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ABSTRACT: The synthetic chemicals in food contact materials can migrate into food and endanger human health. In this study,
the traveling wave collision cross section in nitrogen values of more than 400 chemicals in food contact materials were
experimentally derived by traveling wave ion mobility spectrometry. A support vector machine-based collision cross section (CCS)
prediction model was developed based on CCS values of food contact chemicals and a series of molecular descriptors. More than
92% of protonated and 81% of sodiated adducts showed a relative deviation below 5%. Median relative errors for protonated and
sodiated molecules were 1.50 and 1.82%, respectively. The model was then applied to the structural annotation of oligomers
migrating from polyamide adhesives. The identification confidence of 11 oligomers was improved by the direct comparison of the
experimental data with the predicted CCS values. Finally, the challenges and opportunities of current machine-learning models on
CCS prediction were also discussed.
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■ INTRODUCTION
The food contact materials (FCMs) can provide a protection
for food, but meanwhile it is also an important source of
contaminations of food. In the manufacturing process of FCM,
a range of synthetic additives (antioxidants, plasticizers,
photoinitiators, lubricants, slip agents, etc.) are routinely
employed to provide the material with desired mechanical
and thermal properties. These compounds are intentionally
added substances (IAS) and their specific migration limits
(SMLs) are included in the positive list of Regulation (EU)
No. 10/2011.1 On the other hand, non-intentionally added
substances (NIAS) are chemicals that are present in a FCM
but have not been added for a technical reason during the
manufacturing process, and originate from degradation of
additives (e.g., 2,4-di-tert-butylphenol from Irgafos 168),2

interactions between constituents (e.g., 1,6-dioxacyclodode-
cane-7,12-dione from the condensation reaction between 1,4-
butanediol and adipic acid),3 and impurities of raw materials.4

Recycling can also introduce different kinds of NIAS due to the
low efficiency of cleaning processes. Oligomers and degrada-
tion products can also be produced due to the high
temperature and to the presence of oxygen in mechanical
recycling.5,6 Both IAS and NIAS can migrate through the
packaging into food products and have the potential to
endanger human health.7,8 The risk associated with the
migration of NIAS from specific packaging materials has to
be assessed.1 As the first step of risk assessment, the structural
elucidation of such molecules is crucial for the correct
quantification and the subsequent toxicological evaluation.
Compared to IAS, the identification of NIAS is much more

challenging due to the complexity of composition of the final
packaging material and limited ingredient information

provided by manufacturers. Gas chromatography−mass
spectrometry (GC−MS)9 and liquid chromatography−mass
spectrometry (LC−MS)10 are widely used analytical techni-
ques for the screening of volatile and non-volatile NIAS. A
high-resolution mass spectrometer operating in data-independ-
ent acquisition (DIA) mode can provide accurate mass of
precursor and product ions, thus deriving the elemental
composition also based on isotopic pattern distributions. The
chemical structure of unknowns can then be inferred from
fragmentation studies, applying a combination of common
rules. However, in this process, two main issues can be
encountered. First, chromatographic coelution exists, which
makes it difficult to identify the actual precursor ion, especially
where the number of adducts is limited due to different
ionization efficiencies. Second, it is possible that two or more
candidates conform to the exact mass and a similar
fragmentation pathway. In this case, the experience and
technical skillfulness of the analyst in the MS spectral
interpretation are essential for reducing false detects and to
bring confidence to the identification results, which ultimately
rely on the confirmation with a pure standard. In this context,
the availability of different separation techniques in combina-
tion with conventional LC−HRMS systems would be
extremely beneficial.
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Ion mobility spectrometry (IMS) is a gas-phase separation
technique, which enables the separation of ions by collisions
with a buffer gas (usually nitrogen or helium) under a defined
electric field profile and controlled gas pressure in a drift cell.11

The drift time of ions is associated with their size, shape, and
charge, which results in a partial orthogonality with MS
separation,12 besides, the drift time is generally in the range of
milliseconds, which fits well between LC separation (in the
range of several seconds) and MS detection (on the
microsecond scale). The combination of ultrahigh perform-
ance liquid chromatography with an ion mobility-mass
spectrometry (UHPLC-IMS-MS) can provide a three-dimen-
sional (3D) separation (retention time, drift time, and m/z),
thus increasing peak capacity compared to UHPLC-MS
alone.13 A few studies reported coelution of isomer pairs in
conventional LC, which were then resolved by IMS.14,15 In
recent years, UHPLC-IMS-MS has been widely used in the
structural characterization of lipids,16 glycans,17 and small
molecules, such as pesticides,18 steroids,19 phenolics,20,21 and
NIAS in food packaging.22,23

