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Abstract: The recent advances in computing technologies and the increasing availability of large
amounts of data in smart grids and smart cities are generating new research opportunities in the
application of Machine Learning (ML) for improving the observability and efficiency of modern
power grids. However, as the number and diversity of ML techniques increase, questions arise about
their performance and applicability, and on the most suitable ML method depending on the specific
application. Trying to answer these questions, this manuscript presents a systematic review of the
state-of-the-art studies implementing ML techniques in the context of power systems, with a specific
focus on the analysis of power flows, power quality, photovoltaic systems, intelligent transportation,
and load forecasting. The survey investigates, for each of the selected topics, the most recent and
promising ML techniques proposed by the literature, by highlighting their main characteristics and
relevant results. The review revealed that, when compared to traditional approaches, ML algorithms
can handle massive quantities of data with high dimensionality, by allowing the identification of
hidden characteristics of (even) complex systems. In particular, even though very different techniques
can be used for each application, hybrid models generally show better performances when compared
to single ML-based models.

Keywords: machine learning; power systems; smart grids; power flows; power quality; photovoltaic;
intelligent transportation; load forecasting; survey

1. Introduction

The power system management and development have constantly been changing
due to expanding complexity and distributed modern power networks. [1]. Principally,
the increasing distribution of Renewable Energy Sources (RESs) with intermittent energy
generation and technological novelties in power system management and control demand
reliable power predictions and more precise monitoring models [2,3]. In recent years,
researchers developed advanced solutions based on Machine Learning (ML) algorithms to
solve the bottleneck of conventional lumped parameter simulations. In practice, conven-
tional traditional simulation techniques based on deterministic methods are still dominated
in power grids. However, the high performance of machine learning solutions in terms of
accuracy computational speed, and scalability brings novelties in power grids management
and control. Therefore, it is expected to boost the adaptation of these techniques for short-
to medium-term forecasts of the power grid system operation to meet this gap while getting
benefits of advantages of traditional approaches.
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As the high-quality sensor prices–such as smart meters, Phasor Measurement Units
(PMUs), and Remote Terminal Units (RTUs), or other measurement devices—are constantly
decreased, they are increasingly distributed in the power system and are continuously
acquiring a massive amount of heterogeneous datasets. Analyzing and processing all these
data provides new insights and advances in the control and operation of smart grids thanks
to innovation in ML and big data frameworks to handle structured and unstructured data.
Traditional time-domain methods are computationally inefficient; thus, they are not good
candidates for real-time applications in which response time is a decisive concern [4,5].
The expected significant penetration of Electric Vehicles (EV) charging stations, and the
increasing expansion of the Internet of Things (IoT) devices in private and public sectors
such as smart buildings introduce new challenges and opportunities for the perception
of accurate Day-Ahead Load Forecasts (DALFs) in micro-and smart- grids [6,7]. At the
same time, the transition towards decarbonization of systems leads to the integration of
distributed energy systems which usually generate energy in an intermittent and stochastic
manner, such as wind or solar energy generators with no inertia. Consequently, the growing
complexity of power flow patterns requires novel approaches to render reliable, efficient,
and economical solutions.

In this context, advanced machine learning models have been shown promising results
to provide new valuable knowledge and insights and identify hidden data patterns, trends,
and relationships. In [8], the authors briefly summarized the ML paradigm and presented
the literature review on applications of ML methods in Power systems till the end of
2017. This paper continues the authors’ work presented at [8] and aims at providing a
systematic review of the various machine learning algorithms used to analyze, monitor, and
model power flows, power quality events, photovoltaic systems, intelligent transportation
systems, and load forecasting services. The authors selected the Journal papers for literature
review based on publication date, number of citations, and novelty in contributions. The
main contribution of this article is as follows:

The ML paradigm and well-known ML algorithms are categorized and presented;
The systematic review summarizes not only the main contributions of each article but

also provides information regarding the explicit application, data source, and models, by
mainly considering articles published since 2018; this study used Google Scholar, Scopus,
IEEE Xplore, and the MPDI databases for literature review, which ended in February 2021.

To make a fair comparison between models, the characteristics of a standard dataset
for the testing of the reviewed models are presented.

The remainder of the article is structured as follows: Section 2 explains the machine
learning paradigms, well-known algorithms, and performance metrics. A literature survey
on recent advanced machine learning applications in power flow, power quality, pho-
tovoltaic systems, electric transportation systems, and load forecasting is presented in
Section 3. Section 4 discusses the results and notes achieved in the literature review, and
Section 5 summarizes the final remarks and conclusions.

2. Machine Learning

Artificial Intelligence (AI) deals with the broad topic related to the perception and
extraction of knowledge from data. AI can be divided into two main subsets: machine
learning and deep learning. Machine learning is the main subset of artificial intelligence,
while deep learning can be represented as a subset of machine learning.

Machine learning is an interdisciplinary research field that consolidates expertise and
knowledge from diverse areas and aims at proposing solutions to given problems that
can be used to reply to similar questions raised by different contexts. More specifically,
machine learning is the subset of AI that deals with the extraction of knowledge from
the experience by analyzing and manipulating data gathered from real-world use cases.
The primary purpose of machine learning is to develop reliable active learning models
equipped with computerized patterns learning from raw data and perform fast-response
predictions applied in decision-making processes [9,10].
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Deep learning and neural networks are the most famous machine learning subset.
Thanks to the use of (typically) multi-layered Artificial Neural Networks (ANNs), deep
learning can handle unstructured datasets and can recognize complex input data patterns.
In deep learning, different architectures can be designed using neural unit cells in various
layers, unless other machine learning algorithms are fixed.

Figure 1 illustrates artificial intelligence, machine learning, and deep learning concepts
in the schematic description by means of a Venn diagram.
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2.1. Machine Learning Paradigms

In machine learning, training a model intends to learn the values of the parameters (or
weights) and the bias from input data, while in traditional methods (i.e., with predefined
algorithms), both the model and its parameters are given to a computer to perform a
task. Labeled data are samples with a sort of meaningful “tag”, “label”, or “class” that
are informative or desirable to know—for example, whether an Alternating Current (AC)
power signal contains harmonic distortion(s) or not. In contrast, unlabeled data are samples
with no explanation; in other words, it has only row data without any “tag” or “label”
assigned to it—for instance, voltage and current signals of an electric motor.

Machine learning tasks are principally arranged into three main classes: supervised,
unsupervised, and semi-supervised learning. Supervised learning algorithms work with
labeled data with the objective of mapping new input data to the known target output
values. On the contrary, unsupervised learning models process an unlabeled dataset,
in which target values are unknown, to draw insights by learning hidden complicated
patterns and structures spontaneously. Semi-supervised algorithms deal with a dataset that
some samples are labeled, and more extensive samples are unlabeled. These algorithms are
designed to benefit from both advantages of supervised and unsupervised methods [11];

Supervised learning is categorized into classification and regression problems. A
classification problem predicts output variables as a category, such as “cat” or “dog.”
Contrarily, in regression problems output variables are numerical values [12];

Unsupervised learning algorithms are generally divided into clustering or dimension-
ality reduction (or sometimes called embedding) methods [11]. For instance, in anomaly
detection, a clustering algorithm is applied to data to identify false data by scanning outliers
in a dataset or noticing abnormal patterns;

Semi-supervised learning makes use of the mixture of labeled and unlabeled data as
the training dataset. Semi-supervised models act as active learners [13]. There are two
main semi-supervised learning algorithms, namely reinforcement learning and Generative
Adversarial Networks (GANs). In reinforcement methods, if a model does a task correctly,
it would get a reward. The objective of reinforcement learners is to build a model to
maximize rewards through an iterative process [14]. Reinforcement learning is suitable for
an interactive or dynamic environment that a model can improve itself based on policies
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defined by an expert, for example, playing a game or self-driving cars. GANs generate
models based on deep neural learning methods to discover and learn patterns of input
data. Then, the generative model can be used to create new data examples that resemble a
training dataset. For instance, GANs can create pictures that look like human faces images,
even though the faces don’t relate to any actual person.

