
Research Article Vol. 13, No. 5 / 1 May 2022 / Biomedical Optics Express 2810

Automated segmentation of the ciliary muscle in
OCT images using fully convolutional networks

IULEN CABEZA-GIL,1 MARCO RUGGERI,2,3 YU-CHERNG
CHANG,2,3 BEGOÑA CALVO,1,4 AND FABRICE MANNS2,3,*

1Aragón Institute of Engineering Research (i3A), University of Zaragoza, Zaragoza, Spain
2Ophthalmic Biophysics Center, Bascom Palmer Eye Institute, University of Miami Miller School of
Medicine, Miami, FL, USA
3Department of Biomedical Engineering, University of Miami College of Engineering, Coral Gables, FL,
USA
4Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN),
Zaragoza, Spain
*fmanns@miami.edu

Abstract: Quantifying shape changes in the ciliary muscle during accommodation is essential
in understanding the potential role of the ciliary muscle in presbyopia. The ciliary muscle can be
imaged in-vivo using OCT but quantifying the ciliary muscle shape from these images has been
challenging both due to the low contrast of the images at the apex of the ciliary muscle and the
tedious work of segmenting the ciliary muscle shape. We present an automatic-segmentation tool
for OCT images of the ciliary muscle using fully convolutional networks. A study using a dataset
of 1,039 images shows that the trained fully convolutional network can successfully segment
ciliary muscle images and quantify ciliary muscle thickness changes during accommodation.
The study also shows that EfficientNet outperforms other current backbones of the literature.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The ciliary muscle (CM) can be considered the engine of accommodation due to its central role in
controlling the forces applied on the lens [1]. During accommodation, ciliary muscle contraction
produces an inward movement of the apex of the ciliary processes towards the lens equator. This
movement releases resting zonular tension at the lens equator and allows the lens to take a more
curved shape, resulting in accommodation [2,3].

The amplitude of accommodation progressively decreases with age [4], eventually leading to
presbyopia, the loss of near visual function. Presbyopia is attributed primarily to an increase in
lens stiffness with age [5–8], but there are also age-related changes in the ciliary muscle which
may be a factor [9]. Recent studies have used optical coherence tomography (OCT) [10–12]
to image the movement of the ciliary muscle dynamically and to quantify changes in ciliary
muscle thickness (CMT) during accommodation [13–19]. One of the challenges in these studies
is that they produce large image datasets which cannot be analyzed efficiently using manual
segmentation techniques. Kao et al. [20]. and Strasser et al. [21] developed a semi-automatic
segmentation application, but their approach still requires significant manual input.

To address this need, we developed an automated computational tool to quantify the shape of
the ciliary muscle in transscleral OCT images. The tool combines a fully convolutional network
(FCN) to segment the images and post-processing steps to undistort and correct the images.

FCNs have been commonly used in ophthalmology for segmentation applications, especially
of the retina and cornea [22–25]. Their use has been key in dealing with noisy biomedical
images, where traditional image processing tools are not so powerful. So far, two neural networks
architectures have been mainly used to segment biomedical images, FCN and convolutional
neural networks (CNNs) [26]. The difference is that FCNs employ solely locally connected layers,
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such as convolution, pooling and upsampling operations, in contrast with CNNs, which also add
fully-connected dense layers. This FCNs feature considerably decreases the computational cost
and adds local spatial coherence, which is why we decided to use FCN in this study.

2. Overview of the automatic CM segmentation tool

The general structure of the proposed segmentation tool is described in Fig. 1. OCT images
of the CM are pre-processed with a contrast filter and then introduced into the FCN, which
performs automatic multiclass segmentation to detect the background, other ocular structures,
and CM. The boundaries of the segmentation are then overlapped onto the original image to
check the automatic segmentation results. Lastly, the segmented contours of the sclera and CM
are corrected for distortion due to refraction of the OCT beam through the ocular tissues to
accurately quantify biomarkers such as CM and scleral thickness from the real shape of the CM.

