑu) in order to linearized them. Now, we express the o�set of thetrue position (xu, yu, zu) from the approximate position (x̂u, ŷu, ẑu) by a displacement
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(∆xu,∆yu,∆zu). It is also considered a time bias estimate t̂u from the time estimate
tu. Then, we have the following relation:

xu = x̂u +∆xu,

yu = ŷu +∆yu,

zu = ẑu +∆zu,

tu = t̂u +∆tu.

(1.50)The pseudorrange measurements from the user position (xu, yu, zu) to the j-th satellitewith time estimate tu, and from the approximation user position (x̂u, ŷu, ẑu) to the j-thsatellite with time bias estimate t̂u can be described using a function f :
ρj =

√

(xj − xu)2 + (yj − yu)2 + (zj − zu)2 + ctu = f(xu, yu, zu, tu),

ρ̂j =
√

(xj − x̂u)2 + (yj − ŷu)2 + (zj − ẑu)2 + ct̂u = f(x̂u, ŷu, ẑu, t̂u).
(1.51)It is possible to relate ρj and ρ̂j by using Eqs (1.50). Then, we expand this expressionabout the approximate point (x̂u, ŷu, ẑu) and time bias estimate t̂u using Taylor seriesexpansion:

f(xu, yu, zu, tu) = f(x̂u +∆xu, ŷu +∆yu, ẑu +∆zu, t̂u +∆tu)

= f(x̂u, ŷu, ẑu, t̂u) +
∂f(x̂u, ŷu, ẑu, t̂u)

∂x̂u
∆xu +

+
∂f(x̂u, ŷu, ẑu, t̂u)

∂ŷu
∆yu +

∂f(x̂u, ŷu, ẑu, t̂u)

∂ẑu
∆zu +

+
∂f(x̂u, ŷu, ẑu, t̂u)

∂t̂u
∆tu + . . . (1.52)The partial derivatives of Eq. (1.52) have been truncated after the �rst-order to elimi-nate nonlinear terms as follows:

∂f(x̂u, ŷu, ẑu, t̂u)

∂x̂u
= −xj − x̂u

r̂j
,

∂f(x̂u, ŷu, ẑu, t̂u)

∂ŷu
= −yj − ŷu

r̂j
,

∂f(x̂u, ŷu, ẑu, t̂u)

∂ẑu
= −zj − ẑu

r̂j
,

∂f(x̂u, ŷu, ẑu, t̂u)

∂t̂u
= c,

(1.53)
where

r̂j =
√

(xj − x̂u)2 + (yj − ŷu)2 + (zj − ẑu)2.Finally, substituting Eqs. (1.51) and Eqs. (1.53) into Eq. (1.52) we obtain:
ρj = ρ̂j −

xj − x̂u

r̂j
∆xu −

yj − ŷu
r̂j

∆yu −
zj − ẑu

r̂j
∆zu + c∆tu. (1.54)



24 CHAPTER 1. PRELIMINARIESWe have a linearized expression of the pseudorange measurement ρj , given in Eq. (1.51),with respect to the unknowns ∆xu,∆yu,∆zu, and ∆tu.Now, we de�ne the direction cosines of the unit vector pointing from the approximateuser position to the j-th satellite:
axj

=
xj − x̂u

r̂j
,

ayj =
yj − ŷu

r̂j
, (1.55)

azj =
zj − ẑu

r̂j
.We also de�ne the variable ∆ρj = ρ̂j − ρj . Then, Eq. (1.54) can be rewritten as:

∆ρj = axj
∆xu + ayj∆yu + azj∆zu − c∆tu. (1.56)The unknowns of our problem can be determined by solving the following set of linearequations:

∆ρ1 = ax1
∆xu + ay1∆yu + az1∆zu − c∆tu,

∆ρ2 = ax2
∆xu + ay2∆yu + az2∆zu − c∆tu,

∆ρ3 = ax3
∆xu + ay3∆yu + az3∆zu − c∆tu,

∆ρ4 = ax4
∆xu + ay4∆yu + az4∆zu − c∆tu.These equations can be set in matrix notation:

∆ρ =







∆ρ1
∆ρ2
∆ρ3
∆ρ4







, H =







ax1
ay1 az1 1

ax2
ay2 az2 1

ax3
ay3 az3 1

ax4
ay4 az4 1







, ∆x =







∆xu

∆yu
∆zu

−c∆tu







.Finally, we obtain the equation:
∆ρ = H∆x. (1.57)Since the elements of H are linearly independent, the matrix is invertible,
∆x = H−1∆ρ. (1.58)In some cases, we have a n× 4 dimension matrix instead of a 4 × 4 dimension matrixbecause we have more than four visible satellites. In this case we use the method ofleast squares. By multiplying Eq. (1.57) by HT we obtain:

HT∆ρ = HTH∆x. (1.59)Now, we multiply by (HTH)−1 and we get:
∆x = (HTH)−1HT∆ρ. (1.60)Note that, we have solved the error-free problem, in which we only consider the o�setbetween the satellite clock and the receiver clock. But, as we have already mention,



1.3. DILUTION OF PRECISION 25this problem has other source errors. Thus, the pseudorange measurements can beviewed as a linear combination of the following three terms:
∆ρ = ρT − ρL + dρ, (1.61)where ρT is the vector of error-free pseudorange values, ρL is the vector of pseudorangevalues computed at the linearization point, and dρ represents the net error in the pseu-dorange values. In the same way, the vector ∆x can be viewed as a linear combinationof three terms,
∆x = xT − xL + dx, (1.62)where xT is the error-free position and time, xL is the position and time de�ned as thelinearization point, and dx is the error in the position and time estimate.From the free-error equation (1.58), in which dx = 0 and dρ = 0 is possible obtain thefollowing relation,

(xT − xL) = (HTH)−1HT (ρT − ρL). (1.63)By substituting Eq. (1.61) and Eq. (1.62) in Eq. (1.60), and using the relation (1.63)is possible to obtain:
∆x = (HTH)−1HT∆ρ,

(xT − xL + dx) = (HTH)−1HT (ρT − ρL + dρ),

(HTH)−1HT (ρT − ρL) + dx = (HTH)−1HT (ρT − ρL) + (HTH)−1HTdρ,

dx = (HTH)−1HTdρ. (1.64)This relation gives the functional relationship between the errors in the pseudor-ange values and the induced errors in the computed position and time. The matrix
(HTH)−1HT is a 4× n matrix, and it depends only on the relative geometry betweenthe user and the satellites, meaning that it is possible to determine the error in thecomputed position and time from the geometry of the constellation.The covariance of a vector is frequently of interest to asses how strongly two variablesof the vector change together [30]. Then, we compute cov(dx) as:cov(dx) = E[dxdxT ]

= E[((HTH)−1HT )dρ(((HTH)−1HT )dρ)T ]

= ((HTH)−1HT )E[dρdρT ]((HTH)−1HT )T

= ((HTH)−1HT )cov(dρ)((HTH)−1HT )T . (1.65)The usual assumption of the vector dρ is that its components has a Gaussian distri-bution and zero mean. With the geometry considered �xed, it follows that dx is alsoGaussian and zero mean. The components of dρ are identically distributed, indepen-dent and have a variance equal to the square of the satellite UERE (User EquivalentRange Error), which is considered to be the statistical sum of the contributions fromeach of the error sources associated with the satellite. Usually, the error componentsare considered independent, and the composite UERE for a satellite is approximated



26 CHAPTER 1. PRELIMINARIESas a zero mean Gaussian random variable, where its variance is determined as the sumof the variance of each of its components. UERE is usually assumed to be independent,and identically distributed from satellite to satellite. Then, the covariance of the vector
dρ is: cov(dρ) = Inσ

2
UERE

. (1.66)Using Eq. (1.66) in Eq. (1.65) we obtain:cov(dx) = (HTH)−1HT Inσ
2
UERE

((HTH)−1HT )T

= (HTH)−1HTH((HTH)−1)Tσ2
UERE

= (HTH)−1σ2
UERE

. (1.67)However, cov(dx) can be computed as follows:
cov(dx) =







σ2
xu

σxuyu σxuzu σxutu

σyuxu σ2
yu σyuzu σyutu

σzuxu σzuyu σ2
zu σzutu

σtuxu σtuyu σtuzu σ2
tu







.Then, as we mention before, the geometry of the constellation plays an importantrole since the components of (HTH)−1 quantify how pseudorange errors translate intocomponents of the covariance of dx, meaning that, it is possible to determine howaccurate the computed position is from the geometry of the constellation.Dilution Of Precision [31, 52, 54] (DOP) parameters in GPS are de�ned in terms ofthe ratio of combinations of the components of the cov(dx) and σ2
UERE

. It is implicitlyassumed in the DOP de�nitions that the user/satellite geometry is considered �xed. Itis also assumed that local user coordinates are being used in the speci�cation of cov(dx)and dx. The positive x-axis points east, the y-axis points north, and the z-axis pointsup. The most general parameter is termed Geometric Dilution Of Precision (GDOP)and it is de�ned by:
GDOP =

√

σ2
xu

+ σ2
yu + σ2

zu + σ2
tu

σ
UERE

. (1.68)An expression for GDOP is obtained in terms of the components of (HTH)−1 byexpressing (HTH)−1 in component form:
(HTH)−1 =







D11 D12 D13 D14

D21 D22 D23 D24

D31 D32 D33 D34

D41 D42 D43 D44







.Then, GDOP can be computed as the square root of the trace of the (HTH)−1 matrix:
GDOP =

√

D11 +D22 +D33 +D44. (1.69)If we assume that there are no errors in the synchronization of the clocks, the value
D44 can be disregarded. The DOP computed without D44 is called Position Dilution of



1.4. EVOLUTIVE ALGORITHMS 27Precision (PDOP). Similarly, we obtain other DOP values such as; Horizontal Dilutionof Precision (HDOP), Vertical Dilution of Precision (VDOP), and Time Dilution ofPrecision (TDOP). They can be expressed in terms of the components of (HTH)−1 asfollows:
PDOP =

√

D11 +D22 +D33,

HDOP =
√

D11 +D22,

V DOP =
√

D33,

TDOP =
√

D44. (1.70)At this point, it is obvious that the geometry of the constellations has a direct role onpositioning accuracies [53]. Several tools are de�ned to describe the accuracy error, butGeometric Dilution of Precision (GDOP) used by GPS it is the most powerful accuracyindicator since it consider all possible sources of errors. The GDOP will show how wellthe constellation is organized geometrically. It is a quantity varying between 1 and ∞,while 1 means that the constellation presents a perfect distribution of satellites, a largevalue (greater than 6) means that presents a really poor geometrical distribution.1.4 Evolutive AlgorithmsAn optimization problem consists of �nding the best solution within a search space,which is the set of all possible candidate solutions. This space has the same dimensionas the number of variables that the problem has and, depending on the problem type,the variables can be discrete or continuous.For a search space with only a small number of possible solutions, all of them canbe examined in a reasonable amount of time and the optimal one will be eventuallyfound. This technique is called brute-force search or exhaustive search. Basically, itconsists of enumerating all possible candidates for the solution and selecting the mostsuitable. It has an easy implementation, and it always �nds the optimal solution if itexists. However, the cost of this algorithm grows exponentially with the dimension ofthe search space.Instead of using the brute-force search algorithm, evolutionary algorithms [23] havebeen developed. These kind of algorithms abstract biological evolution or biologicalbehaviors to search an optimal solution to a problem. Two di�erent algorithms are con-sidered [22, 26]: Genetic Algorithm and the Particle Swarm Optimization Algorithm.1.4.1 Genetic AlgorithmsCharles Darwin's On the Origin of Species, in his Principles of Biology (1864) pro-posed the idea that over several generations, biological organisms evolve based on theprinciple of natural selection �survival of the �ttest�. This idea works well in nature.An individual in a population competes with each other for di�erent resources likefood, shelter, etc. Due to the selection, the most adapted to the environment and the



28 CHAPTER 1. PRELIMINARIESstronger ones have more chance to survive and reproduce, while the less adapted haveless chance to survive and reproduce. Continuously improving the individual char-acteristics of the species, since the new generations take the good characteristics oftheir antecessors and will improve them at each generation. They will become moreand more adapted to their environment. Note that, sometimes in nature it will oc-cur a crazy or random fact, that consists of taking random characteristics and createan individual completely new with di�erent characteristics that sometimes are better,sometimes worse than the existing individuals.The idea of solving di�erent optimization problems using evolutive techniques startedin 1954 with the work of Nils Aall Barricelli. However, Genetic Algorithms becamepopular through the work of John Holland in 1975 in his book Adaptation in Naturaland Arti�cial Systems. It will be very useful a brief introduction to biology to un-derstand Genetic Algorithms. Genetics is a science that study all the di�erences andsimilarities in the individuals of a specie. The genetic information of an individual,which has all the characteristics of itself, is stored in the chromosomes. The chromo-somes are divided in several parts called genes. These genes code the properties of theindividuals of the specie. In the reproduction process, the new individuals will selectthe genes between all the available possibilities of their antecessors. Note that, indi-viduals with better characteristics have a greater chance to reproduce its genes, whilethe ones which are less adapted or have worst characteristics have a fewer chance toreproduce its genes. In this reproduction process, all the genes of the new individualsmay su�er small variations.Genetic Algorithms [44] mimic the process of natural evolution described above. It isa search technique to �nd optimal solutions to a problem. Genetic Algorithms havean initial population represented by a group of individuals, each of these individualsrepresents a solution to the optimization problem and they are considered as the chro-mosomes. After evaluating all the initial population with the �tness function, to knowhow good the solutions are, a number of individuals are selected to create the nextgeneration combining their genes. In the reproduction process, di�erent reproductionoperators are used, such as, recombination and mutation. The �rst one consists ofrecombining di�erent chromosomes of two di�erent individuals (parents) to generate anew individual (child). The second one is a factor that randomly generates completelynew genes for the new individual. When the new generation is built, we evaluate thepopulation with the �tness function and start again the process until the stopping cri-teria is reached. It can be a �nite number of generations, the convergence toward theoptimal solution, etc.The following procedure shows how the Genetic Algorithm works;Step 1: Select randomly an initial population of n individuals from the search space,i.e. select randomly n solutions of the optimization problem.Step 2: Evaluate the individuals of the population with the �tness function.Step 3: Create a new population following these steps:



1.4. EVOLUTIVE ALGORITHMS 29Step 3.1: Select two individuals (parents), the better the �tness is, the biggerthe chance to get selected.Step 3.2: Crossover the genes of the two parents to create a new individual(child).Step 3.3: With a mutation probability, mutate randomly the genes of the newindividual (child).Step 3.4: Repeat the process until have a population of n new individuals.Step 4: If the stopping criteria is satis�ed, evaluate the new generation and select themost suitable individual. If not, go to Step 2.1.4.2 Particle Swarm Optimization AlgorithmParticle Swarm Optimization Algorithm [44] (PSO) is a population based stochasticoptimization method, i.e. a method that generate and use random variables to �ndthe optimal solution. PSO was developed by Dr. Eberhart and Dr. Kennedy in 1995,inspired by the social behavior of bird �ocking or �sh schooling. The basic idea is tosimulate these behaviors with an algorithm. In both cases, if a bird or a �sh sees agood path to go (because they �nd food, protection or good weather), the rest of theswarm will be able to follow that path even if they were going in the opposite way.However, there is a �craziness factor� or random factor that makes some of the particlesmove away from the �ock in order to explore new paths.It is possible to translate this behavior into an algorithm. Each di�erent bird or�sh is considered as an initial particle in the search space. These particles are �yingthrough the search space and have two essential capabilities: remembering their ownbest position (individual factor) and knowing the best position of the entire swarm(social factor). The basic idea is that individuals communicate good positions to eachother and adjust their own position and velocity depending on the social and individualfactors.During the simulation, each particle has a position and velocity. Additionally, eachparticle keeps track of the position of the best solution it has visited so far (pbest) andthe position of the best solution visited by any other particle (gbest). At each step, thevelocity is updated at each iteration taking into account pbest and gbest.Changing the position and velocity of each particle at each iteration works as follows.Assume that the i-th particle has position vector xi(t) and velocity vector vi(t). Then,the updated velocity will be:
vi(t+ 1) = αvi(t) + c1 · rand1 · (pbest i − xi(t)) + c2 · rand2 · (gbest(t)− xi(t)) (1.71)where α is the inertia weight that controls the exploration of the search space. Theconstants c1 and c2, which in our simulation are taken between 0 and 1, determinehow the individual and social factor a�ects the velocity of the particle. Finally, rand1,

rand2 are random numbers chosen uniformly in [0,1]. Note that without the secondand third terms of the expression (1.71) the particle will keep in the same directionuntil it hits the boundary.



30 CHAPTER 1. PRELIMINARIESThe position is updated as follows:
xi(t+ 1) = xi(t) + vi(t + 1) (1.72)This process is repeated for each particle until the best optimal solution is obtained orthe stopping criteria is reached.The PSO can be implemented as follows:Step 1: Initialize randomly an initial swarm of n particles from the search space.Step 1.1: Initialize randomly the initial positions, i.e. the solutions of the prob-lem, xi(0).Step 1.2: Initialize randomly the velocities of the initial particles, vi(0).Step 1.3: Update the pbest and gbest values thought the �tness function.Step 2: Update the new velocities for the particles, vi(t+ 1), according to Eq. (1.71).Step 3: Calculate the new positions of the particles, xi(t+ 1) = xi(t) + vi(t + 1)).Step 4: Update the pbest and gbest values thought the �tness function.Step 5: Go to step 2, and repeat until convergence or stopping criteria.Both methods are included in the evolutionary computation, and o�ers practical ad-vantages to several optimization problems. They are conceptually simple and highlyparallelizable.



Chapter 2Optimizing Flower Constellations forGlobal and Regional Coverage
2.1 IntroductionThe design of optimal satellite constellations is the key problem in all kind of applica-tions such as global navigation, global/regional coverage, telecommunications, Earthobservation, radio-occultation, etc.The purpose of this chapter is to determine the best 2D-LFC for certain global coverageproblems using evolutionary algorithms. In particular, we are interested in the problemof Global Positioning, with a minimum of four satellites in view from any point on theEarth at any time as a constraint. The geometry of these four or more satellites withrespect to a ground station should ideally minimize the Geometric Dilution of Precision(GDOP).The metric de�ning our optimality is the maximum value of the GDOP experiencedover the propagation time for 30,000 ground stations randomly distributed on theEarth surface. In this chapter the reason for choosing 30,000 ground stations randomlydistributed on the Earth surface, the optimal propagation time needed for computingthe GDOP amongst other things will be discussed. Evolutive algorithms are usedto carry out a search among all possible con�gurations, to �nd the parameters thatminimize the maximum GDOP experienced. One of the original parts of this chapter isthat we extend the search space to include eccentric orbits using the 2D Lattice theory.2.2 Optimization problemGiven the total number of satellites of a 2D-LFC (Nsat), it is possible to obtain allthe di�erent possible con�gurations for the phasing parameters (No, Nso, Nc). Thenumber of di�erent con�gurations can be obtained from the divisors of Nsat. For eachdivisor d, we select No = d, Nso = Nsat/d and the con�guration number Nc varyingbetween 0 and d− 1. Consequently, the number of di�erent con�gurations is given bythe formula,

f(Nsat) =
∑

d|Nsat

d. (2.1)31



32 CHAPTER 2. OPTIMIZING FLOWER CONSTELLATIONSAs an example, given Nsat = 27 satellites, following Eq. (2.1) the di�erent possibilitiesfor the phasing parameters are 40, and they are shown in Table 2.1.
Nsat 27 27 27 27 27 27 27 . . . 27 27 27 . . . 27
No 1 3 3 3 9 9 9 . . . 9 27 27 . . . 27
Nso 27 9 9 9 3 3 3 . . . 3 1 1 . . . 1
Nc 0 0 1 2 0 1 2 . . . 8 0 1 . . . 26Table 2.1: Possible phasing parameters.All satellite missions have a �xed semi-major axis, meaning that the orbital period isknown (Tp). Since our missions are around the Earth, the rotating period of our ECEFframe, which is the Earth rotating period, is also known (Td). Therefore, it is possibleto select parameters Np and Nd in such a way that they satisfy Eq. (1.39).2.2.1 Fitness functionIn this problem it is necessary to determine which satellites are visible from a groundstation. For this purpose, a grazing angle or spacecraft elevation angle of a satelliteis required. This is the angle between the horizon and the position vector of a satel-lite. Another way to refer to this angle is using the angle of incidence which is theangle between the normal vector to the surface of the Earth at the ground station andthe position vector. Due to the existence of buildings, mountains, and other visibilityobstacles a reference grazing angle is considered in the formulation of all global posi-tioning problems. In our problem, we consider a reference grazing angle α = 10◦, or inother words, a reference angle of incidence β = 80◦. Figure 2.1 illustrates the referencegrazing angle (α) and the reference angle of incidence (β). Also it is illustrated whena satellite is or is not visible.

