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Abstract

The present work deals with the development of a theoretical and computa-
tional framework of the mechano-biology happening in the arterial tissue during
hypertension disease. Biological tissue adapts actively to different mechanical
and chemical stimuli where the underlying mechanical properties of the tissue
play an important role. The mechanical stimuli that trigger these changes is the
increase of blood pressure experienced in hypertensive patient. There are also
changes in the blood flow. This work is divided in four aspects of the adapta-
tion of different components of the tissue to hypertension. Firsts, we focus on
the mechanical properties of the arterial tissue and we particularly look at the
behavior of a real human carotid artery. We obtain a finite element model of
the carotid artery to apply all the models developed during this work. Two of
them are related with the growth and remodeling of the collagen and smooth
muscle cells within the arterial wall. Its thermodynamic description fall into the
description of open systems where mass is allowed to gain or loss via changes
of volume, density of both. The characteristic thickening of the arterial wall is
describe by means of a volumetric growth model. The stiffening of the arterial
tissue, which is due to the increase of the collagen content, is formulated within a
density growth model. Both of these approaches are described theoretically and
are later included computationally in a finite element framework. The last part
of this dissertation aims at deriving a model of endothelial cell orientation and
morphological adaptation to the blood flow.
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1
Motivation

This thesis studies some of the biological processes found in hypertensive diseases
to, after that, present some mathematical models within a continuum mechanics
framework. We focus on the the adaptation of the arterial wall by volumetric
growth of the SMC and the collagen turnover. We also look at the endothe-
lial cell adaptation to changes in the blood flow. The final goal is to apply the
developed models to a real patient geometry of carotid where, by means of nu-
merical techniques (Finite Element Method in particular) be able to reproduce
the mechanical and structural changes happening in it. The next section of this
chapter gives a brief description of the biological tissue and processes studied in
this work.

Nowadays, the mathematical and computational study of biomechanics and
biology have gained a huge significance in the research community. There has
been an important increase in the number of scientific forums devote to them,
while some years or decades ago bioengineering works were doomed to be pre-
sented in general continuum mechanics and computational journals. This out-
break in bioengineering, both from the continuum and computational points of
view, have other interesting counterparts. Many of the research laboratories and
institutes from all over the world, which were working extensively and success-
fully in classical continuum and computational problems, moved forward, or may
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be backward, into the biological field. There could be different reasons for such
a change.

The study of plasticity, damage, viscoelasticity, etc., have been key points
of development in continuum mechanics for decades. Up today many important
progresses have been achieved and the amount of knowledge about these topics
is quite high. No mention that many of the most important continuum and com-
putational researchers have been focusing their efforts in those topics. However,
the biological point of view of continuum mechanics and computational methods
have not been so well exploited and probably many researchers felt the necessity
of moving to this close area of research in order to set off for this new challenge.
It is relevant to point out that those theories and methods used for the study
of these classical topics have been used with good success in dealing with the
study of biological tissue. However, biological tissues are, at some extend, much
more complicated materials than those usually studied in the field of continuum
mechanics, such as steel, rubbers, etc., basically due to its “living” nature. A
huge amount of adaptation processes undergo and not only due to mechanical
stimuli but also to chemical unbalance and cellular behavior.

There are probably other reasons for that change, such as an economical
one. Laboratories and departments saw that the amount of funding devoted to
bioengineering by public and private organizations was starting to growth while
to classical topics was getting stuck or even decreased.

Bioengineers have the goal of bringing together some research fields of biology
and mathematics. The basic idea is to study and understand what biologists or
engineers found in its experimental studies. They have to create mathematical
models that qualitatively and quantitatively describe the phenomena saw in those
experiments and at the end apply to different practical goals, such as, e.g., create
artificial tissues to substitute natural ones, develop clinical equipment or com-
putational models that recreate the behavior of different tissues. The big deal
of mathematical and computational models, compared with experimentation, is
that once the model is correctly characterized, a fast and cheap reproducibility
of different cases of study can be achieved as, e.g., different load cases, chemical
environments or cellular disorders, etc.
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Therefore, it is not surprising that in 2009 The Wall Street Journal placed
Mathematicians and Biologists in the first and fourth most valued jobs in the
world (Needleman, 2009). In 2010 the USnews pointed out that bioengineer
was the job with fastest-growing occupation, a 72%, far from the 10% average.
USnews described them as “Biomedical engineers help develop the equipment and
devices that improve or enable the preservation of health. They’re working to
grow cardiac tissue or develop tomorrow’s MRI machines, asthma inhalers, and
artificial hearts.” (Wolgemuth, 2009). There is an enormous demand of better
medical devices, biomedical materials, etc., and there is an estimation of 12000
new jobs through 2018 in the USA.

Figure 1.1: A widespread idea of basic science (Tropea, 2011).

However, this great perspective of the bioengineering sector and its achieve-
ments in particular, are sometimes far away from providing society non only of
economical profit but also wealthiness and sometimes sinks to the so called ba-
sic science. Or more precisely, there is a lack of translation of the basic research
achievements into society. Fig. 1.1 represents this issue quite well. There is now a
doubt that basic research is a key milestone in the evolution of societies. However
it is important to allow to translate as much as of these works into productive
market, which seems to be a problem in the field of bioengineering. According
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to a publication of a committee of the UK parliament there is a clear difficulty
of translating such knowledge into an clear and fast economical profit. They
concluded that private funding should help out basic research to be, in somehow,
a pushing force to get and orient research into what industry and society need.
They also recognized that public funds are essential to grant researchers to ac-
complish those works that may not have a clear profit today but probably will
have in the future. We cannot also forget the pure basic research, which probably
will be never use for anything in particular but for our better understanding of
what surround us.

1.1 The cardiovascular system

The cardiovascular system (Topol et al., 2006) is one of the most important
systems in mammalians. It is composed of the heart, the blood and the blood
vessels and it has the main goal of transporting oxygen and nutrients to the rest
of the body. The blood has a total volume of 4.7 to 5.7 liters and between its
more important substances there are plasma, red blood cells, white blood cells
and platelets. The heart is the engine of this system pumping oxygenated blood
to the body and desoxygenated blood to the lungs.

There are three main circulatory systems in mammals. The pulmonary cir-
culatory system (see Fig. 1.2(a)) is the network in which poor oxygenated blood
is pumped out from the heart to the lungs via the pulmonary artery and return
to the heart through the pulmonary vein with a high oxygen content. Poor-
oxygenated blood coming from the vena cava, enters the right atrium and goes
through the tricuspid valve into the right ventricle, from where it is pumped into
the pulmonary artery to the lungs. Thanks to the a CO2-oxigen exchange in the
lungs blood becomes oxygenated and goes back to the heart through the pul-
monary vein. The high-content oxygen blood is used by the systemic system to
provide oxygen to all the cells in the body. Systemic circulation (see Fig. 1.2(b))
is the circulation network which transports oxygenated blood from the heart to
the rest of the body and returns oxygen-depleted blood to the heart due to the
consumption of oxygen by cells all over the way of the arterial tree. Systemic
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circulation transports blood to every part of the body via diffusion of oxygen
and nutrients across the vessel wall to feed cells and they return carbon dioxide
and wastes into the blood torrent. Blood gets out the left ventricle to the aorta,
the largest artery in the body, moving toward the aorta arches and branches into
arteries to the upper body, passing through the diaphragm after that, where it
branches further into arteries which supply the lower parts of the body, these
into arterioles and finally capillaries. The waste and non-oxygenated blood is
then collected in the vein capillaries going up to the vena cava from where the
blood enters the heart at the right atrium where the pulmonary system starts over
again. The coronary circulatory system (see Fig. 1.2(c) by PHOTOSCIENCE)
injects oxygenated blood into the heart. Although it could be considered as part
of the systemic circulation system is usually taken apart from it because blood
motion occurs at diastole movement instead of systole as does in pulmonary and
systemic system.

1.1.1 Cardiovascular disorders

This well organized and synchronized system presents a important number of
diseases which are main target of research all over the world and over different
research fields. According to the World Health Organization, chronic diseases are
responsible for 63% of all deaths in the world, with cardiovascular diseases as the
leading cause of death (WHO, 2009). Cardiovascular disease is any disease that
affects the heart itself and/or the blood vessel system, especially the veins and
arteries.

Between the most important cardiovascular diseases (Leonard, 2008), we find
the rupture of atherome plaque within the artery wall, which consist in the oc-
clusion of the blood conduct by the growth of fat tissue. One of the worst
consequences is ischemic heart disease, characterized by reduced blood supply to
the cardiac muscles, i.e. myocardium.

Hypertensive heart disease, another important disease, is caused by high blood
pressure. Valvular heart disease is a disease process that affects one or more
valves of the heart. There are four major heart valves which may be affected,
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(a) Pulmonary circula-
tion Burrowes et al.
(2005).

(b) Coronary circulation
Zygote Media Group
(2011).

(c) Systemic circulation.

Figure 1.2: Representation of the different circulatory system.

including the tricuspid, aortic, mitral and pulmonary valves. Angina pectoris
(chest pain) and myocardial infarction (heart attack) are symptoms or conditions
caused by coronary heart disease. Over 459,000 Americans die of coronary heart
disease every year (Association, 2012). Cardiomyopathy is the deterioration of
the function of the myocardium for any reason. People with cardiomyopathy are
often at risk of arrhythmia and/or sudden cardiac death.

Multiple explanations have been proposed to explain why age increases the
risk of cardiovascular diseases (Bridget, 2010). One of them is related to serum
cholesterol level. In most populations, the serum total cholesterol level increases
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as age increases. In men, this increase levels off around age 45 to 50 years.
In women, the increase continues sharply until age 60 to 65 years (Jousilahti
et al., 1999). One of the proposed explanations for the gender difference in
cardiovascular disease is hormonal difference. Among women, estrogen is the
predominant sex hormone. Estrogen may have protective effects through glucose
metabolism and hemostatic system, and it may have a direct effect on improving
endothelial cell function. The production of estrogen decreases after menopause,
and may change the female lipid metabolism toward a more atherogenic form by
decreasing the HDL cholesterol level and by increasing LDL and total cholesterol
levels. Aging (Jani and Rajkumar, 2006) is also associated with changes in the
mechanical and structural properties of the vascular wall, which leads to the loss
of arterial elasticity and reduced arterial compliance and may subsequently lead
to coronary artery disease. In this thesis, we are going to focus in hypertension.
In the next section we discuss briefly the main aspects of hypertension, from
causes to consequences.

1.1.2 Hypertension

Hypertension is a chronic medical condition in which the blood pressure is el-
evated. This makes the heart to work harder than normal to pump out blood
through the blood vessels. Blood pressure involves two measurements, systolic
and diastolic, which depend on whether the heart muscle is contracting (systole)
or relaxed between beats (diastole). JNC7 (the Seventh Report of the Joint Na-
tional Committee on Prevention of Detection, Evaluation and Treatment of High
Blood Pressure) (Chobanian et al., 2003) classification set normal pressures below
140 mmHg systolic and 90 mmHg diastolic. High blood pressure is considered
when it is at or above 140/90 mmHg for long time based on JNC7 classifica-
tion. Recent international hypertension guidelines have range values to indicate
a continuum of risk with higher blood pressures in the normal range. JNC7 uses
the term prehypertension for blood pressure in the range 120-139 mmHg systolic
and/or 80-89 mmHg diastolic. There is also a classification for different hyper-
tension stages. Isolated systolic hypertension refers to elevated systolic pressure
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with normal diastolic pressure and is common in the elderly. A first stages refers
to blood pressure between 140 and 159 or diastolic pressure between 90 and 99. A
second stage for people with systolic blood pressure exceeding 160 mmHg systolic
or a diastolic pressure over 100 mmHg.

Hypertension is classified as either primary (essential) hypertension or sec-
ondary hypertension; about 90− 95 of cases are categorized as "primary hyper-
tension" which means that blood pressure increases with no obvious underlying
medical cause (Carretero and Oparil, 2000). The remaining 5− 10 of cases (sec-
ondary hypertension) are caused by other conditions that affect the kidneys,
arteries, heart or endocrine system.

Primary hypertension is the most common form of hypertension, account-
ing for 90 - 95 of all cases of hypertension (Carretero and Oparil, 2000). Blood
pressure rises with aging and the risk of becoming hypertensive in later life is
considerable (Narayan et al., 2003). Hypertension results from a complex inter-
action of genes and environmental factors. Numerous common genes with small
effects on blood pressure have been identified as well as some rare genes with
large effects on blood pressure but the genetic basis of hypertension is still poorly
understood (Lifton et al., 2001). Several environmental factors influence blood
pressure. The possible role of other factors such as stress, caffeine consumption,
and vitamin D deficiency are less clear cut (Chobanian et al., 2003).

Many mechanisms have been proposed to account for the rise in peripheral
resistance in hypertension. Most evidences implicates either disturbances in re-
nal salt and water handling, particularly abnormalities in the intrarenal renin-
angiotensin system and/or abnormalities of the sympathetic nervous system (An-
derson et al., 1989). These mechanisms are not mutually exclusive and it is likely
that both contribute to some extent in most cases of essential hypertension. It
has also been suggested that endothelial dysfunction and vascular inflammation
may also contribute to increase peripheral resistance and vascular damage in
hypertension (Brunner et al., 2005)

In most people with established essential (primary) hypertension, the in-
creased resistance to blood flow (total peripheral resistance) trigger a high pres-
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sure output while cardiac outflow remains normal (Conway, 1984). There is
evidence that some younger people with prehypertension or ‘borderline hyper-
tension’ have high cardiac output, an elevated heart rate and normal peripheral
resistance, termed hyperkinetic borderline hypertension. These individuals de-
velop the typical features of established essential hypertension in later life as their
cardiac output falls and peripheral resistance rises with age.

The increased peripheral resistance in established hypertension is mainly at-
tributable to structural narrowing of small arteries and arterioles, although a
reduction in the number or density of capillaries may also contribute (Folkow,
1982). Hypertension is also associated with decreased peripheral venous compli-
ance which may increase venous return, increase cardiac preload and, ultimately,
cause diastolic dysfunction (Safar and London, 1987). Whether increased ac-
tive vasoconstriction plays a role in established essential hypertension is unclear
(Schiffrin et al., 2000).

Secondary hypertension results from an identifiable cause. Renal disease is
the most common secondary cause of hypertension (O’Brien et al., 2007). Hyper-
tension can also be caused by endocrine conditions, such as Cushing’s syndrome,
hyperthyroidism, hypothyroidism, acromegaly, Conn’s syndrome or hyperaldos-
teronism, hyperparathyroidism and pheochromocytoma. Other causes of sec-
ondary hypertension include obesity, sleep apnea, pregnancy, coarctation of the
aorta, excessive liquorice consumption and certain prescription medicines, herbal
remedies and illegal drugs.

The World Health Organization has identified hypertension, or high blood
pressure, as the leading cause of cardiovascular mortality. Last data available
shows that around one billion people all over the world, close to the 26% of the
total adult population in the world suffer of hypertension. The World Hyperten-
sion League (WHL) recognized that over the 50% of the hypertensive population
worldwide do not know their condition. Hypertension does not represent a dan-
ger by itself, but is a major risk factor for stroke, myocardial infarction, heart
failure, aneurysms, peripheral arterial disease among many others and it is closely
related to a shorten of time life. Contrarily, hypertension is the most important
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preventable disease for early death worldwide.

USA leads many of the survays and studies about hypertension as they do for
suffering of hypertension and it is the most common chronic medical problem,
prompting visits to primary health care providers in USA (Association, 2012).
The American Heart Association estimated the direct and indirect costs of high
blood pressure in 2010 as 76.6 billion. 34% of the US population (over the world
mean) and African American adults have among the highest rates of hypertension
in the world, being lower in whites and mexican americans. What change in US,
as in other developed countries, is that 80% of people are aware of their condition
while just 71% take some medication or are adequately controlled. Inadequate
management of hypertension could be boosted by inadequacies in the diagnosis,
treatment, and/or control of high blood pressure.

Hypertension is rarely accompanied by any symptoms, and its identification is
usually through screening, or when seeking healthcare for an unrelated problem.
A proportion of people with high blood pressure reports headaches, as well as
lightheadedness, vertigo, tinnitus (buzzing or hissing in the ears), altered vision
or fainting episodes. A "hypertensive emergency" is diagnosed when there is evi-
dence of direct damage to one or more organs as a result of the severely elevated
blood pressure. This may include hypertensive encephalopathy, caused by brain
swelling and dysfunction, and characterized by headaches and an altered level of
consciousness (confusion or drowsiness). Breathlessness, cough, and the expec-
toration of blood-stained sputum are characteristic signs of pulmonary edema,
the swelling of lung tissue due to left ventricular failure, an inability of the left
ventricle of the heart to adequately pump blood from the lungs into the arterial
system.

The first line of treatment for hypertension is identical to the recommended
preventative lifestyle changes and includes: dietary changes, physical exercise,
and weight loss (Chobanian et al., 2003). These have all been shown to signifi-
cantly reduce blood pressure in people with hypertension. If hypertension is high
enough to justify immediate use of medications, lifestyle changes are still rec-
ommended in conjunction with medication. Different programs aimed to reduce
psychological stress such as biofeedback, relaxation or meditation are advertised
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to reduce hypertension. However, in general claims of efficacy are not supported
by scientific studies, which have been in general of low quality.

With the aim of studying the hypertension disease in the arterial tissue within
a computational mechanics framework we have to look at some aspects of the
arterial wall to characterize the biological process. We assume two behaviors of
this tissue, a passive and an active one.

1.2 Passive behavior of the vessel wall

Among the most important features of the cardiovascular tissue we find a highly
non-linear and anisotropic material with a nearly incompressible response due
to the high water content. They area made up of different components as colla-
gen, elastin, smooth muscle cells and fibroblast, turning them into heterogeneous
composite-like materials. We devote Chapter 3 to describe the actual passive
behavior of the arterial tissue and the carotid artery in particular.

1.3 Active behavior of the vessel wall

In contrast with other materials, traditionally studied in the field of contin-
uum mechanics, biological tissue is a very active matter. It does not only bear
mechanical load. They exhibit a very optimized and advanced auto-regulatory
mechanisms under mechanical and chemical stimuli. The cardiovascular system
in particular undergoes a constant evolution over mammalian life. Moreover,
these changes can be dramatically speed up in some diseases such a hyperten-
sion, atheroesclerosis, etc. The experimental and computational study of such
processes are a very important research field. In the following section we will
address those changes observed in hypertension disease.

1.3.1 Role of smooth muscle cells

Smooth Muscle Cells (SMC) play an important role in both the passive and ac-
tive behavior of the arterial tissue. However, it is in the active and evolution
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aspects where SMC play a differentiate role. After a mechanical stimulus has
occurred, up-regulating or down-regulating the homeostatic state, we can give a
time-line description of its behavior. Focusing the problem on the hypertensive
disease, an increase in blood pressure, and changes in blood flow the arterial wall
experience an increase in the stretches and therefore stresses. The first active re-
sponse to such changes is the contraction of the SMC in order to reestablish both
normal stresses over the arterial thickness and normal values of the wall shear
stress on the endothelial layer. The change of the basal tone is described usu-
ally as a short-term response and depends on the type and health of the artery.
While important in all arteries, the active behavior of the SMC are known to
have a primarily role on peripheral or resistance arteries. They are the ones that
control the cardiovascular resistance to fulfill the requirements of the cardiovas-
cular network. However, large and medium size arteries have lower contraction
capabilities. SMC also boost the release of many different substances which have
the main goal of acting on other cells and on the Extracellular Matrix (ECM)
to adapt the internal structure to the new mechanical environment. Among the
most important substances are the Transforming Growth Factors (TGF), such
as TGF-β, Metalloproteinases enzymes (MMP) and Tissue Inhibitors of Metal-
loproteinases (TIMP).

In the long-term response SMC experience a change in volume which have
been well documented in terms of thickening of the arterial wall. Chronically,
SMC start to growth, via hypertrophy, hyperplasia or both (Owens et al., 1981;
Owens, 1989), to restore the homeostatic stress state. This chronic adaptation
leads to the well-documented thickening of the vessel wall. These changes are
also more pronounced in small or resistance vessels (Folkow et al., 1958; Mulvany
and Aalkjaer, 1990). Bishop and Lindahl (1999) showed that the increase in
extracellular matrix (ECM) deposition can be caused by hyperplasia or by the
increase in cell synthesis, while Owens et al. (1981) identified hypertrophy to be
the main origin of SMC growth.
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1.3.2 Role of endothelial cells

Endothelial cells (EC) are cells of the selectin family (E-Selectin) which conform
the inner layer of blood vessels. They are distributed along the lumen in a mono-
cell layer and are in charge, jointly with the SMC and fibroblast, of the regulatory
system of the peripheral cardiovascular system. While SMC sense and react to
changes of the blood vessel, EC do to variations of the shear stress, transforming
mechanical stimulus into intracellular signals leading to functional, mechanical
and chemical variations of the cell. Concerning the mechano-sensing receptors,
several hypothesis have been investigated and established as sensors of shear
stress. Ion channels represent one of the most important receptors, in particular
by increasing K+ permeability, increasing Ca2+ influx and activation of NonSe-
lective Cation channels (NSC) and Cl− channels. Integrins are known to play an
important role in mechanosensing of EC. They are placed on the cell membrane
and represent an interface between the ECM, fibronectin and collagen, and the
cell. They and their glycoproteins content are sensitive to displacement due to
strain or shear stress. Platelet endothelial cell adhesion molecule-1 (PECAM-1)
bind adjacent endothelial cells and have been also observed to increase due to
shear strees. They play a role in abgeogenesis and cell adhesions. G-Proteins-
Coupled receptors (GPCRs) and G-Proteins also have been reported to activate
due to shear stress. Glycocalyx covers the surface of some cells, like in the EC,
and plays a fundamental role in the mechonosensing and transduction of the shear
stress, see Weinbaum et al. (2007); Tarbell and Shi (2012) for more details. All
these receptors activate other huge cascade of signaling intracellular pathways.
Among the most identified molecules involved we can point out Protein Kinase C
(PKC), Rho family GTPases, PI3K and MAPKs. All this machinery effects and
leads to changes on several aspects of EC. Shear stress have shown increase of gene
expression in of Platelet-Derived Growth Factor (PDGF)-A and -B, Transform-
ing Growth Factors (TGF −β), Intercellular Adhesion Molecule-1 (ICAM-1) and
vasodilators NO and decreasing of Vascular Cell Adhesion Molecule-1 (VCAM-1)
and the expression of the vasoconstrictor ET-1.
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1.4 Computational models

The mathematical modeling of natural processes is a nice path to a better knowl-
edge of what is happening in them. In particular the modeling of biomechan-
ics and mechanobiology is a enterprising area of research (Humphrey, 2003;
Holzapfel, 2004). Moreover, the inclusion of such models in a computational
framework, the finite element method for example, allows researchers to study
real patient specific geometries. Note that one of the main goals of computational
and theoretical studies of biomechanics and mechonobiology related problems is
the application of these studies to improve current diagnostic tool and drugs
as well as a new research field in building synthetic organs (see an interesting
New York Times article by Fountain (2012)). These two issues brought together
are a wonderful tools to study many different topics within the biological and
computational mechanics community. Among many of the topics to study in
biomechanics, researchers have been focusing more strongly on the modeling of
different kinds of tissue as the heart (McCulloch et al., 1998), bones (Rice et al.,
1988; Weinbaum et al., 1994), vessels (Holzapfel et al., 2000), tendoms (Peña
et al., 2006), eye (Pandolfi and Manganiello, 2006; Alastrué et al., 2006), etc.
Many efforts have been also invested to model the electrical behavior of the heart
(Heidenreich et al., 2010; Wong et al., 2011) and arteries (Murtada et al., 2010).
There are also a high amount of works about the evolution of biological tissue over
time like remodeling and growth, see e.g. the review in Humphrey (2009) and
Ambrosi et al. (2011). Molecular dynamics is other useful tool for the simulation
of movement of atoms and molecules (Rapaport, 2002).

In terms of the mechanical behavior, a large number of constitutive laws
have been recently proposed for modeling the mechanical behavior of soft biologi-
cal tissues and blood vessel in particular. In general, this kind of tissues are made
up of an extra-cellular matrix, composed of an isotropic ground substance with
a high water content in which a network of fiber composed of elastin, different
kinds of collagen and proteoglycans are embedded. The combined contribution of
these constituents determines the mechanical response of the tissue, which turns
out to be highly non-lineal. Those fibers are also responsible for the anisotropic
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Figure 1.3: Workflow in current biomechanics research field.

response of the tissue due to the existence of clear preferential orientations of the
fibre bundles (Rhodin, 1980; Landuyt, 2006). They are commonly incorporated
to the constitutive models as discrete anisotropy directions by means of, e.g., ad-
ditional structural tensors (Gasser et al., 2006). Nevertheless, histological studies
have shown that it does exist some fiber dispersion around the preferential orien-
tation, which varies as a function of many variables as the vessel layer, the vessel
type or even the position along the vessel length (O’Connell et al., 2008; Gasser
et al., 2012). Thus, the incorporation of anisotropy considering fiber dispersion is
one of the challenges for modeling the mechanical behavior of soft tissues. There
exist also many models considering damage, viscoelastic and plastic effects (see
e.g. the monographs of Fung (1990) and Humphrey (2002)).

Firstly developed anisotropic constitutive models for blood vessels were purely
phenomenological. Fung et al. (1979) proposed an exponential law of the deforma-
tions in the principal cylindrical directions in order to account for the anisotropic
behaviour of the tissue. Later, directional fibre dispersion was introduced in the
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models by means of different methodologies. In Holzapfel et al. (2005), a phe-
nomenological parameter served to account for dispersion, whereas Gasser et al.
(2006) used the von Mises Orientation Density Function (ODF) (Fisher, 1953) to
determine a structural tensor representing the fibre distribution. More recently,
models including fiber dispersion from a micro-structurally-based approach have
been proposed (Alastrué et al., 2009).

Hemodynamics is also an important topic in computational mechanics. FSI
has been applied to cardiovascular problems. Coupling medical images with com-
puting resources made possible the study of the blood flow in human arteries
through Computational Fuid Dynamics (CFD) simulations and, in more recent
years, through Fluid Structure Interaction (FSI) simulations with the aim to
evaluate the influence of vessel properties (e.g., geometrical properties and wall
compliance) on arterial pathologies. Steinman et al. (2002) proposed a novel
approach for non-invasively reconstructing artery wall thickness and local hemo-
dynamics at the human carotid bifurcation, and reported the first direct com-
parison of hemodynamic variables and wall thickness. On FSI analysis, Perktold
and Rappitsch (1995) investigated the effect of a distensible artery wall on the
local flow field and determined the mechanical stresses in the artery wall where
incrementally linearly elastic behavior was assumed. Tang et al. (2001, 2003,
2004, 2005, 2008) conducted extensive research on stress analysis in plaque MRI-
based models. Gao et al. (2009) compared the differences in stress distribution
on plaque locations, between different diseased carotid bifurcations and analyzed
the impacts of the specific combination of fibrous cap thickness and lipid core
volume to the stress distribution (Gao and Long, 2008).

Besides the fluid dynamics involved in the blood through the vessel there
is an important fluid contribution within the arterial wall. Plasma, the fluid
component of blood, comprises around 55% of the blood volume and it is part
of the fluid that goes through the endothelial layer. However what is really
important to be considered is the mass transfer happening in the arterial wall
which makes many biochemical substances to react over time. They are usually
taken into account by diffusion and convection equations. Mathematical models
and computational schemes have been widely used to account for it. Given such
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a complex microstructure as the one described above, it is seem natural to think
that many of those models have been focused on how molecules, e.g. LDL, go
through this porous-like tissue.

Remodeling has been also studied from a computational and theoretical
point of view. It is well known that biological tissue remodels itself when ex-
posed to a given stimulus, e.g. mechanical loads such as an increase in blood
pressure, and changes in the chemical environment that controls the signaling
processes and the overall evolution of the tissue. Biological remodeling can oc-
curs in any kind of biological tissue (see e.g. remodeling in a tendon-like structure
in Fig. 1.4). In particular, the study of collagen as the most important tissue to
be remodeled, in all its types (preferentially Type I and III), has been given con-
siderable attention in the last few years (Driessen et al., 2003; Kuhl et al., 2005;
Driessen et al., 2008). The reorientation of this kind of structures can be assumed
to be the consequence of the reorientation of the fibrils or filaments that make
them up. This phenomenon leads to changes in the micro-structural orientation,
fiber shape and fiber properties, due to the reorientation of the fibrils (see e.g.
Stopak and Harris (1982); Rubbens et al. (2009); Sander et al. (2009)). Several
remodeling models have been proposed in the recent years. Some of them analyze
the reorientation of unidimensional fibers driven by different stimuli such as Men-
zel (2007), Himpel et al. (2008) or Karsaj et al. (2009). In Himpel et al. (2008),
a complete consistent linearization of the equations in an implicit finite element
framework was performed. Garikipati et al. (2006) presented an elegant energetic
and stationary study of the remodeling problem from a thermodynamical point
of view.

The computational study of growth has gained increasing attention in the the-
oretical and computational mechanics community as well (see e.g. the reviews
in Taber (1995); Humphrey (2009); Ambrosi et al. (2011)). In particular, the
works of Skalak et al. (1982) and Rodriguez et al. (1994) were pioneered in the
underlying kinematic description of volumetric growth. Mechanical treatment of
growth has been dealt in different ways. Usually, growing and swelling of biologi-
cal tissues are considered as open systems. Their different configurational settings
and their numerical treatments in a finite element method (FEM) framework are
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Figure 1.4: Computational model of remodeling of fibers in a tendon-like struc-
ture (Kuhl and Holzapfel, 2007).

discussed in Kuhl and Steinmann (2003). Typically, two fundamentally different
forms of growth can be distinguished: volumetric growth and density growth,
where a change of mass occurs in both of them. The first one allows for changes
in volume while keeping the density constant whereas the second one maintains a
constant volume while the density is allowed to change, see e.g. the works of Him-
pel et al. (2005) in isotropic growth, Menzel (2004, 2007) for anisotropic growth
and Waffenschmidt et al. (2012) in the context of the micro-sphere model (see Fig.
1.5). An alternative approach towards growth is the one presented by Humphrey
and Rajagopal (2002, 2003) based on constrained mixture theory, where several
constituents of a tissue are allowed to growth in an independent way. In this
context other works have been presented (Gleason and Humphrey, 2004, 2005;
Klisch et al., 2005) and extended to reactive mixtures (Ateshian, 2007). Other
interesting approaches are reported by Imatani and Maugin (2002); Ganghoffer
(2010) in the context of volumetric material growth. It is also worth noting the
early work of Fung and Liu (1989), which demonstrates that the growth of blood
vessels induces a change in the natural configuration of the tissue, associated with
the notion of a stress free configuration.

Another important biological structure able to remodel itself is cell cy-
toskeleton. Cytoskekleton is composed of microtubules, microfilaments and
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Figure 1.5: A computational model of density growth for bone (Waffenschmidt
et al., 2012).

a network of actin filaments among many other elements (see e.g the review of
Mofrad and Kamm (2006) and references therein for details). In terms of me-
chanical models there have been an increase of the number of works, see e.g.
Ingber (2003); Maurin et al. (2008); Kardas et al. (2012) (see Fig. 1.6).

Cells move and reorient their inner structure depending on the stiffness and
strain of the substrate (Discher et al., 2005; De et al., 2007). Cytoskeleton shape
can change due to the adaptation of the microtubules and filaments to a specific
external mechano-chemical stimulus (Saez et al., 2005; De et al., 2008). There
are several experimental tests in the literature showing morphological changes
of the cell due to mechanical stimulation of the matrix where cells are located.
There exists two main procedures to induce cell morphological changes, static and
cyclic loading (De et al., 2007; De and Safran, 2008; Goli-Malekabadi et al., 2011).
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Figure 1.6: Computational tensegrity-type model of a cell (Kardas et al., 2012).

While static and low-frequency loading leads to a reorientation and remodeling
of the cellular structure parallel to the stretching direction (Collinsworth et al.,
2000; Bischofs and Schwarz, 2003), high-frequency cyclic loading does in nearly
perpendicular (Hayakawa et al., 2001; Hsu et al., 2009; Faust et al., 2011). In
high-frequency stimulus, the feeling agents of external environment, e.g. focal
adhesions, are not able to follow such changes so no stress fibers and miosin
motors are activated. However in static and low-frequency load states, focal ad-
hesions react to such changes by means of an active internal tension of the stress
fibers leading to changes in its morphology. These works mentioned above usu-
ally present the evolution from a random distribution of the micro-structure of
the cells to be aligned with a particular direction. These experimental results
are characterized by a gradual reorientation of the principal direction of the cell
followed by a progressive remodeling of the micro-structural element leading to
more pointed shape, see e.g., the experimental work of Dai et al. (2004) and ref-
erences therein. In Fig. 1.7 we show some results presented by Hayakawa et al.
(2001) where this behavior is shown. In many cases this change of shape, unlike
changes in orientation, is measured by a shape-index in the biomedical commu-
nity. The underlying biological processes are more in number and complexity.
Some of them, like dynamics of focal adhesions, the tension exerted by molecular
motors over actin stress fibers are among the most important aspect to be con-
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sidered (see e.g. Mofrad and Kamm (2006) for an overall understanding of cell
behavior).

In reference to models capturing these features not much have been done,
while in terms of the orientation of the preferential direction of the cell, some
of the most accepted models are those presented in De et al. (2007); De and
Safran (2008), where the reorientation is assumed to be controlled by the matrix
behavior and the forces that arise from the active regulation of the cell in a
dipole-like manner. In terms of modeling changes on the morphology of cell
shape due to external stimuli no many models exist in the literature, see e.g.
Levesque et al. (1986); Ingber (2003); Ohashi and Sato (2005).

Figure 1.7: Experimental results of vascular smooth muscle cell cyclically loaded
(Hayakawa et al., 2001)
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1.5 Objectives and Thesis outline

The thesis is organized in 6 chapters, describing four different aspects of the ar-
terial behavior and its response to hypertension. Each individual chapter is con-
ceived to pursue an individual goal within the overall view of the computational
modeling of hypertension disease. Every chapter contains a brief conclusion of
each issue and a final conclusion chapter is addressed to bring a global conclusion.
The chapters organization is as follows.

• Chapter 2 describes the passive behavior of the arterial wall. The general
kinematics and constitutive relations used are reviewed. A general contin-
uum approach is used and described through the Chapter and results from
homeostatic and hypertensive states are presented. The results are based
on the constitutive relations of every component of the layered material.
Some experimental findings from literature are also reviewed. Those re-
sults presented here are based in a fluid structure interaction simulation
whose basic characteristics will be also commented.

• Chapter 3 describes a model of volumetric growth of the SMC due to its
over-stretching and to a long-term control of the lumen diameter. Its math-
ematical and computational aspects are described and results of the thick-
ening of the arterial wall are presented.

• Chapter 4 describes the process by which collagen density change in hyper-
tension. The chapter starts describing the trigger factor, SMC over-stretch
due to the increase of pressure found in hypertension. Given this stretching
difference, a model of SMC synthesis of TGF−β and TIMP and the regu-
lation of MMP is exploited. A computational model of diffusion-convection
is used to study the transport of these substances through the arterial wall.
After that, a computational model of the turnover of collagen is described
which, at the end, leads to an increase in the stiffness of the arterial wall.

• Chapter 5 deals with the response of endothelial cells to changes of the wall
shear stress found in hypertension. These changes are given by FSI simula-
tions in the carotid artery. Endothelial cells adapt both their microstructure
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and its genetics expression. We address a model for reorganization of the
endothelial cytoskeleton based on its mechanical environment. The model
is exploited in a computational way and the results of such simulation are
presented. The model is also applied to the real carotid geometry. We also
present a simple model of the synthesis and diffusion of the NO through
the vessel wall.

• Chapter 6 discusses the most important conclusions as a whole and outlines
future lines of research in the different topics studied in this thesis.





2
Continuum mechanics framework

The chapter outlines the basic notions of continuum mechanics that our models
are based on. It describe the mapping configurations, kinematics, master bal-
ance, balance of mass, balance of momentum„ balance of mechanical energy and
enthropy inequality. At the end we will provide some particularization used in
the constitutive modeling of arterial tissue. The goal of this chapter is to provide
a minimum framework in the context of solid mechanics that allow us to exploit
later developments. This is not a complete review of solid mechanics and many
important topics are omitted. Readers with a background in solid mechanics will
see it very basic. This chapter would be more focus on give to the more biological
oriented reader a basic notion of solid mechanics. Marsden and Hughes (1994);
Ogden (1996); Bonet and Wood (1997) and Truesdell and Noll (2004), among
many others, are monographs that the interested readers should not avoid for
more comprehensive view of continuum mechanics.

2.1 Configuration and associated manifolds

Let’s star by considering a body of interestMP ⊂ R3 and let’s consider a point
P. We need to provide him with a reference or a configuration. Let’s consider a
configuration forMP called B. A configuration, B, is a smooth, so differentiable,

47
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manifold, such that B :MP → R3. In other words, any particular point of MP
in the configurationB, e.g. X ∈ R3, is a funtion that associated points of our
body in euclidean reference system, that is

B0 :MP → B0(MP) ⊂ R3 B0(P) = X. (2.1)

Let’s take the a point P contained in a chart. A chart is a portion of the manifold
from where we can define a reference coordinates for the manifold. We can define
the tangent space T B0 of MP at P. A tangent space is a vector space R3

containing all the possible tangent vector from P.

We have givenMP, and therefore to P, a place and a reference system. Let’s
now consider the configuration at time t B such that

B :MP → B(MP) ⊂ R3 B(P) = x. (2.2)

At this point we have set not only the initial configuration of our body but also
a the final configuration, and the reference system associated to that configura-
tion. We adopt in the entire work a Euclidean reference system. This issue have
important implication in the description of continuum mechanics and differential
geometry in general. The material and spatial metrics called in literature G and
g renders the second order identity tensor δij . As consequence Christtoffel sym-
bols vanish so the covariant derivative correspond to the derivative of a quantity
in the direction of {◦} (vector or tensor) for any scalar, vector or tensor.

∇{◦}{•} = ∇{•}[{◦}]. (2.3)

And finally, we need to give to our body of a path or a way to move from the
initial to the final configuration. We allow to that motion to be reversible, that is
invertible at any time. We do that by the so called, material and spatial motion
respectively from now on, as

ϕ : B0(MP)→ B(MP), φ(x) = X(x, t),

φ : B(MP) → B0(MP), ϕ(X, t) = x(X, t).
(2.4)
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It is usual to write, given a composition of function as

ϕ ◦ B0(MP) = B(MP)

φ ◦ B(MP) = B0(MP)
(2.5)

Remark 1 Time derivatives The derivation of a given quantitity with respect
to time t have some parcularirties dependending on the features of the config-
uration frame we are working on. Let’s consider a quantity {•} as a function
of material points X and time t. Let’s also define other quatity {◦} in terms of
spatial point § and time t. We define the following called material derivatives that
representent the time derivatives of material and spatial quantities respectively as

Dt{•} = ∂t{•}|X we call it material local derivative

Dt{◦} = ∂t{◦}|X = ∂t{◦}|x +∇x{◦} · v we call it material derivative of a
spatial quantity

(2.6)
Let’s consider that we fixed the spatial position § and derivate with respect to

time, called spatial derivatives.

dt{◦} = ∂t{◦}|x we call it material local spatial
derivative

dt{•} = ∂t{•}|x = ∂t{•}|X +∇x{•} · v for points in the spatial
configuration

(2.7)

Let’s define two important time derivatives, the velocities of the motion and
the inverse of the motion. We call them material and spatial velocity of the
motion and are defined (see Remark 1) as

V (X) = Dtϕ(X, t) and v(x, t) = V (X) ◦ φ(x, t). (2.8)

The convective velocity can be obtained by the pull-back of the spatial ve-
locity as V = F−1v. The ϕ∗(•) define the pull-back and ϕ∗(•) the push-forward
operator.
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And finally, the acceleration in the different configuration can be expressed
as

A(X) = DtV(X, t),

a(x) = dtv(X, t) = ∇xv · v and

A(x) = dtv(X, t) = ∇xv,

(2.9)

.

2.2 Kinematics

We want to start by recalling some basic notions of the kinematic assumption.
The deformation gradient is the tangent of the motion and represents a two-point
linear map over the reference configuration. Based on the motion ϕ we defined
the deformation gradient

F (X, t) : T B0 → T B

F (X, t) = ∇Xϕ(X, t)
(2.10)

between the tangent spaces T B0 and T B of B0 and B respectively. The Jacobian
of the deformation gradient will be denoted as J = det(F ) > 0.

Assuming X, Y ∈ B0 being neighbouring points the material length element

dX = Y −X = dε = ‖Y −X‖n0, (2.11)

where the n0 is associated to the material configuration B0 fulfilling ‖n0‖ = 1,

describing the direction of a material line element at the point X.

The deformation gradient F can be used to express the material line element
in its spatial counterpart as dx = (y − x) as

dx = F · dX = F · [Y −X] . (2.12)
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And similarly the vector n0can be transformed into

n(X, t) = F (X, t) · n0. (2.13)

λ = ‖n‖ represents the stretch in the direction of n.

We also introduce the right and left Cauchy-Green strain tensors

C = F t · F and b = F · F t, (2.14)

which are symmetric and positive-definite tensors.

It is also interesting to represent the polar decomposition of the deformation
gradient tensor as

F = R ·U = v ·R, (2.15)

R satisfies the relation Rt = R−1, and the stretch tensors U and ,v are unique
positive definite symmetric tensors defined in the material and spatial configura-
tions respectively.