Fig. 1. Outline of the proposed tool to automatically segment the CM images. A contrast
filter is performed initially to the raw images. The resulting images are introduced in the
FCN that performs the multiclass segmentation (background, other ocular structures and
CM). Then, the quality of the automatic segmentation is checked by an examiner. Lastly, the
segmented boundaries images are corrected for distortion to obtain the real shape of the CM
using MATLAB.

3. Development of the fully convolutional network

3.1. Dataset

The dataset to train the FCN was obtained from a database of transscleral Spectral-Domain OCT
(SD-OCT) images of the ciliary muscle acquired on human subjects using a system that was
described previously [10–12,17,27]. Briefly, the OCT system (Telesto I, Thorlabs) operates at
a central wavelength of 1,325 nm and at a frame rate of 13 Hz, with an axial resolution of 7.5
µm over an axial range of 2.5 mm (in air). The transscleral OCT system was combined and
synchronized with an extended depth OCT system that simultaneously acquired images of the
anterior segment including the crystalline lens [12]. Anterior segment images were used to
quantify changes in lens thickness (LT) during accommodation, which was used as an objective
measure of the accommodative response. All studies were approved by the Institutional Review
Board at the University of Miami Miller School of Medicine and followed the tenets of the
Declaration of Helsinki.

The database included 104 recordings acquired along a horizontal meridian on the temporal
side of the left eye of 23 human subjects, ranging in age from 16 to 45 years. Each recording
consisted of a sequence of 160 OCT images of the ciliary muscle [512× 897 pixels] and the
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anterior segment [400× 2048 pixels] acquired in real-time during the response to a step stimulus
of accommodation. Each recording lasted 6.17 seconds and the accommodation step stimulus
was triggered 1.54 s after the start of an acquisition. The amplitude of the accommodation step
stimulus ranged from 0D to 6D depending on the study.

All images (104 recordings× 160 images= 16,640 images) were checked visually to select
only the images where the CM boundary was visible. From the 16,640 images, 1,039 images
were used to develop the FCN as follows: 716 images were used for training (69%), 164 images
for validation (16%), and 159 images for testing (15%). From the 23 subjects, 12 were used for
training and validation and 11 for testing. The number of images varied between subjects, with a
minimum of 5 and a maximum of 51 images per recording.

3.2. Pre-processing

The original size of the OCT images of the CM is 512× 897 pixels. Each image was cropped to
produce an even number of rows and columns [512× 896] needed for FCN training. The contrast
of the image was adjusted with the function ‘imadjust’ MATLAB (MathWorks Inc., USA), which
is based on the following function:

y =
(︂ x − a
b − a

)︂γ
(1)

where y and x are the resulting and original pixel values, respectively, γ specifies the shape of
the image histogram (i.e., the brightness of the image), and a and b determine the lower and
upper limits calculated for contrast stretching of the image, respectively. Parameters a and b were
automatically calculated through the ‘stretchlim’ MATLAB function while γ = 1.5 was applied
to all images. This pre-processing was applied to all annotated images and should be performed
to all images submitted to the automatic-segmentation tool developed in this study.

3.3. Annotation

All the chosen 1,039 images were segmented manually with an in-house code developed in
MATLAB to generate the datasets needed for training and testing the FCN. Manual segmentation
was performed by one examiner familiar with ocular anatomy. The images contained three labels:
the background, other ocular structures, and the ciliary muscle, making it a multiclass image
segmentation problem.

3.4. Design of the fully convolutional network

This section initially justifies the choice of UNet over other FCN architectures to segment
multiclass segmentation problems. Then, the loss function and optimizer used to train all
FCNs evaluated during this study are explained. Lastly, the metrics used to evaluate the FCN
performance are described.