α

Visible satellite

Ground Station

β
Not visible satellite

Building

Figure 2.1: The grazing angle α and the angle of incidence β.As we illustrate in Figure 2.2, a satellite will be visible if the angle ε is smaller thanthe reference angle of incidence (β = 80◦). This is equivalent to cos(ε) > cos(β), orusing the dot product to express cos(ε), to the following condition:
(rsat − rgs) · rgs

||(rsat − rgs)|| · ||rgs|| > cos(β).
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Figure 2.2: A visible satellite in the ECEF frame.De�nition 1. Let FC be a Flower Constellation and let rgs be the location of a groundstation. The Geometric Dilution Of Precision is a function:
GDOP : N3 × R6 × R3 × R → R≥1

(FC, rgs, t) 7→ GDOP (FC, rgs, t). (2.2)See preliminaries for an explicit formula.De�nition 2. Let FC be a Flower Constellation and let Tprop be a propagation time.We de�ne the maximum value of the GDOP experienced by the FC during the timeinterval [0, Tprop] for all the points of the Earth surface as Ground Stations:
maxGDOP : N3 × R6 × R≥0 → R≥1

(FC, Tprop) 7→ maxGDOP (FC, Tprop).

maxGDOP (FC, Tprop) = max
t∈[0,Tprop]

maxrgs∈EarthGDOP (FC, rgs, t). (2.3)In the case where Tprop is the repetition time of the constellation T = NpTp, which isthe time that the constellation needs to return to its original con�guration, the functionabove is the theoretical �tness function:
fitness : N3 × R6 → R≥1

FC 7→ fitness(FC).

f itness(FC) = maxGDOP (FC,NpTp) (2.4)
= max

t∈[0,NpTp]
maxrgs∈EarthGDOP (FC, rgs, t).



34 CHAPTER 2. OPTIMIZING FLOWER CONSTELLATIONS2.2.2 Evolutive AlgorithmsGiven the total number of satellites of a 2D-LFC, for each possible con�guration ofthe phasing parameters, and the values for Np and Nd already selected; evolutivealgorithms are used to carry out a search to �nd the best orbital parameters (e, i, ω),which completely de�ne the constellation, and minimize the �tness function.In the case of the Genetic Algorithm an initial population of n = 60 individuals is taken,i.e. 60 possible values for the orbital parameters (e, i, ω). Then, each constellation isevaluated with the �tness function. After that, a new generation of 60 individualsis created. The new individuals are created with 10 �ttest ones from the previousgeneration, and 50 others obtained by crossover and mutation. The crossover consistsof selecting a father (ef , if , ωf) and a mother (em, im, ωm) from the previous generationat random and creating a son
(efx1 + em(1− x1), ifx2 + im(1− x2), ωfx3 + ωm(1− x3)),where x1, x2, x3 ∈ {0, 1} are chosen at random with 0.5 probability each. After theson is created, we decide with probability 0.05 whether it mutates or not. Mutationconsists of choosing all three coordinates e, i, ω at random within their allowed ranges.The process is repeated 60 generations and, at that point, the best individual foundprovides the solution to the optimization process.In the case of the Particle Swarm Optimization an initial swarm of n = 60 particles istaken, i.e. 60 possible values for the orbital parameters (e, i, ω) which are the positions,and 60 possible velocities for them. Both positions and velocities are chosen randomlywithin the search space. It should be noted that neither position or velocity correspondwith the actual motion of the satellites; these quantities are unitless. Then, we evaluateeach constellation with the �tness function and update the new velocities and positionsaccording to Eq. (1.71) and Eq. (1.72). We are using an inertia factor α = 0.95,individual factor c1 = 0.75, social factor c2 = 0.35, and the process is repeated 60iterations.We show how the Particle Swarm Optimization algorithm works with the followingexample. Given a 27 satellite constellation with parameters No = 3, Nso = 9, and

Nc = 2. We �nd the optimal parameters (e, i, ω) which minimizes the �tness function.The behavior of the di�erent particles (e, i, ω) of the swarm is presented in Figure 2.3.We show di�erent plots in where we illustrate the position of each particle (e, i, ω) indi�erent generations. In particular, we plot the generation number 1, 5, 10, 20, 30,40, 50, and 60 from the top to the bottom and from the left to the right, respectively.We observe how the particles converge to the optimal solution, which is e = 0.0,
i = 54.057◦, and ω = 173.707◦.2.2.3 Search Space ReductionEvolutive algorithms have an initial population of 60 individuals, meaning that we haveto propagate 60 constellations and compute the maximum value experienced for the
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Figure 2.3: Swarm of particles searching the optimal solution.
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-+Figure 2.4: Counterclockwise and clockwise direction.GDOP over the 30, 000 ground stations. This process is repeated 60 times, because thenumber of generations is 60. Consequently, we need to propagate 3, 600 constellationsand compute the maximum value of the GDOP experienced in each case. Further-more, this process needs to be repeated as many times as di�erent con�gurations theconstellation has, that can be derived from Nsat by Eq. (2.1).In the following discussion, we will see a few results that allow us to reduce the prop-agation time T , and also the search range of some variables of our search space. Notethat, each reduction translates into a signi�cant reduction in the computational cost.2.2.3.1 Propagation time reductionDe�nition 3. A counterclockwise rotation around the z-axis through angle α is afunction:

Rotz(α) : R
3 → R3x 7→ Rotz(α)x =





cosα − sinα 0
sinα cosα 0
0 0 1



x.As we illustrate in Figure 2.4, when the angle α is positive the rotation is calledcounterclockwise. When the angle α is negative the rotation is called clockwise.Let FC be a Flower Constellation. FC ′ = Rotz(α)FC is the constellation obtained bya rotation around the z-axis through angle α of the position vector of each satellite.The parameters of FC ′ and FC are exactly the same except Ω′
0 = Ω0 + α.Lemma 4. Let FC be a Flower Constellation. Then, in the ECEF frame,

FC(t) = Rotz(∓
2π

Td
Tp)FC(t+ Tp). (2.5)Proof. In the ECEF frame the inertial orbits rotate with angular velocity equal to theEarth rotating velocity 2π

Td
rad/sec as we illustrate in Figure 2.5. After Tp seconds, theorbits have rotated around the z-axis an angle ±2π

Td
Tp rad. The position of the satellitesin the inertial orbits at time t + Tp seconds will be the same as at time t, and thecon�guration of the constellation is exactly the same but rotated. Then, by rotatingthe FC around the z-axis an angle ∓2π

Td
Tp rad the position of the satellites at time tand at time t+ Tp will be exactly the same. Consequently, Eq. (2.5) is satis�ed.
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Greenwich
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Figure 2.5: First orbit of the FC at time t, and at time t+ Tp.Lemma 5. Let FC be a Flower Constellation. Let rgs be a ground station. Then, inthe ECEF frame,
GDOP (FC, rgs, t) = GDOP (FC,Rotz(±

2π

Td

Tp)rgs, t+ Tp). (2.6)Proof. After Tp seconds, as we show in lemma 4, the position of the satellites is thesame but rotated an angle ±2π
Td
Tp rad. The ground station rgs after Tp seconds will bein the same position since we are in the ECEF frame. Consequently, if we rotate theground station an angle ±2π

Td
Tp rad the relative position of the satellites and the groundstation is the same at time t and at time t+Tp and the GDOP will be the same as thelemma states.Theorem 6. Let FC be a Flower Constellation. Then,maxGDOP(FC,NpTp) = maxGDOP(FC, Tp).Proof. In the ECEF frame,maxGDOP(FC,NpTp) = max
t∈[0,NpTp]

maxrgs∈EarthGDOP (FC, rgs, t)
= max

i=0,...,Np−1
max

t∈[iTp,(i+1)Tp]
maxrgs∈EarthGDOP (FC, rgs, t)

= max
i=0,...,Np−1

max
t∈[0,Tp]

maxrgs∈EarthGDOP (FC, rgs, t+ iTp)

= max
i=0,...,Np−1

max
t∈[0,Tp]

maxrgs∈EarthGDOP (FC,Rotz(±
2π

Td
iTp)rgs, t)

= max
i=0,...,Np−1

max
t∈[0,Tp]

maxr′gs∈EarthGDOP (FC, r′gs, t)
= max

t∈[0,Tp]
maxr′gs∈EarthGDOP (FC, r′gs, t)
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Figure 2.6: First orbit of the FC at time t, and at time t+ Tp

Nso
.

= maxGDOP(FC, Tp).The �rst and the last equalities are true by de�nition. The second equality consistsof dividing the time interval [0, NpTp] into smaller intervals of length Tp. The fourthequality is by using lemma 5. The �fth equality is true since the Earth is a solid ofrevolution (spheroid), and it has a rotational symmetry with respect to the z-axis, thepoints r′gs cover all the Earth surface as the points rgs.Lemma 7. Let FC be a Flower Constellation. Then, in the ECEF frame,
FC(t) = Rotz(∓

2π

Td

Tp

Nso
)FC(t+

Tp

Nso
). (2.7)Proof. In the ECEF frame the inertial orbits rotate with angular velocity equal to theEarth rotating velocity 2π

Td
rad/sec. After Tp

Nso
seconds, the orbits have rotated aroundthe z-axis an angle ±2π

Td

Tp

Nso
rad. as we illustrate in Figure 2.6. Note that, after Tp

Nso
secthe satellites in the inertial orbit will occupy the position that the following satelliteoccupied at time t, for example, satellite 0 after Tp

Nso
sec will occupy the position thatthe satellite 1 occupied at time t. This means, that the distribution of the satellitesin the inertial orbits at time t + Tp

Nso
seconds will be the same as at time t, but eachsatellite will occupy the position that its following neighbor occupied at time t, sothe con�guration of the constellation will be exactly the same, but rotated. Then, byrotating the FC around the z-axis an angle ∓2π

Td

Tp

Nso
rad the position of the satellitesat time t and at time t + Tp

Nso
will be exactly the same. Consequently, Eq. (2.7) issatis�ed.Lemma 8. Let FC be a Flower Constellation. Let rgs be a ground station. Then, inthe ECEF frame,

GDOP (FC, rgs, t) = GDOP (FC,Rotz(±
2π

Td

Tp

Nso

)rgs, t+ Tp

Nso

). (2.8)



2.2. OPTIMIZATION PROBLEM 39Proof. Similar to Lemma 5.Theorem 9. Let FC be a Flower Constellation. Then,maxGDOP(FC, Tp) = maxGDOP(FC,
Tp

Nso
).Proof. In the ECEF frame,maxGDOP(FC, Tp) = max

t∈[0,Tp]
maxrgs∈EarthGDOP (FC, rgs, t)

= max
j=0,...,Nso−1

max
t∈[j

Tp
Nso

,(j+1)
Tp
Nso

]

maxrgs∈EarthGDOP (FC, rgs, t)
= max

j=0,...,Nso−1
max

t∈[0,
Tp
Nso

]

maxrgs∈EarthGDOP (FC, rgs, t + j
Tp

Nso

)

= max
j=0,...,Nso−1

max
t∈[0,

Tp
Nso

]

maxrgs∈EarthGDOP (FC,Rotz(±
2π

Td
j
Tp

Nso
)rgs, t)

= max
j=0,...,Nso−1

max
t∈[0,

Tp
Nso

]

maxr′gs∈EarthGDOP (FC, r′gs, t)
= max

t∈[0,
Tp
Nso

]

maxr′gs∈EarthGDOP (FC, r′gs, t)
= maxGDOP(FC,

Tp

Nso

).The �rst and the last equalities are true by de�nition. The second consists of dividingthe time interval [0, Tp] into smaller intervals of length Tp

Nso
. The fourth equality isby using lemma 8. The �fth equality is true since the Earth is a solid of revolution(spheroid), and it has a rotational symmetry with respect to the z-axis, the points r′gscover all the Earth surface as the points rgs.Lemma 10. Let a, b ≥ 1 be integers. The sequence {ia mod (b)} with i = 0, 1, . . . , b−

1 contains only the multiples of gcd(a, b) between 0 and b− 1 inclusive.Proof. (⇒) Let α be an integer in the sequence {ia mod (b)} with i = 0, 1, . . . , b− 1.
α is the remainder of dividing ia by b for some i. Then, α = ia−bq. Since a is divisibleby gcd(a, b), b is divisible by gcd(a, b). Then, α = ia− bq is divisible by gcd(a, b) and
α is a multiple of gcd(a, b) between 0 and and b− 1 inclusive.
(⇐) Let β = gcd(a, b)r be a multiple of gcd(a, b) between 0 and b − 1. For some
m,n ∈ Z, we have gcd(a, b) = an + bm. Then, β = (an + bm)r = anr + bmr. If wedivide nr by b we have nr = bq + i with i = 0, 1, . . . , b− 1. Then, β = abq + ai+ bmr.Finally, the remainder of dividing ai by b is β and we conclude that β belongs to thesequence {ia mod (b)} with i = 0, 1, . . . , b− 1Lemma 11. Let a, b, c ≥ 1 be integers. The sequence {jc − ia mod (bc)} with i =
0, 1, . . . , c− 1 and j = 0, 1, . . . , b− 1 contains only the multiples of gcd(a, c) between 0and bc− 1 included.



40 CHAPTER 2. OPTIMIZING FLOWER CONSTELLATIONSProof. (⇒) Let α be an integer in the sequence {jc−ia mod (bc)} with i = 0, 1, . . . , c−
1 and j = 0, 1, . . . , b − 1. α is the remainder of dividing jc − ia by bc. Then, α =
jc − ia − bcq. Since c is divisible by gcd(a, c), a is divisible by gcd(a, c) and bcq isdivisible by gcd(a, c). Then, α is divisible by gcd(a, c). Consequently, α is a multipleof gcd(a, c) and it is between 0 and bc− 1.
(⇐) Let β be a multiple of gcd(a, c) between 0 and bc− 1. We have two cases:Case 1: β = 0. β ∈ {jc− ia mod (bc)} with i = 0, 1, . . . , c− 1 and j = 0, 1, . . . , b− 1by choosing i = j = 0.Case 2: β ≥ 1 and β ≤ bc−1. We know that β and c are multiples of gcd(a, c). Then,

bc − β is also a multiple of gcd(a, c). Furthermore, bc − β ∈ [1, 2, . . . , bc − 1].Dividing bc−β by c we have bc−β = cQ+ r with r ∈ [0, 1, . . . , c−1] and Q ∈ Z.Note that, r is multiple of gcd(a, c). Applying Theorem 10 to r, we have that
r = ia mod (c) with i = 0, 1, . . . , c − 1. Then, r = ia + cQ̃ with Q̃ ∈ Z. Then,
bc − β = c(Q + Q̃) + ia. Consequently, β = c(b − Q − Q̃) − ia. Now, we divide
b − Q − Q̃ by b obtaining b − Q − Q̃ = bw + j with j = 0, 1, . . . , b − 1. Finally,
β = cbw + jc− ia, which is the remainder of dividing jc− ia by bc. This provesthat β belongs to the sequence {jc − ia mod (bc)} with i = 0, 1, . . . , c − 1 and
j = 0, 1, . . . , b− 1.Lemma 12. Let FC be a Flower Constellation. Then, in the ECEF frame,

FC(t) = Rotz(∓∆Ω∓∆α)FC(t+∆t), (2.9)where
∆t =

Tp

NoNso
gcd(Nc, No), ∆Ω =

2π∆t

Td
, ∆α =

2πi

No
.for some integer i ∈ [0, . . . , No − 1].Proof. The mean anomaly of the satellites in a Flower Constellation is given by,

Mij =
2πj

Nso

− Nc

Nso

2π

No

=
2π

NsoNo

(jNo − iNc),where i = 0, 1, . . . , No − 1 and j = 0, 1, . . . , Nso − 1.Note that, since coordinates in the (Ω,M)-space are modulus 2π:
2π

NsoNo
(jNo − iNc) =

2π

NsoNo
(jNo − iNc) + 2π(jNo − iNc)

=
2π

NsoNo
[(jNo − iNc) +NsoNo(jNo − iNc)]

=
2π

NsoNo
[(jNo − iNc) mod (NsoNo)]

=
2π

Nsat

[(jNo − iNc) mod (Nsat)].
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Greenwich

Earth

time: t
ECEF

Greenwich

Earth

time: t + ∆t

Satellite 0

Satellite j-thSatellite j-th

ORBIT 0

ORBIT i-th
ORBIT 0

Figure 2.7: First orbit of the FC at time t, and at time t+∆t.Our goal is to minimize the quantity Mij for any pair (i, j). By using Lemma 11 withvalues a = Nc, b = Nso and c = No. The sequence {jNo − iNc mod (NsoNo)} containsthe multiples of gcd(Nc, No) that are between 0 and NsoNo − 1. Consequently,
min
>0

{jNo − iNc mod (Nsat)} = gcd(Nc, No).Thus, the quantity that minimizes the value Mij over all pairs (i, j) is 2π
Nsat

gcd(Nc, No).Since the satellite needs Tp seconds to reach its initial position in the inertial orbit, tosweep 2π
Nsat

gcd(Nc, No) radians the satellite needs ∆t = Tp

Nsat
gcd(Nc, No) seconds.In the ECEF frame the inertial orbits rotate with angular velocity equal to the Earthrotating velocity 2π

Td
rad/sec. Then, after ∆t seconds, the orbits have rotated an angle

∆Ω = ±2π
Td
∆t rad.Furthermore, the pair (i, j), previously computed, indicates where the �rst satellite ofthe orbit 0 at time t will be after ∆t seconds. Thus, the satellite 0 of the zero orbit, aswe illustrate in Figure 2.7, after ∆t sec. will occupy the position that the satellite j−thin the i− th inertial orbit occupied at time t. Note that, the distance between the �rstorbit and the i− th orbit is ∆α = 2πi

Nso
. Consequently, by rotating the FC around the

z-axis �rstly an angle ∓∆Ω rad and secondly an angle ∓∆α rad, the constellation willhave the same con�guration at time t and at time t + ∆t. This is a rotation aroundthe z-axis of angle ∓∆Ω∓∆α, then Eq. (2.9) is satis�ed as theorem states.Lemma 13. Let FC be a Flower Constellation. Let rgs be a ground station. Then, inthe ECEF frame,
GDOP (FC, rgs, t) = GDOP (FC,Rotz(±∆Ω±∆α)rgs, t+∆t), (2.10)where

∆t =
Tp

NoNso

gcd(Nc, No), ∆Ω =
2π∆t

Td

, ∆α =
2πi

No

.