2.2. Machine Learning Algorithms

Many different machine learning techniques have been proposed in recent years,
particularly consisting of hybrid ML-based models, making use of two or more machine
learning techniques or even other statistical or mathematical models. For example, en-
semble learning models include different weak learners such as decision trees, support
vector machines, and linear or logistic regression. This section discusses the basic and most
relevant machine learning techniques in each category.

2.2.1. Classification Algorithms

There are several classification algorithms; the most commonly used ones are pre-
sented as follows [15]:

Logistic Regression (LR): LR is widely used for binary classification tasks where an
output belongs to one class or another (0 or 1). In this algorithm, a threshold is defined to
indicate examples will be labeled into which class using hypothesis and logistic function
(usually sigmoid curve). The hypothesis determines the likelihood of events to generate
data and fit them into the logarithm function that forms an S-shaped curve called sigmoid.
Then, the logarithm function is used to predict the class of new inputs. Even though logistic
regression provides better performance in binary classification tasks, it can also be used in
multiclass classification problems, by applying the one versus all strategy [16];

K-Nearest Neighbors (KNN): this algorithm is one of the most basic yet broadly used
classifiers. It is generally used to find data with similar characteristics and group them
in the same class, without making any assumptions on data distribution. The groups are
constructed by considering the attributes of the neighboring samples. It is used in real-life
problems in several applications such as data mining, pattern recognition, and invasion
detection [17,18];

Naïve Bayes (NB): this technique is one of the most powerful classification algorithms
based on an extension of Bayes’ theorem, assuming each feature is independent to capture
input-output relationships. Bayes’ theorem compares the probability of an event happening
to what has already happened, for example, the probability of having a fire (event A)
while the weather is hot (event B, which is present) [19]. The naïve algorithm is simple
to implement and can easily predict labels of new inputs. Additionally, when domain
knowledge confirms the feature independence, with less data, it has a better performance
than other classification algorithms such as logistic regression. On the other hand, in real
life, it is not easy to have data with entirely independent features; moreover, when there
is an input that was not followed up in the training phase, the algorithm assigns zero
probability, and it does not classify this input in any group. This technique is used in
various applications such as text classification and spam filtering [20];

Support Vector Machine (SVM): This algorithm is widely used in classification tasks
and also applied in regression problems. The main idea of SVM is to transfer data to higher
n-dimensional space to find an ideal hyperplane to differentiate classes [21]. In simple
words, these support vectors are coordinates of a new n-dimensional coordinate system.
This method is commonly used in binary classification, but it is computationally expensive
and slow in the big data domain;

Decision Tree (DT): This algorithm is based on different hierarchical steps that lead to
certain decisions. It applies a treelike structure to represent decision paths with induction
and pruning steps. In the induction step, the tree structure is built, while, in the pruning
step, the complexities of the tree are reduced. The inputs are mapped to outputs by travers-
ing each path through different branches of the tree [22]. DT is a powerful classification
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tool, simple to structure and with good performance. However, with even small variations
in data, DT can become unstable. Furthermore, it can easily become overfitted, especially
in a thorny tree with many branches and conditions, thus, it does not generalize well on
new inputs. Regularization, bagging, and boosting techniques are usually used to avoid
overfitting problems in the DT [23];

Random Forest (RF): This classifier is very similar to the decision tree. Compare to
DT, RF uses several decision trees, instead of having only one tree. This technique can be
applied in massive data set to classify data or measure the importance of each feature in
the final decision. In many applications, the random forest is preferred over the decision
tree because it can be more accurate and overcomes the overfitting issued of DT. However,
this technique is not easy to implement since it has a complex structure, and it is not
recommended for real-time prediction purposes because it is generally slower than other
models [24].

2.2.2. Regression Algorithms

Several regression algorithms (numerical or continuous value prediction) have been
introduced in the scientific literature; the most commonly used ones are presented in the
following:

Linear Regression (LR): this technique tries to find the fittest straight hyperplane to
the data [25]. It is commonly used when there are linear relationships between variables,
and it can avoid overfitting by regularization techniques such as LASSO, Elastic-Net,
and Ridge [26]. However, it is not flexible in finding the best solution for non-linear
relationships in variables and complex patterns;

Regression Tree (RT): This technique has the same hierarchical structure as the decision
tree, but it takes numerical values as input. The branching procedure not only maximizes
the learning gain but also learns non-linear relationships between variables. Even if this
method is robust to outliers and easy to implement, it is prone to overfitting problems [27].
In addition to the regression tree, random forests and Gradient Boosted Trees (GBM), which
are the most commonly used ensemble methods, are also applied in numerical predictions
and have better performance concerning overfitting issues;

Deep Neural Network (DNN): Deep neural network, or multi-layer neural network,
is widely used in several domains. Indeed, thanks to their ability to capture complex
patterns, DNNs can be used both as regression algorithms and classifiers. The non-linear
relationships between features are learned by non-linear activation functions and hidden
layers between the input and the output [28]. There are several techniques and methods
to improve the performance of neural networks, as well as different advanced neural
network-based models such as Convolutional Neural Network (CNN) or Recurrent Neural
Network (RNN) [29,30]. Different from other algorithms, in DNNs, a deep knowledge of
how to tune the parameters of the neural network is required to develop a working neural
network model. In addition, even though neural network models work well in the big data
domain, they are usually very computationally expensive methods;

Extreme Learning Machine (ELM) has a wide range of applications in the data-driven
approach. ELM has been used in regression, classification, clustering, sparse representation,
feature extraction or learning, and compression. This feedforward neural network does not
apply the backpropagation gradient-based mechanism to update the network weighted
values; instead, it randomly assigns random values to the weight and bias terms of the
network [31]. The main advantages of this kind of algorithm are (i) the faster training
phase and (ii) the better interpolation results. On the contrary, the accuracy results of ELM
is not promising, even if compared to basic MLP models;

Support Vector Machine or kernel SVM can also be used for regression problems, even
though it is mostly used in classification problems;

XGboost, finally, is a (recently) widely used rugged decision-tree- and ensemble-
based algorithm with a framework that is designed considering a gradient boosting proce-
dure [32].
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2.2.3. Clustering Algorithms

Clustering techniques try to group instances with the same properties in the same
cluster. These techniques are commonly used in other fields than machine learning, such
as image analysis, pattern recognition, data compression, and statistical analysis. The most
well-known algorithms are as follows:

K-means: this technique, one of the simplest and intuitive machine learning algo-
rithms, separates instances in the k centroids or clusters with equal variance. After selecting
the number of clusters (K), the algorithm finds the best k clusters by minimizing the cri-
terion known as inertia through the iterative procedure and changing the position of
centroids [33]. As it is simple to interpolate and scales well to big data, it has been applied
across a wide range of applications in various domains;

DBSCAN: Density-Based Spatial Clustering of Applications with Noise (DBSCAN),
which is widely used in data mining and machine learning, finds core instances of high
density and extends clusters with the specified radius (usually Euclidean distance) around
them. Low-density regions are distinguished as outliers. The primary problem in DBSCAN
is selecting clustering attributes, detecting noise with varied densities, and significant
differences of amounts of boundary objects in opposed directions of the corresponding
clusters [34]. The smallest number of instances to constitute a dense region and how close
instances should be to each other in the same region are defined by an expert. Even though
this algorithm, which is a very popular clustering technique, is widely used, it badly
behaves with very sparse or high dimensional datasets;

Spectral: this clustering algorithm, which is also an exploratory data analysis tech-
nique, performs dimensionality reduction through eigenvalues (spectrum) of the similarity
of data instances, by then grouping similar data instances with reduced dimensions into
the same cluster [35]. This approach is practically applied when the center of clusters and
their spread does not appropriately describe the whole cluster (non-convex cluster), such
as in image segmentation problems. The spectral technique is widely used because it is a
fast response technique and outperforms other clustering techniques, especially in sparse
datasets.

2.2.4. Embedding Algorithms

In many cases, especially in the big data domain, the presence of a large number of
variables or features in a dataset makes it difficult to interpret the relationship between
them. Training a model on the whole dataset could easily make the model not sufficiently
generalized on new unseen data (overfitting problem). Embedded Algorithms (EAs) can
be applied to extract new features from data without losing essential information before
implementing sophisticated ML models. EA techniques could also be used directly for
prediction purposes. Embedding algorithms can be subdivided as follows:

Principal Component Analysis (PCA): the main aim of PCA is to reduce high-dimensional
datasets to a smaller dimension. PCA projects each data instance onto the main compo-
nents or ranks while retaining as much data variation as possible. PCA techniques, such as
Singular Value Decomposition (SVD), use eigenvectors of the covariance matrix of data to
reduce the dimension of the dataset or making a prediction [36];

Autoencoder: this is one of the current states of the art techniques leveraging neural
networks. Autoencoders are widely used in different applications, such as data compres-
sion. The autoencoder learns a representation (encoding) of the input dataset and ignores
noise through embedding architecture, and reconstructs the input data as close as possible
to its actual forms (decoder). A typical autoencoder consists of three parts, namely: an
encoder, a bottleneck, and a decoder [37]. The encoder tries to compress the data to a lower
dimension with the best representative, the decoder attempts to regenerate an input by
eliminating the noise in the dataset, while the embedded data is stored in the bottleneck.
It is possible to use the encoder part of a well-trained autoencoder for dimensionality
reduction, or use the whole model, for example, in anomaly detection [38].
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Figure 2 summarizes the different machine learning paradigms and techniques used
in power system analytics, by providing examples for each category.
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2.3. Model Performance Evaluation Metrics

The metrics that are used in each machine learning algorithm are different from each
other. In Table 1 the most used metrics in discrete and continuous cases are discussed. In
this table, True Positive (TP) and True Negative (TN) are samples that are correctly predicted
as positive and negative, respectively. In contrast, False Positive (FP) and False Negative
(FN) are samples that are incorrectly predicted as positive and negative, respectively. In
continuous metrics, y is the actual value, ŷ is the forecasted amount, and n is the number
of prediction samples.

Table 1. Model Performance Evaluation Metrics.

Discrete Continuous

Metric Formula Metric Formula

Accuracy TP+TN
TP+TN+FP+FN Mean Square Error (MSE) 1

n ∑(y− ŷ)2

Error FN+FP
TP+TN+FP+FN Root Mean Squared Error (RMSE)

√
1
n ∑(y− ŷ)2

Precision TP
TP+FP Mean Absolute Error (MAE) 1

n ∑|y− ŷ|

Recall TP
TP+FN Mean Absolute Percentage Error (MAPE) 1

n ∑
∣∣∣ y−ŷ

y

∣∣∣
F1 TP

TP+FN R-squared (R2) 1− ∑(y−ŷ)2

∑(y−y)2

3. Literature Review

Machine learning is widely applied to address various problems to bring novel so-
lutions or improve the performance of existing applications. The main state-of-the-art
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machine learning-based applications in power systems are in power flow, power quality,
photovoltaic system, intelligent transportation, and load forecasting.

3.1. Power Flow Applications

Compared to traditional algorithms, machine learning technologies make power
flow problems easier to be handled. For example, algorithms like CNN, KNN, SVM,
reinforcement learning, and decision tree affected power flow optimization problems in
terms of accuracy, computational speed, and response time. Table 2 elaborates more into
detail the recent advancements in machine learning applications in power flow.

3.2. Power Quality Applications

The power quality, one of the most critical topics in electrical systems, has also
been affected by machine learning, which can be used to improve speed and accuracy in
disturbances detection, or distortions classification, and estimations for future cycles. In
addition, ML can also be used on a wide set of PQ parameters related to load functioning
such as active power, reactive power, complex power, fundamental frequency, and power
factor.

Table 3 summarizes the most recent improvements and achievements in the use of
ML techniques in power quality applications.

3.3. Photovoltaic System Applications

Machine learning algorithms have been widely used for different purposes in Photo-
voltaic (PV), from forecasting the long-, medium-, and short-term energy generation, to
fault detection and classification. The most recent works in this field are summarized in
Table 4.

3.4. Intelligent Transportation Applications

Artificial intelligence, especially machine learning applications, are widely used in
intelligent transportation, to develop smart online traffic management systems, from safety
applications (e.g., driving distraction detection) to optimized traffic scheduling. Self-
driving cars, for instance, have been recently developed only thanks to the advancements
in machine learning.

Table 5 provides the most recent works based on ML in the field of intelligent trans-
portation.

3.5. Load Forecasting Applications

Accurate load forecasting, both short- and long-term, is an essential task for the
daily (economic) dispatching of electricity, both to prevent wasting energy production and
integrating renewable energy resources.

Energy companies monitor, control, and schedule load demands and power generation
to enhance energy management systems. However, electrical load profiles are becoming
more complicated, not only because of the stochastic behavior of customers, but also
because of the introduction of new non-linear components in power systems, such as
electric vehicles, buses, and bikes. Therefore, many researchers have been developing both
deterministic and probabilistic load forecasting models to improve the precision and speed
of prediction models.

Table 6 presents recent advancements of machine learning studies in load forecasting.
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Table 2. Overview of Research using Machine Learning for Power Flow.

Reference Year Application Data Method(s) Remark(s)/Contribution(s)

Lei et al. [39] 2020 Optimal Power Flow (OPF)

IEEE 39, 57, 118-bus, and Polish 2383-bus (wind and
photovoltaic power connected)

30,000 samples for training, and 10,000 samples for
validation

ELM

Decompose OPF via a data-driven regression framework with three stages
stacked extreme learning machine (SELM); implemented the multiple

supervised layers with reinforcement mode with an overall 98.71%
accuracy rate, significantly higher than benchmarks.

