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Abstract 16 
Aim 17 
Previous work demonstrated the global variability of synchrony in tree-growth within 18 
populations, i.e. the covariance of the year-to-year variability in growth of individual neighboring 19 
trees. However, there is a lack of knowledge about the causes of such variability and its 20 
trajectories through time. Here we examine whether climate can explain variation in within-21 
population synchrony (WPS) across space but also through time and develop models capable of 22 
explaining this variation. These models can be applied to the global tree cover under current and 23 
future climate change scenarios. 24 
 25 
Location 26 
Global. 27 
 28 
Time period 29 
1901-2012. 30 
 31 
Major taxa studied 32 
Trees. 33 
 34 
Methods 35 
We estimated WPS values from a global tree-ring width database consisting of annual growth 36 
increment measurements from multiple trees at 3,579 sites. We employed generalized linear 37 
mixed effects models to infer the drivers of WPS variability and temporal trends of global WPS. 38 
We then predicted WPS values across the global extent of tree cover and finally, we applied our 39 
model to predict future WPS based on the RCP 8.5 (2045-2065 period) emission scenario. 40 
 41 
Results 42 
Areas with the highest WPS are characterized by a combination of both high annual mean 43 

temperature (>10C) and low precipitation (< 300 mm) environments. Average WPS across all 44 
temperate forests has historically decreased and will continue to decrease. Potential implications 45 
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of these patterns include changes in forest dynamics, such as higher tree growth and productivity 46 
and an increase in carbon sequestration. In contrast, the WPS of tropical forests of Central and 47 
South America will increase in the near future due to reduced annual precipitation. 48 
 49 
Main conclusions 50 
Climate explains WPS variability in space and time. We suggest that WPS may have value as an 51 
integrative ecological measure of the level of environmental stress to which forests are 52 
subjected, and therefore holds potential for diagnosing effects of global climate change on tree 53 
growth. 54 
 55 
Keywords 56 
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 58 

1. Introduction 59 
1.1. Importance of forests and population dynamics 60 
Forests are important carbon pools, characterized by a continuous exchange of CO2 with the 61 

atmosphere. Within all tropical, temperate and boreal forests, around 31% of carbon is stored in 62 
biomass and 69% in soil (IPCC, 2000). What is more, in the past few decades 30% of global 63 
anthropogenic CO2 emissions have been absorbed by the world’s forests (which is about the 64 
same amount as is taken up by the oceans (Bellassen, 2014). Forests directly affect approximately 65 
1.6 billion people worldwide regarding economic activities such as forestry, food, agricultural 66 
policies or tourism (FAO, 2013). Hence, it is essential to better understand current and future 67 
changes in forest dynamics and evolution. However, most of our understanding of forest 68 
dynamics comes from retrospective analyses that consider how past events and stand structure 69 
led to the development of the forests that we can observe and analyze today (Waring & Running, 70 
2007). Here, we propose an additional approach to understand forest population dynamics by 71 
analyzing the within-population synchrony (WPS) of tree growth. 72 

This method relies on the assumption that the world around us is a spatially autocorrelated 73 
system (Legendre, 1993). Derived from that concept is the spatial synchrony concept, which 74 
refers to coincident changes in the abundance or other time-varying characteristics of 75 
geographically disjunct populations (Liebhold, Koenig, & Bjørnstad, 2004). Many studies in 76 
ecology have employed this concept to, for instance, investigate different ecological aspects of 77 
great significance for tree growth, such as seed production or masting (Allen, Mason, Richardson, 78 
& Platt, 2012; Kelly, 1994; Pearse, Koenig, & Kelly, 2016), host phenology (Dodd et al., 2008) or 79 
foliage-feeding herbivores as synchronizing agents in forests (Peltonen, Liebhold, Bjorstand, & 80 
Williams, 2002). In addition, the absence of spatial synchrony is generally considered key to 81 
persistence in metapopulation dynamics and may be vitally important in the conservation of 82 
species and disease eradication (Mikko, Veijo, Esa, & Jan, 1997; Noble, Machta, & Hastings, 2015). 83 
Finally, it has also been suggested that an increase in spatial correlation could be an early-warning 84 
signal before a regime shift (Dakos, van Nes, Donangelo, Fort, & Scheffer, 2010). By studying the 85 
nature of such synchronous oscillations, we are taking steps to further understand the role of 86 
synchrony in population dynamics. Though ecologists used to be frustrated in their efforts to 87 
identify the cause of such synchrony (Liebhold, Koenig, et al., 2004), recent statistical advances 88 
have made it much easier (Gouveia, Bjørnstad, & Tkadlec, 2015; Sheppard, Bell, Harrington, & 89 
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Reuman, 2016; Walter et al., 2017). The Moran effect (Moran, 1953), which describes how global 90 
random disturbances affecting populations sharing a common density-dependent structure are 91 
capable of bringing these populations into synch (Ranta, 1995), has been frequently used to 92 
explain the ubiquity of spatial synchrony among populations of species belonging to various taxa 93 
(Bjørnstad, Ims, & Lambin, 1999). Hence, the Moran effect is thought to be the result of universal 94 
random but synchronous weather influences acting on spatially disjunct populations (Koenig, 95 
1999; Mikko et al., 1997). 96 

