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Introduction

An artificial satellite is an object that orbits around a celestial body due to natural
gravitational forces. Satellites are launched to the space by humans to overcome dif-
ferent spacial missions. The first artificial satellite, orbiting around the Earth, was
launched in 1957 by the Soviet Union, and its name was Sputnik I. After that event,
thousands of satellites have been launched into different orbits around the Earth. There
are different ways to classify the satellites, depending on their weight, their altitude,
sort of mission, etc. [1]

In many occasions one satellite is not enough to succeed in a spacial mission, and a
group of satellites is required. In this case we have a group of artificial satellites, in
the same or different inertial orbit, working together and following the same goal. This
is called a satellite constellation. In the last decades, humans have designed satellite
constellations for different purposes [32,42]; Global Positioning System (GPS), Galileo
or GLONASS are examples of satellite constellations whose purpose is navigation and
geodesy. Orbcomm constellation, operated by the American satellite communications
company Orbcomm, Inc. has a total of 29 operational satellites today, in Low Earth
Orbits. The main goal of this constellation is to provide communication between
different data centers. Iridium and Globalstar are the direct competitors of Orbcomm.
Molniya and Tundra are communication satellite constellations using highly elliptic
orbits. The purpose of other satellite constellations are human protection such as
Disaster Monitoring Constellation, Earth observation, etc. These are, among others,
examples of satellite constellations.

The existing constellations use, in general, circular orbits. However, as Draim indicates
in his work [21], eccentric orbits could be better than circular ones. Thus, another way
to design satellite constellations without the requirement of circular orbits was neces-
sary. Thus, Dr. Daniele Mortari developed around the year 2004, the Flower Constel-
lations |34, 35,50] that solve this problem by leaving the eccentricity as other design
variable. These constellations were expanded in the Harmonic Flower Constellations
(HFC) (8], the 2D Lattice Flower Constellations (2D-LFC) [7,12], which are the main
tool in this work and, finally, the 3D Lattice Flower Constellations (3D-LFC) [18].

Global and regional coverage problems are the main topic of research in satellite con-
stellations. In particular, the global positioning problem consists of determining the
position of a user with a few centimeters of accuracy. This problem requires a min-
imum of four visible satellites from any point on the Earth surface at any instant
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v INTRODUCTION

of time [31,52|. For that purpose a constellation with a rather complex geometry is
required.

The first goal of this work consist of searching 2D-LFCs whose geometry will be optimal
for solving the problem of global positioning. The Geometric Dilution of Precision
(GDOP) [28] is the metric that quantifies how good the geometry of a constellation is
for finding the exact position of a user and the time offset that exists between system
and user clock. Therefore, the metric which defines the optimality of the 2D-LFCs in
our problem is the maximum value of the GDOP experienced from any point on the
Earth surface during the propagation time. For practical purposes, we discretize the
time in steps of 60.0 sec and we consider 30, 000 ground stations randomly distributed
over the Earth surface with uniform probability density. Evolutive algorithms [49] are
the main tool used to solve this optimization problem. In particular, in this thesis
we use Genetic Algorithms and the Particle Swarm Optimization. We found 2D-
LFCs whose maximum GDOP value is better than the existing Galileo or GLONASS
constellations during the entire propagation time. Due to the high computational cost
required to propagate a constellation and the huge size of the search space, we have
developed several techniques to reduce the search space and the propagation time being
mathematically correct. Furthermore, we use certain parallelization techniques when
implementing the evolutive algorithms.

Through the analysis of this problem we have compared different optimization tech-
niques, concluding that the Particle Swarm Optimization Algorithm is the method
that gives better results in our search. In this work we searched among all possible
2D-LFCs varying the number of satellites between 18 and 40. We have obtained sur-
prising results, such as our 27-satellite constellation has a better GDOP than the best
configuration found with 28 satellites. Since the GDOP of our 27-satellite 2D-LFC can
only be improved by adding at least two satellites, we conclude that it is one of the best
constellations. Thanks to the 2D-LFCs, we have been able to include eccentric orbits
in our search, finding some optimal configurations whose orbits have an eccentricity
around 0.3. In this study we compared the evolution of the GDOP of our best 2D-LFCs
with respect to the existing GLONASS and Galileo, noting that our constellations are
slightly better because the maximum GDOP value experienced at any time is always
lower. In our optimization approach the collision problem is automatically excluded
because alignment of satellites will imply a large GDOP and the constellation will be
excluded automatically of the search.

The previous study was made in a purely Keplerian model. The next step is to bring
our constellations to a more realistic situation consists of introducing the perturbed
two-body problem [45]. In the Keplerian model the Earth is considered as a perfect
sphere. However, as a first approximation to a more realistic model, we consider the
Earth as a solid of revolution flattened at the center (ellipsoid). This leads us to
include the zonal harmonic J; in the potential function. The introduction of higher
zonal harmonics is disregard since they are at least 3 orders of magnitude smaller than
Jo [1].

The introduction of the J; term in the potential function leads to the second problem



considered in this thesis. The problem consists of finding parameters to have a stable
2D-LFC, meaning that the satellites of the constellation are affected by the .J; effect but
all in the same way. Thus, the relative position between the satellites in the osculating
elements space will remain almost constant, thus we obtain Rigid Constellations.

Most of the literature deals with the perturbed two body problem average the non-
secular perturbations in one orbital period [10|. Thus, they only consider long periodic
and secular perturbations. In this thesis, we consider the secular and non-secular
perturbations that affect the acceleration of the satellite. Thus, instead of averaging
the expression of the potential in an orbital period, we consider the full expression of
the potential function [1|. By using the full expression of the potential and Lagrange
Planetary Equations [45] we can study the evolution of the orbital elements over time.

The main goals consist of; controlling the secular perturbation in order to be identical in
all the satellites of the constellation, and minimizing the non-secular perturbation that
affects the satellites. If we succeed in these two goals, the satellites in the constellation
will be disturbed by J,, but all of them in the same way. Thus, the relative positions of
the satellites will be almost constant (in the osculating elements space) so the structure
of Flower Constellation will be preserved over time, what we call Rigid Constellation.

To control the secular part of the satellites in a constellation, we consider a reference
satellite. We study first the dependency of the secular components of the osculating
elements as a function of the initial 2 and M. We observe that none of the secular
components depend on €2, but there is a strong dependency on M. In the particular case
of a 2D-LFC, all satellites have the same values of a, e, i, w, but have different values
of 2 and M. Therefore, a priori, the secular component of the osculating elements will
be different for each satellite. To ensure that they are identical, we apply a correction
method. The method consists of modifying the semi-major axis of all satellites a few
kilometers. Thus, the period (7)) will be changed and in particular the slope of the
mean anomaly since Msec = 2m/T,. With this correction, we get that the secular
component of the osculating elements of all the satellites in the constellation match
up to an order of 107, With this technique, we can control the secular perturbation
of our satellites. Trying to control the non secular perturbation is somewhat more
complicated. First, we apply to each osculating element ¢ € {a,e,i,w,Q, M} linear
interpolation on the data set (¢, ¢(t)) which have been previously obtained to calculate
the exact position of the satellites. Through these linear functions of the osculating
elements we can calculate at each instant of time what we called linear or approximate
position of the satellite. So that, the distance between the two positions (real and
linear) will be due to the non-secular perturbations that affect our reference satellite.
The last goal consist of searching among the possible values of the eccentricity and
inclination those that reduce this deviation as much as possible. In this way, we
minimize the non-secular perturbation that affects our reference satellite. These values
extrapolate to the remaining satellites of our constellation.

This work shows that it is possible to obtain 2D-LFCs whose configuration remain
constant under the J effect, i.e. Rigid Constellations. The theory we developed
has two direct applications. First, it validates the theory of the 3D Lattice Flower
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Constellation [19] (3D-LFC) under the full expression of the potential function with
the Jy term, assuming that the semi-major axes are corrected and the value of the
deviation is small. Second, it shows that in the Global Coverage Problem (with .J5) it
will be enough to find a Rigid Constellation that minimizes a slightly modified fitness
function (computable using Keplerian propagation).

Our last goal consist of reducing the unpractical high number of satellites that most
2D-LFCs need to obtain full symmetry. We provide a methodology to compute all the
subsets of the 2D-LFC that still have symmetric phasing distributions [14].

To achieve this goal we have identified the first orbit of our constellation, which has
Ny, admissible positions with a necklace of Ny, pearls [15]. We took a number N,,
(Nyso < Ny,) representing the actual satellites per orbit. Thus, we consider the first
orbit of the constellation as a necklace of N, pearls, of which N,,, are black and the
remaining ones are white. That is, an orbit with N, admissible positions, of which
N,s, are occupied by a satellite and the others are not. The distribution of satellites
in the remaining orbits is identical to the first, but shifted k pearls.

In this way a Necklace Flower Constellation (NFC) is characterized by a pair (G, k).
However, not all such pairs produce a valid NFC, nor two distinct pairs produce distinct
NFC. These two problems are called consistency and minimality problem, respectively.
They are completely solved by using number theory [3]. Finally, we introduce several
counting theorems for determining the possible pairs (G, k) from the phasing parameters
of a 2D-LFC.

Satellite constellations are a current topic for the possibilities that they can provide,
for commercial and institutional applications, such as telecommunications, positioning
determination or Earth observation, with reasonable costs. The results obtained in
this thesis encourage the future study of satellite constellations, which may result more
efficient than the current ones.



Introduccion

Un satélite artificial es un objeto disenado por el ser humano y lanzado al espacio
mediante un vehiculo espacial con el objetivo de sobrellevar una mision especifica. El
primer satélite artificial, orbitando en torno a la Tierra, fue lanzado in 1957 por la
Union Soviética, y su nombre es Sputnik I. Después de dicho evento, miles de satélites
artificiales han sido lanzado en diferentes orbitas en torno a la Tierra. Hay diferentes
formas de clasificar estos satélites, dependiendo de su peso, su altura, el tipo de mision,
etce. [1]

En muchas ocasiones, un satélite no es suficiente para tener éxito en una mision es-
pacial, por lo que un grupo de satélites es necesario. Definiremos una constelacion de
satélites como un conjunto de satélites persiguiendo un objetivo comin y operando de
manera conjunta. En las ultimas décadas el ser humano ha disenado constelaciones de
satélites con diferentes objetivos [32,42]; Global Positioning System (GPS), Galileo o
GLONASS son ejemplos de constelaciones de satélites cuya finalidad es la navegacion
y la geodesia. La constelacion estadounidense Orbcomm formada actualmente por 29
satélites operativos situados en érbitas bajas es un sistema de telecomunicacion. Irid-
ium y Globalstar son las competidoras directas de Orbcomm. Las constelaciones rusas
Molniya y Tundra son sistemas de telecomunicacion famosas por su gran excentricidad.
Otros objetivos de las constelaciones pueden ser la observacion de la Tierra, aplicaciones
militares, la proteccion del ser humano (Disaster Monitoring Constellation), etc. Estos,
entre muchos otros, son ejemplos concretos de constelaciones de satélites.

Las constelaciones existentes utilizan, en general, orbitas circulares. Sin embargo, como
Draim indica en su trabajo [21], las orbitas excéntricas podrian ser mejores que las cir-
culares. Asi, otra forma de disenar constelaciones de satélites, sin la necesidad de tener
orbitas circulares, era necesaria. Por ello, el Dr. D. Daniele Mortari desarrollo en torno
al ano 2004 las Flower Constellations [34,35,50| que solucionan este problema dejando
la excentricidad como otra variable libre. Estas constelaciones fueron extendidas en los
afos posteriores a las Harmonic Flower Constellations (HFC) (8], las 2D Lattice Flower
Constellations (2D-LFC) |7,12|, que seran la principal herramienta en este trabajo, y
finalmente las 3D Lattice Flower Constellations (3D-LFC) [18].

Los problemas de cobertura regional y global constituyen el principal tema de in-
vestigacion en torno a las constelaciones de satélites. En particular, el problema de
posicionamiento global consiste en la determinaciéon de la posicion de un usuario con
unos pocos centimetros de error en la precision. Este problema requiere de al menos

vil
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cuatro satélites visibles desde cualquier punto de la esfera terrestre en cualquier in-
stante de tiempo, para lo que se requiere una geometria de la constelacion bastante
compleja [31,52].

El primer objetivo de este trabajo consiste en la biisqueda de 2D-LFCs cuya geometria
sea Optima para la resolucion del problema de posicionamiento global. EI GDOP, del
inglés Geometric Dilution of Precision [28], es la métrica que determina como de buena
es la geometria de una constelacion para encontrar la posicion exacta de un usuario y
el desfase horario entre el reloj del satélite y el del usuario. Por lo tanto, la métrica
que define la optimalidad de las 2D-LFCs en nuestro problema es el méximo valor del
GDOP experimentado desde cualquier punto de la superficie terrestre durante el tiempo
de propagacion. Por motivos practicos, discretizamos el tiempo de propagaciéon en pa-
sos de 60.0 sec y consideramos 30000 estaciones terrestres aleatoriamente distribuidas
sobre la superficie terrestre con probabilidad uniforme. Los algoritmos evolutivos [49]
son la principal herramienta para tratar este problema de optimizaciéon. En particular,
en este trabajo utilizamos Algoritmos Genéticos y los Particle Swarm Optimization
Algorithms. Mediante este andlisis, encontramos 2D-LFCs cuyos satélites presentan
configuraciones que mejoran ligeramente el maximo valor del GDOP experimentado
con respecto a las constelaciones existentes de Galileo y GLONASS. El gran costo
computacional requerido para propagar las constelaciones y el enorme tamano de nue-
stro espacio de bisqueda nos ha llevado a desarrollar diferentes técnicas que reducen el
tiempo necesario para encontrar las soluciones 6ptimas. Dichas técnicas consisten en
la reduccion del espacio de busqueda, asi como la reduccion del tiempo de propagacion
de manera que todo siga siendo matematicamente correcto. Ademas, hemos utilizado
técnicas de paralelizacion en la implementacion de los algoritmos evolutivos.

El analisis de este problema ha permitido comparar las diferentes técnicas de opti-
mizacion empleadas, concluyendo que el Particle Swarm Optimization Algorithm es
el método que mejores resultados proporciona en nuestra busqueda. En este trabajo
hemos realizado una bisqueda entre todas las 2D-LFCs posibles variando el niimero de
satélites entre 18 y 40. Hemos obtenido resultados sorprendentes como seria el hecho
de que con 27 satélites encontramos mejores configuraciones que con 28 satélites para
resolver el problema de posicionamiento global. Puesto que nuestra 2D-LFC de 27
satélites solo puede mejorarse anadiendo al menos dos satélites, concluimos que es una
de las mejores constelaciones. Ademas, gracias a las 2D-LFCs hemos podido incluir
orbitas excéntricas en nuestra biisqueda, encontrando algunas configuraciones 6ptimas
cuyas orbitas presentan una excentricidad en torno a 0.3, muy distinta de la excentri-
cidad nula que presentan las 6rbitas mas usuales. En este trabajo hemos comparado
la evolucion del GDOP de nuestras 2D-LFCs optimas con respecto a las existentes
GLONASS Y Galileo, observando que nuestras constelaciones son ligeramente mejores
debido a que el maximo valor del GDOP que obtenemos en cada instante es siempre
menor. El estudio de las colisiones entre satélites en la constelacion, es un problema in-
trinseco en nuestro problema de optimizacién puesto que si hay proxima una alineacion
de satélites, el GDOP en ese instante es elevado y automaticamente dicha constelacion
queda excluida en nuestra busqueda.

El estudio previo ha sido realizado en un modelo puramente kepleriano. El siguiente
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paso para acercar nuestras constelaciones a una vision méas realista consiste en intro-
ducir el problema de los dos cuerpos perturbado [45]. La Tierra es considerada como
una esfera perfecta en el modelo kepleriano. Sin embargo, como una primera aproxi-
macion a un modelo més realista, consideramos la Tierra como un so6lido de revoluciéon
achatado por el centro (elipsoide). Esto nos lleva a incluir el zonal harmoénico J; en
la funcion potencial. La introducciéon de zonales harmoénicos de ordenes superiores no
se considera en este trabajo ya que estos harmonicos son al menos tres ordenes de
magnitud menores que el Jy [1].

La introduccién del zonal harmoénico J5 nos conduce a plantearnos el segundo problema
tratado en esta tesis. Este problema consiste en la bisqueda de parametros de una
2D-LFC para conseguir que sea estable, esto es, que los satélites de la constelacion
se vean afectados por las perturbaciones pero todos de la misma manera. De esta
forma la posicion relativa entre los satélites de la constelacion (en el espacio de los
elementos osculadores) quedara inalterada, obteniendo asi las constelaciones que tienen
por nombre Rigid Constellations.

La mayoria de autores que trabajan el problema principal del satélite promedian las
perturbaciones no seculares en un periodo orbital, considerando tnicamente las per-
turbaciones de largo periodo y las perturbaciones seculares [10]. En este trabajo,
consideramos las perturbaciones seculares y no seculares (de largo y corto periodo)
que afectan a la aceleracion del satélite. Por ello, en lugar de promediar la expresion
del potencial en un periodo orbital, consideramos la expresion completa de la funcion
potencial [1]. Con la expresion completa del potencial y haciendo uso de las Ecuaciones
de Lagrange [45] podemos estudiar la evolucion de los elementos orbitales en el tiempo.

Los objetivos principales son; controlar la perturbacion secular para que sea idéntica
en todos los satélites de la constelacion y minimizar las perturbaciones no seculares que
afectan a nuestros satélites. Si logramos estos objetivos los satélites de la constelacion
se veran perturbados por el efecto del J; de la misma manera. De esta forma las
posiciones relativas de los satélites seran practicamente constantes (en el espacio de
los elementos osculadores) y la estructura de Flower Constellation se mantendra con
el paso del tiempo, lo que denominamos como Rigid Constellation.

Para controlar la parte secular de los satélites de la constelacion consideramos un
satélite de referencia. Primero estudiamos la dependencia de la parte secular de los
elementos osculadores con respecto a los valores iniciales de Q2 y M. Observamos que
ninguna de las componentes seculares depende del valor de €2, pero observamos una
fuerte dependencia con respecto al valor de M. En el caso particular de una 2D-LFC,
todos los satélites tienen los mismos valores de a, e, i, w, pero tienen distintos los
valores de 2 y M. Por lo que, a priori, la componente secular de los elementos oscu-
ladores de cada satélite serd distinta. Para conseguir que sea idéntica, aplicamos un
método de correccion. Dicho método consiste en modificar el semieje mayor de todos
los satélites unos pocos kilometros. De esta forma el periodo (7},) se vera modificado y
en particular la componente secular de la variacion de la anomalia media en el tiempo
Mo = 27 /T,. A través de esta correccion, conseguimos que la componente secular de
los elementos osculadores de cada uno de los satélites de la constelacion coincida hasta
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un orden de 107!, Con esta técnica, conseguimos controlar la perturbacion secular de
nuestros satélites. Tratar de controlar la parte no secular resulta algo més complicado.
En primer lugar, aplicamos para cada elemento osculador ¢ € {a,e,i,w, 2, M} inter-
polacion lineal sobre los pares de datos (¢, ¢q(t)) que han sido obtenidos previamente
para calcular la posicion exacta de los satélites. A través de estas funciones lineales
de los elementos osculadores somos capaces de calcular en cada instante de tiempo
una posicion aproximada o lineal. De tal manera que la distancia entre ambas posi-
ciones (real y lineal) sera debida a las perturbaciones no seculares que afectan a nuestro
satélite de referencia. El objetivo final consiste en analizar entre los posibles valores
de la excentricidad y la inclinacion aquellos que minimicen esta distancia (desviacion).
De esta forma, minimizamos la perturbacion no secular que afecta a nuestro satélite
de referencia. Estos valores seran extrapolables al resto de satélites de nuestra con-
stelacion. Consecuentemente, la perturbacion no secular que afecta a los satélites de
la constelacion queda minimizada.

Mediante este trabajo somos capaces de disenar 2D-LFCs cuya configuraciéon se mantiene
bajo los efectos del .J5, obteniendo las denominadas Rigid Constellations. La teoria que

hemos desarrollado tiene dos aplicaciones directas. La primera consiste en validar la

teoria de las 3D-LFCs, en el caso en que la funcion potencial no sea promediada en un

periodo orbital, asumiendo que los semiejes son corregidos y el valor de la desviacion es

lo méas pequeno posible. La segunda aplicacion sirve para resolver problemas de cober-

tura global en los que se incluye el efecto del zonal J; en el potencial. Sera suficiente

con encontrar una Rigid Constellation que minimice una funcién fitness ligeramente

modificada y podremos propagar los satélites en un modelo kepleriano.

Nuestro ultimo objetivo consiste en reducir el elevado ntimero de satélites que por
lo general componen una constelacion simétrica. Proporcionamos un método para
determinar todos los subconjuntos de satélites de las 2D-LFCs de tal forma que sigan
manteniendo las simetrias que las caracterizan [14].

Para conseguir este objetivo hemos identificado la primera ¢rbita de nuestra con-
stelacion, que posee Ny, posiciones admisibles con un collar (G (en inglés, necklace)
de N, perlas [15]. Tomamos un nimero Ny, (N5, < N,) representando los satélites
reales por orbita. De esta forma consideramos la primer 6rbita de la constelacién como
un necklace de Ny, perlas, de las cuales N,4, son negras y el resto blancas. Esto es, una
orbita con N, posiciones admisibles, de las cuales N,,, estan ocupadas por un satélite
y el resto no. La distribucion de los satélites en las restantes orbitas es idéntica a la
primera, pero desplazados k perlas.

De este modo una Necklace Flower Constellation (NFC) se caracteriza mediante un
par (G, k). Notar que, no todos los pares producen NFC validas, ni dos pares distintos
producen distintas NFC. Estos dos problemas se denominan problema de consistencia
y de minimalidad, respectivamente. Utilizando teoria de numeros [3| somos capaces
de resolverlos completamente. Finalmente, desarrollamos diversos teoremas de con-
teo para determinar la cantidad de pares posibles (G, k) que existen a partir de los
parametros de distribucion de una 2D-LFC.
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Las constelaciones de satélites son un tema de candente actualidad por las posibilidades
que pueden proporcionar para los servicios comerciales e institucionales en aplicaciones
como las telecomunicaciones, el posicionamiento dindmico o la observacion de la Tierra,
con costos razonables. Los resultados obtenidos en este trabajo estimulan el estudio de
las mismas, que pueden resultar, en un futuro proximo, en constelaciones mas eficientes
que las actuales para diversas misiones espaciales.






Chapter 1

Preliminaries

This chapter introduces the background needed to understand all the remaining chap-
ters of the thesis. A brief introduction to orbital mechanics is presented, not very
extensive due to the wide and excellent bibliography that authors such as Vallado [45],
Battin [10], Junkins [43], Chobotov [16], Arnold [6] or Abad [1], just to name a few,
have written. One of the main subjects of this thesis is summarized, the theory of
Flower Constellations developed by Mortari, Wilkins and Bruccoleri in |34], expanded
by Mortari and Avendano in 7], and also by Davis in [18]. Finally, two main tools
are presented; the Dilution of Precision (DOP) which is a powerful accuracy metric
of the observer-satellite geometry used by the Global Positioning System (GPS), and
Evolutive algorithms, which are a novel way to solve certain optimization problems.

1.1 Orbital mechanics

1.1.1 Keplerian motion

In this work we are concerned in satellites orbiting around the Earth, hence the refer-
ence frames used to locate the position of the satellites have the Earth center as origin.
The most commonly used reference frames with the previous property are:

e Earth Centered Inertial [45] (ECI): It has the origin at the center of the Earth,
as the name implies, and it is designated with the letters /JK. The I and J axes
are contained in Earth’s equatorial plane. The [ axis points towards the vernal
equinox; the J axis is 90° to the East in the equatorial plane; the K axis extends
through the North Pole.

e Earth Centered Earth Fixed [45] (ECEF): It is fixed to the rotating Earth and
is designated with the letters XY Z. It has the origin at the center of the Earth.
The X and Y axes are contained in Earth’s equatorial plane. The X axis points
to the Greenwich meridian; the Y axis is 90° to the East in the equatorial plane;
the Z axis points to the North Pole.

Newton’s laws of motion describe the relationship between the satellite motion and the
forces acting on it. The three laws of motion were first compiled by Sir Isaac Newton

1
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in his work Philosophiae Naturalis Mathematica [37|, first published in 1687. These
laws are [17, p.44]:

Newton’s First Law: Every particle continues in a state of rest or uniform motion
in a straight line unless it is compelled by some external force to change that
state.

Newton’s Second Law: The rate of change of the linear momentum of a particle
is proportional to the force applied to the particle and takes place in the same
direction as the force.

Newton’s Third Law: The mutual actions of any two bodies are always equal and
oppositely directed.

In The Principia of Newton [37| was also published in the Proposition 75, Theorem
35, the Newton’s Gravitational law which states |17, p.135]:

Newton’s Gravitational Law: Any two point masses attract one another with a
force proportional to the product of their masses and inversely proportional to
the square of the distance between them.

The starting points for studying the orbital motion are Newton’s Laws. We examine
the force that the Earth exerts on a satellite. If the satellite mass is mg,;, the Earth
mass is Mg, and the distance to the satellite from the center of the Earth is r, then
the force that the Earth exerts on a satellite following the Gravitational Law is:
GMgmgar . GMgmyg,
F = _¢T:_$r7 (1.1)
r r
where G is the gravitational constant [45, p.136|
G = (6.67259 + 0.00085)-1072°  km? kg~! sec™2,

7 is the unit vector pointing from the Earth center to the satellite, and r represents
the modulus of vector r.

By using the Newton’s Second Law, the acceleration that the Earth exerts to the
satellite is given by:

F
r = . (1.2)
Msat
All together this translates into the keplerian two-body equation of motion:
. %
= -3 (1.3)

where

= G Mg = 398,600.4405 4 0.001  km? sec™2.