Collision cross section (CCS) can be related to the mobility
of ions and it is commonly recognized to represent the
effective rotationally averaged collision area of the ions with
neutral gas molecules, which is a physicochemical property of
ions for a given compound. More precisely, CCS describes the
momentum transfer between ions and drift gas particles.
Therefore, it is considered as a structural property of ionized
molecules, which depends on experimental conditions such as
drift gas composition, temperature, and reduced field strength
(E/N, where E represents the electric field and N is the gas
number density).24 However, unlike drift time, CCS values are
not instrument-dependent, so they should be comparable
across different instruments and laboratories operating under
the same experimental conditions. CCS can then be treated as
an additional structural descriptor obtained from IMS for
confirmation of compound identification. A number of
previous works have demonstrated a fairly good reproducibility
of CCS values between different laboratories and plat-
forms.25,26 In recent years, several CCS databases have been
generated from experimental measurements,27−32 but many of
them are still difficult to integrate into routine discovery
analyses. In addition, unless costly and time-consuming
chemical synthesis and purifications of suspect compounds
are addressed, the empirical CCS values of compounds cannot
be obtained when their standards are not commercially
available. In order to enhance the wider application of CCS
in qualitative analysis, a number of efforts have been made in
the past few years for the prediction of a compound’s CCS
from its molecular descriptors (MDs) (i.e., numeric values that
provide a fingerprint of a compound’s structural and
physicochemical properties) by means of machine-learning
tools.18,20,33−36 Different algorithms, such as partial least
squares regression (PLS-R), support vector regression
(SVR), and artificial neural network (ANN), have been
applied to create predictive models for specific groups of
analytes. The number of MDs used to develop the predictive
models varies from tens to thousands. As an alternative to
MDs, Ross and co-workers used molecular quantum numbers
(MQNs), which are obtained from analyzing compounds as a
molecular graph (i.e., collections of nodes = atoms, and edges
= bonds), claiming that MQNs are invariant with respect to
the software used to compute them.37 Plante and collaborators
developed a convolutional neural network model (CNN) using

simplified molecular-input line-entry systems (SMILESs) as
the input for CCS prediction, without the need for MDs.34

When no CCS database or commercial standards are available,
the machine-learning approach can become a potential
alternative to predict and confirm CCS values.
In this study, a traveling wave collision cross section in

nitrogen (TWCCSN2) library was generated by measuring 488
standards available in our laboratory via UPLC-IMS-QToF.
The majority of the measured compounds are commonly used
chemicals in food-packaging materials. The chemical structures
of these compounds were then submitted to dedicated
software to retrieve the physicochemical descriptors. The
goal was to develop an in-house prediction model to predict
TWCCSN2 values of specific compounds using MDs as the
input. After optimization and comparison with the currently
available tools, the developed predictive model was imple-
mented within our NIAS identification pipeline, and employed
for the structural elucidation of unknown compounds
migrating from packaging materials. Finally, we provide a
discussion on the challenges and opportunities of existing
machine-learning CCS prediction tools.

■ MATERIALS AND METHODS
Chemicals and Reagents. A total of 488 standards, including the

commonly used additives in food packaging, such as antioxidants,
plasticizers, dyes, slip agents, UV-absorbers, lubricants, as well as a
large set of NIAS historically found from our previous studies
(degradation products of hindered phenolic antioxidants, oligomers,
by-reaction products, etc.) were included in the dataset. All standards
were purchased from Sigma-Aldrich Quimica S.A. (Madrid, Spain),
Extrasynthese (Genay, France), and Cayman chemical company (Ann
Arbor, Michigan, USA). HPLC grade methanol (≥99.9%), ethanol
(≥99.9%), dichloromethane (≥99.8%), and dimethyl sulfoxide
(≥99.8%) were purchased from Scharlau Chemie S.A (Sentmenat,
Spain). Ultrapure water was produced using a Millipore Milli-QPLUS
185 system (Madrid, Spain). Formic acid was purchased from Waters
(Milford, MA, USA). For building the CCS database, standard stock
solutions (1000 mg kg−1) were prepared by dissolving 10 mg of
standards in 10 g of methanol. Other solvents, such as ethanol,
dichloromethane, and dimethyl sulfoxide were used when the
standards were not dissolved in methanol. The stock solutions were
then diluted to create working solutions at ∼1 mg kg−1. Each working
solution contained 8−10 analytes, avoiding isomers and coeluting
compounds in the same mixture. All standard solutions were stored in
the dark at −20 °C until analysis.

Measurements of Experimental CCS Values. For the empirical
measurements of TWCCSN2 values, an Acquity I-Class UPLC system
coupled to a Vion IMS-QToF mass spectrometer (Waters, Man-
chester, UK) was used. UPLC separation was performed on a
CORTECS C18 column (2.1 × 100 mm, 1.6 μm particle size, 90 Å
pore size) at a flow rate of 0.3 mL min−1. The column temperature
was 40 °C. The mobile phase was composed of water (A) and
methanol (B), both with 0.1% of formic acid (v/v). The volumetric
percentage of mobile phase B during the LC gradient was as follows:
0−7 min: 5−100%; 7−11 min: 100%; 11−11.10 min: 100−5%; and
11.10−13 min 5%.

The Vion IMS-QToF [IMS resolution ∼20 Ω/ΔΩ full width at
half-maximum (fwhm)] consists of hybrid quadrupole orthogonal
acceleration time-of-flight mass spectrometers, in which a stacked-ring
ion guide, that is, the mobility cell, is positioned before the
quadrupole mass filter. The system was operating in positive
electrospray mode (ESI+). The capillary voltage was 1 kV and
sampling cone voltage was 30 V, the source temperature was 120 °C,
cone gas flow was 50 L h−1, and N2 was used as a desolvation gas with
a flow rate of 800 L h−1 at 500 °C. Mass and CCS calibration were
performed in the range 50−1200 m/z and 130.4−372.6 Å2,
respectively, using the Major Mix IMS/ToF Calibration Kit (Waters
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Corp.). LockSpray containing Leucine-Enkephalin ([M + H]+, m/z
556.2771) at a concentration of 100 ng mL−1 and an infusion rate of
15 μL min−1 was used for real-time mass correction. Raw data were
acquired in high-definition MSE mode (HDMSE), and the mass
spectra were acquired with an acquisition rate of 0.2 s at two collision
energy states (low energy = 6 eV, and high energy ramp = from 20 to
40 eV). Nitrogen was used as a drift gas and argon was used as a
collision-induced dissociation (CID) gas. The ToF analyzer was
operated in sensitivity mode, and the ion mobility settings were as
follows: an IMS gas flow rate of 25 mL min−1, a wave velocity of 250
m s−1, and an IMS pulse height of 45 V. Data acquisition and
processing were carried out on UNIFI v.1.9 software (Waters Corp.).
Prior to each analysis, an in-house made Test-Mix solution was