Wang et al. [40] 2020
Online Detection of

Geomagnetically Induced
Currents in Power Grids

Simulation data based on real-life power grid
operation (10,800 samples for training, 1200 samples

for validation, and 6000 samples for testing)
CNN

Developed hybrid feature extraction consists of pseudo-continuous
wavelet transform (PCWT) and short-time Fourier transform (STFT);

improved overall detection accuracy to 90.15% for different noise levels
and achieved the detection results within 30 m

Ravikumar et al.
[41] 2020

Anomaly Detection and
Mitigation (ADM) for Wide-Area

Damping Control

Synchrophasor measurement data and simulated the
cyber-physical system (CPS) dataset (60 fps

transmission rate)

KNN and
PCA

Improved efficiency of ADM with domain-specific features extraction and
selection via Teager–Kaiser Energy Operator (TKEO), Principal Component

Analysis (PCA), Wide-Area System Measures (WASMs), and Primitive
Measures; Proposed KNN-based model with a 95.5% accuracy rate, better

than other ML-based models.

Zhang et al. [42] 2021 Volt-VAR Optimization in Smart
Distribution Systems

Unbalanced IEEE 13-bus and 123-bus systems (9000
operating conditions for training, and 13,000

operating conditions for testing)

Reinforcement
learning

The improved accuracy rate of voltage regulation with an average of
99.80% compared to 90.02% of baselines; Achieved an average executive

time of 21.7 and 46.2 ms for 13-bus and 123-bus systems, respectively, and
28.38% for the loss reduction percentage.

Baker et al. [43] 2019 Joint Chance Constraints in AC
Optimal Power Flow

IEEE 37-node test feeder (5-min data from August
2012 weekdays)

1152 samples for training (4 days), and 864 samples for
testing (3 days)

SVM
Improved classic methods based on union bound (or Boole’s inequality)

and the accuracy rate with 0.19% and 4.73% error rate for false
classification of binding and non-binding events, respectively.

Li et al. [44] 2020 Transient Stability Assessment of
Power System

IEEE New England 10-machine 39-bus system, IEEE
16-machine 68-bus system, and IEEE 47-machine
140-bus system (5984, 11,792, and 29,520 samples,

respectively)
6-s simulation time per instance, and 0.01-s step

XGBoost
and FM

Proposed hybrid XGBoost-FM model robust to noise. Used extreme
gradient boosting (XGBoost) for automatic feature builder, and

factorization machine (FM) as a classifier with the enhanced detection time
of 0.9349 s; improved accuracy by using both original and artificial features

to 98.21%.

Hong et al. [45] 2020 State Estimation of Distribution
Network

IEEE 13-, 34-, and 37-node test feeders (240 samples
for training, and 60 samples for testing)

LR, SVM,
and FFNN

Estimated the voltage magnitudes and angles of several successive buses
with 0.01 p.u. and 0.189◦ error respectively; SVM outperformed LR and
FFNN, especially when the relationship between inputs and outputs is
unknown, the input bus was missing, there is a measurement error, and

using few adjacent buses as input buses.

Karagiannopoulos
et al. [46] 2019 Optimized Local Control for

Active Distribution Grids
Seasonal historical data (30-day dataset; 1-h time

resolution; 7200 samples) SVM

Proposed Data-driven method to obtain local Distributed Energy
Resources (DERs) controls without monitoring and communication

infrastructure; outperformed standard industry local control with an
overall RMSE accuracy of 0.158.
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Table 2. Cont.

Reference Year Application Data Method(s) Remark(s)/Contribution(s)

Zhao et al. [47] 2020 Real-Time Power Grid Multi-Line
Outage Identification

IEEE 30, 118, and 300 bus systems (300,000, 800,000,
and 2.2 million data generated, respectively) ANN

Generated a large number of samples with Monte Carlo simulation with
full-blown power flow models; Achieved an overall classification accuracy
of 99%, and outstanding performance in recognizing multi-line outages in

real-time with a small amount of data.

King et al. [48] 2015 Algorithm Selection for Power
Flow Management

IEEE 14-bus (10,000 states for testing), IEEE 57-bus
(10,000 states for testing), and a real 33-kV distribution

networks (17,520 states for testing -a year of
half-hourly profile data-)

ANN, DT
and RF

Shown that ML-based methods can create effective algorithm selectors for
power flow management based on algorithms’ behavior data within 1 ms

for future complex networks

Labed et al. [49] 2019 Overloaded Power System
Alleviation

Algerian (Adrar) 22-bus system (75% of data for
training, and the remaining 25% for validation) ELM

The proposed method outperforms SVM and ANN learning algorithms
with 1.9465*10 MSE accuracy and 0.0023 s response time on the testing

phase with generalization performance; this fast time response minimized
the threat and risk of outage and cascade failure.

Table 3. Overview of Research Using Machine Learning for Power Quality.

Reference Year Application Data Method(s) Remark(s)/Contribution(s)

Ray et al. [50] 2018 PQ Disturbances Classification in
Solar PV Integrated Microgrid

Generated dataset from solar PV integrated microgrid
model (600 samples; 5-kHz sampling frequency) SVM, ICA

Proposed the independent component analysis (ICA) and statistical feature
extraction using SVM; ICA-SVM improved accuracy to 99.5% compared to

97.8% of traditional Wavelet transform-SVM

Sahani et al. [51] 2020 A Real-time Power Quality
Events (PQEs) Recognition

Synthetic (50 samples for training, and 100 samples for
validation) and real (100 samples per distortion

–validation-) power quality events data
ELM Robust anti-noise online PQEs classification; Outperform other models

with 98.86% accuracy rate and 0.019 s response time

Turovic et al. [52] 2019 PQ Distortions Detection in
Distribution Gird

IEEE 13-bus system modified with DG (85% of the
samples for training, and 15% for validation)

ANN, SVM,
and KNN

Detection speed comparison between ML algorithms and traditional FFT;
ANN has the best detection’s speed with 0.432 ms (600% more than FFT)

with a 99.41% accuracy rate

Liao et al. [53] 2018 Voltage Sag Estimation IEEE 68-bus test network (374,400 faults simulated) CNN
Automatic system area mapping and feature extraction in the input bus
matrix from various local areas in the power network; reached 99.41% of

overall estimation accuracy.

Vantuch et al. [54] 2017 PQ Forecasting for Off-Grid
System

Experimental off-grid laboratory (141,537
one-minute-resolution measurements, more than

3 months) and simulated data
RF More than overall 90% accuracy for forecasting short-term (15 min ahead)

PQ disturbances

Bagheri et al. [55] 2018 Voltage Dip Classification
6000 real measured voltage dips data over different

countries
One month of recording

CNN
Developed a robust automatic feature extraction using a space phasor

model (SPM) and CNN; outperformed the other existing models with a
97.72% accuracy rate and 0.50% false alarm
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Table 3. Cont.

Reference Year Application Data Method(s) Remark(s)/Contribution(s)

Sahani et al. [56] 2020 Power Quality Events
Recognition

Synthetic and laboratory PQDs (150 samples per class
−50 for training and 100 for validation-; 3.2-kHz

sampling frequency)

ELM and
VDM

Developed an automatic PQEs patterns recognition system from
nonstationary PQ data by using integrating variational mode

decomposition (VMD) and Online P-Norm Adaptive Extreme Learning
Machine (OPAELM); shorter event recognition time and classification

accuracy rate of 99.3%.