The material L and spatial velocity gradient l then takes the following mul-
tiplicative representation

l = Ḟ · F−1 with l = ∇xv, (2.16)

and
L = Ḟ with L = ∇XV , (2.17)

The symmetric part of the spatial velocity gradient defines the spatial rate of
deformation tensor d = lsym. Among other quantities, we can also express the
material deformation rate tensor as Ė = F tdF . To conclude, the time rate of
the Jacobian of the deformation gradient is given by

J̇ = JF−t : ḟ = JdivV. (2.18)

In connection with the modeling of biological tissue the mechanical response
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of nearly incompressible material can be multiplicative split as

F = J
1
3 I · F̄ . (2.19)

where J
1
3 I is associated to the volumetric part and F̄ with the isochoric contri-

bution, so that det(F̄ ) = 1. And the right and left Cauchy-Green strain tensors
transform into

C̄ = F̄
t · F̄ = J− 2

3C, b̄ = F̄ · F̄ t
= J− 2

3 b. (2.20)

and
n̄ = F̄ · n0 = J− 1

3n, and λ̄ = ‖n̄‖ = J− 1
3 ‖n‖. (2.21)

Remark 2 Objectivity. One of the most important principles of mechanics is
the notion of objectivity. This principle comes up from the idea that any quantity
describing the behavior of a body remains unchanged when an observer attached
to and rotating with the body remain unchanged. Although the nature of such
quantity remain unchanged, its description can be altered. This time dependent
rotation Q(t) ∈ SO(3) is a proper orthogonal transformation in the proper or-
thogonal group. For example, the superimposition of a rigid body motion of two
any points preserve distances, so the motion is said to be rigid or isometric. How-
ever, there are some tensorial forms that do not transform in this same objectively
manner. The velocity gradient tensor l = Ḟ ·F−1 is one of this non-objective ten-
sor. Stress tensors in spatial configuration are also important tensorial forms
that do not transform objectively. This particular quantity will be reviewed later
as well as the principle of material frame invariance for hyperelastic description.

2.3 Stress

Given some forces acting both on the surface of the body and we assumed that
this body is cut by a plane passing though a spatial point x ∈ Bt. A differential
surface element ds in the cutting plane around x, characterized by its outward
oriented normal n. The resultant of the internal forces are df = t ds, where
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t represents the Cauchy traction vector exerted on ds with outward normal n.
The counterpart surface element dS (associated to the X ∈ B0 point), and first
Piola-Kirchhoff traction vector T , defined in the reference configuration as

df = t ds = TdS, (2.22)

t = t(x, t, n) and T = T (X, t, N), (2.23)

where t and T are usually defined as surface traction.

Cauchy’s theorem assumed the existence of unique second-order tensor fields
so that

t(x, t, n) = σ(x, t) · n and T (X, t, N) = P (X, t) ·N , (2.24)

where σ denotes the symmetric spatial Cauchy stress tensor, while P character-
izes the two-point first Piola-Kirchhoff stress tensor.

Given that force does not depend on the body geometry, a relation between
the Cauchy stress and the first Piola-Kirchhoff stress tensor must exist, we write

σ(x, t) · n ds = P (X, t) ·N dS, (2.25)

Using the Nanson’s formula ds = JF−tdV , which relates elements in the
reference and deformed configurations by making use of the volume ratio, then
P and σ can be related by

P = Jσ · F−t. (2.26)

In addition to these two measures of stress, other definitions of stress tensors
can be described. The spatial Kirchhoff stress tensor, e.g., can be expressed
as τ = Jσ, the second Piola-Kirchhoff tensor, convinient for the definition of
constitutive theories is given by S = F−1 · τ · F−t.

We give in the following sections a brief description of the balance equa-
tions. Nevertheless, we can move between configuration with push-backs and
pull-forward operation in a fashion way.



54 Continuum mechanics framework

2.4 Balance of mass

Although biological tissue undergo a huge amount of mass production and trans-
port it is quite usual to treat them as closed system. A closed system it is
that one that do not allow mass to cross over the boundary ∂B0. A closed sys-
tem is, therefore, characterized by a fixed mass in the system. We call system
a collection of matter in space. Let’s define a mass density function ρ(x, t),
such that dm = ρ(x, t)dv. For the material description the desnsity is given by
ρ0(X, t) = ρ(x, t) ◦ ϕ and the convective as %(X, t) = ρ(X, t). The mass balance
laws give, in its spatial, material and convective description respectively,

∂tρ+ div(ρv) = 0 (2.27)

Jρ0 = ρ (2.28)

∂t%+Div(%V) = 0 (2.29)

2.5 Balance of linear momentum

To obtain the balance of momentum we identify our three classical terms. The
variation with respect to time of the lineal momentum have to be balanced by
the external volume specific momentun sources ρb and the spatial momentum
fluxes σ in the spatial configuration. And as usual with standard transformation
we can get the spatial, material and convected terms as

ρa = div(σ) + ρb, (2.30)

ρ0A = Div(P) + ρ0B and (2.31)

%A = DIV(J−1S) + %B. (2.32)
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2.6 Balance of angular momentum

The balance of linear momentum required that the time derivative of the moment
of linear momentum balance the sum of the moments of the forces acting in the
same body. The most important conclusion from this principle is that

τ = τ t, PFt = FPt and S = St (2.33)

which demonstrate the symmetry of the Kirchhoff and second Piola-Kirhhoff
stress tensors.

2.7 Balance of mechanical energy

The balance of the total energy of a system, or a body in this case, is seen as
the rate of the volumen specific internal energy V and the cinetic energy of the
system T which have to be balanced with the external mechanical work W plus
a non-mechanical, usually heat, term Q. In a sketchy way we can see this as

dt(T + E) =W +Q, where (2.34)

T + E =

´
B

1

2
ρv · vdv +

´
B
ρedv

W =

´
B
ρb · vdv +

´
∂B

t · vda

Q =

´
B
ρrdv −

´
B
qn · nda

(2.35)

From now on any heat source is neglected so Q = 0. After some algebra we can
get the following localized form

ρdte = σ : d, ρ0DtE = P : Ḟ and %DtE = J−1S : D (2.36)

.



56 Continuum mechanics framework

2.8 Enthropy inequality

Let’s following with the assumption that we do not have any heat source in or
into our system, this is an adiabatic system. We also consider that our sys-
tem is isothemic, so there are not variation of temperature in the system. The
enthropy inequality, also known as the Second Law of Thermodynamics or as
Clausius-Duhen inequality, set that

d

dt

ˆ
ϕ

ρηdv ≥ 0, (2.37)

where η(x, t) is the mass-specific entrophy. We can define the production rate of
entrophy, as

ρη̇ ≥ 0. (2.38)

In terms of the strain energy density function (SEDF) ψ and the internal
energy as a Legendre transformation such that ψ = e − θη and recalling the
energy balance law, we get the so called reduced production inequalities, in the
different descriptions, as

ρψ̇ − σ : d ≥ 0, ρ0Ψ̇−P : Ḟ ≥ 0 and %Ψ̇− J−1S : D ≥ 0 (2.39)

Remark 3 Principle of frame invariance
The principle of objectivity have to be also required to the strain energy of the
body. It is assumed that the SEDF in terms of the deformation gradient F to
be objective or frame indifferent if for a arbitrary motion and a superimposed
rigid body motion F̃ = Q · F, Ψ(F) = Ψ̂(F̃) = Ψ̌(U) apply. And it can be
demonstrated that choosing Q the right polar decomposition of F, Ψ(F) = Ψ̃(C)

directly satisfies the conditions of objectivity. Constitutive equations are usually
describe in terms of Ψ(C) to avoid objectivity problems.
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2.9 Constitutive equations

A constitutive law is said to be hyperelastic if its strain energy density function
per reference volume unit, is a solely function of the deformation, that is, Ψ(F ).
Since neither thermal effects nor entropy variations are considered, the strain
energy function must coincide with the free energy variation in these conditions.
Based on the Clausius-Planck inequality described in Eq. 2.39, it yields the
definition of the second Piola-Kirchhoff stress tensor defined as

S = ∂CΨ(C). (2.40)

Any other stress measure in the different configuration can be gathered by the
other inequalities in Eq. 2.39 or by means of pull-back or push-forwards operation
over the different quantities.

For convenience, it is commonly required that the strain energy function van-
ishes in the reference configuration, i.e. where F = I. This normalization con-
dition implies that no energy is stored in the body in the undeformed state, and
therefore

Ψ = Ψ(I) = 0. (2.41)

Since, from physical observations, it has been observed that the strain energy
increases with deformation it will be required, in addition to Equation 2.41, that

Ψ = Ψ(F ) > 0. (2.42)

Moreover, it will be assumed that the strain energy density function has no other
stationary point in the strain space. Note that relations of Equations 2.41 and
2.42 ensure that the residual stress in the reference configuration, namely the
residual stress, is zero and, therefore, the reference configuration is stress-free.

Another requirement, for behaviour at finite deformations, is related to the
changes of local volume, whose ratio is represented by the Jacobian determinant
J . This implies that Ψ 7→ +∞ if J = det(F ) approximates to +∞ or +0, which
is physically means that an infinite amount of energy is required to expand a
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material volume to the infinite range or to compress until vanishing it.

Since most problems involving hyperelastic materials undergoing finite strains
are non-linear, the computation of the tangent operator is frequently required
in computational mechanics methods in order to solve the problem implicitly.
The relation between the directional derivative of S and C can be expressed as
2dS = ∂CS : dC. The term ∂CS is usually referred as material elastic tensor
C and its counterparts in other configuration can be obtained by push-forward
and pull-back considerations. This linealised version can be solved by means of
iterative schemes, which provide an approximate solution of the original problem.
The tangent operator, which is basically the derivative of the stress with respect
to the strain, is of crucial importance in order to optimize the convergence of those
numerical procedures. The number of independent components is reduced to 36
due to the symmetries of S and C and C has minor symmetries, i.e. CABCD =

CBACD = CABDC . And if a scalar-valued strain energy Ψ function is assumed,
S can be derived from Ψ the elasticity tensor can be expressed

C = 4 ∂2CΨ(C), (2.43)

which implies that C posses major symmetries, i.e. CABCD = CCDAB so there
are only 21 independent components.

As we argued above, constitutive theories in the context of hyperlasticity rely
on the definition of a SEDF. Given a SEDF in its material description Ψ(C), and
based on the dissipation inequality from classical thermodynamics we can write,
neglecting heat sources and thermal effects given the constant temperature of
living organs,

Ψ(J, C̄) = Ψvol(J) + Ψich(C̄) (2.44)

Ψvol is related with water content in the cardiovascular tissue. The second term
Ψich is associated with the isochoric contribution of the deformation gradients.
As we describe in deep in next chapter, this later term can be again split in for
recover isotropic behavior, related with the elastin and the anisotropic behavior,
with the collagen fibers (see remarks 4 and 5). The above decomposition of
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the SEDF naturally affects the decomposition of the stresses and the elastic
moduli tensor. Following Eq. 2.39 we are able to obtain the stress tensors for
every configuration presented above by derivation the Helmholzt free energy by
its associated strain measure. We can obtain the second Piola-Kirchhoff stress
tensor as

S = Svol + Sich where (2.45)

Svol = 2∂CΨvol and (2.46)

Sich = 2∂CΨ(C̄) = 2∂C̄Ψ(C̄) : ∂CC̄ = J−2/3P : S̄ich. (2.47)

S̄ = ∂C̄Ψ(C̄) is the fictitious second Piola-Kirchhoff stress and P is the fourth
order projection tensor in the material reference defined as P = I− 1/3C−1 ⊗C

where Iijkl = δikδjl the fourth order identity tensor.

Remark 4 Isotropic constitutive laws Isotropy is based on the idea that the
stress-strain response of a body have the same behavior in all directions. A SEDF
is said to be isotropic if Ψ(C) = Ψ(F ·Qt) or Ψ(C) = Ψ(Q ·C ·Qt), ∀Q3

+.
The strain energy function can be expressed in terms of the principal invari-

ants of the isochoric right Cauchy-Green tensor C̄ as

Ψ(C̄) = Ψ(I1(C̄), I2(C̄), I3(C̄)), (2.48)

and expressed in terms of invariants (Spencer, 1971)

I1(C̄) = tr(C̄), I2(C̄) =
1

2

[[
tr(C̄)

]2 − tr(C̄2
)
]

and I3(C̄) = det(C̄). (2.49)

Remark 5 Anisotropic constitutive laws
Anisotropic material are those with different stress-strain behavior depending

at the direction of body. The use of structural tensors to introduce anisotropy in
material models is one of the most used techniques. The anisotropy is introduced
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by unit vectors in the reference configuration and the strain energy density func-
tion of material with n directions of anisotropy reads, given that anisotropy is
usually included in the isochoric part, as

Ψ = Ψich(C̄ A1, · · · ,An), (2.50)

where Ai, are structural tensor characterizing the anisotropic response of the
material associated to the referential unit vector ai as Ai = ai ⊗ ai.

As well as for the isotropic case, the modeling of incompressible and com-
pressible materials render different expression for the stress and elastic tensor
quantities. Based on the kinematic assumption of Equation 2.19, together with
the additive split of the strain energy density function, it is possible to express the
strain energy function for anisotropic materials as

Ψ = Ψvol(J) + Ψich(C̄, A1, · · · , An). (2.51)

And it can be also expressed in terms of invariants. It is usual to take into
account

Ī4(C̄, a1) = a1 · C̄ · a1 (2.52)

Ī5(C̄, a1) = a1 · C̄
2 · a1 (2.53)

Ī6(C̄, a2) = a2 · C̄ · a2 (2.54)

Ī7(C̄, a2) = a2 · C̄
2 · a2 (2.55)

(2.56)

Then the strain energy function can be expressed as

Ψ = Ψvol(J) + Ψich(Ī1, Ī2, Ī4, Ī5, Ī6). (2.57)

To obtain the tangent moduli, quantity that relate momentum fluxes and
strains, is essential for a consistent finite element implementation. We can eval-
uate the total derivative of the S with respect to C as a direct definition, and
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split again into volumetrixc-isochoric terms

C = 2∂CS = 2∂CSvol + 2∂CSich = Cvol + Cich. (2.58)

The volumetric contribution to the elastic tensor end up as

Cvol = 2J [p+ J∂Jp]C
−1 ⊗C−1 − 2JpC−1 �C−1, (2.59)

.
And the isochoric contribution does as

Cich = P : C : Pt − 2/3Tr(J−2/3Sich)P̃− 2/3[S⊗C−1 +C−1 ⊗ S], (2.60)

where P̃ = C−1 �C−1 − 1/3C−1 ⊗C−1 and C̄ = 2 J−4/3∂C̄S̄.

Remark 6 Identity tensors and diadic products. For the use in the entire
work we summarize some notations. We use the fourth order identity tensor and
fourth order symmetric tensor as

Iijkl = δikδjl and Isymijkl =
1

2
[δikδjl + δilδkj ]. (2.61)

In connection with this expression we define the standard and two non-standard
diadic product as

({•} ⊗ {◦})ijkl = {•}ij{•}kl,

({•}⊗̄{◦})ijkl = {•}ik{•}jl and

({•}⊗{◦})ijkl = {•}il{•}jk and

({•} � {•})ijkl = 1/2[{•}ik{•}jl + {•}il{•}jk].

(2.62)

Remark 7 Objectives stress rates To properly define the constitutive equa-
tion in the updated lagrangian approach that it is followed in this work a proper
definition of the stress rate is needed. In contrast with the objective nature of the
stress tensor, its material derivative is not objective. In the spirit of getting the
hyperelastic rate constitutive equation the variation of the Kirchhoff stress tensor
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have to be derived properly. The Lie derivative of a spatial quantity is defined
as the push-forward of the material time derivative of its pull-back, provide the
needed tool, expressed as

L(•) = ϕ∗(Dtϕ
∗(•)). (2.63)

The known as Jaumann rate, given by the Lie derivative of the Kirchhoff
stress tensor, neglecting the stretch components of F, can be expressed

Lv(τ )|l=w =
◦
τ = Dtτ + τ ·w +w · τ , (2.64)

with w = ṘRT .



3
Structure and Passive Behavior of the arterial

tissue

The artery wall has been object of research since a long time ago. The vessel wall
is the conduit responsible for driving the blood flow from the heart all over the
body. It is, together with the heart, key factors in terms of feeling and supplying
the extra pressure needed to transport nutrients to the organs and tissue. Arteries
can suffer from different diseases as we pointed out in the Introduction chapter.
Any of these diseases can modify or cancel the normal work of the organism.
This is the reason why the study of the arteries, whether from a biological or
a mechanical point of view, has gained so much attention. What we could call
normal behavior of materials, as a purely mechanical response to stimulus, is
only a small part of the biological tissue behavior. They do underlie damage,
plastic and viscoelastic behavior, as many conventional materials (rubbers, steel,
aluminum etc.). But they also present a very active component where chemical
reactions, cell synthesis and apoptosis, electrical signaling etc., are involved in its
response.

In this Chapter we focus on the mechanical response of the arterial wall, where
no other chemical, active or any other kind of response is assumed. The vessel wall
is a very complex, heterogeneous material. Arteries show a bunch of characteristic
mechanical properties. They present a high level of incompressibility due to a high

63
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water content (≈ 70%), a high non-linear response primarily due to the collagen
fibers that made up this tissue and they also show a complex microstructure where
different layers and structural organization of its components can be found. We
focus on these features over the next sections as we review some experimental data
found in literature and provide a constitutive model to characterize them. Finally
we reconstruct a patient specific carotid artery geometry in a finite element model,
which is used over the entire work to check the performance of our models in a
real artery geometry.

3.1 Structural organization

Arteries are made up of three main components and have a clear composite-like
structure (Fung, 1990). The arterial wall has three differentiated layers called
intima, media and adventitia (Clark and Glagov, 1985). The intima layer is a thin
sheet of endothelial cells (Fig. 3.2(a)) and is the one in contact with the blood
flow and taking care of the mechanotransduction due to fluid dynamic changes
(Runanyi et al., 1990). We study some aspects of this phenomenon in Chapter
6. The media, the next layer in radial direction, is made of sheets of elastin
fibers randomly packed. In most of the arteries SMC are placed in a preferential
circumferential direction and bundles of collagen fibers are placed along the SMC.
Arteries are also classified by muscular and elastic arteries depending on the
percentage of each constituent. Elastic arteries have a high content of elastin and
collagen and they are the vessels in a closer distance from the heart and usually
called large and medium size arteries. Muscular arteries have a higher percentage
of SMC and they are further away form the heart constituting medium and small
size arteries. The adventitia is made of collagen in a more random fashion.
Fibroblast are also an important component of adventitia and are mainly the
responsible of the synthesis of collagen (Bell et al., 1979). O’Connell et al. (2008)
shows a nice reconstruction of a pig aorta artery (see Fig. 3.1) where we can
observed all these properties.

In terms of its components, elastic fibers, collagen and smooth muscle cells
(SMC) are the responsible to accomplish structural purposes.
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Elastic fibers (Fig. 3.2(b)) are bundles of elastin proteins, secreted mainly by
fibroblast and SMC, and fibrillin-microfibrils, secreted by fibroblast and which
are essential for the correct formation of the elastic fibers (Rosenbloom et al.,
1993). Fibrillin is secreted into the ECM forming microfibrils which have been
seen to provide a scaffold-like structure for elastin deposition and play a key role
in deposition of tropoelastin (Kielty et al., 2002).

*[Confocal laser scanning microscopy reconstruction. In (a) the elastin (green),
SMC (blue) and collagen fibers (red). (b) represent the elastin, (c) SMC and

(d) the collagen

bundles.]

*[Scanning electron microscopy

reconstruction.]

Figure 3.1: Microstrutural representation of rat aorta (O’Connell et al., 2008).

These components have different elastic properties. Sherratt et al. (2003) in-
vestigate the stiffness of fibrillin micro-fibrils. They reported Young’s modulus
values of 78-96 [MPa]. They suggested that these elements behave as reinforce-
ment of the elastin fibers. Lillie et al. (1998) also showed that removal of fibrillin
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within the arterial tissue decreased the Young’s modulus at low strain while
slightly increasing at higher strains also suggesting the stiffening role of fibrillin
micro-fibrils. However, how they interact to increase the overall stiffness of the
tissue is not yet well understood. Mechanical characterization of elastic fibers
have been reported in the literature for bovine ligament in the order of 0.4-1.2
[MPa] (Aaron and Gosline, 1981), in equine ligament (Koenders et al., 2009) from
to 0.3-1.5 [kPa] and 0.56-0.74 [MPa] for the fibrillin-microfibrils. These authors
stated that microfibrils are not essential in the mechanical behavior of elastic
fibers in vertebrates. Sherebrin (1983) reported values for the elastic fibers in
dog and sheep aorta in the rage of 0.13-0.65 [MPa], which are in accordance with
other experimental findings.

Elastin has important flexibility and extensibility features for blood vessels
and endows the ECM with resilience during the loading of the cardiac cycle. The
elastic fibers are randomly packed forming sheets. During pathological conditions
(Kielty, 2006), e.g. cardiovascular diseases, there exist remodeling and turnover of
elastin which lead to the modification of the mechanical properties of the arterial
wall.

Structurally, collagen (Fig. 3.2(c)) is the most important protein found in
many connective and fibrous tissues. The extracellular collagen molecule, procol-
lagen, is made up of three left-handed helix polypeptides, the so-called α-chains,
coiled-up in a right-handed helical structure, about 300 nm long and 1.5 nm in
diameter (Bella et al., 1994; Orgel et al., 2001; Bhattacharjee and Bansal, 2005).
Collagen molecules assemble along a given direction through covalent bonds to
form collagen microfibrils, constituting the basic building block of collagen fib-
rils (Baselt et al., 1993; Hulmes et al., 1995; Orgel et al., 2006, 2011). Collagen
fibrils are gathered in the extracellular matrix to form bundles of collagen fibers.
Fig.3.2(c) shows a representation of such structure.

Collagen bears the major part of the load transmitted through the tissue, and
a lot of research has been devoted to understand its hierarchical microstructure
at and across the different scales (see Fratzl (2008) for a review). Its highly
non-linear behavior makes the arterial wall to "block" under too large deformation
preventing the tissue to damage. Strain of collagen fibers is achieved by stretching
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of collagen molecules and fibril sliding.

Mechanical properties of the different scales of collagen, in molecules (Bozec
and Horton, 2005), fibrils (Wenger et al., 2007) and fibers (Silver et al., 2003)
have been well studied. We encourage the reader with the thesis works of van der
Rijt (2004) and Yang (2008) who did an extensive experimental work characteriz-
ing collagen fibrils. Although the mechanical properties of the different collagen
hierarchical constituents is well understood, the mechanisms by which all the
levels interplays represents a more complicated process and the connections from
different scales is more poorly known. A complete understanding of these mech-
anisms would allow to predict the macroscopic behavior of collagen fibers by
means of the behavior of its smaller structures. It is known, however, that in
a first strain regime, molecular stretching predominates and beyond that point
slipping of fibrils take place (Sasaki and Odajima, 1996). Sasaki and Odajima
(1996) show how as we move from smaller (molecule) to higher scale stiffness
of the structure decreases due to the different cross-liking mechanism between
scales. Moreover, the waving at which collagen fibrils ensemble into the ECM to
form collagen bundles also modifies the behavior of the tissue.

As in elastin, collagen also experiences a very important turnover both in
healthy and different pathologies. We address some of these issues in Chapter 5.

Smooth Muscle Cells (SMC) (Fig. 3.2(d)) are a very important part of the
puzzle in terms of its active response. SMC accomplish the so called myogenic
tone. SMC react mechanically to external stimuli by contraction or dilating
the vessel. SMC also have the important role of synthesizing different kind of
biological substances which make the arterial tissue to remodel.

Finally, we would like to point out an important feature of arterial tissue
related to the SMC, the myogenic tone. As we barely described above, myo-
genic tone is an active force exterted by SMC during the cardiac circle. This
force is used to accomodate the arterial tissue to the pressure load to maintain
normal values of stress and strain in the arterial wall. Normal myogenic tone
can be changed, and exert larges forces, when blood pressure increases, e.g. in
hypertensive disease. Myogenic tone is also an key factor in small arteries and
arterioles which, due to neurological mechanisms, contract and increase the blood
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(a) Endothelial layer (SCIEN-
CEphotoLIBRARY, 2013).

(b) Elastic fibers (Koenders et al.,
2009).

(c) Collagen fibrils packed in
fibers (SCIENCEphotoLIBRARY,
2013).

(d) Smooth muscle cells (SCIEN-
CEphotoLIBRARY, 2013).

Figure 3.2: Microstrutural components of arterial tissue.

pressure gradient between the heart and capillaries. This process is one the main
mechanisms by which essential hypertension occurs. There are come attemps in
literature to model this behavior, see e.g. (Zulliger et al., 2004; Murtada et al.,
2010). In the first one the authors propose a SEDF to incorporate the active
contraction and relaxation of the SMC while the second relies on a kinematic
model of the cells based on Ca+ and K concentrations.

All these material features are important in order to properly characterize
the arterial wall. During the next Sections we particularize to different models
to capture the carotid artery behavior.
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3.2 The carotid artery: Previous studies and mod-

els

The carotid artery have been widely studied in literature because of it is prone to
develop atherosclerosis, stenosis, remodeling, etc. Experimental results in carotid
artery are wide in literature but they used to be focused on a specific issue of
the tissue, using different species on human, pig, dog, etc. Some of them rely on
the mechanical properties of the wall using uniaxial or inflation test. Others also
present values of the pre-stretch of the carotid or micro-structural features of the
material. However there are few of them where a complete characterization of the
tissue is performed for a specific study, therefore the researcher have to rely on
different studies from different samples, species, etc. Here, we review two studies
(Garcia et al., 2011; Sommer and Holzapfel, 2012) that, for our understanding,
present the most completed set of experimental tests.

First, it is convenient to present the constitutive modeling, which is the same
for both studies. They were interested in the mechanical properties of the me-
chanical behavior of the tissue. These authors used a hyperelastic framework (see
Chapter 2) to characterize the tissue and used the same constitutive model use
to fit the experimental findings. The elastin, which is usually described with a
isotropic behavior, was described with a Neo-Hookean model as

Ψelas(I1) = C10[I1 − 3] (3.1)

where µ is a stress-like parameter and I1 = tr(C) is the first invariant of the
isochoric part of the deformation. The isochoric Piola-Kirchhoff stress reads as
in Eq. 3.2 while the isochoric elastic tensor ∂2

C
Ψelas(I1) nulls in this case.

Siso = ∂CΨelas(I1) = ∂I1Ψelas(I1)∂CI1 = C10I1I (3.2)

For the description of the collagen fibers, they adopted the exponential-type
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model presented by Holzapfel et al. (2005), which is given as follows.

Ψcoll(I1, I4) =


0, if λ < 1

k1
2k2

[exp(k2[(1− ρ)[I1 − 3]2 + ρ[I4 − 1]2)− 1] if λ ≥ 1
(3.3)

where k1 ∈ R+ represents a stress-like parameter, k2 ∈ R+ measures the expo-
nential behavior of the response, ρ ∈ R, ρ ⊂ [0, 1] represents a measure of the
dispersion of collagen. I4 = C : N is the isochoric anisotropic invariant with
N = n ⊗ n, being n the direction of the fibers. This model represents a sym-
metric helicoidal distribution of the fiber within the vessel thickness. For more
information of this model, as well as a with other constitutive models, we address
to Holzapfel et al. (2005).

Other important issue when studying arterial tissue is the residual stresses
within the arterial wall. Residual stresses were shown for the first time in Fung
and Liu (1989) to be an important feature of arterial tissue. It has been hypoth-
esized that they play a role to maintain physiological stresses in the arterial wall.
The modeling of pre-stress have been described from a kinematic point of view.
The usual way to characterized residual stresses is to cut the artery up in rings
and then longitudinal to release those stresses in the circumferential direction.
The final geometry of the ring once cut is taken to describe the stress-free state
of the tissue. Further discussion is addressed in following section.

Remark 8 Pre-stress in biological tissue. It has been also pointed out the
importance of pres-stress in the behavior of arterial tissue. It is not clear if this
feature is associated to the elastin, collagen or SMC. Moreover, if this is asso-
ciated to collagen or elastin fibers is neither clear if these elements achieve this
residual stress by generating an active force by themselves, which seem awkward,
or if it comes from the state at which collagen and elastin is deposited. It could
be suggested that not incorporating the residual stresses do not reflect the actual
behavior of the artery. At some extend we could agree with that statement. How-
ever, given the phenomenological models of arterial tissue this argument seems
also arguable since the fitting experimental results in samples with residual stresses
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are, in somehow, taking into account the pre-stress behavior.

Remark 9 Pre-stress and layered arteries. Delfino et al. (1997) presented
a well known example in literature. In that work they investigate they influence
of residual stresses in a carotid artery. One should point out that they do not
consider media and adventitia layers in that model, which have been reported to
have very different mechanical properties. They asses that, after imposing a de-
formation from a stress-free cut configuration to achieve a no loading state and
applying the physiological pressure, the stress over the thickness is more uniform
in the model with residual stress than in the model without. The initial point of
such a statement is somehow not accurate since they are starting from a wrong
hypothesis, considering that stress over the arterial wall is homogeneous which
given the different behavior of the arterial layers is not possible. Moreover we
can argue about how those results were achieved. They took material parameters
from a pressure-radio test. Those material parameters were obtained in a non
residual stress free configuration so in somehow those material parameters gather
the features of the the pres-stress state. In fact, we would argue that imposing
a deformation to achieve a non loaded with residual stress material parameters
should be collected from a stress free state, otherwise those effects are considered
twice. The most correct way to proceed would be to asses the material parameters
of stress free tissue and after that apply some technique to deal with the residual
stresses. If that tissue would be tested in a stress free state those material param-
eters would be different. Moreover they did not include layered specific properties,
setting an averaged material parameter over the thickness. In short, we want to
state that, even known the residual stress state of arteries, the phenomenological
approach of mechanical models allow to incorporate information of the pre-stress
within the material parameters although a kinematic description, when available,
provides a more accurate approach. In any case, although a well described in
literature we are not considering pre-stress in our models in a kinematical de-
scription.
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3.2.1 Pig carotid artery experiments and fitting

The first of the two works was done by Garcia et al. (2011) using pig carotid
arteries in their studies. They performed uniaxial tests in both longitudinal and
circumferential directions of the vessel to find the material parameters. They
focused on the proximal and distal sides of the common carotid artery. In this
case, they cut the arterial wall into circumferential and longitudinal strips which
were after tested in uniaxial tests. The fitting problem relies on minimizing the
following objective function

E2 =

n∑
j=1

[[
σjc − σ̂jc

]2
+

[
σjl − σ̂

j
l

]2]
(3.4)

where j represents every experimental data point, σjl is the Cauchy stress in lon-
gitudinal direction achieved by the constitutive model and σ̂jl the stress obtained
from the experimental test. σc represents circumferential stresses as depicted in
Fig. 3.3. The goodness of the fitting was measured by computing the coefficient
of determination R2, defined as R2 = 1− Σn

j=1(σ−σ̂)
2
j

Σn
j=1(σ−µ)

2
j

where σj and σ̂j represent
the measured and the fitted stress values for the j th point respectively and µ

the mean value of the measured stresses µ =
Σn

j=1σ
j

n . Also the normalized mean

square root error ε was computed for each fitting ε =

√
χ2

n−q

µ . In this equation
q is the number of parameters of the SEF, so n − q is the number of degrees of
freedom, and µ the mean stress already defined above. θ is the angle of the fibers
with respect to the longitudinal direction (see Fig. 3.3). The material parameter
results are shown in Tables 3.1 and 3.2 for the proximal and distal specimens
respectively.

Remark 10 The fitting problem. Usually, fitting of material parameters of
a constitutive model gives a set of values that can or can not have an actual bi-
ological meaning. A non-constraint minimization problem is prone to such non-
uniqueness of the results. To this end, some limitation to the optimization prob-
lem should be provided. Information of the micro-strutural organization of the
constituent, layer specific test, material content of every constituent, etc., can
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Figure 3.3: Representation of the longitudinal (l) and circumferential (c) strips
and the angle of the fibers.

Specimen C10 [MPa] k1 [MPa] k2 [-] θ[o] ρ [-] ε [-]
- I 0.019 0.003 4.020 88.798 0.210 0.097
II 0.010 0.027 5.299 89.609 0.652 0.125
III 0.010 0.016 2.675 61.228 0.672 0.059
IV 0.011 0.006 1.468 89.469 0.625 0.103
V 0.0120 0.018 8.562 89.439 0.846 0.039
VI 0.007 0.019 1.246 89.999 0.618 0.081
VII 0.015 0.003 1.535 89.984 0.605 0.051
VIII 0.017 0.001 2.231 86.186 0.285 0.028
IX 0.0106 0.024 2.948 89.937 0.873 0.067
X 0.013 0.004 2.364 52.797 0.465 0.099
XI 0.019 0.016 2.390 84.605 0.049 0.062
XII 0.011 0.013 1.839 89.953 0.514 0.077
XII 0.013 0.011 1.564 89.999 0.543 0.050
XIV 0.018 0.008 0.784 89.923 0.675 0.033
Mean 0.013 0.012 2.780 84.423 0.545 0.069
SD 0.003 0.008 2.037 11.839 0.230 0.028

Mean curve 0.010 0.013 1.664 73.963 0.575 0.052

Table 3.1: Material constants obtained for the proximal curves obtained from
Garcia et al. (2011).

help to minimize the ill-possesness of the problem.

In an attempt to get extra information, Garcia (2012) also performed po-
larized light microscopy studies in order to find the preferential direction of the
collagen fibers as well as a statistical dispersion of those fibers with respect to the
mean preferential direction as represented in Fig. 3.4. For the visualization of
the collagen fibers, picrosirius red staining with the polarization method enhances
the light intensity due to the birefringence of the collagen, (Borges et al., 2007;
Junqueira et al., 1979). Picrosirius red is not a selective stain for collagen fibers
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Specimen C10 [MPa] k1 [MPa] k2 [-] θ[o] ρ [-] ε [-]
I 0.010 0.022 7.457 89.934 0.696 0.068
II 0.010 0.023 12.324 89.819 0.795 0.095
III 0.010 0.025 6.495 59.233 0.857 0.100
IV 0.010 0.218 0.826 72.928 0.925 0.194
V 0.010 0.070 3.405 89.999 0.818 0.085
VI 0.002 0.066 1.466 89.999 0.869 0.109
VII 0.010 0.024 7.269 55.848 0.933 0.082
VIII 0.010 0.013 2.353 89.193 0.759 0.061
IX 0.010 0.041 4.825 89.062 0.915 0.117
X 0.010 0.024 2.384 89.867 0.770 0.089
XI 0.010 0.013 2.198 89.999 0.686 0.074
XII 0.010 0.048 5.447 58.550 0.903 0.079
XII 0.010 0.016 2.232 68.086 0.614 0.062
XIV 0.010 0.044 2.194 86.606 0.810 0.062
Mean 0.009 0.046 4.348 79.937 0.811 0.091
SD 0.002 0.052 3.174 13.781 0.098 0.034

Mean curve 0.010 0.025 3.278644 85.363 0.765 0.071

Table 3.2: Material constants obtained for distal curves obtained from Garcia
et al. (2011).

although it provides a minimum amount of optical dispersion. The optical dis-
persion is the variation of refractive index with changing wavelength. By means
of this technique it is possible to better recognize the zones of collagen due to
the low dispersion. Picrosirius polarization method shows a different color when
compared with regions that present collagen type III (Junqueira et al., 1979)
sites containing collagen type I. This approach represents a feasible method for
the study of collagen turnover under pathological conditions because the bire-
fringence property shows different pattern in comparison with collagen fibers in
a normal tissue (Borges et al., 2007).

Garcia (2012) found that collagen fibers are mainly located in a circumferen-
tial direction for both the distal, Fig. 3.4(a), and proximal location, Fig. 3.4(b),
and for all the specimens, Fig. 3.4(c). These experimental results also showed a
markedly concentrated distribution of the fibers. They used this information to
feed the optimization problem providing the orientation and distribution of the
collagen fiber bundles, so these parameters were kept fixed while varying the rest
of parameters. When they included these values in the optimization problem to
obtain the set of parameters that best fit the mechanical behavior, found out that



The carotid artery: Previous studies and models 75

it was not possible to obtain a good enough set of parameters. The orientation
of the fibers obtained from the polarization, as we said, was markedly oriented
in circumferential direction which means that the behavior of the circumferential
and longitudinal direction differ further than a structure with helicoidal fibers.
The problem was only possible to fit when considering the angle of the fibers
variable although this would go against the experimental findings. Therefore
there should be something in the approach that the authors used. This could be
because the chosen constitutive model was not appropriate to fit this material.

Finally, and to the same end of collecting as much information as possible
to feed the modeling problem Garcia (2012) studied the composition content
of the three main constituents of the artery, elastin, collagen and SMC. They
performed histological studies for both pig and human carotids, reporting the
results in Table 6.1.

Pig
φcol φelas φSMC

Proximal 14.9± 2.3% 52.6± 6.7% 31.0± 3.3%
φcol φelas φSMC

Dismal 23.5± 3.9% 19.6± 4.1% 44.3± 4.2%
Human

φcol φelas φSMC

Proximal 24.8± 5.4% 41.1± 5.4% 27.1± 3.2%
φcol φelas φSMC

Dismal 29.5± 1.1% 21.9± 8.7% 39.8± 4.0%

Table 3.3: Composition of pig carotid artery of elastin, collagen and SMC mea-
sured by Garcia (2012).

Remark 11 Variability of material parameters. One of the most odd as-
pects about these studies dealing with biological tissues are the large variability
of the material parameters. At some extent it could look like unusual how these
parameters can differ so much. There are important differences in the content
reported in the literature. Material parameters, describing both elastin and colla-
gen also differ, which should indicate that elastin and collagen are very different
from species, from same species and even within close spots of the some tissue.
We do not know from any report that state that collagen or elastin molecules
and fibrils have different properties based on the type of artery or even species.
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Figure 3.4: Bingham fitted functions for the micro structural organization of
collagen by Garcia (2012). It represented the probability of finding a collagen
fibrils in a given direction of space.

Therefore, the material parameters should have some kind of relation between the
actual mechanical behavior of the material and the amount of that material.

However, the main concern about this study was the lack of information about
the mechanical properties of the two differentiated layers, which have been shown
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to have a very different behavior. And although some residual stresses informa-
tion was collected, it was not incorpareted later in the constitutive relation.

3.2.2 Human carotid artery

Sommer and Holzapfel (2012) provided data from human carotid arteries tested
by inflation test. A general strategy to fit these material parameters is to consider
an analytical thick wall problem under pression and axial stretch. We refer to
Holzapfel et al. (2000) for the complete developed equations. They presented a
bunch of experimental results of pressurized vessels and stretch imposed in axial
direction. In a series of papers they provide both residual stresses and mechanical
behavior of human carotid arteries. At the end, the problem relies on finding a
set of material parameters that best fit a pressure-stretch test for the particular
expression of σtt, σrr and σzz see, e.g., Holzapfel et al. (2000).

The material parameters are obtained by means of a non-linear least-square
optimization by minimizing the following objective function.

E2 =

n∑
j=1

[[
pj − pψj

]2
+
[
Fj − Fψj

]2]
(3.5)

with
p =

ˆ r0

ri

(σrr − σtt
dr
r
) and (3.6)

Fz =

ˆ r0

ri

(2σz − σrr − σtt)rdr (3.7)

The results achieved in this work for the common carotid artery (CCA) and the
internal carotid artery (ICA), where pres-stress was included, is summarized in
Table 3.4. For more specific data we refer to Sommer and Holzapfel (2012) where
some data for the different specimens are provided.

Remark 12 Age-related data. Looking at the results and the specimens used
by Sommer and Holzapfel (2012) one could argue that the sample represents a old
sample field. As it is explained in that work, the carotid arteries were extracted
from a mean 74 years old humans. It is well known that arterial wall stiffens
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C10[kPa] k1 [kPa] k2 [−] θ[o] ρ[−]
CCA adv Mean 59.6 180.9 109.8 30.1 0.8
CCA adv SD 33.8 316.6 104.4 10.6 0.1

CCA media Mean 122.3 24.7 16.5 6.9 0.8
CCA media SD 12.2 10.7 9.3 2.4 0.2
ICA adv Mean 28.3 112.1 100.6 31.8 0.9
ICA adv SD 59.5 179.1 101.1 11.2 0.1

ICA media Mean 17.6 21.3 17.3 9.8 0.8
ICA media SD 17.8 10.3 9.5 2.9 0.2

Table 3.4: Results of material parameters fitted for inflation test for the CCA
and ICA for the adventitia and media layers provided by Sommer and Holzapfel
(2012).

during the lifetime. In this study they also reported material content and gave
the results shown in Table 3.5. As it can be seen the value of elastin, and mainly
of collagen seems too high compared to previous values and other data (see Table
3.6) in literature (Humphrey and Rajagopal, 2003). This could be related to the
old age of samples and therefore to the stiff response of those samples.

φcol φelas φSMC

59± 8% 31± 6% 10± 3%

Table 3.5: Percentage of the material constituents, elastin, collagen and SMC
given by Sommer and Holzapfel (2012).

In connection with Remark 8 we also performed the material fitting including
the residual stresses as an example of the residual stresses role on phenomeno-
logical models. We have fixed the angle of the fibers to reduce variability. In the
following figure we present the fitting curves by Sommer and Holzapfel (2012)
with and without pretension. The pre-stress is introduced by kinematical con-
sideration as is described in, e.g., Holzapfel et al. (2000). Results of the fitting
procedure were almost identical for the C10 and k1 and the angle of the fibers,
only k2 increase ≈ 10%. This results indicate that pre-stress provide a higher
stiffness at higher strain values. However, it can not be concluded further details
of the actual pre-stress disposition of the fibers and how this phenomenon occurs
by means of this kind of data.

However the biggest problem we deal with in this fitting problem is the non-
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(a) Fitting without considering pre-stress.
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(b) Fitting considering pre-stress.

Figure 3.5: Numerical fitting with and without considering residual stresses using
data from Sommer and Holzapfel (2012).

uniqueness of solution. In fact, we can gather a good fitting with different set of
parameters. In the next section we will try to reduce these drawbacks.

3.3 A new approach toward microstructural fit-

ting

In this section we want to include different aspects of the arterial tissue to fit
again those tests shown before to, our understanding, better describe the micro-
structural behavior described by, e.g., Garcia (2012) and O’Connell et al. (2008),
and reduce the ill-possenes of the optimization problem.

Beginning from the biggest to the smallest scale in our model, our first attempt
is to obtain values of the material content of SMC, elastin and collagen. The
SEDF is used to be described in terms of energy per mass unit or, equivalently,
in terms of the Helmholtz free energy per volume unit, which give us stress
units for those quantities. This is usually done to avoid scale problems in the
definition of the constitutive models. When splitting the SEDF into different
parts one should take into account the percentage of substance for each one of the
splitting quantities. Usually these measures are into the mechanical parameters,
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φcol φelas φSMC

50% 20% 30%

Table 3.6: Weight percentage of each component respect to fry weight in human
carotid arteries obtained by Humphrey and Rajagopal (2003).

but it should be more correct to state them explicitly. A Helmholtz free energy
function U = ρΨ is introduced with Ψ the SEDF, reorganizing to have them in
its volume and mass functions we get U/m = Ψ/V. Therefore we can write the
splitting of both forms of the energy as

U
m

=
Ψ

V
= φwΨvol(J) + φelasΨiso(I1) + φcolΨani(I4, ) + φSMCΨSMC(I4). (3.8)

where φw, φelas, φcol and φSMC represent the relative amount of water, elastin,
collagen and SMC respectively. Note that we are not considering the mechanical
contribution of the SMC from now on since collagen and elastin are supossed
to bear the major part of the mechanical load. Also note that

∑
i≥1 φi = 1

with φi the percentage in volume of each constituent (Humphrey and Rajagopal,
2003). Water content is usually measured to be a 70% of the material, while the
remaining correspond to the dry part, that can be related to the isochoric part of
the SEDF. Out the 30% remaining, the percentages are split based on the elastin,
collagen and SMC contect described in previous sections. This approach is the
base of the Mixture-theory. We refer to Humphrey and Rajagopal (2003) for a
complete development of this theory with application to arterial tissue. Values
of material content are provided by Humphrey and Rajagopal (2003) in human
carotids.