42 CHAPTER 2. OPTIMIZING FLOWER CONSTELLATIONSfor some integer i ∈ [0, . . . , No − 1].Proof. After ∆t seconds, as we show in lemma 12, the distribution of the satellitesis the same but rotated an angle (±∆Ω ± ∆M) rad. The ground station rgs after ∆tseconds will be in the same position since we are in the ECEF frame. Consequently,if we rotate the ground station an angle (±∆Ω±∆M) rad the relative position of thesatellites and the ground station is the same at time t and at time t + ∆t and theGDOP will be the same as the lemma states.Theorem 14. Let FC be a Flower Constellation. Then,maxGDOP(FC,
Tp

Nso
) = maxGDOP(FC,∆t),where ∆t = Tp

NoNso
gcd(Nc, No).Proof. De�ne n = No

gcd(Nc,No)
. In the ECEF frame,maxGDOP(FC,

Tp

Nso

) = max
t∈[0,

Tp
Nso

]

maxrgs∈EarthGDOP (FC, rgs, t)
= max

k=0,...,n−1
max

t∈[k∆t,(k+1)∆t]
maxrgs∈EarthGDOP (FC, rgs, t)

= max
k=0,...,n−1

max
t∈[0,∆t]

maxrgs∈EarthGDOP (FC, rgs, t+ k∆t)

= max
k=0,...,n−1

max
t∈[0,∆t]

maxrgs∈EarthGDOP (FC,Rotz((±∆Ω ±∆M)k)rgs, t)
= max

k=0,...,n−1
max

t∈[0,∆t]
maxr′gs∈EarthGDOP (FC, r′gs, t)

= max
t∈[0,∆t]

maxr′gs∈EarthGDOP (FC, r′gs, t)
= maxGDOP(FC,∆t).The �rst and the last equalities are true by de�nition. The second consists of dividingthe time interval [0, Tp

Nso
] into smaller intervals of length ∆t. The fourth equality isby using lemma 13. The �fth equality is true since the Earth is a solid of revolution(spheroid), and it has a rotational symmetry with respect to the z-axis, the points r′gscover all the Earth surface as the points rgs.Corollary 15. Let FC be a Flower Constellation. Then, the �tness function can bereformulated as:
fitness(FC) = maxGDOP(FC,∆t),where ∆t = Tp

NoNso
gcd(Nc, No).Proof.

fitness(FC) = maxGDOP(FC, TpNp)

= maxGDOP(FC, Tp)

= maxGDOP(FC,
Tp

Nso

)
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= maxGDOP(FC,∆t).The �rst equality is true by de�nition. The second, third and fourth equalities are trueby using Theorem 6, Theorem 9, and Theorem 14, respectively.Note that, the �tness function as de�ned in (2.4) is not computationally feasible sinceit is not possible to compute the value of the GDOP at each point of the Earth surface.Therefore, an accurate approximate �tness function is required. For that purpose weselect n ground stations randomly distributed over the Earth surface rgs1 , rgs2, . . . , rgsnthat will remain �xed throughout this section.De�nition 16. Let FC be a Flower Constellation, let Tprop be a propagation time andlet rgs1 , rgs2, . . . , rgsn be the position vector of the n ground stations. We de�ne themaximum value of the GDOP experienced by the FC during the time interval [0, Tprop]for the n ground stations over the Earth surface:

maxGDOP : N3 × R6 × R≥0 → R≥1

(FC, Tprop) 7→ maxGDOP (FC, Tprop).

maxGDOP (FC, Tprop) = max
t∈[0,Tprop]

max
i=1,...,n

GDOP (FC, rgsi, t). (2.11)In the case where Tprop is the repetition time of the constellation T = NpTp, the functionabove is the approximate �tness function:
fitness : N3 × R6 → R≥1

FC 7→ fitness(FC).

f itness(FC) = maxGDOP (FC,NpTp)

= max
t∈[0,NpTp]

max
i=1,...,n

GDOP (FC, rgsi, t).Remark 17. When the number of ground stations approaches in�nity the approximate�tness function converges to the theoretical function.
fitness(FC) → fitness(FC).We will decide below what is the minimum number of ground stations needed to havean acceptable approximation of the theoretical �tness function. For that purpose wetake a Flower Constellation of 27 satellites distributed in three orbital planes No = 3,with nine satellites per orbit Nso = 9, and con�guration number Nc = 2. The semi-major axis equal to 27, 000 km, eccentricity equal to 0.05, inclination equal to 56◦,argument of perigee, Right Ascension of the Ascending Node and mean anomaly equalto zero. Table 2.2 shows how the value of the approximate �tness function changes asthe number n of ground stations increases, and how the di�erent seeds, which set thestarting point for generating the n ground stations, in�uence to get the optimal valueof the �tness function.We observe that this is a sensitive procedure that depends on the initial seed to generatethe n ground stations and also on the number of ground stations. We must reduce
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seed = 1 seed = 2 seed = 3 seed = 4

n fitness(FC) fitness(FC) fitness(FC) fitness(FC)100 3.605398276568 3.628921099334 3.583989218822 3.639154163226500 3.674101015200 3.650307182435 3.656458212953 3.6473227098991000 3.674180285547 3.650307182435 3.670664296126 3.6847280307812000 3.678746975526 3.669673852604 5.090641658212 5.1165335278515000 5.097846349537 3.680194764103 5.090641658212 5.11653352785110000 5.120664103384 5.121797474482 5.090641658212 5.11653352785115000 5.120664103384 5.121797474482 5.090641658212 5.11653352785120000 5.120664103384 5.121797474482 5.090641658212 5.11653352785125000 5.121846132055 5.121797474482 5.090641658212 5.11653352785130000 5.121846132055 5.121797474482 5.090641658212 5.11653352785135000 5.121846132055 5.121797474482 5.090641658212 5.11653352785140000 5.121846132055 5.121797474482 5.090641658212 5.11653352785145000 5.121846132055 5.121797474482 5.090641658212 5.11653352785150000 5.121846132055 5.121797474482 5.090641658212 5.11653352785160000 5.121846132055 5.121797474482 5.090641658212 5.11653352785170000 5.121846132055 5.121797474482 5.090641658212 5.133762521059100000 5.126021072346 5.130243646165 5.133643131118 5.120944798524200000 5.126491285036 5.130243646165 5.133643131118 5.126593590013500000 5.136021085303 5.135772602892 5.133643131118 5.1355917842291000000 5.136021085303 5.135772602892 5.137804209605 5.1355917842295000000 5.137970170756 5.135918682806 5.137961423302 5.13797209142010000000 5.137970170756 5.137956261401 5.137961423302 5.13797209142050000000 5.137970170756 5.135918682806 5.137961423302 5.137972091420100000000 5.137975421252 5.137987828576 5.137962103239 5.137986488673Table 2.2: Value of the �tness function depending on the number of ground stationsand seed number.



2.2. OPTIMIZATION PROBLEM 45the number of ground stations as much as possible since the computational cost ofdetermining the optimal value of the �tness function increases linearly as the numberof ground stations raises. If we consider 30,000 ground stations, the di�erent GDOPvalues obtained vary no more than 0.03. Although that di�erence is not meaningless,we decided that 30,000 ground stations were enough to keep certain accuracy whilekeeping a feasible computational time cost. Thus, we conclude that using 30,000 groundstations randomly selected over the Earth surface the approximate �tness functionsatis�es:
fitness(FC) ∼= fitness(FC).Corollary 18. Let FC be a Flower Constellation. Then, the �tness function can beapproximated by:

fitness(FC) ∼= fitness(FC) ∼= maxGDOP (FC,∆t),where ∆t = Tp

NoNso
gcd(Nc, No).Proof.

fitness(FC) = maxGDOP (FC, TpNp)
∼= maxGDOP (FC, TpNp)

= maxGDOP (FC, Tp)

= maxGDOP (FC,
Tp

Nso
)

= maxGDOP (FC,∆t)
∼= maxGDOP (FC,∆t).The �rst equality is true by de�nition. The second and the last equalities are true byRemark 17. The third, fourth, and �fth equalities are based on Corollary 15.2.2.3.2 Symmetries in a 2D-LFCWe have decreased the computational cost by reducing the propagation time to computethe GDOP of the constellation. Another way to decrease the computational cost isby reducing the search space. By selecting the inclination in a range 0◦ ≤ i ≤ 90◦(instead of 0◦ ≤ i ≤ 180◦) or choosing the parameter Nc in a range [0, . . . , No

2
] (insteadof [0, . . . , No − 1]) it is possible to reduce considerably the computational cost. Thefollowing theorems show that either of these two reductions of the search space do notskip any possible con�guration.The values of the con�guration number, Nc, and the index i are considered modulo No,i.e. we always reduce to the representative value in the interval [0, No − 1]. Similarly,the index j is considered modulo Nso. Thus, the value −Nc represents −Nc mod (No),and the value −j represents −j mod (Nso).Proposition 19. Let M1, M2 be the mean anomalies and ϕ1, ϕ2 the true anomaliesof two satellites. If M2 = −M1 then, ϕ2 = −ϕ1.



46 CHAPTER 2. OPTIMIZING FLOWER CONSTELLATIONSProof. The function that converts the eccentric anomaly to the mean anomaly (seeEq. (1.26)),
M : [0, 2π] → [0, 2π]

E 7→ M(E) = E − e sin(E),is an odd function. The inverse of an odd function (M−1) is also an odd function. Thefunction that converts the eccentric anomaly to the true anomaly (see Eq. (1.28)),
Φ : [0, 2π] → [0, 2π]

E 7→ Φ(E) = 2 arctan

(√

1 + e

1− e
tan

(
E

2

))

,is an odd function since it is the composition of odd functions. Consequently, thefunction that converts the mean anomaly to the true anomaly, which is the compositionof M−1 with the function Φ, is an odd function:
Φ ◦M−1 : [0, 2π] → [0, 2π]

M 7→ Φ ◦M−1(M).In this particular case,
ϕ2 = Φ ◦M−1(M2) = Φ(M−1(−M1)) = −Φ(M−1(M1)) = −ϕ1.Proposition 20. Let α be an angle, the following property is satis�ed:

Rotz(−α) =





1 0 0
0 −1 0
0 0 1



Rotz(α)





1 0 0
0 −1 0
0 0 1



 . (2.12)The same also applies changing z by x.Proof.
Rotz(−α) =





cos(−α) − sin(−α) 0
sin(−α) cos(−α) 0

0 0 1





=





cos(α) sin(α) 0
− sin(α) cos(α) 0

0 0 1





=





1 0 0
0 −1 0
0 0 1









cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1









1 0 0
0 −1 0
0 0 1





=





1 0 0
0 −1 0
0 0 1



Rotz(α)





1 0 0
0 −1 0
0 0 1



 .The case with x is proved similarly.



2.2. OPTIMIZATION PROBLEM 47Theorem 21. Let FC1(No, Nso, Nc, a, e, i, ω,Ω00,M00) and FC2(No, Nso,−Nc, a, e, π−
i,−ω,Ω00+π,−M00) be two Flower Constellations. Then, the position of the satellitessatis�es, r1ij(t) = −r2i(−j)(−t), (2.13)where r1ij(t) represents the position of the satellite (i, j) at time t of the Flower Con-stellation FC1, and r2i(−j)(−t) represents the position of the satellite (i, (−j)) at time
−t of the Flower Constellation FC2.Proof. The RAAN and the Mean anomaly of the constellations FC1 and FC2 satisfy:

Ω2
i(−j) = Ω00 + π +

2πi

No

= Ω1
ij + π,

M2
i(−j)(−t) = −M00 +

2π

NoNso
(−jNo + i(−Nc)) +

2π(−t)

Tp
= −M1

ij(t).Using Proposition 19, we get ϕ2
i(−j)(−t) = −ϕ1

ij(t). Consequently,
p

1 + e cos(ϕ2
i(−j)(−t))





cos(ϕ2
i(−j)(−t))

sin(ϕ2
i(−j)(−t))

0



 =





1 0 0
0 −1 0
0 0 1



u,where u =
p

1 + e cos(ϕ1
ij(t))





cos(ϕ1
ij(t))

sin(ϕ1
ij(t))
0



 .Thus, the position of the satellite (i,−j) at time −t in the Flower Constellation FC2is given by:r2i(−j)(−t) = Rotz(Ω
2
i(−j))Rotx(i

2)Rotz(ω
2)

p

1 + e cos(ϕ2
i(−j)(−t))





cos(ϕ2
i(−j)(−t))

sin(ϕ2
i(−j)(−t))

0





= Rotz(Ω
1
ij + π)Rotx(π − i)Rotz(−ω)





1 0 0
0 −1 0
0 0 1



u
= Rotz(Ω

1
ij)





−1 0 0
0 −1 0
0 0 1









1 0 0
0 −1 0
0 0 −1



Rotx(−i)





1 0 0
0 −1 0
0 0 1









1 0 0
0 −1 0
0 0 1



Rotz(−ω)





1 0 0
0 −1 0
0 0 1



u
= Rotz(Ω

1
ij)





−1 0 0
0 1 0
0 0 −1



Rotx(−i)





1 0 0
0 −1 0
0 0 1



Rotz(ω)u
= Rotz(Ω

1
ij)





−1 0 0
0 1 0
0 0 −1









1 0 0
0 −1 0
0 0 1




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



1 0 0
0 −1 0
0 0 1



Rotx(−i)





1 0 0
0 −1 0
0 0 1



Rotz(ω)u
= −Rotz(Ω

1
ij)Rotx(i)Rotz(ω)u.

= −r1ij(t).The �rst equality is true by de�nition. The second equality consists of expressing theparameters of FC2 in terms of the parameters of FC1. The third equality consist ofsplitting Rotz(Ω
1
ij + π) into Rotz(Ω

1
ij)Rotz(π), and Rotx(π − i) into Rotx(π)Rotx(−i),and introducing the identity matrix. The fourth equality is obtained by applyingProposition 20 to Rotz(ω). The �fth equality is true by introducing the identity matrix.The sixth equality is true by applying Proposition 20 to Rotx(i).Theorem 22. Let FC1(No, Nso, Nc, a, e, i, ω,Ω00,M00) and FC2(No, Nso,−Nc, a, e, π−

i,−ω,Ω00 + π,−M00) be two Flower Constellations. Then,
maxGDOP (FC2, Tp) = maxGDOP (FC1, Tp). (2.14)Proof.

maxGDOP (FC2, Tp) = max
t∈[0,Tp]

maxrgs∈EarthGDOP (FC2, rgs, t)
= max

t∈[0,Tp]
maxrgs∈EarthGDOP (FC2, rgs,−t)

= max
t∈[0,Tp]

maxrgs∈EarthGDOP (FC1,−rgs, t)
= max

t∈[0,Tp]
maxr′gs∈EarthGDOP (FC1, r′gs, t)

= maxGDOP (FC1, Tp).The �rst and the last equalities are true by de�nition. Whether the time goes positiveor the time goes negative, after Tp seconds all the inertial orbits have been swept bythe satellites and considering all the points of the Earth surface, the maximum GDOPexperienced will be the same in both cases. Consequently, the second equality is true.The third equality is true by using Theorem 21. The fourth equality is true since theEarth is a solid of revolution (spheroid), and it has a symmetry with respect to thecenter of the Earth, the points r′gs cover all the Earth surface as the points rgs.Corollary 23. Given a Flower Constellation (FC1) with the inclination in the range
[0◦, 180◦]. There always exists another Flower Constellation (FC2) with the inclinationin the range [0◦, 90◦] that has the same maximum value for the GDOP experienced as
(FC1).Proof. By using Theorem 22, given a Flower Constellation (FC1) whose inclination isin the range [0◦, 180◦] exists a Flower Constellation (FC2), symmetric with respect tothe center of the Earth, whose inclination is in the range [0◦, 90◦] with identical valuefor the �tness function.



2.3. RESULTS 49Corollary 24. Given a Flower Constellation (FC1) with the con�guration number inthe range Nc ∈ [0, 1, . . . , No]. There always exist another Flower Constellation (FC2)such that the value for Nc is in the region [0, 1, . . . , No

2
] and both of them have identicalvalue for the �tness function.Proof. By using Theorem 22, given a Flower Constellation (FC1) whose parameter

Nc is in the range [0, 1, . . . , No] there always exists a Flower Constellation (FC2),symmetric with respect to the center of the Earth, whose value of the parameter Nc ∈
[0, 1, . . . , No

2
] and both of them have identical value for the �tness function.2.2.3.3 SummaryIn this subsection we have reduced the computational cost of our algorithm throughtwo di�erent techniques. The �rst one by reducing the propagation time needed tocompute the maximum value of the GDOP experienced by the constellation. Insteadof propagating each constellation T = NpTp seconds we propagate them ∆t seconds,and this technique can be applied to our three algorithms. The second one by narrow-ing down the domain of the �tness function. In particular, it is possible to reduce therange of the inclination into [0◦, 90◦] instead of [0◦, 180◦] in the brute force search algo-rithm, as Corollary 23 states. Also it is possible to reduce the range of the parameter

Nc ∈ [0, . . . , No] to the region [0, . . . , No

2
] in the Genetic Algorithm and Particle SwarmOptimization algorithm as Corollary 24 states.2.3 Results2.3.1 Method comparisonIn this research three di�erent algorithms have been used: a brute force search orexhaustive search to have an approximate idea of the optimal solution and two evolutivealgorithms. These last two are the Genetic Algorithm and Particle Swarm Optimizationalgorithm, which improve substantially the brute force search, as we show below.For a given a number of satellites Nsat, according to the 2D-LFC theory, the num-ber of di�erent constellations, is given by the Eq. (2.1). Thus, the total number ofconstellations with 18 ≤ Nsat ≤ 40 is equal to:

40∑

n=18

f(n) = 1104. (2.15)Each of these 1104 cases has been analyzed to �nd the best parameters (e, i, ω) thatminimize the GDOP with the three methods. Figure 2.8 shows the number of times inwhich one method is better than the others, considering a reference grazing angle equalto 10◦. The PSO algorithm is the best method followed by the Genetic Algorithm andthe exhaustive search algorithm. In certain con�gurations, it is impossible to �nd aconstellation with GDOP better than 99. For instance, when No = 1 the satellites arealways on the same orbit plane, hence the maximum GDOP is 99. Those cases have
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Figure 2.8: Comparison of the three methods.been excluded from the comparison between methods, and they are represented witha separate bar in Figure 2.8.Another interesting result consist of comparing the Genetic Algorithm and the exhaus-tive or brute force search algorithm. We count the number of times in which GeneticAlgorithm is better than the exhaustive search, excluding in this case the ParticleSwarm algorithm. In Figure 2.9 we observe that in 64.45% of the cases the GeneticAlgorithm is better than the exhaustive search algorithm.Finally, we compare the evolutive algorithms. In Figure 2.10 we plot three bars; the�rst one represents the cases in which the GDOP is equal to 99. The second andthird bars represent the cases in which the Genetic Algorithm and the Particle SwarmAlgorithm win, respectively. In this case we observe that in 82.03% of the cases theParticle Swarm wins the Genetic algorithm.Note that the comparison between the three methods is fair because they evaluate thecost function (i.e. the maximum GDOP) the same number of times, as we show below:
• Genetic Algorithm has 60 generations with 60 individuals. Each individual rep-resents a 3-tuple (e, i, ω). For each individual the maximum GDOP of the con-stellation is computed. In one generation the maximum GDOP is computed 60times. Thus, in 60 generations the maximum GDOP is calculated 3,600 times.
• Particle Swarm Optimization has 60 generations of 60 particles. As the GeneticAlgorithm the maximum value of the GDOP is computed 3,600 times.
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Figure 2.9: Comparison of the Genetic Algorithm and the exhaustive search.
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Figure 2.10: Comparison of the Genetic Algorithm and the Particle Swarm algorithm.