The discovery of the law of universal gravitation by Newton was motivated by the
previous work done by Kepler. Newton was fascinated by the beauty and precision of
Kepler’s laws and set about the task of discovering what force law must be existing
between bodies in the Solar system to be consistent with kepler’s experimentally verified
laws of planetary motion. The Kepler’s laws are [45, p.10]:
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First Law: The orbit of each planet is an ellipse with the Sun at one focus.

Second Law: The line joining the planet to the Sun sweeps out equal areas in equal
times.

Third Law: The square of the period of a planet is proportional to the cube of its
mean distance to the Sun.

These laws were published by Johannes Kepler, derived using Tycho Brahe’s observa-
tions of Mars. We will show below that Kepler’s Laws can be derived from Newton’s
Laws.

The angular momentum of the satellite is defined by:
h=rxv,

where r and v are its position and velocity vector, respectively. We denote h the norm
of the vector h. The angular momentum in the keplerian motion is constant [41, p.2]:

dh d
E:%:rxf‘—l—i‘:v:rx—%rzo. (1.4)

The sweep velocity of the satellite is given by |4, p.594]:

1
Viweep = 5\1‘ X v, (1.5)

and it represents half of the modulus of the angular momentum. The property of having
a constant angular momentum implies that the sweep velocity is constant, which proves
Kepler’s second law. Note that, we always have r_Lh by definition of h. Then, if the
angular momentum h # 0 the motion is not rectilinear and it takes places on a plane.

The eccentricity vector e is defined as [45, p.106]:

pe=vxh— K.
r
We denote e the norm of the vector e. In the keplerian motion the eccentricity vector

1s constant:

d(pe) dv dh  d(r~'r)
- 2 sh ar
dt at TV T
-0
o d((r-r)~"%.r)
- TRt h=p dt
r-v 1

~ 0. (1.6)
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Satellite

Earth e

Figure 1.1: True anomaly.

The three components of h and the three of e are not independent since:

1
h-e — h-—<v><h—ﬁr)

I r

1 1
= —h-(vxh)——h-¢
M, , Tv
=0 =

0
= 0.

The energy of the satellite is defined as:

P
2

Y

REES

which is another constant:

dE 1 dv? d(r=1)

a - 2at M
B , d((r-r)~17?)
1 Il
— 0

r-e — —r-v><h—u

1 r
(r-r)(v-v)—(r-v)(v-r)

= —r

i

h2

= — —r.
1

(1.8)

(1.10)

If e # 0 we define the true anomaly ¢, illustrated in Figure 1.1, as the angle between

vector e and the position vector r,

r-e=recos(p).

(1.11)



1.1. ORBITAL MECHANICS 5

Figure 1.2: Elliptical orbit geometry.

By using Eq. (1.10) and Eq. (1.11) we obtain:

p

= — 1.12
" 1+ ecos(p)’ (1.12)

where p = h?/u. This is the polar equation of a conic section of eccentricity equal to e
with focus at the origin. This together with the fact that the motion is planar proves
Kepler’s First Law. The eccentricity indicates whether the conic intersection is elliptic
(0 < e < 1), parabolic (e = 1) or hyperbolic (e > 1).

In the case of an ellipse we have a maximum and a minimum value of r in two points
named perigee (¢ = 0) and apogee (¢ = ), respectively. The distances to the focus
from these two points are given by:

__b __b
1+e’ 1—e

Tp

(1.13)

Figure 1.2 [12] illustrates a satellite S orbiting the Earth on an elliptical orbit O of
semi-major axis a and eccentricity e. It shows the perigee and apogee distances, the
semilatus rectum p, the semi-minor axis b, and the constant ¢ = ae:

p=a(l—e?), b=aVv1—e? c=ae= -2 (1.14)

1—e2
Finally, the Kepler’s Third Law can be derived as follows:

Ellipse area  mab

T, = —
P Sweep velocity %h

2mab 2ma(av/'1 — €?)
VP y/pa(l —e?)
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9 3/2
= T (1.15)

N

In the elliptic case, the Energy equation (1.8) is [17, p.65]:

v2:u(g—l). (1.16)

T a

Squaring the angular momentum [17, p.131| we get:

R = (Vip) = pa(l— &),

R = |rxv)?=vr?—(r-v)?

= vir? — (rv)?

Then,
pa(l —e?) = vir? — (rv)% (1.17)
Substituting the expression of v? given in Eq. (1.16) in Eq. (1.17), we obtain:

uql—&):u<g—l)ﬂ—mmf. (1.18)

r a

Define F by
r =a(l —ecos(F)), (1.19)

where E is named the eccentric anomaly. As true anomaly ¢, already introduced,
varies from 0° to 360°, F also varies in the range 0° to 360°. Differentiating Eq. (1.19)
we get:

i =v = aeEsin(E). (1.20)

Substituting into Eq. (1.18) and rearranging, we obtain:

EE (1 —ecos(E))” = 1. (1.21)

Now the orbit is described so that dE/dt is positive, so that

dt = %3(1 —ecos(F))dE. (1.22)

Integrating over a complete revolution we get for the period:

T, =2m | — = =, (1.23)
8 1

where n = \/u/a? is the mean motion. Thus, Eq. (1.22) can be written, as:

ndt = (1 —ecos(FE))dE, (1.24)
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which can be integrated immediately to give:
n(t —ty) = E — esin(F), (1.25)

where t, is the time of passage through the perigee. Eq. (1.25) is named Kepler’s
Equation usually written in the form:

M = E — esin(F), (1.26)
where M is the mean anomaly, defined by
M =n(t —to). (1.27)

The relation between the true anomaly () and the eccentric anomaly (E) can be
observed in Figure 1.2, and they are related by the formula:

tan (g) - \/Etan <§) . (1.28)

At this point, the position and velocity of a satellite can be obtained from the following
six integrals of motion, called in Astrodynamics the classical orbital elements; two of
them describe the shape of the orbit, the semi-major azis (a) and the eccentricity (e).
Three of them situate the orbital plane, the inclination (i), which is the angular distance
between the orbital plane and the plane of reference (Equatorial plane), the argument of
perigee (w), which is the angle between the orbit’s perigee (the point of closest approach
to the Earth) and the orbit’s ascending node (the point where the satellite crosses the
Equatorial plane from South to North), and the Right Ascension of the Ascending Node
(), which represents the angular distance between the orbit’s ascending node and the
reference axis of our inertial system (pointing to Greenwich meridian). Finally, a sixth
parameter which determines the position of the body on its orbit. This parameter is
one of the three angular variables presented above; true anomaly, mean anomaly or
eccentric anomaly. Figure 1.3 illustrates the orbital elements.

1.1.2 Perturbed motion

A conservative force field is one with the property that the work done in moving a
particle from a point A to a point B is independent of the path taken. The gravitational
field around the Earth is the sum of conservative force field corresponding to each of
its particles, hence conservative. It is shown in |5| that any conservative force field can
be expressed as:

F(r) = —mga - VV(r). (1.29)

where V(r) is the potential function [29]|, which measures how much work has to be
done to the satellite from rest in a reference position ry close to infinity to rest at
position r.

The Earth is not a perfect sphere, it has the shape of an oblate spheroid with an
equatorial diameter that exceeds the polar diameter by about 20 km. The perturbation
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Angular momentum, i

Perigee, 2

Figure 1.3: Orbital elements.

(P) produced by this fact is about three orders of magnitude smaller than the central
attraction described before using Newton’s law of universal gravitation. Then, Eq. (1.3)
can be reformulated as:

P = —%rJrP, (1.30)
which is known in Astrodynamics as the perturbed two-body problem. Then, the key of
the particular problem of a satellite orbiting around the Earth consists of determining

the potential function that affects to the satellite to determine its acceleration.

The satellite motion represented by the second order equation (1.30) can be expressed
as a first order system of equations:

r(t) =v(t),
{v(t) — YV (x(t), (1-31)

where r(t) and v(t) represent the position and velocity of the satellite at time ¢, re-
spectively.

If we consider the Earth as a perfect sphere with constant density (keplerian model),
the potential function must be:

Viep(r) = —g, (1.32)

to satisfy Eq. (1.3).

However, if we consider each point of the Earth, then the potential function is [45]:

V(. ot Asat) = =5 [1 = (%) P sin6a)) +
=2

o | (1.33)
£33 (52) Puan (5i0(00at)) [Com c05(m - Acat) + St sin(m - Asa)]|

=2 m=1
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where P,(t) is the l-order Legendre Polynomial, P,,, is the l-order, m-degree asso-
ciated Legendre Polynomial, which are defined from the derivatives of the Legendre
Polynomial as follows:
R = =0 Qual) = SR, Plt) = (1= £72Quu()
l 2[ l‘dtl 9 Lym dtm l ) lym Lym )
and (Asat, Psat) € [0,27] X [—7/2,7/2] represents the longitude and latitude of the
satellite from the center of the Earth, respectively.

Note that, in Eq. (1.33) the potential is inversely proportional with respect to the
distance to the Earth. The terms J; are called zonal harmonics, the terms Cj,, and
Si.m when m # 0 and [ # m are called tesseral harmonics, and the terms C,, and S ,,
when m # 0 and [ = m are called sectorial harmonics. Zonal and tesseral harmonics
are illustrated in Figure 1.4, while sectorial harmonics are illustrated in Figure 1.5.
See [29] for more precise information.

Figure 1.4: Zonal and Tesseral harmonics.

In our study we consider the Earth as a revolution body, then the tesseral and sectorial
harmonics will be zero, and the potential will have only zonal harmonics. Table 1.1
shows the values of the zonal harmonics |1, p.228|:

1.1.2.1 Evolution of position and velocity in the perturbed problem

The expression of the potential considering only the zonal harmonics (/) is:

(1.34)

Figure 1.5: Sectorial harmonics.
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Jo | 1.08263 -10~°
Js | -2.53243 1076
Jy | -1.61933 -10°6
Js | -2.27716 -10~7
Js | 5.39648 -10~7

Table 1.1: Zonal harmonic coefficients for Earth perturbed potential.

and it is usually split in several parts: the Keplerian component Vi, and the zonal
harmonic components, Rj,, R, etc:

V(I‘) = Vkep + R
= Viep+ Ry +Ry+ ... (1.35)
We apply the gradient operator to the potential function:

ov oV oV
vV = <%’a—y%>

iey ORy, ORy, iey ORy, ORy,
= . .. 1.
< Ox * Ox * Ox T oy + Ay * oy * (1.36)
OViep ~ ORj, ORy,
0z * 0z + 0z o)

Then, by using Eqs. (1.31) it is possible to derive the state vector of the satellite from
the following system of equations:

T = Ug,
= vy,
Z = Vg,
: ov
%= T (1.37)
. ov
’Uy = a—y,
A
L7 aZ‘

This system of equations can be solved numerically by using a Runge-Kutta Method
of order 4. The solution represents the evolution of position and velocity over time.
Note that, the more terms we include in the potential function, the more precise the
estimation of the position and velocity will be.

1.1.2.2 Evolution of the orbital elements in the perturbed problem

In the keplerian motion, all the orbital elements except M are constant. The evolution
of them over time can be represented as a straight line, since M increases linearly:
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M (t) = nt where n = /p/a? is the mean motion. When some perturbations appear,
the orbital elements are not longer constant. However, the model can be considered
instantaneously as a keplerian model, i.e. at each instant of time is possible to describe
the movement as a keplerian motion, using six orbital elements which depend on time.
These parameters are named osculating elements; a(t), e(t), i(t), w(t), Q(t) and M ().

Lagrange planetary Equations |45, pg. 585|: are a powerful tool to compute the varia-
tion of the osculating elements over time:

(. 2 0R
Y Ve
o 1= e? OR m@_R
nale OM nale Ow’
1 OR cos(1) OR

na?y/1 — e sin(4) 0 na2y/1 — €2 sin(4) Ow’
< — m@_R N cos(i) OR
na’e  Ode  na?y/1— e%sin(i) 0i’

1 OR

(1.38)

o - o,
na?y/1 — e?sin(i) i

2 OR 1—¢€%0R

M=nt 220 2790
\ ne na Oa na2e Oe

where R represents the perturbing part of the potential presented in Eq. (1.35).

Note that, Lagrange Planetary Equations only consider the perturbed part of the
potential, R. This system of equations can be solved using a Runge-Kutta Method
of order 4. The solution represents the evolution of the orbital elements over time.
Note that, the more terms we include in the potential function, the more precise the
estimation of the position and velocity will be.

1.2 Satellite Constellations

The initial position of a satellite orbiting around the Earth is determined using the
classical orbital elements. Then, the first idea to describe a satellite constellation of n
satellites, may consist of giving the orbital elements of each one. However, choosing 6n
independent, continuous parameters is something prohibitive if the constellation has
more than 20 satellites. One solution to deal with this curse of dimensionality may
consist of having some common orbital parameters for each satellite, thus the number
of design variables are strongly reduced.

J.G. Walker developed around 1970s a method to design satellite constellations [47,48].
The satellites in this kind of constellations, called Walker Constellations, have the same
semi-major axis (a), the same inclination (i) and they are distributed in circular orbits
(e = 0). The Right Ascension of the Ascending Node (RAAN) and the true anomaly
of each satellite is determined using these three integer parameters:
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e T is the total number of satellites in the constellation.
e P is the number of orbital planes.
e | is a phasing parameter.

Walker hypothesized |18, p.12| that optimal constellations would be symmetrical and
uniform in their distributions of satellites. Thus, he designs the constellation as follows:
the RAAN of the satellites in the P orbital planes are equally distributed around the
equator. The satellites within a given orbital plane are also uniformly distributed in
mean anomaly. Defining the Pattern Unit (PU) 1PU = 360°/T, when a satellite on
a given plane passes through the ascending node, the satellite on the next adjacent
plane to the east has advanced F - PUs past its ascending node. The values of F' are
limited to the range [0, P—1]. Consequently, three integer parameters (7', P, ) and two
continuous parameters (a, ) are enough to describe this kind of satellite constellations.

1.2.1 The Flower Constellations

As Draim shows in his work [21], eccentric orbits may be better than circular ones.
Thus, another way of designing satellite constellations, without the necessity of having
circular orbits, is required. D. Mortari developed around 2004 The Flower Constella-
tions [34,51] which solve this problem by leaving the eccentricity as a design variable.
In this section we briefly describe the evolution of the theory.

The original theory of Flower Constellations has all the satellites in the same repeti-
tive ground-track, or in other words, the same repetitive ground-track relative to the
rotating reference frame of the Earth. All the orbits have the same eccentricity (e),
inclination (7), and argument of perigee (w). In order to have all the satellites in the
same ground track the compatibility (or resonant) condition must be satisfied:

N,T, = N, Ty, (1.39)

where IV, is the number of orbital periods before repetition, 7}, is the keplerian orbital
period, Ny is the number of revolutions of the rotating reference frame before repetition,
and Ty is the period of the rotating reference frame, which in the case of the Earth is
a sidereal day. Note that, given the values of N,, and Ny the value of the semi-major
axis (a) is automatically determined. In addition, the effect of .J, perturbation can be
accounted for in the values of T; and T}, to maintain repeating ground tracks under the
Jo effect [34].

Once the orbit is described the following step is to define the Right Ascension of the
Ascending Node (£2;) and Mean anomaly (M}) of the Ny, satellites of the constellation.
For that purpose three integers (phasing parameters) must be chosen: F,, F,; and
Fy. Finally, the values of €2 and M) are determined using recursively the following
equations [35,50]:

Fn

Q = QL +2
k+1 gt WFd’

k€0, Nyt — 1].
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Ny F, + FyFy (k)
Fde '

Mk+1 = Mk — 27 ke [0, Nsat — 1] (140)
Note that, F,(k) could be any sequence of numbers from the set [0, Ny — 1] but it is
typically chosen to be constant. Then, with the three continuous parameters (e, i,w)
and the six integer parameters (Ngqr, Ny, Ny, F,, Fy, Fy,) the constellation is completely
described. The parameters €}y and M, are usually set to zero, but they can be also
considered design variables.

The Flower Constellations evolved into the Harmonic Flower Constellations after prov-
ing that the number of satellites in a Flower Constellation can not exceed [9]:
NaFy
ng(Nd, NpFn + Fth) '

This constraint about the maximum number of satellite per orbit allows to reduce one of
the integer parameters that defines a Flower Constellation, and reformulate the others
to have more understandable and physical parameters. Since the maximum number of
satellites is known, and the number of orbits is represented by the parameter Fj, it is
possible to infer that the number of satellites per orbit is:

- ng(Nd, NpFn + Fth) )

NSO

Furthermore, a new parameter called configuration number is defined as [9]:

N,F, + F,F,
N.=E, P mod (F}),
gcd(N,, N, E, + F4F)) (Fa)

where F,, and Ej; are any integers such that E, F,, + E;F; = 1. This parameter is the
key to characterize Harmonic Flower Constellations. However, a requirement for the
existence of an Harmonic Flower Constellation is,

ged(Fy, Ngo, Ne) = 1.

The Harmonic Flower Constellations are visualized through the (€2, M)-space [8], where
the admissible locations for the satellites in the constellation are described. The Har-
monic Flower Constellations solved the problem of equivalency (two HFC are said to
be equivalent if and only if their (€2, M)-space representations coincide) and similarity,
but a simple procedure to compute the (2, M)-space from the parameters Fy, Ny, and
N, is necessary. The extension of the theory into the 2D Lattice Flower Constellation
(2D-LFC) [7] solves this problem.

The 2D Lattice Flower Constellations can be described by five integer parameters and
three continuous ones. The integer parameters can be broken into two sets, the first
describing the phasing of the satellites and the second describing the orbital period
(or semi-major axis). The first set is {V,, Ny, N.} where N, is the number of orbital
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planes, Ny, is the number of satellites per orbit, and N, is the configuration number.
The second set is {NN,, N;} which satisfies the compatibility equation (1.39), which
enforces the repeating space-track requirement.

The location of all the satellites of a 2D-LFC corresponds to a Lattice in the (£2, M)-
space |7], which can be regarded as a 3D torus (both axes, M and (2, are modulo 27)
and coincides with all the solutions of the following system of equations:

( ]J\Vf zg ) < fé ) =0 mod (27). (1.41)

The solutions of Eq. (1.41) can be parameterized as follows:

(3 ) ()= (5) e

where 1 =0,--- ,N,—1,j=0,---, Ny, — 1, and N, € [0, N, — 1]. Satellite (i, 7) is the
J-th satellite on the i-th orbital plane. Consequently, the total number of satellites in
the constellation Ny, = N,Nsp.

We represent two different (€2, M)-spaces to show how the parameter NNV, influences the
distribution of the satellites. In Figure 1.6 we plot the (£, M)-space of a 24-satellite
constellation with parameters N, = 4, Ny, = 6, N. = 0, while in Figure 1.7 we plot the
(Q, M)-space of a 24-satellite constellation with parameters N, = 4, Ny, = 6, N, = 2.
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Figure 1.6: 2D-LFC with N, =4, N,, = 6, N, = 0, Qg = 45.0, and My, = 0.0

Note that, the Mean anomalies of the satellites of the second and fourth orbits in
Figure 1.7 are shifted with respect to those shown in Figure 1.6 due to the effect of the
parameter N,.
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Figure 1.7: 2D-LFC with N, =4, Ny, = 6, N, = 2, Qg9 = 45.0, and My, = 0.0

The remaining parameters required to define the constellation are continuous and the
same for all orbits in the constellation: the inclination, the eccentricity, and the argu-
ment of perigee. Since all satellites of a 2D-LFC have the same a, e, 7, and w, when
the (€2, M)-space is provided the constellation is completely defined.

To sum up, a 2D-LFC can be viewed as a vector in N® x RS containing the 3 integer
parameters (N,, Ny,, N..) describing the layout of the satellites in the (€2, M)-space, and
the 6 continuous orbital parameters (a, e, i, w, Qo, Moo) of the reference satellite. It
can also be regarded as a function F'C'(t) that gives the position of the Ny, N, satellites
at time t.

Note that, since the 2D-LFC theory separates the satellite phasing from the orbit size,
non-repeating space-tracks can be used without affecting the uniformity of the satellite
distribution. However, the condition that all satellites belong to the same repeating
ground track can be recovered by choosing any two coprime integers p and A, defining:

Ng = AN,
N, = uN,+ AN,

and adjusting the semi-major axis according to Eq. (1.39).

For practical applications, we are assuming that the period of the rotational reference
frame Ty is constant. Furthermore, the semimajor axis of the satellites is fixed depend-
ing on the sort of mission, this means that 7}, is known. Thus, the interest of having
all the satellites in the same ground-track disappeared, and we can adopt two different
points of view. The first case consists of considering that there always exist integers
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N,, Ny such that the ratio N,/N, approximates the ratio 7,/7,. In the second case
the constellation may not be compatible with respect to the rotating reference frame
(ECEF), since T, is not necessarily a rational multiple of T,, but there are infinitely
many rotating frames compatible with the constellation. In these rotating frames the
trajectory of the satellites is static, but respect to the inertial frame the trajectory

rotates with angular velocity:
271'Nd

N NPTP ‘

(1.43)

Wy

As an illustration, the same 2D-LFC is presented in two different rotating reference
frames. The phasing parameters are N, = 3, N,, = 8, and N. = 2. The continuous
parameters are a = 28000km, e = 0, and ¢ = 55°. It is possible to observe that
the number of relative trajectories followed by the satellites varies depending on the
velocity of the rotating reference frame, or in other word, depending on the parameters
N, and Nj.

In Figure 1.8 the 2D-LFC has parameters N, = 1 and N; = 0. Then, using Eq. (1.43)
the velocity of the rotating reference frame is wy = 0, i.e. the inertial frame (ECI). On
the other hand, in Figure 1.9 the 2D-LFC has parameters N, = 3 and Ny = 12, and
using (1.43) the ground track rotates with angular velocity wy = 5.39 - 107* rad/sec.
Consequently, none of them is compatible with the Earth rotating reference frame since
the angular velocity is wg = 7.2722 - 107 rad/sec.

Figure 1.8: A 2D-LFC with three relative trajectories.

In the 2D-LFC theory elliptic orbits are generally avoided due to the rotation of the
apsidal line due to Earth’s oblateness (the .J effect). The 3D Lattice Flower Con-
stellation (3D-LFC) theory [18,19| utilize, rather than avoid, the J effect to produce
uniform constellations of elliptic orbits.

The rotation of the argument of perigee is only meaningful in elliptic orbits. Further-
more, if the critical inclination is considered 63.4° or 116.6° the argument of perigee
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Figure 1.9: A 2D-LFC with all the satellites in the same ground track.

experiences no rotation, but one of the design variables is eliminated. This theory pro-
poses that the satellites within a given orbital plane be placed in multiple orbits with
arguments of perigee distributed evenly in the range [0°,360°]. Since all orbits have
the same inclination, eccentricity and semi-major axis, their rate of perigee rotation
will be approximately equal. Thus, as they each rotate, the relative perigee spacing
remains constant, and periodically the constellation resumes its original structure. The
concept is illustrated in Figure 1.10.

Plane 1 Plane 2 Plane 3

Figure 1.10: 3D-LFC concept.

The mathematical formulation of the 3D-LFC requires six integer parameters and six
orbital elements of a reference satellite. We use N, to represent the number of or-
bital planes, N, to represent the number of unique orbits (with different arguments
of perigee) on each plane, and N/ to represent the number of satellites on each of
those orbits. Thus, the total number of satellites of the constellation is represented by
Nyt = N,N,N! . The remaining three integers are the phasing parameters: N! N2
and N3.

Following the notes of Davis [19], the distribution of the satellites in the (€2, w, M )-space
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can be determined solving this system of equations:

N, 0 0 Qi i
]\/vc3 Nw 0 Wijk =27 k s (]_44)
N! NZ N, Mij J
where
i=0,...,N,—1 N!e[o,N,—1],
j=0,...,N, —1 N? e [0,N, —1],
k=0,...,N,—1 N3elo,N, —1].

Note that, the values outside of those ranges are perfectly valid, but they describe con-
figurations equivalent to ones defined in the specified range, as in modular arithmetic.

The location of all the satellites of a 3D-LFC corresponds to a Lattice in the (Q,w, M)-
space, which can be regarded as a 4D torus (three axis, €2, w, and M, are modulo 27)
and coincides with all the solutions of the system of equations given in (1.44).

The 3D-LFC theory not only shares many properties with 2D-LFC. This theory gen-
eralizes the 2D-LFC and other existing satellite constellations, such as Walker constel-
lations or Draim constellations.

1.3 Dilution of Precision

The Global Positioning System [38] (GPS) determines the user position using the con-
cept Time-Of-Arrival (TOA), which consists of determining the user position measuring
the time-of-arrival for a signal transmitted by a satellite at a known location to reach
the user location. Multiplying the TOA by the speed of the signal transmitted, it is
possible to determine the user’s position. In order to understand this problem, it will
be useful solve first the two-dimensional case [28].

The two-dimensional position determination problem can be presented through the
well known problem of a mariner at sea determining his or her vessel’s position from
a foghorn. First of all, assume that the vessel’s and foghorn’s clocks are perfectly
synchronized. And also, assume that the mariner has an approximate idea of the
vessel’s position. The mariner has to take note of the time that the foghorn whistle
needs to travel from the foghorn to the mariner’s ear. Then, the distance can be easily
computed multiplying the measured time by the speed of sound.

For example, if we consider that the speed of sound is 335m/sec, and the propaga-
tion time measured by the mariner is 2 sec, the circumference of radio R1 = 670m,
illustrated in Figure 1.11, represents all the possible mariner’s locations.
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Foghorn 1

‘\

Figure 1.11: Possible vessel’s position.