Regarding the collagen behavior, as we pointed out in the introduction of this
section, collagen fibers are made up of collagen fibrils which gain into the extra-
cellular matrix achieving some degree of pretension and are organized following
a preferential direction. The mechanical behavior of the different components in
the hierarchical structure are quite different. However the mechanical properties
of the collagen molecules and the collagen fibrils maintain a similar behavior be-
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tween different tissues and different species. What change from one to another is
the degree of link and the deposition state of the fibrils within the ECM, which
give also the pre-stress behavior. In Fig. 3.6 we fit the mechanical properties
of a collagen fibril from a tensile test by Yang (2008). We use a SEDF initially
proposed by Holzapfel et al. (2000),

Ψfib(I4) =
k1
2k2

[exp(k2[I4 − 1]2)− 1] (3.9)
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(a) Experimental test by Yang (2008)

1 1.01 1.02 1.03 1.04 1.05 1.06
0

5

10

15

20

25

30

σ
 [

K
P

a
]

λ [−]

 

 

To fit long

Fitted long

(b) Experimental test by van der Rijt
et al. (2006)

Figure 3.6: Fitting results of the mechanical behavior of individual collagen fibrils
from data presented in the literature.

However, this behavior only takes into account the collagen fibril. The behav-
ior of a collagen fiber is softer than the fibrils due to the cross-links so an upper
bound can be stated in the mechanical values of the fibrils. This model does
not account for high strain states where breaks of cross-linking between fibril are
important.

Once we know the individual mechanical behavior of the collagen fibrils and
material parameters are fitted we want to describe the structural organization
of the arterial layers. O’Connell et al. (2008) have shown that arterial fibers
distribution follows a helicoidal distribution from the outer to the inner layer. As
they stated, collagen fibers are bundled around the SMC with some collagen fibrils
linking the main fiber in a predominant perpendicular direction. Adventitia layer
is known to have a random distribution of collagen with almost any SMC and
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some fibroblast. In the media layer there are several sublayers, every one with
a preferential direction of the SMC and therefore of collagen fibers, and elastin
sheets separating these sublayers. In the case of the media layer of carotid arteries
previous studies report that SMC keep a very circumferential direction (Garcia,
2012). Having in mind these works we modified the SEDF in Eq. 3.3 to recover
these features, sketchy drawn in Fig. 3.7.

Figure 3.7: Schematic representation of the structural organization in the media
of the carotid artery, being n the preferential direction.

Following Sommer and Holzapfel (2012), Garcia et al. (2011) and O’Connell
et al. (2008) observations we can consider that the preferential direction of the
fibers are in circumferential direction. The collagen fibers are linked each other by
other collagen fibers, cross-linking fibrils, that we consider isotropic and perpen-
dicular to the main one, representing the amount of cross-linking between main
fibers. This contribution is multiplied by a factor α to measure the amount of
these cross-links. Given that the cross-linking are isotropically connecting to the
main fibers we propose an isotropic contribution of it, taking out the contribution
of the main fibers. We can write this as

Ψcoll(I1, I4) =

N∑
i=1

[1− α]Ψifib + α

[
k1
2k2

[exp(k2[I1 − 3]2)− 1]−Ψifib

]

=

N∑
i=1

[1− 2α]Ψifib + α
k1
2k2

[exp(k2[I1 − 3]2)− 1]

(3.10)
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where α represents the amount of cross-links being α ≤ 0.5. α = 0 represents
no cross-links and α = 0.5 that the degree of links is high enough to consider an
isotropic distribution of the fibers.

Our approach consists on a preferential direction of the main fiber, which, in
the present case is in the circumferential direction for the carotid artery. So we set
N= 1 as we consider a unique family of fibers in the circumferential direction. For
shake of scouting possible values of α we use some experimental tests performed
in a pig aorta artery in our laboratory. Fig. 3.8 shows the fitting of such uniaxial
tests. As we could predict, values for the adventitia layer are higher than values in
the media layer since orientation of the collagen fibers is much randomly packed
in adventitia layer than in the media one.
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(a) Adventitia fitting results. C10 = 11.2 kPa,
k1 = 18.72 kPa, k2 = 1.84 and α=0.41.
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(b) Media fitting results. C10 = 13.59 kPa,
k1 = 15.93 kPa, k2 = 1.20 and α=0.13

Figure 3.8: Uniaxial test in longitudinal and circumferential direction in a pig
aorta artery.

3.3.1 Results of pig carotid

The proposed workflow is initially applied to the experimental result in Garcia
et al. (2011). There are some evidences of non-isotropic behavior of the elastin in
arterial walls, however we will ignore the anisotropic contribution in this work.
As pointed out by Zou and Zhang (2009), the behavior of the first part of the
stress-strain curve of the arterial wall is due to the compliance of the elastin.
Therefore, we initiate our optimization problem (Eq. 3.11) with the minimization
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function F to fit the material parameter corresponding with the first part of test
up to 3− 4% of strain.

(OP1) For p given minimize

F(p, C10) =

NOP1∑
j=1

[[
σlj − σlψj

]2
+
[
σcl − σcψj

]2]
,

(3.11)

where NOP1 ∈ N+ is the number of points in the strain interval [1-1.04]. σlj and
σcj represents the longitudinal and circumferential stress at the sample point j.
Applying OP1, fitting only the elastin part, we obtain the results in Table 3.7

φelastC10[kPa] Mean SD
Distal 24.43 21.65 14.72 21.81 33.39 19.81

Specimen I-XIV 19.66 20.58 18.24 22.68 21.34 22.94 21.81 4.25
Proximal 22.84 24.42 22.23 19.21 21.79 26.77

Specimen I-XIV 20.98 19.02 21.96 18.72 29.78 27.06 22.89 3.49

Table 3.7: Results of the OP1, solving for the Neo-Hookean parameter C10, for
pig carotid specimens (Garcia et al., 2011). First and second line are the I-VI and
VII-XIII specimens of the distal and proximal part respectively while third and
fourth are the I-VI and VII-XIII specimens of the distal and proximal samples
respectively.

Now we focus on each artery constituent to get as much information as possi-
ble. Concerning the elastin behavior of the material which, as we said before, is
usually modeled by means of a Neo-hooken law. The Young modulus of elastin
fibrils has been measured to 560-740 kPa (Koenders et al., 2009) although, as we
discussed previously, the value of the elastic modulus for the elastic fibrils depend
on the fibrillin and cross-linking degree. In a low strain regime C10 = E/6 is usu-
ally approached, so we get a C10 ≈ 100kPa. Interestingly, if we apply the content
values of elastin in carotid arteries of an rough averaged of 20− 30% we get the
C10 values for our fitting of ≈ 20 − 30 kPa. Note that this is an upper bound,
since there will be some collagen working in the strain regime. Note also that the
values presented by Koenders et al. (2009) are for individual elastin fibers, the
elastin lamelae we are dealing with have other cross-linking that probably stiffen
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the material at some level (Lillie et al., 1998; Sherratt et al., 2003).
As we can see this approach gives a very similar values for all the specimens,

as we highlight in the introduction of this chapter.
Now we apply OP2 to extract the rest of the material parameters.

(OP2) For p given minimize

F(P,Mat) =
NOP2∑
j=1

[[
σlj − σlψj

]2
+
[
σcl − σcψj

]2]
.

(3.12)

where Mat=[k1 k2 α] subject to α ≤ 0.5.
The experimental and fitted curves are presented in Fig. 3.9 and 3.10 for

the proximal and distal place respectively. In Table 3.8 and 3.9 we resume the
material parameters for such fittings. Values of C10 are allowed to change with
respect to those obtained previously for a better fitting result.
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Specimen C10[kPa] k1 [kPa] k2 [-] α [-] ε
I 39.753 1.366 1.292 0.454 0.111
II 14.489 21.899 6.143 0.063 0.032
III 13.330 18.876 1.388 0.263 0.044
IV 10.407 15.984 0.926 0.149 0.069
V 22.393 34.284 6.369 0.000 0.075
VI 13.414 22.822 1.395 0.144 0.057
VII 15.760 7.609 0.909 0.138 0.023
VIII 16.045 5.162 1.219 0.434 0.032
IX 19.223 35.516 2.965 0.000 0.046
X 10.357 17.887 0.945 0.469 0.106
XI 23.596 28.765 3.241 0.499 0.061
XII 17.834 15.689 1.366 0.205 0.031
XIII 24.190 8.860 0.932 0.071 0.021
mean 17.199 19.560 2.424 0.241 0.059

stnd.Dev 4.304 4.249 1.496 0.471 0.234

Table 3.8: Results of the OP2 for proximal pig carotid specimens.

Specimen C10 [kPa] k1 [kPa] k2 [-] α [-] ε
I 15.77 35.28 5.32 4.70E-002 1.30E-002
II 17.66 42.15 8.81 3.13E-003 1.19E-002
III 9.04 28.58 2.21 8.90E-002 3.20E-002
IV 18.91 219.37 9.18 1.90E-004 1.38E-002
V 24.41 82.27 5.23 5.40E-003 1.51E-002
VI 16.53 84.04 2.96 1.52E-003 1.40E-002
VII 13.33 14.96 2.69 5.65E-002 2.59E-002
VIII 20.16 12.01 2.74 5.06E-003 4.18E-002
IX 15.48 90.62 2.88 5.27E-004 2.59E-002
X 14.93 34.65 2.23 2.73E-002 1.71E-002
XI 13.14 12.03 2.49 4.03E-002 0.0648916
XII 14.45 20.05 1.50 2.40E-001 4.36E-002
XIII 22.60 54.33 2.74 1.15E-002 2.06E-002
mean 15.46 52.17 3.64 3.77E-002 2.43E-002

stnd. Dev 4.55 53.09 2.41 6.37E-002 0.00E+000

Table 3.9: results of the OP2 for distal pig carotid specimens.

In Table 3.10 we show a comparative of the material parameters obtained
with the model fitted in Garcia et al. (2011) and the fitting proposed here. Our
results shows lower errors and lower standard deviations. The elastin-related pa-
rameters are comparable although our results show lower deviation between distal
and proximal locations. k1, a collagen-related parameter presents a very similar
tendency. In terms of the k2, the parameter that establish the exponential-type
behavior of the collagen, our results produce very similar values between distal
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and proximal location while values from Garcia et al. (2011) differ in one order
of magnitude. The collagen distribution differs from one model to the other in
magnitude but also keeps a similar tendency. Our results indicate, by means of
the parameter α, that collagen fibers are very aligned with the circumferential
direction (and low degree of cross-links) for the distal samples while this degree of
links goes up to 25 for the proximal positions. Garcia et al. (2011) showed angles
of the fibers orientation of 75 and 80 which represent a relatively low variability
between distal and proximal samples.

Specimen C10[kPa] k1 [kPa] k2 [-] α [-] ε [-]
mean Prox 17.19 19.56 2.42 0.24 0.05
stnd.Dev 4.30 4.24 1.49 0.47 0.23

mean Distal 15.46 52.17 3.64 0.03 0.02
stnd. Dev 4.55 53.09 2.41 0.06 0.00
Specimen C10[kPa] k1 [kPa] k2 [-] θ[o] ρ [-] ε [-]
mean Prox 13.6 12.4 2.78 84.4 0.54 0.07
stnd. Dev 3.94 8.11 2.03 11.83 0.23 0.02

mean Distal 9.54 46.61 44.34 79.93 0.81 0.09
stnd. Dev 2.01 52.62 3.17 13.78 0.09 0.03

Table 3.10: Comparison of the fitting results presented in Garcia et al. (2011)
and the fitting proposed in previous sections.

3.3.2 Results in human carotid

Although data in Sommer and Holzapfel (2012) are extensive, its actual repro-
duction in that work, in order to be able to use their data, is quite reduced. We
fit our model with the experimental data avaible in that work. Moreover, they
showed plots of P − λθ and P − λz while the other main control variable of the
test it is not showed, so a proper inflation fitting procedure is not possible. We
have to restrict ourself to P −λθ, so we obtain the material parameters by means
of the procedures

(OP1) For p given minimize

F(p, C10) =

NOP1∑
j=1

[[
pj − pψj

]2]
,

(3.13)
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Specimen C10 [kPa] k1 kPa k2 [-] α ε
CCA media 4.31 2.19 4.15 0.13 0.05
CCA adv 0.04 7.32 66.81 0.41 0.05
ICA media 11.01 2.14 20.72 0.13 0.01
ICA adv 0.04 15.97 51.01 0.41 0.04

Table 3.11: Material parameters of the OP2 procedure for human carotid speci-
mens in Sommer and Holzapfel (2012).

where pj represents the pressure at the sample point j and

(OP2) For p given minimize

F(P,Mat) =
NOP2∑
j=1

[[
pj − pψj

]2]
.

(3.14)

where Mat=[k1 k2 α] subject to α ≤ 0.5.

In Fig. 3.11 we show the fitting results which shows a good agreement with
experimental response. Table 3.11 shows the numerical values of the fitting prob-
lem. The Neo-Hook part give higher values for the media layer since it is known
that elastin is mainly in the media layer. Values related with the anisotropic
part (k1 and k2) are much higher in the adventitia layer since collagen is the
main component in the adventitia while the percentage of collagen in the media
is lower. The higher value of the α parameter in the adventitia layer reflects a
more random organization of the fibers in that layer. From these results we can
also observe that the behavior of the tissue in a low strain regime is stiffer in the
ICA than in the CCA.

3.4 Patient specific human carotid artery model-

ing

In order to apply all the above models and the ones that are coming in the
following sections in clinical interest situations, we have built a geometrical model
of a patient specific carotid artery (Fig. 3.12). The geometry obtained in Alastrue
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(a) Results of inflation test in the media layer
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(b) Results of inflation test in the adventitia
layer of the CCA.
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(c) Results of inflation test in the media layer
of the ICA.
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(d) Results of inflation test in the adventitia
layer of the ICA.

Figure 3.11: Experimental data presented by Sommer and Holzapfel (2012) and
fitted curves using the model presented in Eq. 3.10.
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et al. (2010a) using computed tomography (CT). This model is used in following
chapters to apply the evolution models of hypertensive disease as density and
volumetric growth in a real human carotid geometry.

3.4.1 Geometrical reconstruction

As the modern imaging techniques such as computed tomography (CT), mag-
netic resonance imaging (MRI), or positron emission tomography (PET), among
others, provide a huge amount of customized information about the geometrical
description of the tissues and organs, their use in medical diagnosis has increased
in the last years. The combination of these medical imaging acquisition tech-
niques with advanced numerical methods has allowed developing personalized
models for preoperative planning, virtual surgery, or implant-design. However,
prior to the development of a numerical model, it is necessary to deal with the
medical imaging data in order to extract the useful information. Image segmen-
tation, generation of the computational mesh, and the extraction of particular
material information (i.e. fibre directions) are the required steps prior to per-
forming a numerical simulation. The objective of image segmentation is to find
and to identify objects with certain characteristics from the rest of the image.
Data segmentation will allow to visualize and to extract the part of the volume of
interest. As this task is actually a standard process and in many cases the image
acquisition equipments provide this semi-automatic software no further details
are discussed in this section.

3.4.2 Finite Element Model

The reconstructed carotid geometry was obtained from CT image (Alastrue et al.,
2010a) to simulate it in a finite element framework. In this context we first dis-
cretize the model in a finite element mesh (Fig. 3.13). The resulting mesh
contains 128008 standard bricks with linear interpolation, resulting in a total of
434,484 degrees of freedom. The meshing process results in a very homogeneous
undistorted elements. As CT data do not fill us in with information about the
internal composition and structure of the arterial wall, so we make use of the
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Figure 3.12: Reconstruction of the carotid artery from human carotid CT image
(Alastrue et al., 2010a).

experimental data in Sommer et al. (2010) to describe the thickness for the dif-
ferent layers of the arterial wall. They provide thickness values of the media
and adventitia layer in the CCA and ICA. We apply a linear transition of the
thickness over the arterial wall from the CCA and the ICA. Therefore, the finite
element mesh has two different and important groups. The first group consists
of 5 elements in radial direction and a total of 104,005 elements, representing the
media layer of the carotid artery. The other group, representing the adventitia
layer, contains three element in thickness and a total of 62.403 elements. Fig.
3.13 shows some details of the final finite element mesh.
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(a) Complete mesh of the CA. (b) Detail of the bifurcation in the CA.

(c) Detail of the lumen in the CA. (d) Detail of the front side of the CA.

Figure 3.13: Finite element mesh of a human carotid artery.

Unlike usually in computational model of blood vessels, besides the linear
variable distribution of the thickness, we adopt a variable distribution of the
mechanical parameters. In a very same fashion, we linearly interpolate the values
of the mechanical properties obtained in Table 3.11 at both parts of the artery
to describe in a more realistic way the mechanical properties along the artery
length. The results of the three mechanical constants are plotted in Fig. 3.14.

An important issue in this kind of finite element models is the imposition
of boundary conditions reproducing the actual in-situ conditions of the vessel.
These arteries, and carotid artery in particular, are surrounded by connective
tissue, therefore we have included a set of spring elements all over the surface of
the carotid model to simulate then and avoid solid rigid motions. These springs
block rigid solid motion but allow deformation of the arterial wall. The mechani-
cal properties of these springs have been chosen so that this condition is fulfilled.
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Figure 3.14: Spatial distribution of the mechanical material parameters along the
carotid artery.

The differences of the element face have to be also taken into account to avoid
mesh-related issues.

To close-up the mechanical and structural description of the model at hand,
we left to describe the structural organization of the constituents. As we discuss
before, we assume an isotropic distribution of the elastin component. The colla-
gen and SMC follow the same organization and they are preferentially oriented
in circumferential direction. The differences in collagen distribution between the
media and adventitia layer are considered by means of the cross-link-related pa-
rameter α but the preferential direction stays circumferential. Fig.3.15 shows
details of the fiber distribution in some representative places. The orientation of
the fibers is gathered by means of the principal stresses directions of the carotid
modeled with an isotropic model, under internal pressure and the displacement
of the external face constrained (Alastrue et al., 2010a). Maximal principal stress
appears in the circumferential direction from where we can get the unitary vec-
tors n which can be associated with the orientation of the fibers. This slice is
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used in the following for fitting and visualization purposes.

Figure 3.15: Some details of the fiber distribution defined along the carotid artery.

3.4.3 Results in carotid artery

In this section we present the finite element results of the carotid artery geometry
shown in the previous section at different slices (Fig. 3.16). In Fig. 3.17 we shown
the maximum principal stresses for the whole artery and the three slices of the
CCA, ICA and external carotid artery (ECA) for the normotensive at 13.3 [kPa]
and Fig. 3.18 does for the hypertensive sate at 16 [kPa]. As we can see, due to
the mechanical properties of the carotid, stresses in the ICA and ECA are higher
than those in the CCA. We can also appreciate the increase of stress due to the
overpressure in hypertensive case and the transition of the media and adventitia
layer.
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Figure 3.16: Representative slice of the CCA, ICA and ECA from the carotid
model.

In Fig. 3.17 and 3.18 we show results in the homeostatic and hypertensive
cases respectively and for the whole artery and in different longitudinal cuts.
Besides the stresses difference in the CCA and ICA and ECA is also appreciable
similar stress concentration in a ring just before the bifurcation and a ring at the
bifurcation part of the ICA.

To close up the results section we present in Fig. 3.19 the maximum principal
stretch at normotensive and hypertensive conditions and the ratio between hy-
pertensive and normotensive. This variable will be the mechanical stimulus that
will trigger different adaptation processes developed in the following chapters.

3.5 Conclusions

The study of arterial tissue from its structural organization and its mechanical
behavior have been widely researched over the last decades. The most important
features of the material structure from a load bearing point of view are that they
are made up of collagen, elastin, SMC and water, that collagen and SMCs are
distributed mainly in a preferential circumferential direction and that collagen
has highly non-linear behavior. Based on these observations, researches have
investigated different phenomenological models to capture the behavior of arterial
tissue (see e.g. Fung et al. (1979); Demiray et al. (1988); Holzapfel et al. (2000),
among others). Usually, elastin is modeled as a Neo-Hookean material while
collagen has been object of further investigation, where it is common the use of
exponential-type expressions, given the uniaxial response of collagen fibers.

Although these phenomenological models reproduce very nicely some type of
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Figure 3.17: Maximum principal stress at different cuts in the whole CA for the
homeostatic loads.
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Figure 3.18: Maximum principal stress at different cuts in the whole CA for the
hypertensive loads.
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Figure 3.19: Maximum principal stretch at homeostatic and hypertensive and
ratio at hypertensive and homeostatic state from left to right.

tissues or arteries others do not fit so well. In other situations, although they fit,
the fitted parameters do not have a physical meaning or they do not match with
some experimental observations. This is usually because of the lack of a particular
feature of the tissue in the model or because of the ill-possess of the fitting
problem. The aims in constitutive modeling of soft tissue should go towards
the micro-structural characterization of its components, both its organization
and its mechanical behavior. In any case, there are much efford to be done in
the modeling of soft tissue, e.g., from more micro-structural oriented models to
a multiscale model, which for some reason there have not been introduced in
mechanics of soft tissue.

In this chapter we have looked into several structural data of the arterial wall
and the mechanical behavior of the elastin (Lillie et al., 1998; Koenders et al.,
2009) and the collagen fibers (van der Rijt et al., 2006; Yang, 2008), which are
known to be the most important constituents in terms of mechanical behavior. In
this direction, we have modified a well known and widely used SEDF to describe
some features that this previous model did not include. For example, Garcia
(2012) and O’Connell et al. (2008) showed that some arteries have a preferentially
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circumferential direction. Based on this previous model, the experimental finding
could not be fitted, in our opinion, because they do not consider small amount
of collagen fibrils that link the main fibers, conferring a non negligible stiffness
in the transversal direction of the fibers. To this end, we have introduced a
cross-linked-related parameter. We have also looked into the particular behavior
of elastin and collagen fibers in order to reduce the variability of the results in the
fitting problem. We have been able to overcome the limitations that we found
with previous models and our results in different carotid arteries were improved
with respect to previous models.

Our final goal in this work was to apply this mechanical model, and others
that we will show in the following chapters, to real patient specific carotid arteries
to be able to simulate it computationally in a finite element framework. We ob-
tained a geometrical model from CT images of a human carotid artery. We also
obtained a circumferential distribution of the fibers over the arterial thickness
which correlated well with experimental data (Garcia et al., 2011; Garcia, 2012;
O’Connell et al., 2008). Latter, we gather information in literature to create a
variable distribution of the mechanical properties along the carotid artery. Our
results showed a good agreement with experimental findings of uniaxial and infla-
tion tests. In terms of other FE simulations, our results showed similar (Alastrue
et al., 2010a) or slightly lower stress values than other models (Delfino et al.,
1997). Usually the external face of the artery is a free face which does not reflect
the physiological conditions of the artery, surrounded by other connective tissue.
The direct inclusion of this tissue or spring elements in the external face, as in
our case, describe the physiology of the arterial tissue, in our opinion, in a more
realistic way.

There are also important limitations in the current model. Firstly, we did
not consider the pre-stress of the arterial wall and, although we show that it can
be recovered by means of constitutive models that do not include implicitly the
pre-stress, it can not be omitted if an accurate model of arterial tissue wants
to be performed. Pre-stress have been extensively studied in analytical models
(Holzapfel et al., 2000; Rachev and Greenwald, 2003) and simple FE models
(Alastrué et al., 2007) but an approach for general geometries is more singular
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task. There are also a lack of pre-stress models where the background meaning
of these phenomena is described (what do create it, how is the mechanism?)
since there used to be purely phenomenological models. This is, by far, the most
important limitation of our model. They would be also interesting to consider
the myogenic tone of SMC (Zulliger et al., 2004; Murtada et al., 2010; Stalhand
et al., 2011) since this active force can modify completely the stress field over the
arterial wall.

In summary, we have extended previous SEDF by means of a cross-link-related
parameter that allow to gather mechanical features that previous models did not.
With this approach we have been able to fit a set of mechanical tests of carotid
arteries that produced better results than with previous models. This informa-
tion, together with a geometrical reconstruction of a human carotid artery, leads
to a finite element model of this geometry, with variable properties over the ar-
terial length and a micro-structural description of the wall components based on
experimental data.



4
Computational modeling of

hypertension-induced anisotropic growth.

A computational model for smooth muscle growth due to changes of blood pres-
sure is presented in this work. It is well known that geometry and properties of
blood vessels adapt in response to alterations in blood pressure, for example in
hypertension. This work is focused on the underlying volumetric growth which
is mainly attributed to the smooth muscle cells. Smooth muscles cells adapt to
new mechanical environments by means of an active response acutely, i.e., in a
short scale of time, and increase their volume chronically, i.e., in long-term to
deactivate contraction. This methodology uses a decoupled form of the deforma-
tion gradient, introducing a growth tensor, which characterizes smooth muscle
growth. Based on clinical observations, we define a growth tensor for the smooth
muscle cells driven by the strain that these cells undergo. The resulting changes
are also computed to illustrate their temporal evolution. Our model is solved
computationally by means of the finite element method, where the growth is
solved implicitly using a local Newton-Raphson scheme. We solve an ideal cylin-
drical slice of a vessel to demonstrate the chracteristic features of the presented
model to, finally, solve a human carotid geometry to investigate the effects of
hypertension in the growth of the arterial wall.

103
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4.1 Introduction

Hypertension is characterized through a substantial elevation of blood pressure
which initiate the adaptation of vascular tissue. The first change, on a short-
term scale, is the adaptation of SMC contractile forces discussed above, which
can reduce the lumen diameter compensating extra stresses for a short-term. In
addition, we can observe two long-term adaptation processes. The first long-term
change is related to the secretion of collagen in the extracellular matrix. The sec-
ond one consists of the increase of the number and volume of SMC in order to
reestablish the homeostatic tone. This phenomenon manifests itself experimen-
tally in an increasing thickness of the vessel wall. In this chapter we will focus
on the growth of SMC in hypertension.

SMC seems to be, by themselves, liable for a sustained contraction, known
as myogenic tone (Brayden and Nelson, 1992; Schubert and Mulvany, 1999),
which is directly related to the intracellular calcium concentration and to the ion
channels of the cell (Davis and Hill, 1999). This force attempts to compensate
the over-stress in the wall in order to maintain the same vessel diameter. See,
e.g., Osol (1995); Haga et al. (2007) for a review of the molecular and biochemical
aspects of SMC.

SMCs grow via hypertrophy, hyperplasia or both (Owens et al., 1981; Owens,
1989), to restore the homeostatic stress state and this micro-structural change
leads to the well-documented thickening of the vessel wall (Fig. 4.1). These
changes are more pronounced in small or resistance vessels (Folkow et al., 1958;
Mulvany and Aalkjaer, 1990). There are multitude of experimental findings re-
lated with hypertension thickening of the arterial wall, many of them related to
drugs performance, genetic expression of multitude of substances and some of
them deal with the plain case of thickening. Some of these studies look at essen-
tial hypertension while other asses hypertension by means of hypoxic states or
ligands of some particular arteries.

Wiener et al. (1977) studied aortic arteries of rats obtaining a decrease of the
lumen diameter of ∼9% while the thickness went from 182.5µm in normotensive
state to 215.5µm in hypertension (↑ 18%). Owens et al. (1981) reported an
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(a) Schematic process of growth.

(b) Media thickening in a pulmoary artery of hypoxic rat.

Figure 4.1: (a) represents a sketch of the SMCs growth via hypertrophy and (b)
a pulmonary artery of a hypertensive rat (Jeffery and Wanstall, 2001).
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increase of 35% in SMC size due to hyperplasia also in aortic artery of rat. The
same authors (Owens and Schwartz, 1983) showed an increase of 39.67% and
a 21.16% in SMC mass in different type of rats. Schofield et al. (2002) looked
at the evolution of small human arteries and found out that internal diameter
went down from 140µm to 118µm, while thickness underwent a high 46.39%.
Note that small arteries have a more important contractile response and such a
decrease could be caused by that phenomena. In fact these authors were also
interested on study the miogenic response during that procedure. Tian et al.
(2011) worked on right and main pulmonary arteries for calfs and rats. While
Mean pulmonary Artery (MPA) showed the same tendency (increase of internal
radios and thickness of 1.02% - 1.22% and 1.17% - 1.53% respectively) however
for the Right Pulmonary Artery (RPA) the animals showed a different behavior.
The internal diameter of the artery calf keeps equal while the rat increase a 1.71%
and the thickness of calf decrease a 52.1% and the rat increases a 1.25%.

Boutouyrie et al. (1999) reported a rise of the internal diameter in human
carotids from 5.25 mm to 5.66 mm and an increase in thickness from 0.487 to
0.572 mm (↑ 27.27%). However the same work showed a decrease in the lumen
diameter from 2.33 to 2.32 mm in the radial artery and an increase of 21.98%

in the thickness. Fridez et al. (2002) worked on the influence of hypertension in
carotid arteries of rats. They showed that internal radius increase in hypertensive
rats but it did it at lower rate than the control group. The thicnkness rise from 142
µm to 225 µm (↑ 58.4%) although it represented just a 30% increase with respect
to control group. They also saw that thickness of outer lammelar units grow
more than inner units do. Eberth et al. (2010) also studied the morphological
changes in carotid of rats. They reported an increase in the internal radius from
531µm to 592µm while the thickness increase from 23.1 µm to 85.7 µm after 56
weeks.

These results show how the data differ, not only between species and arteries
but also from the same artery of the same species. Variation from specimen to
specimen, different degree of SMC activation, genetic disorders not considered,
ages, life styles and many more, can be a cause of this variability. To point out
a last example, Feihl et al. (2008) collected data from different authors studying
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Figure 4.2: Data collected in Feihl et al. (2008) showing the variability of the
diameter (D), ration media thickness to internal diameter (M/D) and cross-
sectional area (CSA). Bars indicate control group (C), essential hypertension
(EH), essential hypertension and diabetes (EH+D) and renovascular hyperten-
sion (RVH).

small subcutaneous human arteries (see table below and paper for references)
showing this variability of the results although keeping always the same tendency.

The computational study of growth has gained increasing attention in the
theoretical and computational mechanics community, see, e.g, the reviews in
Taber (1995); Humphrey (2009); Ambrosi et al. (2011). Mechanical treatment
of growth has been dealt with in different ways. Usually, growing biological
tissues are considered as open systems. Their different configurational setting
and their numerical treatment in a finite element method (FEM) framework is
discussed in Kuhl and Steinmann (2003). Typically, two fundamentally different
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forms of growth can be distinguished: volumetric growth and density growth.
The first one allows for changes in volume while keeping the density constant
whereas the second one maintains a constant volume while the density is allowed
to change, see e.g. the works of Himpel et al. (2005) in the context of isotropic
growth and Menzel (2004, 2007) for anisotropic growth. The works of Skalak
et al. (1982) and Rodriguez et al. (1994) pioneered the underlying kinematic
description of volumetric growth. An alternative approach towards growth is the
one presented by Humphrey and Rajagopal (2002, 2003) based on the constrained
mixture theory, where several constituents of a tissue are allowed to growth in a
independent way. In this context other works have been presented (Gleason and
Humphrey, 2004, 2005; Klisch et al., 2005) and extended to reactive mixtures
(Ateshian, 2007). Other interesting approaches are reported by Imatani and
Maugin (2002); Goriely and Amar (2007); Ganghoffer (2010). It is also worth
noting the early work of Fung and Liu (1989), which demonstrates that the
growth of blood vessels induces a change in the natural configuration of the
tissue, associated with the notion of a stress free configuration.

The goal of this work is to present a computational model of volumetric growth
for SMC based on the anisotropic structure of the tissue. We will adapt well-
established consistent numerical procedures. The SMC are the main constituents,
which are responsible for volumetric changes of blood vessels. We focus on SMC
growth due to hypertension disease and the thickening of the arterial wall due to
that growth. First, we will state the general mechanical background of soft tissue
and growth mechanics that it is used in this work. Later, based on experimental
data, we will compute a simple case of hypertension from where we will be able
to obtain the material parameters of our model. We compute the growth of the
SMC driven by the stretch of the SMC in the over pressure state. The growth
will be calculated implicitly be means of a Newton-Raphson scheme. Finally, we
will present a real human carotid geometry where our model will be applied.
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4.2 Kinematics of finite growth

Within the framework of finite growth, the key kinematic assumption is the
multiplicative decomposition of the deformation gradient F into an elastic part
F e and a growth part F g (Rodriguez et al., 1994),

F = F e · F g with F = ∇Xϕ, (4.1)

adapting a concept first proposed in the context of finite elasto-plasticity (Lee,
1969). During this Chapter, we consider the growth part of the deformation
gradient to be, at least, function of a growth tensor ϑ. From now on we consider
this variable as a scalar quantity, ϑ. The Jacobians of the deformation gradient
and its elastic and growth counterparts will be denoted as J = det(F ), Je =

det(Fe), and Jg = det(Fg), respectively, such that J = Je Jg. We can then
introduce the right Cauchy Green tensor C, and, in complete analogy, the elastic
right Cauchy Green tensor Ce.

C = F t · F Ce = F t
e · F e = F−t

g ·C · F−1
g . (4.2)

Recall that the pull back of the spatial velocity gradient to the intermediate
configuration

F−1
e · l · F e = Le +Lg (4.3)

results in its additive decomposition into the elastic velocity gradient Le and the
growth velocity gradient Lg

Le = F−1
e · Ḟ e = Ḟ e · F−1

e and Lg = Ḟ g · F−1
g , (4.4)

such that the rate of deformation tensor of the intermediate configuration can
be expressed as dg = lsymg with lg = F e · Lg · F−1

e . Figure 4.3 illustrates the
kinematics of finite growth, the deformation tensors C and Ce, and the mappings
F = F e · F g and F−t = F−t

e · F−t
g between tangent spaces TB, TBg and TB0

in the material configuration, the intermediate configuration, and the spatial
configuration.
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Figure 4.3: Kinematics of growth. Composition of a elastic deformation gradient
F e and a growth tensor F g.

Remark 13 (Growth of arterial tissue) For the particular problem of growth
in arterial tissue, we adopt the formulation proposed by Himpel et al. (2005) and
Goektepe et al. (2010). To account for experimental observations of SMC growth
(Owens et al., 1981; Owens and Schwartz, 1983; Owens, 1989), we define the
growth tensor as

Fg = I+ [ϑ− 1 ]nr ⊗ nr

where ϑ is the scalar-valued growth multiplier that defines the level of growth and
nr characterizes the radial direction (Rausch et al., 2011). This particular format
of the growth tensor characterizes smooth muscle cell thickening in the radial di-
rection nr while the ellipsoidal muscle cells maintain the same length, see Figure
4.4. Acutely, SMC maintain their original length by contracting. Chronically
SMC grow in the radial direction to reduce elevated wall stresses Some experi-
ments indicate that SMC may also contract in the axial direction, to decrease the
lumen diameter. However, for simplicity, here we assume that the axial dimen-
sion remains constant.
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(a) Nuclei and actin staining of a
SMC (Thakar et al., 2009)

(b) Sketch representation of a SMC.

Figure 4.4: Representation of a SMC based on experimental data from (Thakar
et al., 2009).
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4.3 Hyperelastic model of growth

We consider a hyperelastic framework for soft tissue, motivated by their highly
nonlinear behavior and the finite strains they are subjected to in-vivo. Given
a Helmmholtz strain energy density function (SEDF) in its material description
Ψ(C,Fg), and based on the dissipation inequality from classical thermodynamics
we can write, neglecting heat sources and thermal effects given the constant
temperature in living organs,

−Ψ̇ = −∂CΨ : Ċ− ∂FgΨ : Ḟg, (4.5)

S = 2∂CΨ = 2∂Ce
Ψ : ∂CCe = F−1

g · 2∂Ce
ΨFtg = F−1

g · Se · F−t
g . (4.6)

To obtain the tangent moduli, essential for a consistent finite element implemen-
tation, we evaluate the total derivative of the S with respect to C.

C = 2dCS = 2∂CS
∣∣
Fg

+ 2∂CS
∣∣
F
= 2∂CS

∣∣
Fg

+ 2
[
∂Fg

S : ∂ϑFg
]
⊗ ∂Cϑ

∣∣
F

(4.7)

The first term reads the classical tangent modulus and which is no more that
a pull-back of the Ce with Fg. We will call Ce the elastic tangent modulus
in the intermediate configuration, Ĉe the same tensor in the initial, stress-free
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configuration and ce the elastic modulus in the actual configuration.

Ĉe = F−1
g · F−1

g · 2∂2Ce
Ψ · F−t

g · F−t
g = F−1

g · F−1
g · Ce · F−t

g · F−t
g . (4.8)

The second sum term is related with the linearization of the stresses for the
growth model. ∂ϑFg and ∂Fϑ are specific of the Fg chosen and is provided in
following sections. Finally, ∂FgS reads

∂Fg
S = −

[
F−1
g ⊗S+ S⊗F−1

g

]
−
[
F−1
g ⊗F−1

g

]
:
Ĉ
e

2
:
[
F−t
g ⊗Ce +Ce⊗F−t

g

]
(4.9)

with ({•}⊗̄{◦})ijkl = {•}ik{•}jl and ({•}⊗{◦})ijkl = {•}il{•}jk.

Last, we need to define the evolution of the growth multiplier ϑ. We adopt
the assumption of stress-driven growth described in Goektepe et al. (2010) ϑ̇ =

κ(ϑ)φ(Ξ) where Ξ represents a given stimuli. κ(ϑ) is a function ensuring that
the tissue does not grow over a threshold limit and φ(Ξ) represents the growth
criteria. In the next two sections, we discuss two different approaches to the
description of the growth evolution. The first one is a Mandel-based driven
evolution and the second one is based on a strain measure.

4.3.1 Numerical implementation

For the numerical implementation of the growth evolution law, we adopt an
implicit Euler backward scheme

ϑ̇ = [ϑn+1 − ϑn]/∆t (4.10)

We introduce the discrete residual

R = ϑn+1 − ϑn − κ(ϑ)φ(Ξ)∆t. (4.11)
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To solve the non-linear equation we expand the residual form up to the first order
term. This allows us to solve the problem within a Newton iterative scheme as

R(ϑ)n + ∂ϑR(ϑ)n
∣∣
ϑn [ϑ− ϑn] = 0. (4.12)

The tangent of the residual form reads then

K = dϑR = 1− [κ∂ϑφ+ ϑ∂ϑκ]∆t, (4.13)

and the local update of the growth variable can be updated as ϑn−R/K → ϑn+1

to evaluate the growth parameter determined by the current stress state and
the loading history. Table 4.1 shows the algorithm used to compute the growth
model.

It remains to establish the function κ(ϑ) and the growth criteria φ(Ξ). In the
following we use

κ(ϑ) =
1

τ

[
ϑmax − ϑ
ϑmax − 1

]γ
∂ϑκ(ϑ) = −

γ

ϑmax − ϑ
κ(ϑ), (4.17)

ϑmax sets the threshold value of growth. τ and γ represent parameters that
control the speed and the non-linearity of the growth respectively. The particular
expression for φ(Ξ) is established in the next two sections.

4.3.2 Stress-type anisotropic growth

Last, we need to define the evolution of the growth multiplier ϑ. We adopt
the assumption of stress-driven growth described in Goektepe et al. (2010) ϑ̇ =

κ(ϑ)φ(Me) with
φ(Me) = tr(Me)−Mcrit

e . (4.18)

Note that Me = Ce ·Se and Mcrit
e represent the growth criteria value above which

growth occurs. The derivative of the growth criteria with respect to the growth
variable reads

∂ϑφ = −∂ϑCe : Se +Ce : ∂ϑS
e, with (4.19)
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Input:Ft+1, ϑt

1. Compute different kinematic variables: Ct+1,Ft+1
e = Ft+1 · Ftg and consi-

tutive variables St+1,St+1
e .

2. Check state of tissues IF (λSMC > λcrit) THEN
Apply local newton iteration
ELSE
GO TO 4

3. Local newton iteration WHILE R > Tol DO

R = ϑn+1 − ϑn − κ(ϑ)φ(Ξ)∆t, (4.14)

K = 1− [κ∂ϑφ+ ϑ∂ϑκ]∆t, (4.15)

ϑn+1 ← ϑn −K−1 · R. (4.16)

4. Compute Cauchy stresses σt+1.

5. Compute tangent operator related to the Jaumann rate that ABAQUS uses

as
∇

ct+1 = [ct+1 + 1/2[δτ t+1 + τ t+1δ + δτ t+1 + τ t+1δ]]/J .

Output:σt+1,
∇
c , ϑn+1

Table 4.1: Algorithm for an implicit Euler scheme of volumetric growth
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∂ϑCe = −F−t
g · ∂ϑFtg ·Ce −Ce · ∂ϑFg · F−1

g and ∂ϑSe =
1

2
Ce : ∂ϑCe. (4.20)

Finally, to completely define Eq. 4.7, the derivative of the growth variable with
respect to the Cauchy-Green strain tensor lead to

∂Cϑ = ∂Ceϑ : ∂CCe =
kg∆t

K

[
1

2
Ce : Ce + Se

]
. (4.21)

4.3.3 Strain-driven anisotropic growth

And the evolution of the growth multiplier ϑ for the strain-driven growth based
on the description given in Goektepe et al. (2010) as

φ(λ) = λ− λcrit and
∂φ

∂ϑ
= −λ/λ2g. (4.22)

Note that λSMC can be expressed as λ = Fe : [nz⊗nz], this is the elastic stretches
in the longitudinal direction of the SMC.

It remains to state the sensitivities of the scaling function κ, the growth law
φ, and the SMC stress with respect to the growth multiplier.

4.4 A growth model problem in hypertension

In this section we present some results of the two approaches described above
and we discuss about its applicability to modeling volumetric growth in arterial
tissue due to hypertensive conditions.