injected for a system suitability test. The molecular formula,
monoisotopic mass, and expected CCS of nine compounds in Test-
Mix are listed in Table S1. The pass/fail criteria for mass and CCS
accuracy were: mass error <5 ppm and ΔCCS <2%. All working
solutions were injected in triplicate, with an injection volume of 5 and
10 μL, for a total of six technical replicates per each compound. This
allowed an easier assignment of standard peaks and higher confidence
in the experimental TWCCSN2 values, which were obtained by
averaging n = 6 independent measurements.
CCS Prediction. Multivariate PLS is one of the most widely used

machine-learning algorithms for both regression and classification
purposes; its basic knowledge can be found in the literature.38

Support vector machine (SVM) is a supervised learning algorithm
that can be used for both classification and regression analysis, and it
has been used for CCS prediction in previous studies.36,39 Herein,
both PLS and SVM models were developed between the
physicochemical MDs of all the compounds and their experimentally
derived TWCCSN2. MDs were obtained using alvaDesc software v.2.0.4
within the Online Chemical database (OCHEM, http://ochem.eu/
home/show.do), obtaining a total of 5666 MD. The detailed list of
the generated descriptors is reported in Table S2.
The irrelevant descriptors were eliminated before the model

building. The descriptors with constant values or with very few unique
values relative to the number of samples contain few information,
which were considered less important for the CCS prediction. These
kinds of descriptors were removed by function of nearZeroVar in R
package caret.
The dataset was randomly split into training and testing sets in a

3:1 ratio. By doing so, the prediction ability of a developed model can
be assessed in an unbiased manner. Descriptive statistics (i.e., mean,
standard deviation, range, and median) of [M + H]+ and [M + Na]+

adducts’ CCS for both calibration and validation sets are summarized
in Table S3, and Figure S1 shows the distribution of data points in
calibration and validation sets.
Prior to modeling, natural logarithm transformation was applied to

TWCCSN2 values to promote data normality (Figure S2). The MD
data (training set) were mean-centered and scaled to unit variance
using the following equation

=
− ̅z

x m
s

x

x
i

i

where zi is the normalized data for the variable x of a particular
molecule i; m̅x and sx are the mean and standard deviation of x. The
m̅x and sx computed for the training set were then used as
normalization factors for the testing set. Both models were built on
the preprocessed (training) data and optimized through 10-folded
cross validation. The number of latent vectors of PLS was optimized
based on the root mean squared error of cross validation (RMSECV)
and prediction residuals, and both statistically inspired modification of
the partial least squares (SIMPLS) and kernel PLS were used to build
the model. As for SVM, two hyperparameters were optimized in order
to get an accurate prediction: cost of constraints violation (C) and
gamma (γ). Eight groups of C values (0.001, 0.005, 0.01, 0.025, 0.05,
0.1, 0.25, and 0.5)/NMD (i.e., the number of MDs) and nine γ values
(20 to 28) formed 72 parameter combinations. The parameter

combination providing the minimum RMSECV was used for further
SVM model.

Sensitivity ratio (SR) is an embedded method within PLS-R for
evaluating the contributions of variables for the model, which is
defined as the ratio between the explained and the residual variance in
the target-projected component.40 The F-test (99% confidence
interval) criterion was used to define the boundary between highly
important and less-important variables, as proposed by Rajalahti et al.
(2009).40 The important descriptors were then to build PLS and
SVM models and their performances were compared with models
built without feature selection.

Four CCS prediction models were developed for each adduct based
on two algorithms (PLS and SVM) and two types of MDs (all MDS
and important MDs selected by SR). The CCS values of the testing
set were predicted with four models obtained above. The prediction
results of the model with a better performance were then compared
with the three main CCS prediction tools currently available, which
use either MDs or MQNs: AllCCS from Zhu Lab,39 CCSbase from
Libin Xu Lab,37 and CCSondemand from Broeckling and co-
workers.41

All data processes and calculations were performed in R (version
4.0.5) using internal statistical functions and external packages (i.e.,
pls for PLS-based prediction, e1071 for SVM-based model, plsVarSel
for feature selection, and ggplot2 for plot creation).42

Sample Preparation and Extraction. The CCS predictive
model was applied to the identification of NIAS in water-based
adhesives, polyamide 6 (PA6) and polyamide 66 (PA66). Previous
studies suggested that cyclic oligomers can be present in these types
of materials.3,43 For the extraction of oligomers from adhesives, 5 g of
sample was mixed with 50 mL of water, the mixture was centrifuged at
4000 g for 10 min, and the supernatant was passed through a
hydrophilic−lipophilic balance copolymer SPE (Oasis HLB cartridge,
6cc, Waters Corp.), previously activated with 10 mL of methanol and
10 mL of water. The oligomers were eluted with 50 mL of methanol
and analyzed via LC-IMS-HRMS. For the extraction of oligomers
from PA6 and PA66, 10 g of pellets was extracted with 50 mL of
methanol at 40 °C overnight, the solution was filtered using a 0.22 μm
nylon membrane filter and the filtrate was evaporated using a rotary
evaporator. The residue was redissolved in 10 mL of 10% methanol in
water (v/v). The reconstituted extract was cleaned up on SPE and
analyzed following the procedure described above.

