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A B S T R A C T

Steel tape gratings are diffraction gratings engraved on a steel substrate, whose slits are
commonly manufactured by laser ablation. They behave as amplitude diffraction gratings, since
the engraved slits act as strong scatters. Here, we extend previous works to the case of finite-
size illumination sources, as they are used in applications such as optical encoders, where LEDs
are commonly used as illumination sources. We obtain an analytical formulation for the near
field behavior of this kind of gratings. When the light source increases its size, a decreasing in
the contrast of the self-images is added to the effect of the surficial roughness. The agreement
between analytical and numerical results is high, validating the obtained formulation. Besides,
these results could be crucial in metrological applications in which steel tape gratings or other
diffractive optical elements engraved on steel substrates are used, providing with a theoretical
formalism to analyze the near field propagation of light after reflecting in them.

. Introduction

Diffraction gratings are one the most important optical elements [1,2]. Due to its periodic modulation, diffraction gratings
roduce diffraction orders at the far field and self-images at the near field, which is called Talbot effect. It consists of the replication
f the grating intensity pattern at periodical distances from the grating plane given by 𝑧𝑇 = 2𝑛𝑝2∕𝜆, with 𝑛 integer, 𝑝 the period
f the grating, and 𝜆 the illumination wavelength. Talbot effect is well observed for amplitude or phase gratings illuminated by a
ollimated and monochromatic light beam but it has been analyzed from many points of view, [3–8].

In addition, gratings which modulate the polarization or spatial coherence of light are also found in the literature. Regarding
he fabrication methods, amplitude gratings are usually manufactured by lithographic processes and phase gratings are commonly
anufactured also by lithographic processes joined to acid etching, or by nanosecond or femtosecond laser ablation. Amplitude and
hase gratings are usually manufactured on a glass substrate. It offers some advantages such as high flatness and transparency. On
he opposite side, the main disadvantage is the fragility of the substrate, that makes it useless for applications where long gratings
re required, such as large scale optical metrology or optical encoders. To solve this issue, steel tape gratings are used, [9,10].
teel is easier to handle and allows to manufacture diffraction gratings as long as needed. Reflective amplitude or phase gratings
re possible on a steel tape. To obtain phase-based diffraction gratings, femtosecond laser sources can be used, since they remove
aterial from the surface of the steel and generate high quality grooves. On the other hand, amplitude gratings on steel tape can

e obtained by lithographic processes with acid etching or by laser ablation with nanosecond laser sources.
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In both cases, the engraved slits present roughness which acts as a strong scatter. As a consequence, the grating behaves
lmost as a conventional amplitude diffraction grating in reflection, [11,12]. Roughness of the steel tape which stands on the non
ngraved areas of the substrate produces detrimental effects such as lower contrast in higher-order self-images. A partial approach
onsidering non constant thickness of steel substrate and its effect at the far field has been analyzed [13]. In other cases, with
mplitude diffraction gratings and point source illumination or polychromatic light, the behavior is different [14]. Point-source
llumination produces divergent self-images and polychromaticity of the source produces continuous fringes without the contrast
nversion inherent to the Talbot effect.

In this work, the behavior of steel tape gratings at the near field is analyzed when they are illuminated by finite size illumination
ources, such as LEDs. We find that the contrast of the self-images at the near field of the grating is affected by two effects: the
agnitude of the roughness and the size of the source. Both effects act reducing the contrast of the self-images gradually until
isappearing from a certain distance forward. These analytical results are corroborated by numerical simulations made by using
numerical integration of the Rayleigh–Sommerfeld formulation [15]. In our opinion, the formalism obtained in this work has

otential applications en all optical-control systems based on self-imaging effect since it facilitates the theoretical analysis of the
ystems before performing the experiment or mounting the device.