Although the synchrony concept has been widely used in dendroclimatology as a quality 97 
measure of the chronology (Buras, 2017), the spatial synchrony of tree growth is an aspect that 98 
remains poorly understood (Defriez & Reuman, 2017). Yet, tree-ring growth series provide long-99 
term spatial information that can indicate, for instance, release events and allow us to detect 100 
synchronized regeneration caused by disturbance (Lorimer & Frelich, 1989; Sánchez-Salguero et 101 
al., 2012; Zielonka et al., 2010) not only at regional scales but also at fine spatial scales (Aakala et 102 
al., 2009; Carrer & Urbinati, 2001; Shimatani & Kubota, 2011). Following the spatial synchrony 103 
approach, it has also been suggested that the earth’s warming climate is synchronizing forest 104 
growth across Eurasian regions and hence indicating early warning signals of climate change 105 
impacts on forest ecosystems at subcontinental scales (Tatiana A. Shestakova et al., 2016). 106 
Furthermore, Camarero, Gazol, Sangüesa-Barreda, Oliva, & Vicente-Serrano, (2015) applied the 107 
synchrony concept to study early warning signals in the growth trends of declining and non-108 
declining trees and related the increase in synchrony with a rise in severe droughts. Hitherto, the 109 
spatial synchrony concept in both ecology and dendrochronology has largely been applied to 110 
analyze among population synchrony analyses rather than within population synchrony which we 111 
consider here.  112 
 113 

1.2. The within-population synchrony concept to study forests’ population dynamics 114 
The within-population synchrony (WPS) was first described by Liebhold, Sork, et al., (2004) to 115 

study the synchronous production of large crops of seeds within a population (short distance <10 116 
km) rather than among separate populations (as far as 1,000 km). Here we apply that approach 117 
to tree-ring width series from individual (site) populations and calculate the WPS. We believe 118 
that WPS can function as an integrative ecological measure of the level of environmental stress 119 
to which forests are subjected, such as those arising from climate change.  120 

In tree-ring research the average correlation of all ring-width series within a given stand, 121 
indicated as RBAR (Wigley & Briffa, 1984), is a commonly employed measure of the covariance 122 
among individual series in a chronology (Fritts, 1976). It is standard in dendrochronology to use 123 
RBAR as a measure of chronology quality or signal recovery. Here, we are repurposing RBAR to 124 
determine what environmental information might be recoverable from that metric and to indeed 125 
document within-population synchrony (WPS) of neighboring trees. For relatively high-frequency 126 
data, RBAR is unbiased and provides an accurate measure of the signal strength inherent in a 127 
chronology (Briffa, 1999). The RBAR for a group of trees could, in theory, range from -1.0 to 1.0, 128 
though in practice only positive values are meaningful (negatives values would indicate some sort 129 
of antagonistic growth interaction). The higher the value, the stronger is the underlying common 130 
signal; hence the lower the variance within each series, the weaker the noise and the lower the 131 
number of series that must be averaged to reduce the noise remaining in the final mean 132 
chronology to an “acceptable” level (Wigley & Briffa, 1984). 133 
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One of the strengths of the RBAR statistic is that it can be calculated for different time periods, 134 
and more importantly, it can be used for global comparisons of forests’ growth response to 135 
climate change. St. George (2014) used the International Tree-Ring Data Bank for studying tree-136 
ring width series of the Northern Hemisphere and indicated differences in the RBAR value among 137 
species and geographic location. In that study consistently high values were found for most sites 138 
in the North American Southwest, but also in northern Fennoscandia and the central Russian 139 
Arctic. Characteristically low values were found in tree-ring width records from European 140 
Mediterranean and sites and from the Himalayas (see Figure S1 as an example). The highest RBAR 141 
values were found in limber pine (Pinus flexilis E.JAMES), ponderosa pine (Pinus ponderosa 142 
P.LAWSON & C.LAWSON) and Douglas fir (Pseudotsuga menziesii (MIRBEL) FRANCO), all growing in 143 
western N. America.  144 

This study further explores how WPS varies in both space and time. There is still a lack of 145 
knowledge regarding (i) the variability and change of WPS over time, (ii) the influence of the 146 
environment on WPS and (iii) the causes of geographical and temporal variation in WPS. 147 
Accordingly, in this study, we quantify WPS in tree growth from tree-ring measurements using 148 
the RBAR statistic to analyze the synchrony dynamics of tree-ring width in forests at a global scale 149 
(3,579 sites) and through time (1901-2012). We then identify spatial patterns and significant 150 
changes at these sites. Finally, we develop a model that is capable of explaining the variability in 151 
synchrony and apply it first, under current climate conditions, and then to forecast future 152 
conditions under a projected climate scenario. 153 