4.4.1 Preliminary results

The aim of this first subsection is making a first approach to the volumetric
growth in the arterial wall to analyze some growth features, e.g. what driven
quantity is more suitable for hypertension-induced growth. The procedure is as
follow:

• Apply internal pressure up to normotensive state, this is an internal pressure
of 13.3 kPa. At this point, the critic stretch or stress values are calculated
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and saved to trigger the growth evolution.

• Apply elevated pressure to simulate a hypertensive pressure at 16.0 kPa.

• Allow the tissue to growth to compensate the extra deformation of the
SMC.

First, we apply this methodology to an idealized artery slice, made up of media
and adventitia layer. Mechanical parameters are taken from the values of the
CCA which were described in chapter 3. The growth parameters were chosen as
ϑmax = 2, γ = 2 and τ = 1.
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In Fig. 4.5(a-b) we picture the maximum strain field in the slice of the CCA
for the normotensive and hypertensive load state. In Fig. 4.5(f-g) we show the
evolution the growth variable at two different time steps for the two driven cases
while 4.5(h-i) shows the maximum principal stress. Result are quite different. In
the Mandel case the volumetric growth goes outward to inwards and in a very
marked way. As we discuss in previous section, mechanical properties of the ad-
ventitia layer are much stiffer than properties of the media layer, these higher
stresses in the adventitia layer makes the material of this layer to growth much
faster. Moreover, given the higher rate of growth in adventitia, the expansion of
the material in the perpendicular direction toward the center of the slice makes
the internal material, corresponding to the media layer, to decrease its circumfer-
ential direction. In this simulation we have adopted a growth model that applies
all over the thickness. Himpel et al. (2005); Rodriguez et al. (2007) also relied on
computational models that do not consider the separation of the media and ad-
ventitia layers. Our results show that taking into account different layers, growth
occurs in the adventitia layer when imposing a Mandel-driven stimulus. Exper-
imental findings, as we discuss in the introduction, show that thickening occurs
meanly in the media layer due to the hypertrophy and hyperplasia of the SMC,
which are located in the media layer.

In the case of the strain driven problem (Fig. 4.5(f-g)), the growth shows a
more uniform distribution over the thickness. Since the circumferential stretch
is more uniform than the stress distribution growth occurs in a more spread
way with higher growth in the outer than in the inner layer. There is an open
debate about what is the actual quantity that better describes different processes
in cells, as differentiation, migration, etc., and in this direction the choice of a
strain or stress based approach to describe the actual volumetric growth due to
hypertension is also not clear.

From these results we can conclude that mechanical stimuli for growth in
arterial tissue is an important issue. In the particular case of growth in arteries
is also known that growth occurs basically in the media layer since there is where
the SMC are placed. In order to better describe the actual behavior of the arterial
wall we focus on a model where growth is allowed to occur only in the media layer.
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Moreover, we consider that stretch of the SMC is the mechanical variable that
stimulates the SMC to trigger the growing process.

4.4.2 Growth in a human carotid artery

Based on the aspects discussed before, this sections deals with the particulariza-
tion of the strain-based approach to volumetric growth in the previous section
to the case of a human carotid artery. The mechanical stimulus that triggers
the growth process is the stretch of the SMC. SMCs are attached to the ECM
and it is reasonable to assume an affine deformation of the ECM and SMC, so
λcol ≈ λSMC with λSMC as λSMC = Fe : [nz ⊗ nz]. The growth criterion can be
then expressed as

φ(λSMC) = λSMC − λcrit (4.23)

and the rest of the model as discussed in Section 4.3.3. And as we pointed out
growth is considered to take place only in the media layer, where the SMC are
located.

To illustrate the features of the proposed approach, we analize the finite
element-based growth model to characterize some experimental findings (Fridez
et al., 2002). We study first the growing process in the carotid slice showed in Fig.
4.6 corresponding to a section of the CCA. Mechanical properties and boundary
conditions are the same as in Chapter 3.

Fig. 4.7 shows the growth in the CCA slice at different times giving a final
growth ratio close to an increase of 50%. Fig. 4.8 shows the evolution of individual
SMC presenting an increase of the radial direction while keeping longitudinal
constant. In Fig. 4.9 we present the evolution of the growth rate over 100 days,
for the experimental results in Fridez et al. (2002) and the numerical results of
our model. Results show a very similar tendency in the growing process. Our
results overrate the growth rate during the first days while slightly underrate at
long time. We also present in Fig. 4.10(a) the evolution of the growth rate at
four different points of the medial layer, from outwards (see Fig. 4.6). Results
slightly shows a higher growth rate in the outer layer of the media layer.
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Figure 4.6: Slice of the CCA presented in chapter 3.

(b) Growth of the
CCA slice at t=1 days

(c) Growth of the CCA
slice at t=33 days

(d) Growth of the
CCA slice at t=66
days

(e) Growth of the CCA
slice at t=100 days

Figure 4.7: Growth evolution in CCA section at different time steps. (b-e) shows
the evolution of the the CCA carotid section at four time steps.

(a) Step t=1 days (b) Step t=33 days (c) Step t=66 days (d) Step t=100 days

Figure 4.8: Evolution of the SMC in the middle section of the media layer at
different time steps.
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Figure 4.9: Comparison of the evolution of growth for experimental findings
(Fridez et al., 2002) and numerical study.
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(b) Evolution of stress in radial direction.

Figure 4.10: Growth variable and stress evolution.



122 Computational modeling of hypertension-induced anisotropic growth.

The evolution of the maximum principal stress over the entire process is shown
in Fig. 4.10(b) for the four different points. Stress evolution in the media layer
decrease due to the effect of the SMC growth. SMC growth, myogenic tone and
others physiological processes have as goal to reduce the increase of stress due
to the over pressure and go back to values close to those in the normotensive
situation. The effect of the growth part of the deformation gradient of the model
makes the elastic stress to decrease to compensate the deformation induce by the
growth. However, stresses in the adventitia layer undergo a high increase. This
fact is due to the expansion that the growth of the SMC exerts over the adven-
titia layer, having in mind that small deformation gradients induce high stress
variation due to the highly nonlinear exponential type shape of the constitutive
model of this layer.

To close up this Chapter we show the results in the carotid geometry of the
model presented in this Section. Fig. 4.11 shows the growth at the end of the
simulation for different longitudinal and transversal cuts. Results show a very
homogeneous growth over the media as we already discussed above. Slightly
lower values can be seen at the inner layer and higher at the bifurcation.

Moreover, we present the growth evolution as well as the stress in the media
and adventitia in the three slices that we highlighted in chapter 3.

In Fig. 4.12, 4.13 and 4.14 we show the evolution of growth and maximal
principal stresses at four different time steps. Evolution of growth and stress
describe a very similar trend between the three parts of the carotid artery. The
growth evolution follows a very similar behavior in the three slices, as we saw
in the previous figure. This is in agreement with the smooth difference in the
stretches between the normotensive and the hypertensive states. Adventitia layer
undergoes a 20% increase in the stress level while the stresses in the media layer
decrease in a 25%, 13% and a 7% in the CCA, ECA and ICA respectively.



A growth model problem in hypertension 123

Figure 4.11: Growth for the carotid geometry at t= 100 days for different longi-
tudinal and transversal cuts
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(a) Homeostatic state (b) Hypertensive state

(d) Time t=5 days (e) Time t=15 days (f) Time t=40 days (g) Time t=100 days

(h) Time t=5 days (i) Time t=15 days (j) Time t=40 days (k) Time t=100 days

(l) Time t=5 days (m) Time t=15 days (n) Time t=40 days (o) Time t=100 days

Figure 4.12: Evolution of the growth (d-g) and maximal principal stresses in the
adventitia (h-k) media (l-o)layer at different times steps in the slice of the CCA.
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(a) Homeostatic state (b) Hypertensive state

(d) Time t=5 days (e) Time t=15 days (f) Time t=40 days (g) Time t=100 days

(h) Time t=5 days (i) Time t=15 days (j) Time t=40 days (k) Time t=100 days

(l) Time t=5 days (m) Time t=15 days (n) Time t=40 days (o) Time t=100 days

Figure 4.13: Evolution of the growth (d-g) and maximal principal stresses in the
adventitia (h-k) media (l-o)layer at different times steps in the slice of the ICA.
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(a) Homeostatic state (b) Hypertensive state

(d) Time t=5 days (e) Time t=15 days (f) Time t=40 days (g) Time t=100 days

(h) Time t=5 days (i) Time t=15 days (j) Time t=40 days (k) Time t=100 days

(l) Time t=5 days (m) Time t=15 days (n) Time t=40 days (o) Time t=100 days

Figure 4.14: Evolution of the growth (d-g) and maximal principal stresses in the
adventitia (h-k) media (l-o)layer at different times steps in the slice of the ECA
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4.5 Conclusions

The study of remodeling and growth of biological tissue have been an exten-
sive research field over the last decades (Ambrosi et al., 2011). Researchers deal
with different kinematics formulations, approaches to balance equations, define
appropiate evolution equations and identification of suitable stimuli to drive the
growth process. In this Chapter we have focused on a classical kinematics de-
composition of the deformation gradient (Lee, 1969; Rodriguez et al., 1994) into
an elastic and a growth part. Moreover, this formulation was consistently lin-
ealized and it was embedded into a finite element framework. Our model looks
into the volumetric growth process of the arterial tissue. This growth, or arterial
thickening, is due to the hypertrophy of the SMC. We studied how the growth of
a micro-structural component, the SMCs, undergo a macroscopically thickening
of the arterial wall. Our approach establishes that stretch of the SMC is the
stimulus that triggers the SMC growth. We also consider that SMC thicken only
along its radial direction.

Our results show a good agreement in terms of thickening and growth rates
in comparison with experimental findings. We also showed the FE simulation
of a real patient-specific carotid geometry. Our numerical results showed a very
homogeneous growth over the medial layer all over the carotid length and only
small portions of the carotid bifurcation showed slight variations. Our simulations
also raise an interesting aspect of the stress distribution. Stresses in the media
layer decrease due to the effect of the SMC cell. This is a classical assumption in
adaptation of biological tissue, it reacts to compensate the over stimuli and goes
back to a physiological situation. Cells are responsible for this sensing task and
SMCs, in particular, are for sensing strains in the arterial wall. However, stresses
in the adventitia layer rise up in a 20-30% (note the highly non-linear behavior
pointed out in chapter 3). SMC growth in the media layer induces strains in the
adventitia and these, in turn, make the stresses to increase. These results also
meet the well accepted idea that the adventitia layer acts as a protection layer.

There are also not few limitations. Our model is based on purely passive un-
derlying elasticity. SMC have a very important active component, the myogenic
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tone, which makes the arterial wall to contract or expand to maintain a similar
lumen radio. The arterial model could improved by the inclusion of this feature,
althought, up to date, only a few computational models of myogenic tone are
available in literature. The growth stimuli could be better characterized based
on this basal tone. Note, however, that the myogenic tone is a response to the
over stretch of the SMC, which are the stimuli that we are considering and results
should not differ markedly from our present results. It is also important to note
that the evolution equation for growth pre-imposes both the growth level and its
rate. Rate-related parameters can be experimentally fitted to describe specific ar-
teries and specimens. This leads other two important limitations. Experimental
results are usually studied at normotensive and at the final stage of hypertension,
which do not allow to fit rate-dependent parameters. Although some of them do,
none of them make and extensive study of different spots of an artery, which
neither allow to stablish more accurate growth models. Moreover, experimental
results are amazingly different from arteries, specimens and even some arteries
of the same species. There are, therefore, drawbacks in the experimental part of
the study that turn to induce limitations of the computational model.

In summary, we have adopted a well established computational model for vol-
umetric growth and we have adapted it to describe the thickening of a human
carotid artery. Our model takes a generic approach of growth and bases the actual
thickening of the arterial wall on the microstructural growth of the SMC. This
and the consideration of variables related to the micro-structure, nicely establish
a multiscale view of the problem. In this way we can simulate arterial thickening
of any kind of artery in hypertension. This thickening is a very common compli-
cation in hypertensive patients because it leads to a decrease in the blood flow
and other related complications. Computational models like the one presented
here can, and do, help to understand the underlying mechano-chemical processes
and to provide a frame work for biologists and clinicians to develop drugs and
devices to prevent and deal with this kind of complications.



5
Computational model of collagen

density-growth.

The goal of this chapter is the study of the turnover of collagen content in arte-
rial tissue in hypertensive patients. This process can be divided in three different
stages. The flowchart begins studying the SMC synthesis of different biological
substances. As we described in chapter 3, SMC are located mainly in the me-
dia layer. The trigger stimulus of this mass production is assumed to be the
over-stretching of the SMC due to the increase of pressure reported in hyper-
tensive patients. The next step is the mass-transport simulation through the
arterial wall up to the adventitia layer of the substances previously released into
the extracelullar matrix. The third, and last step, is to compute the turnover of
collagen based on the amount of substances in the arterial wall, which interact
each other and also trigger other cells, like fibroblast, to modify the turnover rate
of collagen. The overall change in the collagen density can be attributed to the
perturbation of the deposition/degradation rate of collagen in the ECM.

129
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5.1 Mass production of biological substances

5.1.1 Introduction

In this section we study the mass production of different substances of interest
within the context of collagen turnover in arterial tissue. Classical close-systems
in continuum mechanics keep mass changes constant; however, this is not the
case of biological tissues. For this reason we consider the thermodynamic theory
of open systems in this work. This assumes a non-vanishing term, called source
term R, that fulfill mass balance equation. Next we will discuss some particular
substances and processes of interest in hypertensive disease.

In terms of collagen deposition, which is our final goal, fibrogenic cytokine
proteins such as the transforming growth factor TGF-β are the most important
regulators of collagen synthesis (see e.g. Border and Noble (1994); Wrana et al.
(1994)) by vascular fibroblasts (Burke and Ross, 1979; Roberts et al., 1986).
TGF-β is a protein that influences cellular functions as proliferation or differ-
entiation and plays a key role in numerous cardiovascular diseases (Massague
et al., 2000) and cancer (Massague, 2008). The activation pathway (Massague,
2000) of the TGF-β family, which is part of a superfamily of proteins, is still
not completely understood. They also play a prominent role in SMC prolifera-
tion (Owens, 1995; Raines, 2004). Butt et al. (1995) reported that SMC release
TGF-β growth factor associated with an increase of procollagen deposition and
a decrease of collagen degradation. They also showed that both SMC and en-
dothelial cells are the source of platelet-derived growth factor PDGF, another
important growth factor. The molecular structure of TGF-β is shown in Fig.
5.1(a), presenting a 25 [kDa] molecular weight and an equivalent external radius
of around 3.8 · 10−9[m].

In terms of degradation, Metalloproteinases Enzymes (MMP) (Nagase and
Woessner, 1999) and Tissue Inhibitors of Metalloproteinase (TIMP) (Wojtow-
iczPraga et al., 1997), and in particular their aspect ratio MMP/TIMP (Visse and
Nagase, 2003), might be the most important metric to quantify the evolution of
collagen degradation (Galis and Khatri, 2002). MMP (Galis et al., 1994), in addi-
tion to other regulatory mechanisms such as differentiation and apoptosis of cells,
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are responsible for extracellular matrix degradation in general, and for collagen
degradation in particular. TIMPs are a type of inhibitor of metalloproteinase. In
hypertension, TIMP have been reported to increase, decreasing the total MMP,
which, in turn, decreases the rate of collagen degradation. O’Callaghan and
Williams (2000) have shown that the amount of collagen turnover increases with
the magnitude of the strain imposed to SMC in in-vitro experiments. They also
reported the production of MMP-2, a gelatinase-degrading enzyme and TGF-β
(see also Sarzani et al. (1989); Hamet et al. (1991)), which could be stimulated by
cyclic stretching. It acts as an important regulator of ECM production, mainly
by inhibition of MMP-1 and by increasing the activity of MMP-2. The molecular
structure of MMP-1 and TIMP-1 is shown in Fig. 5.1(b) and (c), presenting
a 52 [kDa] and 28 [kDa] molecular weight and an equivalent external radius of
around 4 · 10−9[m] and 7 · 10−9[m] respectively. MMP-1 is known as one of the
most important collagenase and will be the form used here as well as its inhibitor
TIMP-1.

(a) TGF − β molecule (b) MMP-1 molecule (c) TIMP-1 molecule

Figure 5.1: Molecule representation (PDBe, 2013).

5.1.2 Model

In this section a model for synthesis and degradation of TGF-β, MMP and TIMP
is presented. We allow the material density to evolve in time according to the
balance of mass for open system thermodynamics, and adopt a source term,
R, similar to the one described by Harrigan and Hamilton (1992); Kuhl and
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Steinmann (2003), as

ρ̇ = R with R =

[
ρ

ρ∗

]−m
λ− λ∗, (5.1)

where the exponent m typically vary between two and three, λ∗ is the stretch of
the homeostatic equilibrium state and λ = [r ·C · r]1/2 the stretch of a fiber with
orientation r. ρ is the density of the substance at hand, ρ∗ is the initial density
and ρ̇ the material time derivative of ρ.

Depending on the stretch of the SMC λsmc, which we understand to be the
main driving force for these processes, the substance density will increase or
decrease. In particular, we hypothesize that an increase in the stretch will increase
growth factors such as TGF-β, responsible for collagen deposition.

RTGF−β = ρ̇TGF−β = γTGF−β

[ρTGF−β

ρ∗TGF−β

]−mTGF−β

λsmc − λ∗TGF−β

 (5.2)

Both deposition and degradation can occur at the intracellular (collagen molecules)
or extracellular (tropocollagen) levels. There have been several in-vitro and in-
vivo experiments studying these processes in detail, as we discussed in the in-
troduction. There is a strong agreement that the TGF − β plays a fundamen-
tal role in the turnover of collagen. This implies that TGF-β will be upregu-
lated, RTGF−β > 0, for blood pressures above a characteristic threshold level,[
ρTGF−β/ρ

∗
TGF−β

]−mTGF−β

λsmc > λ∗TGF−β , downregulated, RTGF−β < 0, for

blood pressures below,
[
ρTGF−β/ρ

∗
TGF−β

]−mTGF−β

λsmc < λ∗TGF−β , and other-
wise remain constant, RTGF−β = 0. We further hypothesize that an increase in
blood pressure will increase tissue inhibitors of metalloproteinase, TIMP, causing
a decrease in metalloproteinase, responsible for collagen degradation. The mass
production of TIMP is also expressed as

RTIMP = ρ̇TIMP = γTIMP

[[
ρTIMP

ρ∗TIMP

]−mTIMP

λsmc − λ∗TIMP

]
(5.3)
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This implies that TIMP will be upregulated, RTIMP > 0, for blood pressures
above a characteristic threshold, [ρTIMP/ρ

∗
TIMP]

−mTIMP λsmc > λ∗TIMP, down-
regulated RTIMP < 0, for blood pressures below, [ρTIMP/ρ

∗
TIMP]

−mTIMP λsmc >

λ∗TIMP, and otherwise remain constant, RTIMP = 0. Basically, we consider the
changes of TGF-β and TIMP as the primary variables, assuming that the up- and
downregulation of TGF-β and TIMP is driven by the local SMC state. The mate-
rial parameters mTGF−β ,mTIMP ∈ R+ govern the evolution of TGF-β and TIMP
respectively, while γTGF−β , γTIMP ∈ R+ set the sensibility of these substances to
changes of the SMC stretch.

Finally, we define the source term of the MMP, which directly change the
rate of absorption of collagen. For the sake of simplicity, we hypothesize that it
directly correlated to the source term of TIMP as

RMMP = γMMPRTIMP (5.4)

where γMMP ∈ R− defines the sensitivity of MMP to changes in TIMP.

5.1.3 Computational treatment

To solve the non-linear differential equations of collagen deposition and absorp-
tion ( Eqs. 5.2 and 5.3) we adopt a standard Euler backward scheme,

ρ̇0 = [ ρj+1
0 − ρj0 ]/∆t (5.5)

for given initial conditions ρ0|t0=0 = ρ∗0. The temporal discretization is given
by dividing the time interval T into s discrete subintervals, T =

⋃s−1
j=0[t

j , tj+1],
with a time increment ∆t = tj+1− tj ≥ 0. We transform the evolution equations
Eqns. 5.2 and 5.3 for TGF-β and TIMP into their residual formats,

RTGF−β = ρj+1
TGF−β − ρjTGF−β − RTGF−β ∆t = 0

RTIMP = ρj+1
TIMP − ρjTIMP − RTIMP ∆t = 0.

(5.6)

We solve these equations by applying a local Newton-Raphson iteration, based
on a Taylor expansion at ρkTGF−β and ρkTIMP up to terms of first order, see e.g
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Kuhl et al. (2003a); Kuhl and Steinmann (2003) for more details. To this end,
we calculate the derivative of the residuals with respect to the current TGF-β
and TIMP concentrations.

∂RTGF−β

∂ρTGF−β

∣∣∣∣−1

ρkTGF−β

= 1−
∂ρ̇kTGF−β

∂ρkTGF−β
∆t = 1 +

mTGF−β

ρkTGF−β

[
ρkTGF−β

ρ∗TGF−β

]−mTGF−β

λsmc ∆t

∂RTIMP

∂ρTIMP

∣∣∣∣−1

ρkTIMP

= 1− ∂ρ̇kTIMP

∂ρkTIMP
∆t = 1 +

mTIMP

ρkTIMP

[
ρkTIMP
ρ∗TIMP

]−mTIMP

λsmc ∆t

(5.7)
We can then calculate the discrete changes in the TGF-β and TIMP concentra-
tions,

∆ρTGF−β = − ∂RTGF-β

∂ρTGF−β

∣∣∣∣−1

ρkTGF−β

RTGF−β(ρ
k
TGF−β)

∆ρTIMP = − ∂RTIMP

∂ρTIMP

∣∣∣∣−1

ρkTIMP

RTIMP(ρ
k
TIMP)

(5.8)

and update the current concentration values.

ρk+1
TGF-β = ρkTGF-β + ∆ρTGF−β

ρk+1
TIMP = ρkTIMP + ∆ρTIMP

(5.9)

Once the local Newton iteration is converged, we can calculate the MMP concen-
tration

ρj+1
MMP = γMMP ρ

j+1
TIMP (5.10)

Table 5.1 summarizes the algorithm to compute the update of the local col-
lagen content.

5.1.4 Sensitivity anaylisis

In Fig. 5.2 we present a sensitivity analysis of the material parameters involved in
the evolution of the TGF−β content for baseline values of m = 1, ρ∗TGF−β = 1.0,
γTGF−β = 1.0 and λ∗TGF−β = 1.1. We impose a λSMC = 1.2 in this case. We
study the problem for s = 100 discrete time steps of ∆t = 1. We illustrate in
Fig. 5.2(a) the sensitivity of the TGF−β concentration when we vary the γTGF-β
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Table 5.1: Algorithm to compute the local main substances content using an
implicit Euler backward scheme.

Input: Fj+1, internal variables at time j

I Evaluate kinematics Cj+1 and constitutive equations λj+1

II Check state of SMC
IF (λj+1

smc 6= λ∗) THEN GO TO III
ELSE GO TO IV

III Local Newton iteration. WHILE RρTGF−β
> tol or RρTIMP > tol

Calculate local TGF-β and TIMP residuals

RTGF−β = − ρj+1
TGF−β + ρjTGF−β + RTGF−β ∆t = 0

RTIMP = − ρj+1
TIMP + ρjTIMP + RTIMP ∆t = 0

Calculate local TGF-β and TIMP tangents

KTGF−β = 1 +
mTGF−β

ρkTGF−β

[
ρkTGF−β

ρ∗TGF−β

]−mTGF−β

λsmc ∆t

KTIMP = 1 +
mTIMP

ρkTIMP

[
ρkTIMP
ρ∗TIMP

]−mTIMP

λsmc ∆t

Update TGF-β and TIMP concentrations

ρj+1
TGF−β ← ρj+1

TGF−β − RρTGF−β
/ KρTGF−β

ρj+1
TIMP ← ρj+1

TIMP − RρTIMP / KρTIMP

IV Update MMP concentration

ρj+1
MMP = γMMP ρ

j+1
TIMP

Output: ρt+1
TGF−β , ρ

t+1
TIMP and ρt+1

MMP

parameter, variations of the exponent mTGF-β in Fig.5.2(b), ρ∗TGF-β in Fig 5.2(c),
and for different saturation values λ∗TGF-β in Fig 5.2(d).
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Figure 5.2: Sensitivity of TGF − β content, ρTGF−β , with respect to sensitiv-
ity parameter γTGF−β , evolution exponent mTGF−β , initial value ρ∗TGF−β , and
saturation value λ∗TGF-β .

5.1.5 Material fitting in hypertension-induced collagen de-
position and absorption

As discussed in the introductory section, the turnover of collagen in disease con-
ditions can be related to changes in the rates of deposition and absorption of
MMP and TGF-β. However, the net result of collagen production and removal
highly depends on the type of tissue and on the level of hypertension as well
as the cell response. In this section we fit our model with experiments (see
Laviades et al. (1998)), who investigated alterations in collagen type I, matrix
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Figure 5.3: Evolution of TGF-β, TIMP, and MMP concentrations involved in
progressive collagen turnover.

metalloproteinase, and inhibitors of matrix metalloproteinase. This experimen-
tal study found an increase of 178.9%, from 641±31 ng/mL to 1147±55, in total
TIMP-1 and a decrease in total MMP-1 density of 18.07%, from 56±2 ng/mL
to 47±1 ng/mL. The authors point out that both TGF-β and collagen content
are upregulated in hypertensive patients. Motivated by normal baseline TGF-β
concentration of 35ng/mL (Schaan et al., 2007), and its 4.2-fold increase in hy-
pertensive patients (Porreca et al., 1997), we can compute increase in collagen
due to the upregulation of TGF-β.

Table 5.2: Collagen turnover model. Material parameters for hypertensive case
study.

material parameter value units
ρ∗TGF−β 0.035 [µg/mL]
ρ∗TIMP 0.0459 [µg/mL]
ρ∗MMP 0.0353 [µg/mL]
mTGF−β 0.007 [ – ]
mTIMP 0.016 [ – ]
γTGF−β 40 [ – ]
γTIMP 80 [ – ]

In Fig. 5.3, we summarize the evolution of the (a) TGF-β, b) TIMP and
(c) MMP contents in response to hypertension. Results were achieved with the
material paramters presented in Table 5.2. Values of λSMC and λ∗SMC were col-
lected from averaged values of the SMC stretches of homeostatic and hypertensive
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states, as it was discussed in chapter 3. Results show a good agreement with the
numerical values obtained from experiments for a time frame of 4 years. We do
not have, however, information of how these substance evolve over time.

5.1.6 Results in carotid artery

In this section we present the results of the mass production in the real carotid
artery (see chapter 3) based on the model and material parameters presented
above. The results are shown in two longitudinal cuts. In Figs. 5.4 and 5.5 we
show the evolution of the TGF-β production in the media layer for different times
and both cuts. Figs. 5.6, 5.7, and, 5.8 and 5.9 present the evolution of TIMP-1
and MMP-1 respectively. The results correlate well with the range of values
presented in the experimental findings reported in Section 5.1.5. Distribution
of the the mass production of each substance match with the field of increase
of stretches showed in the previous chapter. Mass production is higher at the
beginning of the carotid bifurcation while the section of the CCA before the
bifurcation present lower rates of production. The rest of the carotid shows very
similar production rate values due to the uniform stretch field.

In Fig. 5.10 we present the evolution of every substances in six points of
interest of the carotid artery. They also follow a saturation-like behavior as the
one shown in the analytic results of the previous section. Values of these points,
as in the whole artery, stay in among the values that we showed in the previous
section and the mass production in the carotid artery do not show any important
variation of any of the substances.

5.2 Diffusion through the vessel wall

5.2.1 Introduction

Mass transport phenomena, as the movement of particles or molecules, have
been studied for a long time. The pioneers works of Fick (1855) about diffusion
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(a) t=0

(b) t=2

(c) t=5

(d) t=19

Figure 5.4: Evolution of the mass production of TGF-β due to SMC activity in
different depth cuts.
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(a) t=0 (b) t=2 (c) t=5 (d) t=19

Figure 5.5: Evolution of the mass production of TGF-β due to SMC activity in
different transversal cuts.
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(a) t=0

(b) t=2

(c) t=5

(d) t=19

Figure 5.6: Evolution of the mass production of TIMP due to SMC activity in
different depth cuts.
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(a) t=0 (b) t=2 (c) t=5 (d) t=19

Figure 5.7: Evolution of the mass production of TIMP due to SMC activity in
different transversal cuts.
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(a) t=0

(b) t=2

(c) t=5

(d) t=19

(e) t=0

Figure 5.8: Evolution of the mass production of MMP due to SMC activity in
different depth cuts.
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(a) t=0 (b) t=2 (c) t=5 (d) t=19 (e) t=0

Figure 5.9: Evolution of the mass production of MMP due to SMC activity in
different transversal cuts.
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(a) Featured points in the media layer.
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Figure 5.10: Evolution of the mass production of (a) TGF, (b) MMP and (c)
TIMP at six featured points due to SMC activity.

phenomena (see, e.g. Philibert (2006) for a review), about Brownian movement
by Einstein (1905) as well as the works of related atomistic and macroscopic
transport by Maxwell (1871) and Huang (1987) have boosted a great amount of
works and efforts in the study of mass transport.

In the field of biology and biomechanics mass transport toward and within
the arterial wall is a fundamental process to understand not only different vascu-
lar diseases but also the normal evolution of arteries. Mass transport in arterial
tissue of different kind of molecules occurs due to concentrations and pressure
gradients across the thickness by the well known diffusion and convective phe-
nomena (Tarbell, 2003a). Low-density proteins (LDL) are probably the most
studied molecular transport since they are the main initiator of atheroesclerotic
plaque (Lusis, 2000) and many works have showed up during the last years, see
e.g. Curmi et al. (1990); Glagov et al. (1988); Cancel et al. (2007) and Kim and
Tarbell (1994); Huang and Tarbell (1997); Tada and Tarbell (2002) for exper-
imental and numerical works respectively. There are however other important
molecules involved in hypertension that gain less attention but also play an im-
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portant role in the collagen turnover. As we discussed in the introduction, we
are looking at three substances: TGF-β, TIMP and MMP. In the next section we
study how these three molecules move through the arterial wall based on their
specific features.

5.2.2 Preliminary study of transport phenomena

Diffusion and convection of molecules is an important issue to be considered in
mass transport within the arterial wall. In order to discern if these two phenom-
ena are important in mass transport within the arterial wall is usual to calculate
the Peclet number (Pe) (Eq. 5.11). For Pe >> 1 convection have to be studied
while for Pe << 1 diffusion dominates the problem.

Pe =
vl
D
, (5.11)

where v [m/s] is the fluid velocity through the thickness, l [m] is the thickness
and D [m2/s] the diffusion coefficient.

Diffusion coefficients are related to the molecular size and the size of the
porous media where the molecule goes through. For a free media the diffu-
sion coefficient, for the three substances considered in this work, is given by the
Stokes-Einstein Equation (Einstein, 1905) as

D∞[m2/s] =
kBT

6πµa
=


1.9227 · 10−12 TGF-β, a = 3.8 · 10−9m
3.8455 · 10−12 TIMP, a = 7 · 10−9m
2.1974 · 10−12 MMP, a = 4 · 10−9m,

(5.12)

where kB = 1.38·10−23[J/K] is the Boltzmann constant, T = 293[K] the absolute
temperature which remain constant, µ = 4 · 10−3[N.s/m2] is the viscosity of the
fluid and a is the particle radius obtained by superposing an sphere that contains
the particle (see Fig. 5.1).

Diffusivity in a fiber-matrix media was derived by Ogston et al. (1973) and
used later on by Kim and Tarbell (1994), among others. The effective diffusion
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coefficient can be expressed as

Dm[m2/s] = D∞exp
[
−[(1− ε)0.5(1 + a/rf )]

]
=


8.081 · 10−13 for TGF-β
1.613 · 10−12 for TIMP
9.229 · 10−13 for MMP,

(5.13)
where rf is the fiber radius which has an average value of 1µm and ε = 1 − Vf
the void fraction and Vf the fiber volume fraction, which, based on data given
by Huang and Tarbell (1997) and O’Connell et al. (2008), is approximately equal
to 25%. Moreover, the contribution of the presence of SMC can be recovered
(Huang and Tarbell, 1997) by

Deff [m
2/s] =

1

1− εSMC

1

f(εSMC)
D =


4.444 · 10−13 for TGF-β
8.887 · 10−13 for TIMP
5.075 · 10−13 for MMP,

(5.14)

where fεSMC
= 2.3899 given a SMC volume fraction of εSMC = 0.45% (Huang

and Tarbell, 1997).

Going back to Eq. 5.11 we can obtain the Pecklet number for this problem as

Pe =
vl

Deff
≈ 102, (5.15)

where v take a mean value of 0.05 [µm/s] (Levick, 1987; Wang and Tarbell, 1995),
l 1-0.6 [mm] thickness and the effective diffusive parameters given in Eq. 5.14,
gives a Peclet number in the order of hundreds, which points out the necessity of
taking into account the convective phenomena.

The coefficient related to the convective term, the lag coefficient of solute
in the interstitial phase with fiber matrix, was showed by Curry (1984) to be
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expressed as

Kcf [−] = 2− Φ =


1.006 for TGF-β
1.011 for TIMP
1.006 for MMP,

(5.16)

where Φ is the partition coefficient defined by Ogston et al. (1973) as

Φ[−] = exp
[
−[(1− ε)(2a/rf + a2/r2f )]

]
=


0.994 for TGF-β
0.989 for TIMP
0.994 for MMP.

(5.17)

As we did in previous coefficient, we need to weight the lag coefficient to include
the SMC cell contribution as

Kcfeff
[−] = 1

1− εSMC
Kcf =


1.348 for TGF-β
1.341 for TIMP
1.348 for MMP.

(5.18)

5.2.3 Convection-Diffusion problem in the arterial wall

Considering changes in mass as its basic characteristic, see e.g. the monographs
by Welty et al. (2008) and Deen (2011), the balance of mass (Eq. 5.19) has to
fulfill that the flux of mass and the mass source be in equilibrium with the change
of material density

Dtρ0 = DivJ+R0 in Ω, t ∈ (0, T ), (5.19)

where ρ0 is the material density, J the mass flux and R0 the source of mass. The
domain of interest, as previously introduced, will be denoted by Ω.

As it was demonstrated in the previous Section, the mass transport in arterial
tissue is a diffusion-convection problem. To recover these issues the flux term is
given by

J = −D∇ρ0 − ρ0Dtu, (5.20)
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where the first term represents the diffusive contribution and is driven by den-
sity gradients. The second term represents the convective contribution and it is
assumed to be controlled by pressure gradients with u the displacement vector.
We can obtain the velocity through the solid by means of Darcy’s law (Eq. 5.21).
Note therefore, that Navier-Stokes equations are not used and velocity is not ob-
tained independently but based on pressure gradients. Some authors (Tada and
Tarbell, 2002) have also used Brinkman equation (Brinkman, 1947) for model the
transmural flow.

∇p = −µ/KpDtu, (5.21)

where p is the pressure and µ the viscosity of the fluid.

The parameter need to study the convection related term in blood vessels,
according to the fiber-matrix theory, is the hydraulic permeability Kp which can
be calculated with the Kozeny-Carman equation as discussed by Curry (1984).

Kp[m] =
r2f ε

2

4ck(1− ε)2
= 1.389e− 13, (5.22)

where ck is the Kozeny constant with a value equal to 5 (Huang and Tarbell,
1997). And again the permeability have to be recalculated to take into account
SCM distribution. In a similar way

Kpeff
[m] = Kp

1− εSMC − 0.3058εSMC

1− εSMC + 0.3058εSMC
= 7.9721e− 14. (5.23)

5.2.4 Computational aspects

The partial differential equation presented in Eq. 5.19 is managed numerically to
be solved within a Finite Element scheme. The basic procedure is here described
for sake of clarity. The problem is solved in ABAQUS with standard elements and
formulation therefore it does not give any new insight on the issue. By evaluating
Eq. 5.19 in the domain Ω0 and applying Divergence Theorem we get

ˆ
Ω0

Dtρ0dV =

ˆ
δΩ0

J · ndV +

ˆ
Ω0

R0dV. (5.24)
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layer
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Figure 5.11: Sketch of the layers and boundary conditions in the mass transport
problem.

The boundary of the problem (Eq. 5.25) δΩ0 is conditioned by Dirichlet boundary
conditions over δΩd0 and Neumann boundary conditions over δΩn0 .

ρ0 = ρ∗0 on δΩd0,

J · n = R on δΩn0 .

(5.25)

In particular we consider the following set of boundary conditions in the
boundary problem in Fig. 5.11

J · n = 0 on δΩnendo (5.26)

Jlayer+ · nlayer+ = Jlayer− · nlayer− on δΩnlayer (5.27)

Jext · next = 0 on δΩdext. (5.28)

5.2.5 Finite element results

In this section we present the results of the mass transport from the media layer
through the arterial wall. The results are presented in two longitudinal cuts
and only for the adventitia layer, for sake of clarity. Note that fibroblast are
located mainly in the adventitia layer and they are responsible for the synthesis
of collagen molecules. Therefore, we focus on the substances turnover only in
the adventitia layer. In Figs. 5.12 and 5.13 we show the evolution of the TGF-β
content in the adventitia layer for different times and both cuts. Figs. 5.14,
5.15, 5.16 and 5.17 do for the evolution of TIMP-1 and MMP-1 respectively. The
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results are simulated with the material parameters shown in Section 5.2.2. The
concentration field of the three substances shows similar qualitative results since
its trigger stimulus is the same, the stretch difference between the homeostatic
and the hypertensive states. Qualitative results show that substances in the
adventitia layer maintain a similar, although slightly below the concentration in
the media layer, where these substances are synthesized. A higher mass transfer
rate appears for the TIMP given the higher diffusion coefficient. We also show
in Fig. 5.18 the mass evolution of the three substances at the six feature points
highlighted in that figure.

5.3 Collagen remodeling

5.3.1 Introduction

As we introduced in a previous sections collagen is a fundamental component of
many biological tissue and arteries in particular. There is a bunch of in-vitro
and in-vivo experiments that show the influence of the mechanical load (Sumpio
et al., 1988; Gupta and Grande-Allen, 2006) with vascular cells and the TGF-β
turnover (Bishop et al., 1998; Butt and Bishop, 1997; O’Callaghan and Williams,
2000; Strauss and Rabinovitch, 2000) and with hypertensive patients (Diez and
Laviades, 1997; Laviades et al., 1998). In this section we present a model for the
production of collagen by fibroblast, which we directly relate with the amount
of TGF-β. The collagen degradation is based on the amount of MMP in the
tissue. Both deposition and degradation can occur at the intracellular (colla-
gen molecules) or extracellular (tropocollagen) levels. There have been several
in-vitro and in-vivo experiments studying these processes in detail.

5.3.2 Mass Source Model

With the relevant collagen turnover sources terms defined, we can establish the
evolution of the collagen fibers density,

Rcol = ρ̇col = γdepRTGF−β + γabsRMMP, (5.29)
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(a) t=0

(b) t=2

(c) t=5

(d) t=19

Figure 5.12: Evolution of the TGF-β content in the adventitia layer due to mass
transport in the carotid wall in different depth cuts.
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(a) t=0 (b) t=2 (c) t=5 (d) t=19

Figure 5.13: Evolution of the TGF-β content in the adventitia layer due to mass
transport in the carotid wall in different transversal cuts.
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(a) t=0

(b) t=2

(c) t=5

(d) t=19

Figure 5.14: Evolution of the TIMP content in the adventitia layer due to mass
transport in the carotid wall in different depth cuts.
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(a) t=0 (b) t=2 (c) t=5 (d) t=19

Figure 5.15: Evolution of the TIMP content in the adventitia layer due to mass
transport in the carotid wall in different transversal cuts.
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(a) t=0

(b) t=2

(c) t=5

(d) t=19

Figure 5.16: Evolution of the MMP content in the adventitia layer due to mass
transport in the carotid wall in different depth cuts.
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(a) t=0 (b) t=2 (c) t=5 (d) t=19

Figure 5.17: Evolution of the MMP content in the adventitia layer due to mass
transport in the carotid wall in different transversal cuts.
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Figure 5.18: Evolution of the mass transport in the adventitia of TGF (a), MMP
(b) and TIMP (c) at six featured points due to SMC activity.

where γdep, γabs ∈ R+ denote the sensitivities of collagen deposition and ab-
sorption in response to changes in TGF-β and MMP, respectively. In summary,
our model can capture three different scenarios, an overall increase, Rcol > 0,
decrease, Rcol < 0, or maintenance of the collagen content, Rcol = 0. These
scenarios have to be constrained by the next inequalities in order to ensure right
collagen turnover.

Rcol


> 0 if λsmc > λ∗ 7→ γdep/γabs > RMMP/RTGF−β

< 0 if λsmc < λ∗ 7→ γdep/γabs < RMMP/RTGF−β

= 0 if λsmc = λ∗ 7→ γdep/γabs = RMMP/RTGF−β

(5.30)

In addition, we take into account the results by Diez et al. (1995), where the
serum concentration of procollagen peptides was examined. The authors studied
the concentration of procollagen type I carboxy terminal peptide (PIP), which
has been proposed as a marker of synthesis of collagen type I, displaying an in-
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crease of 28%. The same authors found that the carboxy-terminal telopeptide
of collagen type I (CITP), marker of extracellular collagen degradation, was in-
creased by approximately a 9% (Laviades et al., 1998).

Accordingly, we simulate the case of hypertension, to explore to which extent
our model is capable of reproducing these experimental findings. To quantify the
collagen turnover in response to an increase in TGF-β and a decrease in MMP,
as we calculated in Section 5.1.5, we compute the deposition and absorption, as
ρ̇+col = γabs ρ̇TGF−β and ρ̇−col = γdep ρ̇MMP respectively. The material parameters
are summarized in Table 5.3.

Table 5.3: Collagen turnover model. Material parameters for hypertensive case
study.

material parameter value units
ρ∗col 1 [g/mL]
γdep 90000 [ – ]
γabs 400000 [ – ]

In Fig. 5.19 we illustrate the impact of these changes on the evolution of
the overall collagen content. With the help of the studies reported in the liter-
ature, we can correlate the collagen synthesis due to the TGF-β concentration
changes as shown in Fig. 5.19(a). Fig. 5.19(b) illustrates collagen degradation
due to the decrease in MMP. Fig. 5.19(c) displays the overall turnover of col-
lagen, confirming the characteristic increase in collagen content for hypertensive
patients.