As the commercial standards of these oligomers were not available,
these were attempted to be produced at the laboratory scale to verify
the identification. Briefly, 1 g of adipic acid was mixed with 1 g of 1,4-
butanediol in a melting crucible with a lid (40 mL), the mixture was
heated at 135 °C for 2 h, the obtained liquid was dissolved in
methanol at a concentration of 10 mg kg−1, and then analyzed by LC-
IMS-QToF under the conditions described in the Experimental
Section.

■ RESULTS AND DISCUSSION
Mass-to-Charge and CCS Correlation. A total of 635

ions (i.e., 380 [M + H]+ and 255 [M + Na]+ adducts) were
detected for the 488 analyzed standards, with TWCCSN2 values
ranging from 118.6 to 329.4 Å2, whose distribution is shown in
Figure 1. As expected, a significant correlation (R2 = 0.880 and
0.878 for [M + H]+ and [M + Na]+, respectively) was found
between the CCS and the respective ion m/z. Interestingly,
lower R2 were observed in the present work with respect to
similar previous studies, which focused on specific compound
classes characterized by recurring subunits/structures (e.g.,
phenolic compounds, peptides).20,44 In fact, the standard
analyzed in this work contained several types of small
molecules: carbonyls, organic acids, esters, and amides;
including alkyl and aryl moieties, typical of some classes of
additives (see Figure 1), and the chemical classes of analyzed
standards were obtained from ClassyFire45 and shown in
Figure S3. Benzenoids, lipids and lipid-like molecules, and
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organoheterocyclic compounds seem to be the major classes,
and some additives: phthalate-based plasticizers, antioxidants,
bisphenols, and primary aromatic amines belong to benze-
noids.
CCS and the mass-to-charge ratio for both protonated and

sodiated molecules presented 12% orthogonality (O),41 which
was calculated using

= − ×O R(1 ) 1002

where R2 is the Pearson determination coefficient of the linear
regression. This suggests that the inclusion of the CCS into a
compound elucidation workflow for E&L testing could
potentially increase peak capacity of >10% compared to the
retention time and accurate mass alone; this could ultimately
increase the number of detected and identified analytes.
Similar observations were made in the metabolomics context
by several authors.46,47

Molecular mass was not the only descriptor affecting the
CCS values; two compounds significantly deviated from the
mass/CCS trend. These were bromophenol blue and
bromocresol green, dyes used in the packaging industry and
as pH indicators. In addition to C, H, O, and N, these
compounds include bromine (Br) within their structure, which
could be ascribed to the observed negative deviation in the
correlation plot.
For most of the analyzed molecules, [M + Na]+ showed

higher CCS values compared to [M + H]+, as expected, due to
the higher atomic radius and mass of Na over H. However, in
some cases, the CCS values for [M + H]+ were higher than
those for [M + Na]+. For example, bis(2,4-dicumylphenoxy)
pentaerythritol diphosphite, a common antioxidant used in
food packaging, presented TWCCSN2 values of 329.4 and 311.4
Å2 for its [M + H]+ and [M + Na]+ adducts, respectively. The
Na+ ion can be embedded in the intricate structure of the
molecule, which can easily rotate and bring about diverse
conformation in the 3D space. The sodium can be trapped in
the core of the molecule and the proton might be protruding
from one side of the molecule, thus resulting in the protonated
adduct to be larger in size compared to the sodiated adduct.
Charge Isomers. In some cases, certain compounds can

adopt multiple gas-phase conformers, resulting in multiple
Gaussian-shaped arrival time distributions (ATD). In ESI+,
this is commonly due to the presence of multiple equivalent
protonation sites on the neutral molecule (giving rise to
protomers), as well as multiple stable conformers from a single

protonation site. If a charge isomer pair is sufficiently resolved
in the IM dimension, the peak-detection algorithm will
recognize two different components and will assign two
discrete CCS values. The relationship between the charge
location and the experimental CCS is logical, as the location of
the charge affects the three-dimensional conformation of an
ion, thus the CCS will be affected too. N-Ethyl-p-
toluenesulfonamide, a commonly used plasticizer in poly-
amides and cellulose acetate materials, showed two TWCCSN2
values for its [M + H]+ adduct. As shown in Figure 2,

protonation might occur on both O and N, leading to two
different charge isomers, characterized by a double peak in the
ATD of this compound, therefore leading to different CCS.
Interestingly, by replacing methanol with acetonitrile as the
organic mobile phase, the formation of more compact
conformation is favored (ATD peak at 4.15 ms over peak at
4.83 ms, Figure S4). Warnke and co-workers found that aprotic
solvents can facilitate the protonation of amines, whereas
methanol/water facilitate the protonation on carbonyl oxy-
gen.48 This led us to speculate that the first species (4.15 ms)
corresponded to the protonation of the nitrogen atom, forming
the quaternary ammonium cation, while the second species
(4.83 ms) was represented by the protonation of the oxygen
atom.
The relatively unpredictable formation of charge isomers

and, generally speaking, conformers, represents a great
challenge when attempting to create a CCS database and to
apply prediction models. Essentially, the MDs for such isomers
will likely be identical, regardless of the reference MD library of
choice; thus, the prediction algorithm will be unable to
generate multiple outputs for the isomeric adducts.

