Estudios
I+D+I
Institución
Internacional
Vida Universitaria
Repositorio Institucional de Documentos
Buscar
Enviar
Personalizar
Sus alertas
Sus carpetas
Sus búsquedas
Ayuda
EN
/
ES
Página principal
>
Artículos
> Understanding glioblastoma invasion using physically-guided neural networks with internal variables
Estadísticas de uso
Gráficos
Understanding glioblastoma invasion using physically-guided neural networks with internal variables
Ayensa Jiménez, J.
(Universidad de Zaragoza)
;
Doweidar, M. H.
(Universidad de Zaragoza)
;
Sanz-Herrera, J.
;
Doblare, M.
(Universidad de Zaragoza)
Resumen:
Microfluidic capacities for both recreating and monitoring cell cultures have opened the door to the use of Data Science and Machine Learning tools for understanding and simulating tumor evolution under controlled conditions. In this work, we show how these techniques could be applied to study Glioblastoma, the deadliest and most frequent primary brain tumor. In particular, we study Glioblastoma invasion using the recent concept of Physically- Guided Neural Networks with Internal Variables (PGNNIV), able to combine data obtained from microfluidic devices and some physical knowledge governing the tumor evolution. The physics is introduced by means of nonlinear advection-diffusion-reaction partial differential equation that models the Glioblastoma evolution for defining the network structure. On the other hand, multilayer perceptrons combined with a nodal deconvolution technique are used for learning the go or grow metabolic behavior which characterises the Glioblastoma invasion. The PGNNIV is here trained using synthetic data obtained from in silico tests created under different oxygenation conditions, using a previously validated model. The unravelling capacity of PGNNIV enables discovering complex metabolic processes in a non-parametric way, thus giving explanatory capacity to the networks, and, as a consequence, surpassing the predictive power of any parametric approach and for any kind of stimulus. Besides, the possibility of working, for a particular tumor, with different boundary and initial conditions, permits the use of PGNNIV for defining virtual therapies and for drug design, thus making the first steps towards in silico personalised medicine. © 2022 Ayensa-Jiménez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Idioma:
Inglés
DOI:
10.1371/journal.pcbi.1010019
Año:
2022
Publicado en:
PLOS COMPUTATIONAL BIOLOGY
18, 4 (2022), E1010019[27 pp.]
ISSN:
1553-734X
Factor impacto JCR:
4.3 (2022)
Categ. JCR:
MATHEMATICAL & COMPUTATIONAL BIOLOGY
rank: 10 / 55 = 0.182
(2022)
- Q1
- T1
Categ. JCR:
BIOCHEMICAL RESEARCH METHODS
rank: 18 / 77 = 0.234
(2022)
- Q1
- T1
Factor impacto CITESCORE:
7.1 -
Agricultural and Biological Sciences
(Q1) -
Biochemistry, Genetics and Molecular Biology
(Q2) -
Neuroscience
(Q1) -
Computer Science
(Q1) -
Mathematics
(Q1) -
Environmental Science
(Q1)
Factor impacto SCIMAGO:
1.872 -
Cellular and Molecular Neuroscience
(Q1) -
Computational Theory and Mathematics
(Q1) -
Ecology
(Q1) -
Molecular Biology
(Q1) -
Genetics
(Q1) -
Modeling and Simulation
(Q1) -
Ecology, Evolution, Behavior and Systematics
(Q1)
Financiación:
info:eu-repo/grantAgreement/ES/MICINN/PID2019-106099RB-C44
Financiación:
info:eu-repo/grantAgreement/ES/MINECO-FEDER/PGC2018-097257-B-C31
Tipo y forma:
Artículo (Versión definitiva)
Área (Departamento):
Área Mec.Med.Cont. y Teor.Est.
(
Dpto. Ingeniería Mecánica
)
Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
Exportado de SIDERAL (2024-03-18-14:48:38)
Enlace permanente:
Copiar
Visitas y descargas
Este artículo se encuentra en las siguientes colecciones:
Artículos
Volver a la búsqueda
Registro creado el 2022-07-11, última modificación el 2024-03-19
Versión publicada:
PDF
Valore este documento:
Rate this document:
1
2
3
4
5
(Sin ninguna reseña)
Añadir a una carpeta personal
Exportar como
BibTeX
,
MARC
,
MARCXML
,
DC
,
EndNote
,
NLM
,
RefWorks