 154 
Here we hypothesize that the within-population synchrony (WPS) of tree growth: 155 
a) Increases as environmental conditions become more limiting (i.e., decreasing effective 156 

precipitation; Fritts, Smith, Cardis, & Budelsky, 1965). As a consequence, climate forcing will 157 
explain a large fraction of variation in synchrony within populations. Less synchronous growth 158 
would indicate a reduced importance of the general abiotic environmental factors (such as 159 
climate), and a greater influence of local abiotic and biotic factors (competition, insect 160 
outbreaks, fire, etc.). 161 

b) Based upon the above relationships, both spatial and temporal variation in synchrony could, 162 
at least partially, be predictable globally and under different climate change scenarios. The 163 
possibility of having this predictive capability of WPS adds a new dimension to synchrony in 164 
tree-growth as an ecological tool, since it represents a surrogate measure of the level of 165 
environmental stress to which the populations are subjected and thus could be of 166 
extraordinary utility for the planning of forest management with ecological, economic (e.g. 167 
productivity) and mitigation (e.g. carbon sequestration) implications. 168 

 169 
2. Methodology 170 

2.1. Data acquisition and treatment  171 
The International Tree Ring Databank (ITRDB, Zhao et al., 2019) is the largest archive 172 

containing digital tree-ring width measurements. As of June 2015, the ITRDB contained more 173 
than 4,000 ring-width records from all continents except Antarctica. These data are stored in the 174 
“Tucson Decadal Format”(Holmes, 1994) and besides the sample identification and ring-width 175 
measurements of the individual tree-ring series, the archive contains meta-data for each series, 176 
including tree species, as well as sampling site latitude, longitude and elevation.  177 
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In preparation for analysis, all available tree-ring records were downloaded, except for 245 178 
records, which had to be removed due to errors detected within the data. Most frequent errors 179 
consisted of unusual formats or multiple ring-width series with the same identification codes. 180 
After removing erroneous data, 3,936 records were used. In addition, we selected records with 181 
more than 10 samples per site and containing data within the 1901-2012 period in order to match 182 
the tree-ring information with available meteorological data. The final dataset considered for the 183 
study is composed of 3,579 records from both the northern and southern hemisphere. Even 184 
though we are aware of the existence of additional datasets compiled by individual research 185 
groups, we believe that using these 3,579 records with global coverage, should lead to robust 186 
results, allowing us to identify the main characteristics of the tree-ring covariance and hence fulfil 187 
the aims of this study. We selected the 1901-2012 period since monthly meteorological data are 188 
available worldwide (CRU TS v.3.21.; Harris, Jones, Osborn, & Lister, 2014). Furthermore, 189 
selection of this particular period facilitates the analysis of the influence of the recent global 190 
warming trends on WPS variability.  191 

In order to eliminate the tree age trend in radial growth and preserve only year to year 192 
variability, i.e. the high-frequency signal, each of the 3,579 records were standardized using the 193 
‘dplR’ package (Bunn, 2008) within R (R Development Team, 2018). First, each individual tree-194 
ring width series was detrended with a cubic spline with a 50 % frequency cutoff at 30 years (Cook 195 
et al., 1990). Standardized series were obtained by dividing the observed values by the expected 196 
values given by the spline function.  Finally, we selected the residuals from a first-order 197 
autoregressive modeling of the detrended measurement series. This method removes all but the 198 
high-frequency variation in the series. 199 
 200 

2.2. Measuring global within tree-growth population synchrony (WPS) and its trends 201 
To explain changes in the strength of common patterns of tree growth over the selected 202 

period, we calculated running WPS values using a 30-year moving window with a 29-year overlap 203 
(i.e. moving up by one year at each step). WPS is calculated by the average Pearson correlation 204 
of all ring-width series within a given stand (Wigley & Briffa, 1984). Because it is a running 205 
correlation between series, it is a good measure of the common year-to-year variability through 206 
time but is dependent upon the sample depth (Cook, Buckley, D’Arrigo, & Peterson, 2000). In this 207 
case WPS values would range from 0, meaning a total absence of covariance within the tree-ring 208 
width series to 1, including a total agreement of the year-to-year variability within the tree-ring 209 
series. 210 

To explore the temporal variability and change in WPS from 1901 to 2012 at each site, we 211 
evaluated variability (standard deviation) and trends using the modified Mann-Kendall test for 212 
autocorrelated data (Hamed & Ramachandra Rao, 1998) (at 95% confidence level).  213 
 214 