As a resume, in Table 5.4, we provide the different material parameters pre-
sented in this section for the evolution of the collagen density model.

5.3.3 Mechanical Model and implementation

In the previous sections we have exploited an analytical model, and its computa-
tional implementation, of mass production, the diffusion of the main substances
through the arterial wall, and how those phenomena cause a collagen turnover
in the wall. In this subsection we are looking at how the arterial wall change its
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Figure 5.19: Evolution of the collagen content in hypertensive patients driven by
an increase in TGF-β and a decrease in MMP.

mechanical properties due to collagen density changes. We begin recalling the
baseline SEDF described in Eq. 3.10. This latter equation was described in terms
of a constant density of the material constituents. We will modify the collagen
SEDF to reflect its turnover as

ρcol
ρ∗col

Ψcol.

The numerical implementation of the collagen mass source evolution yields
a Euler-backwards scheme as performed in previous sections. We transform the
the evolution equations Eq. 5.29 for collagen to its residual formats.

Rcol = ρj+1
col − ρjcol − Rcol ∆t = 0 (5.31)

Note that this time there are not non-linear equations involved and the updated
of the equation can be achieved based on Eq. 5.31. Subtitutying now Eq. 5.2
and Eq. 5.3 into Eq. 5.29, and based on affinity of SMC and collagen stretches
(λSMC ≡ λcol) we get

Rcol = γdep

γTGF−β

[
ρTGF−β

ρ∗TGF−β

]−mTGF−β

λcol − λ∗TGF−β

+γabs

[
γTIMP

[
ρTIMP

ρ∗TIMP

]−mTIMP

λcol − λ∗TIMP

]
(5.32)
from where we can obtain the last term of Eq. 5.31 giving
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Table 5.4: Collagen turnover model. Relevant material parameters, their physical
interpretations and units.

material parameter physiological interpretation units
ρ∗TGF−β initial density of TGF-β [µg/mL]
ρ∗TIMP initial density of TIMP [µg/mL]
ρ∗MMP initial density of MMP [µg/mL]
ρ∗col initial density of collagen [µg/mL]

mTGF−β exponent of TGF-β evolution [ – ]
mTIMP exponent of TIMP evolution [ – ]
γTGF−β sensitivity of TGF-β to SMC stretch changes [ – ]
γTIMP sensitivity of TIMP to changes in SMC stretch [ – ]
γMMP sensitivity of MMP to changes in TIMP [ – ]
γdep sensitivity of collagen deposition to changes in TGF-β [ – ]
γabs sensitivity of collagen absorption to changes in MMP [ – ]

∂ρ̇col
∂C

=
1

2λcol

γdepγTGF−β

[
ρTGF−β

ρ∗TGF−β

]−mTGF−β

+ γabsγTIMP

[
ρTIMP

ρ∗TIMP

]−mTIMP

n⊗n

(5.33)

We can now get stress tensors and its linearization with respect to deformation
for a next FE implementation. Piola-Kirchoff stress tensor reads

Scol =
ρcol
ρ∗col

∂Ψcol
∂C

, (5.34)

and the tangent operator

Ccol =
dScol
dC

=
∂Scol
∂C

∣∣∣∣
C

+
∂Scol
∂C

∣∣∣∣
ρ

. (5.35)

The first term yields the classical elastic modulus like

∂Scol
∂C

∣∣∣∣
C

=
ρcol
ρ∗col

Ccol. (5.36)

The second term is associated to the linearization of the stress tensor with respect
to changes on the collagen turnover. This term can be split up as
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∂Scol
∂C

∣∣∣∣
ρ

=
∂Scol
∂ρ

⊗ ∂ρ

∂C
, (5.37)

with
∂Scol
∂ρ

=
Scol
ρ∗col

and
∂ρ

∂C
= ∆t

∂Rcol

∂ρcol

∣∣∣∣−1

ρkcol

∂ρ̇col
∂C

, (5.38)

where Eq. 5.38(1) is obtained by derivation of Eq. 5.31 with respect to the
Cauchy-Green strain tensor and solving for ∂Cρ.

This is the procedure used to compute a consistent linearization of the prob-
lem. In our particular case, we have considered that substances are transported
by diffusion and convection phenomena. Although a fully implicit formulation is
also feasible, it turns into a much more complicated computational model, we re-
fer to Kuhl (2003) where a complete definition of open systems and its numerical
implementation is addressed. For sake of simplicity, we are considering a explicit
formulation so we will rewrite the update of the collagen mass as

ρj+1
col = ρjcol + R̂col ∆t = 0 (5.39)

where the residual is not needed anymore. The mass source is modified as

R̂col = γdepR̂TGF−β + γabsR̂MMP (5.40)

R̂TGF−β and R̂MMP are actual amount of TGF-β and MMP at every integration
point after the mass transport phenomena and we neglect the dependecy of these
variables with respect to the stretch of the SMC. Therefore, the tangent modulus
is reduced to

Ccol =
∂Scol
∂C

∣∣∣∣
C

(5.41)

5.3.4 Results

In this last section we present the results of the increment of collagen content. The
results are presented at 4 different longitudinal cuts in Fig. 5.20 and in Fig. 5.21
for the media and adventitia layer respectively. The results show the evolution
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(a) t=0 (b) t=2 (c) t=5 (d) t=19

Figure 5.20: Evolution of the collagen content in ρcol/ρ
∗
col due to fibroblast

realease and MMP degradation in the media layer.

of the collagen turnover due to the unbalance of TGF-β and MMP-1. Increase
in collagen content is higher in the media than in the adventitia layer. Note
that concentration of TGF-β and MMP-1 are lower in the adventitia after the
transport of these substances from the media layer, where they are synthetized.
Evolution in the media layer goes from an averaged value of 8-10% to maximums
of 45-50% with some peaks of 80%.

Following the TGF-β, MMP and TIMP evolution in Fig. 5.18, collagen
turnover in the six nodes of interest shows an maximum increase of collagen
in the media layer of ≈ 35%, mean increases of ≈ 15% and minimums at 3%. Re-
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(a) t=0 (b) t=2 (c) t=5 (d) t=19

Figure 5.21: Evolution of the collagen content in ρcol/ρ
∗
col due to fibroblast

realease and MMP degradation in the adventitia layer.
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(a) Collagen evolution in adventitia
layer.
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(b) Collagen evolution in media layer.

Figure 5.22: Evolution of the collagen content in the media and adventitia stress
at the six nodes depicted in Fig. 5.18.

sults in the featured points in the adventitia layer shows mean values of ≈ 10%,
with maximums at 30% and minimums around 3− 5%.

Given the Neumann boundary conditions, increases of collagen content lead
to the contraction in the lumen radio while maintain similar stress levels over the
arterial wall. This means that the consequence of the collagen turnover is the
diminishing of the lumen radio and not an increase of the stresses in the arterial
wall. The contraction values of the carotid lumen due to the increase of collagen
content are shown in Table 5.5 as well as the slices of interest. Several slices of
the carotid are investigated where the contraction level (diameters ratio after and
before collagen turnover) varies from ≈ 10− 20%.

5.4 Conclusions

Arterial tissue undergoes important changes in its mechanical properties during
the lifetime (Jani and Rajkumar, 2006) but also because of different pathologies.
In this chapter we focused on the collagen turnover that occurs in hypertensive
patients (Bishop et al., 1994; Laviades et al., 1998; McNulty et al., 2006). The
main consequence of the increase in collagen content is the stiffening of the arterial
wall.

To this end we developed a computational model to study the collagen turnover
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Slice 1 Slice 2 Slice 3 Slice 4 Slice 5 Slice 6
Initial radio [mm] 4.8177 3.8292 2.9090 2.6611 3.5053 3.1023
Initial radio [mm] 4.0444 3.2109 2.6538 2.1879 2.8946 2.6078
Contraction [%] 19.21 19.25 9.61 21.62 11.98 18.89

Table 5.5: Variation on the lumen diameters at different positions due to the
increase in collagen content .
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in hypertensive disease. We first computed a two-step simulation of a carotid
artery. The first one at physiological pressure in normotensive conditions and
the second one at hypertension. The overall microstructure, and therefore the
SMC, undergo an over-streching due to the over-pressure of hypertension condi-
tions. We consider this increase of the SMC stretch as the trigger that boosts
the synthesis of different substances. At this point, we computed the amount
of TGF-β and TIMP-1 segregated by the SMC and the subsequent unbalance
of MMP. In the next step we simulated the mass transport of these substances
from the media layer through the adventitia layer. The interaction of MMP-1
with collagen as well as the stimulation of fibroblast by TGF-β make the collagen
content to change, increasing in the case of hypertension.

During quite a long time, the turnover of the different constituents in the ar-
terial wall have been studied experimentally and by mathematical and numerical
models. Most of these models have been based in purely mechanical stimuli leav-
ing out a huge amount of biochemical processes. Other models, which do include
the synthesis and degradation of biological substances do not studied how the
mechanical properties of the tissue change. There exist some models that do all
these approaches together, but mostly analytically and in very simple geometries.
In this chapter we have performed a mechano-chemical model of the evolution
process of collagen turnover in the vessel wall during hypertension.

Our results of TGF-β, TIMP and MMP turnover correlate with experimental
reports in Laviades et al. (1998), Schaan et al. (2007) and Porreca et al. (1997),
among many others. In terms of the collagen content, our model shows increases
of ≈ 15% in the media layer and of ≈ 10% in the adventitia. Maximums were
around 35% and 25% in the media and adventitia layers respectively. These
results are comparable with the experimental findings in, e.g., Bagshaw et al.
(1987) reporting a 37% increase of collagen content or Hu et al. (2007b) showing
a 30%. Hu et al. (2008) also report increases of 15% in hypertension following
a decrease to normal values. They hypothesized that it was due to the enhance
collagen degradation by MMPs. Eberth et al. (2010) also observed the collagen
content to rise up to ≈ 20% in an extensive model of carotid remodeling in
altered pulsatility. Collagen turnover has a straight consequence in the arterial
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compliance and distensibility due to the stiffening that the collagen provides. Our
results reflect this behavior in terms of a lost of distensibility and decrease of the
lumen diameter. These stiffening has been reported by, e.g., Hayashi et al. (1980);
Hajdu and Baumbach (1994); Hu et al. (2007b,a) and Eberth et al. (2011). All
these works show the stiffening that our model predicts.

There are, however, not few limitations. First, we have left out of this study a
very important behavior of SMC, the myogentic tone. The myogenic tone makes
arteries to adapt its lumen to maintain the same mechanical state in the wall.
There are several models that study this fact and its associated active force,
which is usually triggered by a mechanical or chemical stimuli. Although the
model should differ in somehow if that feature would be included, the basic idea
should kept the same.

In terms of computational issue, the model could be also be performed in a
more elegant way. We did our simulations in a sequential way, so every results
have to be written out and read in the next simulation. A fully couple formulation
and simulation would be a more formal option. However, given the differences in
the scale of times of each process, mass transfer, transport and collagen turnover,
the splitting of each process is a reasonable approach. Another issue in the
computational treatment of the problem is the meaningless of the time-related
parameters.

There is also scope for improvement in the biochemical considerations of the
model. First, in terms of better experimental data for the mass production by
SMC for different load levels. Results on mass transport of these substances
through the arterial wall, accurate results on the response of SMCs and fibrob-
lasts to direct mechanical stimuli and the turnover of the biochemical substances
would also be very useful. As we saw in our results collagen turnover occurs at
different degrees depending what spot of the carotid we are looking at, depending
directly of places with higher stretches. However, experimental results on stiff-
ening and increase of the collagen content are usually reported in a general way,
not describing variation of these quantities at different locations.

Besides overcoming the limitations mentioned in the last paragraph, the model
can be easily extrapolated to simulate collagen turnover in other cardiovascular
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tissue as the heart (Diez and Laviades, 1997), aorta (Wolinsky, 1971), and other
biological tissues, etc.





6
Morphological changes of endothelial cells.

6.1 Introduction

It is well known that biological tissue remodels itself when driven by a given stim-
ulus, e.g. mechanical loads such as an increase in blood pressure, and changes
in the chemical environment that controls the signaling processes and the overall
evolution of the tissue. Biological remodeling can occur in any kind of biological
tissue. In particular, the study of collagen as the most important substance to
be remodeled, in all its types (preferentially Type I and III), has been given con-
siderable attention in the last few years (Driessen et al., 2003; Kuhl et al., 2005;
Driessen et al., 2008). The reorientation of this kind of structures can be assumed
to be the consequence of the reorientation of the fibrils or filaments that make
them up. This phenomenon leads to changes in the micro-structural orientation
and fiber shape (due to the reorientation of the fibrils (see e.g. Stopak and Harris
(1982); Rubbens et al. (2009); Sander et al. (2009)). Several remodeling models
have been proposed in recent years. Some of them analyze the reorientation of
unidimensional fibers driven by different stimuli such as Menzel (2007), Himpel
et al. (2008) or Karsaj et al. (2009). In Himpel et al. (2008), a complete con-
sistent linearization of the equations in an implicit finite element framework was
performed. Garikipati et al. (2006) presented an elegant energetic and stationary
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study of the remodeling problem from a thermodynamic point of view.

Another important biological structure able to remodel itself is cell cytoskele-
ton. Cytoskekleton is composed of microtubules, microfilaments and a network
of actin filaments among many other elements (see e.g the review of Mofrad and
Kamm (2006) and references therein for details). Cells move and reorient their
inner structure depending on the stiffness and strain of the substrate (Discher
et al., 2005; De et al., 2007). Cytoskeleton shape can change due to the adap-
tation of the microtubules and filaments to a specific external mechano-chemical
stimulus (Saez et al., 2005; De et al., 2008). There are several experimental
tests in the literature showing morphological changes of the cell due to mechan-
ical stimulation of the matrix where cells are located. There exists two main
procedures to induce cell morphological changes, static and cyclic loading (De
et al., 2007; De and Safran, 2008; Goli-Malekabadi et al., 2011). While static
and low-frequency loading leads to a reorientation and remodeling of the cellular
structure parallel to the stretching direction (Collinsworth et al., 2000; Bischofs
and Schwarz, 2003), high-frequency cyclic loading does in nearly perpendicular
(Hayakawa et al., 2001; Hsu et al., 2009; Faust et al., 2011). In high-frequency
stimulus, the feeling agents of external enviroment, focal adhesions, are not able
to follow such changes so no stress fibers and miosin motors are activated. How-
ever in static and low-frequency load states, focal adhesions react to such changes
by means of an active internal tension of the stress fibers leading to changes in
its morphology. These works usually present the evolution from a random dis-
tribution of the micro-structure of the cells to align with a particular direction.
These experimental results are characterized by a gradually reorientation of the
principal direction of the cell followed by a progressive remodeling of the micro-
structural element leading to a more pointed shape, see e.g. the experimental
work of Dai et al. (2004) and references therein. In Fig. 6.1 we show some results
presented by Hayakawa et al. (2001) where this behavior is seen. In many cases
this change of shape, unlike changes in orientation, are measured by a shape-index
in the biomedical community. The underlying biological processes are more in
number and complexity. Some of them, like dynamic of focal adhesions, the ten-
sion exerted by molecular motors over actin stress fibers are among the most
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-

Figure 6.1: Results presented by Hoyakawa and co-works in a cyclically stretched
cells test over 90 minutes. Looking at the cells we observe two different processes,
a reorientation of the mean direction of the cell and a morphological change of
the cells due to adaptation of the internal cell elements, such as microtubules and
stress fibers. A more pointed distribution of the cell is obtained at the end of
the experiment while the reorientation of the mean direction is gathered at the
beginning of the test.

important aspects to be considered (see e.g. Mofrad and Kamm (2006) for an
overall understanding of cell behavior). In reference to models capturing these
features not much have been done while in terms of the orientation of the prefer-
ential direction of the cell, some of the most accepted models are those presented
in De et al. (2007); De and Safran (2008) where the reorientation is assumed to
be controlled by the matrix behavior and the forces that arise from the active
regulation of the cell in a dipole-like manner. In terms of modeling changes on
the morphology of cell shape due to external stimuli no many models exists in
the literature, see e.g. Levesque et al. (1986); Ingber (2003); Ohashi and Sato
(2005).

Introducing multi-scale approaches is a straightforward technique to take into
account underlying evolving processes. The works of Ingber (Ingber, 2008) about
tensegrity models of cell structures is a good example in the field of cell mechan-



174 Morphological changes of endothelial cells.

ics. Miehe et al. (2004) performed a microsphere-based approach to study the
microstructural behavior of polymers. Later, Caner and Carol (2006) applied
this approach, also known as microplane, for vascular tissue. Microplane models
were first used by Bazant and Oh (1985); Kuhl et al. (2000); Carol et al. (2004),
among others, for studying the failure and plasticity of brittle materials, and they
were later extended to other fields. Alastrué et al. (2009) used this approxima-
tion to model vascular tissue including the anisotropy of the tissue. To gain a
deeper insight into the underlying changes in the microstructure, some authors
have included information about the dispersion around the main orientation di-
rection by using several statistical distributions. The von Mises distribution was
introduced by Gasser et al. (2006) in the vascular framework to account for the
dispersion. Later Alastrue et al. (2010b) used a Bingham distribution function
(Bingham, 1974) to include the dispersion of the bundles and presenting a com-
parison of these two statistical functions. In this context, some works (Menzel,
2007; Kroon, 2010; Grytz and Meschke, 2010) have included these kinds of statis-
tical functions to account for remodeling. In multiscale homogenization schemes,
the macroscopic behavior is recovered by averaging the microstructural behavior
represented, in the case of biological fibered tissue, by the mechanics of the fibrils
or filaments. Previous authors (Alastrue et al., 2010b) have used exponential-
type models, such as that proposed by Holzapfel et al. (2000). Recently Menzel
and Waffenschmidt (2009) presented a microsphere-based approach for remod-
eling, where the fibrils behavior was modeled by the Worm-like Chain model
(WLC). WLC models have been extensively used for analyzing behavior of the
DNA double helix (see e.g. Bustamante et al. (2003)) and by Arruda and Boyce
(1993) and Kuhl et al. (2005) to simulate elastomer and soft tissue respectively.
Arruda and Boyce (1993) introduced this model in a non-affine isotropic eight
chain model that has also been used by Bischoff et al. (2002). Garikipati et al.
(2004) and Kuhl et al. (2005) extended it to anisotropic behavior. Alastrué et al.
(2009) and Alastrue et al. (2010b) presented a comparison of both fibril models
(exponential and WLC) in a microsphere-based approach. Note that along with
the classical point of view of space orientations for microsphere-based models we
also associate them to a physical orientation space of micro-structural elements,
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e.g., collagen fibrils in collagen bundles or microtubules and actin filaments in
cells.

In short, we present a new remodeling model in 3D, taking into account the
reorientation of the mean direction of a given fibered structure and the reorien-
tation of the individual fibrils or filaments leading to changes in the parameters
of the associated statistical orientation density function. We begin discussing
the material model used and in particular the WLC model adopted for each fib-
ril. Later, we present the Bingham statistical distribution, its main properties
and general shape. We make use of the microsphere-based approach as homog-
enization technique to move from the micro to the macroscale. In the following
section, the evolution equation for remodeling are presented. We continue with
the thermodynamic formulation of the problem obtaining the expression for the
dissipation and a finite element case is carried out. In the subsequent section
we discuss some examples to show the capabilities of our approach and we finish
with a discussion of the advantages and limitations of the present contribution.

6.2 Macroscopic cell model

Our model is developed within a hyperelastic framework under large strain hy-
pothesis. The aim of this section is to introduce the strain energy density function
(SEDF) for fibered structures, for example, materials with bundles of collagen
fibrils or cell cytoskeleton that will be used in this contribution. The main idea
is to include microstructural information capable of reproducing the mechanical
behavior and the shape of the spatial distribution of fibered constituents. A sta-
tistical distribution is considered to take into account the dispersion of the fibrils
around a preferential orientation. Each fibril will be modeled by an individual
strain energy function at the micro-level represented by the WLC model. We will
finish this section with an academic example showing the mechanical behavior of
the model and some simple examples of the passive mechanical behavior.
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6.2.1 Micro-sphere-based anisotropic approach

The microsphere-based approach, also known as micro-plane models, constitutes
an homogenization technique that has been used previously for brittle materials
(Bazant and Prat, 1988), damage and fracture (Bazant and Oh, 1985; Carol
et al., 2001; Kuhl et al., 2001), polymers (Miehe et al., 2004) and biological tissue
(Alastrué et al., 2009), among many other applications. The homogenization or
continuous averaging 〈(•)〉 of a given variable (•) is carried out by integrating
over the unit sphere surface. In order to perform a numerical implementation,
the integral is computed by addition on m discrete orientation vectors with the
corresponding weight factors wi as

〈(•)〉 = 1

4π

ˆ
U2

(•)dA ≈
m∑
i=1

wi(•)i, (6.1)

where dA is the differential area element of the unit sphere that may be written
in terms of the spherical angles α ∈ [0, π) and φ ∈ [0, 2π) as dA = sin(α)dφdα.
The normalizing term 4π is the unit sphere total area AU2 = 4π. Although the
microsphere approach was initially conceived and used as a multi-scale homog-
enization technique, each unidirectional integration direction can be interpreted
as the contribution of the fibrils around this direction weighted by its associated
dA. The fibers contribution to the SEDF and to the Kirchhoff stress may then be
homogenized over the whole set of dimensions as (we refer to Miehe et al. (2004)
for a review of these equations):

Ψani =
1

4π

ˆ
U2

ρψ(λ̄)dA ≈
m∑
i=1

ρiw
iψ(λi), (6.2)

τ̄ ani =
1

4π

ˆ
U2

ρF̄∂C̄ψ(λ̄i)F̄
tdA ≈

m∑
i=1

ρiτ̄ iw
i ≈

m∑
i=1

[ρiψ
′(λ̄i)λ̄

−1
i t̄i ⊗ t̄i]wi, (6.3)

where, Ψani and ψ are the energy density functions in the macro and micro levels
respectively, ρ is the statistical distribution with ρi the discrete value associated
to each integration direction and which provide the anisotropy behavior. λ̄i is
the stretch ratio for each integration direction ri, and t̄i the isochoric spatial
representation of the vector ri. The deviatoric part of the Kirchhoff stress tensor



Macroscopic cell model 177

related to the fiber contribution, τ ani, is defined as τ ani = J−2/3dev(τ̄ ani) with
τ̄ ani the fictitious Kirchhoff stress tensor.

6.2.2 Behavior of the fibrils

At the micro scale, we chose the well-established WLC model (Kratky and Porod,
1949) to define the SEDF for every fibril or filament. The WLC was used in DNA
modeling by Bustamante et al. (2003). Recently it was used by Garikipati et al.
(2005), Kuhl et al. (2005) and Alastrué et al. (2009), among others, to model
the behavior of biological tissue, as an extension of the WLC molecular model to
approach continuum tissue. Therefore, the individual contribution of each fibril
or filament ψ(λ̄i) to the overall SEDF can be written as:

ψ(λ̄i) =



0 if λ̄i < 1

nkΘ

4A

[
2
r̄2i
L

+
L

1− r̄i/L
− r̄i︸ ︷︷ ︸

ψchn

− ln(λ̄
4 r20
i )

[ 1

L
+

1

4 r0[1− r0/L]2
− 1

4 r0

]
︸ ︷︷ ︸

ψrep

] if λ̄i ≥ 1

, (6.4)

with n the chain number density, k = 1.381x10−23(J/K) the Boltzmann con-
stant and Θ the absolute temperature, e.g. Θ = 310K for biological tissue. The
parameter A represents the persistence length (ratio between bending stiffness
and thermal energy) and L the contour length. λ̄i = [ri · C̄ · ri]1/2 is the stretch
of each fibril, r̄i = λ̄i r0 and r0 the initial end-to-end length. Note that, as dis-
cussed above, the behavior of the fibered structure is related to the anisotropic
part of the SEDF. The contribution ψchn is due to individual chains, while the
repulsive term ψrep is introduced to preserve zero initial stresses in the reference
configuration (unit stretches) driven by the non-vanishing initial length r0. Note
that by modifying this term we would be able to obtain a residual stress in the
reference configuration, although we have not included this modification in the
present work. In both cases, fibers are assumed not to bear any load under com-
pression. We can obtain the stress tensors from Eq. 6.4 and write the deviatoric
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part of the Piola-Kirchhoff, S̄i = 2∂C̄ψ(λ̄i)

S̄i =



0 if λ̄i < 1

nKΘ

4A

[
4
λ̄ir

2
0

L
+

r0

[1− λ̄ir0/L]2
− r0

− 4
r20
λ̄iL

− r0

λ̄i[1− r0/L]2
+
r0

λ̄i

]
λ̄−1
i ri ⊗ ri

if λ̄i ≥ 1

, (6.5)

and of the Kirchhoff stresses, τ̄ i = F̄ · S̄i · F̄t (Marsden and Hughes, 1994;
Holzapfel, 2000). Note that ri ⊗ ri transforms with the push-forward opera-
tion into t̄i ⊗ t̄i where ri ∈ Ω0 represents the orientation vector of the fibril or
filament i in the reference configuration and t̄i ∈ Ω the same vector ri mapped
into the current configuration in an affine manner by means of the isochoric push
forward operator as t̄i = F̄ · ri

6.2.3 The Bingham probability distribution

A more realistic behavior of the fibered structure can be obtained by considering
a statistical distribution of the comprising fibrils to reflect the anisotropic re-
sponse. We chose the Bingham orientation density distribution (Bingham, 1974)
that provides more flexibility in modeling the dispersion of the fibrils than other
distributions commonly used (Gasser et al., 2006; Alastrué et al., 2009; Menzel
et al., 2008) in the framework of vascular tissue. The Bingham distribution was
previously used by Alastrue et al. (2010b) to simulate the behavior of arterial
tissue and may be expressed as

ρ(r; Z, Q) = [F000(Z, r)]
−1 etr

(
Z ·QT · r · rT ·Q

)
, (6.6)

where U2 represents the unit sphere, r ∈ U2 are director vectors, etr (•) ≡
exp (tr (•)) and Z is a diagonal matrix with eigenvalues κ1,2,3 that controls the
concentration probability. Q ∈ SO(3) represents the orthogonal local base that
defines the directions of the statistical function. In fact, it is the difference be-
tween the pairs [κ1 − κ2], [κ1 − κ3] and [κ2 − κ3] that controls the shape of the
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function over the unit sphere. F000(Z, r) may be written as

F000(Z, r) = [4π]−1

ˆ
U2

etr
(
Z · r · rT

)
dA. (6.7)

In our approach, Q evolves to control the reorientation process of the maximal
probability direction while r also evolves changing, explicitly, the concentration
of the Bingham orientation distribution without loss of generality. For the sake
of simplicity we will consider the maximal probability direction of the orientation
distribution function (ODF) to be initially oriented along Qi,3 for i = 1, 2, 3

with κ3 ≥ κ2 and κ1 = 0.0. Figure 6.2 shows different shapes of the Bingham
distribution for different values of κ1,2,3.

The similarities between the structures in collagen bundles and cytoskeleton
cells, and the discretization of the ODF over the unit sphere (Fig. 6.3) justify
this approach. This assumption leads to a more real representation of the fiber
distribution, as shown in Fig. 6.3, which corresponds to the functions depicted
in Fig. 6.2. The fibrils distribution is represented weighted by the associated ρ

in a gray scale, which will be discussed in detail below. At this point we would
like to point out again that the classical assumption of an orientation space, that
microsphere-based models deal with, is extended to assume a coupled orientation
and physical space.

6.2.4 Anisotropic response

To illustrate the anisotropic response of the tissue with the model at hand, we
discuss here some examples. Given a set of material parameters, we will per-
form an uniaxial tension test in each of the principal axes ex, ey, ez, applying
a deformation gradient given by F = λex ⊗ ex + 1/

√
λey ⊗ ey + 1/

√
λez ⊗ ez,

F = 1/
√
λex ⊗ ex + λey ⊗ ey + 1/

√
λez ⊗ ez and F = 1/

√
λex ⊗ ex + 1/

√
λey ⊗

ey + λez ⊗ ez, respectively. We take arbitrary material parameters to show the
different behavior gathered in each of the cases analyzed. The WLC parame-
ters are taken as r0 = 1.0, L = 1.6 and A = 1.1. In Fig. 6.4 we present the
stress along three different stretching directions (ex, ey, ez) for the concentration
parameters given in Fig. 6.2b, c and d. For a revision of the behavior of the
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(a) κ1,2,3 = 0.0, 8.0, 10.0 (b) κ1,2,3 = 8.0, 0.0, 10.0

(c) κ1,2,3 = 10.0, 0.0, 10.0 (d) κ1,2,3 = 0.0, 0.0, 10.0

6
e3

HHje2���
e1

Figure 6.2: Shapes of the Bingham ODF and probability density values for dif-
ferent values of κ1,2,3 and Q = ex⊗ex+ey⊗ey+ez⊗ez . (a) and (b) represent
the same distribution shape but rotated 90o, depending on where the non zero
values are placed. (c) provides a planar-type distribution and (d) presents a von
Mises distribution, that can be considered as a particularization of the Bingham
ODF.
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(a) Fibril representation for
κ1,2,3 = 0.0, 8.0, 10.0 (Fig.
6.2(a))

(b) Fibril representation for
κ1,2,3 = 8.0, 0.0, 10.0 (Fig.
6.2(b))

(c) Fibril representation for
κ1,2,3 = 10.0, 0.0, 10.0 (Fig.
6.2(c))

(d) Fibril representation for
κ1,2,3 = 0.0, 0.0, 10.0 (Fig.
6.2(d))

6
e3

HHje2���
e1

Figure 6.3: Representation of the fibrils within the fibered structure for the Bing-
ham ODF represented in Fig 6.2.
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(a) Cauchy stresses along stretching direc-
tions for κ1,2,3 = 10.0, 0.0, 8.0
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(b) Cauchy stresses along stretching direc-
tions for κ1,2,3 = 10.0, 0.0, 10.0
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(c) Cauchy stresses along stretching direc-
tions for κ1,2,3 = 10.0, 0.0, 0.0

Figure 6.4: Cauchy stresses along stretching directions ex, ey and ez for the
concentration parameters given in Fig. 6.2b, c and d.

chain for different sets of parameters, we refer to Arruda and Boyce (1993) and
Kuhl et al. (2005) among others. The stress σz is the highest, since this is the
preferential direction of the orientation distribution and therefore the one with
the highest probability distribution and associated stiffness. In the direction of
κi = 0, since there are hardly any fibrils, the stress is only due to the much softer
ground matrix. The results obtained in Fig. 6.4a show a different response in
σx, σy and σz due to the different probability distribution in those directions. In
Fig. 6.4b we present a distribution in the plane ez, ex, so the stresses σz and σx
coincide. In Fig. 6.4c the distribution is symmetrically placed around ez, which
leads to a von Mises statistical orientation function.
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6.3 Evolution equations

As explained above, the remodeling is controlled through two decoupled phe-
nomena: first, the evolution of the orthogonal tensor Q, which determines the
rotation of the preferential directions and second the reorientation of the fibrils
or filaments that changes the shape and parameters of the Bingham distribution.
These processes can be identified in nature, e.g., with those processes discussed
in the introduction section, such as rotations of cells like a dipole and a morpho-
logical change of its shape. We base our evolution equations on the reorientation
process described by Menzel (2004). The realignment will be driven, at the mo-
ment, by a given general stimulus characterized by a second order tensor.

6.3.1 Preferential direction reorientation (PDR)

In this section we describe the reorientation of the whole fibered structure, given
as the reorientation of the principal direction. The tensor Q ∈ SO(3), from where
the orientation of the Bingham is defined, will evolve toward a new base defined
by the eigenvectors of the driving stimulus Ξ, denoted by ΞI . We define a rotation
tensor, R ∈ SO(3), as R = Ξ ·Q−1. For the evolution of Q, a geometrically exact
update will be used. The Euler theorem states that “ Every element R ∈ SO(3),
with R 6= I, is a rotation through an angle θ = ‖ω‖t about an axis ω”, with
ω ∈ R3 an eigenvector of R with eigenvalue 1, that fulfills Rω = ω. R can be
written in terms of the exponential mapping as R = exp(−ε ·ωt) with ε denotes
the third-order permutation symbol. In short, it is possible to define a rotation
vector ω, through which the initial base rotate to the final position (see Marsden
and Ratiu (1999) for details). This approach follows that initially proposed by
Menzel (2004) and Himpel et al. (2008) for one single fiber, Kuhl et al. (2005) in
the eight-chain model and Karsaj et al. (2009) for 2D problems. From this, the
rate of Q is given by

Q̇ = n̂ω ·Q. (6.8)

For the temporal discretization, we consider a time interval T and a number
of subintervals, n, T =

⋃n−1
0 [tn, tn+1] where the time increment is given by

∆t = tn+1−tn. The evolution of the base at time n will evolve in the exponential
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mapping context as
Qn+1 = exp(−ε · ω∆t) ·Qn (6.9)

which describes a rotation of the orientation at time n, Qn, by the current ro-
tation vector ω. Note that this approach follows an explicit updating scheme
with dependencies on the current position, different from the implicit scheme
in Menzel (2004) where the updated quantities were obtained by means of a
Newton iteration scheme. However, as Kuhl et al. (2005) pointed out, it is a
reasonable approach for the gradual realignment followed herein. Note that for
t → ∞, Qn+1 7→ Ξ. In order to compute the exponential map, this will be
rewritten (see e.g. Marsden and Ratiu (1999)) by the Rodriguez formula, given
R(ω) = R(nω, ω) as

exp(n̂ωt) = [sin(‖ω‖t)] n̂ω + [1− cos(‖ω‖t)]nω ⊗ nω + cos(‖ω‖t)I, (6.10)

where nω = ω/ω, ω = ‖ω‖ and n̂ω = −ε · nω are the norm of the angular
velocity, its unit direction and the so called hat map of ω, respectively.

6.3.2 Changes in the fibered structure shape. Reorienta-
tion of the fibrils (RF)

In this section we describe the reorientation model for the fibrils or filaments.
Some authors have modeled this phenomenon by means of the evolution of the
statistical distributions (Driessen et al., 2003, 2008; Baaijens et al., 2010). Menzel
et al. (2008) studied this issue by using a von Mises distribution and the evolution
of the associated structural tensor. Recently Menzel and Waffenschmidt (2009)
presented a work for remodeling within a microsphere approach, where from an
initial isotropic state, the reorientation of each of the integration directions leads
to an anisotropic behavior. This latter approach follows an approach similar to
that described in Himpel et al. (2008) for one simple fiber, and is similar to the
one used here for the evolution of the fibrils.

In this work we make use of the Bingham distribution (see Section 6.2.3), and
three different options for defining its rate are discussed: (i) Defining a rate of
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the diagonal tensor Z. This approach has some disadvantages since the actual
quantities that establish the function shape are the differences between the val-
ues of Z, but not the values themselves. Therefore, it is not trivial to obtain
an evolution equation that can be introduced consistently in the thermodynamic
framework, that evolves correctly with any driven quantity and having a con-
sistent physical interpretation. Moreover, this approach would introduce more
phenomenological parameters. (ii) Defining second and fourth-order tensors fol-
lowing the developments by Menzel et al. (2008). This approach also has some
difficulties regarding the definition of a closed parameterized form. The obtain-
ment of these parameters turns out to be a complex task (see Menzel et al. (2008)
for additional details of this procedure), and it is not the goal of this thesis. (iii)
Definition of the rate equation for each integration direction to be reoriented.
This procedure was initially proposed by Menzel and Waffenschmidt (2009) and
is the approach adopted herein. Moreover, with such an approach, we are able
to evolve the shape of the microstructure by means of the evolution of each in-
tegration direction. From our point of view, this approach allows a more free
reorientation of the fibrils since they do not have to be subject to fit with any
statistical distribution. Future works will investigate the potential of options (i)
and (ii).

It is necessary to define the vector ωi, which leads the evolution of the reorien-
tation process. As mentioned above, we prefer to generalize the driving quantity
leading the process, named Ξ. We assume that the realignment depends on the
maximum principal direction of Ξ, such that ri 7−→ Ξ3. We will denote by
I = 1, 2, 3 the eigenvectors associated to the minimum, medium and maximum
eigenvalues of Ξ respectively. This leads to

ωi := ri ×Ξ3, (6.11)

where ωi and ri are the angular velocity and the unit vector of each integration
direction as depicted in Fig. 6.5. Incorporating Eq. 6.11 into ṙi = ωi × ri we
obtain

ṙi = [I− ri ⊗ ri] ·Ξ3. (6.12)

However, we will again make use of the updating scheme presented in the section
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Figure 6.5: Evolution of each integration direction.

above, based on the exponential map, and again adopt an explicit updating.
Therefore, we approximate the updated vector as

rn+1
i = exp(n̂ω

i ∆t) · rni . (6.13)

Remark 14 Reconstruction of the Bingham distribution from the re-
oriented integration directions. Once the integration directions evolve, it is
obvious that the distribution of the fibrils changes independently of the initial
Bingham ODF, but it is not so clear how the values of Z change. In order to
recover an approximated Bingham distribution, mainly for visualization purposes
we adopt the following methodology. Given an updated state, after reorientation
of the integration directions (ID) at the current time n:

• We define a structural tensor ρ at time n as

ρn =
1

4π

ˆ
U2

ρ(rn; Z, Qn)rn ⊗ rndA (6.14)

• At this point we can follow two options:
i) We solve the non-linear equation system (Eq. 6.15) obtaining the new
values of Z, named Ẑ, from the right side of the equality.

1

4π

ˆ
U2

ρ(rn; Z, Qn)rn ⊗ rndA =
1

4π

ˆ
U2

ρ(r; Ẑ, Q)r⊗ rdA. (6.15)
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ii) We can construct a data base with pairs of data relating the values of
each ρn with its respective Z tensor. We followed this latter method for
κ1,2,3 = 1...100, leading to a database of 106× 3 elements for κ and 106× 3

elements for the diagonal components of ρ.

6.4 Dissipation

The starting point of this section arises from the first and second laws of ther-
modynamics given in the material description, that may be written as:

ė = P : Ḟ− DIVQ̂ and γ = η̇ − DIV
Q̂

θ
, (6.16)

where ė is the internal energy rate of the system, P the first Piola-Kirchhoff
stress, Q̂ the heat flux, η the entropy density, θ the absolute temperature and γ
an entropy production term coming from irreversible processes (see e.g. Truesdell
and Noll (2004)). Combining the Legendre transformation Ψ = e − ηθ in Eq.
6.16, with the Helmholtz free energy density Ψ, we can write the Clausius-Plank
inequality as

D = −Ψ̇ +P : Ḟ+
Q̂ · DIVθ

θ
≥ 0 (6.17)

where D ≥ 0 is the internal dissipation or the local entropy production, also
named θγ̇. This inequality has important implications in remodeling processes,
since it is well known that this is an irreversible process and Eq. 6.17 is a
inequality. Usually in mechanics, the last term is neglected since no thermal
effects are considered. We do not omit it in this first description in order to
hold a more general formulation. We now split the Helmholtz free-energy func-
tion as Ψ = Ψmech + Ψchem. The mechanical part Ψmech refers to the classical
energy used in non-linear mechanics and Ψchem to the chemical metabolic compo-
nent. Although the exchange of energy through chemical processes is essential,
obtaining Ψchem is complex and to the authors knowledge has not been suffi-
ciently developed. As previously mentioned, we will ignore heat sources and
will only consider isothermal processes. Most biological tissues works and de-
velops at approximately constant temperature so only the mechanical part will
be considered. As observed above, the dependencies of the mechanical term lies
in ΨF

mech = Ψmech(F, r,Q) or, in terms of the right Cauchy-green tensor C, in
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ΨC
mech = Ψmech(C, r,Q). Focusing on the anisotropic part of the SEDF, which is

the contribution we assume reorients itself, we can define

Ψani =
1

4π

ˆ
U2

ρ(Q, r)ψ(λ̄)dA, (6.18)

with the material derivative

Ψ̇ani = ∂CΨani : Ċ+ ∂rΨani · ṙ+ ∂QΨani : Q̇. (6.19)

From the first term we obtain the constitutive equation for deviatoric part of
the anisotropic stress as Sani = J−2/3DEV(S̄ani), where (S̄ani) is the fictitious
second Piola-Kirchhoff stress tensor defined as

S̄ani =
1

4π

ˆ
U2

nρ∂C̄ψ(λ̄)dA =
1

4π

ˆ
U2

nρλ̄−1ψ′(λ̄)r⊗ rdA (6.20)

(see Eq. 6.5 for a complete description of the stress tensors), reducing the in-
equality to

Dint = −∂rΨmech·ṙ−∂QΨmech : Q̇ = − 1

4π

ˆ
U2

ψ∂Qρ : Q̇dA︸ ︷︷ ︸
DPDR

− 1

4π

ˆ
U2

[ρ∂rψ + ψ∂rρ] · ṙdA︸ ︷︷ ︸
DRF

(6.21)

The first term is related to dissipation due to reorientation (DPDR) of the princi-
pal direction of the bundle while the second term (DRF) is caused by reorientation
of the individual fibrils or filaments, which leads to a change in the bundle shape.

DPDR = − 1

4π

ˆ
U2

[
ψ∂Qρ : Q̇

]
dA = − 1

4π

ˆ
U2

[
2r ·

[
rT ·Q · Z

]
ρψ : Q̇

]
dA (6.22)

and

DRF = − 1

4π

ˆ
U2

[ρ∂rψ + ψ∂rρ] · ṙdA = − 1

4π

ˆ
U2

[
SiC̄ · rρ+ ρ2Q · Z ·QT · rψ + ρmψ

]
· ṙdA,

(6.23)

with ∂λ̄2ψ = Si/2, ∂rλ̄2 = 2C̄ · r and

ρm =

[ˆ
U2

[4π]−1 2Z · r etr
(
Z · r · rT

)
dA

]−1

etr
(
Z ·QT · r · rT ·Q

)
. (6.24)
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In subsequent sections we provide the dissipation values for several examples.