Wang et al. [57] 2019 Power Quality Disturbance
Classification

Synthetic data (16 PQDs)
IEEE Power Engineering Society database (1000

samples;
The influence of data imbalance is eliminated by

applying an enhancement process)

ELM

Select less than 10 features out of 4500*1280 signal matrix via discrete
wavelet transform (DWT) feature extraction and particle swarm

optimization (PSO) feature selection; Proposed PSO hierarchical ELM
(PSO-H-ELM) classification with automatic encoders and sparse

constraints; overall classification accuracy rate is above 95%, and high
calculation speed (less than 0.169 s).

Shen et al. [58] 2019
Detection and Classification of

PQDs in Wind-Grid Distribution
Systems

Synthetic data (2400 samples)
Simulated data from the standard IEEE 13 node bus
system with wind-grid distribution (5590 samples)

10-kHz sampling frequency

CNN and
IPCA

Used Improved Principal Component Analysis (IPCA) for extracting
statistical features; applied 1D-CNN classification, which gives 99.76%

accuracy on average for different noise levels, higher than other
classification methods.

Deng et al. [59] 2019
Type Recognition and Time

Location of Combined Power
Quality Disturbance

Synthetic data from IEEE 1159 power quality standard
for training (1000 samples × 96 combinations of PQD)

and real data generated in a lab for testing (140
samples)

GRU

Proposed bi-directional GRU model for classifying 96 different kinds of
disturbances noiseless and with noise from 10 dB to 50 dB; have a 98%

accuracy level on real operational data and the absolute error of
starting-ending times location less than 0.469 ms.

Cao et al. [60] 2019
Transient voltage stability

analysis based on frequency,
active power, and reactive power

Simulated data of different nodes collected by phasor
measurement units

CNN and
Deep

Learning

Decision optimization algorithm based on PQ parameters implemented;
reactive power compensation decision based on deep learning performed

Abed [61] 2018 Power factor enhance and control Simulated power system
Clustering

neural
network

The proposed method allows improving power factor

Zhang et al. [62] 2020 Reactive load prediction

SCADA data from a real power grid (357 busloads)
Training set:

data from June 1 to August 5
Test set: data from

August 6 to August 22.
15-min sampling period

Deep
learning

Reactive power load of buses can be accurately predicted; accuracy is better
than that obtained with other prediction models; result of great significance

for reactive voltage control

Nakawiro [63] 2020 Voltage and reactive power
control

Simulated dataset of grip operation (on-load tap
changer, load, and wind power)
1 year of operation (hourly data)

DT and
KNN

The highest classification accuracy is achieved with a DT; accuracies
obtained in the simulations are satisfactory for some classes; performance

heavily relies on the distribution of the target output and number of
samples per class



Energies 2021, 14, 4776 12 of 24

Table 3. Cont.

Reference Year Application Data Method(s) Remark(s)/Contribution(s)

Moreira et al. [64] 2018

Power factor compensator (based
on PQ parameters: power factor,

unbalance factor, harmonic
distortion, reactive power, etc.)

Training: Simulations characterized by a human
specialist (1,355,154 samples per disturbing load).

Real measurements added
Test: IEEE 13-bus (111,055 samples). Three real test

sets (disturbing loads)

DT, KNN,
SVM, and

ANN

PQ parameters used to analyze the functioning of a power system; DT is
highly effective in classification; 100% accuracy achieved

Valenti et al. [65] 2018
Non-intrusive load monitoring

based on active and reactive
power

Two public datasets:
Twenty-one power meters; 60-s sampling period; 2

years monitoring.
Four different locations; multiple sampling

frequencies

ANN
Introducing reactive power increases F1 score performance from +4.9% to
+8.4%; reactive power provides significant information for non-intrusive

load monitoring

Table 4. Overview of Research Using Machine Learning for Photovoltaics Systems.

Reference Year Application Data Method(s) Remark(s)/Contribution(s)

Keerthisinghe et al.
[66] 2020 PV Forecasts for Capacity

Firming

Dataset of 2013–2018 coming from empirical formula
and 2019–2020 real-data of Arlington Microgrid; input

frequency every half an hour for one day and two
samples for output

LSTM

Proposed encoder-decoder LSTM-based model for short-term (1-h ahead)
PV generation prediction resulted in reducing the yearly battery energy
throughput by 29% and the number of battery cycles with a greater than

10% depth-of-discharge by 51%.

Wen et al. [67] 2019 PV Prediction in Ship Onboard Historical hourly data of meteorological information
along with the ship route movement for a year ELM

The proposed ML-based model with the particle swarm optimization (PSO)
has a MAPE accuracy level of 25.41% in the training phase for five-hour
ahead prediction; the difference between prediction and experimental

results has 14.96% of the absolute error in the test phase, which means it
has a high potential in practical cases.

Dhibi et al. [68] 2020 Fault Detection and Classification
in Grid-Tied PV System

Emulate the operational real PV array dataset using
Chroma 62150H-1000S programmable dc power

supply; 100 µs sampling time with 1501 samples for 6
different classes for both training and testing

RF and
K-means

Proposed two classifiers based on Reduced kernel RF for detecting faults:
Euclidean distance-based RK-RF and K-means clustering-based RK-RF
with 100% accuracy and reduced computational time 65.16% and 53.33
compared to kernel RF, respectively; redundancy between samples was

reduced by using Euclidean distance as a dissimilarity metric; the K-means
clustering method used to reduce the training data amount.

Zhang et al. [69] 2020 Day-Ahead PV Estimation

Real datasets from Cupertino, CA, USA, from July
2015 to December 2016; and Catania, Sicily, Italy, from

January 2011 to December 2011 with a 15-min
sampling rate

LSTM and
AE

Improved the prediction accuracy to 8.39% nRMSE compared to
benchmarks with the proposed hybrid Auto Encoder (AE) LSTM model for

three months testing; the proposed persistence model (PM) has a high
accuracy of 0.72% nRMSE for consecutive clear days; Applied the Root
Mean Squared Euclidean Distance Difference (RMSEDD) to extract and

select the most valuable features to increase the model accuracy.
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Table 4. Cont.

Reference Year Application Data Method(s) Remark(s)/Contribution(s)

Chang et al. [70] 2020 Short-term Photovoltaic Power
Prediction for Edge Computing

Real PV output and PV meteorological dataset; one
sample every 30 min LightGBM

Proposed a tree-structured self-organizing map (TS-SOM) algorithm for
clustering weather; used Bayesian optimization algorithm is employed for
temporal pattern aggregation to determine the optimal size of time steps;

the proposed LightGBM outperforms other algorithms in training and
execution time (0.020 s) with 35.49 RMSE accuracy, suited for edge

computing devices.

Khan et al. [71] 2020 Islanding Classification for
Grid-Connected PV

Simulation data; total size equals 4526 samples and 7
features; 3168 samples for training and 679 samples

for testing
ANN

Proposed islanding detection model-based Wavelet transform for feature
extraction and Multi-layered Perceptron (MLP) for classification with 97.8%

accuracy under 0.2 s on unseen conditions.