52 CHAPTER 2. OPTIMIZING FLOWER CONSTELLATIONSMethod Nsat No Nso Nc e i ω max GDOPBF 27 3 9 2 0.0300 55.0000 0.0000 3.63983GA 27 3 9 2 0.0389 55.5870 177.9400 3.64860PSO 27 3 9 2 0.0000 54.0572 173.7075 3.61023Table 2.3: Optimal con�gurations with three di�erent methods.
• Brute Force search algorithms has 20 di�erent values for the eccentricity, that is
e ∈ [0, 0.3] and with step of 0.015. The inclination has 36 di�erent possibilities,that is i ∈ [0, 180◦] with step of 5◦. Finally, the argument of perigee ω ∈ [0, 360◦]with step of 72◦, so it assumes only 5 di�erent values. Thus, the maximum valueof the GDOP is calculated 20 · 36 · 5 = 3, 600 times.For example, if we have Nsat = 27, the time that PSO (60 generations of 60 particles)takes to �nd the optimal constellation with one core is approximately 3,200 seconds.There are 40 possible con�gurations for the phasing parameters (Nso, No, Nc), so thetotal computational cost would be about 40 · 3, 200 = 128, 000 seconds, which arearound 1.5 days. When the number of satellites is larger, not only we have morepossible con�gurations, but also the computational time per con�guration increases,since there are more satellites to evaluate. That is why some parallelization techniques,some reductions on the search space and optimization in the propagation time arenecessary to reduce signi�cantly the computational cost.2.3.2 Optimal con�gurationsConsider �rst a constellation with Nsat = 27 satellites. As we can see in Table 2.1,there are 40 possible con�gurations for the phasing parameters. For each of thosecon�gurations, the three algorithms were used to determine the best parameters (e, i,and ω) that minimize the maximum value of the GDOP along the propagation time.These optimal parameters are shown in Table 2.3.It can be clearly seen that the best constellation found depends on the method. Wekept track of the results with di�erent grazing angles, but for practical purposes, onlythe case where the reference grazing angle is equal to 10◦ is relevant. Regarding thesensitivity to the method, we decided to continue using the three methods, and use thebest solution found by any of them. The solutions found by the other two are used toprovide some con�dence on the optimality of the GDOP.Now, we do the same for any number of satellites 18 ≤ Nsat ≤ 40. The GDOP of thebest con�guration found by each of the three methods is shown in the Figure 2.11.We only show the con�gurations with more than 23 satellites, since the cases with

Nsat ≤ 23 have GDOP above 5, which is considered not good for solving a globalpositioning problem.Intuitively, the more satellites the constellation has, the better results for the GDOPvalue should be obtained. However, this is not always true, because with 27 satellites
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Figure 2.11: Maximum GDOP experienced for constellation with satellites between 24and 40 satellites.we obtained better results than with 28 satellites. A similar behaviour is observed with29 and 30 satellites and also with 38 and 39 satellites.It seems that the number of con�gurations is a potential factor to �nd good constel-lations, i.e. the more con�gurations are possible, the more possibilities to �nd a goodconstellation for global coverage. But this is not always true as we can observe with 29and 30 satellites, because the 29 satellites constellation has fewer con�gurations thanthe 30 satellites constellation and we obtain better results.The best con�gurations found for Nsat ∈ [24, 40] are summarized in Table 2.4.2.3.3 Eccentric orbitsOne of the innovative results, thanks to the 2D-LFC theory, is that eccentric orbits areconsidered in the searching process. As we can see in Table 2.4, in many occasions theoptimal con�guration has a highly eccentric orbit. For instance, when Nsat = 35, theoptimal constellation has e = 0.3. This case is shown in Figure 2.12.2.3.4 ComparisonGalileo Constellation [40] is currently being built by the European Union to have analternative navigation system to the existing GPS System [27,39] (US), the GLONASS
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Nsat No Nso Nc e i ω max GDOP24 24 1 2 0.000 125.187 88.611 4.9607425 25 1 2 0.000 127.492 236.480 4.8262826 26 1 10 0.000 61.104 492.410 3.8221627 3 9 2 0.000 54.057 173.707 3.6102328 7 4 2 0.000 127.535 150.965 3.7356129 29 1 11 0.023 61.518 100.863 3.4934130 10 3 4 0.036 57.836 263.915 3.5784331 31 1 4 0.000 71.774 256.259 3.2721232 16 2 7 0.253 63.514 179.549 3.2496933 11 3 4 0.006 59.795 94.0092 3.2136134 34 1 12 0.000 120.478 229.407 2.9752735 35 1 8 0.300 63.005 0.084 2.9591236 12 3 4 0.075 60.000 0.000 2.7864737 37 1 5 0.000 60.637 82.5934 2.7937338 38 1 14 0.000 59.039 184.670 2.5355739 13 3 4 0.065 60.000 0.000 2.5711540 10 4 7 0.000 58.009 25.722 2.43542Table 2.4: Optimal con�gurations with reference grazing angle α = 10◦.

Figure 2.12: A (No = 35, Nso = 1, Nc = 8, Np = 17, Nd = 10, e = 0.3, i = 63.005, ω =
0.084) 2D-LFC.
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Nsat No Nso Nc e i ω max GDOP24 3 8 1 0.106 55.60 22.90 5.97224Table 2.5: Parameters and GDOP of a 24 2D-LFC with a reference angle of incidenceof 80◦.
Nsat No Nso Nc e i ω max GDOP24 3 8 1 0.0 63.124 151.444 3.79882Table 2.6: Parameters and GDOP of a 24 2D-LFC with a reference angle of incidenceof 85◦.(Russian), and the Chinese Compass System. This constellation has 27 satellites mov-ing in three circular orbits with an inclination of 56◦. This corresponds to the 2D-LFCwith parameters No = 3, Nso = 9, Nc = 2, e = 0, and i = 56◦. The semi-major axis isdetermined by the compatibility ratio Np/Nd = 17/10.Using a reference grazing angle α = 10◦ and our algorithms, the original Galileo Con-stellation has a GDOP = 3.77602. Table 2.3 shows that the three methods were ableto �nd constellations with Nsat = 27 that are marginally better than Galileo. The bestof these three constellations, which was found by the Particle Swarm Algorithm, is alsoshown in Table 2.4 and it has GDOP = 3.61023.The GLobal NAvigation Satellite System (GLONASS) corresponds to the 2D-LFCwith parameters No = 3, Nso = 8, and Nc = 1. The eccentricity is equal to 0.0,and the inclination is 64.8◦. The semi-major axis is about 25, 478.137 km. The ratio

Np/Nd
∼= 2.13. Then, we select Np = 21 and Nd = 10. With a reference angle ofincidence of 80◦ and propagating the satellites with a time step equal to 60.0 seconds,with our algorithms the GDOP of the GLONASS constellation is 99, while our bestresult for the 2D-LFC is shown in Table 2.5.However, if we consider a reference angle of incidence equal to 85◦ the GDOP ofGLONNAS with our algorithms is 3.92058. By using the evolutionary algorithmswith the GLONNAS con�guration, our results, which slightly improves the GLONASSones, are shown in Table 2.6.2.3.5 Time-evolution of the GDOPWhile our algorithms compare constellations based on the worst GDOP value seenby any of the ground stations at any instant of time, it would be interesting to seethe evolution in time of the maximum GDOP, average GDOP, and minimum GDOPexperienced by the 30,000 ground stations. These three values of the GDOP are shownin Fig. 2.13 for our optimal constellation with 27 satellites. For clarity, Fig. 2.14 showsonly the evolution of the maximum value of the GDOP over time.
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Figure 2.13: Maximum, minimum and average GDOP value of our 27 satellite constel-lation.In the �rst of these �gures, we can see that the maximum GDOP experienced by the30,000 stations is around 3.6 at any time, meaning that there is always a ground stationwhere the GDOP is about 3.6, and that no ground station has a GDOP worse than that.Similarly, we can see that the minimum GDOP is aproximately 1.5, so there is alwaysa point on the Earth where the GDOP is as good as 1.5. Finally, the average movesaround 2.3, so we can expect half of the ground stations to have a GDOP between 1.5and 2.3, and the other half in the interval [2.3, 3.6]. Intuitively, this means that abouthalf of the surface of the Earth would experience a GDOP better than 2.3.In the next �gure, we can see that the maximum GDOP oscillates between 3.58 ±
0.04. The deviation from the center value is less than 1.2%. This indicates that theperformance of the constellation remains almost constant over time.Finally, we provide in Fig. 2.15 a comparison between Galileo and the 27 satellite opti-mal constellation, which we already know has better maximum GDOP. In Figure 2.16and Figure 2.17 we illustrate the average and minimum GDOP experienced during thepropagation time of Galileo constellation and our 27 FC, respectively. With respect tothe average metric, Galileo seems to be better than our constellation, except duringsome small intervals of time. However with respect to the minimum GDOP, we observethat none of the constellations are better than the other.Now we compare the 24 satellite Flower Constellation with the existing GLONASSconstellation. In this case we compare the maximum GDOP values experienced overtime. As we illustrate in Figure 2.18 our constellation is better at any time.As we observe in Table 2.4 there exist some con�gurations that obtain better resultswith less satellites. For example with 27 satellites we obtain better results than with28 satellites. The same thing occurs with 29 and 30 satellites, and also with 38 and 39satellites. Figure 2.19 and Figure 2.20 show the maximum GDOP of the constellations
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Figure 2.14: Maximum GDOP value of our 27 satellite constellation over time.
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Figure 2.15: Maximum GDOP of Galileo Constellation and our 27 satellite constella-tion.
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Figure 2.16: Average GDOP of Galileo Constellation and our 27 satellite constellation.
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Figure 2.17: Minimum GDOP of Galileo Constellation and our 27 satellite constella-tion.
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Figure 2.18: Maximum GDOP experienced over time of GLONASS constellation andour 24 satellites 2D-LFC.experienced over time that con�rms that sometimes with less satellites it is possible toobtain better results.2.4 ConclusionsThrough this work we found optimal con�gurations for solving a global positioningproblem. To search among all possible design variables we use evolutive algorithms.Due to the high computational cost of the evolutive algorithms in this work, we foundseveral ways to reduce the computational cost, such as; the search space reduction orthe propagation time reduction. The computational time has been also reduced byusing parallelization techniques.In this study, the problem of the collision between satellites is completely ignored,since a constellation with a low GDOP value means that all satellites are never alignand always far away from each other, while a bad GDOP means that the satellites arealmost align and consequently there exist risk of collision.Note that, most of the optimal con�gurations have one satellite per orbit and we knowthat launch a constellation with more than three orbital planes has a high monetarycost. However, we also have con�gurations with a small number of orbital planes.An interesting line of research would be studying the low thrust needed to maintainthe con�guration of the constellation under the J2 e�ect. A �rst step in this directionis done in the next chapter. We try to obtain parameters of a FC, in such a way thatall the satellites are perturbed in the same way and consequently the relative positionof the satellites in the osculating elements space remains almost constant, what we callRigid Constellation.
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Figure 2.19: Maximum GDOP experienced over time of our 29 satellites 2D-LFC andour 30 satellites 2D-LFC.

0 500 1000 1500 2000 2500
2.4

2.42

2.44

2.46

2.48

2.5

2.52

2.54

2.56

2.58

2.6

Time [sec]

G
D

O
P

 

 

39 FC
38 FC

Figure 2.20: Maximum GDOP experienced over time of our 38 satellites 2D-LFC andour 39 satellites 2D-LFC.



Chapter 3Flower Constellations under the J2e�ect
3.1 IntroductionThe instantaneous position (and velocity) of a satellite orbiting about the Earth isdetermined by six orbital parameters; semi-major axis (a), eccentricity (e), incli-nation (i), argument of perigee (ω), Right Ascension of the Ascending Node (Ω),and Mean anomaly (M). In a 2D-LFC all the satellites have the same a, e, i, ω,and the pairs (Ω,M) lie on a lattice given by three integer parameters No, Nso,
Nc, see section 1.2.1. The con�guration determined by these parameters is denoted
FC(No, Nso, Nc, a, e, i, ω,Ω,M).In the keplerian model, the evolution of the orbital parameters of the satellites of aFlower Constellation is very simple, because all the parameters remain constant, exceptfor the mean anomaly M that increases linearly at the same rate n =

√

µ/a3 for allthe satellites.
FC(No, Nso, Nc, a, e, i, ω,Ω,M)

t/Kepler−→ FC(No, Nso, Nc, a, e, i, ω,Ω,M + nt). (3.1)Hidden in Eq. (3.1) is a remarkable fact about Flower Constellations in the keplerianmodel that motivates part of this work: FCs remain FCs!In this chapter we investigate whether something similar happens when the keplerianpotential is perturbed with the J2 term. Note that, the only way that FCs, whenpropagated under the e�ect of J2, remain being FCs, is when J2 perturbs all thesatellites in the FC in exactly the same way. More precisely, we ask for the existenceof functions a(t), e(t), i(t), ω(t), Ω(t), M(t), such that
FC(No, Nso, Nc, a, e, i, ω,Ω,M)

t/J2−→ FC(No, Nso, Nc, a(t), e(t), i(t), ω(t),Ω(t),M(t)).(3.2)Constellations satisfying Eq. (3.2), named Rigid Constellations, are our main subjectof interest. 61



62 CHAPTER 3. FLOWER CONSTELLATIONS UNDER THE J2 EFFECT3.2 Dynamics of the satellitesAs we have shown in the preliminaries, the motion of a satellite under any conservativeforce �eld is determined by the potential function and the initial conditions. Once thepotential function is determined, we apply the gradient operator and solve the systemof equations of order one given in (1.31).Given an initial position r0 and velocity v0, the solution of Eqs. (1.31) describes themotion completely. The instantaneous position r(t) and velocity v(t) are called statevectors. Another way of describing the motion of the satellite is using the osculatingelements a(t), e(t), i(t), ω(t), Ω(t) and M(t) as we explained in subsection 1.1.2.2.In subsection 1.1.2.2 we mentioned that in the keplerian motion, all the orbital elementsexceptM are constant. The evolution of them over time can be represented as a straightline, since M increases linearly: M(t) = M0+nt where n =
√

µ/a3 is the mean motion.When some perturbations appear, the potential can be split as:
V (r) = Vkep +R, (3.3)and the orbital elements are not longer constant, whose evolution follow Lagrange Plan-etary Equations (1.38). The osculating elements have three di�erent kind of terms [1],illustrated in Figure 3.1:

• Polynomial terms in the variable t. These terms produce a secular displacementfrom the constant behavior of the orbital elements that take place in the keplerianmotion.
• Terms of sine and cosine of the variables ω, Ω, and i. Due to the slowly variationof these angular variables, they cause a periodic oscillation with long period. Thisterms are named long periodic terms.
• Terms of sine and cosine of the variable M , which has the same period as theorbit. They cause small oscillations around the secular perturbation and the longperiod perturbation. They are named short periodic terms.In this thesis, we only make a distinction between the �rst kind of terms (secular)

asec(t), esec(t), . . . ,Msec(t) and the sum of the last two terms (non-secular). When thepotential is perturbed only with the J2 term, the secular components of the osculatingelements show a linear secular behavior.3.3 Problem formulationWe assume that the Earth is a revolution body, consequently, the tesseral harmonicterms of the potential function are zero, and the potential function have only zonalharmonic terms. As a �rst approximation, we consider only the J2 e�ect since it isalmost 1000 times larger than the next coe�cient J3. Then, our potential functionbecomes:
V (r) = Vkep +RJ2 . (3.4)
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Figure 3.1: Secular and non-secular perturbations.We need the expression of the potential function in terms of the position and velocityand in terms of the orbital elements, in order to obtain the motion of a satellitesthrough Eqs. (1.37) and Eqs. (1.38).
3.3.1 Potential as a function of position and velocityFollowing Eq. (1.34), the expression of the potential in terms of the position andvelocity, considering only the zonal harmonic (J2) is,

V (r) = Vkep +RJ2
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.The last equality is true since φsat represents the latitude of the satellite, thus sin(φsat) =
z/r. We apply the gradient operator to the previous expression of the potential,
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64 CHAPTER 3. FLOWER CONSTELLATIONS UNDER THE J2 EFFECTFinally, the �rst order system of equations given in (1.37) can be expressed as follows:

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(3.5)
3.3.2 Potential as a function of the orbital elementsIn order to use Lagrange Planetary Equations we should determine the potential func-tion in terms of the orbital elements. For that purpose, the latitude of the satellite canbe rewritten as sin(φsat) = z/r, where z = r sin(i) sin(ω+ϕ) and ϕ represents the trueanomaly. Thus, the potential function in terms of the orbital elements is:

V (r) = Vkep +RJ2

= −µ
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3 sin2(i) sin2(ω + ϕ)− 1

)
.The standard approach is to consider an averaged perturbed potential RJ2 over anorbital period, instead of the full expression of RJ2 , in order to focus on the non-periodic variations (short periodic terms) of the orbital parameters [10].
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. (3.6)In this case, Lagrange Planetary Equations show that the osculating orbital parametersof any satellite are linear functions whose slopes are given by:
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. (3.7)Applying these formulas to the case of FCs, we see that all the satellites su�er exactlythe same perturbation due to RJ2, since all the satellites have the same a, e, i, and ω.Note that, in this case there is no non-secular component of the osculating elements.This shows that, for the case of the averaged perturbed potential, the conclusion ofEq. (3.2) is valid.It is important to note that Eqs. (3.7) are the main assumption of the theory of 3D-LFC [18, 19]. In this thesis, we will analyze whether the same happens under the



3.3. PROBLEM FORMULATION 65full expression of the potential, considering only the zonal harmonic (J2). When thepropagation is done with the full expression of RJ2, the osculating elements show aslightly di�erent behavior: each parameter has a secular component (a linear function)and a non-secular component (small oscillations with average zero). Using LagrangePlanetary Equations and the full expression of RJ2, it is possible to obtain the variationof the orbital elements over time [25]:

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. (3.8)Where b = µJ2r2⊕
2

and u = ω+ϕ. In this situation, the only way we can obtain Eq. (3.2)for a FC, would be by showing that:(a) The slopes of asec(t), esec(t), isec(t), ωsec(t), Ωsec(t), Msec(t) depend only on theinitial a, e, i, ω, hence the same for all satellites.(b) The non-secular component is negligible (within a certain tolerance).In the following section we show that the slopes of asec(t), esec(t), isec(t), ωsec(t), Ωsec(t),
Msec(t) do not depend on Ω. However, they depend on the initial Mean anomaly ofeach satellite, which is a major problem since the satellites in a FC have di�erentvalues of M . We propose a method to correct this problem for a FC, by changing thesemi-major axis of the satellites by a few kilometers, in such a way that the secularpart of the osculating elements of each satellite will have the same slope. Thus, thesecular part can be controlled in a FC.We also describe the non-secular component of a satellite and we study its dependencywith respect to the initial orbital elements of the satellite. We will �nd di�erent regionswhere the non-secular component of a satellite is minimized. Finally, by providing agood set of initial conditions we will have 2D-LFCs which stay as 2D-LFCs even underthe J2 e�ect, and therefore Eq. (3.2) will be valid up to a given tolerance.