6.5 Particularization for biological tissue

The previous sections have omitted any reference to specific quantities that drive
the remodeling process. In the following section we discuss some of the driv-
ing quantities most commonly discussed in the bibliography. Moreover, we also
present a comparison of the behavior of the model with various previously pro-
posed driving quantities. As pointed out in the Introduction section, it is still
unclear if this quantity is associated to strains, stresses or mix-variant types such
as the Mandel tensor (see e.g. reviews in Humphrey (2001); Cowin (2004); De
et al. (2007) and references therein). Kuhl et al. (2005) and Himpel et al. (2008)
followed a strain based approach while Driessen et al. (2004) suggested the orien-
tation along a direction between the two principal directions of maximum strain.
Other authors (Hariton et al., 2007; Driessen et al., 2003; Kuhl and Holzapfel,
2007; Grytz and Meschke, 2010) suggested stress-based models to drive the pro-
cess, some of them aligned with the maximum principal direction or with respect
to a direction between the two maximum principal directions. This option is fre-
quently applied to cardiovascular tissue where the fibers remodel to compensate
variations in both internal pressure and wall shear stress (Taber, 1998; Alford
et al., 2008). Finally, other authors (Imatani and Maugin, 2002; Menzel et al.,
2008) proposed a mix-variant Mandel-type tensor. It is also worth commenting
on the particular state reached when the strain and stress tensors are coaxial
and a critical state of the free energy is achieved (Cowin, 1994; Vianello, 1996)
in which case M = C · S turns out to be symmetric. Anisotropic materials are
not coaxial in general and this state is only maintained while the Piola-Kirchhoff
stresses and the Cauchy-Green tensor keep non-coaxiality.

The aim of this analysis is not to provide any new hypothesis or clarification
about which quantity is the correct one but to compare the evolution of the
dissipation achieved with the three types of driving quantities described below.
The whole process will be split into two steps.
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6.5.1 Preferential direction reorientation

The first type corresponds to the reorientation of the preferential directions, de-
fined by means of a rotation tensor Q that will be driven by the principal Cauchy-
Green strain directions (ΞC

I ), principal Cauchy stresses (ΞS
I ) or principal direc-

tions of the Mandel tensor (ΞM
I ). This does not uniquely define the evolution

of Q, so we have to enforce the preferential direction, that is the direction with
the maximum fibril concentration, to reorient itself towards the maximum prin-
cipal direction of the driving quantity Ξ. This description is not influenced by
the magnitude of the driving stimulus but only by the angle between the ini-
tial and the goal directions. In order to improve this limitation we introduce a
magnitude-dependent parameter ζΞ as

ζΞ =


0 if ΛΞ

3 /Λ
Ξ
1 ≤ ζΞ0

ΛΞ
3 /Λ

Ξ
1 − ζΞ0 if ΛΞ

3 /Λ
Ξ
1 > ζΞ0

, (6.25)

where Ξ denotes the driving quantity (C, S or M), ΛΞ
3 /Λ

Ξ
1 ∈ [1, inf) the ratio

between the maximum and minimum eigenvalues of the chosen driving quantity
Ξ and ζΞ0 a threshold value that sets the coefficient value at which the reori-
entation process starts. Besides the magnitude of the driving quantity, it seems
reasonable to suppose that natural tissue adapts to a given load in different ways,
e.g. collagen fibrils remodel in a different way than microtubules of a cell. We
therefore introduce the last material parameter, ζΞ∗ , that provides a measure of
how the tissue opposes its reorientation, decreasing for higher reorientation rates.
We propose to fulfill ∆tζΞ/ζΞ∗ ≤ 1, leading to the following updating scheme of
Eq. 6.9

Qn+1 = exp(ζΞn̂ω∆t/ζΞ∗ ) ·Qn (6.26)

6.5.2 Reorientation of the fibrils

The second step deals with the remodeling of the fibered structure which is basi-
cally, as discussed above, a reorientation of the fibrils or filaments that make up
such a structure. The driving quantity will be the same and, again, we introduce
a magnitude-dependent parameter ζ̄Ξ and the corresponding material dependent
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parameter ζ̄Ξ∗ . We have adopted the same definition as in the reorientation pro-
cess, being

ζ̄Ξ =


0 if ΛΞ

3 /Λ
Ξ
1 ≤ ζ̄Ξ0

ΛΞ
3 /Λ

Ξ
1 − ζ̄Ξ0 if ΛΞ

3 /Λ
Ξ
1 > ζ̄Ξ0

, (6.27)

with ζ̄Ξ0 the value at which the remodeling starts. And again, the updating
scheme of Eq. 6.13 changes to

rn+1 = exp(ζ̄ΞΞ̂
ω
∆t/ζ̄Ξ∗ ) · rn. (6.28)

Remark 15 Coupling of reorientation models. The reorientation processes
discussed above occur simultaneously in biological tissue, but in different ways.
For example, after the reorientation of the whole structure gets under way, a
certain time later, the reorientation of the fibrils or filaments of the structure
starts. Both can occur at the same time, perhaps at different rates. However,
there are no available experimental tests that clearly distinguish between both pro-
cesses. Therefore, in order to show the capabilities of this model, and without
loss of generality, we will assume for section 6.6 that the reorientation process
occur first and only when the preferential direction is aligned with the eigenvec-
tor associated to the maximum eigenvalue of the driving quantity the remodeling
process will start. Upon the assumption of decoupled reorientations, we can set
ζ̄Ξ0 to ζ̄Ξ0 ≥ max{ΛΞ

3 /Λ
Ξ
1 } achieved along the PDR process to allow for a smooth

transition from one process to the other. In this way, we will consider them as
decoupled in Section 6.6. However, for Section 6.7 a coupled evolution will be
considered by a material parameter, ς = 1/[1 + exp(ςc ∗ [‖ω‖t− ςs])]. This equa-
tion follows a sigmodal function and the parameters ςc and ςs control the rotation
value of the PDR at which RF begins and its rate, respectively. ς multiplies the
arguments of the exponential in Eq. 6.32.
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6.6 Results

6.6.1 Principal direction reorientation

The main features of the preferential direction reorientation model under dis-
cussion and some of the results obtained are presented in this section. We have
chosen a homogeneous deformation problem controlled by displacement. We use
the deformation gradient given by F = 1/

√
λex ⊗ ex + 1/

√
λey ⊗ ey + λez ⊗ ez,

the set of concentration parameters κ1,2,3 = [10, 8, 0] and an initial Q = ex⊗ex+

ez ⊗ ey + ey ⊗ ez, which places the preferential direction of the fibered structure
perpendicular to the stretching direction. All these parameters have been chosen
to show the behavior of the model and they do not have been fitted from exper-
imental data. The parameters from the WLC model are set to r0 = 1, L = 2,
A = 1.3, n = 7.0 x 1021, k = 1.381 x 10−23J/K and θ = 300K (Kuhl et al.,
2005). We present results for the three types of driving quantities analyzed (C,
S and M). The normalized time interval has been discretized in 100 time steps
with ∆t = 0.1.

We first analyzed the results without taking into account the sensing model
described in Section 6.5. In Fig. 6.6 we present the evolution of the tensor Q

every ten steps in a stereographic projection, used previously by Menzel and
Steinmann (2003), among others, for plasticity and by Alastrué et al. (2009) to
represent the stress in blood vessel fibers. The results show almost no difference
between the updated positions of Q for the three driving quantities. Nevertheless,
in the zoom shown in Fig 6.6(b) we see that the position driven by the Mandel
tensor is placed between those driven by strain (closer to the goal position, so
faster) and stress (the slower).

An alternative for visualizing the material evolution is to compute an anisotropic
measurement as proposed by Menzel and Steinmann (2003). In this way, we can
measure how fast the reorientation is by means of the scalar

δ(C,S) =
‖C · S− S ·C‖
‖S‖‖C‖

. (6.29)

We represent the Cauchy stress evolution, anisotropy (given by Eq. 6.29) and
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Figure 6.6: Evolution of Q driven by C(o), S(∗) and M(+) and detail fora specific
time.

dissipation in the present example. Fig. 6.7(a) shows that that the stress rises
from about 12 kPa (stiffness of the extracellular matrix) up to 33 kPa due to the
contribution of the bundle that progressively aligns with respect to the stretching
direction. Fig. 6.7(b) shows the anisotropic measure evolution and Fig. 6.7(c)
the dissipation evolution. We can observe that the difference is quite small.
We impose a stop criteria for rotation angles less than 0.01 degrees. For such
an assumption we get up to step 49, 73 and 54 for the strain, stress and Mandel
driven problem respectively. If we compute the dissipation numerically, we obtain
from Eq. 6.22, DC = 3.446x102 [kPa/time], DS = 2.860x102 [kPa/time] and
DM = 3.303x102 [kPa/time] which established stress as the least dissipative
quantity. We can observe the behavior highlighted in Fig 6.8 for the complete
model by checking out the last step in which the angle between the principal
direction and the goal direction is less than 0.01, which we consider to be the
equilibrium situation. In Table 6.1 we show the equilibrium step for each driving
quantity and for two fiber parameters for the WLC model, a softer one L= 2.0,
and a stiffer one L= 1.8, and the rest of the parameters as set above. Note that
values of the contour length L close to end-to-end value r0 represent stiffer values
than those much higher than r0. For higher stiffness, the contribution of the
fibers to the stress increases leading to a slower rate of reorientation, in the case
of stress and Mandel driving quantity. However, when the process is driven by
strains, the equilibrium is achieved in the same time step for the two degrees of
stiffness.

Remark 16 Stiffness material dependence. The behavior of the reorien-
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Figure 6.7: Evolution of stress, anisotropy and dissipation.

Stiffer Softer
strain stress Mandel strain stress Mandel

49 73 54 49 100 23

Table 6.1: Time step in which equilibrium is achieved for different degrees of
stiffness and different driving quantities.
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Figure 6.8: Evolution of anisotropy for a 1D fiber.

tation process must also be related to the ratio between the anisotropic and the
isotropic part of the stiffness. To analyze this aspect we perform a simple case of
a 1D fiber, placed initially perpendicular to the stretching direction and gradually
moving towards the direction of this load. As we can see in Fig 6.8, the higher
the matrix-stiffness/fiber-stiffness ratio the faster the reorientation. This shows
that for higher ratios, the principal stress value and the associated direction of the
ground substance have greater relevance in the overall stress response. Besides,
up to 23 degrees there is no anisotropy since the fibrils are under compression
and, therefore, they do not contribute to stress. On this point, some fibrils begin
to bear load contributing to the anisotropic behavior of the material.

The particularization to biological tissue discussed in Section 6.5 is now in-
cluded. We take into account the dependence on the magnitude of the load. With
this aim we introduce in the remodeling approach the material parameters ζΞ,
ζΞ∗ and ζΞ0 (fixed to 1 for strain driven and 0 for the stress driven). We will study
the model for ζΞ∗ = 2, 10. Fig. 6.9 shows the situation of Q every step. Higher
values of ζΞ∗ lead to lower rates of evolution. The process driven by M presents
higher rates than those driven by stress, while the latter are higher than those
driven by strain.

We also present the anisotropy evolution for each of the situation discussed
above. As the previous results show, it can be seen that the preferential direction
aligns more slowly with the principal direction with higher values of ζΞ∗ . Table
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(a) Change with C (b) Change with S (c) Change with M

Figure 6.9: Evolution of Q driven by different quantities. Blue crosses indicate
the results for ζΞ∗ = 2 and red circles those for ζΞ∗ = 10.

ζΞ∗ = 2 ζΞ∗ = 10
strain stress Mandel strain stress Mandel

29 14 4 >100 72 16

Table 6.2: Time step in which equilibrium is achieved for different driving quan-
tities and material parameters ζΞ∗ = 2 and ζΞ∗ = 10.

6.2 shows the step at which we obtain a rotation lesser than 0.01 degrees, which
can be considered as the equilibrium situation.

We present in Fig. 6.11 the dissipation evolution of the examples proposed in
this section. Note that the scale in the vertical axes is modified in the different
subfigures. Consistent with the previous results, the process driven by strain
and higher values of ζΞ∗ is the least dissipative and, therefore, the optimum from
an energetic point of view. It should be noted that these results are obtained
from the assumed biological sensing parameters that should be experimentally
validated and fitted to obtain realistic conclusions. We refer to the results shown
in Fig. 6.7 where no material parameter has been included and, therefore a clearer
interpretation of the role of the different driving quantities can be achieved. As
can be seen in Fig. 6.11, and more clearly in Table 6.3, the quantity that produces
the least dissipation is strain, as as mentioned above, followed by stress and
Mandel respectively. Dissipation is also lower for higher values of ζΞ∗ .

Finally we present the evolution of the ODF over time in Fig. 6.12, which
shows the Bingham representation at different steps for the case of driving stress
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Figure 6.10: Anisotropy measure δ for the different driving quantities and ζΞ∗ = 2
and ζΞ∗ = 10.
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Figure 6.11: Dissipative evolution for the different driving quantities and ζΞ∗ = 2
and ζΞ∗ = 10.

and ζΞ∗ = 10.

6.6.2 Reorientation of the fibrils

In this Section we give some examples to illustrate the model described in Sec-
tion 6.3.2, where the fibrils or filaments that make up a fibered structure reorient
themselves with the maximum eigenvector of a given driving quantity. The ma-
terial parameters of the WLC model are fixed for all the examples to the same
values given in the above section, r0 = 1, L = 2, A = 1.3, n = 7.0x1021,
k = 1.381x10−23J/K and θ = 300K. All the specimens are stretched with
F = 1/

√
λex ⊗ ex + 1/

√
λey ⊗ ey + λez ⊗ ez with λ = 2 instantaneously applied
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(a) Step n=1 (b) Step n=33

(c) Step n=66 (d) Step n=100

6
e3

HHj
e1��*
e2

Figure 6.12: Evolution of principal direction of the ODF for different steps. (a)
the distribution at step 1, (b) for step 33 ,(c) for step 66 and finally (d) at the
end of the analysis.

ζΞ∗ = 2 ζΞ∗ = 10
strain stress Mandel strain stress Mandel

5.328x102 8.269x102 5.912x104 1.730x102 2.239x102 6.742x103

Table 6.3: Energy dissipated for each type of driving quantity.
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and maintained to the end of the reorientation. We set ∆t = 0.01. The Bingham
parameters are κ1,2,3 = [0, 8, 10] and Q = I (being I the second order identity
tensor), and we therefore ensure that the principal direction of the structure is
previously aligned with the maximum principal direction of the driving quan-
tity. We consider the biological sensing by the use of the material parameter
ζ̄Ξ defined in Eq. 6.33. Moreover, as in the above section, we have included
the material parameter ζ̄Ξ∗ , which is fixed to ζ̄Ξ∗ = 4, 20 for comparison. This
corresponds to double the value of ζΞ∗ . As in the case of the macro remodeling,
we carry out the process using the different driving quantities. In Fig. 6.13, we
present the evolution of the diagonal components of ρ (Eq. 6.35), which measure
the evolution of the concentration of the fibrils. Again, the remodeling driven by
strain is shown to be the slowest, followed by Mandel and stress. The processes
with ζ̄Ξ∗ = 20 are slower than those with ζ̄Ξ∗ = 4, as expected.

We can also show (Fig. 6.14) the evolution of the fibrils as the evolution of
the integration directions.

In order to view this evolution we make use of the procedure discussed in
Remark 14. Fig. 6.15 shows the Bingham representation at different steps for
the case of driving stress and ζ̄Ξ∗ = 20. As we can see, its shape ends toward a very
concentrated von Mises distribution, i.e., toward a 1D single fiber orientation.

To conclude this Section, we present the dissipative nature of the model graph-
ically in Fig. 6.16 and quantitatively in Table 6.4. The results suggest that the
dissipative process is highly sensitive to ζ̄Ξ∗ . For ζ̄Ξ∗ = 4, strain driven problem
is the most dissipative, followed by stress and Mandel. However, for ζ̄Ξ∗ = 20,
the strain quantity becomes the least dissipative and the Mandel tensor the most
dissipative. Nevertheless, as suggested above, we would need experimental data
to obtain further conclusions on this issue. In order to compare the dissipative
nature of the model presented here with that described in the previous section,
we need to compute the dissipation with values of ζ̄Ξ∗ = 1 and ζΞ∗ = 1. In this
case the dissipation takes the following values: DC = 2.636 x 102 [kPa/time],
DS = 2.636 x 102 [kPa/time] and DM = 2.638 x 102 [kPa/time]. They are al-
most equal and very similar to those in the dissipative PDR process. Again, some
experimental tests would be helpful in order to reach further conclusions.
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(a) Evolution of the microstructure distribu-
tion driven by C
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(b) Evolution of the microstructure distribu-
tion driven by S
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tion driven by M

Figure 6.13: Evolution of the microstructure by means of the diagonal compo-
nents of ρ.

ζn∗ = 4 ζn∗ = 20
strain stress Mandel strain stress Mandel

D[kPa/time] 2.173x102 2.033x102 1.690x102 1.670x102 2.207x102 2.199x102

Table 6.4: Energy dissipated per each type of driving quantity and for ζ̄Ξ∗ = 4, 20.
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(a) κ1,2,3 = 0, 8, 10 (b) κ1,2,3 = 0, 28, 38

 

 

(c) κ1,2,3 = 0, 43, 75

 

(d) κ1,2,3 = 0, 48, 112
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Figure 6.14: Evolution of the fibrils for different steps. (a) the initial distribution
with κ1,2,3 = 0, 8, 10, (b) for step 33 leading to κ1,2,3 = 0, 28, 38, κ1,2,3 = 0, 43, 75
for step 66 in (c) the end of the analysis with κ1,2,3 = 0, 48, 112 in (d).
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(a) κ1,2,3 = 0, 8, 10 (b) κ1,2,3 = 0, 28, 38

(c) κ1,2,3 = 0, 43, 75 (d) κ1,2,3 = 0, 48, 112
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Figure 6.15: Evolution of the distribution for different steps. (a) the distribution
at step 1 with κ1,2,3 = 0, 8, 10, (b) for step 33 leading to κ1,2,3 = 0, 28, 38, κ1,2,3 =
0, 43, 75 for step 66 in Fig. (c), the end of the analysis with κ1,2,3 = 0, 48, 112 in
(d). For t 7→ ∞ the Bingham distribution leads to very concentrated von Mises
distributions.
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(c) Dissipation driven by M

Figure 6.16: Dissipation of the model for the different driven quantities and
material parameters ζ̄Ξ∗ = 4, 20.
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Remark 17 Equibiaxial and volumetric states. Equibiaxial and volumetric
loads are special situations that should be carefully treated. From our model,
any initial position of the principal directions (and therefore Q) will not evolve
under volumetric load, since in that situation any three orthogonal directions are
principal directions, including those of Q. In the equibiaxial case, the principal
directions will evolve to the plane containing the two maximum stress directions
along the direction of minimum length and then they will be balanced there, since
any perpendicular direction to that plane is an eigenvector.

Remark 18 No load state. Another important issue to take into account is
the stationarity of the model under no load. As it was pointed out by Garikipati
et al. (2005), a proposed model must not evolve under an undeformed state. Our
model solves this issue by means of the ζn0 parameter that does not allow any
movement in the unloaded state.

6.7 A finite element case: morphological changes

of cells.

In this Section we compute a finite element model presenting a biological example
of the model discussed above and non-homogeneous states of deformation. We
have outlined the main steps of the algorithmic scheme in Table 6.5. As we
discussed in the Introduction section, cell changes its mean orientation and its
morphological shape. Experiments are focused on static loading, where cells
align with the direction of stretching, and cyclic mechanical test, where cells
align perpendicular to the direction of stretching. In the following example we
will restrict ourselves to the static loading case. To do so, we model a thin sheet
of material, 40mm x 20mm x 0.5 mm, as shown in Fig. 6.17(a) and discretized in
800 hexahedral elements. Left side of the specimen is fixed while in the right one,
displacement or force can be imposed. In fact, we investigate the influence of both
cases of boundary condition. We first compute the imposed displacement case,
stretch value of 50% of the initial length in e1. We retrieve the reaction forces on
the right side of the model to be, after that, imposed in a force driven simulation.
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Table 6.5: Algorithm to compute remodeling of cell-like structures.

Input: Fj+1, internal variables at time j

I Evaluate kinematics Cj+1 and constitutive equations Ψj+1, Sj+1 and Mj+1

II Compute goal tensor Ξ by Cj+1, Sj+1 or Mj+1

III Update orientation variables.
Evaluate exponential mapping for the evolution of Qj+1 and rj+1

i

Qj+1 = exp(ζΞn̂ω∆t/ζΞ∗ ) ·Qj (6.30)

rj+1 = exp(ζ̄Ξn̂ω∆t/ζ̄j∗) · rj (6.31)

IV Compute dissipation, DPDR and DRF as described in Eq. 6.22 and Eq. 6.23
and anisotropy δ as in Eq. 6.29.

V Calculate stresses τ j+1 and tangent operator related to the Jaumann rate
as
τ j+1 ≈ 2bj+1 · (C1 − C2I

j+1
1 ) +

∑m
i=1 ρiτ̄

j+1
i wi ≈

∑m
i=1[ρiψ

′(λ̄i)λ̄
−1
i t̄j+1

i ⊗
t̄j+1
i ]wi

∇
c
j+1

= [cj+1 + 1/2[δτ j+1 + τ j+1δ + δτ j+1 + τ j+1δ]]/J with
cj+1 ≈

∑m
i=1 nρiwi[ψ

′′j+1
i − ψ

′j+1
i λ

−1
]λ

−2
t̄j+1
i ⊗ t̄j+1

i ⊗ t̄j+1
i ⊗ t̄j+1

i

Output: τ j+1,
∇
c
j+1

,Qj+1, rj+1,DPDR,DRF, δ

Obviously, the stress and strain field over the specimen is the same in both of
them before remodeling but their evolution is different for the Neumann and
Dirichlet boundary value problem. Moreover, to allow a more general simulation
of distribution of the cells, as it is usually the case in experimental procedures,
we set a random orientation of the cell in each integration point as well as the
concentration values of the statistical distribution κ1,2,3. Let us also describe the
evolution of the micro-structural information. In order to do so in the following
results we look at three different points of the material which are, in somehow,
meaningful. They are shown in Fig. 6.17(a) as point 1, 2 and 3, and will be
referred so in the following. These values are described in Fig. 6.17(b-d).
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(a) Geometry and boundary condition of the finite element model. Point 1, 2 and 3 have
been marked for micro-structural plotting purposes.

6

e1
-

e2

e3

(b) ODF in point 1.
Qi,1= 0.08 -0.81 -0.56
and Qi,2=-0.73 0.33
-0.58 and κ = 31.6,
16.9, 0.0

(c) ODF in point 2.
Qi,1= 0.67 0.05 -0.73
and Qi,2=-0.68
0.41 -0.60 and
κ = 49.8, 40.1, 0.0

(d) ODF in point 3.
Qi,1= 0.95 -0.15 0.25
and Qi,2=-0.27
-0.15 0.94 and
κ = 8.1, 6.4, 0.0

Figure 6.17: Description of the initial values of the ODF distribution for the
three marked points and boundary condition of the finite element model with
micro-structural information.

6

e3

HHYe2
���

e1
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Figure 6.18: Stress field in X direction for the static simulation. The stress
field shows a highly non-uniform distribution of the stresses due to the random
distribution of the micro-structure.

The stress field in the deformed configuration is shown in Fig. 6.18. For sake
of simplicity we will compute strain and stress-driven problems, since they are the
most used variables to be compare with in the literature. Moreover, and again
to keep the problem as simply as possible, we set ζΞ∗ and ζ

Ξ

∗ equal to one, and
since we demonstrated in Section 6.6, Mandel-driven cases remain, in trends and
values, between those achieved by strain and stress cases. In Fig. 6.19 we plot
the reaction force and the displacement on the right side of the phantom for the
displacement and force driven problem respectively. We can easily see how the
material stiffens due to the reorientation of the micro-structure for the problem
driven by displacement and the shortening of the sample when the problem is
driven by force. We also present stress and anisotropy fields for every boundary
problem discussed above for different time steps. They are presented in Figs.
6.20,6.21,6.22,6.23
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Figure 6.19: Evolution of the displacement and reaction forces for different bound-
ary conditions problems.
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We are going to look at the evolution of the micro-structure, which fits in with
the cell structure. First, we present the anisotropy evolution in Fig. 6.24. Figures
show less uniform evolution than the cases presented in Section 6.6 due to the
non-uniform deformation state. All of the three points end up with an anisotropy
measure close to zero, which represent a bundle aligned with the direction of the
maximum strain. Due to the random orientation and concentration of the cells
of interest, the initial anisotropy value is also different for the three of them.

6.8 Application to the endothelial cell morphol-

ogy

It is well know that endothelial cells line over the lumen adapt its morphology
based on the WSS of the arterial wall. Several references and examples were
commented in the introduction of this Chapter. In this section we adapt the
methodology developed previously to predict the morphological features of the
EC in different zones of the carotid artery where EC align in the direction of the
flow for laminar and high wall shear stress value. Blackman et al. (2002) showed
that steady laminar flow and pulsatil flow make EC to reorient in the direction of
the flow and that the aspect ratio of the cells increase in a very similar fashion.
Galbraith et al. (1998) studied the structural organization of several elements
of the cell (microfilaments, microtubules and intermediate filaments) also seeing
the main orientation of cell align in the direction of the flow. In similar studies
Levesque et al. (1986) and Kim et al. (1989) showed that in arterial coarctated
model EC in the laminar zone before coarctation presented very tip-shapes while
in the turbulent zone, after coarctation, EC showed a more random structure.
Levesque et al. (1986) reported shape indexes (SI) of 0.2 for the laminar zones
while turbulent flow induces SI fro 0-4 to 1. Farcas et al. (2009) reported changes
in the SI from 0.6 to 0.3-04. Malek and Izumo (1996); Ohashi and Sato (2005)
among others have shown this same behavior in their works. In a review article
Chien (2007) resume some of the characteristic morphological changes due to
different mechanical stimuli.
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(a) Evolution for Point 1.
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(b) Evolution for Point 2.
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(c) Evolution for Point 3.

Figure 6.24: Anisotropy evolution for the three points of interest for strain (C and
CF) and stress (S and SF) driven problems and different boundary conditions,
Dirichlet (C and S) and Neumann (CF and SF).



216 Morphological changes of endothelial cells.

Figure 6.25: Cell morphology in a no-flow situation and athero-prone and pro-
tective flow condition reported by Dai et al. (2004).

Davies et al. (1986) presented a study pointing out that, although high shear
stress in laminar flow promote cell alignment in the direction of the flow, low
turbulent shear stress promote synthesis of endothelial DNA even in the absence
of a organized structure of the cells suggesting that this type of flow is prone to
develop atherome plaque. Another feature of all these studies is the formation
of stress fibers in the direction of the fluid for the laminar flow and in a random
distribution in case of turbulent patterns. Stress fibers ( see ,e.g., Mofrad and
Kamm (2006)) are important structural elements and their formation lead to
changes in the mechanical behavior of the cell. We will ignore these phenomena
in this study.

The goal of this section is the simulation of the EC remodeling feature by
means of the models presented in this work. In particular we look at the work of
Dai et al. (2004) that studies this very same issue in a carotid artery based on two
different waveforms, an athero-protective (related to high laminar shear stress)
and a athero-prone waveform (related to recirculation in low wall shear stress).
We can see the structure the cell organization in both types of saturation in Fig.
6.25. The streamlines velocities and the values of WSS of the fluid simulation of
the carotid artery (Malve et al., 1996) are shown in Fig. 6.26.

The starting point of this approach consist of micro-sphere cell-like structures
placed over the arterial lumen. The initial shape of the EC correspond with a
orthotropic distribution, this is a cell with a round shape (see Fig. 6.27(a-b) and
structure with the orthotropic plane tangent to the surface of the lumen. The
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(a) Velocity streamlines (Malve et al., 1996).

(b) WSS values.

Figure 6.26: Fluid simulation variables in the model of the human carotid.

structure of the model is pictured in Fig. 6.27(c-d) which is represented by the
mechanical and geometrical approach discussed in Section 6.2.

The morphological changes that we described above are simulated by means
of the remodeling approach developed during the previous sections. We use the
model described in 6.5.2 so the orientation of the preferential direction will be
neglected for this simulations and only the reorientation of the micro-structure
will be considered instead of also considering the reorientation of the whole cell.
As we discussed, this approach describe a reorientation of the fibrils or filaments
that make up such a structure. In this case the driving stimuli is the wall shear
stress in the arterial lumen based on results of a fluid-dynamic simulation. The
morphological changes will be based on the updating procedure described in Eq.
6.13 as

rn+1 = exp(ζ̄ΞΞ̂
ω
∆t/ζ̄Ξ∗ ) · rn. (6.32)

For the magnitude-dependent parameter ζ̄Ξ. We have adopted the same defini-
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(a) Cell structure reported by
Schauer (2013).

(b) Cell structure reported by Education
(2013).

(c) Structure of the cell model. (d) Structure of the cell model.

Figure 6.27: Structure of the cell from real images (a-b) and the proposed model
(c-d).

tion as in the reorientation process, where τw is the wall shear stress, being

ζ̄Ξ =

ˆ t

0

‖τw‖dt, (6.33)

which represent the mean wall shear stress. The corresponding material depen-
dent parameter ζ̄Ξ∗ is considered now a function of the Oscillatory Shear Index
(OSI), defined as

OSI =
´ t
0
‖τw‖dt

‖
´ t
0
τwdt‖

, (6.34)

ζ̄Ξ∗ = 1/OSI. The OSI, variable that indicate the degree of variation in the
direction of the flow, vary from 1 for a constant direction of the flow to 0 for
a variation of 180 degrees in the direction of the flow. This is the reason for
considering OSI as one of the parameters related to the remodeling on EC in
blood flow conditions.

To measure the shape variation we compute the followingstructural tensor, ρ,
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(a) Micro-structure at the step t=10.
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Figure 6.28: Evolution of the strain driven problem with Dirichlet condition at
different time steps.

as
4πρn =

ˆ
U2

ρ(rn; Z, Qn)rn ⊗ rndA. (6.35)

As we discussed before, this tensor provide a symmetric second order tensor,
where initially two of the diagonal components are equal and during the evolution
process one of them turn to the unity and the other to zero. The ratio between
these two values can be taken as the shape index factor, SI = ρ33/ρ22. Moreover
we consider the range of OSI values [0-1] and the range of mean WSS [0-10] Pa
to demonstrate the evolution capabilities of the model. We show in Fig. 6.28
the evolution of the SI for different values of OSI and a mean WSS of 3 Pa. In
Fig. 6.28(b) we present the evolution of the SI for a OSI=0.1 and low mean WSS
(WSS=1Pa), OSI=1 and high mean WSS (WSS=10) and a intermediate situa-
tion (OSI=0.4, WSS=5Pa). Results math nicely with the experimental finding
described above. Flow with OSI=0.1 with low mean WSS keep very rounded
shapes while flow with OSI=1 and high mean WSS lead to very pointed struc-
tures. In Fig. 6.29 we capture the evolution of the cell structure during the
remodeling process.The figures, representing the microtubules coming from the
centrosome, can be identified with pictures with pictures from cell organization.

We also show the evolution of the SI agains values of mean wall shear stress
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(a) OSI=0.1 ,
t=10.

(b) OSI=0.1 ,
t=100.

(c) OSI=0.2 ,
t=10.

(d) OSI=0.2 ,
t=100.

(e) OSI=0.4 ,
t=10.

(f) OSI=0.4 ,
t=100.

(g) OSI=0.6 ,
t=10.

(h) OSI=0.6 ,
t=100.

(i) OSI=0.8 , t=10. (j) OSI=0.8 ,
t=100.

(k) OSI=1.0 ,
t=10.

(l) OSI=1.0 ,
t=100.

(m) OSI=0.1,
WSS=1.0 , t=10.

(n) OSI=0.1,
WSS=1.0 , t=100.

(o) OSI=1.0,
WSS=10.0 , t=10.

(p) OSI=1.0,
WSS=10.0 ,
t=100.

Figure 6.29: Evolution of the cell structure for different combination of WSS and
OSI values at different time steps.
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(a) Experimental data collected in Olgac
et al. (2008)
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(b) Evolution of the SI for different WSS val-
ues.

Figure 6.30: Evolution of the SI for different values WSS values for experimental
data (a) and the model presented here (b).

at a laminar flow. These data was collected by Olgac et al. (2008) on different
studies as we show in Fig. 6.30(a). Our simulations show very similar behavior
as we can see in Fig 6.30(b).

6.9 Discussion

The adaptation of biological tissues has been a very active research field in recent
years. The three principal processes of adaptation of biological tissue to mechano-
chemical stimuli from a continuum point of view are remodeling, growth and mor-
phogenesis (see e.g Humphrey (2009); Taber (2009); Ambrosi et al. (2011)). In
this contribution we have focused on the reorientation process of fibered biological
structures, proposing a complete 3D model that accounts for the reorientation of
both the main direction of the structure and the fibrils or filaments that compose
such a fibered structure. Most previous works have described the reorientation
of a simple 1D fiber while, more recently, some others have taken into account
the remodeling of the underlying structure by means of changes in its statisti-
cal distribution (Baaijens et al., 2010; Menzel et al., 2008). We have adopted a
Bingham orientation distribution which allows a much more flexible description
of the fibered structure. Our goal was to develop a model to be capable of de-
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scribing both the remodeling of the principal direction and the distribution of
the microstructure. We considered a microsphere-based model that allowed us
to include the two aspects of the problem. A multi-scale scheme that couples
the microstructural behavior and the macroscopic scale is used, also allowing the
fibered microstructure to be defined in terms of the fibrils or filaments that make
it up. We also extend the usual orientation space description of the micro-sphere
model to be coupled with a physical space. In this way we compute the reori-
entation of the mean direction in the macroscale and the reorientation of the
microstructure, upscaling the variables from the lower scale to the macroscopic
behavior by means of a homogenization scheme.

Numerous works have analyzed different types of driving quantities in these
processes (see e.g. Kuhl et al. (2005); De et al. (2008); Baaijens et al. (2010) and
references therein), stress and strain being the most common. We have considered
three driving quantities, strain, stress and a mix-variant Mandel-type tensor for
driving the reorientation process. We assume the principal directions of these
quantities as the goal to drive the reorientation process. To complete the model,
we included two further material parameters. The first takes into account the
magnitude of the driving quantities, since it seems natural to assume that the
magnitude influences the evolution rate. The second was included to reflect the
fact that different living structures can react to the same load in different ways.

After presenting some analytic cases of our model to study its behavior for dif-
ferent material parameters and different boundary conditions, we have extended
the model to be included in a finite element scheme. It allowed us to compute a
more realistic biological problem. We studied the remodeling of a plaque made
up of a matrix seeded by a cell colony. The initial values of their orientation
and shape was assumed to be random and our simulation showed a good qual-
itatively agreement with experimental findings. They showed a first orientation
of the mean orientation followed by a change of their initial shape due to the
reorganization of the interior structure.

As an extension to the proposed model we exploit the option of modeling
the adaptation of EC to the stimuli of the wall shear stress. The model was
based on the remodeling of the micro-structure developed during the previous
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sections neglecting in this case any reorientation of the cell as a whole structure.
Different flow features of the flow, as the WSS or the OSI, were considered to
investigate the remodeling process of the EC. The OSI, a measure of the variation
of the direction of the flow, and the WSS are usual indicators of different the cell
morphology. Our simulation show that the SI of the cells under certain flow
condition described the actual morphology of EC in experimental data. The
model represent a relatively simple view of the macroscopic remodeling of the
cell structure. It have shown to be suitable for the study of the the remodeling
process and it could be used to study , e.g., the synthesized of different substances
related to the EC adaptation.

The presented model has enormous capabilities for characterizing the evolu-
tion of complex biological fibered structures such as, for example, collagen bundles
or cells. However there are certain limitations which need to be overcome in order
to significantly improve it. The first, which does not apply only to our model,
is the determination of those parameters related with the reorientation rate. If
these were measured, our model could shed some light on which quantity actually
drives these processes. We are thinking, for example, in a cell stretched by its
substrate. In such a situation, tracking all the microtubules could help us to fit
not only the material parameters but also the proposed driving quantities which
best fit such experiments. In this contribution we have made use of a Bingham
distribution to reflect the fibers or cells distribution. This assumption, although
relatively simple and useful for a first attempt would be not the best option
if an accurate and real structure want to be study. The microtubule or stress
fiber tracking mentioned above could be used to construct a specific physical and
orientation space to compute both reorientation and homogenization procedure.
Currently, we have a fixed position for them over the unit sphere, and their actual
number contributing to the mechanical behavior is limited by the shape of the
statistical function. From our point of view, the most of future work would be
focus on extending the model to the numerical simulation of cell mechanics. The
amount of information that could be gathered from specialized literature is huge.
For example, the active behavior force exerted by the stress fibers, the amount
of actin generated due to a mechanical stimulus, the dynamic polymerization of
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actin and tubulin, the use of the model to study the evolution of endothelial cells
due to changes in the wall shear stress in blood vessels, and the list go on far away.
Although the experiments needed to accurately fit such models is a tough task
and very sophisticated and expensive instruments are needed, the theoretical and
computational models would bring out an interesting mathematical description
of these astonishing biological processes.

In short, we have proposed a novel general 3D reorientation model for both,
the principal direction of the structure and the underlying fibered structure. We
have used an exact updating scheme for these reorientations. This approach
allows to model different remodeling processes in biological tissues, and with the
appropriate experiments could lead to a better knowledge of how biological tissue
adapts to its specific environment. Combined with the development of a growth
model (see Humphrey (2009); Ambrosi et al. (2011)) our approach could help to
modeling and predicting the overall behavior of tissue reacting to external stimuli,
via the reorientation and growth (positive or negative), of its microstructure. We
believe it have been and will represent a challenging area of research.



7
Conclusions

In this work a complete framework for simulating the consequences of hyperten-
sion in the arterial tissue is developed. We focused on three important effects of
hypertension in the arterial wall. Before dealing with the evolution models, we
modeled geometrically and mechanically a human carotid artery which was used
to create finite element model. Mechanical properties were obtained from data
in literature. We formulated a constitutive model that was used for fitting these
data. The finite element model was used to gather strain and stress values in
normotensive and hypertensive conditions. We used the increase of stretches in
the smooth muscle cells to trigger two evolution models. Our first model dealt
with the thickening of the arterial wall due to the hypertrophy of the smooth
muscle cells. We used a kinematic description of the problem which was con-
sistently included in our finite element model. Based on the same stimuli, we
computed the collagen turnover that lead to the well know stiffen of the arterial
wall in hypertension. Finally we studied the remodeling of endothelial cells due
to the characteristic of the blood flow in the carotid artery.

In each chapter of this work a specific conclusions of each issue have been
discussed.

• We showed that previous mechanical constitutive models fail in the char-
acterization of some experimental test. Although they describe them good
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enough when every material parameters is free to be fitted. However when
the anisotropic direction of the tissue is provided, and therefore is not a
fitting parameter, these models could not describe the tissue features in
some cases. In this thesis, we provided an extension of previous hyper-
elastic models that takes into account the cross-links that collagen fiber
bundles have. This features allow us to fit such experimental data. We also
showed that the stress values in a human carotid artery are similar to those
presented in previous models.

• Based on this mechanical model, we followed describing the arterial thick-
ening of the carotid artery. We used a well established model of volumetric
growth to describe such a thickening based on a stretch-based stimuli. We
showed that the underlying hypertrophy of the smooth muscle cells can
describe the thickening of the arterial wall. The model fitted well with
experimental data described in literature both in qualitatively and quan-
titatively over time. The model reveal a very homogeneous growth factor
across the media layer which can be related with the homogeneous stretch
ratio between the hypertensive and normotensive state. The simulations
also shown that while the stresses in the media layer decrease due to the
growing process stresses, in the adventitia layer increase due to the expan-
sion that the smooth muscle cells impose. This is in agreement with the
idea that adventitia layer acts as a protective layer.

• We study the density increase of the collagen fibers using the same stretch
stimuli on the smooth muscle cells. Based on the turnover of TGF-β, MMP
and TIMP we showed that collagen density increase indeed. This fact match
with the experimental observation that the arterial wall in hypertensive
patients stiff due to the increase of the collagen content. The stiffening
of the tissue undergoes a contraction of the artery lumen wich is also in
agreement with the fact that adaptation in arterial tissue try to compensate
the consequences of the over-stimuli, in this case, the over pressure.

• Finally, we model the adaptation of fibered structures to mechanical stimuli.
We study how these phenomena evolve due to strain, stress Mandel-based



227

quantities and how they differ when the actual mechanical load is due to
forces or displacements. This methodology is applied to model the adapta-
tion of endothelial cells to the wall shear stress, which has been reported to
have a key role in several adaptation processes in the arterial wall, such as
the growth of atherome plaque. We used a micro-sphere based approach to
deal with it and the results showed that the model describe the experimental
data found in literature for different types of flow.

This work do not close at all the goal of this research field but instead open
new option for future work, from a theoretical and computational point of view
the study of adaptation in arterial tissue. Among some of the future lines of
research, may be the most important are the following. In the mechanical part of
the problem, that described in Chapter 3, the inclusion of residual stresses should
be, probably, the most important work to be done. Residual stresses have shown
to change the stress field across the arterial wall and that they change over time
due to the different adaptation processes described in this thesis. The modeling
of the myogenic tone of the smooth muscle cells is also an important issue that
would improve the present model. It could change the stimuli considered during
this thesis as well as the final state of the adaptation process since the geometry
in the hypertensive state could differ.

In terms of the volumetric growth model the most important limitations are
the pre-imposition of the final growth state and the lack of physical meaning of
the time parameters. The study of more open and physical evolution equations
for the growth would be also an interesting research topic.

Regarding the collagen turnover a more consistent formulation of the thermo-
dynamic problem to be implicitly solved would gain, at least, a more well-turned
computational and theoretical approach. There are also place for improvement in
the biological point of view, since our model takes a relatively simple description
of the mechano-biological process.

For the study of cell-type structures defined at the end of this thesis, we just
provided the theoretical and computational framework to describe the actual
adaptation, of e.g. endothelial cells, to the action of the blood flow. The study
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of how this structure remodeled due to the flow changes in hypertensive patients
or, e.g., how actin fibers growth due to, and orient toward, a mechanical stimuli
is also a point for future research.



A
Resumen en Español

A.1 Resumen

El trabajo desarrollado en esta tesis se centra en el desarrollo de un modelo
teórico y computacional de los procesos mecano biológicos que ocurren en el
tejido arterial en hipertensión. El tejido arterial se adapta de forma activa a
diferentes estímulos mecanicos y químicos donde las propiedades mecánicas del
propio tejido juegan un papel fundamental. En hipertesión, el estímulo mecánico
que desencadena estos procesos es el incremento de presión sanguínea así como
cambios en el flujo sanguíneo.

Este trabajo se centra en cuatro aspectos caraterísticos de los procesos hiperten-
sivos. Primero se estudia el comportamiento mecánico del tejido arterial, en par-
ticular se centra en el comportamiento de arteria humana de la cual obtenemos
un modelo de elementos finitos sobre el que aplicar los diferentes modelos que se
desarrollan a lo largo de este trabajo.