3.4.1. Choice of architecture

We evaluated the performance of several FCNs for biomedical imaging including UNet [28]
and LinkNet [29] with different backbone structures such as ResNet34 [30], EfficientNetb2 [31],
MobileNetv2 [32], Vgg19 [33] and EfficientNetb4 [30] for segmenting the OCT images of the
CM. Finally, UNet architecture (Fig. 2) was chosen for this study due to its higher performance
than the others.
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Fig. 2. Architecture of the FCN used in this study (UNet with EfficientNetb2 as backbone).
The green arrows indicate a convolutional layer with a stride of 2 (performing the convolution
and resizing the image at the same time). The cyan arrows indicate a conventional
convolutional layer. The cyan arrows and dotted lines indicate that several actions (several
Conv2D layers) were performed in the neural network, but for graphical purposes, they were
not added. The orange arrows indicate an upsampling procedure. The code and the model
summary are reported in the following repository [38].

3.4.2. Choice of loss function

The following loss function, which measures how far a predicted value is from the true value,
was used to train the FCN:

loss function = Dice loss + Categorical Focal loss , (2)

where the Dice loss and the Categorical Focal loss, two statistical coefficients used to gauge the
similarity, are:

Dice loss = 1 − 2 ·
TP

2·FP + FN + FP
, (3)

Categorical Focal loss = −gt · 0.25 · (1 − pr)α · log(pr) , (4)

where TP, FP and FN mean the true positives, false positives and false negatives between the
predicted and ground truth pixels, respectively. ‘gt’ and ‘pr’ are pixel values of the ground truth
and predicted probability, respectively. The focusing parameter, α, smoothly adjusts the rate at
which easy examples are down-weighted. This parameter was set to 4 to treat highly imbalanced
data (approximately the background, other ocular structures and CM pixel values in each image
were 22%, 68% and 10%, respectively) [34]. Moreover, to address the problem between easy
and difficult samples (the background can be considered as an easy sample whilst the CM as a
difficult one), a class weight of 0.5, 0.1 and 2.4 was imposed in the Dice loss for the background,
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other ocular structures and CM pixels, respectively. Thus, the FCN focused more on segmenting
properly the CM pixels than the others. The weights were chosen based on a pre-screening
analysis of the FCN training.

3.4.3. Training optimization

Network training was conducted using Adam optimizer as it has demonstrated good performance
in training neural networks [35,36], with an initial learning rate of 0.001. We also included a
function that reduces the learning rate if there has not been a decrease in the loss function in 10
epochs. Finally, the ‘Softmax’ activation function was used for the last layer as it is often used
for multiclass segmentation problems because the result could be interpreted as a probability
distribution.

3.4.4. Performance assessment

To assess the FCN performance, we quantified the Intersection Over Union (IoU, also known as
the Jaccard index), which is particularly suited for multiclass segmentation problems:

IoU(gt, pr) =
|gt ∩ pr |
|gt ∪ pr |

=
TP

TP + FP + FN
. (5)

Moreover, the F-score metric was also computed to compare our results with other biomedical
segmentation studies:

F − score =
2·TP

2·FP + FN + FP
. (6)

All FCNs were trained for 150 epochs since all FCNs were completely optimized in those
epochs. We use Google-Colab Pro and Tensorflow [37] library to train the FCNs. A batch size of
4 was used for memory limitations.

3.4.5. Real time data-augmentation

In order to design a robust FCN that can successfully segment the multiclass transscleral CM
image and avoid over-fitting of the training dataset, a real-time data augmentation technique was
implemented. Instead of creating a larger dataset from the training dataset, which would involve
a considerable increase in the training time, we implemented an in-house algorithm to randomly
transform the training dataset in each epoch.

Each image in the training dataset was randomly transformed in each epoch as follows: the
image was rotated in the following range [-3, 3°]; the image was displaced in a range of [0-3%]
horizontally and vertically. The nearest neighbor algorithm was used for completing the resulting
images; a gaussian or speckle noise was introduced; and finally, a contrast filter, (Eq. 1), with
γ ranging from 0.7 to 1.2, was applied to change the brightness of the image. Fig. 3 shows an
example of the same image with three different random transformations.
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Fig. 3. Different transformations of the same image. A contrast filter with γ= 0.7, 1.0 and
1.2 was applied to (a), (b) and (c), respectively. Each image was rotated, and horizontally
and vertically displaced randomly. Speckle noise was added to the images, but it cannot be
appreciated as it is shadowed by the original background noise of the images. The vertical
and horizontal scale bar (yellow) are 0.25 and 1 mm, respectively.