If the mariner, at the same time, computes the propagation time of a second foghorn
whistle, for example 1 sec. The vessel will be at range R1 = 670 m from the foghorn 1
and range R2 = 335 m from the foghorn 2, as we can see in Figure 1.12. As we mention
before, the mariner has an approximate idea of the vessel’s position and it is possible
to discard one of the intersection points. If not, a third range measurement R3 from a
third foghorn can be used to solve this ambiguity.

Foghorn 1

Foghorn 2 R1
R2

Figure 1.12: Two possible vessel’s position.

The previous problem has been solved assuming that the clocks were perfectly syn-
chronized. But, this fact does not happen in a real case. On the other hand, all
measurements will have the same time offsets, because the mariner’s clock is the same
for all the time measurements and all the foghorns clocks are synchronized. Then, the
time offset is reflected as an error in the ranges R1, R2, and R3. As an example, if the
time offset between the mariner’s clock and the foghorn’s clock is 0.1 sec the ranges
must add an error of € = 33.5m. This concept is illustrated in Figure 1.13. Obviously,
the true vessel position is a function of the vessel’s clock offset, if this offset could
be removed the vessel’s position will be completely precise. In the real case, must be
considered other delay effects such as: atmospheric effects, interfering sounds, etc.

The three-dimensional position determination problem [28] consists of determining the
user position (z, Yu, 2,) using the location of three satellites, whose coordinates are well
known. The idea is exactly the same as in the vessel’s problem, but instead of using two
foghorns three satellites are used, and instead of intersecting circumferences, spheres
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Figure 1.13: Effect of time offset on the measurements.

will be intersected. In this case, the speed of light will be used, as opposed to the
speed of sound used in the foghorn problem. Furthermore, the time offset (t,), which
represents the difference in time between the clocks of the receiver and the satellite, will
be another unknown. Then, four visible satellites are needed to completely determine
the four unknowns; the user position coordinates and the time offset. We explain
carefully this problem |28].

Let s be the vector from the Earth’s center to the j-th satellite and be u the vector from
the Earth’s center to the user position. These vectors are illustrated in Figure 1.14.

j-th satellite

User \

Figure 1.14: User and j-th satellite position vectors from the Earth’s center.

The distance between j-th satellite and the user position can be computed by measur-
ing the time between the emission of a signal from the satellite, and the reception of
that signal by the receiver. If the satellite clock and the receiver clock were perfectly
synchronized, the time At, which represents the time between emitting and receiv-
ing the signal, would be the propagation time. Then, the range satellite-user can be
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computed from the velocity equation:

_[ls—ul
At

However, the receiver and satellite clocks will generally have a bias error from system
time. The distance between the user and the satellite, which is computed multiplying
the signal propagation velocity by the measured propagation time, is not the real
distance and it is called pseudorange measurement. The measurement contains: (1)
the geometric satellite-user range. (2) an offset attributed to the difference between
system time and user clock. (3) an offset attributed to the difference between system
time and satellite clock. (4) other sources of error that corrupt the measurements such
as the atmosphere, because it makes the pseudorange larger than it would be if the
signal were propagated in a vacuum, the troposphere, that delays the reception time,
and the ionosphere, that advances the reception of the signal. Furthermore, reflections
(i.e multipath) and hardware effects during the codification of the signal may advance
or delay the signal transmission. §tp resumes all the errors described in (4),

(1.45)

5tD - 5tatm + 6tnoise&int + 6tmp + 5thw7 (146)

where:

Otasm = delays due to the atmosphere.

Otnoisesint = delays due to receiver noise and interference.
0tmp = delays due to the multipath offset.

Otnw = delays due to the hardware offset.

The relation between times are expressed in Figure 1.15 where:
At = geometric range time equivalent.
T, = system time at which the signal left the satellite.

T, = system time at which the signal would have reached the ground station without
otp.

T! = system time at which the signal reach the user receiver considering dtp.

0t = offset of the satellite clock from the system time. Advance is positive, delay is
negative.

t, = offset of the receiver clock from the system time.
Ts 4 0t = satellite clock reading at time which the signal left the satellite.
T! +t, = user receiver clock reading at time when the signal reach the user receiver.

c = speed of light.
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Figure 1.15: Pseudorange time measurement.

Then, the pseudorange measurement is:

p = (T, +t,) — (Ts + dt)]

o(T, — Ty) + c(t, — dt)

o(T, + 6tp — Ty) + clty — 6t) (1.47)
= (T, —Ty) + c(ty — 6t + dtp)

= ||s — ul| + c(t, — 0t + dtp).

The offset dt, which represents the offset of the satellite clock from the system clock is no
longer considered because the GPS ground-monitoring network applied the necessary
corrections within the user receiver in order to synchronize the satellite clock with the
system clock of each signal, meaning that 6t = 0. In our study, we consider that the
value 0tp = 0. Thus, Eq. (1.47) can be rewritten as:

p=1s —ul| +ct,. (1.48)

where s = (x;,y;, z;) represents the coordinates of the j-th satellite, u = (2, Yu, 2u)
represents the coordinates of the user’s position, and the amount ¢, represents the
advance of the receiver clock with respect to the satellite clock.

At this point, our problem has four unknowns (z,, v, z,) and t,, that is why at least
four visible satellites will be necessary to determine the unknowns. Eq. (1.48) can be
expanded into the following set of equations in the unknowns x,, y., z., and t,.

p1= \/(xl - xuy + (y1 - yu)2 + (21 — Zu)z + ct,,
P2 = \/(x2 —2u)? 4+ (Y2 — Yu)? + (22 — 24)? + ctu,
(1.49)
pP3 = \/([Eg - xu)2 + (y3 - yu)2 + (23 — Zu)2 + cty,
pr= (24— 2,)% + (Ys — yu)? + (24 — 24)2 + cty

We expand Eqs. (1.49) using Taylor series about an approximate user position de-
noted by (&, Yu, 2,) in order to linearized them. Now, we express the offset of the
true position (xy, Yy, z,) from the approximate position (Z.,, 9., 2.,) by a displacement
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(Az,, Ay, Az,). Tt is also considered a time bias estimate £, from the time estimate
t,. Then, we have the following relation:

Ty = Ty + Axy,

Yu = gu + Aym

1.50
Zy = Zy + Az, ( )
ty = Ly + At,,.

The pseudorrange measurements from the user position (z, y., z,) to the j-th satellite
with time estimate ¢,, and from the approximation user position (Zy, 9, Z,) to the j-th
satellite with time bias estimate ¢, can be described using a function f:

pj = \/(JJ] — $u)2 + (yj - yu)2 + (Zj - Zu)2 +cty, = f(xua Yuy Zu, tu)v (1 51)

pi = (s = ) gy — 5 + (25— 2 + el = (G B,

It is possible to relate p; and p; by using Eqs (1.50). Then, we expand this expression
about the approximate point (&, ¥, 2,) and time bias estimate ¢, using Taylor series
expansion:

F@w, Yo, 2o te) = Flu 4 A2y, Gy + Ay, 20 + Az, Ty + AL
Of (Zus Guy Zus )
0Ty

Of (Zus Gus 2us tu)

Az, +

- f(*%myuv 2ua£u) +

af('fu7 glu 2u7 fu)

Ay, Az,
+ i Yu + oz, Zy +
a Au? Au? A'UJEU
L o gg Puti) y 4 (1.52)

The partial derivatives of Eq. (1.52) have been truncated after the first-order to elimi-
nate nonlinear terms as follows:

Of (B, Jus 2urtu) @5 — &

0 B 7o
af(i’uayuvémfw _ Y~ U

0y, P

G Y (1.53)

Of (Bus Jus 2urtu) 2 — 24

02, N Ty
af('%u7?/}u7 2u7i\u)

b =,
Oty

where

Ty = \/(%‘ — )2+ (Y — 9u)? + (25 — 24)2

Finally, substituting Eqgs. (1.51) and Eqs. (1.53) into Eq. (1.52) we obtain:

I‘j—i’u Zj—éu

~

Pi = Pj—

Yi — Yu
~ A.qu - ~ Ayu - ~
Ty Ty Ty

Az, + cAt,. (1.54)
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We have a linearized expression of the pseudorange measurement p;, given in Eq. (1.51),
with respect to the unknowns Az,, Ay,, Az,, and At,.

Now, we define the direction cosines of the unit vector pointing from the approximate
user position to the j-th satellite:

. X Ty
a':cj - ~ 9
Tj
yj - ?)u
J
o Zj — Zu
aZ]' - A
Tj

We also define the variable Ap; = p; — p;. Then, Eq. (1.54) can be rewritten as:
Apj =y, Ary + ay, Ay, + a,; Az, — cAt,,. (1.56)

The unknowns of our problem can be determined by solving the following set of linear
equations:

Apy = az Az, + ay, Ay, + a., Az, — cAt,,
Apy = az,Ax, + ay, Ay, + a,, Az, — cAl,,
Aps = az, Az, + ay Ay, + a Az, — cAl,,
Apy = az,Ax, + ay, Ay, + a,, Az, — cAt,.

These equations can be set in matrix notation:

Apy Ag, Qy Gy 1 Az,
| Ape | oaw, ay, an, 1 B Ay,
Ap = Aps |’ = Apy Qyy Gy 1|7 Ar = Az,
Apy Ay, Ay, Gy 1 —cAt,
Finally, we obtain the equation:
Ap = HAu. (1.57)

Since the elements of H are linearly independent, the matrix is invertible,
Az = H 'Ap. (1.58)

In some cases, we have a n x 4 dimension matrix instead of a 4 x 4 dimension matrix
because we have more than four visible satellites. In this case we use the method of
least squares. By multiplying Eq. (1.57) by H” we obtain:

H"Ap = H"HAx. (1.59)
Now, we multiply by (HTH)~! and we get:
Az = (HTH)"*HT Ap. (1.60)

Note that, we have solved the error-free problem, in which we only consider the offset
between the satellite clock and the receiver clock. But, as we have already mention,
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this problem has other source errors. Thus, the pseudorange measurements can be
viewed as a linear combination of the following three terms:

Ap = pr — pL + dp, (1.61)

where pr is the vector of error-free pseudorange values, py, is the vector of pseudorange
values computed at the linearization point, and dp represents the net error in the pseu-
dorange values. In the same way, the vector Az can be viewed as a linear combination
of three terms,

Ax = zp — v + dz, (1.62)

where 7 is the error-free position and time, x, is the position and time defined as the
linearization point, and dx is the error in the position and time estimate.

From the free-error equation (1.58), in which dx = 0 and dp = 0 is possible obtain the
following relation,
(v — 1) = (H'H)"'"H" (pr — pr)- (1.63)

By substituting Eq. (1.61) and Eq. (1.62) in Eq. (1.60), and using the relation (1.63)
is possible to obtain:

Az = (HTH)'H"Ap,
(xp — g +dr) = (H'H)"'H"(pr — p + dp),
(H'H)"'H"(pr — p) +do = (H'H)"'H"(pr — pr) + (H"H)""H"dp,
dv = (H'"H) 'H"dp. (1.64)

This relation gives the functional relationship between the errors in the pseudor-
ange values and the induced errors in the computed position and time. The matrix
(HTH)™*HT is a 4 x n matrix, and it depends only on the relative geometry between
the user and the satellites, meaning that it is possible to determine the error in the
computed position and time from the geometry of the constellation.

The covariance of a vector is frequently of interest to asses how strongly two variables
of the vector change together [30]. Then, we compute cov(dzx) as:

cov(de) = E
= F

((
((

[dxdz™]

(H"H)™"H")dp((H"H) "' H")dp)"]
H"H)""H")Eldpdp")(H"H)'H")"

HTH) *H)cov(dp)(HTH)*H")T. (1.65)

The usual assumption of the vector dp is that its components has a Gaussian distri-
bution and zero mean. With the geometry considered fixed, it follows that dz is also
Gaussian and zero mean. The components of dp are identically distributed, indepen-
dent and have a variance equal to the square of the satellite UERE (User Equivalent
Range Error), which is considered to be the statistical sum of the contributions from
each of the error sources associated with the satellite. Usually, the error components
are considered independent, and the composite UERE for a satellite is approximated
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as a zero mean Gaussian random variable, where its variance is determined as the sum
of the variance of each of its components. UERE is usually assumed to be independent,
and identically distributed from satellite to satellite. Then, the covariance of the vector
dp is:

cov(dp) = Io> . (1.66)
Using Eq. (1.66) in Eq. (1.65) we obtain:

cov(de) = (H"H)'H"IL,o> . (H'H)™'H")"

T rp\—1 17T Ty —1\T 2
= (H'H) " H H(H H) ") o, ..

= (H'H)'o? . (1.67)

UERE

However, cov(dx) can be computed as follows:

2

O-Iu O-xuyu O--'Euzu O--'Eutu

2

cov(dz) = Tyuzu Ty, Uylézu Tyutu

O-Zuwu O-Zuyu O-Zu O-Zutu

2

Otuzy  Otuyy  Otuza O,
Then, as we mention before, the geometry of the constellation plays an important
role since the components of (H” H)™!' quantify how pseudorange errors translate into
components of the covariance of dxr, meaning that, it is possible to determine how

accurate the computed position is from the geometry of the constellation.

Dilution Of Precision [31, 52, 54| (DOP) parameters in GPS are defined in terms of
the ratio of combinations of the components of the cov(dz) and o2 . It is implicitly
assumed in the DOP definitions that the user/satellite geometry is considered fixed. It
is also assumed that local user coordinates are being used in the specification of cov(dz)
and dx. The positive x-axis points east, the y-axis points north, and the z-axis points
up. The most general parameter is termed Geometric Dilution Of Precision (GDOP)
and it is defined by:

Vo ok o2 4ol
GDOP = )

(1.68)

UUERE

An expression for GDOP is obtained in terms of the components of (HTH)™! by
expressing (HTH)™! in component form:

Dll D12 D13 D14
D21 D22 D23 D24
-D31 D32 D33 -D34
D41 D42 D43 D44

(HTH) ! =

Then, GDOP can be computed as the square root of the trace of the (H” H)~! matrix:

GDOP = \/Dy; + Dy + D33 + Das. (1.69)

If we assume that there are no errors in the synchronization of the clocks, the value
Dy can be disregarded. The DOP computed without Dy, is called Position Dilution of
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Precision (PDOP). Similarly, we obtain other DOP values such as; Horizontal Dilution
of Precision (HDOP), Vertical Dilution of Precision (VDOP), and Time Dilution of
Precision (TDOP). They can be expressed in terms of the components of (HTH)™! as
follows:

PDOP = /Dy, + Doy + Dss,

HDOP = V Dll + 13227
VDOP = +/Dss,

TDOP = +/Dui. (1.70)

At this point, it is obvious that the geometry of the constellations has a direct role on
positioning accuracies [53|. Several tools are defined to describe the accuracy error, but
Geometric Dilution of Precision (GDOP) used by GPS it is the most powerful accuracy
indicator since it consider all possible sources of errors. The GDOP will show how well
the constellation is organized geometrically. It is a quantity varying between 1 and oo,
while 1 means that the constellation presents a perfect distribution of satellites, a large
value (greater than 6) means that presents a really poor geometrical distribution.

1.4 Evolutive Algorithms

An optimization problem consists of finding the best solution within a search space,
which is the set of all possible candidate solutions. This space has the same dimension
as the number of variables that the problem has and, depending on the problem type,
the variables can be discrete or continuous.

For a search space with only a small number of possible solutions, all of them can
be examined in a reasonable amount of time and the optimal one will be eventually
found. This technique is called brute-force search or exhaustive search. Basically, it
consists of enumerating all possible candidates for the solution and selecting the most
suitable. It has an easy implementation, and it always finds the optimal solution if it
exists. However, the cost of this algorithm grows exponentially with the dimension of
the search space.

Instead of using the brute-force search algorithm, evolutionary algorithms [23] have
been developed. These kind of algorithms abstract biological evolution or biological
behaviors to search an optimal solution to a problem. Two different algorithms are con-
sidered [22,26]: Genetic Algorithm and the Particle Swarm Optimization Algorithm.

1.4.1 Genetic Algorithms

Charles Darwin’s On the Origin of Species, in his Principles of Biology (1864) pro-
posed the idea that over several generations, biological organisms evolve based on the
principle of natural selection “survival of the fittest”. This idea works well in nature.
An individual in a population competes with each other for different resources like
food, shelter, etc. Due to the selection, the most adapted to the environment and the
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stronger ones have more chance to survive and reproduce, while the less adapted have
less chance to survive and reproduce. Continuously improving the individual char-
acteristics of the species, since the new generations take the good characteristics of
their antecessors and will improve them at each generation. They will become more
and more adapted to their environment. Note that, sometimes in nature it will oc-
cur a crazy or random fact, that consists of taking random characteristics and create
an individual completely new with different characteristics that sometimes are better,
sometimes worse than the existing individuals.

The idea of solving different optimization problems using evolutive techniques started
in 1954 with the work of Nils Aall Barricelli. However, Genetic Algorithms became
popular through the work of John Holland in 1975 in his book Adaptation in Natural
and Artificial Systems. It will be very useful a brief introduction to biology to un-
derstand Genetic Algorithms. Genetics is a science that study all the differences and
similarities in the individuals of a specie. The genetic information of an individual,
which has all the characteristics of itself, is stored in the chromosomes. The chromo-
somes are divided in several parts called genes. These genes code the properties of the
individuals of the specie. In the reproduction process, the new individuals will select
the genes between all the available possibilities of their antecessors. Note that, indi-
viduals with better characteristics have a greater chance to reproduce its genes, while
the ones which are less adapted or have worst characteristics have a fewer chance to
reproduce its genes. In this reproduction process, all the genes of the new individuals
may suffer small variations.

Genetic Algorithms [44] mimic the process of natural evolution described above. It is
a search technique to find optimal solutions to a problem. Genetic Algorithms have
an initial population represented by a group of individuals, each of these individuals
represents a solution to the optimization problem and they are considered as the chro-
mosomes. After evaluating all the initial population with the fitness function, to know
how good the solutions are, a number of individuals are selected to create the next
generation combining their genes. In the reproduction process, different reproduction
operators are used, such as, recombination and mutation. The first one consists of
recombining different chromosomes of two different individuals (parents) to generate a
new individual (child). The second one is a factor that randomly generates completely
new genes for the new individual. When the new generation is built, we evaluate the
population with the fitness function and start again the process until the stopping cri-
teria is reached. It can be a finite number of generations, the convergence toward the
optimal solution, etc.

The following procedure shows how the Genetic Algorithm works;

Step 1: Select randomly an initial population of n individuals from the search space,
i.e. select randomly n solutions of the optimization problem.

Step 2: Evaluate the individuals of the population with the fitness function.

Step 3: Create a new population following these steps:
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Step 3.1: Select two individuals (parents), the better the fitness is, the bigger
the chance to get selected.

Step 3.2: Crossover the genes of the two parents to create a new individual
(child).

Step 3.3: With a mutation probability, mutate randomly the genes of the new
individual (child).

Step 3.4: Repeat the process until have a population of n new individuals.

Step 4: If the stopping criteria is satisfied, evaluate the new generation and select the
most suitable individual. If not, go to Step 2.

1.4.2 Particle Swarm Optimization Algorithm

Particle Swarm Optimization Algorithm [44] (PSO) is a population based stochastic
optimization method, i.e. a method that generate and use random variables to find
the optimal solution. PSO was developed by Dr. Eberhart and Dr. Kennedy in 1995,
inspired by the social behavior of bird flocking or fish schooling. The basic idea is to
simulate these behaviors with an algorithm. In both cases, if a bird or a fish sees a
good path to go (because they find food, protection or good weather), the rest of the
swarm will be able to follow that path even if they were going in the opposite way.
However, there is a “craziness factor” or random factor that makes some of the particles
move away from the flock in order to explore new paths.

It is possible to translate this behavior into an algorithm. Each different bird or
fish is considered as an initial particle in the search space. These particles are flying
through the search space and have two essential capabilities: remembering their own
best position (individual factor) and knowing the best position of the entire swarm
(social factor). The basic idea is that individuals communicate good positions to each
other and adjust their own position and velocity depending on the social and individual
factors.

During the simulation, each particle has a position and velocity. Additionally, each
particle keeps track of the position of the best solution it has visited so far (pbest) and
the position of the best solution visited by any other particle (gbest). At each step, the
velocity is updated at each iteration taking into account pbest and gbest.

Changing the position and velocity of each particle at each iteration works as follows.
Assume that the i-th particle has position vector x;(t) and velocity vector v;(t). Then,
the updated velocity will be:

vi(t+1) = av;(t) + ¢1 - rand; - (pbest, — x;(t)) + co - rands - (gbest(t) — x;(t)) (1.71)

where « is the inertia weight that controls the exploration of the search space. The
constants ¢; and ¢y, which in our simulation are taken between 0 and 1, determine
how the individual and social factor affects the velocity of the particle. Finally, rand,,
randy are random numbers chosen uniformly in |0,1]. Note that without the second
and third terms of the expression (1.71) the particle will keep in the same direction
until it hits the boundary.
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The position is updated as follows:

This process is repeated for each particle until the best optimal solution is obtained or
the stopping criteria is reached.

The PSO can be implemented as follows:
Step 1: Initialize randomly an initial swarm of n particles from the search space.

Step 1.1: Initialize randomly the initial positions, i.e. the solutions of the prob-
lem, z;(0).

Step 1.2: Initialize randomly the velocities of the initial particles, v;(0).

Step 1.3: Update the pbest and gbest values thought the fitness function.
Step 2: Update the new velocities for the particles, v;(t + 1), according to Eq. (1.71).
Step 3: Calculate the new positions of the particles, z;(t + 1) = z;(t) + v;(t + 1)).
Step 4: Update the pbest and gbest values thought the fitness function.

Step 5: Go to step 2, and repeat until convergence or stopping criteria.
Both methods are included in the evolutionary computation, and offers practical ad-

vantages to several optimization problems. They are conceptually simple and highly
parallelizable.



Chapter 2

Optimizing Flower Constellations for
(Global and Regional Coverage

2.1 Introduction

The design of optimal satellite constellations is the key problem in all kind of applica-
tions such as global navigation, global/regional coverage, telecommunications, Earth
observation, radio-occultation, etc.

The purpose of this chapter is to determine the best 2D-LFC for certain global coverage
problems using evolutionary algorithms. In particular, we are interested in the problem
of Global Positioning, with a minimum of four satellites in view from any point on the
Earth at any time as a constraint. The geometry of these four or more satellites with
respect to a ground station should ideally minimize the Geometric Dilution of Precision
(GDOP).

The metric defining our optimality is the maximum value of the GDOP experienced
over the propagation time for 30,000 ground stations randomly distributed on the
Earth surface. In this chapter the reason for choosing 30,000 ground stations randomly
distributed on the Earth surface, the optimal propagation time needed for computing
the GDOP amongst other things will be discussed. Evolutive algorithms are used
to carry out a search among all possible configurations, to find the parameters that
minimize the maximum GDOP experienced. One of the original parts of this chapter is
that we extend the search space to include eccentric orbits using the 2D Lattice theory.

2.2 Optimization problem

Given the total number of satellites of a 2D-LFC (Nyy), it is possible to obtain all
the different possible configurations for the phasing parameters (N,, Ng,, N.). The
number of different configurations can be obtained from the divisors of Ng,. For each
divisor d, we select N, = d, Ny, = Nyu/d and the configuration number N, varying
between 0 and d — 1. Consequently, the number of different configurations is given by
the formula,

F(Not) = > d. (2.1)

d|Nsat

31
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As an example, given Ny, = 27 satellites, following Eq. (2.1) the different possibilities
for the phasing parameters are 40, and they are shown in Table 2.1.

Noge || 27 | 27 | 27 | 27 | 27 | 27 | 27 | ... | 27 |27 | 27| ... | 27
N, 1131313191919 9 | 27|27 | ... |27
Neo 12719191913 |33 31| 1]...]1
N, o012 10]1]2 810 ] 11]...1]26

Table 2.1: Possible phasing parameters.

All satellite missions have a fixed semi-major axis, meaning that the orbital period is
known (7},). Since our missions are around the Earth, the rotating period of our ECEF
frame, which is the Earth rotating period, is also known (7). Therefore, it is possible
to select parameters NV, and Ny in such a way that they satisfy Eq. (1.39).

2.2.1 Fitness function

In this problem it is necessary to determine which satellites are visible from a ground
station. For this purpose, a grazing angle or spacecraft elevation angle of a satellite
is required. This is the angle between the horizon and the position vector of a satel-
lite. Another way to refer to this angle is using the angle of incidence which is the
angle between the normal vector to the surface of the Earth at the ground station and
the position vector. Due to the existence of buildings, mountains, and other visibility
obstacles a reference grazing angle is considered in the formulation of all global posi-
tioning problems. In our problem, we consider a reference grazing angle a = 10°, or in
other words, a reference angle of incidence 8 = 80°. Figure 2.1 illustrates the reference
grazing angle («) and the reference angle of incidence (/3). Also it is illustrated when

a satellite is or is not visible.
<§§§> Visible satellite

Building
Not visible satellite éf

Ground Station

Figure 2.1: The grazing angle o and the angle of incidence f.

As we illustrate in Figure 2.2, a satellite will be visible if the angle ¢ is smaller than
the reference angle of incidence (8 = 80°). This is equivalent to cos(e) > cos(f3), or
using the dot product to express cos(¢), to the following condition:

(rsat - rgs) *Tys

|[(rsat — r95)|| : HrQSH

> cos(f3).
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Earth
Center

Figure 2.2: A visible satellite in the ECEF frame.

Definition 1. Let FC be a Flower Constellation and let r,, be the location of a ground
station. The Geometric Dilution Of Precision is a function:

GDOP N’ xR xR* xR — Ry
(FC,1pt) +— GDOP(FC,rye,t). (2.2)

See preliminaries for an explicit formula.

