000117631 001__ 117631
000117631 005__ 20240319081010.0
000117631 0247_ $$2doi$$a10.1021/acs.jpcb.1c09911
000117631 0248_ $$2sideral$$a129225
000117631 037__ $$aART-2022-129225
000117631 041__ $$aeng
000117631 100__ $$0(orcid)0000-0001-9352-6922$$aUrriolabeitia, Asier$$uUniversidad de Zaragoza
000117631 245__ $$aInfluence of the nonprotein amino acid mimosine in peptide conformational propensities from novel amber force field parameters
000117631 260__ $$c2022
000117631 5060_ $$aAccess copy available to the general public$$fUnrestricted
000117631 5203_ $$aMimosine is a nonprotein amino acid derived from plantsknown for its ability to bind to divalent and trivalent metal cations suchas Zn2+, Ni2+, Fe2+, orAl3+. This results in interesting antimicrobial andanticancer properties, which make mimosine a promising candidate fortherapeutic applications. One possibility is to incorporate mimosine intosynthetic short peptide drugs. However, how this amino acid affects thepeptide structure is not well understood, reducing our ability to designeffective therapeutic compounds. In this work, we used computersimulations to understand this question. Wefirst built parameters for themimosine residue to be used in combination with two classical forcefields of the Amber family. Then, we used atomistic molecular dynamicssimulations with the resulting parameter sets to evaluate the influence ofmimosine in the structural propensities for this amino acid. We comparedthe results of these simulations with homologous peptides, wheremimosine is replaced by either phenylalanine or tyrosine. We found that the strong dipole in mimosine induces a preference forconformations where the amino acid rings are stacked over more extended conformations. We validated our results using quantummechanical calculations, which provide a robust foundation for the outcome of our classical simulations
000117631 536__ $$9info:eu-repo/grantAgreement/ES/MECD/FPU17-05417$$9info:eu-repo/grantAgreement/ES/MINECO/PGC2018-099321-B-I00
000117631 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000117631 590__ $$a3.3$$b2022
000117631 592__ $$a0.795$$b2022
000117631 591__ $$aCHEMISTRY, PHYSICAL$$b88 / 161 = 0.547$$c2022$$dQ3$$eT2
000117631 593__ $$aMaterials Chemistry$$c2022$$dQ1
000117631 593__ $$aSurfaces, Coatings and Films$$c2022$$dQ1
000117631 593__ $$aPhysical and Theoretical Chemistry$$c2022$$dQ1
000117631 593__ $$aMedicine (miscellaneous)$$c2022$$dQ2
000117631 594__ $$a5.6$$b2022
000117631 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000117631 700__ $$aDe Sancho, David
000117631 700__ $$aLopez, Xabier
000117631 7102_ $$12012$$2755$$aUniversidad de Zaragoza$$bDpto. Química Física$$cÁrea Química Física
000117631 773__ $$g126, 16 (2022), 2959-2967$$pJ. phys. chem., B$$tJournal of physical chemistry. B$$x1520-6106
000117631 8564_ $$s3196347$$uhttps://zaguan.unizar.es/record/117631/files/texto_completo.pdf$$yVersión publicada
000117631 8564_ $$s2746598$$uhttps://zaguan.unizar.es/record/117631/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000117631 909CO $$ooai:zaguan.unizar.es:117631$$particulos$$pdriver
000117631 951__ $$a2024-03-18-15:00:33
000117631 980__ $$aARTICLE