4. Distortion correction

The raw OCT images of the CM must be corrected for optical distortions and the pixel size of
the image must be normalized. The OCT images are distorted due to refraction of the probe
beam at the different ocular interfaces [16], mainly produced by the anterior and posterior scleral
boundaries [11]. The pixel size is not normalized due to the different pixel density along the
width (897 pixels / 10 mm) and the height (512 pixels / 2.5 mm) of the image.

We implemented an algorithm to correct for image distortion due to refraction of the OCT
beam at the air-sclera and sclera-ciliary muscle boundaries based on the vector form of Snell’s
law [11]. For distortion correction, we used the group refractive indices of the sclera (1.415) and
ciliary muscle (1.380) estimated at 1,325 nm [12]. The anterior conjunctiva was considered as
part of the sclera since it cannot be detected in most of the OCT images. After the boundaries
were corrected for distortion, they were resampled to normalize the pixel size.

5. Results

5.1. FCN performance

Table 1 shows the performance of the different FCN architectures evaluated in this study. Overall,
we found no difference in performance between UNet and LinkNet, whilst we found considerable
differences in the backbone used for the FCN. The best performance was obtained with EfficientNet
as backbone. There was no significant difference between EfficientNetb2 and EfficientNetb4.
As a result, for CM segmentation we implemented UNet with EfficientNetb2 backbone. This
configuration has an IoU score of 94.54%, 97.37% and 90.23% for the background, other ocular
structures and ciliary muscle, respectively, with a mean IoU of 94.04%, and an F-Score of
97.33%.

We did not find any positive correlation between the training time and the number of parameters,
except for the EfficientNet structure (Table 1). No difference in the training time was found
between different backbone structures as each one uses a different scaling method [31].

The training history, loss function and IoU mean score of the Unet-EfficientNetb2 are shown
in Fig. 4. The low batch size (4) enabled to train the FCN in few epochs. Our FCN architecture
(UNet with EfficientNetb2 backbone) learned faster than other FCNs such as UNet/LinkNet-
MobileNetv2, which needed approximately 100 epochs to improve its performance.
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Table 1. Performance of different FCN architectures trained for the CM segmentation. All
FCNs were trained in 150 epochs. Each FCN was trained three times and the one with best

performance was chosen

CNN Backbone
IoU FScore

(%)
Total N°
Params

Training
timeBg

(%)
Sclera
(%)

CM
(%)

Mean
(%)

#1 UNet ResNet34 93.95 96.85 89.48 93.43 97.02 24,450,166 4h48min

#2 UNet EfficientNetb2 94.54 97.37 90.23 94.04 97.33 14,295,013 5h23min

#3 UNet MobileNetv2 93.56 96.45 88.43 92.98 96.86 8,047,455 4h23min

#4 UNet Vgg19 93.20 96.57 87.95 92.57 96.66 29,061,107 4h37min

#5 UNet EfficientNetb4 94.40 97.19 90.14 93.91 97.25 25,734,443 6h6min

#6 LinkNet ResNet34 94.29 97.24 89.76 93.76 97.19 21,631,286 4h35min

#7 LinkNet EfficientNetb2 94.49 97.44 90.03 93.99 97.31 10,221,957 4h39min

#8 LinkNet MobileNetv2 93.60 96.76 88.61 92.99 96.86 4,144,291 4h23min

#9 LinkNet Vgg19 93.35 96.17 89.03 92.84 96.71 25,633,971 4h53min

#10 LinkNet EfficientNetb4 94.51 97.48 89.96 93.98 97.32 21,717,643 6h20min

Fig. 4. Training history of the UNet architecture with the EfficientNetb2 as backbone. IoU
mean score (a) and loss function (b) are shown.