. Theoretical approach

Let us consider an one-dimensional steel tape grating whose reflectance, 𝑆(𝑥), is defined as the product of the reflectance of the
ough surface, 𝑟(𝑥), and the reflectance of a conventional amplitude diffraction grating represented as a Fourier expansion, 𝐺(𝑥),

𝑆(𝑥1) = 𝑟(𝑥1)𝐺(𝑥1) = 𝑟(𝑥1)
∑

𝑛
𝑎𝑛𝑒

𝑖𝑞𝑛𝑥1 , (1)

here 𝑖 is the imaginary unit, 𝑎𝑛 are the Fourier coefficients and 𝑞 = 2𝜋∕𝑝 with 𝑝 the period of the grating. When the diffraction
grating is illuminated by a point light source placed at a distance 𝑧0 from the grating plane and 𝑥0 from the optical axis, the field
ust after the grating can be expressed, in paraxial approximation, as

𝑈 (𝑥1) = 𝐴0 𝑒
−𝑖

𝑘(𝑥1−𝑥0)2
2𝑧0 𝑆(𝑥1), (2)

where 𝑘 = 2𝜋∕𝜆 is the wavenumber, 𝐴0 is the amplitude of the lightwave, and we have dropped some constant factors that will
disappear after integrations. The field at a distance 𝑧 from the grating is obtained by Fresnel approximation, that in 1D approach
results

𝑈 (𝑥2, 𝑧) = ∫ 𝑈 (𝑥1)𝑒
−𝑖

𝑘(𝑥2−𝑥1)2
2𝑧 𝑑𝑥1, (3)

where the intensity is 𝐼(𝑥2, 𝑧) = 𝑈 (𝑥2, 𝑧)𝑈∗(𝑥2, 𝑧).
Since the steel surface 𝑟(𝑥1) is random, the surface has to be described by statistical parameters. We have assumed normal

distribution in heights, 𝑤(ℎ) = 𝑒𝑥𝑝
(

−ℎ2∕2𝜎2
)

∕
√

2𝜋𝜎, where ℎ = ℎ(𝑥1) and 𝜎 is the standard deviation in heights, [11,16]. Thus, the
characteristic function that describes the mean reflectance of the surficial roughness is given by

⟨𝑟(𝑥1)⟩ = ∫ 𝑤(ℎ)𝑒𝑥𝑝 [2𝑖𝑘ℎ] 𝑑ℎ = 𝑒−𝑔∕2, (4)

with 𝑔 = (2𝑘𝜎)2. The relationship between two different points of the surface must be also defined. Assuming Gaussian distribution
in heights with variance 𝜎2 and mean value zero, it results in

𝑤
[

ℎ(𝑥1), ℎ(𝑥′1)
]

= 1
2𝜋𝜎

√

1 − 𝐶(𝜏)2
𝑒
−

ℎ2(𝑥1)+ℎ
2(𝑥′1)−2𝐶(𝜏)ℎ(𝑥1)ℎ(𝑥

′
1)

2𝜎2(1−𝐶(𝜏)2) , (5)

here Gaussian autocorrelation coefficient is supposed,

𝐶(𝜏) =
⟨ℎ(𝑥1)ℎ(𝑥′1)⟩

⟨ℎ2(𝑥1)⟩
= 𝑒−𝜏

2∕𝑇 2
0 , (6)

with 𝜏 = 𝑥1 − 𝑥′1 and 𝑇0 the correlation length. As a result, the characteristic function of this distribution is

⟨𝑟(𝑥1)𝑟(𝑥′1)⟩ = 𝑒𝑥𝑝−𝑔[1−𝐶(𝜏)] = 𝑒−𝑔
∞
∑

𝑚=0

𝑔𝑚

𝑚!
𝑒
−𝑚 𝜏2

𝑇 20 . (7)

Then, the mutual intensity function, 𝐽 (𝑥2, 𝑥′2, 𝑧), at a distance 𝑧 from the grating plane results in

𝐽 (𝑥2, 𝑥′2, 𝑧) = ∬ ⟨𝑈 (𝑥1)𝑈∗(𝑥′1)⟩𝑒
−𝑖

𝑘(𝑥2−𝑥1)2
2𝑧 𝑒𝑖

𝑘
(

𝑥′2−𝑥
′
1

)2

2𝑧 𝑑𝑥1𝑑𝑥
′
1. (8)
2

Expanding all terms, the integral may be rewritten as
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𝐽 (𝑥2, 𝑥′2, 𝑧) = ∬ 𝐴2
0𝑒