2.3. Modeling the current and future synchrony of forest tree-growth 215 
To explore the causes of variability in WPS values through time and within each site, we 216 

employed generalized linear mixed effects models (GLME; using the R package lme4; Bates, 217 
Mächler, Bolker, & Walker, 2015). Mixed models are ideally suited to settings in which the 218 
individual trajectory of a particular outcome for a study over time is influenced both by factors 219 
that can be assumed to be the same for many sites (e.g. the effect of climate) and by 220 
characteristics that are likely to vary substantially from site to site (e.g. the Identification CODE-221 
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ID- of each site or each population). Mixed models explicitly account for the correlations between 222 
repeated measurements within each site (Ma, Mazumdar, & Memtsoudis, 2012; Moseley et al., 223 
2015). The WPS values observed at each site for different 30-year moving periods were 224 
considered the response variable, while climatic conditions during each period were used as fixed 225 
factors. We used mean annual temperature (T), total mean annual precipitation (P) and the 226 
interaction between these terms at the grid point closest to each tree-ring site from the CRU TS 227 
3.21 dataset (Harris et al., 2014) during the period 1901–2012. Given that WPS values range from 228 
0 to 1, the quasibinomial family was used in order to describe the error distribution. Prior to 229 
creating the model, we standardized the independent variables (with respect to the mean and 230 
standard deviation) to ensure a compensated weight of each variable. In addition to taking into 231 
account variations in the WPS at each individual site, we used the unique site identity code (ID) 232 
as a random effect variable (Equation S1). We evaluated the accuracy of the models using a 233 
likelihood ratio test by comparing the obtained models (full models) with the reduced models 234 
where explanatory variables of interest were omitted, and only the intercept term was included 235 
(null models). Next, we calculated the p values for the likelihood ratio tests that compared the 236 
full and reduced models using the Chi square distribution.  237 

Finally, to predict future values for the temperature and precipitation parameters during 238 
the 2046-2065 period, we used an ensemble of multiple models for the RCP 8.5 scenario from 239 
the CMIP5 project (AR5, uploaded 15th April 2014). We applied the model across global tree cover 240 
to assess the potential effects on a global scale, including areas, such as those within the Tropics, 241 
which are poorly covered by the ITRDB network. Global tree cover was classified according to the 242 
World Wildlife Fund (WWF) definition of ecoregions (https://www.worldwildlife.org/biomes)( 243 
Table S1). The predictions in each pixel are made based on a common generic ‘site’ (same random 244 
factor all across the space) with the objective of describing how the fixed factors (climate) 245 
differentially influence synchrony across the world.  246 
 247 

3. Results 248 
3.1. Observed current synchrony values 249 

Global forest WPS spanning the period 1901-2012 is shown in Figure 1a. According to the 250 
WPS values of each site, we define five categories of forest growth synchrony (Table 1), ranging 251 
from very low, absence of synchrony, to very high, meaning that growth in those sites is at near 252 
to full agreement. The regions with the highest WPS values are western North America, in central 253 
Asia and boreal forests in the Russian Arctic. In contrast, the lowest WPS values are found along 254 
the east coast of North America, along the Mediterranean fringe in Europe in some parts of the 255 
Himalayas in Asia and some sites in South America. Most of the sites (59%) show a low to 256 
moderate synchrony. We also found that 17% of the sites have a very low to near-zero tree-257 
growth synchrony, whereas 24% of the sites show a very high or almost total tree-ring growth 258 
synchrony. Lowest WPS values are located in North American boreal forests, while the highest 259 
values correspond to sites located in the mountainous areas of Colorado, USA.  260 
 261 

Results indicate that WPS of global forest populations has varied through time during the last 262 
112 years (Figure 1b) i.e., it is a dynamic rather than a static indicator. In fact, among the studied 263 
sites, 77% show a significant positive (gain) or negative (loss) trend through time (Figure 1c). 264 
These changes are mostly low (78%) although a remarkable 21% of the sites are showing a 265 

https://www.worldwildlife.org/biomes
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moderate to high variability, including shifts in the category, i.e. from high to moderate or from 266 
moderate to high synchrony. 267 
Overall the majority of sites exhibit a negative trend (decreasing WPS), as seen at sites located in 268 
eastern North America, the Himalayas, the Alps, eastern Scandinavia, or southern South America. 269 
On the other hand, some sites in the boreal forests of the Russian Arctic, in the mid-western US, 270 
and western North America, show a significant positive trend (increase in WPS). 271 
 272 

3.2. WPS determined by climate 273 
By comparing our full model with a null model (Table 2) we demonstrate that the full model 274 