Dimeric Ionic Species. In some instances, the presence of
two (or more) features for the same precursor ion can be due
to the formation of dimers, trimers, or other non-covalent
clusters in the ESI source, which will be subjected to a change
in conformation or chemical reaction while traveling through
the mobility cell (e.g., gas-phase collisional ion activation) or at
a later stage within the ion path.49

For example, 12-aminododecanolactam is a cyclic monomer
of polyamide 12; the mobility trace of its sodiated precursor

Figure 1. Correlation between mass-to-charge and CCS of [M + H]+

adducts and its CCS density distributions according to the
compounds’ chemical class. The red circle highlights bromophenol
blue and bromocresol green, which significantly deviate from the
mass/CCS trend.

Figure 2. ATD of N-ethyl-p-toluenesulfonamide (m/z 199.0667) and
its possible charge isomers in the methanol/water mobile phase.
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ions is shown in Figure S5. Two distinct peaks were observed
at 4.79 and 6.74 ms. Besides these two main peaks, a less-
intense peak at 5.78 ms was also discerned, corresponding to a
CCS value of 191.3 Å2. It can be speculated that the dimer
precursor ion [2M + Na]+ undergoes a fragmentation process
to [M + Na]+ during its permanence time in the drift region,
leading to two different peaks in the ATD, with an additional
peak that could correspond to a transition-state species or an
artifact. Another example is tributyl phosphate, a commonly
used defoamer and plasticizer, which formed [2M + H]+ and
[2M + Na]+ in the ESI source. A portion of these ions could
have fragmented to [M + H]+ and [M + Na]+ after passing
through the drift cell or while transiting through the ion guides,
thus leading to two distinct peaks in the mobility trace (Figure
S6).
Development and Optimization of the CCS Predic-

tion Method. After the elimination of non-informative
descriptors, the final number of retained descriptors was n =
3036. Four models were developed for the [M + H]+ and [M +
Na]+ adducts, respectively. Through the feature selection by
SR, 1029 and 862 descriptors were selected for [M + H]+ and
[M + Na]+ adducts, respectively.
The performances of the final PLS and SVM models are

summarized in Table S4 and the violin-plot of prediction
errors are shown in Figure S7. Overall remarkable prediction
performance was achieved for [M + H]+, regardless of the
considered MD set. Furthermore, it is worth stressing that any
issue related to data overfitting can be diagnosed and excluded
as the prediction ability was assessed by external validation.
KernelPLS can deal with non-linear behavior. For [M + H]+,
KernelPLS shows slight improvements in the prediction
accuracy compared to SIMPLS, but is still less accurate than
SVM. For [M + Na]+, KernelPLS does not show a significant
difference with SIMPLS. A slightly better prediction accuracy
was achieved by SVM for both [M + H]+ and [M + Na]+, 62.1
and 54.7% of compounds in [M + H]+ and [M + Na]+ were
predicted with <2% errors. The prediction of CCS was less
accurate along with the feature selection, as can be seen in
Figure S7 and Table S4; in SVM-based models, the
proportions of compounds with <2% predicted errors
decreased from 62.1 to 53.7%, from 54.7 to 48.4%, for [M +
H]+ and [M + Na]+, respectively. For these reasons, we refer to
SVM and 3036 descriptors for the prediction of CCS of [M +
H]+ and [M + Na]+.
The first 25 important descriptors for the prediction of CCS

are shown in Figure S8. The Hosoya-like index (log function)
from the Barysz matrix weighted by Sanderson electro-

negativity (Ho_Dz.e.), the Hosoya-like index (log function)
from the Barysz matrix weighted by ionization potential
(Ho_Dz.i.), McGowan volume (Vx), van der Waals volume
from the McGowan volume (VvdwMG), and sum of atomic
Van der Waals volumes (Sv) were the five most important
descriptors for the prediction of CCS of [M + H]+. Ho_Dz.e.
was used to predict CCS of [M − H]− previously.50 Other
types of important MDs were 2D matrix-based descriptors,
such as the spectral moment of order 3 from the Barysz matrix
weighted by Sanderson electronegativity (SM3_Dz.e.) and
Hosoya-like index (log function) from the topological distance
matrix (Ho_D), these MDs were also used to predict CCS
values.35,50 Sum of atomic polarizabilities (Sp) and Ghose−
Crippen molar refractivity (AMR) were another two important
MDs, which were used in CCS prediction in Zhou et al.
(2016).36