−𝑖
𝑘(𝑥1−𝑥0)2

2𝑧0 𝑒
𝑖
𝑘(𝑥’1−𝑥0)2

2𝑧0 𝑒−𝑖
𝑘(𝑥2−𝑥1)2

2𝑧 𝑒𝑖
𝑘
(

𝑥′2−𝑥
′
1

)2

2𝑧 (9)

× ⟨𝑟(𝑥1)𝑟(𝑥′1)⟩
∑

𝑛,𝑛′
𝑎𝑛𝑎

∗
𝑛′𝑒

𝑖𝑞𝑛𝑥1𝑒−𝑖𝑞𝑛
′𝑥′1𝑑𝑥1𝑑𝑥

′
1,

where ⟨𝑟(𝑥1)𝑟(𝑥′1)⟩ is given by Eq. (7). Performing both integrals and calculating the average intensity as ⟨𝐼(𝑥2, 𝑧)⟩ = 𝐽 (𝑥2, 𝑥2, 𝑧),
results in

𝐼(𝑥2, 𝑧) = 𝐴2
0

2𝜋𝑧𝑧0
𝑘(𝑧 + 𝑧0)

𝑒−𝑔
∑

𝑛,𝑛′
𝑎𝑛𝑎

∗
𝑛′

∞
∑

𝑚=0

𝑔𝑚

𝑚!
𝑒
−𝑚

[

(𝑛−𝑛′)𝑞𝑧𝑧0
𝑘𝑇0(𝑧+𝑧0)

]2

𝑒
𝑖
[

(𝑛2−𝑛′2)𝑞2𝑧𝑧0
2𝑘(𝑧+𝑧0)

+ (𝑛−𝑛′)𝑞(𝑥0𝑧+𝑥2𝑧0)
𝑧+𝑧0

]

, (10)

This equation is also valid for convergent illumination just changing the sign of 𝑧0. Some examples of diffracted mean intensity
obtained using Eq. (10) are shown in Fig. 1 for several values of the standard deviation of heights and correlation lengths that cover
the usual values for standard steel tape roughness. Besides, we have used different roughness values to understand how it affects to
the self-imaging process. When the standard deviation of heights increases, a loss of contrast in higher order self-images is produced.
On the other hand, the self-images have higher contrast when the roughness is smaller

From Eq. (10), we may obtain the intensity for monochromatic, plane wave illumination by applying 𝑧0 → ∞. Then the intensity
results in

𝐼𝑃𝑊 (𝑥2, 𝑧) = 𝐴2
0
2𝜋𝑧
𝑘

𝑒−𝑔
∑

𝑛,𝑛′
𝑎𝑛𝑎

∗
𝑛′

∞
∑

𝑚=0

𝑔𝑚

𝑚!
𝑒
−𝑚

[

(𝑛−𝑛′)𝑞𝑧
𝑘𝑇0

]2

𝑒
𝑖
[

(𝑛2−𝑛′2)𝑞2𝑧
2𝑘 +(𝑛−𝑛′)𝑞𝑥2

]

, (11)

which is obtained in [12] but considering higher orders to describe the surficial roughness.

Fig. 1. Average intensity computed with Eq. (10) (point source illumination), 𝜆 = 632.8 nm, 𝑝 = 20 μm, 𝑛 = 𝑛′ = (−10,−9,… , 9, 10), 𝑚 = 0, 1, 𝑧0 = 10 mm, for
different values of 𝑇0 and 𝜎.
3
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Fig. 2. Average intensity computed with Eq. (14) (finite-size illumination), 𝜆 = 632.8 nm, 𝑝 = 20 μm, 𝑛 = 𝑛′ = (−10,−9,… , 9, 10), 𝑚 = 0, 1, 𝑧0 = 10 mm, 𝐿 = 10 μm,
for different values of 𝑇0 and 𝜎.