Wang et al. [72] 2019
Key Weather Factors from

Analytical Modeling Toward
Improved PV Forecasting

Real hourly dataset for a year of three PV arrays in
Australia from April 2012 to June 2013 with 11

independent variables

SVM, ANN,
and KNN

Improved the accuracy level for each season by using PCA for feature
extraction and KNN for classifying the prediction period into the historical
periods with the most similar weather situations; for example, on sunny
days, with the proposed method, SVM has 3.97 instead of 8.14, ANN has
4.09 instead of 8.45, and weighted KNN has 8.86 instead of 9.33 nRMSE
accuracy; this method helps ANN converges much faster with 37.72%

computational time reduction.

Gao et al. [73] 2020 Fault Identification Method for
Photovoltaic Array

Simulation dataset with 1320 samples and
experimental dataset with 1892 samples with a ratio of

6:2:2 for training, validation, and testing

CNN and
GRU

Outperformed benchmark methods with 98.41% accuracy in 28.1 ms
detection time using CNN as automatic feature extractions and

Residual-GRU for memorizing time-series dynamic features; outperformed
benchmarks also in the presence of 10 dB to 50 dB noise level; reached
accuracy of 95.23% when some features are missing (temperatures and

irradiances).

Catalina et al. [74] 2020 PV Energy Nowcasting Hourly satellite and Numerical Weather Predictions
(NWP) dataset with 4645 sample size for 2015 SVR

Proposed Gaussian SVRs models using satellite data and NWP information
to improve the PV energy nowcasting in the three real experimental

regions.

Ray et al. [75] 2020 Long-term PV Output
Forecasting

Historical hourly datasets of 24 years of four different
locations in North Queensland in Australia; dataset
from 1990 to 2013 was used for training and 2014 for

testing

LSTM and
CNN

The proposed hybrid model, consisting of CNN and LSTM, outperforms
other methods with RMSE lower than 15 for all studied locations and low

computational cost (203.63 s) for training and prediction.

Yap et al. [76] 2020 Grid Integration of PV Simulation dataset with 0.1 s sampling time Reinforcement
learning

Proposed the new virtual inertia control algorithm for integrating PV to a
grid with higher frequency nadir, lower frequency deviation (reduced by
0.1 Hz), smaller steady-state error (reduced by 27%), faster settling time
(reduced by 35%), lesser active power injection or absorption, and lesser

overshooting compared to traditional approaches.

Keerthisinghe et al.
[77] 2019 Energy Management of

PV-Storage Systems
Historical and one year-long simulation datasets with

30 min time intervals for each day ANN

Proposed an ANN-based model based on dynamic programming (DP),
which, compared to other methods, has better quality and faster response
time (27.15 s); this method reduced a daily and yearly electric cost by more

than 50% for four different scenarios considering PV output, electrical
demand, electricity price, and battery SOC.
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Table 5. Overview of Research using Machine Learning for Transportation.

Reference Year Application Data Method(s) Remark(s)/Contribution(s)

Ashqar et al. [78] 2019 Transportation Mode Recognition
Real data of GPS, accelerometer, gyroscope, and

rotation vector sensors through a smartphone app for
10 travelers with 25 Hz sampling frequency

Two-layer
hierarchical

framework RF-SVM

Introduced new extracted frequency domain features and
increased accuracy rate to 97.02% compared to 95.10% of

traditional approaches

Jia [79] 2019 Analysis of Alternative Fuel
Vehicle Adoption

Person-, household-, trip- and vehicle real-dataset
(2017 NHTS Dataset) from April 2016 to April 2017 RF

Extraction influencing factors from large-scale 2017 NHTS Dataset
and Categorized them; RF outperformed other models (LR, NB,

SVM, and DT) with good accuracy (97.99%) and high AUC value
for adoption prediction.

Aksjonov et al.
[80] 2019 Detection and Evaluation of

Driver Distraction

Simulation data: speed limit, a radius of the road,
lane-keeping offset, and vehicle speed for 18 subjects

with 50 Hz sampling frequency

Nonlinear regression
based on Euclidean
distance and Fuzzy

logic

The proposed method improved the RMSE accuracy level from
2.1345 to 1.9992 for speed and 0.1506 to 0.1405 for distance.

Training time also decreased from 148.072 to 96.150 s compared to
the standard ANFIS predictor

Nallaperuma et al.
[81] 2019 Online Smart Traffic

Management

Real-time Bluetooth sensor network data and social
media data (Twitter) from the arterial road network in
Victoria, Australia; 24 and 7 days data for training and
testing, respectively, with data horizon equal to 15 min

LSTM and
Reinforcement

learning

Short-term traffic flow with normal fluctuation prediction with
0.0727 MAE accuracy; overcome the limitation of labeling data and

strict assumptions regarding data and traffic behaviors.

Gjoreski et al. [82] 2020 Monitoring Driver Distractions
Real data of 68 people through physiological sensors,

the emotional response, and facial-expression
extraction with 1 Hz sampling frequency

Comparison of
classical ML and

deep learning
algorithms

The classical extreme gradient boosting (XGB) outperforms the
deep learning method with 94% F1-score accuracy compared to

87% for classifying complete driving sessions.

Li et al. [83] 2019 Security: SQL Injection Detection
Real-data and data augmentation from enterprises

and various social platforms; 36,422 real samples and
30,000 generated samples

Deep LSTM network
Overcome the overfitting problem and increase accuracy

(93.47–99.58%) due to data augmentation compared to the shallow
and deep ML algorithms.

Ou et al. [84] 2019 Real-Time Estimation of
Dynamic Origin-Destination flow

Generate training dataset from real-traffic dataset and
traffic survey, and testing on real-time data with

15-min intervals sampling for 15 days in June 2017
CNN

Capture the dynamic mapping patterns and reconstruct
trajectories with MAPE average accuracy less than 5 (vehicle/15

min) on testing

Khadilkar et al.
[85] 2018 Scheduling Railway Lines

Real single- and multi-track railway data of different
routes with various number of trains and stations in

routes

Reinforcement
learning

Scalable to large scale dataset due to transfer learning; manage
large, realistic problem instances in computation times and

outperform other traditional techniques.

Zhang et al. [86] 2020 Short-term Passenger Demand
Prediction

Real taxi dataset of New York City from January 2016
to June 2018 for 63 zones MTL-TCNN An automatic feature selector algorithm; outperform other models

with 2.5% RMSE accuracy

Cheng et al. [87] 2018 High-Speed Trains Positioning Beijing-Shanghai high-speed railway real-data
contains 725 groups of data KNN

Improve KNN performance by applying ant colony optimization
(ACO) and online learning algorithms; obtain a better cluster

number of positioning data; Outperform other algorithms with
2.21 MAE accuracy.

Alawad et al. [88] 2019 Railway Safely and Accidents
Real data of accidents and passenger information like

passenger age and time of accident occurrence for
71 accidents

DT Developed a classification model regarding the occurrence of
accidents with good prediction accuracy of 88.7% on test data
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Table 6. Overview of Research Using Machine Learning for Load forecasting.

Reference Year Application Data Method(s) Remark(s)/Contribution(s)

Zhang et al. [89] 2020 Medium-term Load Forecasting

Two real-world datasets: New York (1200 hourly
electricity demand values of February 2018) and

Queensland (1200 half-hour electric load values of
January 2017) region

VMD, SR,
SVR, CBCS

This study proposed a novel hybrid model based on variational mode
decomposition (VMD), self-recurrent (SR) mechanism, support vector

regression (SVR), chaotic mapping mechanism, and cuckoo search (CBCS).
The VMD-SR-SVRCBCS outperformed other medium-range prediction

methods (240 half-hours window) in both cases with 2.5 and 0.9 MAPE of
New York and Queensland, respectively.