Los dos primeros aspectos relacionados con la adaptación del tejido en condi-
ciones hipertensas es el crecimiento y remodelación del las células musculares y
del colágeno contenido en la pared arterial. Su descripción mecánica se desar-
rolla, por tanto, dentro del campo de sistemas abiertos, entendiéndose por tales
aquellos en los que se permite un aumento o pérdida de masa debido a cambios
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de volumen o densidad. El engrosamiento característico de la pared arterial se
describe a través de un modelo de crecimiento volumétrico, mientras que el incre-
mento en el contenido de colágeno se modela a través de un cambio de densidad.
Ambos modelos son descritos, primero teóricamente, para ser posteriormente im-
plementados computacionalmente en un esquema de ele-mentos finitos. En la
última parte de este trabajo se ha desarrollado un modelo de remodelación de
estructuras fibradas aplicado a los cambios morfológicos que se producen en las
células endoteliales ante diferentes patrones de flujo sanguíneo.

A.2 Estado de la cuestión

A.2.1 Enfermedades cariovasculares: La hipertensión

Las enfermedades cardiovasculares son una de las causas de muerte más impor-
tantes en países desarrollados (Chockalingam, 2007). Entre todos los tipos de
alteraciones del sistema cardiovascular, la hipertensión es, probablemente, una
de las más habituales y, por tanto, de las más estudiadas. Los últimos datos
disponibles prevén un total de mil millones de adultos sufriendo hipertensión,
lo que equivale a alrededor del 25 % de la población mundial (Elliott, 2003).
Además, solo entre un 50 ó 70 %, según datos de países subdesarrollados o en
vias de desarrollo, son conscientes de su dolencia. La hipertensión, por sí misma,
no representa un claro peligro, aunque se considera un factor de riesgo para otras
cardiovasculopatías como la rotura de placa de ateroma. Existe, por tanto, una
necesidad de estudios que ayuden, tanto a conocer mejor el origen y desarrollo
de la enfermedad, como a desarrollar protocolos para una mejor prevención y
tratamiento de la misma (Mancia et al., 2003).

Los procesos hipertensivos están marcados por un aumento de la presión en
el tronco arterial, ya sea de su valor medio, del valor sistólico o diastólico. En
cualquiera de estos casos, existen cambios importantes en el entorno mecánico de
la red vascular. Este aumento de presión desencadena una cascada de procesos
mecano-químicos, los cuales hacen variar las propiedades mecánicas y morfológ-
icas de la pared arterial (Kaplan and Victor, 2009). El corazón experimenta un
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engrosamiento de sus ventrículos debido al sobreesfuerzo que debe realizar para
bombear sangre a mayor presión.

Durante estos procesos la pared arterial experimenta importantes cambios
estructurales. Existe una respuesta a corto plazo a la sobrepresión mediante una
contracción activa de las células musculares. Esta respuesta es conocida como
tono miogénico y tiene como objetivo restablecer la tensión fisiológica sobre la
pared arterial y la tensión de cortadura en el lumen a valores homeostáticos
(Dangelo and Meininger, 1994). A largo plazo, la hipertensión se caracteriza
por un engrosamiento y rigidización de la pared arterial. El engrosamiento está
relacionado con la hipertrofia (crecimiento en volumen) o hiperplasia (crecimiento
en número) de las células musculares lisas (Owens et al., 1981). Por último, la
rigidización de la pared arterial está relacionada con un aumento del porcentaje
de colágeno (Diez and Laviades, 1997; O’Callaghan and Williams, 2000).

A.2.2 La biomecánica computacional

Durante los últimos años, o incluso décadas, ha habido un incremento importante
de esfuerzo investigador en el ámbito de la biomecánica computacional (Fung,
1990; Humphrey, 2002). Una gran parte del conocimiento adquirido durante mu-
chos años de estudio en mecánica de medios continuos (Marsden and Hughes,
1994; Holzapfel, 2000) y en métodos numéricos (Hughes, 2000; Stein et al., 2004)
están siendo utilizados para estudiar el comportamiento de diferentes tejidos bi-
ológicos, como el corazón (McCulloch et al., 1998), globo ocular (Pandolfi and
Manganiello, 2006), hueso (Weinbaum et al., 1994), arterias (Holzapfel et al.,
2000) o ligamentos (Peña et al., 2006). El estudio de estos materiales desde
el punto de vista de la mecánica de medios continuos permite su descripción
matemática, estableciendo un primer paso para la comprensión del problema. Se
han desarrolla-dos multitud de modelos mecánicos para describir procesos como
la hipertrofia cardiaca, la pérdida de masa ósea, daño vascular debido a material
quirúrgico, caracterización de diferentes fenómenos inelásticos del material, etc.

El uso de técnicas computacionales, entre las que cabe destacar el método de
los elementos finitos (Hughes, 2000) o elementos de contorno (Sukumar et al.,
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1998), ha sido de gran importancia en el campo de la biomecánica. Ha permitido
emplear los modelos antes descritos en geometrías complejas y avanzar respecto
de los modelos analíticos. Los modelos de elementos finitos nos permiten, por
ejemplo, analizar el estado tensional de una geometría de aorta o de fémur para
un paciente específico.

El desarrollo de un modelo de hipertensión en arterias es un proceso que
involucra diversos campos de investigación. Durante años el estudio mecánico y
numérico del sistema cardiovascular ha estado limitado al comportamiento pasivo
del tejido. En este aspecto existen numerosos modelos en la literatura que, de
una manera fenomenológica, reproducen dicho comportamiento. Sin embargo
cada vez son más los modelos que incluyen información micro-estructural con el
objetivo de obtener una mejor caracterización del material. Este avance en la
simulación de tejidos biológicos ha sido posible gracias a mejoras en las técnicas
experimentales de medida, así como de modelos computacionales más robustos.

La estructura de la pared arterial es altamente compleja (O’Callaghan and
Williams, 2000) (Fig. A.1). Entre sus principales componentes destaca el colágeno,
el cual aporta integridad estructural al material, elastina, células musculares lisas,
encargadas del tono vasal y de las secreción de diferentes substancias, así como fi-
broblastos encargados de, por ejemplo, la síntesis del material extra-celular (Fung,
1990). El agua es el mayor componente de los vasos sanguíneos, confiriéndoles
un comportamiento quasi-incompresible. Además de su alta hete-rogeinedad, su
comportamiento está determinado por una alta no linealidad en su respuesta
tensional. Así mismo presentan un alto grado de anisotropía debido a una dis-
posición muy direccional de los elementos antes descritos. Tanto las fibras de
colágeno como las células musculares presentan habitualmente una distribución
preferencial de dirección.

Las fibras de colágeno están formadas por agregados de moléculas de tropocolá-
geno, segregados a su vez por células en el espacio extracelular donde son ensam-
bladas formando fibras de colágeno (Bhattacharjee and Bansal, 2005). Debido al
sobreesfuerzo experimentado por la células musculares causado por un aumento
de presión, éstas inician la síntesis de diferentes sustancias, como factores de crec-
imiento e inhibidores de metaloproteínas (encargadas de degradar el colágeno)
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Figure A.1: Representación de la microestructura de una aorta de cerdo a través
de Scanning Electron Microscopy (SEM) (O’Connell et al., 2008).

(Sumpio et al., 1988; Haga et al., 2007). El aumento o disminución de estas
sustancias hacen cambiar la tasa de producción de colágeno, lo que en último
término se traduce en una mayor rigidez de la pared arterial.

No ha sido hasta la última década cuando han aumentado, tanto en número
como en calidad, los modelos teóricos y computacionales del comportamiento
activo de estos materiales (Humphrey, 2009). Dentro del estudio del compor-
tamiento activo se pueden citar cuatro grandes campos de investigación. El
primero, es el comportamiento activo de las células musculares de todo el sis-
tema cardiovascular, tales como procesos electro-fisiológicos del corazón (Rogers
and McCulloch, 1994; Hunter et al., 1998) y la activación de células musculares
lisas en el sistema periférico vascular (Murtada et al., 2010). El segundo campo
es el estudio de procesos bioquímicos y biofísicos (Tarbell et al., 2005; Mofrad
and Kamm, 2010). El tejido vascular está compuesto por diferentes células que
tienen como objetivo transmitir el entorno mecánico y químico del ambiente que
les rodeada y adaptarse a ellas a través de la secreción de sustancias químicas,
remodelación de su estructura, muerte celular, diferenciación, etc (Li et al., 2005;
Haga et al., 2007). Este campo de investigación es relativamente nuevo y los mod-
elos numéricos que los describen están, a día de hoy, en una etapa inicial. Sin
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embargo, se ha estudiado en más profundidad los procesos de difusión y cambios
de densidad que se producen en diferentes tejidos. En este sentido existen tra-
bajos previos en los que se estudia los cambios de densidad debido a alteraciones
en el entorno mecánico y en el ambiente químico que se producen sobre el tejido
(Kuhl and Steinmann, 2003; Tarbell, 2003b). Por último, también se han he-
cho grandes avances en la simulación de modelos de crecimiento volumétrico del
material, debido a hipertrofia o hiperplasia, muerte o división de las células que
lo componen (Kuhl et al., 2003b; Goektepe et al., 2010). Existen modelos que
engloban todos estos procesos y que basan su análisis en la teoría de la regla de
las mezclas (Humphrey and Rajagopal, 2002).

El trabajo de esta tesis analiza y modela diferentes procesos de adaptación
en el tejido vascular, bajo el punto de vista de mecánica de medios continuos,
desde el inicio de la presión arterial, pasando por la activación de las células re-
sponsables de sentir los cambios mecánicos que sobre ellas se producen. Estas
células promueven la liberación y absorción de sustancias encargadas de remode-
lar la estructura y densidad de las fibras de colágeno y del tamaño de las células
musculares.

A.3 Objetivos y metodología

El objetivo de esta tesis es el desarrollo teórico y computacional de un modelo
capaz de reproducir los principales procesos que se observan experimentalmente
en arterias de pacientes hipertensivos. Estos modelos, que se definen matemáti-
camente dentro del marco de la mecánica de medios continuos, los cuales son
implementados a posteriori en un esquema de elementos finitos. El objetivo es
obtener resultados númericos en geometrías de paciente específico reales. En par-
ticular, basaremos el trabajo en una geometría de carótida humana. Este objetivo
es abordado estableciendo una metodología, obtenida de imágenes médicas, que
incluye los diferentes procesos observados en hipertensión y que se exponen a
continuación.
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(a) Modelo de geometría
carótida.

(b) Detalle de una corte
del modelo de carotida.

Figure A.2: Geometría reconstruida de una carótida humana para su análisis por
el método de los elementos finitos.

• Modelo pasivo de la pared arterial. En concreto se elige una geometría de
carótida humana obtenida a través de imagen por Resonancia Magnética
Nuclear (RMN) de un paciente específico. Se obtienen, de datos de liter-
atura, valores de propiedades mecánicas de carótidas humanas variables a
lo largo de eje arterial, así como la inclusión de la hipótesis de un espesor
variable de la pared, para la capa media y adventicia. Dicha geometría se
analiza con el fin de obtener valores de tensión en estados de homeostasis e
hipertensión. El objetivo de esta primera fase es la obtención de variables
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mecánicas sobre la pared arterial.

• Otras de las sustancias generadas, llamadas factores de crecimiento, pro-
mueven la hiperplasia e hipertrofia de las células musculares, lo que se tra-
duce en un engrosamiento de la pared arterial. Con el fin de estudiar estos
fenómenos se realiza un modelo computacional de crecimiento volumétrico,
basado nuevamente en el alargamiento que se produce en las células mus-
culares. Esto permite observar el engrosamiento de la pared arterial. El
modelo se implementa nuevamente en un código de elementos finitos, lo que
nos permite estudiar el engrosamiento de la pared de carótida real humana.

• Los cambios en las tensiones y estados de deformación en la pared arterial
son los estímulos necesarios para la activación de las células musculares
lisas. El objetivo en este apartado es definir un modelo que, en función del
estimulo mecánico, genere diferentes sustancias biológicas, difundiéndose a
través de la pared arterial. Se realiza, por tanto, un modelo de generación
y difusión de masa a través de la pared arterial. Algunas de las sustancias
consideradas y su interacción con diferentes células de la pared arterial,
desequilibran el proceso de síntesis y absorción de las fibras de colágeno.
Dichas fibras son las principales responsables de la integridad estructural
de la arteria y, por tanto, su disminución o aumento se traduce en un
comportamiento mecánico muy diferente. Se opta por definir un modelo
mecánico de cambio de densidad de las fibras de colágeno, que integrado
en un esquema de elementos finitos permite la simulación del proceso en su
conjunto.

• En la última parte de este trabajo, se desarrolla un modelo de adaptación
de estructuras fibradas ante estímulos mecánicos. Se estudia como estas es-
tructuras se remodelan debido a variables de tipo deformación o tensión y
cuales son las diferencias ante cargas en fuerza o desplazamiento. Este mod-
elo mecánico se aplica a reproducir la adaptación de las células endoteliales
ante las tensiones tangenciales en la pared de la carótida. Estos procesos de
remodelación en las células endoteliales desencadenan otros muchos proce-
sos de adaptación en la pared arterial como, por ejemplo, el crecimiento de
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la placa de ateroma. Se plantea un modelo basado en la microesfera para
modelar estas estructuras.

A.4 Conclusiones

Durante el trabajo de esta tesis se han desarrollado modelos teóricos y computa-
cionales para el estudio de los procesos de adaptación del tejido cardiovascular a
las alteraciones del flujo en condiciones de hipertensión.

Se empezó el trabajo revisando modelos constitutivos de la literatura encon-
trándose que los más utilizados no eran capaces de caracterizar ciertos aspectos de
algunos ensayos experimentales. Aunque son capaces de reproducir estos ensayos,
cuando todos los parámetros del material se dejan libres para ser ajustados, éstos
fallan una vez que, por ejemplo, se aportaba la información de la direcciones de
anisotropía obtenidas experimentalmente, y por tanto no era un parámetro de
ajuste. Durante esta tesis se han extendido modelos hiperelásticos previos incor-
porando los enlaces que existen entre las fibras de colágeno. Teniendo en cuenta
esta característica es posible ajustar aquellos ensayos que no se podían describir
con modelos previos. También se han obtenido imágenes reales de carótidas de
humano con las que se ha reconstruido un modelo de elementos finitos sobre el
que se han aplicado el resto de modelos que se desarrollan a lo largo de esta tesis.
La aplicación del modelo constitutivo propuesto a la geometría de carótida de
humano proporcionó valores de tensiones comparables con valores encontrados
en literatura.

Basados en este modelo mecánico, se continuó modelando el aumento de
espesor de la pared arterial. Para ello se han usado modelos de crecimiento
volumétrico que decriben el engrosamiento del tejido basados en un estímulo que
considera el alargameinto de las células musculares. Se mostró que, a través de
la hipertrofia de las células musculares, se puede describir el engrosamiento de la
pared arterial. Los resultados de este modelo están en consonancia con los datos
encontrados en literatura tanto cuantitativa con cualitativamente. Los resulta-
dos revelaron un factor de crecimiento muy homogéneo en la capa media de la
arteria carótida, donde se localizan las células musculares. Este resultado está en
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relación con la homogeneidad en el cociente entre los alargamientos de las células
musculares en el estado hipertensivo y normotensivo. Las simulaciones también
mostraron que, mientras las tensión en la capa media decrecen debido al efecto
del crecimiento, en la capa adventicia éstas se incrementan debido al empuje que
las células musculares ejercen sobre dicha capa. Este resultado está relacionado
con la idea de que la capa adventicia actúa como una capa protectora de la pared
arterial.

Posteriormente considerando el mismo estímulo, el alargamiento de las célu-
las musculares, estudiamos el incremento de densidad de las fibras de colágeno.
Basado en el desequilibrio entre la creación y degeneración de TGF-β, TIMP
y MMP se ha mostrado que la cantidad de colágeno en la pared arterial se in-
crementa tal y como muestran los resultados experimentales. Este resultado
concuerda también con la observación experimental en la que la pared arterial se
rigidiza debido al incremento de la cantidad de colágeno. Esta rigidización desen-
cadena una contracción del diámetro de la pared arterial, lo que está igualmente
en relación con la idea que la adaptación del tejido vascular intenta compensar
las alteraciones en el ambiente mecánica que se producen debido a un estímulo,
en este caso la hipertensión.

Finalmente se ha modelado la adaptación de estructuras fibradas ante estímu-
los mecánicos. Se estudió como estas estrcuturas evolucionan debido a variables
basadas en deformación, tensión o de tipo Mandel y como esta evolución se modi-
fica dependiendo de si la carga se ha aplicado en desplazameinto o en fuerza. Esta
metodología se ha aplicado en modelar la adaptación de las células endoteliales
sometidas a las tensiones tangenciales que se producen en el lumen debido al flujo
sanguíneo, el cual sabe que ejerce un papel clave en la adaptación de la pared
arterial, como en el crecimiento de la placa de ateroma. Se ha utilizado un mod-
elo basado en la microesfera para modelar dichas estructuras. Las simulaciones
realizadas muestran que los resultados obtenidos decriben de forma adecuada
las datos experimentales publicados en literatura para diferentes tipos de flujo
arterial.
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A.5 Lineas futuras

El trabajo realizado en esta tesis no cierra, en absoluto, todos los aspectos al-
canzables en este tipo de estudios, sino que abre nuevas líneas para el estudio
teórico y computacional de la adaptación del tejido vascular. Dentro de las posi-
bles líneas futuras de investigación destacaremos a continuacion algunas de ellas.
En la parte mecánica del problema, descrita en el capitulo 3, la incorporación al
modelo actual de las tensiones residuales podría ser el trabajo futuro más impor-
tante. Se sabe que las tensiones residuales en el tejido vascular pueden alterar de
forma importante el estado tensional en la pared arterial y éste puede cambiar
debido a los procesos de adaptación que se estudian en esta tesis. El modelado
del tono miogénico de las células musculares lisas es también un aspecto impor-
tante que debe incorporarse al modelo. Podría cambiar el valor y gradiente del
estímulo considerado durante este trabajo, además del estado final de los procesos
de adaptación tanto de crecimiento volumétrico como de densidad, ya que la ge-
ometría en el estado hipertenso podría variar. En cuanto al modelo de crecimiento
volumétrico, las limitaciones más importantes son la preimposición del estado fi-
nal de crecimiento, así como la falta de significado físico claro de las parámetros
temporales. Sería deseable la inclusión de ecuaciones de evolución más abiertas y
con mayor sentido físico. En cuanto al modelo de cambio de densidad de las fibras
de colágeno, una formulación más consistente del problema termodinámico que
fuera implícitamente resuelto resultaría en una descripción teórica y computa-
cional más elegante. Otro aspecto importante a mejorar es el aspecto biológico
del problema, ya que nuestra descripción asume un modelo relativamente simple
de los procesos mecano-biológicos presentes en estos fenómenos. En el estudio de
la adapatación de las estructuras celulares definido al final de esta tesis, se pro-
pone únicamente un marco teórico y computacional que describe la adaptación
de las células endoteliales a diferentes tipos de flujos. El estudio de cómo estas
estructuras se adaptan a diferentes situaciones en condiciones de hipertensión, o
cómo las fibras de actina crecen y se orientan en dirección de un cierto estímulo
serían también campos interesantes para futuras de investigaciones.



240 Resumen en Español

A.6 Publicaciones

1. V. Alastrué, P. Sáez, M. A. Martinez, M. Doblaré. On the use of the Bing-
ham statistical distribution in microsphere-based constitutive models for
arterial tissue. Mechanics Research Communications 37(8):700-706, 2010.

2. P. Sáez, E. Peña, M. A. Martinez, M. Doblaré. A microsphere-based ap-
proach to damage in soft fibered tissue. Biomechanics and Modeling in
Mechanobiology. 11(5):595–608, 2012.

3. P. Sáez, E. Peña, M. Doblaré., M. A. Martinez. An anisotropic micro-
sphere-based approach for fiber orientation adaptation in soft tissue. IEEE
Transactions On Biomedical Engineering, 58:3500–3503, 2011.

4. P. Sáez, E. Peña, M.A. Martínez, E. Kuhl. Mathematical modeling of
collagen turnover in biological tissue. DOI:10.1007/s00285-012-0613-y.

5. P. Sáez, E. Peña, M. Doblaré, M.A. Martínez. 3D Generalized microstruc-
tural remodeling: Evolution and dissipation. In press. Int. J. Solids Struct.
(2013).

6. P. Sáez, E. Peña, M.A. Martínez. On the micro-structural modeling of
patient specific human carotid artery. Submitted for publication.

7. P. Sáez, E. Peña, M.A. Martínez, E. Kuhl. Computational modeling of
hypertensive anisotropic growth.

8. P. Sáez, E. Peña, J. M. Tarbell, E. Kuhl, M.A. Martínez. A computa-
tional model of collagen turnover in the carotid artery under hypertensive
conditions. Submitted for publication.

A.7 Congresos

1. P. Sáez, V. Alastrué, E. Peña, M. A. Martinez, M. Doblaré. Modelo de
daño para materiales biológicos fibrados basado en su comportamiento mi-



Congresos 241

croestrutural. (2009) XXVII Congreso Anual de la sociedad Española de
Ingeniería Biomédica-CASEIB. Cadiz, Spain.

2. E. Peña, P. Sáez, V. Alastrué, M.A. Martínez and M. Doblaré. On mod-
elling softening and damage effects in fibrous soft biological materials.
(2009) International Workshop on Continuum Biomechanics of Biological
Tissue. Castro Urdiales (Spain).

3. T. Waffenschmidt, P. Sáez, V. Alastrué, E. Peña, A. Menzel, M. Doblaré. A
computational micro-sphere approach applied to the modelling of anisotropic
soft biological tissues. (2010) IV European Congress on Computational Me-
chanics (ECCM IV): Solids, Structures and Coupled Problems in Engineer-
ing. Paris (France).

4. P. Sáez, V. Alastrué, E. Peña, M. A. Martinez, M. Doblaré. A micro-sphere
approach to the modeling of anisotropic damage in blood vessels. (2010)
17th Congress of the European Society of Biomechanics (ESB). Edinburgh
(UK).

5. P. Sáez, V. Alastrué, E. Peña, M. A. Martinez, M. Doblaré. A Damage
Model based on Micro-structural Approach in Soft Fibered Tissue. (2010)
6th World Congress of Biomechanics. Singapore.

6. P. Sáez, E. Peña, M. Doblaré, M. A. Martinez. Mechanical Adaptation in
Fibered Biological Tissue vessels. (2011) 2nd Bio Mechanical Engineering
Conference. Stanford, US.

7. E. Peña, P. Sáez, M. Doblaré, M. A. Martinez. A Microstructural Approach
to Modelling Inelastic Effects in Fibred Biological Tissues. (2011) 11th.
International Conference on Computational Plasticity. Fundamentals and
Applications. COMPLAS 2011. Barcelona, Spain.

8. M. A. Martínez, P. Sáez, T. Waffenschmidt, E. Penã, M. Doblaré, A, Men-
zel. Different Damage Model Approaches in a Microsphere-Based Frame-
work. Application to Soft Biological Tissues. (2011) IUTAM Symposium
on Computer Models in Biomechanics From Nano to Macro. Stanford, US.



242 Resumen en Español

9. P. Sáez, E. Peña, M. Doblaré, MA. A. Martínez. 3D Remodeling Model for
Fibered Biological Tissue. (2011) IUTAM Symposium on Computer Models
in Biomechanics From Nano to Macro. Stanford, US.

10. E. Peña, A. García, P. Sáez, T. C. Gasser, M. A. Martínez. Structural Ex-
perimental Characterization and Micro-Macro Modeling of Collagen Fiber
Distribution in Carotid Arteries (2011) IUTAM Symposium on Computer
Models in Biomechanics From Nano to Macro. Stanford, US.

11. P. Sáez, M. Malve, E. Peña, M. A. Martínez, E. Kuhl. Computational
mechanics of an adaptation model for blood vessels (2012) 23rd Interna-
tional Congress of Theoretical and Applied Mechanics (ICTAM 2012.Bei-
jing (China).

12. E. Peña, P. Sáez, M.A. Martínez. Microstructural constitutive model of
inelastic effects in soft fibred tissues (2012). 6th European Congress On
Computational Methods In Applied Sciences And Engineering (ECCOMAS
2012). Viena (Austria).

13. P. Sáez, M. Malve, E. Peña, M. A. Martínez, E. Kuhl. Computational
Growth Model of the Carotid Artery Bifurcation in Hypertensive Disease
(2013). 11th International Symposium on Computer Methods in Biome-
chanics and Biomedical Engineering. Salt Lake City, USA.

14. P. Sáez, M. Malve, E. Peña, M. A. Martínez. A computational model of
endothelial cell reorientation due to arterial flow (2013). 19th Congress of
the European Society of Biomechanics (ESB2013). Patras, Greece.



Bibliography

Aaron, B. B., Gosline, J. M., 1981. Elastin as a random-network elastomer - a
mechanical and optical analysis of single elastin fibers. Biopolymers 20 (6),
1247–1260.

Alastrué, V., Calvo, B., Pena, E., Doblare, M., Feb. 2006. Biomechanical model-
ing of refractive corneal surgery. J Biomech Eng 128 (1), 150–160.

Alastrue, V., Garcia, A., Pena, E., Rodriguez, J. F., Martinez, M. A., Doblare,
M., Jan. 2010a. Numerical framework for patient-specific computational mod-
elling of vascular tissue. Int J Numer Method Biomed Eng 26 (1), 35–51.

Alastrué, V., Martinez, M. A., Doblare, M., Menzel, A., Jan. 2009. Anisotropic
micro-sphere-based finite elasticity applied to blood vessel modelling. J Mech
Phys Solids 57 (1), 178–203.

Alastrué, V., Peña, E., Martinez, M. A., Doblare, M., Oct. 2007. Assessing the
use of the “opening angle method” to enforce residual stresses in patient-specific
arteries. Ann Biomed Eng 35 (10), 1821–1837.

Alastrue, V., Saez, P., Martinez, M. A., Doblare, M., Dec. 2010b. On the use of

243



244 Resumen en Español

the bingham statistical distribution in microsphere-based constitutive models
for arterial tissue. Mech Res Commun 37 (8), 700–706.

Alford, P., Humphrey, J., Taber, L., 2008. Growth and remodeling in a thick-
walled artery model: effects of spatial variations in wall constituents. Biomech
Model Mechan 7, 245–262.

Ambrosi, D., Ateshian, G. A., Arruda, E. M., Cowin, S. C., Dumais, J., Goriely,
A., Holzapfel, G. A., Humphrey, J. D., Kemkemer, R., Kuhl, E., Olberding,
J. E., Taber, L. A., Garikipati, K., Apr. 2011. Perspectives on biological growth
and remodeling. J Mech Phys Solids 59 (4), 863–883.

Anderson, E. A., SINKEY, C. A., LAWTON, W. J., MARK, A. L., Aug. 1989.
Elevated sympathetic-nerve activity in borderline hypertensive humans - evi-
dence from direct intraneural recordings. Hypertension 14 (2), 177–183.

Arruda, E. M., Boyce, M. C., Feb. 1993. A three-dimensional constitutive model
for the large stretch behavior of rubber elastic materials. J Mech Phys Solids
41 (2), 389–412.

Association, A. H., 2012. Heart disease and stroke statistics.
URL www.heart.org/statistics

Ateshian, G. A., Nov. 2007. On the theory of reactive mixtures for modeling
biological growth. Biomech Model Mechan 6 (6), 423–445.

Baaijens, F., Bouten, C., Driessen, N., Jan. 2010. Modeling collagen remodeling.
J Biomech 43 (1), 166–175.

Bagshaw, R. J., Barrer, S. J., Cox, R. H., Nov. 1987. Connective-tissue analysis
of the canine circle of willis in hypertension. Neurosurgery 21 (5), 655–659.

Baselt, D. R., Revel, J. P., Baldeschwieler, J. D., Dec. 1993. Subfibrillar struc-
ture of type-i collagen observed by atomic-force microscopy. Biophys J 65 (6),
2644–2655.

Bazant, Z. P., Oh, B. H., 1985. Microplane model for progressive fracture of
concrete and rock. J Eng Mech-ASCE 111 (4), 559–582.



Congresos 245

Bazant, Z. P., Prat, P. C., Oct. 1988. Microplane model for brittle-plastic material
.i. theory. J Eng Mech-ASCE 114 (10), 1672–1687.

Bell, E., Ivarsoon, B., Merrill, C., 1979. Production of a tissue-like structure by
contraction of collagen lattices by human-fibroblasts of different proliferative
potential invitro. P Natl Acad Sci USA 76 (3), 1274–1278.

Bella, J., Eaton, M., Brodsky, B., Berman, H. M., Oct. 1994. Crystal-structure
and molecular-structure of a collagen-like peptide at 1.9-angstrom resolution.
Science 266 (5182), 75–81.

Bhattacharjee, A., Bansal, M., Mar. 2005. Collagen structure: The madras triple
helix and the current scenario. IUBMB Life 57 (3), 161–172.

Bingham, C., 1974. An antipodally symmetric distribution on the sphere. Ann
Stat 2 (6), 1201–1225.

Bischoff, J. E., Arruda, E. A., Grosh, K., Sep. 2002. A microstructurally based
orthotropic hyperelastic constitutive law. J Appl Mech 69 (5), 570–579.

Bischofs, I. B., Schwarz, U. S., Aug. 2003. Cell organization in soft media due to
active mechanosensing. Proc Nat Acad Sci USA 100 (16), 9274–9279.

Bishop, J. E., Butt, R., Dawes, K., Laurent, G., Jul. 1998. Mechanical load
enhances the stimulatory effect of pdgf on pulmonary artery fibroblast procol-
lagen synthesis. Chest 114 (1), 25S–25S.

Bishop, J. E., Lindahl, G., Apr. 1999. Regulation of cardiovascular collagen syn-
thesis by mechanical load. Cardiovasc Res 42 (1), 27–44.

Bishop, J. E., Rhodes, S., Laurent, G. J., Low, R. B., Stirewalt, W. S., Oct.
1994. Increased collagen-synthesis and decreased collagen degradation in right-
ventricular hypertrophy induced by pressure-overload. Cardiovas Res 28 (10),
1581–1585.

Blackman, B. R., Garcia-Cardena, G., Gimbrone, M. A., Aug. 2002. A new in
vitro model to evaluate differential responses of endothelial cells to simulated
arterial shear stress waveforms. J Biomech Eng-T ASME 124 (4), 397–407.



246 Resumen en Español

Bonet, J., Wood, R. D., 1997. Nonlinear Continuum Mechanics for Finite Element
Analysis. Cambridge University Press.

Border, W. A., Noble, N. A., Nov. 1994. Transforming growth-factor-beta in
tissue fibrosis. New Engl J Med 331 (19), 1286–1292.

Borges, L. F., Gutierrez, P. S., Cosiski Marana, H. R., Taboga, S. R., 2007.
Picrosirius-polarization staining method as an efficient histopathological tool
for collagenolysis detectin in vesical prolapse lesions. Micron 38 (6), 580–583.

Boutouyrie, P., Bussy, C., Lacolley, P., Girerd, X., Laloux, B., Laurent, S., Sep.
1999. Association between local pulse pressure, mean blood pressure, and large-
artery remodeling. Circulation 100 (13), 1387–1393.

Bozec, L., Horton, M., Jun. 2005. Topography and mechanical properties of single
molecules of type i collagen using atomic force microscopy. Biophys J 88 (6),
4223–4231.

Brayden, J. E., Nelson, M. T., Apr. 1992. Regulation of arterial tone by activation
of calcium-dependent potassium channels. Science 256 (5056), 532–535.

Bridget, B. K .and Fuster, V., 2010. Promoting Cardiovascular Health in the
Developing World: A Critical Challenge to Achieve Global Health. THE NA-
TIONAL ACADEMIES PRESS,Washington, D.C.

Brinkman, H. C., 1947. A calculation of the viscous force exerted by a flowing
fluid on a dense swarm of particles. Appl Scientific Res 1 (1), 27–34.

Brunner, H., Cockcroft, J. R., Deanfield, J., Donald, A., Ferrannini, E., Halcox,
J., Kiowski, W., Luscher, T. F., Mancia, G., Natali, A., Oliver, J. J., Pessina,
A. C., Rizzoni, D., Rossi, G. P., Salvetti, A., Spieker, L. E., Taddei, S., Webb,
D. J., Feb. 2005. Endothelial function and dysfunction. part ii: Association with
cardiovascular risk factors and diseases. a statement by the working group on
endothelins and endothelial factors of the european society of hypertension. J
Hypertens 23 (2), 233–246.



Congresos 247

Burke, J. M., Ross, R., 1979. Synthesis of connective tissue macromolecules by
smooth muscle. International review of connective tissue research 8, 119–57.

Burrowes, K. S., Hunter, P. J., Tawhai, M. H., Aug. 2005. Anatomically based
finite element models of the human pulmonary arterial and venous trees in-
cluding supernumerary vessels. J Appl Physiol 99 (2), 731–738.

Bustamante, C., Bryant, Z., Smith, S. B., Jan. 2003. Ten years of tension: single-
molecule DNA mechanics. Nature 421 (6921), 423–427.

Butt, R. P., Bishop, J. E., Apr. 1997. Mechanical load enhances the stimulatory
effect of serum growth factors on cardiac fibroblast procollagen synthesis. J
Mol Cell Cardiol 29 (4), 1141–1151.

Butt, R. P., Laurent, G. J., Bishop, J. E., Nov. 1995. Collagen production and
replication by cardiac fibroblasts is enhanced in response to diverse classes of
growth-factors. Eur J Cell Biol 68 (3), 330–335.

Cancel, L. M., Fitting, A., Tarbell, J. M., Jul. 2007. In vitro study of ldl trans-
port under pressurized (convective) conditions. Am J Physiol-Heart C 293 (1),
H126–H132.

Caner, F. C., Carol, I., Jun. 2006. Microplane constitutive model and computa-
tional framework for blood vessel tissue. J Biomech Eng 128 (3), 419–427.

Carol, I., Jirasek, M., Bazant, Z., Apr. 2001. A thermodynamically consistent
approach to microplane theory. part i. free energy and consistent microplane
stresses. Int J Solids Struct 38 (17), 2921–2931.

Carol, I., Jirasek, M., Bazant, Z. P., Jan. 2004. A framework for microplane
models at large strain, with application to hyperelasticity. Int J Solids Struct
41 (2), 511–557.

Carretero, O. A., Oparil, S., Jan. 2000. Essential hypertension part i: Definition
and etiology. Circulation 101 (3), 329–335.

Chien, S., 2007. Mechanotransduction and endothelial cell homeostasis: the wis-
dom of the cell. Am J Physiol Heart Circ Physiol 292 (3), H1209–1224.



248 Resumen en Español

Chobanian, A. V., Bakris, G. L., Black, H. R., Cushman, W. C., Green, L. A.,
Izzo, J. L., Jones, D. W., Materson, B. J., Oparil, S., Wright, J. T., Roccella,
E. J., May 2003. The seventh report of the joint national committee on pre-
vention, detection, evaluation, and treatment of high blood pressure - the jnc 7
report. Jama-journal of the American Medical Association 289 (19), 2560–2572.

Chockalingam, A., May 2007. Impact of world hypertension day. Can J Cardiol
23 (7), 517–519.

Clark, J., Glagov, S., 1985. Transmural organization of the arterial media. the
lamellar unit revisited. Arterioscler Thromb Vasc Biol 5 (1), 19–34.

Collinsworth, A. M., Torgan, C. E., Nagda, S. N., Rajalingam, R. J., Kraus,
W. E., Truskey, G. A., Nov. 2000. Orientation and length of mammalian skele-
tal myocytes in response to a unidirectional stretch. Cell Tissue Red 302 (2),
243–251.

Conway, J., 1984. Hemodynamic aspects of essential-hypertension in humans.
Physiol Rev 64 (2), 617–660.

Cowin, S. C., 1994. Optimization of the strain-energy density in linear anisotropic
elasticity. J Elasticity 34 (1), 45–68.

Cowin, S. C., 2004. Tissue growth and remodeling. Annu Rev Biomed Eng 6,
77–107.

Curmi, P. A., Juan, L., Tedgui, A., Jun. 1990. Effect of transmural pressure
on low-density-lipoprotein and albumin transport and distribution across the
intact arterial-wall. Circ Res 66 (6), 1692–1702.

Curry, R. M., 1984. Mechanics and thermodynamics of transcapillary exchange.
In: The Cardiovascular System. Microcirculation. American Physiological So-
ciety.

Dai, G. H., Kaazempur-Mofrad, M. R., Natarajan, S., Zhang, Y. Z., Vaughn, S.,
Blackman, B. R., Kamm, R. D., Garcia-Cardena, G., Gimbrone, M. A., Oct.



Congresos 249

2004. Distinct endothelial phenotypes evoked by arterial waveforms derived
from atherosclerosis-susceptible and -resistant regions of human vasculature.
Proc Nat Acad Sci USA 101 (41), 14871–14876.

Dangelo, G., Meininger, G. A., Jun. 1994. Transduction mechanisms involved in
the regulation of myogenic activity. Hypertension 23 (6), 1096–1105.

Davies, P. F., Remuzzi, A., Gordon, E. J., Dewey, C. F., Gimbrone, M. A., Apr.
1986. Turbulent fluid shear-stress induces vascular endothelial-cell turnover
invitro. Proc Nat Acad Sci USA 83 (7), 2114–2117.

Davis, M. J., Hill, M. A., Apr. 1999. Signaling mechanisms underlying the vas-
cular myogenic response. Physiol Rev 79 (2), 387–423.

De, R., Safran, S. A., Sep. 2008. Dynamical theory of active cellular response to
external stress. Phys Rev E 78 (3), 031923.

De, R., Zemel, A., Safran, S. A., Sep. 2007. Dynamics of cell orientation. Nat
Phys 3 (9), 655–659.

De, R., Zemel, A., Safran, S. A., Mar. 2008. Do cells sense stress or strain? mea-
surement of cellular orientation can provide a clue. Biophys J 94 (5), L29–L31.

Deen, W. M., 2011. Analysis of Transport Phenomena. Oxford University Press.

Delfino, A., Stergiopulos, N., Moore, J. E., Meister, J. J., Aug. 1997. Residual
strain effects on the stress field in a thick wall finite element model of the
human carotid bifurcation. J Biomech 30 (8), 777–786.

Demiray, H., Weizsacker, H. W., Pascale, K., Erbay, H., 1988. A stress-strain
relation for a rat abdominal aorta. J Biomech 21 (5), 369–374.

Diez, J., Laviades, C., Aug. 1997. Monitoring fibrillar collagen turnover in hy-
pertensive heart disease. Cardiovas Res 35 (2), 202–205.

Diez, J., Laviades, C., Mayor, G., Gil, M. J., Monreal, I., Mar. 1995. Increased
serum concentrations of procollagen peptides in essential-hypertension - rela-
tion to cardiac alterations. Circulation 91 (5), 1450–1456.



250 Resumen en Español

Discher, D. E., Janmey, P., Wang, Y. L., Nov. 2005. Tissue cells feel and respond
to the stiffness of their substrate. Science 310 (5751), 1139–1143.

Driessen, N. J. B., Cox, M. A. J., Bouten, C. V. C., Baaijens, F. P. T., Apr.
2008. Remodelling of the angular collagen fiber distribution in cardiovascular
tissues. Biomech Model Mechan 7 (2), 93–103.

Driessen, N. J. B., Peters, G. W. M., Huyghe, J. M., Bouten, C. V. C., Baaijens,
F. P. T., Aug. 2003. Remodelling of continuously distributed collagen fibres in
soft connective tissues. J Biomech 36 (8), 1151–1158.

Driessen, N. J. B., Wilson, W., Bouten, C. V. C., Baaijens, F. P. T., Jan. 2004.
A computational model for collagen fibre remodelling in the arterial wall. J
Theor Biol 226 (1), 53–64.

Eberth, J. F., Cardamone, L., Humphrey, J. D., Sep. 2011. Evolving biaxial
mechanical properties of mouse carotid arteries in hypertension. J Biomech
44 (14), 2532–2537.

Eberth, J. F., Popovic, N., Gresham, V. C., Wilson, E., Humphrey, J. D., Dec.
2010. Time course of carotid artery growth and remodeling in response to
altered pulsatility. Am J Physiol-Heart C 299 (6), H1875–H1883.

Education, D. S., 2013.
URL http://www.dynamicscience.com.au

Einstein, A., Jul. 1905. The motion of elements suspended in static liquids as
claimed in the molecular kinetic theory of heat. Annalen Der Physik 17 (8),
549–560.

Elliott, W. J., 2003. The economic impact of hypertension. J Clin Hypertens
(Greenwich, Conn.) 5 (3 Suppl 2), 3–13.

Farcas, M. A., Rouleau, L., Fraser, R., Leask, R. L., Oct. 2009. The development
of 3-d, in vitro, endothelial culture models for the study of coronary artery
disease. Biomed Eng Online 8, 30.



Congresos 251

Faust, U., Hampe, N., Rubner, W., Kirchgessner, N., Safran, S., Hoffmann, B.,
Merkel, R., Dec. 2011. Cyclic stress at mhz frequencies aligns fibroblasts in
direction of zero strain. Plos One 6 (12), e28963.

Feihl, F., Liaudet, L., Levy, B. I., Waeber, B., May 2008. Hypertension and
microvascular remodelling. Cardiovas Res 78 (2), 274–285.

Fick, A., 1855. On liquid diffusion. Phil. Mag 10, 30–39.

Fisher, R., May 1953. Dispersion on a sphere. Proc R Soc Lon Ser-A 217, 295–305.

Folkow, B., 1982. Physiological-aspects of primary hypertension. Physiol Rev
62 (2), 347–504.

Folkow, B., Grimby, G., Thulesius, O., 1958. Adaptive structural changes of the
vascular walls in hypertension and their relation to the control of the peripheral
resistance. Acta Physiol Scand 44 (3-4), 255–272.

Fountain, H., 2012.
URL http://www.nytimes.com/

Fratzl, P., 2008. Collagen: Structure and Mechanics. Springer (New York).

Fridez, P., Makino, A., Kakoi, D., Miyazaki, H., Meister, J. J., Hayashi, K., Ster-
giopulos, N., Jul. 2002. Adaptation of conduit artery vascular smooth muscle
tone to induced hypertension. Ann Biomed Eng 30 (7), 905–916.

Fung, Y., Liu, S., 1989. Change of residual strains in arteries due to hypertrophy
caused by aortic constriction. Circ Res 65 (5), 1340–1349.