Definition 2. Let FC be a Flower Constellation and let 7,,,, be a propagation time.
We define the maximum value of the GDOP experienced by the FC during the time
interval [0, T} for all the points of the Earth surface as Ground Stations:

max GDOP : N* x R® x Ryg — Ry
(FC, Tyrop) +— maxGDOP(FC,Ty,p).
max GDOP(FC,T,.,p) = max max GDOP(FC,rg,t). (2.3)

t€[0,Tprop) rgs EEarth

In the case where T,,,, is the repetition time of the constellation 7" = N,T,,, which is
the time that the constellation needs to return to its original configuration, the function
above is the theoretical fitness function:

fitness : N* x R® — Ry,
FC —  fitness(FC).

fitness(FC) = maxGDOP(FC,N,T,) (2.4)

= max max GDOP(FC, ry,t).
t€[0,N,Tp] rgs€Earth
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2.2.2 Evolutive Algorithms

Given the total number of satellites of a 2D-LFC, for each possible configuration of
the phasing parameters, and the values for N, and N; already selected; evolutive
algorithms are used to carry out a search to find the best orbital parameters (e, 7, w),
which completely define the constellation, and minimize the fitness function.

In the case of the Genetic Algorithm an initial population of n = 60 individuals is taken,
i.e. 60 possible values for the orbital parameters (e,i,w). Then, each constellation is
evaluated with the fitness function. After that, a new generation of 60 individuals
is created. The new individuals are created with 10 fittest ones from the previous
generation, and 50 others obtained by crossover and mutation. The crossover consists
of selecting a father (e, i, wy) and a mother (e,,, iy, wy,) from the previous generation
at random and creating a son

(erx1 + em(l — 1), 0522 + im (1 — 22), wrrs + wp (1 — x3)),

where x1, 29,23 € {0,1} are chosen at random with 0.5 probability each. After the
son is created, we decide with probability 0.05 whether it mutates or not. Mutation
consists of choosing all three coordinates e, 7, w at random within their allowed ranges.
The process is repeated 60 generations and, at that point, the best individual found
provides the solution to the optimization process.

In the case of the Particle Swarm Optimization an initial swarm of n = 60 particles is
taken, i.e. 60 possible values for the orbital parameters (e, i, w) which are the positions,
and 60 possible velocities for them. Both positions and velocities are chosen randomly
within the search space. It should be noted that neither position or velocity correspond
with the actual motion of the satellites; these quantities are unitless. Then, we evaluate
each constellation with the fitness function and update the new velocities and positions
according to Eq. (1.71) and Eq. (1.72). We are using an inertia factor a = 0.95,
individual factor ¢; = 0.75, social factor co = 0.35, and the process is repeated 60
iterations.

We show how the Particle Swarm Optimization algorithm works with the following
example. Given a 27 satellite constellation with parameters N, = 3, N, = 9, and
N. = 2. We find the optimal parameters (e, i,w) which minimizes the fitness function.
The behavior of the different particles (e, i,w) of the swarm is presented in Figure 2.3.
We show different plots in where we illustrate the position of each particle (e,i,w) in
different generations. In particular, we plot the generation number 1, 5, 10, 20, 30,
40, 50, and 60 from the top to the bottom and from the left to the right, respectively.
We observe how the particles converge to the optimal solution, which is e = 0.0,
1 =54.057°, and w = 173.707°.

2.2.3 Search Space Reduction

Evolutive algorithms have an initial population of 60 individuals, meaning that we have
to propagate 60 constellations and compute the maximum value experienced for the
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Figure 2.3: Swarm of particles searching the optimal solution.
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+ -

Figure 2.4: Counterclockwise and clockwise direction.

GDOP over the 30,000 ground stations. This process is repeated 60 times, because the
number of generations is 60. Consequently, we need to propagate 3,600 constellations
and compute the maximum value of the GDOP experienced in each case. Further-
more, this process needs to be repeated as many times as different configurations the
constellation has, that can be derived from Ny, by Eq. (2.1).

In the following discussion, we will see a few results that allow us to reduce the prop-
agation time 7', and also the search range of some variables of our search space. Note
that, each reduction translates into a significant reduction in the computational cost.

2.2.3.1 Propagation time reduction

Definition 3. A counterclockwise rotation around the z-axis through angle « is a
function:

Rot,(a) :R* — R?

cosa —sina 0
x +— Rot,(a)x=[ sinaa cosa 0 |x.
0 0 1

As we illustrate in Figure 2.4, when the angle « is positive the rotation is called
counterclockwise. When the angle « is negative the rotation is called clockwise.

Let F'C be a Flower Constellation. F'C’ = Rot,(«)FC'is the constellation obtained by
a rotation around the z-axis through angle o of the position vector of each satellite.
The parameters of FIC' and F'C are exactly the same except €, = Qg + a.

Lemma 4. Let FC be a Flower Constellation. Then, in the ECEF frame,

FO(t) = Rotz(zp%Tp)FC(t +T)). (2.5)
Proof. In the ECEF frame the inertial orbits rotate with angular velocity equal to the
Earth rotating velocity ?F—: rad/sec as we illustrate in Figure 2.5. After 7}, seconds, the
orbits have rotated around the z-axis an angle i%Tp rad. The position of the satellites
in the inertial orbits at time ¢ + 7T}, seconds will be the same as at time ¢, and the
configuration of the constellation is exactly the same but rotated. Then, by rotating
the FC around the z-axis an angle :F2T—2Tp rad the position of the satellites at time ¢
and at time ¢ + 7, will be exactly the same. Consequently, Eq. (2.5) is satisfied. [
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Figure 2.5: First orbit of the FC at time ¢, and at time ¢ + 7T},.

Lemma 5. Let FC be a Flower Constellation. Let ry, be a ground station. Then, in
the ECEF frame,

GDOP(FC, 1,,t) = GDOP(FC, Rotz(i;—”Tp)rgs, L+T)). (2.6)
d

Proof. After T, seconds, as we show in lemma 4, the position of the satellites is the
same but rotated an angle :|:2T—2Tp rad. The ground station r,s after 7}, seconds will be
in the same position since we are in the ECEF frame. Consequently, if we rotate the
ground station an angle :l:%—:Tp rad the relative position of the satellites and the ground
station is the same at time ¢ and at time ¢ 47, and the GDOP will be the same as the
lemma states. O

Theorem 6. Let FC be a Flower Constellation. Then,
maxGDOP(FC, N,T,,) = maxGDOP(FC,T,).
Proof. In the ECEF frame,

maxGDOP(FC,N,T,) = max max GDOP(FC, ry,t)

te[0,N,Tp] rgs €Earth

=  max max max GDOP(FC,ry,t)

i=0,...,Np—1 te[iT},(i+1)Tp] rgs EEarth

= max max max GDOP(FC,ry,t+il,)

1=0,...,Np—11t€[0,T}] rgs €Earth
2m
= gmax tgl[oz}ii}‘i] max GDOP(FC, Rotz(j:?dsz)rgs, t)
= max max max GDOP(FC,r . t)

i=0,...,Np—1t€[0,T}] r}, ,€Earth g8

= max max GDOP(FC,r|_t)

t€(0,T;] ), €Earth 1gs
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Greenwich A Greenwich
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Figure 2.6: First orbit of the FC at time ¢, and at time ¢ + Nso

= maxGDOP(FC,T)).

The first and the last equalities are true by definition. The second equality consists
of dividing the time interval [0, N,7},] into smaller intervals of length 7,. The fourth
equality is by using lemma 5. The fifth equality is true since the Earth is a solid of
revolution (spheroid), and it has a rotational symmetry with respect to the z-axis, the

points ry, cover all the Earth surface as the points rg,. O
Lemma 7. Let FC be a Flower Constellation. Then, in the ECEF frame,
2 T, T,
FC(t) = Rot, FC(t . 2.7
(t) = Rot. (¥ 53 FC(t+ 7) 1)

Proof. In the ECEF frame the inertial orbits rotate with angular velocity equal to the

Earth rotating ve10c1ty rad/ sec. After ]:\C—" seconds, the orbits have rotated around

the z-axis an angle i = rad. as we illustrate in Figure 2.6. Note that, after N— sec
the satellites in the 1nert1al orbit will occupy the position that the following satellite
occupied at time ¢, for example, satellite 0 after NLO sec will occupy the position that
the satellite 1 occupied at time ¢. This means, that the distribution of the satellites
in the inertial orbits at time ¢ + NLPO seconds will be the same as at time ¢, but each
satellite will occupy the position that its following neighbor occupied at time ¢, so
the configuration of the constellation will be exactly the same, but rotated. Then, by

rotating the FC around the z-axis an angle $ T —rad the position of the satellites

at time ¢ and at time t + N_SO will be exactly the same. Consequently, Eq. (2.7) is
satisfied. 0J

Lemma 8. Let F'C be a Flower Constellation. Let ry, be a ground station. Then, in
the ECEF frame,

2r 1, T,

GDOP(FC, Iys, ) GDOP(FC ROt ( T N )rgs,t+N—
d so

). (2.8)
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Proof. Similar to Lemma 5. O

Theorem 9. Let FC be a Flower Constellation. Then,

maxGDOP(FC,T,) = maxGDOP(FC, Jz;p ).

SO

Proof. In the ECEF frame,

maxGDOP(FC,T,) = max max GDOP(FC, ry,t)

t€[0,T] rgs€Earth

= max  nax max GDOP(FC, ry,t)

]:0 ..... Nso—1 te[ (]_,’_1) Tp ] rgSGEarth

T,
= max max max GDOP(FC,ry,t+ j—2)
.7:0 ~~~~~ Nso_l tE[ TP ] Igs cEarth NSO

2r T,
= max max max GDOP(FC, Rot.(+ TWJN )rys, t)

7=0,....Ngso—1 telo, Tp ]rgSGEarth

= max max max GDOP(FC,r, 1)

7=0,Nso—1 1o, To | ¥ CRarth gs?

= max max GDOP(FC,r . t)

) Lgsy
tE[O, ]’\l;fo] I‘g5 cEarth

= maxGDOP(FC, ]z;p ).

SO
The first and the last equalities are true by definition. The second consists of dividing
the time interval [0,7),] into smaller intervals of length . The fourth equality is
by using lemma 8. The fifth equality is true since the Earth is a solid of revolution
(spheroid), and it has a rotational symmetry with respect to the z-axis, the points rgS
cover all the Earth surface as the points r;. O

Lemma 10. Let a,b > 1 be integers. The sequence {ia mod (b)} withi =0,1,...,b—
1 contains only the multiples of ged(a, b) between 0 and b — 1 inclusive.

Proof. (=) Let a be an integer in the sequence {ia mod (b)} with i =0,1,...,b— 1.
a is the remainder of dividing ia by b for some i. Then, o = 7a — bq. Since a is divisible
by ged(a, b), b is divisible by ged(a,b). Then, o = ia — bq is divisible by ged(a, b) and
« is a multiple of ged(a, b) between 0 and and b — 1 inclusive.

(<) Let 8 = ged(a,b)r be a multiple of ged(a,b) between 0 and b — 1. For some
m,n € Z, we have ged(a,b) = an 4+ bm. Then, 8 = (an + bm)r = anr + bmr. If we
divide nr by b we have nr = bg+ i with ¢ =0,1,...,b— 1. Then, § = abq + ai 4+ bmr.
Finally, the remainder of dividing az by b is § and we conclude that 3 belongs to the
sequence {ia mod (b)} withi=0,1,...,b—1 O

Lemma 11. Let a,b,¢ > 1 be integers. The sequence {jc —ia mod (bc)} with i =
0,1,...,c—1and j=0,1,...,b— 1 contains only the multiples of gcd(a, c) between 0
and bc — 1 included.
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Proof. (=) Let a be an integer in the sequence {jc—ia mod (bc)} withi =0,1,... ¢c—
land j =0,1,...,b— 1. « is the remainder of dividing jc — ia by bc. Then, a =
jc —ia — beq. Since c¢ is divisible by ged(a, ¢), a is divisible by ged(a,c) and begq is
divisible by ged(a, ). Then, « is divisible by ged(a, ¢). Consequently, « is a multiple
of ged(a, ¢) and it is between 0 and be — 1.

(<) Let 8 be a multiple of ged(a, ¢) between 0 and bc — 1. We have two cases:

Case 1: §=0. f € {jc—ia mod (bc)} withi=0,1,...,c—1land j=0,1,...,0—1
by choosing 7 = j = 0.

Case 2: §>1and 8 < bc—1. We know that § and ¢ are multiples of ged(a, ¢). Then,
bc — [ is also a multiple of ged(a,c). Furthermore, bc — 5 € [1,2,...,bc — 1].
Dividing be — 8 by ¢ we have be — f = cQ+7r with r € [0,1,...,c—1] and Q € Z.
Note that, r is multiple of ged(a, ). Applying Theorem 10 to r, we have that
r =ia mod (¢) with i = 0,1,...,¢— 1. Then, r = ia + ¢Q with Q € Z. Then,
be — B = ¢(Q + Q) + ia. Consequently, 8 = ¢(b— Q — Q) — ia. Now, we divide
b—Q — Q by b obtaining b — Q — Q = bw + j with j = 0,1,...,b— 1. Finally,
B = cbw + jc — 1a, which is the remainder of dividing jc — 7a by bc. This proves
that 8 belongs to the sequence {jc —ia mod (bc)} with i = 0,1,...,¢— 1 and
j=0,1,....b—1.

O
Lemma 12. Let FC be a Flower Constellation. Then, in the ECEF frame,
FC(t) = Rot,(FAQ F Aa)FC(t + At), (2.9)
where T, oAt omi
At = No]I{]so ged(N,, N,), AQ = T Ao = N
for some integer i € [0,..., N, — 1].

Proof. The mean anomaly of the satellites in a Flower Constellation is given by,

2rj N.2r 21 . ,
My, = e 2T N, —iN,),
TN, T NN, NN, UNe N

where 1 =0,1,...,N,—1land j =0,1,..., Ny, — 1.

Note that, since coordinates in the (€2, M)-space are modulus 27:

2 27

NN GNo =N = =i (No = iNe) + 2(iN, — i)
2
- N E[(1No — iNe) + NuoNo(iN, — iNe)]
- = [(jN, —iN,) mod (Ny,N,)]
T NN, e T e oG e
27

- Nsat[(jNo —iN.) mod (Ngu)].
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Figure 2.7: First orbit of the FC at time ¢, and at time t + At.

Our goal is to minimize the quantity M;; for any pair (7, 7). By using Lemma 11 with
values a = N,, b = Ny, and ¢ = N,. The sequence {jN, —iN. mod (N4N,)} contains
the multiples of ged(N,, N,) that are between 0 and Ny, N, — 1. Consequently,

H;ion{jNo —iN. mod (Nsut)} = ged(Ne, N,).
Thus, the quantity that minimizes the value M;; over all pairs (7, ) is gcd(Nc, N,).

Since the satellite needs 7}, seconds to reach its initial position in the 1nert1al orbit, to
sweep ]\?—:t ged(N,, N,) radians the satellite needs At = (N, N,) seconds.

In the ECEF frame the inertial orbits rotate with angular velocity equal to the Earth
rotating Velomty rad/ sec. Then, after At seconds, the orbits have rotated an angle

AQ = i2T7r At rad.
d

Furthermore, the pair (i, 7), previously computed, indicates where the first satellite of
the orbit 0 at time ¢ will be after At seconds. Thus, the satellite 0 of the zero orbit, as
we illustrate in Figure 2.7, after At sec. will occupy the position that the satellite j—th
in the 7 — th inertial orbit occupied at time t. Note that, the distance between the first
orbit and the i — th orbit is Aa = m Consequently, by rotating the FC around the
z-axis firstly an angle FAQrad and secondly an angle FAa« rad, the constellation will
have the same configuration at time ¢ and at time ¢t + At. This is a rotation around
the z-axis of angle FAQ F Aa, then Eq. (2.9) is satisfied as theorem states. O

Lemma 13. Let FC be a Flower Constellation. Let rys be a ground station. Then, in
the ECEF frame,

GDOP(FC,ry,t) = GDOP(FC, Rot,(£AQ £+ Aa)rys, t + At), (2.10)
where or At o
_ 1 2w _ 2mi
At = NN ged(N,, N,), AQ = T, Aa = N
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for some integer i € [0,..., N, — 1].

Proof. After At seconds, as we show in lemma 12, the distribution of the satellites
is the same but rotated an angle (£AQ = AM)rad. The ground station r,, after At
seconds will be in the same position since we are in the ECEF frame. Consequently,
if we rotate the ground station an angle (£AQ + AM) rad the relative position of the
satellites and the ground station is the same at time ¢ and at time ¢ + At and the
GDOP will be the same as the lemma states. O

Theorem 14. Let FC be a Flower Constellation. Then,

T
maxGDOP(FC, Np ) = maxGDOP(FC, At),

where At = NOT]f,w ged (N, N,).

Proof. Define n = . In the ECEF frame,

No
ged(Ne,No)

T
maxGDOP(FC,—2) = max max GDOP(FC,ry,t)
Nso te[(),];l;ip] rgs€Earth
=  max max max GDOP(FC, ry,t)

k=0,...,n—1te[kAt,(k+1)At] rgs€BEarth

= max max max GDOP(FC,r,,t+ kAt)
k=0,...,n—1t€[0,At] rgs€Earth

= max max max GDOP(FC, Rot,((£AQ £ AM)k)r,,t)

k=0,...,n—1t€[0,At] rgs€Earth

= max max max GDOP(FC,r . t)

k=0,...,n—1 t€[0,Ad] r},,€Earth g8

= max max GDOP(FC,r)t)

te[0,At] ry EEarth

= maxGDOP(FC, At).

The first and the last equalities are true by definition. The second consists of dividing
the time interval [0, NLPO] into smaller intervals of length At. The fourth equality is
by using lemma 13. The fifth equality is true since the Earth is a solid of revolution
(spheroid), and it has a rotational symmetry with respect to the z-axis, the points r/,

cover all the Earth surface as the points r;. O

Corollary 15. Let F'C' be a Flower Constellation. Then, the fitness function can be
reformulated as:
fitness(FC) = maxGDOP(FC, At),

where At = NOT]f,w ged(Ng, N,).

Proof.

fitness(FC) = maxGDOP(FC,T,N,)
= maxGDOP(FC,T,)

Ty

v

S0

= maxGDOP(FC,
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= maxGDOP(FC, At).

The first equality is true by definition. The second, third and fourth equalities are true
by using Theorem 6, Theorem 9, and Theorem 14, respectively. O

Note that, the fitness function as defined in (2.4) is not computationally feasible since
it is not possible to compute the value of the GDOP at each point of the Earth surface.
Therefore, an accurate approximate fitness function is required. For that purpose we
select n ground stations randomly distributed over the Earth surface ryq,, rgs,, ..., Iys,
that will remain fixed throughout this section.

Definition 16. Let FC be a Flower Constellation, let 7,,,, be a propagation time and
let ryq,,Tys,, ..., Tys, be the position vector of the n ground stations. We define the
maximum value of the GDOP experienced by the FC during the time interval [0, T},0]
for the n ground stations over the Earth surface:

max GDORP : N3 X RG X RZO — R21
(FC, Tyrop) = maxGDOP(FC,Ty,p).

max GDOP(FC,T,,) = max max GDOP(FC,ry,,t). (2.11)

1[0, Typrop] =1,01m

In the case where T, is the repetition time of the constellation " = N, T}, the function
above is the approximate fitness function:

fitness : N* x R® — Ry,
FC w  fitness(FC).

fitness(FC) = maxGDOP(FC,N,T,)
= max max GDOP(FC,r,,1).
te[0,NpTp] i=1,...,n
Remark 17. When the number of ground stations approaches infinity the approximate
fitness function converges to the theoretical function.

fitness(FC) — fitness(FC).

We will decide below what is the minimum number of ground stations needed to have
an acceptable approximation of the theoretical fitness function. For that purpose we
take a Flower Constellation of 27 satellites distributed in three orbital planes N, = 3,
with nine satellites per orbit Ny, = 9, and configuration number N, = 2. The semi-
major axis equal to 27,000 km, eccentricity equal to 0.05, inclination equal to 56°,
argument of perigee, Right Ascension of the Ascending Node and mean anomaly equal
to zero. Table 2.2 shows how the value of the approximate fitness function changes as
the number n of ground stations increases, and how the different seeds, which set the
starting point for generating the n ground stations, influence to get the optimal value
of the fitness function.

We observe that this is a sensitive procedure that depends on the initial seed to generate
the n ground stations and also on the number of ground stations. We must reduce
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seed — 1 seed — 2 seed — 3 seed — 4
n fitness(FC) fitness(F'C') fitness(FC) fitness(FC)
100 3.605398276568 | 3.628921099334 | 3.583989218822 | 3.639154163226
500 3.674101015200 | 3.650307182435 | 3.656458212953 | 3.647322709899
1000 3.674180285547 | 3.650307182435 | 3.670664296126 | 3.684728030781
2000 3.678746975526 | 3.669673852604 | 5.090641658212 | 5.116533527851
5000 5.097846349537 | 3.680194764103 | 5.090641658212 | 5.116533527851
10000 5.120664103384 | 5.121797474482 | 5.090641658212 | 5.116533527851
15000 5.120664103384 | 5.121797474482 | 5.090641658212 | 5.116533527851
20000 5.120664103384 | 5.121797474482 | 5.090641658212 | 5.116533527851
25000 5.121846132055 | 5.121797474482 | 5.090641658212 | 5.116533527851
30000 5.121846132055 | 5.121797474482 | 5.090641658212 | 5.116533527851
35000 5.121846132055 | 5.121797474482 | 5.090641658212 | 5.116533527851
40000 5.121846132055 | 5.121797474482 | 5.090641658212 | 5.116533527851
45000 5.121846132055 | 5.121797474482 | 5.090641658212 | 5.116533527851
50000 5.121846132055 | 5.121797474482 | 5.090641658212 | 5.116533527851
60000 5.121846132055 | 5.121797474482 | 5.090641658212 | 5.116533527851
70000 5.121846132055 | 5.121797474482 | 5.090641658212 | 5.133762521059
100000 5.126021072346 | 5.130243646165 | 5.133643131118 | 5.120944798524
200000 5.126491285036 | 5.130243646165 | 5.133643131118 | 5.126593590013
500000 5.136021085303 | 5.135772602892 | 5.133643131118 | 5.135591784229
1000000 | 5.136021085303 | 5.135772602892 | 5.137804209605 | 5.135591784229
5000000 | 5.137970170756 | 5.135918682806 | 5.137961423302 | 5.137972091420
10000000 | 5.137970170756 | 5.137956261401 | 5.137961423302 | 5.137972091420
50000000 | 5.137970170756 | 5.135918682806 | 5.137961423302 | 5.137972091420
100000000 | 5.137975421252 | 5.137987828576 | 5.137962103239 | 5.137986488673

Table 2.2: Value of the fitness function depending on the number of ground stations
and seed number.
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the number of ground stations as much as possible since the computational cost of
determining the optimal value of the fitness function increases linearly as the number
of ground stations raises. If we consider 30,000 ground stations, the different GDOP
values obtained vary no more than 0.03. Although that difference is not meaningless,
we decided that 30,000 ground stations were enough to keep certain accuracy while
keeping a feasible computational time cost. Thus, we conclude that using 30,000 ground
stations randomly selected over the Earth surface the approximate fitness function
satisfies:
fitness(FC) = fitness(FC).

Corollary 18. Let F'C' be a Flower Constellation. Then, the fitness function can be
approximated by:

fitness(FC) = fitness(FC) = max GDOP(FC, At),

where At =

ok ged(Ne, N,).
Proof.

fitness(FC) max GDOP(FC,T,N,)
max GDOP(FC,T,N,)

(
(
= maxGDOP(FC, )
(
(
(

I

max GDOP(FC, Nso)

max GDOP(FC, At)
max GDOP(FC, At).

I

The first equality is true by definition. The second and the last equalities are true by
Remark 17. The third, fourth, and fifth equalities are based on Corollary 15. O

2.2.3.2 Symmetries in a 2D-LFC

We have decreased the computational cost by reducing the propagation time to compute
the GDOP of the constellation. Another way to decrease the computational cost is
by reducing the search space. By selecting the inclination in a range 0° < ¢ < 90°
(instead of 0° < i < 180°) or choosing the parameter N, in a range [0, ..., £2] (instead
of [0,..., N, — 1]) it is possible to reduce considerably the computational cost. The
following theorems show that either of these two reductions of the search space do not

skip any possible configuration.

The values of the configuration number, N., and the index ¢ are considered modulo N,,
i.e. we always reduce to the representative value in the interval [0, N, — 1]. Similarly,
the index j is considered modulo Ny,. Thus, the value — N, represents —N, mod (N,),
and the value —j represents —j mod (Nj,).

Proposition 19. Let M, M, be the mean anomalies and ¢, ¢ the true anomalies
of two satellites. If My = —M; then, py = —¢.
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Proof. The function that converts the eccentric anomaly to the mean anomaly (see
Eq. (1.26)),

M :[0,27] — 0,27
E — M(E)=F —esin(E),

is an odd function. The inverse of an odd function (M ') is also an odd function. The
function that converts the eccentric anomaly to the true anomaly (see Eq. (1.28)),

®:[0,27r] — [0,27]

1 E
E — @(E):2arctan< 1+€tan(§)),
—e

is an odd function since it is the composition of odd functions. Consequently, the
function that converts the mean anomaly to the true anomaly, which is the composition
of M1 with the function ®, is an odd function:

oM ':[0,27] — [0,27]
M +— ®oM (M)

In this particular case,

3 =P o M (M) = ®(M ' (=M)) = (M (My)) = —¢1.

U
Proposition 20. Let « be an angle, the following property is satisfied:
1 0 0 1 0 0
Rot,(—a)=1| 0 —1 0 | Rot, ()| O =1 0O |. (2.12)
0 0 1 0 0 1

The same also applies changing z by z.