Feng et al. [90] 2020 Short-term Load Forecasting Real hourly load data of University of Texas as Dallas
for 2014 and 2015

Reinforcement
learning

This study proposed a deterministic and probabilistic load prediction using
the two Q-learning agents to select the best model locally from

deterministic load forecasting methods and ten state-of-the-art ML-based
models. The results show 50–60% accuracy improvements compared to

single-phase benchmarks models.

Ahmad et al. [91] 2019 A-Day Ahead Load Forecasting
in Smart Grids

Real hourly data of two USA grids
(DAYTOWN, Ohio and EKPC, Kentucky) for two

years (2014–2015)
ANN

This study considers both accuracy and execution time to develop their
model to scale well in bigger datasets. The authors introduced the

pre-preparation, prediction, and optimization modules. Taking advantage
of a heuristics-based optimization method minimized MAPE while

reaching 98.76% accuracy, which was relatively better than existing bi-level
techniques.

Zheng et al. [92] 2017 Short- and Medium- Term Load
Prediction

Real hourly data of electricity load of ISO New
England (2003–2016)

PCA, LSTM,
XGBoost with

K-means

The authors presented a hybrid algorithm based on supervised and
unsupervised machine learning techniques as follows: firstly, they applied
empirical mode decomposition (EMD) and similar days selection days to

extract dominant features, then, they made predictions with LSTM
considering a very rich dataset for 11 years for training, one year for

validation, and one year (2016) for testing. The similarity between days
achieved by XGboost-based weighted k-means. The testing results for
one-day and one-week ahead shows this hybrid method improved the

average accuracy of the LSTM-based model from 5.43 to 1.08 MAPE and
8.74 to 1.59 for a day ahead and a week ahead, respectively.

Dabbaghjamanesh
et al. [93] 2020 A-Day Ahead Load Forecasting

for EV Charging Station Synthetic dataset with hourly resolution Reinforcement
learning

This study proposed a reinforcement learning-based model to predict a day
ahead EV charging station load demand. The proposed Q-learning model

outperformed CNN and RNN models in three different scenarios
(coordinated, uncoordinated, and smart charging) in terms of MSE metrics.
Higher accuracy, higher speed, and flexibility are three main advantages of

the proposed model.
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Table 6. Cont.

Reference Year Application Data Method(s) Remark(s)/Contribution(s)

Farsi et al. [94] 2021 Short to Long Term Ahead Load
Forecasting (1–30 days ahead)

Real datasets of hourly load consumption of
Malaysia (2009 to 2010) and Germany (2012–2016)

CNN and
LSTM

This article proposed a parallel LSTM-CNN Network (PLCNet). Compared
to others, this study’s main advantage is to use LSTM and CNN in parallel

and concatenate their outputs with a dense layer to make the final
prediction. The proposed method outperformed statistical and machine

learning models with 98.23% R-square accuracy for Malaysians and
improved Germany’s R-square accuracy from 83.17 to 91.18% for a day

ahead load prediction.

Hafeez et al. [95] 2020 A-Day Ahead Load Forecasting Real hourly load data of three USA power grids (FE,
EKPC, and Dayton) from 2005 to 2012

ANN
(restricted
Boltzmann
machine)

The authors introduced a hybrid model based on a deep neural network
(restricted Boltzmann machine), modified mutual information (MMI)

technique to extract features, and proposed a genetic wind-driven (GWDO)
optimization method to adjust the model’s parameters. Together with their
fine data engineering procedure, this new optimization algorithm helps to

improve the MAPE accuracy between 4.7% to 17.3% compared to
benchmarks. Moreover, their model’s average convergence time rate is 52 s

which is less than 58–102 s of benchmarks’ expectations time.

Han et al. [96] 2019 Medium to Long Term Load
Forecasting (a week to a year)

Two hourly real daily load datasets, Hangzhou from
January 2015 to March 2017 and Toronto from May

2002 to July 2016.

CNN and
LSTM

The authors proposed two methods, time-dependency convolutional
neural network (TD-CNN) and cycle-based long short-term memory

(C-LSTM), that outperformed other benchmarks in terms of accuracy and
execution time. Their models’ main advantages are extraction of the

long-term global combined features and short-term local similar features in
the LSTM-based model and conversion of load’s temporal correlation into

spatial ones in the CNN-based model.

Chen et al. [97] 2019 A-Day Ahead Load Forecasting
Two hourly real datasets North American Utility and
the ISO-NE from 1985 to 1992; the datasets of 1991 and

1992 were used for testing

ANN with
residual

connections

This study introduced a deep neural network with residual connections,
one of the well-known techniques to overcome the problem of lost

information in earlier layers in a deep network by applying direct links
from primary layers to deeper ones. Applying ensemble strategy on the

two rich datasets provides the generalization capacity of their model. The
proposed model improved the MAPE error rate from 1.48 of the best

benchmark model to 1.447 in the ISO-NE dataset and from 1.73 to 1.575 for
the North-American utility dataset, which also implies the robustness to

temperature variation of the proposed model.

El-Hendawi et al.
[98] 2020 A-Day Ahead Load Forecasting Real dataset of the hourly electric market of Ontario,

Canada from 2011 to 2016 ANN

The authors used the wavelet transform to decompose the input data into
different levels with different frequencies to feed several neural networks.
Instead of having one model, they trained different neural-based models

with part of transformed input data and made final forecasting considering
all models’ predictions. The proposed ensemble model improved the

MAPE accuracy by 20% compared to other traditional neural networks.
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4. Discussion

ML-based algorithms have shown remarkable results in power system analytics
compared to traditional methods. However, even if the models proposed by the literature
showed to work fine in real datasets, their performance in industrial applications has not
been sufficiently demonstrated yet, due to cost or privacy issues. This suggests the need
for further investigations at the industrial level, where the presence of input data with
different distributions or big data properties (e.g., volume, velocity, variety, and veracity)
could decrease the performance of ML models.

Regarding the data used for system validation, the studies generally presented cus-
tomized datasets. They typically provided information on the total number of samples,
sampling frequency, recording time, and percentage of data used for training and validation.
As several datasets were synthetically generated using simulation software, only various
studies reported problems with imbalanced datasets and missing items in the data. In this
regard, Hong et al. [45] analyzed the case in which data were missing from one of the buses,
concluding that system performance decreased significantly. Karagiannopoulos et al. [46] ex-
trapolated historical data and used information from the public domain or from neighboring
systems to deal with missing or noisy data. In this sense, Hafeez et al. [95] replaced missing
values with the average values of preceding days, while El-Hendawi et al. [98] replaced miss-
ing data with the average values of the same day in previous years. Similarly, Ray et al. [75]
used measurements from past hours to fill in missing data and performed data cleaning
to exclude incorrect data from training. Jia [79], Ou et al. [84], and Alawad et al. [88] also
highlighted the need to clean up missing data, while Li et al. [44] wrote the missing features
as zero to keep the dimension of the matrix constant. Additionally, Gao et al. [73] presented
an ML-based fault detection system in a photovoltaic array and quantified the impact of
missing PV input data (irradiance, temperature, and different combinations of them) on
system accuracy. On the other hand, Li et al. [83], Vantuch et al. [54], and Liao et al. [53]
discussed the effect of the imbalanced dataset on performance. In this sense, Wang et al. [57]
solved the data imbalance problem using an enhancement method that equalized the amount
of data (random cropping of existing data to generate a new dataset, increase of random
noise, signal reversing, etc.). Similarly, Jia [79] applied a synthetic minority over-sampling
technique that addressed the dataset imbalance problem without overfitting the classifier.