66 CHAPTER 3. FLOWER CONSTELLATIONS UNDER THE J2 EFFECT3.4 Secular and non-secular perturbations of the os-culating elementsIn this section we analyze how the J2 term a�ects a satellite orbiting about theEarth. As an example we select random initial orbital elements for a satellite; a =
26, 544.2976 km, e = 0.1046, i = 36.3356◦, ω = Ω = M = 0.0. This satellite hasan orbital period of approximately 12 hours. We integrate the system of Eqs. (3.8)applying a Runge Kutta method of order 4, with �xed step δt = 1.0 sec during 432,000seconds (i.e. �ve days).Figure 3.2, Figure 3.3, and Figure 3.4 show the evolution of the semi-major axis, ec-centricity and inclination over time, respectively. It is possible to observe that thesecular perturbation of these parameters are equal to zero. However, the non-secularperturbation makes them oscillate. The semi-major axis oscillates about 2.5 km, theeccentricity about 10−4 and the inclination around 0.0034◦ each orbital period. Fig-ure 3.5 and Figure 3.6 show the evolution of the argument of perigee and the RAAN,respectively. In these cases we observe a secular and non-secular behavior in each pa-rameter. Finally, Figure 3.7 shows the evolution of the Mean anomaly over time andwe observe a small oscillation besides a secular behavior. Note that, instead of a line,the plot has a sawtooth shape due to the modular nature of angular values. For clarity,the non-secular component of M during an orbital period has been plotted separatelyin Figure 3.10

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

2.6542

2.6542

2.6543

2.6543

2.6544

2.6544

2.6545
x 10

4

Time [sec]

S
em

i−
m

aj
or

 a
xi

s 
[k

m
]

Figure 3.2: Evolution of the semi-major axis.
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Figure 3.3: Evolution of the eccentricity.In order to determine the secular component of an osculating element q ∈ {a, e, i,
ω,Ω,M}, we use linear interpolation over the data set consisting of the pairs (t, q(t))obtained by propagating with the full expression of the potential RJ2. For the angularparameters ω, Ω, and M , we add or subtract multiplies of 2π before the linear interpo-lation, to handle the non-linearity created by their modulus 2π behavior. In Table 3.1,we compare the slopes of the secular components of the osculating elements computedwith our linear interpolation and the ones that would be obtained if the propagationwere done using the averaged potential RJ2. The di�erence between both propagationsis very small in one orbital period but it is not bounded for a long time period prop-agation. Since we are interested in highly accurate results, we disregard the averagedpotential in favor of the full expression of RJ2 .There are cases that require a special treatment. For instance, when the eccentricityapproaches zero, there is a large variation in ω. Actually, when e = 0.0 the argumentof perigee is unde�ned. In the previous example, we observe that the argument ofperigee oscillates around 10−3 rad (see Figure 3.5) due to the non-secular component.Now, we consider the same example but we change the eccentricity (e = 0.0001). Inthis case, as we illustrate in Figure 3.8 the secular and non-secular components of theargument of perigee are extremely high. Besides, in Figure 3.9 we plot the non-secularcomponent of the argument of perigee in one orbital period. It has been obtained byremoving the secular component. In this example, the non-secular component of theargument of perigee oscillates about 2 rad in one orbital period, thus proving the largevariation that ω presents in near-circular orbits. An analysis of near-circular orbits,showing that ω behaves this way is given in [11].
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Figure 3.4: Evolution of the inclination.
RJ2 RJ2

ȧsec (km·sec−1) 0.0 7.734381692·10−8

ėsec (sec
−1) 0.0 4.486699948·10−12

i̇sec (rad·sec−1) 0.0 1.336085298·10−12

ω̇sec (rad·sec−1) 1.570708925·10−8 1.551532370·10−8

Ω̇sec (rad·sec−1) −1.127357777·10−8 −1.127143934·10−8

Ṁsec (rad·sec−1) 1.460054338·10−4 1.460055229·10−4Table 3.1: Comparison of the slopes of the secular components of the osculating ele-ments propagating with RJ2 and RJ2.Note that, we may think that Figure 3.7 and Figure 3.8 present a similar behavior. Bothof them have a huge secular component and the plots have a sawtooth shape. However,in the case of the Mean anomaly (Figure 3.7), we plot its non-secular component inone orbital period in Figure 3.10 and we observe that it is rather small (order ≈ 10−4),while in the case of the argument of perigee, as we observe in Figure 3.9, the non-secularcomponent is 10,000 times larger.Another situation that requires special treatment is when i ≈ 0 or i ≈ π. All thesecases are excluded in our research because it is not possible to control or even de�nethe secular part of these parameters [11].3.4.1 The secular component of the osculating elementsThe expression for the gravitational potential including only the J2 term is symmetricwith respect to rotations about the z-axis. Consequently, two satellites with sameorbital parameters except the value of the RAAN have an identical evolution over time
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Figure 3.5: Evolution of the argument of perigee.
a (km) e i (deg) ω (deg) Ω (deg) M (deg)

Sat1 29000.0 0.35 20.0 130.0 0.0 0.0
Sat2 29000.0 0.35 20.0 130.0 57.0 0.0
Sat3 29000.0 0.35 20.0 130.0 125.0 0.0
Sat4 29000.0 0.35 20.0 130.0 170.0 0.0Table 3.2: Orbital elements of four satellites.but rotated about the z-axis. Meaning that, the slopes of asec(t), esec(t), isec(t), ωsec(t),

Ωsec(t), Msec(t) do not depend on Ω, or in other words, they depend only on the initial
a, e, i, ω, and M .A numerical veri�cation of this claim is provided in Table 3.3. We have selected foursatellites with identical initial orbital elements except for the value of the RAAN (seeTable 3.2) and we propagated these satellites under the J2 e�ect. As shown in Table 3.3all these slopes coincide up to a relative error of order 10−7 (which is the precision ofour propagation method).The dependency of the slopes of the secular components of the osculating elementswith respect to the initial Mean anomaly has been tested numerically as follows:1. We consider an initial set of 100 satellites. The orbital parameters (a, e, i, ω) ofeach satellite are selected at random in a region of interest. Taking into accountthat we have already shown that the slopes do not depend on the value of RAAN,we have set this value to zero for all the satellites (i.e. Ω = 0.0).2. The Mean anomaly M ∈ [0, 2π] is discretized with step of 7.35◦ for each one ofthe 100 satellites. Thus, each satellite has 51 di�erent possible values for theMean anomaly.3. Finally, each set of initial conditions is propagated using Eqs. (3.8) with a RK oforder four during approximately 370 days, with a time step of 20 sec.
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Figure 3.6: Evolution of the RAAN.
Sat1 Sat2 Sat3 Sat4

ȧsec (km·sec−1) −4.402790331·10−7 −4.402790340·10−7 −4.402790200·10−7 −4.402790304·10−7

ėsec (sec−1) −1.906635265·10−11 −1.906635255·10−11 −1.906635262·10−11 −1.906635275·10−11

i̇sec (rad·sec−1) 2.860683558·10−14 2.860681079·10−14 2.860682433·10−14 2.860684176·10−14

ω̇sec (rad·sec−1) 2.215516231·10−8 2.215516231·10−8 2.215516231·10−8 2.215516231·10−8

Ω̇sec (rad·sec−1) −1.223085652·10−8 −1.223085652·10−8 −1.223085652·10−8 −1.223085652·10−8

Ṁsec (rad·sec−1) 1.278706109·10−4 1.278706109·10−4 1.278706109·10−4 1.278706109·10−4Table 3.3: Slopes of the secular components of the osculating elements.All the satellites present a similar behavior, which is shown next with one particularexample. We take, for instance, the satellite whose initial orbital elements are a =
26, 215.017 km, e = 0.090394, i = 85.9507◦, ω = 208.5061◦, and Ω = 0.0◦. The valuesof the mean anomaly vary between 0◦ and 360◦ with a step about 7.35◦. Table 3.4shows how the slopes of the secular components of the osculating elements changedepending on the value of the Mean anomaly.We observe that the slopes of the semi-major axis are the same up to order 10−11 km/sec.After 370 days the variation of the semi-major axis will be less than 1 meter (0.3197m).The slopes of the eccentricity have in all the cases the same value up to order 10−14 sec−1.After 370 days, the variation of the eccentricity will be 3.1968·10−7. The slopes of theinclination, isec(t) are the same up to order 10−16 rad/sec. Meaning that after one year(370 days) the variation will be around 10−9 rad. We observe that the slopes of ωsec(t)and Ωsec(t) have approximately the same value when we change the Mean anomaly.These slopes coincide up to order 10−11 rad/sec, meaning that after 370 days, the varia-tion of these elements will be 3.1968·10−4 rad. All this shows that asec(t), esec(t) isec(t),
ωsec(t), and Ωsec(t) do not depend signi�cantly on the initial value of M .However, the slopes of Msec(t) show a di�erence of order 5.1608·10−8 rad/sec, which
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Figure 3.7: Evolution of the Mean anomaly.represent a di�erence of about 94◦ in 370 days of propagation. This extreme di�erencecomes from the fact that the orbital periods of the satellites are not equal. The slopeof Msec(t) is equal to n, which is the mean motion of a satellite,
Ṁsec(t) = n =

2π

Tp
,where Tp is the keplerian orbital period of the satellite (related with the semi-majoraxis). We take from Table 3.4 two di�erent values for the Mean anomaly M8 = 0.8975and M47 = 5.8985, which correspond to the 8rd and the 47th set of parameters thatwe tested. Those values have been selected because, in those cases, the value of Ṁsecreaches a minimum Ṁ8

sec = 1.487122·10−4 and a maximum Ṁ47
sec = 1.487638·10−4.Despite having the same orbital parameters, except for the value of M , the orbital pe-riods of the satellites are, T 8

p = 42250.6175 sec and T 47
p = 42235.9602 sec, respectively.They di�er around 14.65 seconds, meaning that after 370 days (or around 740 orbitalperiods) there will be an o�set of around 11, 118.9743 sec between both satellites, whichcorresponds to the 94◦ of di�erence that we obtained above.3.4.2 Non-secular component of the osculating elements.In this section we have analyzed the non-secular component of the osculating elements.We consider an initial set of orbital elements (a, e, i, ω, Ω, M) and we integrate thesystem of Eqs. (3.8) applying a Runge Kutta method of order four to determine their
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Figure 3.8: Evolution of the argument of perigee in a quasi-circular orbit (e = 0.0001).evolution over time (osculating elements). Furthermore, for each osculating element
q ∈ {a, e, i, ω,Ω,M}, we obtain its secular and non-secular part by linear interpolationas explained before.In the two body problem it is easy to compute the position and velocity vectors fromthe orbital elements. Then, we can compute at time t �the real position� (rJ2(t)) and�the approximate or linear position� (rsec(t)), through the real osculating elements
a(t), e(t), i(t), ω(t), Ω(t), M(t), and the secular part of the osculating elements asec(t),
esec(t), isec(t), ωsec(t), Ωsec(t), Msec(t), respectively.The real position of the satellite considers the secular and non-secular terms of theosculating elements, while the approximate position only takes into account the secularterms. Then, the distance:

||rJ2(t)− rsec(t)||,represents the deviation of the satellite from its real position due to the non-secularperturbations. We compute this deviation at each instant of time and consider themaximum value experienced,
∆(a, e, i, ω,Ω,M) = max

t
||rJ2(t)− rsec(t)||, (3.9)which represents, as a function of the initial conditions, the maximum deviation dueto the non-secular components of the osculating elements.The goal is to determine the best values for the initial orbital elements to reduce thedeviation of the satellite. In order to �nd those regions, we �rst study numerically the
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Figure 3.9: Non-secular component of the argument of perigee in a quasi-circular orbit(e = 0.0001), in one orbital period.
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Figure 3.10: Non-secular component of the Mean anomaly in one orbital period.dependency of the deviation with respect to the initial orbital elements, and then, wesearch for the best initial conditions.We use the same methodology to study the dependency of the deviation with respectto each initial orbital element. In the case of the semi-major axis, the procedure is asfollows:
• Generate randomly the initial orbital elements of 100 satellites, except the semi-major axis.
• For each satellite, the value of the semi-major axis is discretized in the region
[18000, 29000] km with step of 500 m. Then, each satellite has 22 possibilities forthe semi-major axis.

• For each of the 100 satellites, it is possible to compute the maximum deviationexperienced in terms of the semi-major axis, and to infer the dependency between



74 CHAPTER 3. FLOWER CONSTELLATIONS UNDER THE J2 EFFECTthem. Each set of initial conditions is propagated using Eqs. (3.8) with a RK oforder four during approximately 370 days, with a time step of 20 sec.We observe in Figure 3.11 that the deviation is inversely proportional to the semi-majoraxis. This is due to the J2 e�ect decaying as we move away from the Earth. Figure 3.12illustrates that the deviation is almost constant until the eccentricity reaches the value
e = 0.15, and then it grows exponentially as the value of e increases. Regarding theinclination, we have observed that there always exist a value for the inclination whichminimizes the deviation, as Figure 3.13 illustrates. Note that, the inclination variesin the range [0◦, 90◦] because the results in the interval [90◦, 180◦] will be exactly thesame since we are dealing with the same orbit but in a retrograde motion.The deviation does not depend on the Right Ascension of the Ascending Node. Besides,the deviation varies less than 150 meters as we change the argument of perigee and, inthe case of the Mean anomaly it varies less than 10 meters.
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Figure 3.11: Dependency of the deviation with respect to the semi-major axis.
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Figure 3.12: Dependency of the deviation with respect to the eccentricity.
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Figure 3.13: Dependency of the deviation with respect to the inclination.The previous study shows that the main contribution to the deviation come frominitial a, e, and i. In order to reduce the deviation it is enough to increase a asmuch as possible, reduce e to the interval [0, 0.15], and choose the critical value of theinclination corresponding to the chosen a and e.In mission planning would be useful that given the semi-major axis we were able tocompute the range of values for e and i such that they reduce as much as possible thedeviation of the satellites. For that purpose, we designed an algorithm that, given thesemi-major axis, the argument of perigee, the Right Ascension of the Ascending Nodeand the Mean anomaly of a satellite, computes and plots the deviation in terms of theeccentricity and the inclination. Figure 3.14 shows the output of the algorithm in oneexample whose initial data are: a = 29600.1 km, ω = 0, Ω = 0, and M = 0.

Figure 3.14: Dependency of the deviation with respect to the eccentricity and inclina-tion.Now, we explore the maximum deviation that a satellite can experience. For thatpurpose, we consider the worst initial conditions. We select a satellite whose semi-major



76 CHAPTER 3. FLOWER CONSTELLATIONS UNDER THE J2 EFFECTaxis is a ≥ 18, 000.0 km and the eccentricity is e ≤ 0.15. We know that the argumentof perigee, the Right Ascension of the Ascending Node and the Mean anomaly mayincrease the deviation at most 160m. Then, we vary the inclination in a range [0, π],and the maximum deviation experienced will be the worst possible case. We provednumerically that this value is less than 5 km.
max

a≥18000
e≤0.15
i∈[0,2π]

ω,Ω,M∈[0,2π]

∆(a, e, i, ω,Ω,M) = max
a≥18000
e≤0.15
i∈[0,2π]

ω,M∈[0,2π]

∆(a, e, i, ω, 0.0,M)

≤ max
a≥18000
e≤0.15
i∈[0,2π]

∆(a, e, i, 0.0, 0.0, 0.0) + 160m

≤ max
i∈[0,2π]

∆(18, 000, 0.15, i, 0.0, 0.0, 0.0) + 160m

≤ 5 km.Consequently, if a tolerance of a few kilometers (5 km) is acceptable for the deviation,then almost all initial conditions are valid.3.5 ResultsA Flower Constellation of Nsat satellites has the same semi-major axis, eccentricity,inclination and argument of perigee for each satellite. The Right Ascension of theAscending Node and the Mean anomaly of each satellite is determined by Eq. (1.42).Our goal is to control the secular and non-secular motion of all the satellites of theconstellation.3.5.1 Secular perturbation in a Flower ConstellationThe way to control the secular motion of the satellites in a Flower Constellation ishaving the same slopes of asec(t), esec(t), isec(t), ωsec(t), Ωsec(t), Msec(t) for all thesatellites. We show below that this can be attained by just adjusting the semi-majoraxis of each satellite a few kilometers. This will be possible since Ṁsec is related to Tp,which is itself related to the semi-major axis.In a FC all the satellites have the same semi-major axis, so a new concept of constel-lation is needed. The satellites of these new constellations have the same values of
e, i, and ω, the values of Ω and M will be determined by the lattice theory, but thesemi-major axis will be slightly corrected for each satellite. We devote the rest of thissection to derive a formula for the correction of the semi-major axis that guaranteesthe same value of Ṁsec.Kepler's Third Law states that the square of the period of a planet is proportional tothe cube of its mean distance to the Sun. In our problem we have the following relation:

a3 ∝ T 2 =

(
2π

Ṁsec

)2

.



3.5. RESULTS 77This expression can be rewritten as the following linear expression,
log Ṁsec = −3

2
log a+ β, (3.10)for some constant β. Figure 3.15 illustrates the relation between the semi-major axisand the slope of Msec(t). The larger the semi-major axis is, the smaller the slope of

Msec(t) becomes.
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Figure 3.15: Relation between the semi-major axis and the slope of Msec(t).Using Eq. (3.10), it is possible to obtain a value for β for each value of Ṁ ij
sec, where ijrepresents the index of satellite in the FC as in Eq. (1.42). With the same equation, butchanging the value of Ṁ ij

sec by the reference value Ṁ00
sec and β by the value previouslycomputed, we obtain the corrected semi-major axes:
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sec))

= −2

3
log Ṁ00
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Ṁ00
sec

.Applying the exponential function,
aij = exp

(

log a+
2

3
log

Ṁ ij
sec
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= a

(

Ṁ ij
sec

Ṁ00
sec

) 2

3

. (3.11)The following procedure summarizes the method we developed to correct the semi-major axes of all the satellites of a FC:
• Given the data of a Flower Constellation: No, Nso, Nc, a, e, i, ω, Ω and M , it ispossible to compute the values for Ωij and Mij for each satellite using the latticetheory, where i is the orbit number and j is the number of the satellite in itscorresponding orbit. The reference satellite is the one with i = j = 0, which has
Ω00 = Ω and M00 = M .