Proof.
cos(—a) —sin(—a) 0
Rot.(—a) = sin(—a)  cos(—a) 0
0 0 1

0 0
1 0 0 cos(a) —sin(a) 0 1 0 0
= 0 -1 0 sin(a)  cos(a) 0 0 -1 0
0 0 1 0 0 1 0 0 1
1 0 0 1 0 0
= 0 -1 0 | Roto(e)| O =1 0 .
0 0 1 0 0 1

The case with x is proved similarly. O
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Theorem 21. Let FC1(N,, Nyo, Ne, a, e,i,w, oo, Moo) and F'Cy(N,, Ngo, —N,, a, e, m—
i, —w, Qoo+, —Myo) be two Flower Constellations. Then, the position of the satellites
satisfies,

ri;(t) = —xi_;(—t), (2.13)
where rj;(t) represents the position of the satellite (,7) at time ¢ of the Flower Con-
stellation F'Cy, and r?(_j)(—t) represents the position of the satellite (i, (—j)) at time
—t of the Flower Constellation F'Cs.

Proof. The RAAN and the Mean anomaly of the constellations F'C; and FC5 satisfy:

21

Uy = Qo+t N, =+,
T ‘ _ 27(—t)
Mz( J)( t) = —Mpy + NONSO(_]NO +i(=Ne)) + T, = _le](t)
Using Proposition 19, we get gog(_j)(—t) = —;;(t). Consequently,
. cos(py_;(—1)) 1 0 0
sin(¢?_(=t)) | =10 =1 0 |u,
1+ecos(goz( (1) (0]) 00 1
where
, cos(eh (1)
u= | sinteb 1)
1+e cos(gpij(t)) 0

Thus, the position of the satellite (i, —j) at time —t in the Flower Constellation F'Cy
is given by:

cos(3_;)(—t))

p . 2
) 2 (-t)) Sln((pz(aj)(_t))

)) Rot (i *)Rot . (w ¥ cco(el

Z(J

1 0 0
= Rot.(Q; + m)Rot, (7 —i)Rot.(—w) | 0 =1 0 |u
0 0 1
-1 0 0 1
= Rot.(Q) [ 0 -1 0 0 Rot,(
0 1 0 0
1 0 0 1 0 0 1 0 0
0 -1 0 0 —1 0 | Rot.(— 0 -1 0 |u
0 0 1 0 0 1 0 0 1
-1.0 0 1 0 0
=Rot.(Q;)| 0 1 0 |Roty(—i)[ 0 =1 0 | Rot.(w)
0 0 —1 0 1
1.0 0 1 0
=Rot.(Q2;)| 0 1 0 0 -1 0
0 0 —1 0 0 1
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1 0 0 1 0 0
0 =1 0 | Roty(=i)| 0 =1 0 | Rot,(w)u
0 0 1 0 0 1

= —Rot(Q;) Rot, (i) Rot..(w)u.

= _r}j(t)'

The first equality is true by definition. The second equality consists of expressing the
parameters of F'Cs in terms of the parameters of F'C. The third equality consist of
splitting Rot. (€}, + ) into Rot.(j;) Rot.(r), and Rot,(m — i) into Rot,(m)Rot.(—1),
and introducing the identity matrix. The fourth equality is obtained by applying
Proposition 20 to Rot,(w). The fifth equality is true by introducing the identity matrix.
The sixth equality is true by applying Proposition 20 to Rot,(1). O

Theorem 22. Let F'C(N,, Ny, Ne, a, e, i,w, 0, Moo) and FCy(N,, Ngo, —Ne, a, e, m—
i, —w, Qoo + 7, —Mp) be two Flower Constellations. Then,

max GDOP(FCy,T,) = max GDOP(FCy,T)). (2.14)
Proof.

max GDOP(FCy,T,) = max max GDOP(FCyry,t)

t€[0,Tp] rgs€Barth

(
= max max GDOP(FCy,ry, —t)
te[0,Tp] rgs€Earth
(
(

= max max GDOP(FCy, —ry,t)

t€[0,Tp] rgs€Earth

= max max GDOP(FCy,r gs>)

t€(0,Tp] rjsEEarth

— maxGDOP(FCy,T)).

The first and the last equalities are true by definition. Whether the time goes positive
or the time goes negative, after 7, seconds all the inertial orbits have been swept by
the satellites and considering all the points of the Earth surface, the maximum GDOP
experienced will be the same in both cases. Consequently, the second equality is true.
The third equality is true by using Theorem 21. The fourth equality is true since the
Earth is a solid of revolution (spheroid), and it has a symmetry with respect to the
center of the Earth, the points r’gs cover all the Earth surface as the points rg. O

Corollary 23. Given a Flower Constellation (F'C}) with the inclination in the range
[0°,180°]. There always exists another Flower Constellation (F'Cy) with the inclination
in the range [0°,90°] that has the same maximum value for the GDOP experienced as
(FC1).

Proof. By using Theorem 22, given a Flower Constellation (#'C) whose inclination is
in the range [0°, 180°] exists a Flower Constellation (F'Cy), symmetric with respect to
the center of the Earth, whose inclination is in the range [0°,90°] with identical value
for the fitness function. 0
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Corollary 24. Given a Flower Constellation (F'C}) with the configuration number in
the range N, € [0,1,...,N,|. There always exist another Flower Constellation (F'C5)
such that the value for N, is in the region [0,1, ..., %] and both of them have identical
value for the fitness function.

Proof. By using Theorem 22, given a Flower Constellation (F'Cy) whose parameter
N, is in the range [0,1,..., N,] there always exists a Flower Constellation (FC,),
symmetric with respect to the center of the Earth, whose value of the parameter N, €
[0,1,..., %] and both of them have identical value for the fitness function. O

2.2.3.3 Summary

In this subsection we have reduced the computational cost of our algorithm through
two different techniques. The first one by reducing the propagation time needed to
compute the maximum value of the GDOP experienced by the constellation. Instead
of propagating each constellation 7" = N, T}, seconds we propagate them At seconds,
and this technique can be applied to our three algorithms. The second one by narrow-
ing down the domain of the fitness function. In particular, it is possible to reduce the
range of the inclination into [0°,90°] instead of [0°,180°] in the brute force search algo-
rithm, as Corollary 23 states. Also it is possible to reduce the range of the parameter
N, €[0,...,N,] to the region [0, ..., %] in the Genetic Algorithm and Particle Swarm
Optimization algorithm as Corollary 24 states.

2.3 Results

2.3.1 Method comparison

In this research three different algorithms have been used: a brute force search or
exhaustive search to have an approximate idea of the optimal solution and two evolutive
algorithms. These last two are the Genetic Algorithm and Particle Swarm Optimization
algorithm, which improve substantially the brute force search, as we show below.

For a given a number of satellites Ny, according to the 2D-LFC theory, the num-
ber of different constellations, is given by the Eq. (2.1). Thus, the total number of
constellations with 18 < Ny, < 40 is equal to:

f: f(n) = 1104, (2.15)

n=18

Each of these 1104 cases has been analyzed to find the best parameters (e,i,w) that
minimize the GDOP with the three methods. Figure 2.8 shows the number of times in
which one method is better than the others, considering a reference grazing angle equal
to 10°. The PSO algorithm is the best method followed by the Genetic Algorithm and
the exhaustive search algorithm. In certain configurations, it is impossible to find a
constellation with GDOP better than 99. For instance, when N, = 1 the satellites are
always on the same orbit plane, hence the maximum GDOP is 99. Those cases have



50 CHAPTER 2. OPTIMIZING FLOWER CONSTELLATIONS

600

500

400

300
200
) l .
0 T T T

GDOP =99 Brute Force Genetic Alg. Part. Swarm

Number of winning cases

Figure 2.8: Comparison of the three methods.

been excluded from the comparison between methods, and they are represented with
a separate bar in Figure 2.8.

Another interesting result consist of comparing the Genetic Algorithm and the exhaus-
tive or brute force search algorithm. We count the number of times in which Genetic
Algorithm is better than the exhaustive search, excluding in this case the Particle
Swarm algorithm. In Figure 2.9 we observe that in 64.45% of the cases the Genetic
Algorithm is better than the exhaustive search algorithm.

Finally, we compare the evolutive algorithms. In Figure 2.10 we plot three bars; the
first one represents the cases in which the GDOP is equal to 99. The second and
third bars represent the cases in which the Genetic Algorithm and the Particle Swarm
Algorithm win, respectively. In this case we observe that in 82.03% of the cases the
Particle Swarm wins the Genetic algorithm.

Note that the comparison between the three methods is fair because they evaluate the
cost function (i.e. the maximum GDOP) the same number of times, as we show below:

e Genetic Algorithm has 60 generations with 60 individuals. Each individual rep-
resents a 3-tuple (e,i,w). For each individual the maximum GDOP of the con-
stellation is computed. In one generation the maximum GDOP is computed 60
times. Thus, in 60 generations the maximum GDOP is calculated 3,600 times.

e Particle Swarm Optimization has 60 generations of 60 particles. As the Genetic
Algorithm the maximum value of the GDOP is computed 3,600 times.
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Figure 2.9: Comparison of the Genetic Algorithm and the exhaustive search.
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Figure 2.10: Comparison of the Genetic Algorithm and the Particle Swarm algorithm.
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| Method || Nyot [ No [ Neo [Ne] ¢ | i |  w | max GDOP |
BF 27 [ 3] 9 | 2 ]0.0300 | 55.0000 [ 0.0000 3.63983

GA 27 | 3 9 2 1 0.0389 | 55.5870 | 177.9400 3.64860
PSO 27 | 3 9 2 1 0.0000 | 54.0572 | 173.7075 3.61023

Table 2.3: Optimal configurations with three different methods.

e Brute Force search algorithms has 20 different values for the eccentricity, that is
e € [0,0.3] and with step of 0.015. The inclination has 36 different possibilities,
that is ¢ € [0, 180°] with step of 5°. Finally, the argument of perigee w € [0, 360°]
with step of 72°) so it assumes only 5 different values. Thus, the maximum value
of the GDOP is calculated 20 - 36 - 5 = 3,600 times.

For example, if we have Ny, = 27, the time that PSO (60 generations of 60 particles)
takes to find the optimal constellation with one core is approximately 3,200 seconds.
There are 40 possible configurations for the phasing parameters (Ny,, N,, N.), so the
total computational cost would be about 40 - 3,200 = 128,000 seconds, which are
around 1.5 days. When the number of satellites is larger, not only we have more
possible configurations, but also the computational time per configuration increases,
since there are more satellites to evaluate. That is why some parallelization techniques,
some reductions on the search space and optimization in the propagation time are
necessary to reduce significantly the computational cost.

2.3.2 Optimal configurations

Consider first a constellation with N,,; = 27 satellites. As we can see in Table 2.1,
there are 40 possible configurations for the phasing parameters. For each of those
configurations, the three algorithms were used to determine the best parameters (e, i,
and w) that minimize the maximum value of the GDOP along the propagation time.
These optimal parameters are shown in Table 2.3.

It can be clearly seen that the best constellation found depends on the method. We
kept track of the results with different grazing angles, but for practical purposes, only
the case where the reference grazing angle is equal to 10° is relevant. Regarding the
sensitivity to the method, we decided to continue using the three methods, and use the
best solution found by any of them. The solutions found by the other two are used to
provide some confidence on the optimality of the GDOP.

Now, we do the same for any number of satellites 18 < Ny,; < 40. The GDOP of the
best configuration found by each of the three methods is shown in the Figure 2.11.
We only show the configurations with more than 23 satellites, since the cases with
Nyt < 23 have GDOP above 5, which is considered not good for solving a global
positioning problem.

Intuitively, the more satellites the constellation has, the better results for the GDOP
value should be obtained. However, this is not always true, because with 27 satellites
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Figure 2.11: Maximum GDOP experienced for constellation with satellites between 24
and 40 satellites.

we obtained better results than with 28 satellites. A similar behaviour is observed with
29 and 30 satellites and also with 38 and 39 satellites.

It seems that the number of configurations is a potential factor to find good constel-
lations, i.e. the more configurations are possible, the more possibilities to find a good
constellation for global coverage. But this is not always true as we can observe with 29
and 30 satellites, because the 29 satellites constellation has fewer configurations than
the 30 satellites constellation and we obtain better results.

The best configurations found for Ny, € [24,40] are summarized in Table 2.4.

2.3.3 Eccentric orbits

One of the innovative results, thanks to the 2D-LFC theory, is that eccentric orbits are
considered in the searching process. As we can see in Table 2.4, in many occasions the
optimal configuration has a highly eccentric orbit. For instance, when N,,; = 35, the
optimal constellation has e = 0.3. This case is shown in Figure 2.12.

2.3.4 Comparison

Galileo Constellation [40] is currently being built by the European Union to have an
alternative navigation system to the existing GPS System [27,39] (US), the GLONASS
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Nt | N, | Ngo | N, e 7 w | max GDOP
24 |24 ] 1 2 10.000 | 125.187 | 88.611 4.96074
25 |25 1 2 10.000 | 127.492 | 236.480 4.82628
26 |26 | 1 | 10| 0.000 | 61.104 | 492.410 3.82216
27 3 9 2 | 0.000 | 54.057 | 173.707 3.61023
28 7 4 2 | 0.000 | 127.535 | 150.965 3.73561
29 129 1 |11 ]0.023 | 61.518 | 100.863 3.49341
30 | 10| 3 4 10.036 | 57.836 | 263.915 3.57843
31 | 31| 1 4 10.000 | 71.774 | 256.259 3.27212
32 |16 | 2 7 10.253 | 63.514 | 179.549 3.24969
33 | 11| 3 4 | 0.006 | 59.795 | 94.0092 3.21361
34 | 34| 1 | 12| 0.000 | 120.478 | 229.407 2.97527
35 | 35| 1 8 10.300 | 63.005 0.084 2.95912
36 | 12| 3 4 10.075 | 60.000 0.000 2.78647
37 | 37| 1 5 10.000 | 60.637 | 82.5934 2.79373
38 | 38| 1 |14 |0.000 | 59.039 | 184.670 2.53557
39 | 13| 3 4 10.065 | 60.000 0.000 2.57115
40 | 10 | 4 7 10.000 | 58.009 | 25.722 2.43542

Table 2.4: Optimal configurations with reference grazing angle o = 10°.

Figure 2.12: A (N, =35, N,, = 1, N, = 8, N, = 17, Ny = 10,¢ = 0.3,i = 63.005, w =
0.084) 2D-LFC.



2.3. RESULTS 25

‘NSO‘NC‘ e‘ 2‘ w‘maxGDOP‘
| 24 | 3] 8 | 1 ]0.106]55.60]2290| 597224 |

Table 2.5: Parameters and GDOP of a 24 2D-LFC with a reference angle of incidence
of 80°.

‘ ‘ ‘ ‘ ‘ e‘ z‘ w‘maXGDOP‘
| 24 [ 3] 8 | 1]00]63124[151.444] 3.79882 |

Table 2.6: Parameters and GDOP of a 24 2D-LFC with a reference angle of incidence
of 85°.

(Russian), and the Chinese Compass System. This constellation has 27 satellites mov-
ing in three circular orbits with an inclination of 56°. This corresponds to the 2D-LFC
with parameters N, =3, N,, =9, N. =2, ¢ = 0, and 2 = 56°. The semi-major axis is
determined by the compatibility ratio N,/Ng = 17/10.

Using a reference grazing angle a = 10° and our algorithms, the original Galileo Con-
stellation has a GDOP = 3.77602. Table 2.3 shows that the three methods were able
to find constellations with N,,; = 27 that are marginally better than Galileo. The best
of these three constellations, which was found by the Particle Swarm Algorithm, is also
shown in Table 2.4 and it has GDOP = 3.61023.

The GLobal NAvigation Satellite System (GLONASS) corresponds to the 2D-LFC
with parameters N, = 3, Ny, = 8, and N. = 1. The eccentricity is equal to 0.0,
and the inclination is 64.8°. The semi-major axis is about 25,478.137 km. The ratio
N,/N; = 2.13. Then, we select N, = 21 and Ny = 10. With a reference angle of
incidence of 80° and propagating the satellites with a time step equal to 60.0 seconds,
with our algorithms the GDOP of the GLONASS constellation is 99, while our best
result for the 2D-LFC is shown in Table 2.5.

However, if we consider a reference angle of incidence equal to 85° the GDOP of
GLONNAS with our algorithms is 3.92058. By using the evolutionary algorithms
with the GLONNAS configuration, our results, which slightly improves the GLONASS
ones, are shown in Table 2.6.

2.3.5 Time-evolution of the GDOP

While our algorithms compare constellations based on the worst GDOP value seen
by any of the ground stations at any instant of time, it would be interesting to see
the evolution in time of the maximum GDOP, average GDOP, and minimum GDOP
experienced by the 30,000 ground stations. These three values of the GDOP are shown
in Fig. 2.13 for our optimal constellation with 27 satellites. For clarity, Fig. 2.14 shows
only the evolution of the maximum value of the GDOP over time.
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Figure 2.13: Maximum, minimum and average GDOP value of our 27 satellite constel-
lation.

In the first of these figures, we can see that the maximum GDOP experienced by the
30,000 stations is around 3.6 at any time, meaning that there is always a ground station
where the GDOP is about 3.6, and that no ground station has a GDOP worse than that.
Similarly, we can see that the minimum GDOP is aproximately 1.5, so there is always
a point on the Earth where the GDOP is as good as 1.5. Finally, the average moves
around 2.3, so we can expect half of the ground stations to have a GDOP between 1.5
and 2.3, and the other half in the interval 2.3, 3.6]. Intuitively, this means that about
half of the surface of the Earth would experience a GDOP better than 2.3.

In the next figure, we can see that the maximum GDOP oscillates between 3.58 +
0.04. The deviation from the center value is less than 1.2%. This indicates that the
performance of the constellation remains almost constant over time.

Finally, we provide in Fig. 2.15 a comparison between Galileo and the 27 satellite opti-
mal constellation, which we already know has better maximum GDOP. In Figure 2.16
and Figure 2.17 we illustrate the average and minimum GDOP experienced during the
propagation time of Galileo constellation and our 27 FC, respectively. With respect to
the average metric, Galileo seems to be better than our constellation, except during
some small intervals of time. However with respect to the minimum GDOP, we observe
that none of the constellations are better than the other.

Now we compare the 24 satellite Flower Constellation with the existing GLONASS
constellation. In this case we compare the maximum GDOP values experienced over
time. As we illustrate in Figure 2.18 our constellation is better at any time.

As we observe in Table 2.4 there exist some configurations that obtain better results
with less satellites. For example with 27 satellites we obtain better results than with
28 satellites. The same thing occurs with 29 and 30 satellites, and also with 38 and 39
satellites. Figure 2.19 and Figure 2.20 show the maximum GDOP of the constellations
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Figure 2.14: Maximum GDOP value of our 27 satellite constellation over time.
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Figure 2.15: Maximum GDOP of Galileo Constellation and our 27 satellite constella-
tion.
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Figure 2.16: Average GDOP of Galileo Constellation and our 27 satellite constellation.
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Figure 2.17: Minimum GDOP of Galileo Constellation and our 27 satellite constella-
tion.
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Figure 2.18: Maximum GDOP experienced over time of GLONASS constellation and
our 24 satellites 2D-LFC.

experienced over time that confirms that sometimes with less satellites it is possible to
obtain better results.

2.4 Conclusions

Through this work we found optimal configurations for solving a global positioning
problem. To search among all possible design variables we use evolutive algorithms.
Due to the high computational cost of the evolutive algorithms in this work, we found
several ways to reduce the computational cost, such as; the search space reduction or
the propagation time reduction. The computational time has been also reduced by
using parallelization techniques.

In this study, the problem of the collision between satellites is completely ignored,
since a constellation with a low GDOP value means that all satellites are never align
and always far away from each other, while a bad GDOP means that the satellites are
almost align and consequently there exist risk of collision.

Note that, most of the optimal configurations have one satellite per orbit and we know
that launch a constellation with more than three orbital planes has a high monetary
cost. However, we also have configurations with a small number of orbital planes.

An interesting line of research would be studying the low thrust needed to maintain
the configuration of the constellation under the Jy effect. A first step in this direction
is done in the next chapter. We try to obtain parameters of a FC, in such a way that
all the satellites are perturbed in the same way and consequently the relative position
of the satellites in the osculating elements space remains almost constant, what we call
Rigid Constellation.
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Figure 2.20: Maximum GDOP experienced over time of our 38 satellites 2D-LFC and
our 39 satellites 2D-LFC.



Chapter 3

Flower Constellations under the Js
effect

3.1 Introduction

The instantaneous position (and velocity) of a satellite orbiting about the Earth is
determined by six orbital parameters; semi-major axis (a), eccentricity (e), incli-
nation (i), argument of perigee (w), Right Ascension of the Ascending Node (£2),
and Mean anomaly (M). In a 2D-LFC all the satellites have the same a, e, i, w,
and the pairs (€2, M) lie on a lattice given by three integer parameters N,, N,
N, see section 1.2.1. The configuration determined by these parameters is denoted
FC(N,, Ngo, Ne,a,e,i,w, 2 M).

In the keplerian model, the evolution of the orbital parameters of the satellites of a
Flower Constellation is very simple, because all the parameters remain constant, except
for the mean anomaly M that increases linearly at the same rate n = y/pu/a3 for all
the satellites.

FO(N,,Nay, Noya, e,i, 0,2, M) "5 PO(N,, N, Nyvaye,i,w,Q, M+ nt).  (3.1)

Hidden in Eq. (3.1) is a remarkable fact about Flower Constellations in the keplerian
model that motivates part of this work: FCs remain FCs!

In this chapter we investigate whether something similar happens when the keplerian
potential is perturbed with the J; term. Note that, the only way that FCs, when
propagated under the effect of Jo, remain being FCs, is when J; perturbs all the
satellites in the FC in exactly the same way. More precisely, we ask for the existence
of functions a(t), e(t), i(t), w(t), Q(t), M(t), such that

FC(N,, Ngo, Ne,a,e,i,w,Q, M) Y FC(N,, Ngo, Ne,ya(t), e(t),i(t), w(t), t), M(t)).
(3.2)
Constellations satisfying Eq. (3.2), named Rigid Constellations, are our main subject
of interest.

61
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3.2 Dynamics of the satellites

As we have shown in the preliminaries, the motion of a satellite under any conservative
force field is determined by the potential function and the initial conditions. Once the
potential function is determined, we apply the gradient operator and solve the system
of equations of order one given in (1.31).

Given an initial position ry and velocity vg, the solution of Eqs. (1.31) describes the
motion completely. The instantaneous position r(t) and velocity v(t) are called state
vectors. Another way of describing the motion of the satellite is using the osculating
elements a(t), e(t), i(t), w(t), Q(t) and M(t) as we explained in subsection 1.1.2.2.

In subsection 1.1.2.2 we mentioned that in the keplerian motion, all the orbital elements
except M are constant. The evolution of them over time can be represented as a straight
line, since M increases linearly: M (t) = My+nt where n = /p/a? is the mean motion.
When some perturbations appear, the potential can be split as:

V(I‘) = Vkep + R, (33)

and the orbital elements are not longer constant, whose evolution follow Lagrange Plan-
etary Equations (1.38). The osculating elements have three different kind of terms [1],
illustrated in Figure 3.1:

e Polynomial terms in the variable ¢. These terms produce a secular displacement
from the constant behavior of the orbital elements that take place in the keplerian
motion.

e Terms of sine and cosine of the variables w, €2, and i. Due to the slowly variation
of these angular variables, they cause a periodic oscillation with long period. This
terms are named long periodic terms.

e Terms of sine and cosine of the variable M, which has the same period as the
orbit. They cause small oscillations around the secular perturbation and the long
period perturbation. They are named short periodic terms.

In this thesis, we only make a distinction between the first kind of terms (secular)
Usec(t), €sec(t), - - .y Msee(t) and the sum of the last two terms (non-secular). When the
potential is perturbed only with the J5 term, the secular components of the osculating
elements show a linear secular behavior.

3.3 Problem formulation

We assume that the Earth is a revolution body, consequently, the tesseral harmonic
terms of the potential function are zero, and the potential function have only zonal
harmonic terms. As a first approximation, we consider only the J; effect since it is
almost 1000 times larger than the next coefficient J;. Then, our potential function
becomes:

V(I‘) = Vkep + RJQ. (34)
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=~

Figure 3.1: Secular and non-secular perturbations.

We need the expression of the potential function in terms of the position and velocity
and in terms of the orbital elements, in order to obtain the motion of a satellites
through Eqs. (1.37) and Eqgs. (1.38).

3.3.1 Potential as a function of position and velocity

Following Eq. (1.34), the expression of the potential in terms of the position and
velocity, considering only the zonal harmonic (Js) is,

V(I‘) = Vkep + RJ2
2
= —=+=J (%) P (sin(¢sat))

- LB )

The last equality is true since ¢4 represents the latitude of the satellite, thus sin(¢sq) =
z/r. We apply the gradient operator to the previous expression of the potential,

oV Wiep  ORy, E ptord 3

or — 22 — 422
o it vt o 2(93 +y z7),
ov OWViep  ORy, y | phriy3, 5, 2
_— = = —_— — — 4

dy oy "oy MWt 2 Tv o)

5% OViep N oR;, z ,U/JQ’T’EBZ 3
3

— = —(32% + 3y* — 227).
0z dy dy K r7 2(x Ty Z)
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Finally, the first order system of equations given in (1.37) can be expressed as follows:

( .

