000117336 001__ 117336
000117336 005__ 20230519145500.0
000117336 0247_ $$2doi$$a10.1016/j.cmpb.2021.106262
000117336 0248_ $$2sideral$$a124775
000117336 037__ $$aART-2021-124775
000117336 041__ $$aeng
000117336 100__ $$aNaveiro, J.M.$$uUniversidad de Zaragoza
000117336 245__ $$aA new approach for initial callus growth during fracture healing in long bones
000117336 260__ $$c2021
000117336 5060_ $$aAccess copy available to the general public$$fUnrestricted
000117336 5203_ $$aThe incidence of bone fracture has become a major clinical problem on a worldwide scale. In the past two decades there has been an increase in the use of computational tools to analyse the bone fracture problem. In several works, various study cases have been analysed to compare human and animal bone fracture healing. Unfortunately, there are not many publications about computational advances in this field and the existing approaches to the problem are usually similar. In this context, the objective of this work is the application of a diffusion problem in the model of the bone fragments resulting from fracture, working together with a mesh-growing algorithm that allows free growth of the callus depending on the established conditions, without a pre-meshed domain. The diffusion problem concerns the different biological magnitudes controlling the callus growth, among which Mesenchymal Stem Cells and chondrocytes concentrations were chosen, together with Tumour Necrosis Factor α and Bone Morphogenetic Protein as the factors influencing the velocity in the callus formation. A Finite Element approach was used to solve the corresponding diffusion problems, obtaining the concentration values along the entire domain and allowing detecting the zones in which biological magnitudes reach the necessary thresholds for callus growth. The callus growth is guided by a geometrical algorithm which performs an additional mesh generation process (self-added mesh) at each step of the iterative procedure until complete callus formation. The proposed approach was applied to different types of diaphyseal femoral fractures treated by means of intramedullary nailing. Axisymmetric models based on triangular quadratic elements were used, obtaining results in good agreement with clinical evidence of these kinds of fractures. The algorithm proposed has the advantage of a natural callus growth, without the existence of a previous mesh that may affect the conditions and direction of growth. The approach is intended for the initial phase of callus growth. Future work will address the implementation of the corresponding formulations for tissue transformation and bone remodelling in order to achieve complete fracture healing.
000117336 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/BES-2017-080433$$9info:eu-repo/grantAgreement/ES/MINECO/DPI2016-77745-R
000117336 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000117336 590__ $$a7.027$$b2021
000117336 592__ $$a1.329$$b2021
000117336 594__ $$a9.7$$b2021
000117336 591__ $$aCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS$$b20 / 112 = 0.179$$c2021$$dQ1$$eT1
000117336 593__ $$aHealth Informatics$$c2021$$dQ1
000117336 591__ $$aMEDICAL INFORMATICS$$b6 / 31 = 0.194$$c2021$$dQ1$$eT1
000117336 593__ $$aComputer Science Applications$$c2021$$dQ1
000117336 591__ $$aENGINEERING, BIOMEDICAL$$b20 / 98 = 0.204$$c2021$$dQ1$$eT1
000117336 591__ $$aCOMPUTER SCIENCE, THEORY & METHODS$$b12 / 111 = 0.108$$c2021$$dQ1$$eT1
000117336 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000117336 700__ $$0(orcid)0000-0002-3613-4209$$aPuértolas, S.$$uUniversidad de Zaragoza
000117336 700__ $$0(orcid)0000-0003-3781-8589$$aRosell, J.$$uUniversidad de Zaragoza
000117336 700__ $$aHidalgo, A.
000117336 700__ $$0(orcid)0000-0003-0785-4132$$aIbarz, E.$$uUniversidad de Zaragoza
000117336 700__ $$0(orcid)0000-0003-4489-3130$$aAlbareda, J.$$uUniversidad de Zaragoza
000117336 700__ $$aGracia, L.
000117336 7102_ $$11013$$2830$$aUniversidad de Zaragoza$$bDpto. Cirugía$$cÁrea Traumatología y Ortopedia
000117336 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000117336 773__ $$g208 (2021), 106262 [8 pp.]$$pComput. methods programs biomed.$$tComputer Methods and Programs in Biomedicine$$x0169-2607
000117336 8564_ $$s2315687$$uhttps://zaguan.unizar.es/record/117336/files/texto_completo.pdf$$yPostprint
000117336 8564_ $$s2284012$$uhttps://zaguan.unizar.es/record/117336/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000117336 909CO $$ooai:zaguan.unizar.es:117336$$particulos$$pdriver
000117336 951__ $$a2023-05-18-14:56:27
000117336 980__ $$aARTICLE