• Compute the value Ṁ ij
sec which is di�erent for each satellite. Ṁ00

sec is consideredas the reference value for the slope of M(t), or in other words, the value that allthe satellites should have.
• Compute the new values for aij using Eq. (3.11).We conclude that by slightly modifying the semi-major axis of all the satellites weobtain a Flower Constellation whose satellites have the same rate of change of itsorbital elements. Meaning that, the secular perturbations a�ects all the satellites inthe same way and consequently the secular motion of the satellites will be identicalunder the J2 e�ect for all the satellites.3.5.2 Non-secular perturbation in a Flower ConstellationWe now turn to reduce the non-secular motion of the satellites of the constellation toan acceptable value. In the case of a Flower Constellation, given the reference satellitewhose semi-major axis, argument of perigee, Ω00, andM00 are known, we can determinethe values for the eccentricity and the inclination that reduce the non-secular motionof the reference satellite as much as possible. However it is not clear whether thesevalues of e and i also work for the remaining satellites of the constellation. In additionto that, we should analyze whether the correction of the semi-major axis a�ects theselection of e and i considerably or not.Suppose that we �nd the inclination and the eccentricity that provides a low deviationof the reference satellite. Since the remaining satellites only di�er from the referenceone on the RAAN and the Mean anomaly, and we have shown that the deviationchanges by at most 10 meters in this case, then the same inclination and eccentricityshould be valid for all the satellites. Then, we should conclude that if we �nd goodparameters for the reference satellite, they are good for the remaining satellites of theconstellation.We have studied the dependency of the deviation with respect to the semi-major axis,and we have concluded that if we change a few kilometers the semi-major axis inthe correction algorithm, it slightly modi�es the non-secular motion of the satellite.Consequently, the values for the eccentricity and inclination selected for the referencesatellite are valid for all the satellites of the constellation.



3.6. CONCLUSIONS 793.5.3 Rigid ConstellationsA Flower Constellation of Nsat satellites, in which the secular motion is controlled bycorrecting the semi-major axis of the satellites, and the non-secular motion is reduced,Eq. (3.2) is satis�ed and we have a Rigid Constellation. Given the phasing parameters
(No, Nso, Nc) the semi-major axis (a), and the argument of perigee (ω) of a FlowerConstellation, it is possible to design a Rigid Constellation as follows:

• Correct the semi-major axis of each satellite to control the secular motion of thesatellites.
• Compute the values for the inclination and the eccentricity that reduce the non-secular component of the reference satellite to an acceptable value.We now illustrate how to design a Rigid Constellation. We start with a Flower Constel-lation with parameters No = 3, Nso = 9, Nc = 2, a = 29600.137 km, e = 0.0, i = 56◦and ω = 0.0 rad, which correspond with the parameters of Galileo Constellation. Wecorrect the semi-major axis to have all the satellites in the same relative orbits and alsothe same slopes for asec(t), esec(t), isec(t), ωsec(t), Ωsec(t), Msec(t) to control the secularmotion. The corrected semi-major axis and the slopes of the secular component of theosculating elements of each satellite are presented in Table 3.5.Given the semi-major axis, the argument of perigee, the Right Ascension of the As-cending Node and the Mean anomaly of the reference satellite, it is possible to computethe non-secular component in terms of the eccentricity and the inclination as we showin Figure 3.14. Then, to minimize the non-secular component we must select e = 0.01and i = 56.0009◦, obtaining a deviation of 551.301 meters.Note that, if we accept a deviation of 5 km then, all Flower Constellations can becorrected into Rigid Constellations.3.6 ConclusionsIn this chapter we provide a new procedure to design a FC that remains a FC underthe J2 e�ect, named Rigid Constellation. This has been done by controlling the secularand non-secular components of the osculating elements of the satellites through twotechniques. The �rst one consists of changing a few kilometers the semi-major axesin such a way that all the satellites have the same slope of the secular part of theirosculating elements. The second consists of searching the values for the eccentricityand the inclination that reduce the deviation as much as possible.In this way, all the satellites of the constellation will be perturbed the same way.Consequently, the relative position of the satellites (in the osculating elements space)will be maintained over time, and the initial lattice will remain constant within aprescribed tolerance.Rigid Constellations have two direct applications. First, it validates the theory of the3D Lattice Flower Constellation [19] (3D-LFC) under the full expression of the potential



80 CHAPTER 3. FLOWER CONSTELLATIONS UNDER THE J2 EFFECTfunction with the J2 term, assuming that the semi-major axes are corrected and thevalue of the deviation is small. Second, it shows that in the Global Coverage Problem(with J2) it will be enough to �nd a Rigid Constellation that minimizes a slightlymodi�ed �tness function (computable using Keplerian propagation). The modi�ed�tness function with respect Eq. (2.4) would be:
fitness(FC) = max

ω∈[0,2π]
max

t∈[0,Tprop]
maxrgs∈EarthGDOP (FC, rgs, t) (3.12)
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M (rad) ȧsec (km/s) ėsec (s−1) i̇sec (rad/s) ω̇sec (rad/s) Ω̇sec (rad/s) Ṁsec (rad/s)
0.000 6.166·10−12 1.680·10−14 −9.961·10−17 −7.087·10−9 −1.026·10−9 1.4875·10−4

0.128 1.885·10−11 1.699·10−14 −8.377·10−17 −7.086·10−9 −1.026·10−9 1.4874·10−4

0.256 3.048·10−11 1.698·10−14 −6.800·10−17 −7.085·10−9 −1.026·10−9 1.4873·10−4

0.384 3.774·10−11 1.668·10−14 −5.632·10−17 −7.085·10−9 −1.026·10−9 1.4872·10−4

0.512 3.728·10−11 1.617·10−14 −5.370·10−17 −7.084·10−9 −1.026·10−9 1.4872·10−4

0.641 2.760·10−11 1.561·10−14 −6.314·10−17 −7.083·10−9 −1.025·10−9 1.4871·10−4

0.769 8.934·10−12 1.510·10−14 −8.505·10−17 −7.083·10−9 −1.025·10−9 1.4871·10−4

0.897 −1.732·10−11 1.464·10−14 −1.174·10−16 −7.083·10−9 −1.025·10−9
1.4871·10−4

1.025 −4.758·10−11 1.409·10−14 −1.547·10−16 −7.083·10−9 −1.025·10−9 1.4871·10−4

1.154 −7.404·10−11 1.340·10−14 −1.859·10−16 −7.083·10−9 −1.025·10−9 1.4871·10−4

1.282 −8.506·10−11 1.278·10−14 −1.968·10−16 −7.084·10−9 −1.026·10−9 1.4872·10−4

1.410 −7.244·10−11 1.272·10−14 −1.794·10−16 −7.084·10−9 −1.026·10−9 1.4872·10−4

1.538 −4.229·10−11 1.329·10−14 −1.423·10−16 −7.085·10−9 −1.026·10−9 1.4873·10−4

1.666 −1.430·10−11 1.379·10−14 −1.078·10−16 −7.086·10−9 −1.026·10−9 1.4873·10−4

1.795 −4.697·10−12 1.360·10−14 −9.359·10−17 −7.086·10−9 −1.026·10−9 1.4874·10−4

1.923 −1.377·10−11 1.286·10−14 −1.011·10−16 −7.087·10−9 −1.026·10−9 1.4874·10−4

2.051 −3.121·10−11 1.214·10−14 −1.200·10−16 −7.087·10−9 −1.026·10−9 1.4875·10−4

2.179 −4.700·10−11 1.173·10−14 −1.387·10−16 −7.087·10−9 −1.026·10−9 1.4875·10−4

2.308 −5.622·10−11 1.162·10−14 −1.505·10−16 −7.088·10−9 −1.026·10−9 1.4875·10−4

2.436 −5.827·10−11 1.169·10−14 −1.536·10−16 −7.088·10−9 −1.026·10−9 1.4875·10−4

2.564 −5.466·10−11 1.179·10−14 −1.495·10−16 −7.088·10−9 −1.026·10−9 1.4875·10−4

2.692 −4.749·10−11 1.188·10−14 −1.403·10−16 −7.088·10−9 −1.026·10−9 1.4875·10−4

2.821 −3.863·10−11 1.194·10−14 −1.287·10−16 −7.088·10−9 −1.026·10−9 1.4875·10−4

2.949 −2.954·10−11 1.198·10−14 −1.167·10−16 −7.087·10−9 −1.026·10−9 1.4875·10−4

3.077 −2.126·10−11 1.203·10−14 −1.058·10−16 −7.087·10−9 −1.026·10−9 1.4875·10−4

3.205 −1.448·10−11 1.212·10−14 −9.730·10−17 −7.087·10−9 −1.026·10−9 1.4874·10−4

3.333 −9.603·10−12 1.226·10−14 −9.160·10−17 −7.086·10−9 −1.026·10−9 1.4874·10−4

3.462 −6.865·10−12 1.247·10−14 −8.922·10−17 −7.086·10−9 −1.026·10−9 1.4874·10−4

3.590 −6.346·10−12 1.275·10−14 −9.031·10−17 −7.085·10−9 −1.026·10−9 1.4873·10−4

3.718 −8.006·10−12 1.310·10−14 −9.479·10−17 −7.085·10−9 −1.026·10−9 1.4873·10−4

3.846 −1.168·10−11 1.350·10−14 −1.023·10−16 −7.085·10−9 −1.026·10−9 1.4872·10−4

3.975 −1.708·10−11 1.394·10−14 −1.125·10−16 −7.084·10−9 −1.026·10−9 1.4872·10−4

4.103 −2.369·10−11 1.440·10−14 −1.243·10−16 −7.084·10−9 −1.026·10−9 1.4872·10−4

4.231 −3.072·10−11 1.485·10−14 −1.367·10−16 −7.084·10−9 −1.026·10−9 1.4872·10−4

4.359 −3.700·10−11 1.524·10−14 −1.477·10−16 −7.084·10−9 −1.025·10−9 1.4872·10−4

4.487 −4.096·10−11 1.552·10−14 −1.549·10−16 −7.084·10−9 −1.025·10−9 1.4871·10−4

4.616 −4.088·10−11 1.563·10−14 −1.555·10−16 −7.084·10−9 −1.026·10−9 1.4872·10−4

4.744 −3.536·10−11 1.553·10−14 −1.474·10−16 −7.084·10−9 −1.026·10−9 1.4872·10−4

4.872 −2.437·10−11 1.522·10−14 −1.307·10−16 −7.084·10−9 −1.026·10−9 1.4872·10−4

5.000 −1.019·10−11 1.487·10−14 −1.093·10−16 −7.085·10−9 −1.026·10−9 1.4873·10−4

5.129 2.185·10−12 1.477·10−14 −9.191·10−17 −7.086·10−9 −1.026·10−9 1.4873·10−4

5.257 6.575·10−12 1.514·10−14 −8.838·10−17 −7.086·10−9 −1.026·10−9 1.4874·10−4

5.385 −7.675·10−13 1.588·10−14 −1.031·10−16 −7.087·10−9 −1.026·10−9 1.4874·10−4

5.513 −1.696·10−11 1.653·10−14 −1.291·10−16 −7.087·10−9 −1.026·10−9 1.4875·10−4

5.642 −3.247·10−11 1.671·10−14 −1.511·10−16 −7.088·10−9 −1.026·10−9 1.4875·10−4

5.770 −3.806·10−11 1.653·10−14 −1.575·10−16 −7.088·10−9 −1.026·10−9 1.4876·10−4

5.898 −3.216·10−11 1.636·10−14 −1.484·10−16 −7.088·10−9 −1.026·10−9
1.4876·10−4

6.026 −1.993·10−11 1.637·10−14 −1.321·10−16 −7.088·10−9 −1.026·10−9 1.4876·10−4

6.154 −6.619·10−12 1.655·10−14 −1.152·10−16 −7.088·10−9 −1.026·10−9 1.4875·10−4

6.283 6.167·10−12 1.680·10−14 −9.961·10−17 −7.087·10−9 −1.026·10−9 1.4875·10−4Table 3.4: Slopes of the secular components of the osculating elements in function ofthe initial Mean anomaly.
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Sat. a (km) ȧsec (km/s) ėsec (s−1) i̇sec (rad/s) ω̇sec (rad/s) Ω̇sec (rad/s) Ṁsec (rad/s)
[i, j] corrected
[0, 0] 29600.137 −2.833·10−11 −8.944·10−17 −3.227·10−16 2.661·10−9 −5.228·10−9 1.2398266·10−4

[0, 1] 29598.872 8.298·10−12 −1.198·10−17 9.466·10−17 2.638·10−9 −5.228·10−9 1.2398266·10−4

[0, 2] 29597.165 3.114·10−11 3.891·10−16 3.549·10−16 2.629·10−9 −5.228·10−9 1.2398266·10−4

[0, 3] 29597.843 2.525·10−12 9.406·10−16 2.883·10−17 2.620·10−9 −5.228·10−9 1.2398265·10−4

[0, 4] 29599.783 −3.029·10−11 8.598·10−16 −3.450·10−16 2.622·10−9 −5.228·10−9 1.2398266·10−4

[0, 5] 29599.784 −1.305·10−11 −3.276·10−16 −1.486·10−16 2.617·10−9 −5.228·10−9 1.2398266·10−4

[0, 6] 29597.845 2.569·10−11 −1.847·10−16 2.928·10−16 2.612·10−9 −5.228·10−9 1.2398265·10−4

[0, 7] 29597.166 2.198·10−11 −4.364·10−16 2.506·10−16 2.620·10−9 −5.228·10−9 1.2398266·10−4

[0, 8] 29598.874 −1.811·10−11 −1.044·10−15 −2.062·10−16 2.629·10−9 −5.228·10−9 1.2398266·10−4

[1, 0] 29599.524 −2.764·10−11 −7.800·10−16 −3.148·10−16 2.628·10−9 −5.228·10−9 1.2398266·10−4

[1, 1] 29599.976 −1.926·10−11 −3.502·10−16 −2.194·10−16 2.643·10−9 −5.228·10−9 1.2398266·10−4

[1, 2] 29598.165 2.096·10−11 1.680·10−16 2.389·10−16 2.636·10−9 −5.228·10−9 1.2398266·10−4

[1, 3] 29597.085 2.650·10−11 4.320·10−16 3.020·10−16 2.623·10−9 −5.228·10−9 1.2398266·10−4

[1, 4] 29598.519 −1.175·10−11 9.635·10−16 −1.338·10−16 2.623·10−9 −5.228·10−9 1.2398266·10−4

[1, 5] 29600.101 −3.061·10−11 5.169·10−16 −3.488·10−16 2.622·10−9 −5.228·10−9 1.2398266·10−4

[1, 6] 29599.218 1.081·10−12 −5.280·10−16 1.245·10−17 2.612·10−9 −5.228·10−9 1.2398266·10−4

[1, 7] 29597.329 3.094·10−11 1.278·10−17 3.526·10−16 2.607·10−9 −5.228·10−9 1.2398266·10−4

[1, 8] 29597.554 9.650·10−12 −8.179·10−16 1.101·10−16 2.624·10−9 −5.228·10−9 1.2398266·10−4

[2, 0] 29598.167 −4.737·10−12 −1.048·10−15 −5.379·10−17 2.627·10−9 −5.228·10−9 1.2398266·10−4

[2, 1] 29599.978 −3.129·10−11 −2.438·10−16 −3.565·10−16 2.630·10−9 −5.228·10−9 1.2398266·10−4

[2, 2] 29599.522 −6.135·10−12 −1.903·10−16 −6.979·10−17 2.637·10−9 −5.228·10−9 1.2398266·10−4

[2, 3] 29597.553 2.915·10−11 3.121·10−16 3.322·10−16 2.634·10−9 −5.228·10−9 1.2398266·10−4

[2, 4] 29597.329 1.624·10−11 6.098·10−16 1.851·10−16 2.614·10−9 −5.228·10−9 1.2398266·10−4

[2, 5] 29599.216 −2.352·10−11 1.012·10−15 −2.680·10−16 2.622·10−9 −5.228·10−9 1.2398266·10−4

[2, 6] 29600.101 −2.443·10−11 7.844·10−17 −2.783·10−16 2.620·10−9 −5.228·10−9 1.2398266·10−4

[2, 7] 29598.522 1.497·10−11 −3.629·10−16 1.707·10−16 2.609·10−9 −5.228·10−9 1.2398265·10−4

[2, 8] 29597.085 2.962·10−11 −6.970·10−17 3.376·10−16 2.614·10−9 −5.228·10−9 1.2398266·10−4Table 3.5: Corrected Galileo Flower Constellation.



Chapter 4Necklace Theory on FlowerConstellations
4.1 IntroductionFrom a mathematical point of view, the theory of Flower Constellations appears to havereached the �nal level of maturity, but from a practical point of view, the followingquestion arises. Since to obtain full symmetry most of 2D-LFCs involve an unpracticallyhigh number of satellites, is it possible to select a subset of them and still obtaininga symmetric phasing distribution? This chapter provides a positive answer to thisquestion and provides a methodology to compute all these subsets, subsets that arekeeping full symmetry in the (Ω,M)-space. In the (Ω,M)-space the initial orbit planeis made with Nso admissible locations (available for the 2D-LFC satellites) and theselocations can be seen as a necklace of Nso empty pearls. An actual number of satellites(Nrso) (actual pearls), less than the number of empty pearls, can be distributed inthe empty pearls necklace. The purpose is to �nd the proper necklaces and associatedsuitable shifting parameters (to duplicate and shift the initial necklace in the followingorbit planes) to obtain the same initial necklace when we reach the last orbit plane.By solving the problem above we are able to design optimal satellite constellations madeof few satellites while keeping the design parameters space as big as the computer cantolerate! To solve this problem, basic number theory knowledge is used. However,to best explain the proposed methodology a �nal �owchart is provided to clarify thedesign process.In a 2D-LFC, where Nso = Nrso, each point in the (Ω,M)-space identi�es one satelliteof the constellation. Usually, the mission budget limits the number of constellationsatellites to an upper assigned value, say Nsmax. The number of satellites in the con-stellation, which can be computed as the determinant of the 2×2 matrix of Eq. (1.42),satis�es Ns = NoNso ≤ Nsmax. On the other hand, No de�nes the number of orbitalplanes, a number that is proportional to the number of distinct launches needed to de-ploy the entire constellation, which is also strongly constrained by the mission budget.The remaining parameter, the con�guration number Nc, remains the only (integer)variable to play with. Due to the limited possible values for Nc (they are actually No83



84 CHAPTER 4. NECKLACE THEORY ON FLOWER CONSTELLATIONSvalues, only), the di�erent potential con�gurations are not so many. This is a stronglimitation in the design process. To overcome this limitation, the following idea isproposed and analyzed.Instead of directly searching for a 2D-LFC made with a given number of satellites, weintroduce a �ctitious satellite constellation with a much larger number of satellites,and then we extract our constellation as a subset of the larger one. Since we wouldlike to preserve all the nice properties of LFCs, we are automatically led to the fol-lowing problem: �nd all the subsets of Nrs real satellites, selected from the �ctitiousconstellation made of Ns � Nrs total satellites, such that the satellite distribution inthe (Ω,M)-space is symmetric in both, M and Ω axes. Here symmetry should be un-derstood in the following sense: the satellites in each orbit have the same exact patternof mean anomalies, and orbit planes are uniformly distributed in space.Finding all these subsets will be high payo� e�ort as the bene�ts of the necklace theoryapplied to 2D-LFC will be outstanding: new optimal solutions will be found with anassigned minimum number of satellites in a solution space whose dimension is onlylimited by the available computational capability.4.2 Combinatorics of necklaces4.2.1 The Necklace ProblemConsider a set of Nrso satellites that can be arranged in Nso available locations (with
Nso ≥ Nrso) in a given orbit. This set of satellites forms a �necklace� that is rotatingalong the orbit and comes back to the original setup in an orbital period. If the satellitelocations are de�ned in terms of mean anomaly, then the satellite necklace structuremoves rigidly in the mean anomaly space. The question we answer here is: how manyand which are all these necklaces?4.2.2 The Necklace TheoryWe de�ne some basic concepts and functions of number theory [3] which play an im-portant role from now on.De�nition 25. A real or complex valued function de�ned on the positive integers iscalled an arithmetic function or a number-theoretic function.De�nition 26. An arithmetic function f : N → C is called multiplicative if it is notidentically zero and

f(mn) = f(m)f(n) whenever gcd(m,n) = 1.De�nition 27. The Euler totient function, ϕ : N → N is a multiplicative function,de�ned as follows;
ϕ(m) = # {n ∈ N : n ≤ m ∧ gcd(m,n) = 1} . (4.1)