T = Uy,

§ = vy,

2= Uy,

o= 0 = g R 4y a2), &
2

Uy = _%_Z = —p5 — Mi:@yg'( 2 hy? —42%),

v = —3F = —u5 — LEEEY(30% + 32 - 227,

3.3.2 Potential as a function of the orbital elements

In order to use Lagrange Planetary Equations we should determine the potential func-
tion in terms of the orbital elements. For that purpose, the latitude of the satellite can
be rewritten as sin(¢g,;) = z/r, where z = rsin(i) sin(w + ¢) and ¢ represents the true
anomaly. Thus, the potential function in terms of the orbital elements is:

V(I‘) = Vkep + RJQ
= —H + = J2 ( . ) % (3sin(z) sin®(w + o) — 1) .

The standard approach is to consider an averaged perturbed potential R, over an
orbital period, instead of the full expression of Ry, in order to focus on the non-
periodic variations (short periodic terms) of the orbital parameters [10].

1 [ pJars (2 — 3sin®4)

RJ2 % RJQ(av‘S?Z?w?Q’M)dM - 4&3(1 — 62)%

(3.6)

In this case, Lagrange Planetary Equations show that the osculating orbital parameters
of any satellite are linear functions whose slopes are given by:

. . 3 T@ ? 2 .
a=0, w:ZJ2<?) n(5cos z—l),
. 3 e
e =0, O=—J (#@) Nn.CoS1,
2 p

2
i=0, M=n 1+Zv1—e2J2<rﬁ) (300821’—1)].
p

(3.7)

Applying these formulas to the case of FCs, we see that all the satellites suffer exactly
the same perturbation due to R,, since all the satellites have the same a, e, i, and w.
Note that, in this case there is no non-secular component of the osculating elements.
This shows that, for the case of the averaged perturbed potential, the conclusion of
Eq. (3.2) is valid.

It is important to note that Eqgs. (3.7) are the main assumption of the theory of 3D-
LFC [18,19]. In this thesis, we will analyze whether the same happens under the
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full expression of the potential, considering only the zonal harmonic (J;). When the
propagation is done with the full expression of Rj,, the osculating elements show a
slightly different behavior: each parameter has a secular component (a linear function)
and a non-secular component (small oscillations with average zero). Using Lagrange
Planetary Equations and the full expression of R,, it is possible to obtain the variation
of the orbital elements over time [25]:

b1 — e2 _ 4 5
S ¢ ¢ a—sinap §singi(l —cos2u) — 1| + e [sin®isin2u] ¢,
na* ( 2 5

1—e2)rt
B(1-e?)? [ e a 3 ’
6= — (na5z )? { a _662) i—4 sin ¢ [5 sin?i(1 — cos 2u) — 1} + 2—5 [SinQisin2u} } +
b1 —e?a?
+ vl-efa sin? i sin 2u,
nade 13
3b 3
e sin 2¢ sin 2u,

 2nay1— e 1’
3bv1 — e? 4 3 3 2
A" CL—(:OS(p “sin?i(1 — cos2u) — 1| + a sin%sin2uwsinap +
nade rd 2 r3 1—e?
3b a’

nady/1— e2 r3
. 3b ad
O=———"——Jcosi(l —cos2u)l,
na®y/1—e2r3 [cos )
. b a3
M=n-— %2—3 EsinQi(l — cos 2u) —1} +
3

3b(1 — €2 4 3 2
+ _(na5e€ ) {% cos [5 sin2 i(1 — cos2u) — 1} + Z_g {Sin2i51n2u%§2sw sin 4 } )
(3.8)

a =

i:

+ [cos? i(1 — cos2u)],

Where b = % and u = w+ . In this situation, the only way we can obtain Eq. (3.2)
for a FC, would be by showing that:

(a) The slopes of asec(t), €sec(t), isec(t), Wsee(t), Lsec(t), Msee(t) depend only on the
initial a, e, i, w, hence the same for all satellites.

(b) The non-secular component is negligible (within a certain tolerance).

In the following section we show that the slopes of asec(t), €sec(t), isec(t), Wsee(t), Lsec(t),
Mie.(t) do not depend on 2. However, they depend on the initial Mean anomaly of
each satellite, which is a major problem since the satellites in a FC have different
values of M. We propose a method to correct this problem for a FC, by changing the
semi-major axis of the satellites by a few kilometers, in such a way that the secular
part of the osculating elements of each satellite will have the same slope. Thus, the
secular part can be controlled in a FC.

We also describe the non-secular component of a satellite and we study its dependency
with respect to the initial orbital elements of the satellite. We will find different regions
where the non-secular component of a satellite is minimized. Finally, by providing a
good set of initial conditions we will have 2D-LFCs which stay as 2D-LFCs even under
the Jy effect, and therefore Eq. (3.2) will be valid up to a given tolerance.
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3.4 Secular and non-secular perturbations of the os-
culating elements

In this section we analyze how the Jy term affects a satellite orbiting about the
Earth. As an example we select random initial orbital elements for a satellite; a =
26,544.2976 km, e = 0.1046, i = 36.3356°, w = 2 = M = 0.0. This satellite has
an orbital period of approximately 12 hours. We integrate the system of Eqs. (3.8)
applying a Runge Kutta method of order 4, with fixed step 0t = 1.0 sec during 432,000
seconds (i.e. five days).

Figure 3.2, Figure 3.3, and Figure 3.4 show the evolution of the semi-major axis, ec-
centricity and inclination over time, respectively. It is possible to observe that the
secular perturbation of these parameters are equal to zero. However, the non-secular
perturbation makes them oscillate. The semi-major axis oscillates about 2.5 km, the
eccentricity about 10~* and the inclination around 0.0034° each orbital period. Fig-
ure 3.5 and Figure 3.6 show the evolution of the argument of perigee and the RAAN,
respectively. In these cases we observe a secular and non-secular behavior in each pa-
rameter. Finally, Figure 3.7 shows the evolution of the Mean anomaly over time and
we observe a small oscillation besides a secular behavior. Note that, instead of a line,
the plot has a sawtooth shape due to the modular nature of angular values. For clarity,
the non-secular component of M during an orbital period has been plotted separately
in Figure 3.10

x 10°
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Figure 3.2: Evolution of the semi-major axis.
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Figure 3.3: Evolution of the eccentricity.

In order to determine the secular component of an osculating element ¢ € {a, e, 1,
w, ), M}, we use linear interpolation over the data set consisting of the pairs (¢, ¢(t))
obtained by propagating with the full expression of the potential Rj,. For the angular
parameters w, (), and M, we add or subtract multiplies of 27 before the linear interpo-
lation, to handle the non-linearity created by their modulus 27 behavior. In Table 3.1,
we compare the slopes of the secular components of the osculating elements computed
with our linear interpolation and the ones that would be obtained if the propagation
were done using the averaged potential R;,. The difference between both propagations
is very small in one orbital period but it is not bounded for a long time period prop-
agation. Since we are interested in highly accurate results, we disregard the averaged
potential in favor of the full expression of R, .

There are cases that require a special treatment. For instance, when the eccentricity
approaches zero, there is a large variation in w. Actually, when e = 0.0 the argument
of perigee is undefined. In the previous example, we observe that the argument of
perigee oscillates around 1073 rad (see Figure 3.5) due to the non-secular component.
Now, we consider the same example but we change the eccentricity (e = 0.0001). In
this case, as we illustrate in Figure 3.8 the secular and non-secular components of the
argument of perigee are extremely high. Besides, in Figure 3.9 we plot the non-secular
component of the argument of perigee in one orbital period. It has been obtained by
removing the secular component. In this example, the non-secular component of the
argument of perigee oscillates about 2 rad in one orbital period, thus proving the large
variation that w presents in near-circular orbits. An analysis of near-circular orbits,
showing that w behaves this way is given in [11].
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Figure 3.4: Evolution of the inclination.

Qyee (rad-sec™!

)
M. (rad-sec™)

—1.127357777-107%
1.460054338-10~*

RJQ RJQ
Qsec (km-sec™t) 0.0 7.734381692-10°8
ésec (s€c1) 0.0 4.486699948-10~12
isec (rad-sec™") 0.0 1336085298102
Dyee (rad-sec™?) | 1.570708925-1078 | 1.551532370-1078

—1.127143934-1078
1.460055229-10~4

Table 3.1: Comparison of the slopes of the secular components of the osculating ele-
ments propagating with Rj, and Rj,.

Note that, we may think that Figure 3.7 and Figure 3.8 present a similar behavior. Both
of them have a huge secular component and the plots have a sawtooth shape. However,
in the case of the Mean anomaly (Figure 3.7), we plot its non-secular component in
one orbital period in Figure 3.10 and we observe that it is rather small (order ~ 107*),
while in the case of the argument of perigee, as we observe in Figure 3.9, the non-secular
component is 10,000 times larger.

Another situation that requires special treatment is when i =~ 0 or ¢ ~ w. All these
cases are excluded in our research because it is not possible to control or even define
the secular part of these parameters [11].

3.4.1 The secular component of the osculating elements

The expression for the gravitational potential including only the J; term is symmetric
with respect to rotations about the z-axis. Consequently, two satellites with same
orbital parameters except the value of the RAAN have an identical evolution over time



3.4. SECULAR AND NON-SECULAR PERTURBATIONS 69

Argument of perigee [rad]

Time [sec] 5

Figure 3.5: Evolution of the argument of perigee.

a(km) | e |i(deg) | w(deg) | 2(deg) | M (deg)
Saty | 29000.0 | 0.35 | 20.0 130.0 0.0 0.0
Saty | 29000.0 | 0.35 | 20.0 130.0 27.0 0.0
Sats | 29000.0 | 0.35 | 20.0 130.0 125.0 0.0
Sat, | 29000.0 | 0.35 | 20.0 130.0 170.0 0.0

Table 3.2: Orbital elements of four satellites.

but rotated about the z-axis. Meaning that, the slopes of ase(t), €sec(t), isec(t), Wsee(t),
Qgec(t), Mseo(t) do not depend on €, or in other words, they depend only on the initial
a, e, i, w, and M.

A numerical verification of this claim is provided in Table 3.3. We have selected four
satellites with identical initial orbital elements except for the value of the RAAN (see
Table 3.2) and we propagated these satellites under the J; effect. As shown in Table 3.3
all these slopes coincide up to a relative error of order 10~7 (which is the precision of
our propagation method).

The dependency of the slopes of the secular components of the osculating elements
with respect to the initial Mean anomaly has been tested numerically as follows:

1. We consider an initial set of 100 satellites. The orbital parameters (a,e,i,w) of
each satellite are selected at random in a region of interest. Taking into account
that we have already shown that the slopes do not depend on the value of RAAN,
we have set this value to zero for all the satellites (i.e. 2 = 0.0).

2. The Mean anomaly M € [0, 27| is discretized with step of 7.35° for each one of
the 100 satellites. Thus, each satellite has 51 different possible values for the
Mean anomaly.

3. Finally, each set of initial conditions is propagated using Eqgs. (3.8) with a RK of
order four during approximately 370 days, with a time step of 20 sec.
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Figure 3.6: Evolution of the RAAN.
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2.215516231-10~8

—4.402790304-10~7
—1.906635275-10— 11
2.860684176-10— 14
2.215516231-10~8

isec (rad-sec™1)
Wsee (rad-sec™1)
Qsec (rad-sec’l)

: 1

Msec (rad-sec™

—1.223085652-10—8
1.278706109-10~4

—1.223085652-10—8
1.278706109-10~4

—1.223085652-10—8
1.278706109-10~4

—1.223085652-10—8
1.278706109-10 4

Table 3.3: Slopes of the secular components of the osculating elements.

All the satellites present a similar behavior, which is shown next with one particular
example. We take, for instance, the satellite whose initial orbital elements are a =
26,215.017 km, e = 0.090394, ¢ = 85.9507°, w = 208.5061°, and 2 = 0.0°. The values
of the mean anomaly vary between 0° and 360° with a step about 7.35°. Table 3.4
shows how the slopes of the secular components of the osculating elements change
depending on the value of the Mean anomaly.

We observe that the slopes of the semi-major axis are the same up to order 107! km/sec.
After 370 days the variation of the semi-major axis will be less than 1 meter (0.3197 m).
The slopes of the eccentricity have in all the cases the same value up to order 1074 sec™!.
After 370 days, the variation of the eccentricity will be 3.1968-10~7. The slopes of the
inclination, 7. (t) are the same up to order 1079 rad/sec. Meaning that after one year
(370 days) the variation will be around 10~ rad. We observe that the slopes of wg.(t)
and Q..(t) have approximately the same value when we change the Mean anomaly.
These slopes coincide up to order 107! rad/sec, meaning that after 370 days, the varia-
tion of these elements will be 3.1968-107% rad. All this shows that ase.(t), €sec(t) tsec(t),
Wsee(t), and Qge.(t) do not depend significantly on the initial value of M.

However, the slopes of M,..(t) show a difference of order 5.1608-1078 rad/sec, which
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Figure 3.7: Evolution of the Mean anomaly.

represent a difference of about 94° in 370 days of propagation. This extreme difference
comes from the fact that the orbital periods of the satellites are not equal. The slope
of M..(t) is equal to n, which is the mean motion of a satellite,

where T, is the keplerian orbital period of the satellite (related with the semi-major
axis). We take from Table 3.4 two different values for the Mean anomaly M® = 0.8975
and M*" = 5.8985, which correspond to the 8" and the 47" set of parameters that
we tested. Those values have been selected because, in those cases, the value of Msec
reaches a minimum M2 = 1.487122:10~* and a maximum M2 = 1.487638-10~*,

sec sec

Despite having the same orbital parameters, except for the value of M, the orbital pe-
riods of the satellites are, Ts = 42250.6175 sec and Tf = 42235.9602 sec, respectively.
They differ around 14.65 seconds, meaning that after 370 days (or around 740 orbital
periods) there will be an offset of around 11, 118.9743 sec between both satellites, which
corresponds to the 94° of difference that we obtained above.

3.4.2 Non-secular component of the osculating elements.

In this section we have analyzed the non-secular component of the osculating elements.
We consider an initial set of orbital elements (a, e, i, w, 2, M) and we integrate the
system of Eqgs. (3.8) applying a Runge Kutta method of order four to determine their
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Figure 3.8: Evolution of the argument of perigee in a quasi-circular orbit (e = 0.0001).

evolution over time (osculating elements). Furthermore, for each osculating element
q € {a,e,i,w, 2, M}, we obtain its secular and non-secular part by linear interpolation
as explained before.

In the two body problem it is easy to compute the position and velocity vectors from
the orbital elements. Then, we can compute at time ¢ “the real position” (ry,(¢)) and
“the approximate or linear position” (rs.(t)), through the real osculating elements
a(t), e(t), i(t), w(t), Qt), M(t), and the secular part of the osculating elements ag..(t),
sec(t)y tsec(t), Wsee(t), Qsec(t), Msee(t), respectively.

The real position of the satellite considers the secular and non-secular terms of the
osculating elements, while the approximate position only takes into account the secular
terms. Then, the distance:

e, () = Tace(B)]],

represents the deviation of the satellite from its real position due to the non-secular
perturbations. We compute this deviation at each instant of time and consider the
maximum value experienced,

Afa,e,i,w,Q, M) = mftx [T, (t) — rece(t)]], (3.9)

which represents, as a function of the initial conditions, the maximum deviation due
to the non-secular components of the osculating elements.

The goal is to determine the best values for the initial orbital elements to reduce the
deviation of the satellite. In order to find those regions, we first study numerically the
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Figure 3.9: Non-secular component of the argument of perigee in a quasi-circular orbit
(e =0.0001), in one orbital period.
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Figure 3.10: Non-secular component of the Mean anomaly in one orbital period.

dependency of the deviation with respect to the initial orbital elements, and then, we
search for the best initial conditions.

We use the same methodology to study the dependency of the deviation with respect
to each initial orbital element. In the case of the semi-major axis, the procedure is as
follows:

e Generate randomly the initial orbital elements of 100 satellites, except the semi-
major axis.

e For each satellite, the value of the semi-major axis is discretized in the region
[18000, 29000] km with step of 500 m. Then, each satellite has 22 possibilities for
the semi-major axis.

e For each of the 100 satellites, it is possible to compute the maximum deviation
experienced in terms of the semi-major axis, and to infer the dependency between
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them. Each set of initial conditions is propagated using Eqgs. (3.8) with a RK of
order four during approximately 370 days, with a time step of 20 sec.

We observe in Figure 3.11 that the deviation is inversely proportional to the semi-major
axis. This is due to the J; effect decaying as we move away from the Earth. Figure 3.12
illustrates that the deviation is almost constant until the eccentricity reaches the value
e = 0.15, and then it grows exponentially as the value of e increases. Regarding the
inclination, we have observed that there always exist a value for the inclination which
minimizes the deviation, as Figure 3.13 illustrates. Note that, the inclination varies
in the range [0°,90°] because the results in the interval [90°, 180°] will be exactly the
same since we are dealing with the same orbit but in a retrograde motion.

The deviation does not depend on the Right Ascension of the Ascending Node. Besides,
the deviation varies less than 150 meters as we change the argument of perigee and, in
the case of the Mean anomaly it varies less than 10 meters.

N
w

Deviation [km]
[y = = = N ING
= ~ © © N = N

=
&)

1.4

I I
18 19 2 21 22 23 24 25 2.6 2.7 2.8 29
Semi-major axis [km] x10°

Figure 3.11: Dependency of the deviation with respect to the semi-major axis.
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Figure 3.12: Dependency of the deviation with respect to the eccentricity.
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Figure 3.13: Dependency of the deviation with respect to the inclination.

The previous study shows that the main contribution to the deviation come from
initial a, e, and 7. In order to reduce the deviation it is enough to increase a as
much as possible, reduce e to the interval [0,0.15], and choose the critical value of the
inclination corresponding to the chosen a and e.

In mission planning would be useful that given the semi-major axis we were able to
compute the range of values for e and ¢ such that they reduce as much as possible the
deviation of the satellites. For that purpose, we designed an algorithm that, given the
semi-major axis, the argument of perigee, the Right Ascension of the Ascending Node
and the Mean anomaly of a satellite, computes and plots the deviation in terms of the
eccentricity and the inclination. Figure 3.14 shows the output of the algorithm in one
example whose initial data are: a = 29600.1 km, w =0, 2 =0, and M = 0.

Deviation [km]

0.05

06 0.4

0.8

Eccentricity Inclination [rad]

Figure 3.14: Dependency of the deviation with respect to the eccentricity and inclina-
tion.

Now, we explore the maximum deviation that a satellite can experience. For that
purpose, we consider the worst initial conditions. We select a satellite whose semi-major
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axis is a > 18,000.0 km and the eccentricity is e < 0.15. We know that the argument
of perigee, the Right Ascension of the Ascending Node and the Mean anomaly may
increase the deviation at most 160 m. Then, we vary the inclination in a range [0, 7|,
and the maximum deviation experienced will be the worst possible case. We proved
numerically that this value is less than 5 km.

max  A(a,e,i,w, QM) = max A(a,e,i,w,0.0, M)
a>18000 a>18000
e<0.15 e<0.15
1€[0,2m] 1€[0,27]
w,Q,M€[0,27] w,M€[0,27]
<  max A(a,e,,0.0,0.0,0.0) + 160m
a>18000
e<0.15
1€[0,27]
< 'n[loagi] A(18,000,0.15,4,0.0,0.0,0.0) + 160 m
1€|0,27
< 5km.

Consequently, if a tolerance of a few kilometers (5 km) is acceptable for the deviation,
then almost all initial conditions are valid.

3.5 Results

A Flower Constellation of Ny, satellites has the same semi-major axis, eccentricity,
inclination and argument of perigee for each satellite. The Right Ascension of the
Ascending Node and the Mean anomaly of each satellite is determined by Eq. (1.42).
Our goal is to control the secular and non-secular motion of all the satellites of the
constellation.

3.5.1 Secular perturbation in a Flower Constellation

The way to control the secular motion of the satellites in a Flower Constellation is
having the same slopes of asec(t), €sec(t), Psec(t), Wsee(t), Lsec(t), Msee(t) for all the
satellites. We show below that this can be attained by just adjusting the semi-major
axis of each satellite a few kilometers. This will be possible since Msec is related to 7,
which is itself related to the semi-major axis.

In a FC all the satellites have the same semi-major axis, so a new concept of constel-
lation is needed. The satellites of these new constellations have the same values of
e, 1, and w, the values of 2 and M will be determined by the lattice theory, but the
semi-major axis will be slightly corrected for each satellite. We devote the rest of this
section to derive a formula for the correction of the semi-major axis that guarantees
the same value of Msec.

Kepler’s Third Law states that the square of the period of a planet s proportional to
the cube of its mean distance to the Sun. In our problem we have the following relation:

9 2
a® x T? = <_7r) .
MS@C
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This expression can be rewritten as the following linear expression,
. 3
log Moo = —iloga%—ﬁ, (3.10)
for some constant 5. Figure 3.15 illustrates the relation between the semi-major axis

and the slope of M..(t). The larger the semi-major axis is, the smaller the slope of
Mie.(t) becomes.
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Figure 3.15: Relation between the semi-major axis and the slope of M..(t).

Using Eq. (3.10), it is possible to obtain a value for 3 for each value of M, where ij

represents the index of satellite in the FC as in Eq. (142) With the same equation, but
changing the value of M% _ by the reference value M and 3 by the value previously

sec sec
computed, we obtain the corrected semi-major axes:

Sec

9 .
loga;; = —g(logMOO—B)

9 . 3 o
= —3(log MY, — (5 loga +log M)

2 . 2
= —glogMOO —i—loga—i-glogM”

Sec sec

2 .
= loga + g(log Mééc - log Mgeoc)
w210 M
= oga—l—g ogm.

sec

Applying the exponential function,

3 /00

Sec

2
= a-exp | log ﬁ

2 Mi,
a;; = exp |loga+ - log—"+
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2
5\ 3
= a(M—> . (3.11)
N[00

sec

The following procedure summarizes the method we developed to correct the semi-
major axes of all the satellites of a FC:

e Given the data of a Flower Constellation: N,, Ny, N, a, e, i, w, 2 and M, it is
possible to compute the values for €;; and M;; for each satellite using the lattice
theory, where 7 is the orbit number and j is the number of the satellite in its

corresponding orbit. The reference satellite is the one with ¢ = 57 = 0, which has
QOO = and Mo() =M.

e Compute the value M¥_ which is different for each satellite. M, is considered
as the reference value for the slope of M(t), or in other words, the value that all

the satellites should have.

e Compute the new values for a;; using Eq. (3.11).

We conclude that by slightly modifying the semi-major axis of all the satellites we
obtain a Flower Constellation whose satellites have the same rate of change of its
orbital elements. Meaning that, the secular perturbations affects all the satellites in
the same way and consequently the secular motion of the satellites will be identical
under the J; effect for all the satellites.

3.5.2 Non-secular perturbation in a Flower Constellation

We now turn to reduce the non-secular motion of the satellites of the constellation to
an acceptable value. In the case of a Flower Constellation, given the reference satellite
whose semi-major axis, argument of perigee, (o9, and My, are known, we can determine
the values for the eccentricity and the inclination that reduce the non-secular motion
of the reference satellite as much as possible. However it is not clear whether these
values of e and ¢ also work for the remaining satellites of the constellation. In addition
to that, we should analyze whether the correction of the semi-major axis affects the
selection of e and ¢ considerably or not.

Suppose that we find the inclination and the eccentricity that provides a low deviation
of the reference satellite. Since the remaining satellites only differ from the reference
one on the RAAN and the Mean anomaly, and we have shown that the deviation
changes by at most 10 meters in this case, then the same inclination and eccentricity
should be valid for all the satellites. Then, we should conclude that if we find good
parameters for the reference satellite, they are good for the remaining satellites of the
constellation.

We have studied the dependency of the deviation with respect to the semi-major axis,
and we have concluded that if we change a few kilometers the semi-major axis in
the correction algorithm, it slightly modifies the non-secular motion of the satellite.
Consequently, the values for the eccentricity and inclination selected for the reference
satellite are valid for all the satellites of the constellation.
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3.5.3 Rigid Constellations

A Flower Constellation of Ny, satellites, in which the secular motion is controlled by
correcting the semi-major axis of the satellites, and the non-secular motion is reduced,
Eq. (3.2) is satisfied and we have a Rigid Constellation. Given the phasing parameters
(Ny, Ngo, N.) the semi-major axis (a), and the argument of perigee (w) of a Flower
Constellation, it is possible to design a Rigid Constellation as follows:

e Correct the semi-major axis of each satellite to control the secular motion of the
satellites.

e Compute the values for the inclination and the eccentricity that reduce the non-
secular component of the reference satellite to an acceptable value.

We now illustrate how to design a Rigid Constellation. We start with a Flower Constel-
lation with parameters N, = 3, Ny, = 9, N, = 2, a = 29600.137 km, e = 0.0, ¢ = 56°
and w = 0.0rad, which correspond with the parameters of Galileo Constellation. We
correct the semi-major axis to have all the satellites in the same relative orbits and also
the same slopes for ase.(t), €sec(t), isec(t), Wsee(t), Lsee(t), Msee(t) to control the secular
motion. The corrected semi-major axis and the slopes of the secular component of the
osculating elements of each satellite are presented in Table 3.5.

Given the semi-major axis, the argument of perigee, the Right Ascension of the As-
cending Node and the Mean anomaly of the reference satellite, it is possible to compute
the non-secular component in terms of the eccentricity and the inclination as we show
in Figure 3.14. Then, to minimize the non-secular component we must select e = 0.01
and 2 = 56.0009°, obtaining a deviation of 551.301 meters.

Note that, if we accept a deviation of 5km then, all Flower Constellations can be
corrected into Rigid Constellations.

3.6 Conclusions

In this chapter we provide a new procedure to design a FC that remains a FC under
the J; effect, named Rigid Constellation. This has been done by controlling the secular
and non-secular components of the osculating elements of the satellites through two
techniques. The first one consists of changing a few kilometers the semi-major axes
in such a way that all the satellites have the same slope of the secular part of their
osculating elements. The second consists of searching the values for the eccentricity
and the inclination that reduce the deviation as much as possible.