5.2. Application of the FCN for biometry of the ciliary muscle

To show that the trained FCN can quantify ciliary muscle movements during accommodation,
the data from 5 recordings (160 images) from 5 subjects included in the testing dataset ranging in
age from 20 to 26 years and responding to a step stimulus in accommodation of 4D were selected.
The proposed tool (Fig. 1) was used to obtain the CM biometry. No image segmentation by the
FCN was discarded for subject #1 by the examiner as the CM boundary was clearly visible. Less
than 10% of the images were discarded for subject #2 and #3, and approximately 20% images
were discarded for subject #4 and #5. The ratio was proportional to the OCT quality image.
Videos showing the automatic-segmentation performed in the recording of each subject is shown,
see Visualization 1, Visualization 2, Visualization 3, Visualization 4, and Visualization 5.

Fig. 5 shows the accommodated and unaccommodated CM geometry and the CMT profile for
the five subjects. The CMT profile was obtained following the methodology proposed by Strasser
et al. [21]., which measures the distance of the scleral-muscle border and the muscle-pigmented
epithelium border along the direction perpendicular to the scleroconjunctival-air interface. Fig. 5
shows that using the FCN we can detect differences in CM shape between the unaccommodated
and accommodated state across all subjects, with a consistent increase of the CMT in the
accommodated state.

The accuracy of the FCN was evaluated by comparing the differences in maximum CMT
measured by the proposed FCN and manual segmentation. A Bland–Altman analysis was

https://doi.org/10.6084/m9.figshare.19382744
https://doi.org/10.6084/m9.figshare.19382753
https://doi.org/10.6084/m9.figshare.19382750
https://doi.org/10.6084/m9.figshare.19382756
https://doi.org/10.6084/m9.figshare.19382747
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Fig. 5. Non- and accommodated geometry of the ciliary muscle at the left while the CMT
profile is shown at the right for the five different testing subjects. The ages of subjects #1 to
#5 were 26, 23, 25, 26 and 20 years, respectively.
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performed in the testing dataset to show the agreement between the manual and FCN segmentation
(Fig. 6). A mean difference of 1.2 µm and a 95% confidence interval (CI) of [-45, 48] µm were
obtained.

Fig. 6. Bland-Altman analysis comparing the CMTmax value provided by the FCN and
the manual segmentation for the testing dataset (159 images). The root mean square error
(RMSE) between the FCN and manual segmentation was 21.9 µm and the percentage limit
of agreement (%LOA) was 8.1%.

Fig. 7 shows the dynamics of the maximum CMT and the lens thickness (LT) during
accommodation (6.17 s), and the changes in LT as a function of the changes in maximum CMT.
As expected, the lens increases in thickness as the ciliary muscle contracts (i.e. CMT changes in
thickness) during the accommodative response.
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Fig. 7. Dynamics of the maximum CMT (left) and LT (center) over the whole recording for
5 subjects. Lens thickness as a function of maximum CMT (right). The navy dots are the
experimental values. As expected, the lens increases in thickness and the ciliary muscle
contracts (i.e. increased maximum CMT) during accommodation.
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6. Discussion

The main goal of this study was to develop and evaluate the performance of a tool for automatic
segmentation of the ciliary muscle from transscleral OCT images based on fully convolutional
networks (FCNs). Specifically, a UNet with EfficientNetb2 as backbone was trained to segment
the ciliary muscle from the OCT images. The FCN segment successfully the CM and scleral
boundaries, with an IoU mean of 94.03% and an F-Score of 97.33% with respect to manual
segmentation.

Our analysis showed that the performance of UNet [28] and LinkNet [29] in segmenting the
scleral and CM boundaries were similar. Potentially, the two FCNs can be interchanged for our
multiclass segmentation problem. Nevertheless, we found that the EfficientNetb2 [31] backbone
outperformed the other backbones tested in this study. Another key of the FCN robustness was
that the 716 training images were randomly transformed in each epoch, which made a training of
107,400 (716× 150) different CM images. Using pre-trained weights (transfer learning) was not
considered in this study as most of the available models in biomedical image segmentation are
suited for RGB images and not for grayscale images such as OCT images, and the training time
was relatively short (∼ 4.5 h).