4.2. COMBINATORICS OF NECKLACES 85It is an arithmetic function that counts the number of positive integers less than orequal to d that are coprime to d; for example a simple computation shows that ϕ(1) =
ϕ(2) = 1, ϕ(3) = ϕ(4) = 2, ϕ(5) = 4, ϕ(6) = 2, ϕ(7) = 6, etc.De�nition 28. The Möbius function µ : N → {−1, 0, 1} is a multiplicative functionthat is de�ned as follows:

µ(n) =







0 if n has one or more repeated prime factors
1 if n = 1

(−1)k if n is a product of k distinct primes, (4.2)so µ(n) 6= 0 indicates that n is squarefree, or in other words, if µ(n) = 0 indicates that
n has a square factor > 1.In general, the necklace problem is a combinatorial problem which answer the followingquestion: how many di�erent arrangements of n pearls in a circular loop are there,assuming that each pearl come in one of k di�erent colors? Two arrangements thatdi�er only by a rotation of the loop, are consider to be identical. The mathematicalsolution to this problem is a simple application of Burnside's counting theorem [15],and it is summarized by the following formula:

Nk(n) =
1

n

∑

d|n

ϕ(d)kn/d,where the sum is taken over all the divisors d of n. In our physical example k = 2, andthese two �colors� represent the presence and the absence of a satellite in the admissiblelocations. Therefore, the total number of satellite necklaces is
N2(n) =

1

n

∑

d|n

ϕ(d) 2n/d. (4.3)Mathematically, a necklace will be represented as a subset G ⊆ {1, · · · , n}. Since weonly consider unlabeled necklaces, two subsets G and G ′ that di�er by an additiveconstant are considered identical:
G = G ′ ⇐⇒ ∃ s : G ≡ G ′ + s mod (n).The set of all possible unlabeled necklaces with n pearls and two colors will be iden-ti�ed by K(n). Figure 4.1 shows all possible unlabeled necklaces using three pearlsof two colors, i.e. the elements of K(3). Notice that in Figure 4.1, the con�gurations

{1, 2}, {2, 3}, and {1, 3} are all represented with the set {1, 2} because it is possible toobtain {1, 3} and {2, 3} from {1, 2} by performing a suitable rotation. Similarly, thecon�gurations {1}, {2}, and {3} are all equivalent to {1}. Therefore K(3) containsonly 4 elements: ∅, {1}, {1, 2}, and {1, 2, 3}. An algorithm [15] has been written tocompute all possible necklaces involving a total of Nso pearls, of which Nrso are blackand Nso −Nrso are white. In order to obtain all possible necklaces with Nso pearls, itis necessary to call the algorithm with Nrso = 0, 1, · · · , Nso.
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Figure 4.1: Unlabeled necklaces with three pearls and two colors.4.2.3 Symmetries of the necklacesLet G be a necklace such as G ∈ K(n). We say that G has a symmetry of length r if Gand G + r coincide modulo n.As an example, consider the necklace G = {1, 3, 5, 7} ∈ K(8). What symmetries doesit have?
• r = 2 is a symmetry, since G + 2 = {3, 5, 7, 9} is equivalent to G modulo 8.
• r = 4 and r = 6 are also symmetries, since {5, 7, 9, 11} and {7, 9, 11, 13} reduceto {1, 3, 5, 7} modulo 8.
• r = 1 is not a symmetry, since {2, 4, 6, 8} and {1, 3, 5, 7} do not coincide modulo
8.From the example it is easy to see that if r is a symmetry of a necklace, then anymultiple of r is also a symmetry. This remark motivates our following de�nition: foreach necklace G ∈ K(n), the symmetry number of G, denoted Sym(G), is the shortestof the symmetries of G. Note that Sym(G) always divides n.Sym(G) = min{1 ≤ r ≤ n : G + r ≡ G mod (n)}. (4.4)4.2.4 Necklaces and 2D Lattice Flower ConstellationsTo generate the necklaces the following idea is adopted: consider a standard 2D-LFC(with parameters Nso, No, and Nc), and, instead of placing all satellites in the admis-sible locations, as provided by Eq. (1.42), a subset (necklace) of admissible locations

G ⊆ {1, 2, · · · , Nso} is selected for actual satellites in the �rst orbital plane, and thenthis con�guration is duplicated for each subsequent orbital plane using a constant shift-ing parameter (an integer k ∈ {0, 1, · · · , Nso − 1}). The subset G can be any necklace.Once G and the shifting parameters are given, the constellation is automatically de-termined. Figure 4.2 shows the various positions of a satellite in the second orbital
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k = 0Figure 4.2: The shifting determines the location of the satellites in the constellation.plane with respect the �rst one in the �rst orbital plane as a function of the shiftingparameter k.To perform a correct and unique shifting between subsequent orbital planes two prob-lems must be taken into consideration:
• Consistency problem. Due to the modular nature of the Ω parameter, theshifting has to be chosen in such a way that the group of satellites (necklace) inthe orbit with Ω = 0 coincides with the group of satellites (necklace) in the orbitwith Ω = 2π. This problem is discussed in detail in the next subsection.
• Minimality problem. Sometimes, for the same G, there are two values ofthe shifting parameter generate the same distribution of satellites in the (Ω,M)-space. This is discussed later, but it is solved by simply taking 0 ≤ k ≤ Sym(G)−
1.Satellite constellations obtained from the above procedure are called Necklace FlowerConstellations (NFC).4.2.5 ∆M-shifting between subsequent orbit planesThe �rst satellite (j = 0) in the �rst or initial orbit (i = 0) is chosen (without loss ofgenerality) as M00 = 0 and Ω00 = 0. Taking into account Eq. (1.42) the mean anomaly



88 CHAPTER 4. NECKLACE THEORY ON FLOWER CONSTELLATIONSof our satellite in the next orbit will be:
M10 = − 2πNc

NoNso
. (4.5)Then, the amount ∆M , called ∆M-Shifting between subsequent orbits, will be:

∆M = − 2πNc

NoNso
+ k

2π

Nso
, (4.6)where k is the shifting parameter. This means that the mean anomalies of the satellitesin the second orbit can be obtained by adding ∆M to the mean anomalies of thesatellites of the �rst orbit. Similarly, the mean anomalies on the third orbit are themean anomalies on the second plus ∆M , and so on.After a rotation of 360◦ of the initial orbit, the mean anomaly of the satellite willincrease by:

No∆M = No

(

− 2πNc

NoNso

+ k
2π

Nso

)

=
2π

Nso
(kNo −Nc). (4.7)Figure 4.3 shows the meaning of the value ∆M in a (Ω,M)-space of a NFC G =

{1, 3, 5, 7} with Nso = 8, No = 6 and Nc = 2.
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Figure 4.3: The amount ∆M in the (Ω,M)-space.



4.2. COMBINATORICS OF NECKLACES 894.2.6 Admissible pair (G, k)Let G be a necklace such as G ∈ K(Nso) and a shifting parameter k ∈ {0, 1, · · · , Nso−1},the pair (G, k) is called admissible if the distribution of satellites in the initial orbit isinvariant by adding No∆M to the mean anomaly of each satellite.
2π

Nso
G +

2π

Nso
(kNo −Nc) ≡

2π

Nso
G mod (2π). (4.8)The logic behind this equation is the following: the term 2π

Nso

G represents the meananomalies of the satellites in the �rst orbit plane, the second term represents theshifting in mean anomaly that all satellites will su�er due to the shifting between the�rst and the last orbit and, �nally, the right hand side represents the mean anomaliesof the satellites in the last plus one orbit, that must coincide with the initial meananomalies up to some integer multiple of 2π. Multiplying Eq. (4.8) by Nso

2π
and usingthe de�nition of symmetry number, the condition above translates intoSym(G)|kNo −Nc. (4.9)Equation (4.9) represents the solution to the consistency problem, that is, it providesthe values of the shifting parameters (k) that are all admissible to create a NFC. Again,these values of k are such that the initial necklace in orbital plane Ω = 0 is the samewhen shifted No times by the mean anomaly variation given in Eq. (4.6).Figures 4.4 and 4.5 show two examples of 2D-LFCs generated by an admissible pair

(G, k). In both cases, the design parameters were Nso = 9, No = 6, and Nc = 3. Thenecklace in Figure 4.4 is G = {1, 4, 6} that has symmetry number Sym(G) = 9, andshifting parameter k = 2. The consistency condition is satis�ed since 9|2 · 6 − 3, sothe pair ({1, 4, 6}, 2) is admissible. This can be seen in the �gure as follows: shiftingthe three satellites of the last orbit (the one with Ω = 320◦) with ∆M = 60◦ as givenby Eq. (4.6) for k = 2, reproduces exactly the con�guration in the �rst orbit (theone with Ω = 20◦). In Figure 4.5, the necklace is G = {1, 4, 7} which has symmetrynumber Sym(G) = 3, and shifting parameter k = 2. Again, the consistency conditionis satis�ed: 3|2 · 6− 3.As we mentioned before, the minimality problem is solved by restricting the range ofvalues of k to the interval [0, Sym(G)−1]. It is clear that (G, k) and (G, k′) will generatethe same constellation if and only if k − k′ is an integer multiple of Sym(G). This isimpossible for two values in the proposed interval. Figure 4.5 shows an example of thissituation: in this 2D-LFC (Nso = 9, No = 6, and Nc = 3) the necklace G = {1, 4, 7},which has Sym(G) = 3, generates the same con�guration for k = 2, k = 5, and k = 8.This discussion proves our main result:Theorem 29. Each NFC corresponds with one (and only one) pair (G, k) with G ∈
K(Nso), 0 ≤ k ≤ Sym(G)− 1, and Sym(G)|kNo −Nc.Figure 4.6, 4.7, and 4.8 show the only three possible NFCs (according to our mainresult) induced by the necklace G = {1, 4, 7, 10} ∈ K(12), which has symmetry numberSym(G) = 3. The underlying 2D-LFC has parameters Nso = 12, No = 9, and Nc = 3,so the three possible values of k ∈ {0, 1, 2} are admissible.
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Figure 4.4: NFC generated byan admissible pair. 0 60 120 180 240 300 360
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Figure 4.5: Di�erent values of
k can generate the same con-�guration.
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Figure 4.6: NFC with G = {1, 4, 7, 10} and k = 04.2.7 The Diophantine Equation for the Shifting parameterThe admissibility condition for a pair (G, k) given in Eq. (4.9), motivates us to studythe Diophantine equation d|ak − b, where a, b, d are given (positive) integers and theunknown k takes integer values in the range [0, d−1]. All the solutions can be obtainedtrivially by trial and error (since there are �nitely many possibilities for k), but wewould need a closed formula for its number of solutions:Lemma 30. The number of solutions of this diophantine equation, denoted by Y (d, a, b),is exactly:
Y (d, a, b) =

{
0 if gcd(d, a) - b
gcd(d, a) otherwise. (4.10)Proof. Independently of the value of k, the product ak is always divisible by gcd(d, a),so when gcd(d, a) - b, it is impossible to have gcd(d, a)|ak−b, and therefore we will never
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Figure 4.7: NFC with
G = {1, 4, 7, 10} and k = 1
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Figure 4.8: NFC with
G = {1, 4, 7, 10} and k = 2have d|ak− b. In the case where gcd(d, a)|b, we can divide a, b, and d by gcd(d, a), andreduce the problem to the equation d′|a′k− b′ where a′ = a/ gcd(d, a), b′ = b/ gcd(d, a),and d′ = d/ gcd(d, a). This problem has only one solution in the interval [0, d′ − 1],since a′ and d′ have no common factor, and therefore has d/d′ = gcd(d, a) solutions inthe [0, d− 1].4.3 Counting Necklace Flower ConstellationsIn order to successfully implement the necklace theory into an optimization process,it is important to have an algorithm providing all the necklaces that can be obtainedfrom a 2D-LFC with parameters Nso, No, and Nc. However, before listing all thesenecklaces it is important to know how many they are. The total number of necklaces,here denoted by W (Nso, No, Nc), is exactly the number of admissible pairs;

#{(G, k) : G ∈ K(Nso), 0 ≤ k ≤ Sym(G)− 1, kNo ≡ Nc mod (Sym(G))}. (4.11)Let X(d) be the number of necklaces with symmetry number equal to d, then Eq. (4.11)can be rewritten as,
W (Nso, No, Nc) =

∑

d|Nso

X(d)Y (d,No, Nc). (4.12)It should be natural to adopt the notation X(d,Nso) rather than X(d) since we areconsidering necklaces in K(Nso). However, the number of necklaces with symmetrynumber d in K(Nso) is on a one-to-one correspondence with the number of necklacesin K(d) with symmetry number d. This shows that X(d,Nso) does not depend on Nso,as long as d|Nso. For practical purposes we can de�ne X(d) = X(d, d), i.e. the numberof necklaces in K(d) with symmetry number equal to d. A simple corollary of thisdiscussion is the formula ∑

d|n

X(d) = N2(n), (4.13)



92 CHAPTER 4. NECKLACE THEORY ON FLOWER CONSTELLATIONSwhere N2(n) is given in Eq. (4.3). Equation (4.13) follows from the fact that X(d) =
X(d, n) for any d|n, and that any necklace inK(n) has a symmetry number that divides
n.Consider two positive integers n and m. Denote (n : m∞) the integer obtained byremoving from n all the prime factors corresponding to the primes that appear in m.For instance, (120 : 70∞) = 3, since 120 = 23 · 3 · 5 and the primes 2 and 5 appear in
70 = 2 · 5 · 7.Now we have all the tools needed to state our main counting result:Theorem 31. Assume gcd(Nso, No, Nc) = 1. Then,

W (Nso, No, Nc) = N2(Nso : N
∞
o ),regardless of the value of Nc.Proof. We will use Eq. (4.12) to compute the value ofW (Nso, No, Nc). In this equation,we have a sum ranging over all divisors d ofNso. However, if the divisor d has a commonfactor with No, then it can not have any common factor with Nc by our assumption

gcd(Nso, No, Nc) = 1, and therefore Y (d,No, Nc) = 0 according to Eq. (4.10). Thismeans that it is enough to consider divisors of (Nso : N
∞
o ). For any of these divisors,we have Y (d,No, Nc) = 1, since gcd(d,No) = 1. All together this means that

W (Nso, No, Nc) =
∑

d|(Nso:N∞
o )

X(d),which is equal to N2(Nso : N
∞
o ) by Eq. (4.13).We derive from Theorem 31, two particular cases of independent interest:Corollary 32. If gcd(Nso, No) = 1, then W (Nso, No, Nc) = N2(Nso).Proof. When Nso and No have no common factors, then (Nso : N

∞
o ) = Nso, since thereare no primes to remove from Nso. Knowing this, the result follows immediately fromTheorem 31.Corollary 33. If Nso|No and gcd(Nc, Nso) = 1, then W (Nso, No, Nc) = 2.Proof. The assumption Nso|No, implies that all the primes in Nso appear in No, andtherefore (Nso : N∞

o ) = 1. By Theorem 31, we conclude W (Nso, No, Nc) = N2(1) =
2.Theorem (31) is particularly useful with Harmonic Flower Constellations that are 2D-LFCs with the additional constraint gcd(Nso, No, Nc) = 1 (see Ref. [7]).It would be nice to have a simple closed formula for W (Nso, No, Nc) that works ingeneral. The following results constitute positive steps toward the general solution.First of all, we search a formula for X(d).



4.3. COUNTING NECKLACE FLOWER CONSTELLATIONS 93Theorem 34. (Moebius' Inversion Formula) Let f : N → C and F : N → C beany functions such that:
F (m) =

∑

d|m

f(d).Then,
f(m) =

∑

d|m

µ
(m

d

)

F (d) ∀m ∈ N.Proof.
∑

d|m

µ
(m

d

)

F (d) =
∑

d|m

µ
(m

d

)∑

e|d

f(e)

=
∑

d|m

∑

e|d

µ
(m

d

)

f(e).Now, by setting d = ed′,
∑

d|m

∑

e|d

µ
(m

d

)

f(e) =
∑

e|m

∑

d′|m
e

µ
( m

ed′

)

f(e)

=
∑

e|m

∑

d′|m
e

µ

(
m/e

d′

)

f(e)

=
∑

e|m



f(e)
∑

d′|m
e

µ

(
m/e

d′

)


 .By setting d′′ = m/e
d′
,

∑

e|m



f(e)
∑

d′|m
e

µ

(
m/e

d′

)


 =
∑

e|m

f(e)
∑

d′′|
m/e

d′

µ(d′′)

=
∑

e|m

f(e)

{

1 if m
e
= 1,

0 otherwise.
= f(m).Theorem 35. Let f : N → C be a multiplicative function. Then,

F (m) =
∑

d|m

f(d)is multiplicative.
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F (mn) =

∑

d|mn

f(d).Every divisor c ofmn can be expressed in the form c = ab where a|m and b|n. Moreover,
gcd(a, b) = 1, gcd(m/a, n/b) = 1 and there is a one-to-one correspondence between theset of products ab and the divisors c of mn. Hence,

F (mn) =
∑

a|m
b|n

f(ab)

=
∑

a|m
b|n

f(a)f(b)

=
∑

a|m

f(a)
∑

b|n

f(b) = F (m)F (n).Theorem 36. Let F : N → C be a multiplicative function. Then,
f(m) =

∑

d|m

µ
(m

d

)

F (d)is multiplicative.Proof. Every divisor c of mn can be expressed in the form c = ab where a|m and b|n.Moreover, gcd(a, b) = 1, gcd(m/a, n/b) = 1 and there is a one-to-one correspondencebetween the set of products ab and the divisors c of mn. Hence,
f(mn) =

∑

d|mn

µ
(mn

d

)

F (d)

=
∑

a|m
b|n

µ

(
ab

d

)

F (ab)

=
∑

a|m

µ
(a

d

)

F (a)
∑

b|n

µ

(
b

d

)

F (b)

= f(m)f(n).

Theorem 37. Let
F (m) =

ϕ(n)

nbe a multiplicative function. Then,
f(m) =

∑

d|m

µ
(m

d

) ϕ(d)

d
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f(n) =

µ(n)

n
∀n ∈ N.Proof. Using theorem 36 is trivial that f(m) is a multiplicative function. Let p ∈ N aprime.

f(p) =
∑

d|p

µ
(p

d

) ϕ(d)

d

= µ
(p

1

) ϕ(1)

1
+ µ

(
p

p

)
ϕ(p)

p

= −1 + 1·p− 1

p

= −1

p
.Let pk ∈ N a power of a prime.

f(pk) =
∑

d|pk

µ

(
pk

d

)
ϕ(d)

d

=
k∑

i=0

µ
(
pk−i

) ϕ(pi)

pi

= 1·ϕ(p
k)

pk
− ϕ(pk−1)

pk−1

= 0.Let n ∈ N. If n has a power of a prime, then f(n) = 0. Otherwise:
f(n) = f(p1p2 . . . pm)

= f(p1)f(p2) . . . f(pm)

=
−1

p1

−1

p2
. . .

