Estudios
I+D+I
Institución
Internacional
Vida Universitaria
Repositorio Institucional de Documentos
Buscar
Enviar
Personalizar
Sus alertas
Sus carpetas
Sus búsquedas
Ayuda
EN
/
ES
Página principal
>
Artículos
> Combination of Genome-Scale Models and Bioreactor Dynamics to Optimize the Production of Commodity Chemicals
Estadísticas de uso
Gráficos
Combination of Genome-Scale Models and Bioreactor Dynamics to Optimize the Production of Commodity Chemicals
Lázaro Ibáñez, J.
(Universidad de Zaragoza)
;
Jansen, G.
;
Yang, Y.
;
Torres-Acosta, M.
;
Lye, G.
;
Oliver, S. G.
;
Júlvez Bueno, J.
(Universidad de Zaragoza)
Resumen:
The current production of a number of commodity chemicals relies on the exploitation of fossil fuels and hence has an irreversible impact on the environment. Biotechnological processes offer an attractive alternative by enabling the manufacturing of chemicals by genetically modified microorganisms. However, this alternative approach poses some important technical challenges that must be tackled to make it competitive. On the one hand, the design of biotechnological processes is based on trial-and-error approaches, which are not only costly in terms of time and money, but also result in suboptimal designs. On the other hand, the manufacturing of chemicals by biological processes is almost exclusively carried out by batch or fed-batch cultures. Given that batch cultures are expensive and not easy to scale, technical means must be developed to make continuous cultures feasible and efficient. In order to address these challenges, we have developed a mathematical model able to integrate in a single model both the genome-scale metabolic model for the organism synthesizing the chemical of interest and the dynamics of the bioreactor in which the organism is cultured. Such a model is based on the use of Flexible Nets, a modeling formalism for dynamical systems. The integration of a microscopic (organism) and a macroscopic (bioreactor) model in a single net provides an overall view of the whole system and opens the door to global optimizations. As a case study, the production of citramalate with respect to the substrate consumed by E. coli is modeled, simulated and optimized in order to find the maximum productivity in a steady-state continuous culture. The predicted computational results were consistent with the wet lab experiments. Copyright © 2022 Lázaro, Jansen, Yang, Torres-Acosta, Lye, Oliver and Júlvez.
Idioma:
Inglés
DOI:
10.3389/fmolb.2022.855735
Año:
2022
Publicado en:
Frontiers in Molecular Biosciences
9 (2022), 855735 [24 pp]
ISSN:
2296-889X
Factor impacto JCR:
5.0 (2022)
Categ. JCR:
BIOCHEMISTRY & MOLECULAR BIOLOGY
rank: 84 / 285 = 0.295
(2022)
- Q2
- T1
Factor impacto CITESCORE:
4.8 -
Biochemistry, Genetics and Molecular Biology
(Q3)
Factor impacto SCIMAGO:
1.233 -
Biochemistry
(Q1) -
Biochemistry, Genetics and Molecular Biology (miscellaneous)
(Q1) -
Molecular Biology
(Q2)
Financiación:
info:eu-repo/grantAgreement/ES/MICINN/PID2020-113969RB-I00
Tipo y forma:
Artículo (Versión definitiva)
Área (Departamento):
Área Lenguajes y Sistemas Inf.
(
Dpto. Informát.Ingenie.Sistms.
)
Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
Exportado de SIDERAL (2024-03-18-14:42:31)
Enlace permanente:
Copiar
Visitas y descargas
Este artículo se encuentra en las siguientes colecciones:
Artículos
Volver a la búsqueda
Registro creado el 2022-07-11, última modificación el 2024-03-19
Versión publicada:
PDF
Valore este documento:
Rate this document:
1
2
3
4
5
(Sin ninguna reseña)
Añadir a una carpeta personal
Exportar como
BibTeX
,
MARC
,
MARCXML
,
DC
,
EndNote
,
NLM
,
RefWorks