(including the mean annual temperature and precipitation and its interaction as fixed factors) 275 
has a better explanatory power (lower AIC and BIC). The WPS is positively related with mean 276 
temperature, i.e. higher WPS occurs where and when temperatures are higher, and the WPS is 277 
negatively related with precipitation, i.e. higher WPS is found in low precipitation environments 278 
(Table 3). The interaction between annual mean temperature and precipitation also explains a 279 
significant fraction of the WPS variance. WPS is higher in areas with high annual mean 280 
temperature and low precipitation totals. 281 

With these results, we now better understand the climate constraints of the observed WPS 282 
(Figure 2). The results are robust (see Figure S3) and highlight the wide range of WPS levels of 283 
the observed ITRDB forest populations. Hence, higher WPS values are found in dry environments, 284 

including areas with precipitation below 400 mm, and mean annual temperature above 0C. 285 
Lower WPS values are found in sites with more than 1,000 mm of annual precipitation, although 286 

they can also be found in dry but very cold environments (-20 to -10C). Warm (>15C) and wet 287 
(>1,000 mm/year) environments, such as those in tropical forest areas show low to very low WPS. 288 
Additional findings include the climate boundaries of the distribution limits of the ITRDB studied 289 

sites, which range from 100 to almost 5,000 mm/year, and from -20C to 26C annual mean 290 
temperature.  291 

 292 
3.3. Model applications to the current and future climate 293 
The GLME model is applied to the global tree cover under the current climate (Figures 3a and 294 

4a), emphasizing the full range of WPS levels throughout Earth’s tree cover. As expected, the 295 

most limiting environments, including mean annual temperature around 30C and mean annual 296 
precipitation between 100 and 300 mm, are characterized by a higher predicted WPS. On the 297 

other hand, areas with ~25C mean annual temperature, and between 2,000 and 5,000 mm of 298 
mean annual precipitation account for the lower predicted WPS levels (although results for these 299 
particular areas must be treated with caution due to the reduced number of observations with 300 
such climate conditions). Moderate WPS levels can be found in a wide spectrum of climates, 301 
although with a similar mean annual precipitation of 300-600 mm and annual mean 302 

temperatures that can range from -15C to 25C. 303 
The GLME was applied to the future emission scenario RCP 8.5 for the 2046-2065 period, 304 

yielding important projections (Figures 3b, 4b). First, WPS variability is projected to decline, 305 

(there are no longer any tree species living below -20C mean annual temperature), and 306 
considering the current tree cover, the maximum annual temperature of some sites will be 307 

pushed above 30C. Most of the sites will have low to moderate WPS. In other words, those sites 308 



Global Ecology and Biogeography 29 (7):  1114-1125 (2020) 

 

 

facing a rise in temperature and an increase in precipitation will be less limited and thus decrease 309 
their WPS. On the other hand, those sites exposed to a significant rise in temperature, but with 310 
similar or lower precipitation amounts will be more limited and thus increase their tree-growth 311 
WPS. 312 

When considering only the effects of future climate change on WIPS, larger changes in WPS 313 
(Figures 3c, 4c) will occur in those places where precipitation totals are currently high (>2,000 314 
mm/year), but precipitation is projected to decrease, whereas smaller changes are likely within 315 
the low to moderate categories. An increase in tree-ring growth WPS will occur mainly in the 316 
Mediterranean basin, in the tropical forest of India, and in the Amazon Basin rainforest. Northern 317 
Hemisphere forests, on the other hand, and particularly the boreal forests, will experience no 318 
change or a slight decrease in their WPS, due to an increase in precipitation. 319 

4. Discussion 320 
4.1.  The potential of the internal synchrony of populations as an indicator of the level 321 

of climatic stress 322 
The WPS (or RBAR in the field of dendrochronology) in tree-ring research has been 323 

traditionally used to define reconstruction periods (Buras, 2017) as a parameter in the Expressed 324 
Population Signal (EPS) formula (Wigley & Briffa, 1984).  325 

In this study, however, we used the WPS to calculate the synchrony between trees within 326 
populations to study the impact of climate change in time and space on forest growth dynamics. 327 
The analysis was focused on the high-frequency domain through a robust detrending. 328 
Consequently, the results were not biased or affected by trend distortions that may potentially 329 
occur if low-frequency detrending methods would have been applied (Melvin & Briffa, 2008). We 330 
demonstrated that the WPS has a great potential to assess associated levels of climatic stress. 331 
We thus encourage the use of the unbiased (retaining only the high-frequency variability) WPS 332 
(or synchrony, when applied to dendroecological aspects) as a useful indicator for describing 333 
forests environmental stress. In the near future, as the climate warms, it is likely that additional 334 
non-synchronous endogenous disturbances such as nutrient availability, fire, permafrost melting, 335 
insect outbreaks, or species-specific imprints would become increasingly dominant as factors 336 
influencing tree growth, including a reduction of the effect of cold limitation (Fajardo & McIntire, 337 
2012; Ponocná et al., 2018). Consequently, it is crucial to understand the current factors limiting 338 
productivity of forests to better predict changes in future forests population distributions. 339 
 340 

