000117644 001__ 117644
000117644 005__ 20240319081015.0
000117644 0247_ $$2doi$$a10.3390/coatings12040488
000117644 0248_ $$2sideral$$a128967
000117644 037__ $$aART-2022-128967
000117644 041__ $$aeng
000117644 100__ $$0(orcid)0000-0001-7904-2729$$aAzpiroz, R.
000117644 245__ $$aPhotocatalytic activity in the in-flow degradation of NO on porous TiO2 –coated glasses from hybrid inorganic–organic thin films prepared by a combined ALD/MLD deposition strategy
000117644 260__ $$c2022
000117644 5060_ $$aAccess copy available to the general public$$fUnrestricted
000117644 5203_ $$aA combined ALD/MLD (where ALD and MLD stand for atomic and molecular layer deposition, respectively) deposition strategy using TiCl4, H2 O and HQ (hydroquinone) as precursors has been applied for the preparation of inorganic–organic thin films on soda-lime glasses. The alternate deposition of TiO2 layers, by pulsing TiCl4 /H2 O (ALD), and hybrid layers, using TiCl4 /HQ (MLD), results in the formation of thin films that are precursors for porous TiO2-coatings after removal of the HQ template by annealing. The coated-glassed show good photocatalytic activity in the degradation of NO with up to 15% reduction of NO concentration in three successive photocatalytic cycles of 5 h each. Surface Scanning Electron Microscopy (SEM) images show that the TiO2-coating is composed of large grains that are made up of finer subgrains resulting in a porous structure with an average pore size of 3–4 nm. Transmission Electron Microscopy (TEM) images show two regions, a porous columnar structure on top and a denser region over the glass substrate. Energy Dispersive X-Ray (EDX) analysis, nanocrystal electron diffraction and Raman spectroscopy confirm the presence of the anatase phase, which, together with the porosity of the material, accounts for the observed photocatalytic activity. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
000117644 536__ $$9info:eu-repo/grantAgreement/ES/MCIU-FEDER/RTC-2017-6504-5
000117644 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000117644 590__ $$a3.4$$b2022
000117644 592__ $$a0.513$$b2022
000117644 591__ $$aMATERIALS SCIENCE, COATINGS & FILMS$$b9 / 20 = 0.45$$c2022$$dQ2$$eT2
000117644 593__ $$aMaterials Chemistry$$c2022$$dQ2
000117644 591__ $$aPHYSICS, APPLIED$$b57 / 160 = 0.356$$c2022$$dQ2$$eT2
000117644 593__ $$aSurfaces, Coatings and Films$$c2022$$dQ2
000117644 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b174 / 343 = 0.507$$c2022$$dQ3$$eT2
000117644 593__ $$aSurfaces and Interfaces$$c2022$$dQ2
000117644 594__ $$a4.7$$b2022
000117644 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000117644 700__ $$aBorraz, M.
000117644 700__ $$0(orcid)0000-0001-8736-3856$$aGonzález, A.
000117644 700__ $$aMansilla, C.
000117644 700__ $$0(orcid)0000-0003-3144-5320$$aIglesias, M.
000117644 700__ $$0(orcid)0000-0002-3327-0918$$aPérez Torrente, J. J.$$uUniversidad de Zaragoza
000117644 7102_ $$12010$$2760$$aUniversidad de Zaragoza$$bDpto. Química Inorgánica$$cÁrea Química Inorgánica
000117644 773__ $$g12, 4 (2022), 488 [13 pp.]$$pCoatings$$tCOATINGS$$x2079-6412
000117644 8564_ $$s2284216$$uhttps://zaguan.unizar.es/record/117644/files/texto_completo.pdf$$yVersión publicada
000117644 8564_ $$s2739172$$uhttps://zaguan.unizar.es/record/117644/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000117644 909CO $$ooai:zaguan.unizar.es:117644$$particulos$$pdriver
000117644 951__ $$a2024-03-18-15:32:41
000117644 980__ $$aARTICLE