Relative prediction residuals of validation set are shown in
Figure 3. When comparing the [M + H]+ and [M + Na]+

models, the former showed a better predictive performance,
92.6% (88/95), of protonated molecules showing prediction
errors less than ±5%; for [M + Na]+, only 81.3% (52/64) of
molecules were predicted with ±5% error. This phenomenon
can possibly be due to the fact that MDs were calculated on
the neutral form of the molecules. The sodium ion has a higher
atomic radius compared with a proton, thus the descriptors of
sodium adducts could differ significantly compared to the
descriptors of the neutral molecules. This observation is in
accordance with the findings from Bijlsma et al., where the
author obtained lower prediction errors for [M + H]+

compared to [M + Na]+ species.18

Detection of Outliers. The molecules with prediction
errors higher than ±5% (outliers) were further investigated to
try to understand the cause of poor prediction. The measured
and predicted TWCCSN2 of sodiated (−)-erythromycin were
268.2 and 223.6 Å2, respectively (a prediction deviation of
−16.6%). The high prediction error of this compound could be
a consequence of the fact that only three compounds with
CCS values higher than 280 Å2 were present in the calibration
set. The limited training data points in the high-end CCS range
could bias the prediction. In addition, some compounds
containing halogens (fluorine, chlorine, and bromine) also
showed relatively high prediction errors. Tebuconazole, a
commonly used triazole fungicide, and its protonation ion had
prediction error of 7.1% (measured 164.8 Å2, predicted 178.3
Å2). Bisacylphosphine oxides, a commonly used UV photo-
initiator in packaging, containing phosphorus, also presented a
high prediction error of 5.1% (measured 203.6 Å2, predicted

Figure 3. Residuals % (percentage relative prediction error) of the external validation set for [M + H]+ (A), and [M + Na]+ (B) adducts: (1) 4,4′-
difluorobenzophenone; (2) 4-aminophenyl sulfone; (3) Tebuconazole; (4) 2,2′,6′,2″-terpyridine; (5) phenyl isothiocyanate; (6) diphenyl(2,4,6-
trimethylbenzoyl)phosphine oxide; (7) 4-(dodecyloxy)benzoic acid; (8) 1,4,7-trioxacyclotridecane-8,13-dione; (9) dehydrocholic acid; (10)
tetracycline; (11) dibutyl phosphate; (12) triphenylphosphine oxide; (13) corticosterone; (14) testosterone propionate; and (15) rutin.
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214.1 Å2). The presence of these outliers may be due to the
fact that most compounds in the data set prevalently contained
C, H, O, and N; only a few compounds contained halogens
and P. This highlights the importance of the chemical class
when considering such tools. To further improve the model,
the incorporation of more compounds with diverse chemical
structures, especially the compounds with high molecular mass
and with less-common elements, such as halogens and
phosphorus, should be considered.
Comparison of the Herein-Developed SVM Model

with Existing CCS Predicting Tools. CCSondemand is a
recently developed CCS prediction tool, which is based on the
gradient boosting (GB) algorithm and 3775 TWCCSN2 data of
different chemical classes.41 AllCCS is based on the SVR
algorithm and more than 5000 experimental CCS records,39

and CCSbase is a web interface that breaks down the chemical
structural diversity by unsupervised clustering, followed by
training of specific prediction models on each cluster.37 The
comparison of CCS prediction of the validation set between
our SVM model with these three CCS predicting tools is
illustrated in Figure 4. Table S5 shows the detailed predictive
performance indices of the tested models.
As can be seen, the herein developed model presented a

better predictive performance for both [M + H]+ and [M +
Na]+ compared to other tools: 92.6% (88/95) of protonated
molecules and 81.3% (52/64) sodiated molecules showed
prediction error less than 5%. CCSondemand showed a
comparable predictive ability for [M + H]+ and a slightly worse
predictive ability for [M + Na]+. This is understandable
because the dataset used for the development of CCSonde-
mand includes a portion of experimental TWCCSN2 data of
chemicals in food packaging. AllCCS and CCSbase showed
less-accurate predictions, where 83.2 and 81.1% of [M + H]+

were predicted with <5% error, respectively. Some compounds
typically used as food-packaging additives were predicted with

high errors: for 3,5-di-tert-butyl-4-hydroxybenzaldehyde, a
degradation product of butylated hydroxytoluene (BHT)51

with the measured TWCCSN2 of its [M + H]+ is 164.9 Å2, and
AllCCS gave a predicted CCS of 149.8 Å2 (−9.1%) and
CCSbase gave a predicted CCS of 157.1 Å2 (−4.7%). Some
primary aromatic amines also presented high prediction error
by AllCCS and CCSbase, such as 4-aminobiphenyl (−5.8%
and −6.4, respectively), benzidine (−6.3 and −8.0%,
respectively), and 2,6-dimethylaniline (−6.0% and −5.6,
respectively). Additionally, CCSbase gave a high prediction
error for aniline (−5.2%), 4-chloroaniline (−8.0%), 4-chloro-2-
methylaniline (−6.3%), and 5-chloro-2-methylaniline
(−6.1%). The relatively less-accurate CCS prediction of
these kinds of compounds by AllCCS and CCSbase was
possibly due to the fact that the molecules used for model
training do not exhibit the similar structural characteristics to
the chemicals in food packaging, and the quality of prediction
is notably affected by the types of molecules used for
training.39 Another thing needed to be mentioned is that
even though the SVM model herein showed a better CCS
predictive performance than AllCCS and CCSbase for the
chemicals in food packaging, the more diverse chemical classes
of AllCCS and CCSbase cannot be ignored, and these two
prediction tools can be applied to a wide variety of molecules.