4.2. WPS tested on a global tree-ring dataset; opportunities and limitations 341 
The WPS concept is tested with global tree-ring data from the ITRDB (3,579 single sites), 342 

which is a robust and diverse dataset useful not only for dendroclimatic studies but also to assess 343 
global dendroecological questions (Babst et al., 2019; St. George, 2014).  The ITRDB does not 344 
contain metadata on the distance between sampled trees or within forests (information that 345 
could potentially alter our analysis, Figure S2). However, it is very unlikely that there is a 346 
systematic trend or bias in the inter-distance between trees in the ITRDB. Since the ITRDB was 347 
created, its main purpose was to develop climatic reconstructions (Zhao et al., 2019). This implies 348 
that the selection of the trees to be sampled is based on maximizing the climatic signal and not 349 
on other factors (such as competition, etc.). The distance between sampled trees is not explicit, 350 
precisely because it is considered a variable that has no effect on growth (it is large enough). 351 
Nonetheless, Zhao et al. (2019) concluded that the extensive data and coverage of the ITRDB 352 
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show great promise to address macroecological questions. The majority of the sites included in 353 
the ITRDB correspond to the Northern Hemisphere, whose species, distributions and ecoregions 354 
are well represented. On the other hand, large areas of Africa and tropical South America are 355 
clearly underrepresented, especially the tropical and subtropical moist broadleaf forests, and 356 
thus the results in those regions must be treated with caution.  However, in this study we 357 
attempted to demonstrate a global pattern of synchrony change and trend throughout the 358 
twentieth century and towards the mid-late twenty-first century, being aware that the predictive 359 
skills for large areas over the tropics are lower than for the temperate regions.  360 

The mixed model for explaining synchrony, using data on temperature and precipitation from 361 
each site, provides reliability to extend results toward areas where chronologies are largely 362 
absent but potentially play key roles in the global carbon cycle or forest biomass productivity 363 
(among other functions). Under the current climate, drivers of tree-ring growth have already 364 
changed and will continue changing in a projected future warmer climate (Babst et al., 2019). In 365 
the twentieth century the main drivers have transitioned from energy limitation toward water 366 
limitation drivers, especially in the boreal and temperate zones (Babst et al., 2019), and in the 367 
near future these drivers will affect growth rates of forest ecosystems (Charney et al., 2016; Tei 368 
et al., 2017) and thus their internal synchrony (WPS).  369 
 370 

4.3. Forest growth limitations associated with different factors 371 
Our results show that a large proportion of the spatial and temporal variation in WPS is due 372 

to the influence of climate, suggesting that the Moran effect might cause synchrony in tree-ring 373 
width series also at local scales. It is well-known that weather is generally the only environmental 374 
driver likely to act in the same range in space and time (Fritts, 1976). Thus, the primary factors 375 
limiting tree-ring growth in forest populations are generally climatic. If climate is found to be the 376 
main driver, hence the most limiting factor, it will manifest itself through synchronous growth in 377 
the population. In addition, there are other global drivers, aside from climate, capable of altering 378 
the synchrony, such as an increase of the atmospheric CO2 concentration (McMahon, Parker, & 379 
Miller, 2010) or a decrease in solar radiation caused by anthropogenic aerosol emissions after 380 
1950 (global dimming, Liepert, 2002). On the other hand, when climatic conditions are more 381 
favorable, local characteristics become more determinant for tree growth and the common 382 
variance between tree-ring traits due to macroclimate is reduced (Fritts, 1976).  383 

 384 
Our results not only support such a theory but also confirm our first hypothesis and initial 385 

objective; spatial patterns of WPS are closely related to climate distribution patterns. Higher WPS 386 

is found in warm and dry areas (>10C annual mean temperature and <300 mm annual 387 

precipitation) whereas a lower WPS is found in warm (mean annual temperature >15C) and wet 388 
environments (precipitation >1,000 mm/year), and in extreme cold and dry environments (mean 389 

annual temperature <-10C). Thus, the drivers that are associated with WPS are also likely drivers 390 
determining the extent of forest cover. These patterns are similar to those described by Babst et 391 
al., (2019). Although their results are based on growth patterns, our higher WPS zones coincide 392 
with their lower growth zones and vice versa. Hence, these results also confirm our second 393 
hypothesis and second goal; WPS spatio-temporal distribution patterns are closely related to 394 
climate and therefore predictable (from the ITRDB database - unbiased and representative (Babst 395 
et al., 2019)) at the level of global forest extent. We show that WPS is not static over time, but 396 
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its variation is associated with climate variability and change. This finding represents an 397 
important milestone since it allows us to predict the future behavior and climatic stress levels in 398 
environments where no information is available, but which may be able to sustain forest cover 399 
in the future. We are thus able to detect hot spots, highlighting populations or locations that are 400 
particularly sensitive to climate change, which might require focus for conservation and 401 
management efforts. (Post et al., 2009). In addition, we now have the possibility of predicting 402 
spatially explicit climate stress levels (WPS) in future climate scenarios which allow us to 403 
determine potential adaptation/mitigation measures for specific regions. 404 