Fung, Y. C., 1990. Biomechanics: Mechanical Properties of Living Tissues.
Springer.

Fung, Y. C., Fronek, K., Patitucci, P., 1979. Pseudoelasticity of arteries and the
choice of its mathematical expression. Am J Physiol Heart Circ Physiol 237 (5),
H620–631.



252 Resumen en Español

Galbraith, C. G., Skalak, R., Chien, S., 1998. Shear stress induces spatial re-
organization of the endothelial cell cytoskeleton. Cell Motil Cytoskel 40 (4),
317–330.

Galis, Z. S., Khatri, J. J., Feb. 2002. Matrix metalloproteinases in vascular re-
modeling and atherogenesis - the good, the bad, and the ugly. Circ Res 90 (3),
251–262.

Galis, Z. S., Muszynski, M., Sukhova, G. K., Simonmorrisey, E., Unemori, E. N.,
Lark, M. W., Amento, E., Libby, P., Jul. 1994. Cytokine-stimulated human
vascular smooth-muscle cells synthesize a complement of enzymes required for
extracellular-matrix digestion. Circ Res 75 (1), 181–189.

Ganghoffer, J. F., Sep. 2010. Mechanical modeling of growth considering domain
variation. part ii: Volumetric and surface growth involving eshelby tensors. J
Mech Phys Solids 58 (9), 1434–1459.

Gao, H., Long, Q., 2008. Effects of varied lipid core volume and fibrous cap thick-
ness on stress distribution in carotid arterial plaques. J Biomech 41, 3053–3059.

Gao, H., Long, Q., Graves, M., Gillard, J., Li, Z., 2009. Carotid arterial plaque
stress analysis using fluid-structure interactive simulation based on in-vivo
magnetic resonance images of four patients. J Biomech 42, 1416–1423.

Garcia, A., 2012. Experimental and numerical framework for modelling vascular
diseases and medical devices. Ph.D. thesis, University of Zaragoza.

Garcia, A., Pena, E., Laborda, A., Lostale, F., De Gregorio, M. A., Doblare, M.,
Martinez, M. A., Jul. 2011. Experimental study and constitutive modelling of
the passive mechanical properties of the porcine carotid artery and its relation
to histological analysis: Implications in animal cardiovascular device trials.
Med Eng Phys 33 (6), 665–676.

Garikipati, K., Arruda, E. M., Grosh, K., Narayanan, H., Calve, S., Jul. 2004.
A continuum treatment of growth in biological tissue: the coupling of mass
transport and mechanics. J Mech Phys Solids 52 (7), 1595–1625.



Congresos 253

Garikipati, K., Narayanan, H., Arruda, E. M., Grosh, K., Calve, S., 2005. Mate-
rial forces in the context of biotissue remodelling. In: Steinmann, P., Maugin,
G. A. (Eds.), Mechanics of Material Forces. Springer, New York.

Garikipati, K., Olberding, J., Narayanan, H., Arruda, E., Grosh, K., Calve, S.,
Jul. 2006. Biological remodelling: Stationary energy, configurational change,
internal variables and dissipation. J Mech Phys Solids 54 (7), 1493–1515.

Gasser, T. C., Gallinetti, S., Xing, X., Forsell, C., Swedenborg, J., Roy, J., 2012.
Spatial orientation of collagen fibers in the abdominal aortic aneurysm’s wall
and its relation to wall mechanics. Acta Biomater Accepted for publication.

Gasser, T. C., Ogden, R. W., Holzapfel, G. A., 2006. Hyperelastic modelling of
arterial layers with distributed collagen fibre orientations. J Roy Soc Interface
3, 15–35.

Glagov, S., Zarins, C., Giddens, D. P., Ku, D. N., Oct. 1988. Hemodynamics
and atherosclerosis - insights and perspectives gained from studies of human
arteries. Arch Pathol Lab Med 112 (10), 1018–1031.

Gleason, R., Humphrey, J., Jun. 2005. Effects of a sustained extension on arterial
growth and remodeling: a theoretical study. J Biomech 38 (6), 1255–1261.

Gleason, R. L., Humphrey, J. D., 2004. A mixture model of arterial growth and
remodeling in hypertension: Altered muscle tone and tissue turnover. J Vasc
Res 41 (4), 352–363.

Goektepe, S., Abilez, O. J., Kuhl, E., Oct. 2010. A generic approach towards
finite growth with examples of athlete’s heart, cardiac dilation, and cardiac
wall thickening. J Mech Phys Solids 58 (10), 1661–1680.

Goli-Malekabadi, Z., Tafazzoli-Shadpour, M., Rabbani, M., Janmaleki, M., Oct.
2011. Effect of uniaxial stretch on morphology and cytoskeleton of human
mesenchymal stem cells: static vs. dynamic loading. Biomedizinische Technik
56 (5), 259–265.



254 Resumen en Español

Goriely, A., Amar, M., Sep. 2007. On the definition and modeling of incremental,
cumulative, and continuous growth laws in morphoelasticity. Biomech Model
Mechan 6 (5), 289–296.

Grytz, R., Meschke, G., Apr. 2010. A computational remodeling approach to
predict the physiological architecture of the collagen fibril network in corneo-
scleral shells. Biomech Model Mechan 9 (2), 225–235.

Gupta, V., Grande-Allen, K. J., Dec. 2006. Effects of static and cyclic loading
in regulating extracellular matrix synthesis by cardiovascular cells. Cardiovas
Res 72 (3), 375–383.

Haga, J. H., Li, Y. S. J., Chien, S., 2007. Molecular basis of the effects of me-
chanical stretch on vascular smooth muscle cells. J Biomech 40 (5), 947–960.

Hajdu, M. A., Baumbach, G. L., Mar. 1994. Mechanics of large and small
cerebral-arteries in chronic hypertension. Am J Physiol 266 (3), H1027–H1033.

Hamet, P., Hadrava, V., Kruppa, U., Tremblay, J., Jun. 1991. Transforming
growth-factor beta-1 expression and effect in aortic smooth-muscle cells from
spontaneously hypertensive rats. Hypertension 17 (6), 896–901.

Hariton, I., deBotton, G., Gasser, T. C., Holzapfel, G. A., Apr. 2007. Stress-
driven collagen fiber remodeling in arterial walls. Biomech Model Mechan 6 (3),
163–175.

Harrigan, T. P., Hamilton, J. J., May 1992. An analytical and numerical study
of the stability of bone remodeling theories - dependence on microstructural
stimulus. J Biomech 25 (5), 477–488.

Hayakawa, K., Sato, N., Obinata, T., Aug. 2001. Dynamic reorientation of cul-
tured cells and stress fibers under mechanical stress from periodic stretching.
Exp Cell Res 268 (1), 104–114.

Hayashi, K., Handa, H., Nagasawa, S., Okumura, A., Moritake, K., 1980. Stiffness
and elastic behavior of human intracranial and extracranial arteries. J Biomech
13 (2), 175–179.



Congresos 255

Heidenreich, E. A., Ferrero, J. M., Doblare, M., Rodriguez, J. F., Jul. 2010. Adap-
tive macro finite elements for the numerical solution of monodomain equations
in cardiac electrophysiology. Ann Biomed Eng 38 (7), 2331–2345.

Himpel, G., Kuhl, E., Menzel, A., Steinmann, P., 2005. Computational modelling
of isotropic multiplicative growth. CMES 8 (2), 119–134.

Himpel, G., Menzel, A., Kuhl, E., Steinmann, P., Mar. 2008. Time-dependent
fibre reorientation of transversely isotropic continua . finite element formulation
and consistent linearization. Intl J Numer Meth Eng 73 (10), 1413–1433.

Holzapfel, G. A., 2000. Nonlinear Solid Mechanics: A Continuum Approach for
Engineering. John Wiley & Sons.

Holzapfel, G. A., 2004. Encyclopedia of Computational Mechanics.

Holzapfel, G. A., Gasser, T. C., Ogden, R. W., Jul. 2000. A new constitutive
framework for arterial wall mechanics and a comparative study of material
models. J Elasticity 61 (1), 1–48.

Holzapfel, G. A., Sommer, G., Gasser, C. T., Regitnig, P., Nov. 2005. Determi-
nation of layer-specific mechanical properties of human coronary arteries with
nonatherosclerotic intimal thickening and related constitutive modeling. Am J
Physiol Heart Circ Physiol 289 (5), H2048–2058.

Hsu, H. J., Lee, C. F., Kaunas, R., Mar. 2009. A dynamic stochastic model of
frequency-dependent stress fiber alignment induced by cyclic stretch. Plos One
4 (3), e4853.

Hu, J. J., Ambrus, A., Fossum, T. W., Miller, M. W., Humphrey, J. D., Wilson,
E., Apr. 2008. Time courses of growth and remodeling of porcine aortic me-
dia during hypertension: A quantitative immunohistochemical examination. J
Histochem Cytochem 56 (4), 359–370.

Hu, J. J., Baek, S., Humphrey, J. D., 2007a. Stress-strain behavior of the pas-
sive basilar artery in normotension and hypertension. J Biomech 40 (11),
2559–2563.



256 Resumen en Español

Hu, J.-J., Fossum, T. W., Miller, M. W., Xu, H., Liu, J.-C., Humphrey, J. D.,
Jan. 2007b. Biomechanics of the porcine basilar artery in hypertension. Ann
Biomed Eng V35 (1), 19–29.

Huang, K., 1987. Statistical Mechanics. Wiley, 2 edition.

Huang, Z. J., Tarbell, J. M., Jul. 1997. Numerical simulation of mass transfer in
porous media of blood vessel walls. Am J Physiol-Heart C 273 (1), H464–H477.

Hughes, T. J. R., 2000. The Finite Element Method. Linear Static and Dynamic
Finite Element Analysis. Dover Publications.

Hulmes, D. J. S., WESS, T. J., PROCKOP, D. J., FRATZL, P., May 1995. Radial
packing, order, and disorder in collagen fibrils. Biophys J 68 (5), 1661–1670.

Humphrey, J., Rajagopal, K., Nov. 2003. A constrained mixture model for arterial
adaptations to a sustained step change in blood flow. Biomech Model Mechan
V2 (2), 109–126.

Humphrey, J. D., Dec. 2001. Stress, strain, and mechanotransduction in cells. J
Biomech Eng 123 (6), 638–641.

Humphrey, J. D., 2002. Cardiovascular Solid Mechanics: Cells, Tissues, and Or-
gans. Springer-Verlag.

Humphrey, J. D., Jan. 2003. Continuum biomechanics of soft biological tissues.
P Roy Soc A-Math Phy 459 (2029), 3–46.

Humphrey, J. D., 2009. Need for a continuum biochemomechanical theory of soft
tissue and cellular growth and remodeling. In: Biomechanical Modelling at the
Molecular, Cellular and Tissue Levels. Springer Vienna.

Humphrey, J. D., Rajagopal, K. R., Mar. 2002. A constrained mixture model for
growth and remodeling of soft tissues. Math Models Methods Appl Sci 12 (3),
407–430.

Hunter, P. J., McCulloch, A. D., ter Keurs, H. E. D. J., 1998. Modelling the me-
chanical properties of cardiac muscle. Prog Biophys Mol Biol 69 (2-3), 289–331.



Congresos 257

Imatani, S., Maugin, G. A., 2002. A constitutive model for material growth and
its application to three-dimensional finite element analysis. Mech Res Commun
29 (6), 477–483.

Ingber, D. E., Apr. 2003. Tensegrity i. cell structure and hierarchical systems
biology. J Cell Sci 116 (7), 1157–1173.

Ingber, D. E., Jun. 2008. Tensegrity-based mechanosensing from macro to micro.
Progress In Biophysics & Molecular Biology 97 (2-3), 163–179.

Jani, B., Rajkumar, C., Jun. 2006. Ageing and vascular ageing. Postgrad Med J
82 (968), 357–362.

Jeffery, T. K., Wanstall, J. C., Oct. 2001. Pulmonary vascular remodeling: a tar-
get for therapeutic intervention in pulmonary hypertension. Pharmacol Ther-
apeut 92 (1), 1–20.

Jousilahti, P., Vartiainen, E., Tuomilehto, J., Puska, P., Mar. 1999. Sex, age,
cardiovascular risk factors, and coronary heart disease - a prospective follow-up
study of 14 786 middle-aged men and women in finland. Circulation 99 (9),
1165–1172.

Junqueira, L. C. U., Bignolas, G., Brentani, R. R., 1979. Picrosirius staining
plus polarization microscopy, a specific method for collagen detection in tissue-
sections. Histochem J 11 (4), 447–455.

Kaplan, N. . M., Victor, R. G., 2009. Kaplan’s Clinical Hypertension. Lippincott
Williams & Wilkins.

Kardas, D., Nackenhorst, U., Balzani, D., 2012. Computational model for the
cell-mechanical response of the osteocyte cytoskeleton based on self-stabilizing
tensegrity structures. Biomech Model Mechan.

Karsaj, I., Sansour, C., Soric, J., Oct. 2009. The modelling of fibre reorientation
in soft tissue. Biomech Model Mechan 8 (5), 359–370.

Kielty, C. M., 2006. Elastic fibres in health and disease. Expert reviews in molec-
ular medicine 8 (19), 1–23.



258 Resumen en Español

Kielty, C. M., Sherratt, M. J., Shuttleworth, C. A., Jul. 2002. Elastic fibres. J
Cell Sci 115 (14), 2817–2828.

Kim, D. W., Gotlieb, A. I., Langille, B. L., Jul. 1989. Invivo modulation of
endothelial-f-actin microfilaments by experimental alterations in shear-stress.
Arteriosclerosis 9 (4), 439–445.

Kim, W. S., Tarbell, J. M., May 1994. Macromolecular transport through the
deformable porous-media of an artery wall. J Biomech Eng-T ASME 116 (2),
156–163.

Klisch, S. M., Sah, R. L., Hoger, A., Jun. 2005. A cartilage growth mixture
model for infinitesimal strains: solutions of boundary-value problems related
to in vitro growth experiments. Biomech Model Mechan 3 (4), 209–223.

Koenders, M. M. J. F., Yang, L., Wismans, R. G., van der Werf, K. O., Reinhardt,
D. P., Daamen, W., Bennink, M. L., Dijkstra, P. J., van Kuppevelt, T. H.,
Feijen, J., May 2009. Microscale mechanical properties of single elastic fibers:
The role of fibrillin-microfibrils. Biomaterials 30 (13), 2425–2432.

Kratky, O., Porod, G., 1949. Rontgenuntersuchung geloster fadenmolekule. Recl
Trav Cnim Pay B 68 (12), 1106–1122.

Kroon, M., Jun. 2010. A continuum mechanics framework and a constitutive
model for remodelling of collagen gels and collagenous tissues. J Mech Phys
Solids 58 (6), 918–933.

Kuhl, E., 2003. Theory and numerics of open system continuum thermodynamics
- spatial and material settings -. Ph.D. thesis, University of Kaiserslautern.

Kuhl, E., Garikipati, K., Arruda, E. M., Grosh, K., Jul. 2005. Remodeling of
biological tissue: Mechanically induced reorientation of a transversely isotropic
chain network. J Mech Phys Solids 53 (7), 1552–1573.

Kuhl, E., Holzapfel, G., Nov. 2007. A continuum model for remodeling in living
structures. J Mater Sci 42 (21), 8811–8823.



Congresos 259

Kuhl, E., Menzel, A., Steinmann, P., Sep. 2003a. Computational modeling of
growth. Comput Mech V32 (1), 71–88.

Kuhl, E., Menzel, A., Steinmann, P., Sep. 2003b. Computational modeling of
growth - a critical review, a classification of concepts and two new consistent
approaches. Comput Mech 32 (1-2), 71–88.

Kuhl, E., Ramm, E., de Borst, R., 2000. An anisotropic gradient damage model
for quasi-brittle materials. Comput Method Appl M 183 (1-2), 87–103.

Kuhl, E., Steinmann, P., 2003. Theory and numerics of geometrically non-linear
open system mechanics. Int J Numer Meth Eng 58 (11), 1593–1615.

Kuhl, E., Steinmann, P., Carol, I., Apr. 2001. A thermodynamically consistent
approach to microplane theory. part ii. dissipation and inelastic constitutive
modeling. Int J Solids Struct 38 (17), 2933–2952.

Landuyt, M., 2006. Structural quantification of collagen fibers in abdominal aor-
tic aneurysms. Master’s thesis, Royal Institute of Technology in Stockholm,
Department of Solid Mechanics and Ghent University, Department of Civil
Engineering.

Laviades, C., Varo, N., Fernandez, J., Mayor, G., Gil, M. J., Monreal, I., Diez,
J., Aug. 1998. Abnormalities of the extracellular degradation of collagen type
i in essential hypertension. Circulation 98 (6), 535–540.

Lee, E. H., 1969. Elastic-plastic deformation at finite strains. J Appl Mech 36 (1),
1–&.

Leonard, S. L., 2008. Braunwald’s Heart Disease Review and Assessment. Saun-
ders.

Levesque, M. J., Liepsch, D., Moravec, S., Nerem, R. M., Mar. 1986. Correla-
tion of endothelial-cell shape and wall shear-stress in a stenosed dog aorta.
Arteriosclerosis 6 (2), 220–229.

Levick, J. R., Oct. 1987. Flow through interstitium and other fibrous matrices.
Q J Exp Physiol CMS 72 (4), 409–438.



260 Resumen en Español

Li, Y. S. J., Haga, J. H., Chien, S., Oct. 2005. Molecular basis of the effects of
shear stress on vascular endothelial cells. J Biomech 38 (10), 1949–1971.

Lifton, R. P., Gharavi, A. G., Geller, D. S., Feb. 2001. Molecular mechanisms of
human hypertension. Cell 104 (4), 545–556.

Lillie, M. A., David, G. J., Gosline, J. M., 1998. Mechanical role of elastin-
associated microfibrils in pig aortic elastic tissue. Connec Tissue Research
37 (1-2), 121–141.

Lusis, A. J., Sep. 2000. Atherosclerosis. Nature 407 (6801), 233–241.

Malek, A. M., Izumo, S., Apr. 1996. Mechanism of endothelial cell shape change
and cytoskeletal remodeling in response to fluid shear stress. J Cell Sci 109,
713–726.

Malve, M., Chandra, S., García, A., Mena, A., Martínez, M. A., Finol,
E. A., Doblaré, M., 1996. Impedance-based outflow boundary conditions
for human carotid haemodynamics. Comput Meth Biomech Biomed Eng
DOI:10.1080/10255842.2012.744396, pMID: 23387938.
URL http://www.tandfonline.com/doi/abs/10.1080/10255842.2012.744396

Mancia, G., Rosei, E. A., Cifkova, R., DeBacker, G., Erdine, S., Fagard, R.,
Farsang, C., Heagerty, A. M., Kawecka-Jaszcs, K., Kiowski, W., Kjeldsen, S.,
Luscher, T., McInnes, G., Mallion, J. M., Brien, E. O., Poulter, N. R., Priori,
S. G., Rahn, K. H., Rodicio, J. L., Ruilope, L. M., Safar, M., Staessen, J. A.,
van Zwieten, P., Waeber, B., Williams, B., Zanchetti, A., Zannad, F., Jun.
2003. 2003 european society of hypertension - european society of cardiology
guidelines for the management of arterial hypertension. J Hypertens 21 (6),
1011–1053.

Marsden, J. E., Hughes, T. J. R., 1994. Mathematical Foundations of Elasticity.
Dover Publications.

Marsden, J. E., Ratiu, T. S., 1999. Introduction to Mechanics and Symmetry: A
Basic Exposition of Classical Mechanical Systems. Springer Verlag.



Congresos 261

Massague, J., Dec. 2000. How cells read tgf-beta signals. Nat Rev Mol Cell Bio
1 (3), 169–178.

Massague, J., Jul. 2008. Tgf beta in cancer. Cell 134 (2), 215–230.

Massague, J., Blain, S. W., Lo, R. S., Oct. 2000. Tgf beta signaling in growth
control, cancer, and heritable disorders. Cell 103 (2), 295–309.

Maurin, B., Canadas, P., Baudriller, H., Montcourrier, P., Bettache, N., 2008.
Mechanical model of cytoskeleton structuration during cell adhesion and
spreading. J Biomech 41 (9), 2036–2041.

Maxwell, J. C., 1871. Theory of heat. Westport, Conn., Greenwood Press.

McCulloch, A., Bassingthwaighte, J., Hunter, P., Noble, D., 1998. Computa-
tional biology of the heart: from structure to function. Prog Biophys Mol Biol
69 (2-3), 153–155.

McNulty, M., Mahmud, A., Spiers, P., Feely, J., Nov. 2006. Collagen type-i degra-
dation is related to arterial stiffness in hypertensive and normotensive subjects.
J Hum Hypertens 20 (11), 867–873.

Menzel, A., Mar. 2004. Modelling of anisotropic growth in biological tissues.
Biomech Model Mechan 3 (3), 147–171.

Menzel, A., 2007. A fibre reorientation model for orthotropic multiplicative
growth. Biomech Model Mechan 6, 303–320.

Menzel, A., Harrysson, M., Ristinmaa, M., 2008. Towards an orientation-
distribution-based multi-scale approach for remodelling biological tissues. Com-
put Meth Biomech Biomed Eng 11 (5), 505–524.

Menzel, A., Steinmann, P., Apr. 2003. Geometrically non-linear anisotropic in-
elasticity based on fictitious configurations: Application to the coupling of
continuum damage and multiplicative elasto-plasticity. Int J Numer Meth Eng
56 (14), 2233–2266.



262 Resumen en Español

Menzel, A., Waffenschmidt, T., Sep. 2009. A microsphere-based remodelling for-
mulation for anisotropic biological tissues. Phil Trans R Soc A 367 (1902),
3499–3523.

Miehe, C., Göktepe, S., Lulei, F., Nov. 2004. A micro-macro approach to rubber-
like materials–part i: the non-affine micro-sphere model of rubber elasticity. J
Mech Phys Solids 52 (11), 2617–2660.

Mofrad, M. K., Kamm, R. D., 2006. Cytoskeletal Mechanics - Models and Mea-
surements. Cambridge University Press.

Mofrad, M. R. K., Kamm, R. D. (Eds.), 2010. Cellular Mechanotransduction.
Cambridge University Press.

Mulvany, M. J., Aalkjaer, C., Oct. 1990. Structure and function of small arteries.
Physiol Rev 70 (4), 921–961.

Murtada, S. I., Kroon, M., Holzapfel, G. A., Dec. 2010. A calcium-driven
mechanochemical model for prediction of force generation in smooth muscle.
Biomech Model Mechan 9 (6), 749–762.

Nagase, H., Woessner, J. F., Jul. 1999. Matrix metalloproteinases. J Biol Chem
274 (31), 21491–21494.

Narayan, K. M. V., Boyle, J. P., Thompson, T. J., Sorensen, S. W., Williamson,
D. F., Oct. 2003. Lifetime risk for diabetes mellitus in the united states. Jama-
journal of the American Medical Association 290 (14), 1884–1890.

Needleman, S. E., 2009.

O’Brien, E., Beevers, D. G., Lip, G. Y. H. (Eds.), 2007. ABC of Hypertension.
BMJ Books.

O’Callaghan, C. J., Williams, B., Sep. 2000. Mechanical strain-induced extra-
cellular matrix production by human vascular smooth muscle cells - role of
tgf-beta 1. Hypertension 36 (3), 319–324.



Congresos 263

O’Connell, M. K., Murthy, S., Phan, S., Xu, C., Buchanan, J., Spilker, R.,
Dalman, R. L., Zarins, C. K., Denk, W., Taylor, C. A., Apr. 2008. The three-
dimensional micro- and nanostructure of the aortic medial lamellar unit mea-
sured using 3d confocal and electron microscopy imaging. Matrix Biol 27 (3),
171–181.

Ogden, R. W., 1996. Non-Linear Elastic Deformations. Dover Publications.

Ogston, A. G., Preston, B. N., Wells, J. D., Ogston, A. G., Preston, B. N.,
Snowden, J. M., Wells, J. D., 1973. Transport of compact particles through
solutions of chain-polymers. P Roy Soc Lond A Mat 333 (1594), 297–316.

Ohashi, T., Sato, M., Jul. 2005. Remodeling of vascular endothelial cells exposed
to fluid shear stress: experimental and numerical approach rid a-5424-2012.
Fluid Dyn Res 37 (1-2), 40–59.

Olgac, U., Kurtcuoglu, V., Poulikakos, D., Feb. 2008. Computational modeling
of coupled blood-wall mass transport of ldl: effects of local wall shear stress.
Am J Physiol-Heart C 294 (2), H909–H919.

Orgel, J. P. R. O., Antonio, J. D. S., Antipova, O., Feb. 2011. Molecular and
structural mapping of collagen fibril interactions. Connect Tissue Res 52 (1),
2–17.

Orgel, J. P. R. O., Irving, T. C., Miller, A., Wess, T. J., Jun. 2006. Microfibrillar
structure of type i collagen in situ. P Natl Acad Sci USA 103 (24), 9001–9005.

Orgel, J. P. R. O., Miller, A., Irving, T. C., Fischetti, R. F., Hammersley, A. P.,
Wess, T. J., Nov. 2001. The in situ supermolecular structure of type i collagen.
Structure 9 (11), 1061–1069.

Osol, G., 1995. Mechanotransduction by vascular smooth muscle. J Vasc Res 32,
275–292.

Owens, G. K., Dec. 1989. Control of hypertrophic versus hyperplastic growth of
vascular smooth-muscle cells. Am J Physiol 257 (6), H1755–H1765.



264 Resumen en Español

Owens, G. K., Jul. 1995. Regulation of differentiation of vascular smooth-muscle
cells. Physiol Rev 75 (3), 487–517.

Owens, G. K., Rabinovitch, P. S., Schwartz, S. M., 1981. Smooth-muscle cell
hypertrophy versus hyperplasia in hypertension. P Natl Acad Sci-biol 78 (12),
7759–7763.

Owens, G. K., Schwartz, S. M., 1983. Vascular smooth-muscle cell hypertrophy
and hyperploidy in the goldblatt hypertensive rat. Circ Res 53 (4), 491–501.

Pandolfi, A., Manganiello, F., Nov. 2006. A model for the human cornea: con-
stitutive formulation and numerical analysis. Biomech Model Mechan 5 (4),
237–246.

PDBe, 2013. The protein data bank in europe.
URL http://www.ebi.ac.uk/pdbe/

Peña, E., Calvo, B., Martinez, M. A., Doblare, M., 2006. A three-dimensional
finite element analysis of the combined behavior of ligaments and menisci in
the healthy human knee joint. J Biomech 39 (9), 1686–1701.

Perktold, K., Rappitsch, G., 1995. Computer simulation of local blood flow and
vessel mechanics in a compliant carotid artery bifurcation model. J Biomech
28 (7), 845 – 856.

Philibert, J., 2006. One and a half century of diffusion : Fick , einstein , before
and beyond. Mat Sci+ 4 (6), 1–19.

Porreca, E., DiFebbo, O., Mincione, G., Reale, M., Baccante, G., Guglielmi,
M. D., Cuccurullo, F., Colletta, G., Jul. 1997. Increased transforming growth
factor-beta production and gene expression by peripheral blood monocytes of
hypertensive patients. Hypertension 30 (1), 134–139.

Rachev, A., Greenwald, S. E., May 2003. Residual strains in conduit arteries. J
Biomech 36 (5), 661–670.

Raines, E. W., Aug. 2004. Pdgf and cardiovascular disease. Cytokine Growth F
R 15 (4), 237–254.



Congresos 265

Rapaport, D. C. (Ed.), 2002. The Art of Molecular Dynamics Simulation. Cam-
bridge University Press.

Rausch, M., Dam, A., Göktepe, S., Abilez, O., Kuhl, E., 2011. Computa-
tional modeling of growth: Systemic and pulmonary hypertension in the heart.
Biomech Model Mechanobiol 10, 799–811.

Rhodin, J. A. G., 1980. Handbook of Physiology, The Cardiovascular System.
Vol. 2. American Physiological Society, Bethesda, Maryland, Ch. Architecture
of the vessel wall, pp. 1–31.

Rice, J. C., COWIN, S. C., BOWMAN, J. A., 1988. On the dependence of
the elasticity and strength of cancellous bone on apparent density. J Biomech
21 (2), 155–168.

Roberts, A. B., Sporn, M. B., Assoian, R. K., Smith, J. M., Roche, N. S., Wake-
field, L. M., Heine, U. I., Liotta, L. A., Falanga, V., Kehrl, J. H., Fauci, A. S.,
Jun. 1986. Transforming growth-factor type-beta - rapid induction of fibrosis
and angiogenesis invivo and stimulation of collagen formation invitro. P Natl
Acad Sci USA 83 (12), 4167–4171.

Rodriguez, E. K., Hoger, A., McCulloch, A. D., Apr. 1994. Stress-dependent
finite growth in soft elastic tissues. J Biomech 27 (4), 455–467.

Rodriguez, J., Goicolea, J. M., Gabaldon, F., 2007. A volumetric model for
growth of arterial walls with arbitrary geometry and loads. J Biomech 40 (5),
961–971.

Rogers, J. M., McCulloch, A. D., Aug. 1994. A collocation-galerkin finite-element
model of cardiac action-potential propagation. IEEE T Bio-Med Eng 41 (8),
743–757.

Rosenbloom, J., Abrams, W., Mecham, R., Oct. 1993. Extracellular matrix 4:
the elastic fiber. FASEB J. 7 (13), 1208–1218.

Rubbens, M. P., Driessen-Mol, A., Boerboom, R. A., Koppert, M. M. J., van As-
sen, H. C., Romeny, B. M. T., Baaijens, F. P. T., Bouten, C. V. C., Jul. 2009.



266 Resumen en Español

Quantification of the temporal evolution of collagen orientation in mechani-
cally conditioned engineered cardiovascular tissues. Ann Biomed Eng 37 (7),
1263–1272.

Runanyi, G. M., Freay, A. D., Kauser, K., Johns, A., Harder, D. R., Mar. 1990.
Mechanoreception by the endothelium - mediators and mechanisms of pressure-
induced and flow-induced vascular-responses. Blood Vessels 27 (2-5), 246–257.

Saez, A., Buguin, A., Silberzan, P., Ladoux, B., Dec. 2005. Is the mechanical
activity of epithelial cells controlled by deformations or forces? Biophys J
89 (6), L52–L54.

Safar, M. E., London, G. M., Aug. 1987. Arterial and venous compliance in
sustained essential-hypertension. Hypertension 10 (2), 133–139.

Sander, E. A., Stylianopoulos, T., Tranquillo, R. T., Barocas, V. H., Oct.
2009. Image-based multiscale modeling predicts tissue-level and network-level
fiber reorganization in stretched cell-compacted collagen gels. PNAS 106 (42),
17675–17680.

Sarzani, R., Brecher, P., Chobanian, A. V., Apr. 1989. Growth-factor expression
in aorta of normotensive and hypertensive rats. J Clin Invest 83 (4), 1404–1408.

Sasaki, N., Odajima, S., Sep. 1996. Elongation mechanism of collagen fibrils and
force-strain relations of tendon at each level of structural hierarchy. J Biomech
29 (9), 1131–1136.

Schaan, B. D., Quadros, A. S., Sarmento-Leite, R., De Lucca, G., Bender, A.,
Bertoluci, M., Jul. 2007. ’correction:’ serum transforming growth factor beta-
1 (tgf-beta-1) levels in diabetic patients are not associated with pre-existent
coronary artery disease. Cardiovasc Diabetol 6, 19.

Schauer, K., 2013. B. goud lab, institut curie.

Schiffrin, E. L., Park, J. B., Intengan, H. D., Touyz, R. M., Apr. 2000. Correc-
tion of arterial structure and endothelial dysfunction in human essential hyper-



Congresos 267

tension by the angiotensin receptor antagonist losartan. Circulation 101 (14),
1653–1659.

Schofield, I., Malik, R., Izzard, A., Austin, C., Heagerty, A., Dec. 2002. Vascular
structural and functional changes in type 2 diabetes mellitus - evidence for
the roles of abnormal myogenic responsiveness and dyslipidemia. Circulation
106 (24), 3037–3043.

Schubert, R., Mulvany, M. J., Apr. 1999. The myogenic response: established
facts and attractive hypotheses. Clinical Science 96 (4), 313–326.

SCIENCEphotoLIBRARY, 2013.
URL http://www.sciencephoto.com

Sherebrin, M. H., 1983. Mechanical anisotropy of purified elastin from the tho-
racic aorta of dog and sheep. Can J Physiol Pharma 61 (6), 539–545.

Sherratt, M. J., Baldock, C., Haston, J. L., Holmes, D. F., Jones, C. J. P.,
Shuttleworth, C. A., Wess, T. J., Kielty, C. M., Sep. 2003. Fibrillin microfibrils
are stiff reinforcing fibres in compliant tissues. J Mol Bio 332 (1), 183–193.

Silver, F. H., Freeman, J. W., Seehra, G. P., Oct. 2003. Collagen self-assembly
and the development of tendon mechanical properties. J Biomech 36 (10),
1529–1553.

Skalak, R., Dasgupta, G., Moss, M., Otten, E., Dullemeijer, P., Vilmann, H.,
Feb. 1982. Analytical description of growth. J Theor Biol 94 (3), 555–577.

Sommer, G., Holzapfel, G. A., Jan. 2012. 3d constitutive modeling of the biaxial
mechanical response of intact and layer-dissected human carotid arteries. J
Mech Behav Biomed 5 (1), 116–128.

Sommer, G., Regitnig, P., Koltringer, L., Holzapfel, G. A., Mar. 2010. Biaxial
mechanical properties of intact and layer-dissected human carotid arteries at
physiological and supraphysiological loadings. Am J Physiol-Heart C 298 (3),
H898–H912.



268 Resumen en Español

Spencer, A. J. M., 1971. Theory of invariants. In: Continuum Physiscs. Academic
Press, New York, pp. 239–253.

Stalhand, J., Klarbring, A., Holzapfel, G. A., Jan. 2011. A mechanochemical 3d
continuum model for smooth muscle contraction under finite strains. J Theor
Biol 268 (1), 120–130.

Stein, E., de Borst, R., Hughes, T. J. R., 2004. Encyclopedia of Computational
Mechanics. Vol. 1 Fundamentals. John Wiley & Sons, Ltd.

Steinman, D., Thomas, J., Ladak, H., Milner, J., Rutt, B., Spence, J., 2002.
Reconstruction of carotid bifurcation hemodynamics and wall thickness using
computational fluid dynamics and mri. Magn. Reson. Med. 47, 149–159.

Stopak, D., Harris, A. K., 1982. Connective-tissue morphogenesis by fibroblast
traction .1. tissue-culture observations. Dev Biol 90 (2), 383–398.

Strauss, B. H., Rabinovitch, M., Jan. 2000. Adventitial fibroblasts - defining a
role in vessel wall remodeling. Am J Resp Cell Mol 22 (1), 1–3.

Sukumar, N., Moran, B., Belytschko, T., Nov. 1998. The natural element method
in solid mechanics. Int J Numer Meth Eng 43 (5), 839–.

Sumpio, B. E., Banes, A. J., Link, W. G., Johnson, G., Oct. 1988. Enhanced colla-
gen production by smooth-muscle cells during repetitive mechanical stretching.
AArch Surg 123 (10), 1233–1236.

Taber, L. A., 1995. Biomechanics of growth, remodeling, and morphogenesis.
Appl. Mech. Rev. 48, 487–545.

Taber, L. A., Jun. 1998. A model for aortic growth based on fluid shear and fiber
stresses. J Biomech Eng-T ASME 120 (3), 348–354.

Taber, L. A., Sep. 2009. Towards a unified theory for morphomechanics. Phil
Trans R Soc A 367 (1902), 3555–3583.



Congresos 269

Tada, S., Tarbell, J. M., Feb. 2002. Flow through internal elastic lamina affects
shear stress on smooth muscle cells (3d simulations). Am J Physiol-Heart C
282 (2), H576–H584.

Tang, D., Yang, C., Kobayashi, S., Ku, D., 2001. Steady flow and wall compres-
sion in stenotic arteries: a 3-d thick-wall model with fluid-wall interactions. J
Biomech 123, 548–557.

Tang, D., Yang, C., Kobayashi, S., Ku, D., 2004. Effect of a lipid pool on
stress/strain distributions in stenotic arteries: 3d fsi models. J Biomech 126,
363–370.

Tang, D., Yang, C., Kobayashi, S., Zheng, J., Vito, R., 2003. Effect of stenosis
asymmetry on blood flow and artery compression: a 3-d fsi model. Ann Biomed
Eng 31, 1182–1193.

Tang, D., Yang, C., Kobayashi, S., Zheng, J., Woodard, P., Sicard, G., Saffitz,
J., C., Y., 2005. 3d mri-based multi-component fsi models for atherosclerotic
plaques, a 3-d fsi model. Ann Biomed Eng 32 (7), 947–960.

Tang, D., Yang, C., Mondal, S., Liu, F., Canton, G., Hatsukami, T., Yuan, C.,
2008. A negative correlation between human carotid atherosclerosis plaque pro-
gression and plaque wall stress:in vivo mri-based 2d/3d fsi models. J Biomech
41, 727–736.

Tarbell, J. M., 2003a. Mass transport in arteries and the localization of atheroscle-
rosis. Annu Rev Biomed Eng 5, 79–118.

Tarbell, J. M., 2003b. Mass transport in arteries and the localization of atheroscle-
rosis. Annu Rev Biomed Eng 5, 79–118.

Tarbell, J. M., Shi, Z. D., 2012. Effect of the glycocalyx layer on transmission of
interstitial flow shear stress to embedded cells. Biomech Model Mechan.

Tarbell, J. M., Weinbaum, S., Kamm, R. D., Dec. 2005. Cellular fluid mechanics
and mechanotransduction. Ann Biomed Eng 33 (12), 1719–1723.



270 Resumen en Español

Thakar, R. G., Cheng, Q., Patel, S., Chu, J., Nasir, M., Liepmann, D.,
Komvopoulos, K., Li, S., Apr. 2009. Cell-shape regulation of smooth muscle
cell proliferation. Biophys J 96 (8), 3423–3432.

Tian, L., Lammers, S. R., Kao, P. H., Reusser, M., Stenmark, K. R., Hunter,
K. S., Qi, H. J., Shandas, R., Nov. 2011. Linked opening angle and histo-
logical and mechanical aspects of the proximal pulmonary arteries of healthy
and pulmonary hypertensive rats and calves. Am J Physiol-Heart C 301 (5),
H1810–H1818.

Topol, J. T., Califf, R. M., N., P. E., D., T. J., D., T. P., 2006. Textbook of
Cardiovascular Medicine. Lippincott Williams & Wilkins.

Tropea, J. A., 2011.
URL http://lacienciaconhumor.blogspot.com.es/

Truesdell, C., Noll, W., 2004. The Non-Linear Field Theories of Mechanics, 3rd
Edition. Springer-Verlag.

van der Rijt, J., 2004. Micromechanical testing of single collagen type i fibrils.
Ph.D. thesis, University of Twente.

van der Rijt, J. A. J., van der Werf, K. O., Bennink, M. L., Dijkstra, P. J., Feijen,
J., Sep. 2006. Micromechanical testing of individual collagen fibrils. Macromol
Biosci 6 (9), 697–702.

Vianello, M., Sep. 1996. Optimization of the stored energy and coaxiality of strain
and stress in finite elasticity. J Elasticity 44 (3), 193–202.

Visse, R., Nagase, H., May 2003. Matrix metalloproteinases and tissue inhibitors
of metalloproteinases - structure, function, and biochemistry. Circ Res 92 (8),
827–839.

Waffenschmidt, T., Menzel, A., Kuhl, E., Jul. 2012. Anisotropic density growth
of bone-a computational micro-sphere approach. Int J Solids Struct 49 (14),
1928–1946.



Congresos 271

Wang, D. M., Tarbell, J. M., Aug. 1995. Modeling interstitial flow in an artery
wall allows estimation of wall shear-stress on smooth-muscle cells. J Biomech
Eng-T ASME 117 (3), 358–363.

Weinbaum, S., Cowin, S. C., Zeng, Y., Mar. 1994. A model for the excitation of
osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech
27 (3), 339–360.

Weinbaum, S., Tarbell, J. M., Damiano, E. R., 2007. The structure and function
of the endothelial glycocalyx layer.

Welty, J., Wicks, C. E., Rorrer, G. L., Wilson, R. E., 2008. Fundamentals of
Momentum, Heat and Mass Transfer. John Wiley & Sons.

Wenger, M. P. E., Bozec, L., Horton, M. A., Mesquida, P., Aug. 2007. Mechanical
properties of collagen fibrils. Biophys J 93 (4), 1255–1263.

WHO, 2009. Disease and injury country estimates. Tech. rep., World Health
Organization.

Wiener, J., Loud, A. V., GiacomelliI, F., Anversa, P., 1977. Morphometric anal-
ysis of hypertension-induced hypertrophy of rat thoracic aorta. Am J Pathol
88 (3), 619–633.

WojtowiczPraga, S. M., Dickson, R. B., Hawkins, M. J., 1997. Matrix metallo-
proteinase inhibitors. Invest New Drug 15 (1), 61–75.

Wolgemuth, L., 2009.
URL http://money.usnews.com/money/careers/articles/2009/12/28/the-50-best-careers-of-2010

Wolinsky, H., 1971. Effects of hypertension and its reversal on the thoracic aorta
of male and female rats: Morphological and chemical studies. Circ Res 28 (6),
622–637.

Wong, J., Goktepe, S., Kuhl, E., 2011. Computational modeling of electrochemi-
cal coupling: A novel finite element approach towards ionic models for cardiac
electrophysiology. Comput Method Appl M 200 (45-46), 3139–3158.



Wrana, J. L., Attisano, L., Wieser, R., Ventura, F., Massague, J., Aug. 1994.
Mechanism of activation of the tgf-beta receptor. Nature 370 (6488), 341–347.

Yang, L., 2008. Mechanical properties of collagen fibrils and elastic fibers explored
by afm. Ph.D. thesis, Universityof Twente.

Zou, Y., Zhang, Y. H., Aug. 2009. An experimental and theoretical study on the
anisotropy of elastin network. Ann Biomed Eng 37 (8), 1572–1583.

Zulliger, M. A., Rachev, A., Stergiopulos, N., 2004. A constitutive formulation of
arterial mechanics including vascular smooth muscle tone. Am J Physiol Heart
Circ Physiol 287 (3), H1335–1343.

Zygote Media Group, I., 2011.



Congresos 273