In this way, all the satellites of the constellation will be perturbed the same way.
Consequently, the relative position of the satellites (in the osculating elements space)
will be maintained over time, and the initial lattice will remain constant within a
prescribed tolerance.

Rigid Constellations have two direct applications. First, it validates the theory of the
3D Lattice Flower Constellation [19] (3D-LFC) under the full expression of the potential
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function with the J, term, assuming that the semi-major axes are corrected and the
value of the deviation is small. Second, it shows that in the Global Coverage Problem
(with J3) it will be enough to find a Rigid Constellation that minimizes a slightly
modified fitness function (computable using Keplerian propagation). The modified
fitness function with respect Eq. (2.4) would be:

fitness(FC) = max max max GDOP(FC, rg,t) (3.12)

w€[0,27] t€[0,Tprop] rgsE€Larth
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M (rad) asec (km/s) ésec (s71) isec (rad/s) Wsee (rad/s) | Qsee (rad/s) | Msec (rad/s)
0.000 6.166-10~ 12 1.680-10~ ™ | —9.961-10~17 | —7.087-10=Y | —1.026-10~7 1.4875-10~%
0.128 1.885.10~11 1.699-10714 | —8.377-10717 | —7.086:107° | —1.026:107° | 1.4874-10~*
0.256 3.048.10~ 11 1.698-1071% | —6.800-10~17 | —7.085-1079 | —1.026:10~° | 1.4873-10~%
0.384 3.774.10~ 11 1.668-10~14 | —5.632:10—17 | —7.085-1079 | —1.026-10~° | 1.4872-10—*
0.512 3.728.10~ 11 1.617-1071% | —5.370-10717 | —7.084-1079 | —1.026:10~° | 1.4872-10~%
0.641 2.760-10~ 11 1.561-10~ 1% | —6.314-10~17 | —7.083-10~9 | —1.025-10° | 1.4871-10~*
0.769 8.934.10~ 12 1.510-1071* | —8.505-10~17 | —7.083-1079 | —1.025-107° | 1.4871-10~*
0.897 —1.732:10~11 | 1.464.10~1% | —1.174-1016 | —7.083-1079 | —1.025-10~9 | 1.4871.10~ %
1.025 —4.758-10~11 | 1.409-10—1* | —1.547-1016 | —7.083-1079 | —1.025-10~° | 1.4871.10—%
1.154 —7.404-1011 | 1.340-10~1% | —1.859-1016 | —7.083-1079 | —1.025-10~9 | 1.4871.10~%
1.282 —8.506-10—11 | 1.278.10~14 | —1.968.1016 | —7.084-10~9 | —1.026-10—9 | 1.4872.10~%
1.410 —7.244.10~11 | 1.272.10~ | —1.794.10~16 | —7.084-107°9 | —1.026-10"9 | 1.4872.10—%
1.538 —4.229-1011 | 1.329.1071% | —1.423.10716 | —7.085-1079 | —1.026-10~9 | 1.4873.10~%
1.666 —1.430-10~11 | 1.379-10—1* | —1.078-10~16 | —7.086-10=9 | —1.026-10~° | 1.4873.-10—%
1.795 —4.697-10712 | 1.360-10~% | —9.359.10~17 | —7.086-1079 | —1.026-10=9 | 1.4874.10—%
1.923 —1.377-1011 | 1.286.10~*4 | —1.011.10~16 | —7.087-1079 | —1.026-10—9 | 1.4874.10~4
2.051 —3.121-10~11 | 1.214.10~* | —1.200-10~16 | —7.087-107°9 | —1.026-10~9 | 1.4875-10~%
2.179 —4.700-1011 | 1.173.10~1% | —1.387.10~16 | —7.087-1079 | —1.026-10~2 | 1.4875.10—%
2.308 —5.622-10~11 | 1.162-10~1* | —1.505-1016 | —7.088-1079 | —1.026-10~° | 1.4875.-10—%
2.436 —5.827.10~11 | 1.169-10~* | —1.536:10~16 | —7.088-1079 | —1.026-10~2 | 1.4875-10—%
2.564 —5.466-10~11 | 1.179-10~14 | —1.495.10~16 | —7.088-1079 | —1.026-10—9 | 1.4875.10~%
2.692 —4.749-10~11 | 1.188-10~ | —1.403-10~16 | —7.088-1079 | —1.026-10~2 | 1.4875-10—%
2.821 —3.863-1011 | 1.194.10~1% | —1.287.10716 | —7.088-1079 | —1.026-10~2 | 1.4875.10~%
2.949 —2.954-10—11 | 1.198-10—1* | —1.167-10-16 | —7.087-1079 | —1.026-10~° | 1.4875-10—*
3.077 —2.126:10~11 | 1.203-10~* | —1.058-10~16 | —7.087-1079 | —1.026-10~2 | 1.4875-10—%
3.205 —1.448.10~11 | 1.212.10~* | —9.730-10~17 | —7.087-10~9 | —1.026-10—9 | 1.4874.10~%
3.333 —9.603-10712 | 1.226.10~ | —9.160-10~17 | —7.086-1079 | —1.026-10~9 | 1.4874.10—%
3.462 —6.865-10712 | 1.247.1071% | —8.922.10~17 | —7.086-1079 | —1.026-10—9 | 1.4874.10—%
3.590 —6.346-10~12 | 1.275.10~ | —9.031-10~17 | —7.085-1079 | —1.026-10—9 | 1.4873.10—4
3.718 —8.006-10~2 | 1.310-10~'* | —9.479-10~'7 | —7.085-10"° | —1.026-10~9 | 1.4873-10*
3.846 —1.168-10—11 | 1.350-10~4 | —1.023-10~16 | —7.085-1079 | —1.026-10—9 | 1.4872.10~%
3.975 —1.708-10~11 | 1.394.10—14 | —1.125-1016 | —7.084-10=9 | —1.026-10~° | 1.4872-10—%
4.103 —2.369-1011 | 1.440.10~1% | —1.243.10716 | —7.084-1079 | —1.026-10—9 | 1.4872.10—%
4.231 —3.072-10~11 | 1.485-10~1* | —1.367-10"16 | —7.084-1079 | —1.026-10~° | 1.4872-10—%
4.359 —3.700-10~11 | 1.524.10~* | —1.477-10716 | —7.084-107°9 | —1.025-10"9 | 1.4872.10%
4.487 —4.096-10~11 | 1.552.10~14 | —1.549.10~16 | —7.084-10~9 | —1.025-10~9 | 1.4871.10~%
4.616 —4.088-10~11 | 1.563-10~1* | —1.555-10"16 | —7.084-10=9 | —1.026-10~° | 1.4872-10—%
4.744 —3.536:1011 | 1.553.10~1% | —1.474.10~16 | —7.084-1079 | —1.026-10—9 | 1.4872.10—%
4.872 —2.437-10~11 | 1.522.10~1* | —1.307-1016 | —7.084-10=9 | —1.026-10~° | 1.4872-10—*
5.000 —1.019-10~1 | 1.487-10~* | —1.093-10~16 | —7.085-1079 | —1.026-10~9 | 1.4873-10—%
5.129 2.185-10~ 12 1.477-1071% | —9.191-10~ 17 | —7.086:10~9 | —1.026:10° | 1.4873-10~*
5.257 6.575-10~12 1.514-10—14 | —8.838-10~17 | —7.086-10—9 | —1.026-10~° | 1.4874-10—*
5.385 —7.675-10713 | 1.588.10~1% | —1.031.10~16 | —7.087-1079 | —1.026-10—9 | 1.4874.10—%
5.513 —1.696-10—11 | 1.653-10~14 | —1.291.10—16 | —7.087-10=9 | —1.026-10~° | 1.4875-10—%
5.642 —3.247.10~11 | 1.671-10~* | —1.511-10716 | —7.088.1079 | —1.026-10~2 | 1.4875-10—%
5.770 —3.806:10~11 | 1.653-10~14 | —1.575.10"16 | —7.088-10~9 | —1.026-10—9 | 1.4876.10—4
5.898 —3.216-10~11 | 1.636-10~ 1% | —1.484-10716 | —7.088-1079 | —1.026-10° | 1.4876-10—%
6.026 —1.993-1011 | 1.637-10~1% | —1.321.10~16 | —7.088-1079 | —1.026-10~2 | 1.4876.10—%
6.154 —6.619-1012 | 1.655-10~14 | —1.152.10~16 | —7.088-10=9 | —1.026-10~° | 1.4875-10—%
6.283 6.167-10—12 1.680-10~'* | —9.961-10~'7 | —7.087-10~9 | —1.026-10~° | 1.4875-10~*
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Table 3.4: Slopes of the secular components of the osculating elements in function of
the initial Mean anomaly.
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Sat. a (km) asec (km/s) ésec (s71) isec (Trad/s) wsee (rad/s) | Qsec (rad/s) Msec (rad/s)
[i,7] | corrected
[0,0] | 29600.137 | —2.833-10° T | —8.944-10 7 | —3.227-10 ° | 2.661.10~ Y | —5.228-10 Y | 1.2398266-10 *
[0,1] | 29598.872 | 8.298-10~'2 | —1.198-10"17 | 9.466-10~17 2.638-1079 | —5.228.107° | 1.2398266-10—*
[0,2] | 29597.165 | 3.114-10— 1 3.891.10~16 3.549.10~16 2.629-1079 | —5.228.1079 | 1.2398266-10~*
[0,3] | 29597.843 | 2.525.10~ 12 9.406-10~16 2.883-10~17 2.620-1079 | —5.228.107° | 1.2398265-10~*
[0,4] | 29599.783 | —3.029-10~11 | 859810716 | —3.450-10716 | 2.622.1079 | —5.228-10~9 | 1.2398266-10~*
[0,5] | 29599.784 | —1.305-10~11 | —3.276.10716 | —1.486-10716 | 2.617-107° | —5.228.107° | 1.2398266-10~*
[0,6] | 29597.845 | 2.569-10~ 11 —1.847-10716 | 2.928.1016 2.612:1079 | —5.228.107° | 1.2398265-10~*
[0,7] | 29597.166 | 2.198-10~'1 | —4.364-10-16 | 2.506-10~16 2.620-1079 | —5.228.1079 | 1.2398266-10~*
[0,8] | 29598.874 | —1.811-10~'1 | —1.044-10~15 | —2.062-10716 | 2.629-10~2 | —5.228-10~9 | 1.2398266-10~*
[1,0] | 29599.524 | —2.764-10~'1 | —7.800-10716 | —3.148.10716 | 2.628.1079 | —5.228-10~9 | 1.2398266-10~*
[1,1] | 29599.976 | —1.926:10~11 | —3.502:10716 | —2.194.10716 | 2.643.107° | —5.228.107° | 1.2398266-10~*
[1,2] | 29598.165 | 2.096-10~ 11 1.680-10 16 2.389-10~16 2.636-1079 | —5.228.107° | 1.2398266-10—*
[1,3] | 29597.085 | 2.650-10— 1 4.320-10~16 3.020-10~16 2.623-1079 | —5.228.1079 | 1.2398266-10~*
[1,4] | 29598.519 | —1.175-10~'1 | 9.635-10716 | —1.338.10-16 | 2.623.1072 | —5.228-10~9 | 1.2398266-10~*
[1,5] | 29600.101 | —3.061-10~'1 | 5.169-10~16 | —3.488.10716 | 2.622.1079 | —5.228-10~9 | 1.2398266-10~*
[1,6] | 29599.218 | 1.081-107'2 | —5.280-10716 | 1.245.10717 2.612:1079 | —5.228.1079 | 1.2398266-10~*
[1,7] | 29597.329 | 3.094.10~11 1.278.10~17 3.526-10~16 2.607-1079 | —5.228.107° | 1.2398266-10~*
[1,8] | 29597.554 | 9.650-10~'2 | —8.179-10-16 | 1.101-10—16 2.624-1079 | —5.228.1079 | 1.2398266-10~*
[2,0] | 29598.167 | —4.737-10712 | —1.048-10~15 | —5.379-10~17 | 2.627.10~2 | —5.228-10~9 | 1.2398266-10~*
[2,1] | 29599.978 | —3.129-10~ 11 | —2.438.10716 | —3.565.10716 | 2.630-1079 | —5.228-1079 | 1.2398266-10~*
[2,2] | 29599.522 | —6.135-10712 | —1.903-10716 | —6.979-10717 | 2.637-107° | —5.228.107° | 1.2398266-10~*
[2,3] | 29597.553 | 2.915.10~ 11 3.121-10716 3.322-10~16 2.634-1079 | —5.228.107° | 1.2398266-10~*
(2,4] | 29597.329 | 1.624-10~ 1 6.098.10~16 1.851-1016 2.614-1079 | —5.228.1079 | 1.2398266-10~*
[2,5] | 29599.216 | —2.352-10~ 11 1.012.10~ 15 —2.680-10716 | 2.622-1079 | —5.228-107° | 1.2398266-10—*
[2,6] | 29600.101 | —2.443-10~11 | 7.844-10~'7 | —2.783.10716 | 2.620-1079 | —5.228-1079 | 1.2398266-10~*
[2,7] | 29598.522 | 1.497-10~'' | —3.629-10716 | 1.707-10716 2.609-1079 | —5.228.1079 | 1.2398265-10~*
[2,8] | 29597.085 | 2.962-10~11 —6.970-10~17 | 3.376-1016 2.614-1079 | —5.228.107° | 1.2398266-10~*

Table 3.5:

Corrected Galileo Flower Constellation.




Chapter 4

Necklace Theory on Flower
Constellations

4.1 Introduction

From a mathematical point of view, the theory of Flower Constellations appears to have
reached the final level of maturity, but from a practical point of view, the following
question arises. Since to obtain full symmetry most of 2D-LFCs involve an unpractically
high number of satellites, is it possible to select a subset of them and still obtaining
a symmetric phasing distribution? This chapter provides a positive answer to this
question and provides a methodology to compute all these subsets, subsets that are
keeping full symmetry in the (€2, M)-space. In the (2, M)-space the initial orbit plane
is made with Ny, admissible locations (available for the 2D-LFC satellites) and these
locations can be seen as a necklace of Ny, empty pearls. An actual number of satellites
(Nyso) (actual pearls), less than the number of empty pearls, can be distributed in
the empty pearls necklace. The purpose is to find the proper necklaces and associated
suitable shifting parameters (to duplicate and shift the initial necklace in the following
orbit planes) to obtain the same initial necklace when we reach the last orbit plane.

By solving the problem above we are able to design optimal satellite constellations made
of few satellites while keeping the design parameters space as big as the computer can
tolerate! To solve this problem, basic number theory knowledge is used. However,
to best explain the proposed methodology a final flowchart is provided to clarify the
design process.

In a 2D-LFC, where Ny, = N,,, each point in the (€, M)-space identifies one satellite
of the constellation. Usually, the mission budget limits the number of constellation
satellites to an upper assigned value, say Ngpyac. The number of satellites in the con-
stellation, which can be computed as the determinant of the 2 x 2 matrix of Eq. (1.42),
satisfies Ny = N,Ns, < Ngmax. On the other hand, N, defines the number of orbital
planes, a number that is proportional to the number of distinct launches needed to de-
ploy the entire constellation, which is also strongly constrained by the mission budget.
The remaining parameter, the configuration number N., remains the only (integer)
variable to play with. Due to the limited possible values for N, (they are actually N,
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values, only), the different potential configurations are not so many. This is a strong
limitation in the design process. To overcome this limitation, the following idea is
proposed and analyzed.

Instead of directly searching for a 2D-LFC made with a given number of satellites, we
introduce a fictitious satellite constellation with a much larger number of satellites,
and then we extract our constellation as a subset of the larger one. Since we would
like to preserve all the nice properties of LFCs, we are automatically led to the fol-
lowing problem: find all the subsets of N,s real satellites, selected from the fictitious
constellation made of Ny > N, total satellites, such that the satellite distribution in
the (Q, M)-space is symmetric in both, M and 2 azes. Here symmetry should be un-
derstood in the following sense: the satellites in each orbit have the same exact pattern
of mean anomalies, and orbit planes are uniformly distributed in space.

Finding all these subsets will be high payoff effort as the benefits of the necklace theory
applied to 2D-LFC will be outstanding: new optimal solutions will be found with an
assigned minimum number of satellites in a solution space whose dimension is only
limited by the available computational capability.

4.2 Combinatorics of necklaces

4.2.1 The Necklace Problem

Consider a set of N, satellites that can be arranged in N, available locations (with
Nso > N,s) in a given orbit. This set of satellites forms a “necklace” that is rotating
along the orbit and comes back to the original setup in an orbital period. If the satellite
locations are defined in terms of mean anomaly, then the satellite necklace structure
moves rigidly in the mean anomaly space. The question we answer here is: how many
and which are all these necklaces?

4.2.2 The Necklace Theory

We define some basic concepts and functions of number theory [3| which play an im-
portant role from now on.

Definition 25. A real or complex valued function defined on the positive integers is
called an arithmetic function or a number-theoretic function.

Definition 26. An arithmetic function f : N — C is called multiplicative if it is not
identically zero and

f(mn) = f(m)f(n) whenever ged(m,n) = 1.

Definition 27. The FEuler totient function, ¢ : N — N is a multiplicative function,
defined as follows;

o(m)=#{neN:n<mAged(m,n)=1}. (4.1)
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It is an arithmetic function that counts the number of positive integers less than or
equal to d that are coprime to d; for example a simple computation shows that ¢(1) =

©(2) =1, p(3) = ¢(4) =2, p(5) =4, p(6) =2, p(7) = 6, etc.

Definition 28. The Mdbius function p : N — {—1,0,1} is a multiplicative function
that is defined as follows:

0 if n has one or more repeated prime factors
p(n) =<1 ifn=1 (4.2)
(—1)* if n is a product of k distinct primes,

so u(n) # 0 indicates that n is squarefree, or in other words, if p(n) = 0 indicates that
n has a square factor > 1.

In general, the necklace problem is a combinatorial problem which answer the following
question: how many different arrangements of n pearls in a circular loop are there,
assuming that each pearl come in one of k£ different colors? Two arrangements that
differ only by a rotation of the loop, are consider to be identical. The mathematical
solution to this problem is a simple application of Burnside’s counting theorem [15],
and it is summarized by the following formula:

Ne(n) = = 3™ gk,

din

where the sum is taken over all the divisors d of n. In our physical example k = 2, and
these two “colors” represent the presence and the absence of a satellite in the admissible
locations. Therefore, the total number of satellite necklaces is

Nofn) = = 3 pld) 2/ (43)
d|

Mathematically, a necklace will be represented as a subset G C {1,---,n}. Since we
only consider unlabeled necklaces, two subsets G and G’ that differ by an additive
constant are considered identical:

G=G < 3ds: G=G' +s mod (n).

The set of all possible unlabeled necklaces with n pearls and two colors will be iden-
tified by K(n). Figure 4.1 shows all possible unlabeled necklaces using three pearls
of two colors, i.e. the elements of K (3). Notice that in Figure 4.1, the configurations
{1,2}, {2, 3}, and {1, 3} are all represented with the set {1,2} because it is possible to
obtain {1,3} and {2,3} from {1,2} by performing a suitable rotation. Similarly, the
configurations {1}, {2}, and {3} are all equivalent to {1}. Therefore K(3) contains
only 4 elements: 0, {1}, {1,2}, and {1,2,3}. An algorithm [15] has been written to
compute all possible necklaces involving a total of Ny, pearls, of which N,,, are black
and Ny, — N,, are white. In order to obtain all possible necklaces with N, pearls, it
is necessary to call the algorithm with N,s, = 0,1, N,.
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@ -
OO0~
SO0 - -

Figure 4.1: Unlabeled necklaces with three pearls and two colors.

4.2.3 Symmetries of the necklaces

Let G be a necklace such as G € K(n). We say that G has a symmetry of length r if G
and G + r coincide modulo n.

As an example, consider the necklace G = {1,3,5,7} € K(8). What symmetries does
it have?

e =2 is a symmetry, since G + 2 = {3,5,7,9} is equivalent to G modulo 8.

e r =4 and r = 6 are also symmetries, since {5,7,9,11} and {7,9, 11,13} reduce
to {1,3,5,7} modulo 8.

e r =1 is not a symmetry, since {2,4, 6,8} and {1,3,5,7} do not coincide modulo
8.

From the example it is easy to see that if r is a symmetry of a necklace, then any
multiple of r is also a symmetry. This remark motivates our following definition: for
each necklace G € K (n), the symmetry number of G, denoted Sym(G), is the shortest
of the symmetries of G. Note that Sym(G) always divides n.

Sym(G) =min{l <r<n:G+r=¢ mod (n)}. (4.4)

4.2.4 Necklaces and 2D Lattice Flower Constellations

To generate the necklaces the following idea is adopted: consider a standard 2D-LFC
(with parameters Ng,, N,, and N.), and, instead of placing all satellites in the admis-
sible locations, as provided by Eq. (1.42), a subset (necklace) of admissible locations
G C{1,2,--- Ny} is selected for actual satellites in the first orbital plane, and then
this configuration is duplicated for each subsequent orbital plane using a constant shift-
ing parameter (an integer k € {0,1,---, Ny, — 1}). The subset G can be any necklace.
Once G and the shifting parameters are given, the constellation is automatically de-
termined. Figure 4.2 shows the various positions of a satellite in the second orbital
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Figure 4.2: The shifting determines the location of the satellites in the constellation.

plane with respect the first one in the first orbital plane as a function of the shifting
parameter k.

To perform a correct and unique shifting between subsequent orbital planes two prob-
lems must be taken into consideration:

e Consistency problem. Due to the modular nature of the {2 parameter, the
shifting has to be chosen in such a way that the group of satellites (necklace) in
the orbit with Q = 0 coincides with the group of satellites (necklace) in the orbit
with 2 = 27. This problem is discussed in detail in the next subsection.

e Minimality problem. Sometimes, for the same G, there are two values of
the shifting parameter generate the same distribution of satellites in the (€2, M)-
space. This is discussed later, but it is solved by simply taking 0 < k& < Sym(G)—
1.

Satellite constellations obtained from the above procedure are called Necklace Flower
Constellations (NFC).

4.2.5 AM-shifting between subsequent orbit planes

The first satellite (j = 0) in the first or initial orbit (i = 0) is chosen (without loss of
generality) as My, = 0 and Q9 = 0. Taking into account Eq. (1.42) the mean anomaly
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of our satellite in the next orbit will be:

27N,
My = — <. 4.
0= TN, (45)
Then, the amount AM, called AM-Shifting between subsequent orbits, will be:
271N, 21
AM = — 4k 4.
NN, VAN (4.6)

where k is the shifting parameter. This means that the mean anomalies of the satellites
in the second orbit can be obtained by adding AM to the mean anomalies of the
satellites of the first orbit. Similarly, the mean anomalies on the third orbit are the
mean anomalies on the second plus AM, and so on.

After a rotation of 360° of the initial orbit, the mean anomaly of the satellite will
increase by:

27N, 2
N,AM = N, <— NN + sto)
2
= kN, — N,). 4.
(kN = V) (&)

Figure 4.3 shows the meaning of the value AM in a (£, M)-space of a NFC G =
(1,3,5,7} with N,y =8, N, = 6 and N, = 2.
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Figure 4.3: The amount AM in the (£, M)-space.
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4.2.6 Admissible pair (G, k)

Let G be a necklace such as G € K(Ny,) and a shifting parameter k € {0,1,- -+, Ny,—1},
the pair (G, k) is called admissible if the distribution of satellites in the initial orbit is
invariant by adding N,AM to the mean anomaly of each satellite.

27 27 27
NSOQ + N (kN, — N,) = NSOQ mod (27). (4.8)

27

The logic behind this equation is the following: the term G represents the mean

anomalies of the satellites in the first orbit plane, the second term represents the
shifting in mean anomaly that all satellites will suffer due to the shifting between the
first and the last orbit and, finally, the right hand side represents the mean anomalies
of the satellites in the last plus one orbit, that must coincide with the initial mean

NSO .
anomalies up to some integer multiple of 2. Multiplying Eq. (4.8) by 5 and using
T

the definition of symmetry number, the condition above translates into
Sym(G)|kN, — N.. (4.9)

Equation (4.9) represents the solution to the consistency problem, that is, it provides
the values of the shifting parameters (k) that are all admissible to create a NFC. Again,
these values of k are such that the initial necklace in orbital plane {2 = 0 is the same
when shifted N, times by the mean anomaly variation given in Eq. (4.6).

Figures 4.4 and 4.5 show two examples of 2D-LFCs generated by an admissible pair
(G, k). In both cases, the design parameters were Ny, =9, N, = 6, and N, = 3. The
necklace in Figure 4.4 is G = {1,4,6} that has symmetry number Sym(G) = 9, and
shifting parameter k& = 2. The consistency condition is satisfied since 9|2 - 6 — 3, so
the pair ({1,4,6},2) is admissible. This can be seen in the figure as follows: shifting
the three satellites of the last orbit (the one with = 320°) with AM = 60° as given
by Eq. (4.6) for k = 2, reproduces exactly the configuration in the first orbit (the
one with = 20°). In Figure 4.5, the necklace is G = {1,4,7} which has symmetry
number Sym(G) = 3, and shifting parameter k& = 2. Again, the consistency condition
is satisfied: 3|2 -6 — 3.

As we mentioned before, the minimality problem is solved by restricting the range of
values of k to the interval [0, Sym(G)—1]. It is clear that (G, k) and (G, k") will generate
the same constellation if and only if k¥ — &’ is an integer multiple of Sym(G). This is
impossible for two values in the proposed interval. Figure 4.5 shows an example of this
situation: in this 2D-LFC (Ng, = 9, N, = 6, and N, = 3) the necklace G = {1,4, 7},
which has Sym(G) = 3, generates the same configuration for k = 2, k =5, and k = 8.
This discussion proves our main result:

Theorem 29. Each NFC corresponds with one (and only one) pair (G, k) with G €
K(Ny), 0 <k < Sym(G) — 1, and Sym(G)[kN, — N..