 405 
4.4. Implications of our findings 406 

Our most significant results of the spatial distribution of future WPS changes (Fig.4c) are 407 
based on the most extreme projected future scenario (RCP 8.5, Riahi, Grübler, & Nakicenovic, 408 
2007). This RCP is characterized by a sustained increase in greenhouse gas emissions over time, 409 
leading to high greenhouse gas concentration levels (Riahi et al., 2007, 2011), including a rise in 410 

global temperature of 4.9C by 2100. While the projected temperature increase is relatively 411 
spatially homogenous, the projected precipitation change varies strongly in space. Temperate 412 
forests and the tropical forests of Africa and Asia are projected to experience an increase in 413 
precipitation, while Mediterranean Forests and the Amazon tropical forest will be exposed to a 414 
decrease ranging from 500 to 1000 mm per year (International Monetary Fund, 2017). Larger 415 
changes in WPS are in agreement with projected precipitation changes (although the results for 416 
the tropical areas must be treated with caution). A pronounced decrease in synchrony is 417 
projected for the Northwest coast of Alaska, the Colombian, Ecuadorian and Peruvian Andes, and 418 
the ‘Gran Chaco’ region between Paraguay and Argentina. These regions are projected to 419 
experience a reduction of the thermal limitations due to rising temperature and increasing 420 
precipitation, that can be interpreted as reduced climatic stress. Such a decrease of the WPS 421 
would be reflected as an increase in tree-ring growth, as suggested already from some regions of 422 
the globe for certain specific species (e.g. high-elevation bristlecone pines, Western N. America, 423 
(Salzer, Hughes, Bunn, & Kipfmueller, 2009), boreal Eurasian forests (Shestakova, Gutiérrez, 424 
Valeriano, Lapshina, & Voltas, 2019). The Mesoamerican region and the Amazon basin on the 425 
other hand, will be areas with a potential increase of limiting factors, due to a reduction in 426 
precipitation and an increase in temperature, leading to an enhanced climatic stress. It must be 427 
mentioned that here we do not specifically account for extreme weather events, such as a higher 428 
frequency of droughts or floods, nor are we considering other disturbance factors, such as insect 429 
outbreaks, tree disease epidemics, or fires whose regimes may be altered with climate change. 430 
In any case, based on our results, it is very likely that an increase in the WPS and therefore the 431 
climatic stress in the Amazon forest will occur. 432 

 433 
Whether tree-ring growth is positively related with carbon sequestration has been a 434 

recent recurring topic (see Körner, 2006 and references therein), and the discussion is still on-435 
going. Here, we assume that CO2 sequestration tracks tree-ring growth variability (as 436 
demonstrated by (Dawes, Zweifel, Dawes, Rixen, & Hagedorn, 2014, among others). However, 437 
the vast majority of species dominating the current biosphere evolved under CO2 concentrations 438 
of c.240 ppm according to ice core data considering the last 650.000 years (Körner, 2006). Thus, 439 
the anthropogenic rate of atmospheric CO2 enrichment is likely to create an unprecedented 440 
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environment for modern plant life, as by December 2019, the CO2 concentration has already 441 
exceeded 410 ppm  (NOAA, 2019). On top of the increase in atmospheric CO2, plants are dealing 442 
with a rapidly changing climate, which is causing, for instance, a reduction in carbon 443 
sequestration over the Amazon basin (Brienen et al., 2015). Since the WPS is calculated from the 444 
tree-ring growth and explained by climate, we believe it is an additional and essential ecological 445 
and integrative tool to be used when facing forests dynamics and evolution under future climate 446 
change scenarios (climatic stress). This might allow us to identify potential patterns that indicate 447 
changes in forest dynamics and the carbon balance of global ecosystems. In addition, 448 
understanding long-term synchrony patterns of tree growth becomes highly pertinent to 449 
identifying broad-scale emerging threats on forests and threshold tree responses to climate 450 
change (Tatiana A Shestakova, Gutiérrez, & Voltas, 2018). 451 
 452 

4.5. Population dynamics, evolution and distribution 453 
Finally, one of the major uncertainties associated with climate-change projections is the 454 

extent to which tree species will be able to disperse into their newly suitable habitats under 455 
future climate change scenarios. Here, we provide evidence of the dependence of tree-growth 456 
synchrony on climate, crucial to better understand current population dynamics and evolution. 457 
However, future distributions will be determined not only by climate but also by a hierarchy of 458 
factors such as dispersal ability, biotic interactions (i.e., competition and predation), genetic 459 
adaptation, and abiotic factors (e.g., soil conditions). Also influencing future outcomes is the role 460 
of humans. It is crucial to define what path greenhouse gas emissions will take over the next 10 461 
to 50 years. Will we purposely or accidentally redistribute species as habitats change?  462 