The performance of our FCN is comparable to that obtained with other FCNs in similar studies:
for OCT corneal layer segmentation Santos et al. [22]. achieved an IoU of 99.14%; for detecting
cone photoreceptors in adaptive optics images Cunefare et al. [26]. achieved a F-score of 99.00%;
for retinal OCT image segmentation Venhuizen et al. [39]. obtained an F-score of 95.14% and
Roy et al. [25]. achieved a dice overlap score from 0.77 to 0.99. Nevertheless, comparing FCN
performance between different studies is difficult as each problem has its own complexity. In
our application, a factor limiting the performance of the FCN is that the inner boundary of the
CM images is generally difficult to detect with high reliability due to signal loss in this region
(see Fig. 8.a.). The low contrast of the boundary in this region increases the variability and
uncertainty of both the manual segmentation and FCN (see Fig. 6). The confidence interval
obtained for the maximum CMT ([-45, 48] µm) was less than the manual variability in the CM
segmentation reported by the group [17].

Fig. 8. (a) Two different manual segmentations on an accommodated state of a specific
subject. There was difficulty in appreciating the whole CM boundary, and thus, the
segmentation variability between the images of the same subjects is high. (b) Two groups of
images were created for each image of the testing dataset. The apex (black circle) and the
edge closest to the scleral spur (purple circle) are shown rounded in the image. The vertical
and horizontal scale bar (yellow) are 0.25 and 1 mm, respectively.

To demonstrate that the FCN can accurately segment the CM where the inner boundary is
clearly distinguished, each image of the testing dataset was split up into two regions of interest
(ROIs): one that encloses the CM apex and the edge closest to the scleral spur, and the other one
including the regions where the inner boundary of the ciliary body is clearly visible (Fig. 8.b). The
CM-IoU scores were 87.42% and 95.13% for the first and second ROI, respectively, proving that
if the contrast of the inner boundary of the CM is high (Fig. 3), the CM-IoU score considerably
increases.
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To broaden the FCN framework, we included images with different quality at the CM apex
to train the FCN. In this way, the FCN can segment a larger range of CM images. Then, the
examiner task is to decide what automatic segmentations are valid for their study. As expected,
the variability is lower in CM images where the contrast at the apex is high (subject #1 in Fig. 7
and Visualization 1), and higher in images where the contrast at the apex is low (subject #4 in
Fig. 7 and Visualization 4).

The application of the FCN to the quantification of CM changes during accommodation in
five young subjects shows that the FCN was able to accurately quantify changes in the CM such
as CMT. The positive correlation between changes in maximal CMT and lens thickness shows
that the CM movement produces an accommodative response in all five subjects. Visually, this
correlation is better appreciated in subjects with lower CMT variability such as subject #1 and #5
(see Fig. 7).

In general, the quality of the transscleral OCT images, especially near the CM apex, is low due
to the high attenuation in the sclera and ciliary body, which reduces the signal returning from
the deeper CM structures, such as the apex. As a result, a relatively small amount of images
are available to be segmented and thus, train the FCN, which also is one of the limitations of
this study. This image-quality problem is also common in other studies of the ciliary muscle
movement during accommodation [13,15,16,18,19].

The current study utilized a commercial research-grade SD-OCT system with a power limited to
3 mW, well below the exposure limit defined in the ANSI Z80.36 standard for class 2 ophthalmic
instruments. We expect that by delivering a higher incident power to the sclera and increasing
the acquisition speed of the system will help to increase the contrast of the CM boundary [27].

In summary, this study shows that automatic segmentation can be performed with a high
accuracy rate, highlighting the power of FCN. Moreover, with this work, we intended to provide
an efficient tool that enables other researchers to perform larger studies on the ciliary muscle that
elucidate its role on presbyopia with considerable time savings.
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