Figure 4.6, 4.7, and 4.8 show the only three possible NFCs (according to our main
result) induced by the necklace G = {1,4,7,10} € K(12), which has symmetry number
Sym(G) = 3. The underlying 2D-LFC has parameters Ny, = 12, N, = 9, and N, = 3,
so the three possible values of k € {0,1,2} are admissible.
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Figure 4.4: NFC generated by Figure 4.5: Different values of
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Figure 4.6: NFC with G = {1,4,7,10} and k =0

4.2.7 The Diophantine Equation for the Shifting parameter

The admissibility condition for a pair (G, k) given in Eq. (4.9), motivates us to study
the Diophantine equation d|ak — b, where a, b, d are given (positive) integers and the
unknown k£ takes integer values in the range [0, d—1]. All the solutions can be obtained
trivially by trial and error (since there are finitely many possibilities for k), but we
would need a closed formula for its number of solutions:

Lemma 30. The number of solutions of this diophantine equation, denoted by Y (d, a, b),
is exactly:
0 if ged(d,a)1b

ged(d,a) otherwise. (4.10)

Y (d, a,b) = {

Proof. Independently of the value of k, the product ak is always divisible by ged(d, a),
so when ged(d, a) 1 b, it is impossible to have ged(d, a)|ak—0b, and therefore we will never
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Figure 4.7: NFC with Figure 4.8: NFC with
G={1,4,7,10} and k = 1 G ={1,4,7,10} and k = 2

have d|ak —b. In the case where ged(d, a)|b, we can divide a, b, and d by ged(d, a), and
reduce the problem to the equation d’|a’k —b" where ¢’ = a/ ged(d, a), V' = b/ ged(d, a),
and d' = d/ged(d,a). This problem has only one solution in the interval [0,d" — 1],
since @' and d’ have no common factor, and therefore has d/d" = ged(d, a) solutions in
the [0,d — 1]. O

4.3 Counting Necklace Flower Constellations

In order to successfully implement the necklace theory into an optimization process,
it is important to have an algorithm providing all the necklaces that can be obtained
from a 2D-LFC with parameters Ny,, N,, and N.. However, before listing all these
necklaces it is important to know how many they are. The total number of necklaces,
here denoted by W (Ny,, N,, N.), is exactly the number of admissible pairs;

#{(G,k) : G € K(Ng), 0<k <Sym(G)—1, kN, = N. mod (Sym(G))}. (4.11)

Let X (d) be the number of necklaces with symmetry number equal to d, then Eq. (4.11)
can be rewritten as,

W (Noo, No, No) = >~ X(d)Y(d, N, N). (4.12)
d|Nso

It should be natural to adopt the notation X (d, Ny,) rather than X(d) since we are
considering necklaces in K(N;,). However, the number of necklaces with symmetry
number d in K(N,,) is on a one-to-one correspondence with the number of necklaces
in K(d) with symmetry number d. This shows that X (d, N;,) does not depend on N,
as long as d|N;,. For practical purposes we can define X (d) = X(d,d), i.e. the number
of necklaces in K(d) with symmetry number equal to d. A simple corollary of this

discussion is the formula
S X(d) = No(m), (113)

din



92 CHAPTER 4. NECKLACE THEORY ON FLOWER CONSTELLATIONS

where Ny(n) is given in Eq. (4.3). Equation (4.13) follows from the fact that X (d) =
X(d,n) for any d|n, and that any necklace in K (n) has a symmetry number that divides
n.

Consider two positive integers n and m. Denote (n : m™) the integer obtained by
removing from n all the prime factors corresponding to the primes that appear in m.
For instance, (120 : 70°°) = 3, since 120 = 23 - 3 - 5 and the primes 2 and 5 appear in
M0=2-5-7.

Now we have all the tools needed to state our main counting result:

Theorem 31. Assume gcd(Ny,, N,, N.) = 1. Then,
W(NsoaNoaNc) = NQ(NSO : Nooo)7
regardless of the value of N..

Proof. We will use Eq. (4.12) to compute the value of W (Ny,, N, N.). In this equation,
we have a sum ranging over all divisors d of N,,. However, if the divisor d has a common
factor with N,, then it can not have any common factor with N, by our assumption
gcd(Ngo, Noy N.) = 1, and therefore Y(d, N,, N.) = 0 according to Eq. (4.10). This
means that it is enough to consider divisors of (N, : N3°). For any of these divisors,
we have Y (d, N,, N.) = 1, since ged(d, N,) = 1. All together this means that

W(Neoy No, Ne) = > X(d),
d|(Nso:Ng?)
which is equal to No(N;, : N3°) by Eq. (4.13). O
We derive from Theorem 31, two particular cases of independent interest:
Corollary 32. If gcd(N,,, N,) = 1, then W (N,o, N,y N.) = Na(N,).

Proof. When N, and N, have no common factors, then (Ny, : N>°) = Nj,, since there
are no primes to remove from Ng,. Knowing this, the result follows immediately from
Theorem 31. O

Corollary 33. If Ny|N, and ged(N,, Ng,) = 1, then W (Ng,, N,, N.) = 2.

Proof. The assumption N,,|N,, implies that all the primes in Ny, appear in N,, and
therefore (Ny, : N°) = 1. By Theorem 31, we conclude W (Ng,, N,, N.) = Nao(1) =
2. O

Theorem (31) is particularly useful with Harmonic Flower Constellations that are 2D-
LFCs with the additional constraint ged(Ngo, Ny, N.) = 1 (see Ref. [7]).

It would be nice to have a simple closed formula for W (N,,, N,, N,.) that works in
general. The following results constitute positive steps toward the general solution.
First of all, we search a formula for X(d).
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Theorem 34. (Moebius’ Inversion Formula) Let f : N — C and F : N — C be
any functions such that:

F(m) =Y f(@).
dlm

Then,

Proof.

Su(Z)F@ = You(F) s

dim dim eld
- |Z|Zu (%) f

Now, by setting d = ed’,

S u(G) s = X2 u () s

dlm e|ld elm d'|™2

. __mje
By setting d" = ==,

3 {mzu(”;{e)} = S He Y @)

e|m d//""d_{e

- Zf<e>{1 L

0 otherwise.
e|lm

= f(m).

Theorem 35. Let f : N — C be a multiplicative function. Then,

F(m) = f(d)
dlm

is multiplicative.
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Proof.
F(mn) =Y f(d).
dlmn

Every divisor ¢ of mn can be expressed in the form ¢ = ab where a|m and b|n. Moreover,
ged(a,b) =1, ged(m/a,n/b) = 1 and there is a one-to-one correspondence between the
set of products ab and the divisors ¢ of mn. Hence,

Fimn) = 3 f(ab)

alm

bln
= > fa)f®)
alm
bln
= > f(@))_ fb) = F(m)F(n).
alm bln

Theorem 36. Let F': N — C be a multiplicative function. Then,
m
f(m) = dZu () £

is multiplicative.

Proof. Every divisor ¢ of mn can be expressed in the form ¢ = ab where a|m and b|n.
Moreover, ged(a,b) = 1, ged(m/a,n/b) = 1 and there is a one-to-one correspondence
between the set of products ab and the divisors ¢ of mn. Hence,

fmn) = Y (=) F(@)

Theorem 37. Let

be a multiplicative function. Then,
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95

is also multiplicative function. Moreover,

oy = 12

Vn € N.
n

Proof. Using theorem 36 is trivial that f(m) is a multiplicative function. Let p € N a

prime.

f(p)

Let p* € N a power of a prime.

f(")

Su(i)
()
141kt
1 p
-
"\ #(d)

- ()
_ Zf:'u <pk—z') SO(IZ’Z)
:1%@W_Mﬁ”)

pk pk—l
~ 0.

Let n € N. If n has a power of a prime, then f(n) = 0. Otherwise:

f(n)

= f(plpz-.-pm)
= fp0)f(p2) - f(pm)
B et
B b1 P2 “'pm
= M Vn.
n

Theorem 38. For any positive integer d, we have

@:éiy@ww

eld

Proof. The idea is to invert Eq. (4.13) using Moebius’ inversion formula given in The-

orem 34:

S nld/e)Nafe)

eld
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() e
= > ) u(d/e)%Q /"
eld fle
Writing » = e/ f, and changing the order of summation, we get:
" d '\ o(f)
X(d) = — — | —=—.
-2 (7)%;

Finally, the theorem of multiplicative arithmetic functions show that the second sum
reduces to u(d/r)/(d/r), and therefore

v - YT
r|d

= 2>l

r|d

= é Z p(e)29e.

eld
The last equality is true by writing » = d/e and we have what the theorem states. O

For the cases not included in theorem 31 (or in any of its corollaries) the following
formula for W (N, N,, N..) is provided.

Theorem 39. If N,|N, and N, = 0 then, W (N,,, N,, N.) = 2N,

Proof. The following observation should be noted: for any divisor d of Ny,, we have
Y (d, N,,0) = d, since d also divides N,. Therefore, using Eq. (4.12) and theorem 38,
we can write

W(NsmNmNc) = ZX(d)d

d|Nso

= Z Z,u(e)Qd/e.

d|Nso e|d
Now, by setting d = ek, and changing the order of summation, the previous equation
reduces to:
W (Nags Noy Ne) = >~ ule)2.
k|Nso e| Nse

The sum ) p(e) is equal to 1 when r = 1 and 0 otherwise. In particular, the
sum above (the one depending on e) will vanish unless k = Ng,. But this shows
W (Nyo, Ny, N.) = 2N as claimed. O

A formula to compute all possible configurations given N,,, N, and N, has been studied,
but it will be useful a formula providing all the possible configurations that can be
obtained from a 2D-LFC with parameters N,,, N,, N. and the number of real satellites
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per orbit Nrsg < N,. The number of constellations satisfying the previous condition,
denoted by W (Ng,, Ny, N¢, N,s,), corresponds with the number of admissible pairs;

{(G,k):G € K(Ny,), 0 <k <Sym(G) -1, |G| = Nyso, kN, = N. mod (Sym(G))}.

(4.14)
We examine a simple case. If Ny, = 24 and N,,, = 6 by exploring all the possibilities
for the symmetry number of a given necklace G since Sym(G)| Ny, we have the following
cases:

e Sym(G) = 1,2,3,6. These cases are not possible, since we have to distribute 6
satellites in Ng,/Sym(G) = 24,12,8, 4 subsets (each one with the same number
of satellites), respectively.

e Sym(G) = 4,8,12,24. These cases can be attained by putting 1,2,3,6 satellites
in each of the N,,/Sym(G) = 6, 3,2, 1 subsets, respectively.

It is easy to infer that the number of subsets (Ny,/Sym(G)) must divide the real number
of satellite per orbit (NN,s,), which translates into the following condition,

NSO
Sym(G)
In other words, N, must divide Sym(G) - N,s,. Then, by exploring all the possible

symmetry numbers, which correspond with the divisors of N,, the Eq. (4.14) can be
reformulated as:

‘Nrso-

W(N507N07NcaNrso) = Z #{g S K(Nso) . ‘g| - Nrsm S?/m(g) = )\} Y()\aNoaNc)'

A|Nso
N50|)\N'r50

(4.15)
where Y (A, N,, N.) has been already define in Eq. (4.10).

Despite of the difficulty to analyze the previous formula we have a counting result,

Theorem 40. If gcd(Ny,, Nyso) = 1 then,

W(Nsm No> Nca Nrso) = NQ(Nsoa Nrso) Y(Nsoa Noa Nc)>

where Ny(m,n) represents the number of necklaces in two colors with n pearls, of which
m are in black color and n — m are in white.

Proof. 1f gcd(Ngp, Nyso) = 1 the only symmetry number A that satisfies the conditions
A Ngo and Ngo|AN,g, is A = Ng,. Then,

W(N807N07NC7NTSO) - #{g S K(Nso) . ‘g| - NT807 Sym(g) - Nso} Y(NsmNo’Nc)'

The number of necklaces G satistying |G| = N, and Sym(G) = N, corresponds to
N5(Ngo, Nyso). All together means that

W(Nsm No> Nca Nrso) - NQ(Nsoa Nrso) Y(Nsoa Noa Nc)
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It would be nice to have a closed formula for W(NSO, Ny, N¢y Nyso). The following result
constitute a positive step to reach that goal.

W (Naos Noy Ney Nyso) = Y X(d, Nyso, Noo)Y (d, Ny, Ne) (4.16)
d|Nso

where the function X (d, Nyso, Nso) represents the number of necklaces with Ny, ad-
missible locations, of which N,,, are occupied by a satellite and the symmetry of the
necklace is d.

Number theory will be a fundamental tool to reach a closed formula for X(d, Niyso, Nso)
which is still missing.

4.4 Design of Necklace Flower Constellations

To sum up, the design of a Necklace Flower Constellation is as follows: given the
number of admissible locations per orbit N,,, and the real number of satellites per
orbit N,,, it is possible to determine all the different configurations to distribute the
satellites in the first orbit of our constellation. After that, an initial necklace is selected
and it is possible to compute its symmetry number. Finally, the values of the shifting
that give different Necklace Flower Constellations are computed.

Algorithm #1
compute the total —)}Select one necklace (G) |

number of necklaces l
T Algorithm #2
N, N, compute the symmetry number
N_, <N, Sym(9)
N, €10,No-1] l
Input phasing parameters Algorithm #3

compute all shifting parameters

|

Select one shifting parameter
ke [O,Sym(g) —l]

l

compute satellite

‘ phasing [Q. M ]

Input orbital parameters

Compute satellite
Initial positions

Figure 4.9: Program Flowchart.

The flowchart given in Figure 4.9 summarizes the design procedure described above
and it can be read as follows. As input we have the mission parameters, N, and N,,,
indicating the number of orbit planes and the number of satellites per orbit plane,
and an arbitrary number of potential locations (per orbit plane) where to locate our
satellites, Ng, > N,s,. Now, by choosing a value for the configuration number N, in the
interval [0, N, — 1] we can compute all possible necklaces of the N, satellites in the Ny,
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potential locations. Now, by selecting one of these necklaces, say G, we can compute
Sym(G) and all the possible values of the shifting parameter k& € [0, Sym(G) — 1] that
give different configurations for our constellation. At this point using the selected
necklace and a shifting parameter we compute the phasing of all the N,.; = N4, N,
satellites in the (€2, M)-space as shown in Figure 4.2. The location of the satellites in
the first orbit is given by the necklace G and the location of the satellites in subsequent
orbits is controlled by the shifting parameter k. Finally, optimize the common orbital
parameters (a, e, ¢ and w) to minimize the mission cost function.

Note that, the formulas that we obtained for the total number of Necklace Flower Con-
stellation can be used in practice to select values of N, (given Ny, and N,) that produces
the largest number of different patterns. This is useful since the more configurations
there are, the more design possibilities we have.

A 27 satellite constellation is designed to illustrate a practical example of usage. The
number of orbital planes is three, N, = 3. By using the 2D-LFC theory the remaining
parameters must be Ny, = 9 and N, € {0,1,2}. Consequently, we have three unique
design possibilities illustrated in Figures 4.10, 4.11, and 4.12.

360 ; ; ; ; ‘ 360 ‘ ‘
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300t 1 300t @ &
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D 240 ® @ ® D 240 - ® -
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2 2 ®
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2 120 @ @ ® 2 120} @ :
®
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® ® ® ®
60 60 @ &
® ® ® ®
®
& i & i o & i i i ¢
% 60 120 180 240 300 360 % 60 120 180 240 300 360
RAANI[Deg] RAANI[Deg]
Figure 4.10: 2D-LFC with Figure 4.11: 2D-LFC with
Nc = 0, QOO = 60.00, and Nc = 1, QOO = 60.00, and
Moo = 0.0 Moo = 0.0

However, by using the NFC theory there exist more design possibilities. Consider a
NFC with parameters N, = 3, Ny, = 12, N,5, = 9, and N, € {0,1,2}. First of all,
as the theory states, the first orbit of the constellation is given by a necklace. In
particular, there are 19 different necklaces to associate to the first orbit. These are:
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Figure 4.12: 2D-LFC with N, = 2,
QOO = 60.00, and MOO = 0.0

G1=1{1,2,3,4,5,6,7,8,9}, G, ={1,2,3,4,5,6,7,8,10},
Gs =41,2,3,4,5,6,7,9,10}, G, =11,2,3,4,5,6,8,9,10},
Ggs=11,2,3,4,5,7,8,9,10}, Gs =11,2,3,4,6,7,8,9,10},
Gr=11,2,3,5,6,7,8,9,10}, Gs =11,2,4,5,6,7,8,9,10},
Go ={1,3,4,5,6,7,8,9,10}, G =1{1,2,3,4,5,6,7,9,11},
G =1{1,2,3,4,5,6,8,9,11}, Gio ={1,2,3,4,5,7,8,9,11},
Giz = {1,2,3,4,6,7,8,9,11}, Giu=1{1,2,3,5,6,7,8,9,11},
Gis ={1,2,4,5,6,7,8,9,11}, Gis ={1,2,3,4,5,7,8,10,11},
Gir =1{1,2,3,4,6,7,8,10,11}, Gis ={1,2,3,5,6,7,8,10,11},

g19 - {]-7 27 37 57 67 77 97 107 11}

Only two particular cases are analyzed. The necklace G, has symmetry number equal
to twelve Sym(Gy) = 12. When N, = 0 the consistency condition (see Eq. (4.9)) im-
plies that the shifting parameter must be & € {0,4,8}. While for the other values
for N. € {1,2} there are no values for the shifting parameter that satisfy the consis-
tency condition. By using necklace G, we have three new designs for the constellation
illustrated in Figures 4.13, 4.14, and 4.15.

The necklace Gjg has symmetry number equal to four Sym(Gy9) = 4. When N, = 0
the consistency condition (see Eq. (4.9)) implies that the shifting parameter must be
k = 0. When N, =1 the shifting parameter must be £ = 3, and finally when N, = 2
the shifting parameter must be & = 2. Then, with the necklace Gg there exist three
different possibilities for design the constellation illustrated in Figures 4.16, 4.17, and
4.18.

Only two necklaces have been analyzed. Note that, the more necklaces can be associ-
ated to the first orbit, the more design possibilities there are.

4.5 Conclusions

The cost of the missions is one of the most important factors to account when building
a Constellations of satellites. The theory of necklaces allows us to reduce the number
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of satellites in a Flower Constellation without losing their symmetric character. We
have shown what parameters are needed to define one of these objects (basically, a pair
(G, k) consisting of a necklace and a positive integer), and which constrains have to be
imposed on these parameters. We have also written algorithms, that enumerate and
plot all the possible necklace constellations that can be extracted from a 2D Lattice
Flower Constellation.
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Conclusions and future work

This work approaches the problem of designing optimal constellations, from a geometric
point of view, since we seek those constellations with excellent geometry, and from an
economical point of view because we allow fuel savings by seeking stable constellations,
and also design savings in the constellation, since we try to reduce the number of
satellites required while keeping the characteristics of a 2D-LFC. The main results can
be summarized in the following points:

e We found optimal 2D-LFCs for solving global positioning problems by using
evolutionary algorithms and a number of satellites varying between 18 and 40.

e Thanks to the 2D-LFCs, eccentric orbits have been included in the search of
optimal configurations, finding in some cases orbits with e ~ 0.3.

e We found 2D-LFCs such that they improve the existing GLONASS or Galileo
constellations with the same number of satellites by using our metric, which
is the maximum GDOP value experienced in 30,000 ground stations randomly
distributed over the Earth surface during the propagation time.

e We propose a new method for designing stable 2D-LFCs, we call them Rigid
Constellations. In these constellations the relative positions of the satellites are
almost constant (in the osculating elements space), so the structure of Flower
Constellation is preserved over time.

e We verified numerically that all Flower Constellation can become into a Rigid
Constellation if we accept a deviation of 5 km.

e We obtained Rigid Galileo Constellation by correcting the semi-major axes of the
satellites of the Galileo Constellation and seeking the eccentricity and inclination
that minimize the deviation of the satellites.

e We propose two direct applications of Rigid Constellations. First, it validates
the theory of the 3D Lattice Flower Constellation [19] (3D-LFC) under the full
expression of the potential function with the Js term, assuming that the semi-
major axes are corrected and the value of the deviation is small. Second, it shows
that in the Global Coverage Problem (with J) it will be enough to find a Rigid
Constellation that minimizes a slightly modified fitness function (computable
using Keplerian propagation).
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CONCLUSIONS AND FUTURE WORK

We reduce the number of satellites in a 2D-LFC by using the Necklace Theory,
while keeping the symmetries and all the properties of this kind of constellations.
We obtain the Necklace Flower Constellation (NFC).

We applied number theory to solve the consistency and minimality problems that
appear in Necklace Flower Constellations.

We developed different theorems to determine the number of Necklace Flower
Constellations that can be obtained as a subset of a 2D-LFC.

Some of the future research that will be performed is:

We will find optimal configurations with more than 30,000 ground stations dis-
tributed according to geographical factors instead of randomly over the Earth
surface.

In the search of optimal configurations, if one has a constellation whose GDOP
is greater than 99 at any ground station at any given time, it is automatically
disregarded. Future research will consider these cases in detail.

We will study the low thrust needed to reduce the deviation in Rigid Constella-
tions to zero.

We will design Rigid Constellations including more terms in the potential func-
tion.

We will determine a close formula for W(NSO, Ny, N, N,.so) and X(d, Nyso, Nso).

We will extend the necklace theory to the 3D-LFC.

Through this work we have raised awareness of the importance of studying different
satellite constellations to design a space mission. This thesis is the starting point for
future research about satellite constellations.



Conclusiones y trabajo futuro

El presente trabajo aborda el problema del diseno de constelaciones 6ptimas, desde
un punto de vista geométrico, puesto que buscamos aquellas constelaciones con una
geometria excelente, y desde un punto de vista econdémico ya que permitimos un ahorro
en combustible al buscar constelaciones estables, y también un ahorro en el diseno de la
constelacion, ya que tratamos de reducir el nimero de satélites necesarios, de manera
que siga teniendo las propiedades caracteristicas de una 2D-LFC, pero su nimero de
satélites se vea notablemente reducido. Los principales resultados pueden resumirse en
los siguientes puntos:

e Encontramos 2D-LFCs 6ptimas para resolver problemas de posicionamiento global,
utilizando algoritmos evolutivos y con un nimero de satélites variando entre 18
y 40.

e Gracias a las 2D-LFCs incluimos orbitas excéntricas en la bisqueda de configu-
raciones Optimas, encontrando en algunos casos orbitas con e ~ 0.3.

e Encontramos 2D-LFCs que mejoran a las existentes Galileo o GLONASS con el
mismo nimero de satélites, utilizando la métrica del maximo GDOP experimen-
tado en 30000 estaciones terrestres en el tiempo de propagacion.

e Proponemos un nuevo método para disenar 2D-LFCs estables que denominamos
constelaciones rigidas, del inglés Rigid Constellations. Las posiciones relativas
de los satélites en dicha constelacion son practicamente constantes (en el espa-
cio de los elementos osculadores), de tal manera que la configuracion de Flower
constellation se mantiene con el paso del tiempo.

e Verificamos numéricamente que toda Flower Constellation puede convertirse en
Rigid Constellation si aceptamos una desviacion de 5 km.

e Hemos corregido los semiejes de los satélites de la constelacion Galileo y hemos
buscado la excentricidad e inclinaciéon que minimizan la perturbacion no secular
que afecta a los satélites para obtener una constelacion rigida.

e Encontramos dos aplicaciones directas de la teoria de las Rigid Constellations. La
primera consiste en validar la teoria de las 3D-LFCs, en el caso en que la funcion
potencial no sea promediada en un periodo orbital, asumiendo que los semiejes
son corregidos y el valor de la desviacion es aceptable. La segunda aplicaciéon
sirve para resolver problemas de cobertura global en los que se incluye el efecto
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del zonal J; en el potencial. Seré suficiente con encontrar una Rigid Constellation
que minimice una funcion fitness ligeramente modificada y podremos propagar
los satélites en un modelo kepleriano.

e Reducimos el nimero de satélites que componen una 2D-LFC, manteniendo las
simetrias y propiedades peculiares de este tipo de constelaciones mediante la
teoria de collares, del inglés necklace theory. Obteniendo las denominadas Neck-
lace Flower Constellations.

e Utilizando teoria de numeros resolvemos los problemas de consistencia y mini-
malidad inmersos en el diseno de Necklace Flower Constellations.

e Desarrollamos diferentes teoremas para determinar la cantidad de Necklace Flower
Constellations que podemos obtener como subconjunto de una 2D-LEFC.

Algunas de las investigaciones futuras que seran realizadas a posteriori son:

e Buscar configuraciones 6ptimas con méas de 30000 estaciones terrestres y dis-
tribuirlas por razones geograficas en lugar de aleatoriamente en la superficie ter-
restre.

e En la busqueda de configuraciones 6ptimas, si una constelacion presentaba un
GDOP mayor que 99 en alguna estacion terrestre en algtin instante determinado,
quedaba autométicamente descartada. Una investigacion futura serd considerar
detalladamente estos casos.

e Estudiaremos los impulsos necesarios para conseguir una desviacion igual a cero
en una Rigid Constellation.

e Disenar Rigid Constellations incluyendo més términos perturbadores en la fun-
cion potencial.

e Determinar una formula cerrada para las funciones W(Nso, Ny, N¢y Npso) v X(d, Nirsoy Nso)-
e Extender la teoria de los necklaces a las 3D-LEFCs.

Mediante este trabajo nos hemos concienciado de la importancia que tiene el estudio
de diferentes constelaciones de satélites para diseniar una mision espacial. Esta tesis
constituye el punto de partida de futuras investigaciones en torno a las constelaciones
de satélites.
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