5. Conclusions 463 
We demonstrate that climate determines WPS variations across space and also through 464 

time. We use the most extreme climate scenario to address future synchrony of global tree-465 
growth in forests. As a result of the new climate state, some of the most important tropical 466 
forests on Earth will increase their WPS and therefore undergo enhanced climatic stress, resulting 467 
in a reduced potential to act as carbon sinks. On the other hand, temperate forest may benefit 468 
from a warmer and more humid planet. Nonetheless, some level of uncertainty surrounding this 469 
topic will remain, given the complex and stochastic nature of both plant migration and climate 470 
change. All exercises of this type are predicated on General Circulation Models (GCMs). Thus, 471 
improvements in global climate modelling will clearly have downstream effects on spatial 472 
projections of biological responses to climate change. We therefore endorse the pursuit of 473 
multiple modelling strategies to increase confidence in climate change projections. Ultimately, 474 
we suggest that WPS may have value as an integrative ecological measure of the level of 475 
environmental stress to which forests are subjected, and therefore holds potential for diagnosing 476 
effects of climate change on tree growth. 477 
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 661 
Figure 1. Global patterns of within-population synchrony (WPS) at ITRDB sites for the 1901-2012 662 
period) a) Variation of WPS classified from 0 (Very Low), meaning a total absence of synchrony, 663 
to 1 (Very High), a perfect agreement between tree-ring growth series (see the categories 664 
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correspondence in Table 1) . b) WPS variability based on the standard deviation. c) Trend and 665 
significance of such WPS changes (only significance levels at p<0.05 are shown). 666 
 667 
 668 

 669 
Figure 2. Modeled distribution of the WPS applied to the current climate (annual means) of each 670 
observed site i.e., the climate envelope covered by the tree-ring network. 671 
 672 
 673 
 674 

 675 
 676 
Figure 3. Forecasted within-population synchrony (WPS) values. a) Modeled distribution of the 677 
WPS using the current climate and applied to the global tree cover extension. b) Modeled 678 
distribution of the WPS using the RCP 8.5 scenario (2045-2065) and applied to the global tree 679 
cover extension. c) Differences in the WPS between current and future climate scenario. 680 
 681 
 682 
 683 
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 684 
Figure 4. a) Spatial distribution of the within-population synchrony (WPS) model using the current 685 
climate and applied to the global tree cover. b) Spatial distribution of the WPS model using the 686 
RCP 8.5 scenario (2045-2065) and applied to the global tree cover. c) Spatial distribution of the 687 
differences in the WPS between current and future climate scenario.  688 
 689 
 690 
 691 
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Category Values 
1901-2012 

Change 
1901-2012 

Very low < 0.30  

Low 0.30– 0.39 <0.07 

Moderate 0.40 – 0.49 0.07-0.12 

High 0.50 – 0.59 >0.12 

Very high > 0.59  

Table 1. Categories of the synchrony levels. 692 
 693 
 694 

Model Df AIC BIC logLik Deviance Chisq Df Pr(>Chisq) 

Null 
model 

2 224219 224239 -112107 224215    

Full 
model 

5 223606 223658 -111798 223596 618.63 3 < 2.2e-
16*** 

 695 
Table 2. Summary statistics of the Intercept-only model (Null model) and the full model (including 696 
mean annual temperature and precipitation and its interaction as fixed factors). We include the 697 
Chi-squared test (Chisq) comparing both models. The full model has a lower AIC (Akaike 698 
information criterion) and BIC (Bayesian information criterion) than the null model indicating its 699 
better explanatory power. 700 
 701 

 Estimate Std. Error Z value Pr(>|z|) 
(Intercept) 0.03550 0.11755 0.302 0.763 

TMean_Annual 0.46642 0.09761 4.778 1.77e-06 *** 

Precip_Annual -0.14758 0.01797 -0.8214 < 2e-16 *** 

TMean:Precip -0.07180 0.01552 -4.626 3.73e-06 *** 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’  702 
Table 3. Full model summary of the fixed effects on the WPS. Number of observations is 186,750. 703 
WPS will be higher where temperature is higher and where precipitation is lower. 704 
 705 
Supplementary Material 706 
Figure S1. Example of the WPS at contrasting sites. 707 
Figure S2. Spatial correlogram of the mean of WPS. 708 
Figure S3. Spatial distribution of the residuals. 709 
Table S1. Types of forests included in the tree cover. 710 
Equation S1. Mixed model equation. 711 
 712 