Application of SVM to NIAS Identification. The
applicability of the developed CCS prediction model to the
NIAS identification was further assessed by the analysis of a
series of oligomers from adhesives and polyamides (PAs).
Oligomers are molecules that consist of identical repeating
units, which can be formed by the incomplete polymerization
of monomers during polymer manufacturing and also due to
the polymer degradation process.6 Based on previous knowl-
edge of the composition of adhesives and PAs,3,43 12 oligomers
were tentatively identified through suspect screening. Four
adhesive oligomers were derived from the reaction between

Figure 4. Violin-plots and bar-plots showing the comparison between the developed SVM model with other predicting tools. [M + H]+ (A) and
[M + Na]+ (B) adducts.
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adipic acid and 1,4-butanediol, five PA6 oligomers originated
from the polymerization of caprolactam, and three PA66
oligomers were derived from the reaction of 1,6-diaminohex-
ane and adipic acid. The detailed comparison between the
experimental and predicted CCS of oligomers is shown in
Table S6. For 11 compounds, the confidence of the structural
elucidation process was improved by considering the predicted
TWCCSN2 values within the workflow. The oligomers with low
and high mass tend to present higher prediction errors, such as
1,8-diazacyclotetradecane-2,9-dione and 1,6,13,18,25,30,37,42-
octaoxacyclooctatetracontane-7,12,19,24,31,36,43,48-octaone.
This also emphasized the importance of incorporating more
high-mass and low-mass molecules in the training set. The
mass spectral and fragment assignment of 1,6,13,18,25,30-
hexaoxacyclohexatriacontane-7,12,19,24,31, 36-hexone is
shown in Figure S9.
Two cyclic oligomers were found by suspect screening of the

reaction products between adipic acid and 1,4-butanediol,
which showed the same RT and TWCCSN2 with the
compounds identified in water-based adhesive: 1,6,13,18-
tetraoxacyclotetracosane-7,12,19,24-tetrone (5.83 min), [M +
H]+ (189.1 Å2), [M + Na]+ (188.0 Å2), and [M + NH4]

+

(190.9 Å2); 1,6,13,18,25,30-hexaoxacyclohexatriacontane-
7,12,19,24,31,36-hexone (6.47 min), [M + H]+ (232.8 Å2),
[M + Na]+ (228.7 Å2), and [M + NH4]

+ (238.3 Å2). These
data were in accordance with the prediction outcomes and
further proved the reliability of identification.
Challenges and Opportunities of Existing Machine-

Learning CCS Prediction Models. Charge isomers, dimers,
chiral ions, and IMS resolving power: in the previous section,
we have seen that small molecules can give rise to different
charge isomers (e.g., protomers) and dimers. In both cases,
multiple or distorted peaks in the ATD are obtained, which,
when sufficiently resolved, are associated with multiple CCS
values. Because current ML algorithms return a single CCS
value for each compound as the output data, these algorithms
do not take into account the presence of charge isomers or
chiral ions. This leads to potential incorrect predictions. In
addition, conformers are often not fully resolved due to the
relatively low resolving power of the existing IMS-MS systems
[typically Rp < 60 fwhm for linear temporally dispersive IMS
devices, such as traveling wave ion mobility spectrometer and
drift tube ion mobility spectrometer.52 Fortunately, techno-
logical development is on-going, and recent (or soon)
commercially available platforms such as cyclic ion mobility
(cIMS)53 and structures for lossless ion manipulations
(SLIM)54 are expected to provide a higher IMS resolving
power, thus potentially a better resolution of conformers.
The quality of the input data contributes to a good

prediction outcome. Perhaps, we should dedicate more effort
in the derivation of more accurate experimental CCS from
instrumental analysis. So far, it is inappropriate to claim a
prediction tool able to reach less than 2% CCS prediction
relative error, as the current commercially available ion
mobility platforms are set to produce CCS with deviations of
∼1−2% from standard values. For secondary IMS methods
[i.e., traveling wave ion mobility spectrometry (TWIMS),
thermal ionization mass spectrometry, and drift tube ion
mobility spectrometry (DTIMS) operating via a single-field
method], the set of standards used as CCS calibrants should be
specified. This is particularly important for TWIMS, as
different compound classes used as calibrants can have an
impact on the derivation of TWCCS.55 Recently, Richardson

and collaborators revisited the theory of T-wave IMS56 and
proposed a more precise and robust calibration approach,57

which will likely be adopted by next-generation TWIMS
systems, and can further improve the experimental TWCCS
values as input data.
MDs are mathematical representations of a compound