−1

pm

=
µ(n)

n
∀n.Theorem 38. For any positive integer d, we have

X(d) =
1

d

∑

e|d

µ(e)2d/e.Proof. The idea is to invert Eq. (4.13) using Moebius' inversion formula given in The-orem 34:
X(d) =

∑

e|d

µ(d/e)N2(e)
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=

∑

e|d

∑

f |e

µ(d/e)
ϕ(f)

e
2e/f .Writing r = e/f , and changing the order of summation, we get:

X(d) =
∑

r|d

2r

r

∑

f | d
r

µ

(
d

rf

)
ϕ(f)

f
.Finally, the theorem of multiplicative arithmetic functions show that the second sumreduces to µ(d/r)/(d/r), and therefore

X(d) =
∑

r|d

2r

r

µ(d/r)

d/r

=
1

d

∑

r|d

µ(d/r)2r,

=
1

d

∑

e|d

µ(e)2d/e.The last equality is true by writing r = d/e and we have what the theorem states.For the cases not included in theorem 31 (or in any of its corollaries) the followingformula for W (Nso, No, Nc) is provided.Theorem 39. If Nso|No and Nc = 0 then, W (Nso, No, Nc) = 2Nso .Proof. The following observation should be noted: for any divisor d of Nso, we have
Y (d,No, 0) = d, since d also divides No. Therefore, using Eq. (4.12) and theorem 38,we can write

W (Nso, No, Nc) =
∑

d|Nso

X(d)d

=
∑

d|Nso

∑

e|d

µ(e)2d/e.Now, by setting d = ek, and changing the order of summation, the previous equationreduces to:
W (Nso, No, Nc) =

∑

k|Nso

∑

e|Nso
k

µ(e)2k.The sum ∑

e|r µ(e) is equal to 1 when r = 1 and 0 otherwise. In particular, thesum above (the one depending on e) will vanish unless k = Nso. But this shows
W (Nso, No, Nc) = 2Nso , as claimed.A formula to compute all possible con�gurations givenNso, No andNc has been studied,but it will be useful a formula providing all the possible con�gurations that can beobtained from a 2D-LFC with parameters Nso, No, Nc and the number of real satellites



4.3. COUNTING NECKLACE FLOWER CONSTELLATIONS 97per orbit Nrso ≤ Nso. The number of constellations satisfying the previous condition,denoted by W̃ (Nso, No, Nc, Nrso), corresponds with the number of admissible pairs;
{(G, k) : G ∈ K(Nso), 0 ≤ k ≤ Sym(G)− 1, |G| = Nrso, kNo ≡ Nc mod (Sym(G))}.(4.14)We examine a simple case. If Nso = 24 and Nrso = 6 by exploring all the possibilitiesfor the symmetry number of a given necklace G since Sym(G)|Nso we have the followingcases:

• Sym(G) = 1, 2, 3, 6. These cases are not possible, since we have to distribute 6satellites in Nso/Sym(G) = 24, 12, 8, 4 subsets (each one with the same numberof satellites), respectively.
• Sym(G) = 4, 8, 12, 24. These cases can be attained by putting 1,2,3,6 satellitesin each of the Nso/Sym(G) = 6, 3, 2, 1 subsets, respectively.It is easy to infer that the number of subsets (Nso/Sym(G)) must divide the real numberof satellite per orbit (Nrso), which translates into the following condition,

Nso

Sym(G) |Nrso.In other words, Nso must divide Sym(G) · Nrso. Then, by exploring all the possiblesymmetry numbers, which correspond with the divisors of Nso, the Eq. (4.14) can bereformulated as:
W̃ (Nso, No, Nc, Nrso) =

∑

λ|Nso

Nso|λNrso

#{G ∈ K(Nso) : |G| = Nrso, Sym(G) = λ} Y (λ,No, Nc).(4.15)where Y (λ,No, Nc) has been already de�ne in Eq. (4.10).Despite of the di�culty to analyze the previous formula we have a counting result,Theorem 40. If gcd(Nso, Nrso) = 1 then,
W̃ (Nso, No, Nc, Nrso) = N2(Nso, Nrso) Y (Nso, No, Nc),where N2(m,n) represents the number of necklaces in two colors with n pearls, of which

m are in black color and n−m are in white.Proof. If gcd(Nso, Nrso) = 1 the only symmetry number λ that satis�es the conditions
λ|Nso and Nso|λNrso is λ = Nso. Then,
W̃ (Nso, No, Nc, Nrso) = #{G ∈ K(Nso) : |G| = Nrso, Sym(G) = Nso} Y (Nso, No, Nc).The number of necklaces G satisfying |G| = Nrso and Sym(G) = Nso corresponds to

N2(Nso, Nrso). All together means that
W̃ (Nso, No, Nc, Nrso) = N2(Nso, Nrso) Y (Nso, No, Nc).



98 CHAPTER 4. NECKLACE THEORY ON FLOWER CONSTELLATIONSIt would be nice to have a closed formula for W̃ (Nso, No, Nc, Nrso). The following resultconstitute a positive step to reach that goal.
W̃ (Nso, No, Nc, Nrso) =

∑

d|Nso

X̃(d,Nrso, Nso)Y (d,No, Nc) (4.16)where the function X̃(d,Nrso, Nso) represents the number of necklaces with Nso ad-missible locations, of which Nrso are occupied by a satellite and the symmetry of thenecklace is d.Number theory will be a fundamental tool to reach a closed formula for X̃(d,Nrso, Nso)which is still missing.4.4 Design of Necklace Flower ConstellationsTo sum up, the design of a Necklace Flower Constellation is as follows: given thenumber of admissible locations per orbit Nso, and the real number of satellites perorbit Nrso, it is possible to determine all the di�erent con�gurations to distribute thesatellites in the �rst orbit of our constellation. After that, an initial necklace is selectedand it is possible to compute its symmetry number. Finally, the values of the shiftingthat give di�erent Necklace Flower Constellations are computed.
[0, No -1]

compute the symmetry number

Figure 4.9: Program Flowchart.The �owchart given in Figure 4.9 summarizes the design procedure described aboveand it can be read as follows. As input we have the mission parameters, No and Nrso,indicating the number of orbit planes and the number of satellites per orbit plane,and an arbitrary number of potential locations (per orbit plane) where to locate oursatellites, Nso ≥ Nrso. Now, by choosing a value for the con�guration number Nc in theinterval [0, No−1] we can compute all possible necklaces of the Nrso satellites in the Nso



4.4. DESIGN OF NECKLACE FLOWER CONSTELLATIONS 99potential locations. Now, by selecting one of these necklaces, say G, we can computeSym(G) and all the possible values of the shifting parameter k ∈ [0, Sym(G) − 1] thatgive di�erent con�gurations for our constellation. At this point using the selectednecklace and a shifting parameter we compute the phasing of all the Nrs = Nrso Nosatellites in the (Ω,M)-space as shown in Figure 4.2. The location of the satellites inthe �rst orbit is given by the necklace G and the location of the satellites in subsequentorbits is controlled by the shifting parameter k. Finally, optimize the common orbitalparameters (a, e, i and ω) to minimize the mission cost function.Note that, the formulas that we obtained for the total number of Necklace Flower Con-stellation can be used in practice to select values ofNc (givenNso andNo) that producesthe largest number of di�erent patterns. This is useful since the more con�gurationsthere are, the more design possibilities we have.A 27 satellite constellation is designed to illustrate a practical example of usage. Thenumber of orbital planes is three, No = 3. By using the 2D-LFC theory the remainingparameters must be Nso = 9 and Nc ∈ {0, 1, 2}. Consequently, we have three uniquedesign possibilities illustrated in Figures 4.10, 4.11, and 4.12.
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Figure 4.10: 2D-LFC with
Nc = 0, Ω00 = 60.0◦, and
M00 = 0.0
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Figure 4.11: 2D-LFC with
Nc = 1, Ω00 = 60.0◦, and
M00 = 0.0

However, by using the NFC theory there exist more design possibilities. Consider aNFC with parameters No = 3, Nso = 12, Nrso = 9, and Nc ∈ {0, 1, 2}. First of all,as the theory states, the �rst orbit of the constellation is given by a necklace. Inparticular, there are 19 di�erent necklaces to associate to the �rst orbit. These are:
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Figure 4.12: 2D-LFC with Nc = 2,
Ω00 = 60.0◦, and M00 = 0.0

G1 = {1, 2, 3, 4, 5, 6, 7, 8, 9}, G2 = {1, 2, 3, 4, 5, 6, 7, 8, 10},
G3 = {1, 2, 3, 4, 5, 6, 7, 9, 10}, G4 = {1, 2, 3, 4, 5, 6, 8, 9, 10},
G5 = {1, 2, 3, 4, 5, 7, 8, 9, 10}, G6 = {1, 2, 3, 4, 6, 7, 8, 9, 10},
G7 = {1, 2, 3, 5, 6, 7, 8, 9, 10}, G8 = {1, 2, 4, 5, 6, 7, 8, 9, 10},
G9 = {1, 3, 4, 5, 6, 7, 8, 9, 10}, G10 = {1, 2, 3, 4, 5, 6, 7, 9, 11},
G11 = {1, 2, 3, 4, 5, 6, 8, 9, 11}, G12 = {1, 2, 3, 4, 5, 7, 8, 9, 11},
G13 = {1, 2, 3, 4, 6, 7, 8, 9, 11}, G14 = {1, 2, 3, 5, 6, 7, 8, 9, 11},
G15 = {1, 2, 4, 5, 6, 7, 8, 9, 11}, G16 = {1, 2, 3, 4, 5, 7, 8, 10, 11},
G17 = {1, 2, 3, 4, 6, 7, 8, 10, 11}, G18 = {1, 2, 3, 5, 6, 7, 8, 10, 11},
G19 = {1, 2, 3, 5, 6, 7, 9, 10, 11}.Only two particular cases are analyzed. The necklace G4 has symmetry number equalto twelve Sym(G4) = 12. When Nc = 0 the consistency condition (see Eq. (4.9)) im-plies that the shifting parameter must be k ∈ {0, 4, 8}. While for the other valuesfor Nc ∈ {1, 2} there are no values for the shifting parameter that satisfy the consis-tency condition. By using necklace G4 we have three new designs for the constellationillustrated in Figures 4.13, 4.14, and 4.15.The necklace G19 has symmetry number equal to four Sym(G19) = 4. When Nc = 0the consistency condition (see Eq. (4.9)) implies that the shifting parameter must be

k = 0. When Nc = 1 the shifting parameter must be k = 3, and �nally when Nc = 2the shifting parameter must be k = 2. Then, with the necklace G19 there exist threedi�erent possibilities for design the constellation illustrated in Figures 4.16, 4.17, and4.18.Only two necklaces have been analyzed. Note that, the more necklaces can be associ-ated to the �rst orbit, the more design possibilities there are.4.5 ConclusionsThe cost of the missions is one of the most important factors to account when buildinga Constellations of satellites. The theory of necklaces allows us to reduce the number
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k = 0

Figure 4.13: NFC with Nc = 0,
Ω00 = 60.0, k = 0, and G4. 0 60 120 180 240 300 360
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k = 4

Figure 4.14: NFC with Nc = 0,
Ω00 = 60.0, k = 4, and G4.
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k = 8

Figure 4.15: NFC with Nc = 0,
Ω00 = 60.0, k = 8, and G4.of satellites in a Flower Constellation without losing their symmetric character. Wehave shown what parameters are needed to de�ne one of these objects (basically, a pair

(G, k) consisting of a necklace and a positive integer), and which constrains have to beimposed on these parameters. We have also written algorithms, that enumerate andplot all the possible necklace constellations that can be extracted from a 2D LatticeFlower Constellation.
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k = 0

Figure 4.16: NFC with Nc = 0,
Ω00 = 60.0, k = 0, and G19. 0 60 120 180 240 300 360
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k = 3

Figure 4.17: NFC with Nc = 1,
Ω00 = 60.0, k = 3, and G19.
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k = 2

Figure 4.18: NFC with Nc = 2,
Ω00 = 60.0, k = 2, and G19.



Conclusions and future workThis work approaches the problem of designing optimal constellations, from a geometricpoint of view, since we seek those constellations with excellent geometry, and from aneconomical point of view because we allow fuel savings by seeking stable constellations,and also design savings in the constellation, since we try to reduce the number ofsatellites required while keeping the characteristics of a 2D-LFC. The main results canbe summarized in the following points:
• We found optimal 2D-LFCs for solving global positioning problems by usingevolutionary algorithms and a number of satellites varying between 18 and 40.
• Thanks to the 2D-LFCs, eccentric orbits have been included in the search ofoptimal con�gurations, �nding in some cases orbits with e ≈ 0.3.
• We found 2D-LFCs such that they improve the existing GLONASS or Galileoconstellations with the same number of satellites by using our metric, whichis the maximum GDOP value experienced in 30,000 ground stations randomlydistributed over the Earth surface during the propagation time.
• We propose a new method for designing stable 2D-LFCs, we call them RigidConstellations. In these constellations the relative positions of the satellites arealmost constant (in the osculating elements space), so the structure of FlowerConstellation is preserved over time.
• We veri�ed numerically that all Flower Constellation can become into a RigidConstellation if we accept a deviation of 5 km.
• We obtained Rigid Galileo Constellation by correcting the semi-major axes of thesatellites of the Galileo Constellation and seeking the eccentricity and inclinationthat minimize the deviation of the satellites.
• We propose two direct applications of Rigid Constellations. First, it validatesthe theory of the 3D Lattice Flower Constellation [19] (3D-LFC) under the fullexpression of the potential function with the J2 term, assuming that the semi-major axes are corrected and the value of the deviation is small. Second, it showsthat in the Global Coverage Problem (with J2) it will be enough to �nd a RigidConstellation that minimizes a slightly modi�ed �tness function (computableusing Keplerian propagation). 103



104 CONCLUSIONS AND FUTURE WORK
• We reduce the number of satellites in a 2D-LFC by using the Necklace Theory,while keeping the symmetries and all the properties of this kind of constellations.We obtain the Necklace Flower Constellation (NFC).
• We applied number theory to solve the consistency and minimality problems thatappear in Necklace Flower Constellations.
• We developed di�erent theorems to determine the number of Necklace FlowerConstellations that can be obtained as a subset of a 2D-LFC.Some of the future research that will be performed is:
• We will �nd optimal con�gurations with more than 30,000 ground stations dis-tributed according to geographical factors instead of randomly over the Earthsurface.
• In the search of optimal con�gurations, if one has a constellation whose GDOPis greater than 99 at any ground station at any given time, it is automaticallydisregarded. Future research will consider these cases in detail.
• We will study the low thrust needed to reduce the deviation in Rigid Constella-tions to zero.
• We will design Rigid Constellations including more terms in the potential func-tion.
• We will determine a close formula for W̃ (Nso, No, Nc, Nrso) and X̃(d,Nrso, Nso).
• We will extend the necklace theory to the 3D-LFC.Through this work we have raised awareness of the importance of studying di�erentsatellite constellations to design a space mission. This thesis is the starting point forfuture research about satellite constellations.



Conclusiones y trabajo futuroEl presente trabajo aborda el problema del diseño de constelaciones óptimas, desdeun punto de vista geométrico, puesto que buscamos aquellas constelaciones con unageometría excelente, y desde un punto de vista económico ya que permitimos un ahorroen combustible al buscar constelaciones estables, y también un ahorro en el diseño de laconstelación, ya que tratamos de reducir el número de satélites necesarios, de maneraque siga teniendo las propiedades características de una 2D-LFC, pero su número desatélites se vea notablemente reducido. Los principales resultados pueden resumirse enlos siguientes puntos:
• Encontramos 2D-LFCs óptimas para resolver problemas de posicionamiento global,utilizando algoritmos evolutivos y con un número de satélites variando entre 18y 40.
• Gracias a las 2D-LFCs incluimos órbitas excéntricas en la búsqueda de con�gu-raciones óptimas, encontrando en algunos casos órbitas con e ≈ 0.3.
• Encontramos 2D-LFCs que mejoran a las existentes Galileo o GLONASS con elmismo número de satélites, utilizando la métrica del máximo GDOP experimen-tado en 30000 estaciones terrestres en el tiempo de propagación.
• Proponemos un nuevo método para diseñar 2D-LFCs estables que denominamosconstelaciones rígidas, del inglés Rigid Constellations. Las posiciones relativasde los satélites en dicha constelación son prácticamente constantes (en el espa-cio de los elementos osculadores), de tal manera que la con�guración de Flowerconstellation se mantiene con el paso del tiempo.
• Veri�camos numéricamente que toda Flower Constellation puede convertirse enRigid Constellation si aceptamos una desviación de 5 km.
• Hemos corregido los semiejes de los satélites de la constelación Galileo y hemosbuscado la excentricidad e inclinación que minimizan la perturbación no secularque afecta a los satélites para obtener una constelación rígida.
• Encontramos dos aplicaciones directas de la teoría de las Rigid Constellations. Laprimera consiste en validar la teoría de las 3D-LFCs, en el caso en que la funciónpotencial no sea promediada en un periodo orbital, asumiendo que los semiejesson corregidos y el valor de la desviación es aceptable. La segunda aplicaciónsirve para resolver problemas de cobertura global en los que se incluye el efecto105



106 Conclusiones y trabajo futurodel zonal J2 en el potencial. Será su�ciente con encontrar una Rigid Constellationque minimice una función �tness ligeramente modi�cada y podremos propagarlos satélites en un modelo kepleriano.
• Reducimos el número de satélites que componen una 2D-LFC, manteniendo lassimetrías y propiedades peculiares de este tipo de constelaciones mediante lateoría de collares, del inglés necklace theory. Obteniendo las denominadas Neck-lace Flower Constellations.
• Utilizando teoría de numeros resolvemos los problemas de consistencia y mini-malidad inmersos en el diseño de Necklace Flower Constellations.
• Desarrollamos diferentes teoremas para determinar la cantidad de Necklace FlowerConstellations que podemos obtener como subconjunto de una 2D-LFC.Algunas de las investigaciones futuras que serán realizadas a posteriori son:
• Buscar con�guraciones óptimas con más de 30000 estaciones terrestres y dis-tribuirlas por razones geográ�cas en lugar de aleatoriamente en la super�cie ter-restre.
• En la búsqueda de con�guraciones óptimas, si una constelación presentaba unGDOP mayor que 99 en alguna estación terrestre en algún instante determinado,quedaba automáticamente descartada. Una investigación futura será considerardetalladamente estos casos.
• Estudiaremos los impulsos necesarios para conseguir una desviación igual a ceroen una Rigid Constellation.
• Diseñar Rigid Constellations incluyendo más términos perturbadores en la fun-ción potencial.
• Determinar una formula cerrada para las funciones W̃ (Nso, No, Nc, Nrso) y X̃(d,Nrso, Nso).
• Extender la teoría de los necklaces a las 3D-LFCs.Mediante este trabajo nos hemos concienciado de la importancia que tiene el estudiode diferentes constelaciones de satélites para diseñar una misión espacial. Esta tesisconstituye el punto de partida de futuras investigaciones en torno a las constelacionesde satélites.
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