The lack of standard datasets for the testing of ML-based algorithms also emerged as
a relevant issue. Indeed, all the models presented in the literature are usually tested on
not-standard datasets, with very different characteristics and peculiarities, thus making the
comparison of the performance of such methods almost impossible. It is then apparent that,
when it comes to the selection of the most suitable ML method to be implemented in large
scale applications, this lack of information represents a relevant issue, that would eventually
prevent the implementation of novel (and potentially more performing) methods in favor
of (probably less performing) traditional ones. This, in the end, highlights the need for the
definition of application-specific standard datasets, to allow a fair comparison between
the very different ML methods proposed for each application. The standardized dataset
should have the following properties:

Size: considering the industrial side, the dataset size should be considerably big with
high dimensionality. Although some weak learners, such as DT, showed to work perfectly
with a small amount of data, they would not well generalize in the big domain. On the
contrary, neural network models have better accuracy results in the big domain;

Quality: if the focus is only on the performance of the machine learning model, the
different input datasets should have the same properties. For example, some models are
very robust to none values or outliers while others are not. Preparing a dataset before
feeding it to a model relates to data engineering procedures rather than to the model
performance;

Validity: the dataset should accurately represent the phenomena or reality of events.
The statistical properties of the standardized dataset should be as much as possible close to
real-life scenarios to show how practical models are;
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Uniqueness and completeness: the information should be unique and not be du-
plicated over the dataset to make sure a trained model will generalize well enough in
actual cases. Moreover, it should cover all the possible occurrences or conditions. When
considering, for example, the power quality disturbance classification, the dataset should
include all the essential distortions;

Train and test division: it is important the make sure that the performance of all
models are evaluated with the same train set. Otherwise, a chosen test set probably only
consists of easy instances, or it does not consist of all the possibilities;

Accuracy metrics: authors used different metrics to evaluate their model performance;
however, it is not possible to compare various studies when the same accuracy metrics are
not used. The metrics should be proposed taking into account the nature of problems. For
example, there are much fewer abnormal events in anomaly detection than normal, so the
model with 99% accuracy does not guarantee that it correctly detected all abnormal events;
for such studies, F1-score or AUC should be taken into account.

Researchers proposed different models based on one or more techniques. Figure 3.
shows the frequencies of techniques presented in the literature review of this study. In
this figure, ANN consists of the traditional neural network such as MLP and Boltzmann
machine, SVM includes both classification and regression, and PCA encompasses all PCA
methods.
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Alternatively, it seems the hybrid models had better performances compared to others,
particularly the one that combined feature engineering techniques with prediction models.
Reinforcement learning methods such as Q-learning have also enhanced accuracy in
some applications like intelligent transportation systems and load forecasting. In some
applications, such as PV prediction or load forecasting, which deal with temporal datasets,
some sequential techniques such as GRU or LSTM are preferred.

5. Conclusions

When facing the challenges related to the management of smart power systems, it
became apparent that traditional techniques are no more computationally promising so-
lutions. One of the limitations of conventional algorithms is their inadequate capacity to
handle a large amount of data—consisting of chunks of heterogeneous datasets—collecting
from measurement devices such as phasor measurement units and smart meters. As a
result, many researchers developed high-level, efficient, and reliable solutions based on
state-of-the-art intelligent learning algorithms to provide innovative solutions or promote
the overall performance of current models in various power system fields. In this context,
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the ML paradigm and modern ML algorithms are categorized and presented in this article.
Furthermore, this study provided a systematic overview of the latest machine learning
techniques and models employed to bring new resolutions in power flows, power quality
events, power quality parameters, photovoltaic systems, intelligent transportation systems,
and load forecasting services. The authors also suggested the properties of a standard
dataset for testing and reviewing the ML-based models to make a fair comparison between
the performances of proposed models for each topic. However, the literature analysis
implies that hybrid models based on supervised machine learning algorithms are applied
more exceeding than unsupervised or semi-supervised techniques. Thus, it can be high-
lighting that supervised algorithms convey more benefits to problems typically faced by
electrical power engineers. Finally, it can also be concluded that the application of machine
learning methods in electrical systems simplifies complex issues and ensures more reliable
and accurate results. As numerous works proposed solutions based on ML techniques,
the authors limited their research to well-known newly published articles. Accordingly, in
future work, the authors focus on and review articles related to each topic separately to
provide an informative survey.
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Abbreviation

Abbreviation Meaning
ACO Ant colony optimization
Adrar Algerian
AE Autoencoder
AI Artificial intelligence
ANFIS Adaptive neuro-fuzzy inference system
ANN Artificial neural network
AUC Area under curve
CBCS Chaotic mapping mechanism, and cuckoo search
CNN Convolutional neural network
CPS Cyber-physical system
D Dimensional
DALFs Day-Ahead Load Forecasts
dB Decibels
DBSCAN Density-based spatial clustering of applications with noise
DERs Distributed energy resources
DNN Deep neural network
DP Dynamic Programming
DT Decision Tree
DWT Discrete wavelet transform
ELM Extreme learning machine
EMD Empirical mode decomposition
EV Electric vehicles
FFT Fast Fourier transform
FM Dactorization machine
FN False negative
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FP False positive
GANs Generative adversarial networks
GBM Gradient boosted trees
GPS Global positioning system
GRU Gated recurrent Unit
ICA Independent component analysis
IEEE Institute of electrical and electronics engineers
IoT Internet of things
IPCA Improved principal component analysis
KNN K-nearest neighbors
LASSO Least absolute shrinkage and selection operator
LR Logistic regression/Linear regression
LSTM Long short term memory
MAE Mean absolute error
MAPE Mean absolute percentage error
ML Machine learning
MLP Multi-layered perceptron
ms milliseconds
MSE Mean square error
NHTS National household travel survey
OPAELM Online p-norm adaptive extreme learning machine
OPF Optimal power flow
PCA Principle component analysis
PCWT Pseudo-continuous wavelet transform
p.u. Per unit
PM Persistence model
PMU Phasor measurement units
PQ Power quality
PQEs Power quality events
PSO Particle swarm optimization
PSO-H-ELM PSO hierarchical ELM
PV Photovoltaic
R2 R-squared
RESs Renewable energy sources
RF Random forest
RK Reduced kernel
RMSE Root mean squared error
RMSEDD Root mean squared Euclidean distance difference
RNN Recurrent Neural Network
ROC curve Receiver operating characteristic curve
RTU Remote terminal units
SELM Stacked extreme learning machine
SoC State of charge
SPM Space phasor model
SR Self-recurrent mechanism
STFT Short-time Fourier transform
SVM Support vector machine
SVR Support vector regression
TKEO Teager–Kaiser energy operator
TN True negative
TP True positive
TS-SOM Tree-structured self-organizing map
VMD Variational mode decomposition
WASMs Wide-area system measures
XGB/XGboost Extreme gradient boosting
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