Also, when no roughness is present, 𝑇0 → ∞ and 𝜎 = 0, the intensity is

𝐼𝑁𝑅(𝑥2, 𝑧) = 𝐴2
0

2𝜋𝑧𝑧0
𝑘(𝑧 + 𝑧0)

∑

𝑛,𝑛′
𝑎𝑛𝑎

∗
𝑛′𝑒

𝑖
[

(𝑛2−𝑛′2)𝑞2𝑧𝑧0
2𝑘(𝑧+𝑧0)

+ (𝑛−𝑛′)𝑞(𝑥0𝑧+𝑥2𝑧0)
𝑧+𝑧0

]

, (12)

which is obtained in [14]. Both limit results corroborate partially the validity of the present formalism.
Now, let us analyze the effect of the finite size of the light source. An integration over 𝑥0 is required, since this parameter is the

position of the light source along the axis parallel to the diffraction grating. Thus, the intensity is obtained by

𝐼𝐹𝑆 (𝑥2, 𝑧) = 𝐴2
0

2𝜋𝑧𝑧0
𝑘(𝑧 + 𝑧0)

𝑒−𝑔
∑

𝑛,𝑛′
𝑎𝑛𝑎

∗
𝑛′

∞
∑

𝑚=0

𝑔𝑚

𝑚!
𝑒
−𝑚

[

(𝑛−𝑛′)𝑞𝑧𝑧0
𝑘𝑇0(𝑧+𝑧0)

]2

(13)

× 𝑒
𝑖
[

(𝑛2−𝑛′2)𝑞2𝑧𝑧0
2𝑘(𝑧+𝑧0)

+ (𝑛−𝑛′)𝑞𝑥2𝑧0
𝑧+𝑧0

]

∫

+𝐿∕2

−𝐿∕2
𝑒
𝑖
[

(𝑛−𝑛′)𝑞𝑧
𝑧+𝑧0

𝑥0
]

𝑑𝑥0,

where 𝐿 is source size, which is centered at the optical axis. The intensity results

𝐼𝐹𝑆 (𝑥2, 𝑧) ∝ 𝑒−𝑔
∑

𝑛,𝑛′
𝑎𝑛𝑎

∗
𝑛′

∞
∑

𝑚=0

𝑔𝑚

𝑚!
𝑒
−𝑚

[

(𝑛−𝑛′)𝑞𝑧𝑧0
𝑘𝑇0(𝑧+𝑧0)

]2

(14)

× 𝑒
𝑖
[

(𝑛2−𝑛′2)𝑞2𝑧𝑧0
2𝑘(𝑧+𝑧0)

+ (𝑛−𝑛′)𝑞𝑥2𝑧0
𝑧+𝑧0

]

𝑠𝑖𝑛𝑐

[

(𝑛 − 𝑛′)𝑞𝑧𝐿
2
(

𝑧 + 𝑧0
)

]

.

We show in Fig. 2 the same examples than in Fig. 1 but considering a finite size monochromatic light source with lateral size
𝐿 = 10 μm instead of point source illumination. The size of the source has been chosen small enough to produce self-images and big
4
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Fig. 3. (a, c, and e) average intensity computed with Eq. (14), 𝑛 = 𝑛′ = (−3,−2,… , 2, 3), (b, d, and f) average intensity computed numerically over 100
realizations. 𝜆 = 632.8 nm, 𝑝 = 20 μm, 𝑚 = 0, 1, 𝑧0 = 10 mm, 𝜎 = 0.05 μm, and 𝑇0 = 50 μm. The size of the source is written into each subfigure.

enough to produce decreasing of contrast for high self-images. In addition, there are in the market several LEDs with size around
the selected value [17]. Comparing Fig. 2(a) and (c) with Fig. 1(a) and (c), a blurring of higher order self-images due to the finite
size of the light source is observed. However, this effect is not observed in Fig. 2(b) and (d), compared to Fig. 1(b) and (d), since
higher self-images do not exist due to the surficial roughness of the steel tape.