calculated by well-specified algorithms, which transform
molecular structures into numbers.50 MDs are used as X-
block in SVM and represent the second group of the input data
for model training in all MD-based machine-learning
algorithms. It is, therefore, crucial to obtain accurate MDs
for reliable predictions. In the present work, as well as in most
of the previously described studies, researchers make use of
2D-MDs calculated for the neutral form of the molecule. This
tendency is not strictly correct, as the measured CCS is
actually derived for the ionized form of compounds (i.e.,
adducts). Gonzales and co-workers developed multiple ML
prediction models for a group of deprotonated phenolic
compounds (training n = 56, validation n = 16) using 3D-MDs
after considering the proton removal from all possible titratable
regions, followed by energy reminimization, and considering
the most stable conformers.20 The authors emphasized the
ease of integration of their ML models in metabolite
identification, compared to computational chemistry techni-
ques (i.e., Mobcal). Yet, the generalization of Gonzales’
method to a wider range of analytes and adduct types is not
straightforward. When considering the 3D conformation of an
ion, the first challenge is to assign the location of the charge.
We have seen that not only the charge could reside on multiple
discrete positions (i.e., charge isomers) but also some
compounds can distribute the charge across the molecule
(i.e., the mesomeric effect due to the presence of conjugated
bonds and aromatic structures). Furthermore, some com-
pounds present dynamic conformations, which means that the
transition from one energy-state to another could take place
within the millisecond time frame, leading to splitting ATD
peaks, sometimes ascribed to artifacts. Last but not least, also
the ESI capillary temperature, voltage, and the source pressure
can affect the internal energy distribution of electrosprayed
ions, which in turn can affect the initial conformation of such
species at the ionization stage.58 Factoring all these parameters
into a prediction model becomes extremely complicated. A
potential solution could be to integrate molecular modeling
within the ML-prediction workflow in an automatic fashion, so
that the user would be only requested to specify linear notation
(e.g., SMILES) and adduct type into a script that automatically
retrieves all possible ionic conformations, calculates 3D-MDs
of the most stable ionic conformers, and uses such refined
descriptors as the input data for CCS prediction. The process
of encoding refined ionic 3D-MDs as the input features should
be performed in a computationally cheap and easy-to-use
manner, otherwise such prediction models would remain a tool
for privileged users, not applicable to real-life identification
workflows. Some authors used 3D-MDs of the neutral
molecules, for example, Soper-Hopper and co-workers
compared the prediction performance using 2D versus 3D
MDs.50 They came to the conclusion that only in a few cases
3D models produced predictions better than 2D models,
obtaining a RMSE of 7.0 Å2 (median error of 2%) using 2D-
MDs. However, such a performance could be further improved
when considering 3D-MDs of the ionic species. Nevertheless,
regardless of the discussion around 2D versus 3D, mining of
MDs remains highly customizable (i.e., different MD libraries
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and tools exist) and it is prone to user error. Thus, an efficient
and standardized method for retrieving MDs should be
pursued and agreed within the scientific community.
Model Universality. Nowadays, CCS prediction models

tend to be built on a wider group of training data (e.g., Zhou et
al. presented a model trained on more than 5000 experimental
values),39 including a growing number of compounds and a
mix of many different chemical classes. On the other hand, a
different approach is to train ML algorithms on specific classes
of compounds and to apply such prediction tools for specific
applications. In the present work, we demonstrated that the
herein developed tool can outperform universal models for the
prediction of chemicals in migration assessments from
packaging materials. Nevertheless, the benefits of universal
models should be acknowledged, as they can be used for all
applications, regardless of the compound class.
Drift Tube versus Traveling Wave IMS. The most recent

and comprehensive ML-based CCS prediction models also
merged both DTCCS and TWCCS in both training and
validation sets. This would further enhance the universality
of such models. However, the fundamental difference of the
drift tube and traveling wave technology should not be
neglected. Hinnenkamp et al. performed a study in which the
CCS of 124 different small molecules were measured on both
DTIMS and TWIMS.26 The authors found deviations <1% for
most substances, but some compounds showed deviations up
to 6.2%, which indicates that CCS databases cannot be used
without care independently from the instrument type. Plante
and co-workers noticed a decline of prediction performance of
their CNN model based on a global testing set when
considering only the Astarita dataset based on TWCCS
[averaged R2 from 0.97 to less than 0.9, and median relative
error from <2.6% to 5%].34 The authors hypothesized that a
bias in measurement between data sets can be present.
Unknown annotation is one of the major bottlenecks in

untargeted E&L analysis. To accelerate the workflow from raw
data processing to compound identification, multifactor
authentication with the integration of predicted CCS in
combination with retention time, accurate mass, and in-silico
MS/MS tools can facilitate this challenging task. In this study,
we developed a reliable TWCCSN2 prediction tool for chemicals
in FCMs based on SVM. For more than 90% of protonated
molecules, the model accurately predicted CCS with relative
errors below ±5%. The SVM model was successfully applied to
the analysis of oligomers migrating from FCMs and adhesives,
and it was integrated within our suspect and non-targeted
analysis workflows for compound discovery and chemical
migration assessment. The incorporation of a wider number of
compounds in the training set, as well as the employment of a
more accurate set of 3D-MDs based on energetically
minimized ion species could be explored to enhance model
coverage and accuracy. Nevertheless, we believe that an
automatic and universal approach for gathering the appropriate
MDs from ionized species, also considering charge isomers,
can be a game-changer in the prediction of CCS and it should
be pursued in order to turn in-house prediction models into
tools truly applicable in all laboratories.
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added substances; SMLs, specific migration limits; GC−MS,
gas chromatography−mass spectrometry; LC−MS, liquid
chromatography−mass spectrometry; HRMS, high-resolution
mass spectrometer; DIA, data independent acquisition; IMS,
ion mobility spectrometry; UHPLC-IMS-MS, ultra-high
performance liquid chromatography with an ion mobility-
mass spectrometer; CCS, collision cross section; PLS-R, partial
least squares regression; SVR, support vector regression; ANN,
artificial neural network; MDs, molecular descriptors; MQNs,
molecular quantum numbers; CNN, neural network model;
SMILESs, simplified molecular-input line-entry systems;
TWCCSN2, traveling wave collision cross section in nitrogen;
ESI, electrospray ionization; CID, collision-induced dissocia-
tion; OCHEM, Online Chemical database; RMSECV, root
mean squared error of cross validation; SIMPLS, statistically
inspired modification of the partial least squares; C, cost of
constraints violation; SR, sensitivity ratio; PA6, polyamide 6;
PA66, polyamide 66; ATD, arrival time distributions; GB,
gradient boosting; BHT, butylated hydroxytoluene; cIMS,
cyclic ion mobility spectrometry; SLIM, structures for lossless
ion manipulations; ML, machine learning
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