Also, the dependence of the near field diffraction pattern on the size of the source for the same roughness parameters is shown
in Fig. 3(a), (c), and (e). When the light source size is increased, the contrast of the self-images at the near field decreases. So, the
larger is the source, the lesser is the number of self-images with measurable contrast. Finally, only zeroth order self-image remains
from a certain source size forward.
5
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3. Numerical simulations

To corroborate the theoretical formalism, we have numerically simulated the steel tape diffraction gratings and obtained the
ear field diffraction pattern of this gratings using Diffractio package [15]. An example of the reflectance of a steel tape grating is
hown in Fig. 4, which is obtained by multiplying the reflectance of a common amplitude Ronchi grating and the topography of
he steel tape. The reflection coefficient can be obtained from the topography as 𝑅(𝑥1) = 𝑒𝑥𝑝[2𝑖𝑘 𝑆(𝑥1)]. The analytical formalism

implies an average which, in practical applications, is given by the two-dimensionality of the grating. Each row of the grating acts
as an one-dimensional grating but the diffracted field is composed by the incoherent summation of all of them. One realization
corresponding to the same gratings used to obtain Fig. 2 is shown in Fig. 5. For just one realization, the diffraction pattern is not
homogeneous. This is more evident for longer correlation length of roughness. To compare the numerical results to that obtained
analytically, we show in Fig. 6 the numerical average over 100 random realizations, corresponding to each case of Fig. 5. The
results are very similar to those obtained in Fig. 2. Besides, we may observe in Fig. 3(b), (d), and (f) the numerical simulations
corresponding to the same gratings computed analytically, Fig. 3(a), (c), and (e), in which we have varied the size of the source
remaining the amount of roughness as a constant. The agreement between analytical and numerical results is clear, validating the
obtained formalism. Although the numerical simulations corroborate the analytical formalism, an experiment could be proposed.
The experiment would be similar to those performed in [14,18]. It consists on a reflection configuration set-up by using a beam
splitter. The light is taken by a CCD sensor which is displaced parallel to the optical axis and the images are vertically integrated
to obtain the mean intensity at each perpendicular plane. The obtained images would be similar to those shown in Figs. 2 and 6.
The illumination source for the experiment should be as small as possible, so we would recommend the usage of a VCSEL or a
microLED, [17].

Fig. 4. Example of the reflectance for one realization of steel tape grating, used for the numerical simulations. The parameters of the grating are 𝑝 = 20 μm,
= 0.05 μm, 𝑇0 = 25 μm. 𝐺(𝑥1) is the reflectance of a common amplitude Ronchi grating, 𝑟(𝑥1) is the topography of the steel tape, and 𝑆(𝑥1) is the reflectance

f the topography of the steel tape grating.
6
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Fig. 5. Intensity computed numerically for one realization (finite-size illumination), 𝜆 = 632.8 nm, 𝑝 = 20 μm, 𝑧0 = 10 mm, 𝐿 = 10 μm, for different values of 𝑇0
and 𝜎.
7
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Fig. 6. Average intensity computed numerically from 100 realizations (finite-size illumination), 𝜆 = 632.8 nm, 𝑝 = 20 μm, 𝑧0 = 10 mm, 𝐿 = 10 μm, for different
values of 𝑇0 and 𝜎.

Conclusions

The near field behavior of steel tape gratings illuminated by incoherent finite-size light sources, such as a LED, is analyzed. We
obtain the expressions for the near field intensity in terms of the roughness parameters of the steel tape, and the parameters of the
source and grating. We find that the contrast of the self-images at the near field is a combination of two effects: the magnitude of the
roughness and the finite size of the source. Both effects reduce the contrast of the self-images. Numerical simulations are performed,
which highly agree to analytical results. The obtained formalism is important in applications in which self-images are used for
metrology, such as optical encoders and allows to theoretically analyze the system before performing experiments or manufacturing
a device.
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