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Abstract: Transition edge sensors (TESs) are extremely sensitive thermometers made of
superconducting materials operating at their transition temperature, where small variations in
temperature give rise to a measurable increase in electrical resistance. Coupled to suitable
absorbers, they are used as radiation detectors with very good energy resolution in several
experiments. Particularly interesting are the applications that TESs may bring to single photon
detection in the visible and infrared regimes. In this work, we propose a method to enhance
absorption efficiency at these wavelengths. The operation principle exploits the generation
of highly absorbing plasmons on the metallic surface. Following this approach, we report
nanostructures featuring theoretical values of absorption reaching 98%, at the telecom design
frequency (λ = 1550 nm). The optimization process takes into account the TES requirements in
terms of heat capacity, critical temperature and energy resolution leading to a promising design
for an operating device. Neural networks were first trained and then used as solvers of the optical
properties of the nanostructures. The neural network topology takes the geometrical parameters,
the properties of materials and the wavelength of light as input, predicting the absorption spectrum
at single wavelength as output. The incorporation of the material properties and the dependence
with frequency was crucial to reduce the number of required spectra for training. The results
are almost indistinguishable from those calculated with a commonly used numerical method
in computational electromagnetism, the finite-difference time-domain algorithm, but up to 106

times faster than the numerical simulation.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Transition Edge Sensors (TES) consist of thin films of superconducting materials that translate
very small changes in temperature into measurable variations of electrical resistance when
polarized right in their superconducting transition [1]. TESs, coupled to proper absorbers, can
thus be used as very sensitive thermometers in microcalorimeter devices to provide excellent
energy resolution and photon resolving capabilities. When a photon is absorbed, the device
temperature changes by a tiny amount, which causes a measurable change in TES resistance.
Small differences in the absorbed energy translate into appreciable differences in the resistance
change, which provide the excellent resolving power of these sensors. The device can be made
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sensitive to a certain energy range with a defined quantum efficiency by selecting a proper
material and thickness for the absorber.

The temperature increase caused by the incoming photon can be expressed as δT = E/C, where
E is the absorbed energy and C is the heat capacity of the material. After that, the temperature
jumps to T ′ = T0 + δT , where T0 is a certain base temperature maintained by a thermal bath.
The heat capacity C will determine the minimum measurable energy. On the other hand, the
device is coupled to the thermal bath through a thermal conductance G. This needs to be also
properly chosen in order to set the natural time constant of the system τ0 = C/G, as this will
limit the counting rate. If G is too low, the device will work as an integrator of power, namely, as
a bolometer, instead of as a photon counting device. TESs are used in this bolometer mode for
instance in Cosmic Microwave Background experiments [2–5]. On the other hand, TESs are
being developed in photon counting mode for the detection of radiation in the soft X-ray range,
see for instance the Athena (Advanced Telescope for High Energy Astrophysics) project founded
by the European Space Agency, whose aim is the study of the Hot and Energetic Universe [6].

TESs can also be interesting for photonic applications [7–9], in the ultraviolet (UV), visible
(VIS) and particularly the infrared (IR) range, where optical fibers have very low attenuation at
1550 nm wavelength [10], allowing the exchange of information through very long distances,
which is key for many applications in telecommunications. Another possible application is the
exchange of quantum keys [11–13], which allows to safely exchange information by having a
classical and a quantum channel through which photons will travel. This requires detecting
photons individually with the highest possible quantum efficiency.

In this work, we propose a novel TES design for photon counting at the telecom wavelength by
use of thin sheets of molybdenum and gold. Although different materials (W, Ir, Ti) are usually
used in this energy range [14–18], we have made use of our expertise in the development of
Mo/Au TESs for the soft X-ray range [19,20] by simply adapting the absorbing element of the
device. In this new design, the high absorption efficiency is achieved by nanostructuring the
metallic Mo/Au bilayer, avoiding the use of an extra absorber to reduce the total heat capacity and
to simplify the fabrication. Here we show how the corrugation of the superconductor enhances
the TES absorbing capabilities thanks to the excitation of Surface Plasmon Polaritons (SPPs)
[21].

2. Methods

The nanostructure chosen for this work is a gold sheet placed on a molybdenum layer (both
on top of a Si3N4 substrate), as shown in Fig. 1(a). The gold sheet is periodically corrugated
by grooves (period p). If the gold was not perforated, the Au/Mo bilayer would behave as an
almost perfect mirror. However, the grating can allow the coupling of incident light with SPPs,
otherwise inhibited due to the mismatch in momentum at the metal surface.

For illustration, Fig. 1(b) shows the amplitude of a SPP excited at 1465 nm, corresponding
to the absorption resonance of panel (c) (the geometrical parameters can be found in the figure
caption). The excitation of SPPs occurs near λ ≈ p, because the coupling of the incident light
with a SPP mode with momentum k = 2π/p (provided by reciprocal k-vector of the lattice as
stated by the Bloch’s theorem) [22]. The local electric field amplitude is several times more
intense than that of the incident light, which in simulations is set as 1 kV/cm. The pattern is
dominated by the SPP field and the absence of horizontal interference stripes is a clear sign
that, at that incident wavelength, virtually no light is reflected. However, as shown in Fig. 1(c)
transmission is strongly impaired due to the presence of the molybdenum layer, which is larger
than the penetration length of the EM fields inside the metal in all the TES investigated throughout
this work. Therefore, the substrate is optically isolated from the bilayer. The calculations were
done with the numerical method Finite-Difference Time-Domain (FDTD) [23].
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Fig. 1. (a) Schematic visualization of the structure: the radiation impinges on a groove
array able to efficiently absorb light at a given wavelength. The nanostructure consists of a
gold layer of thickness hAu, perforated periodically with grooves of width a and period p,
everything on top of a molybdenum layer (thickness hMo). The substrate is silicon nitride,
which does not play any role in the optical response for molybdenum thicknesses larger than
the penetration length of the EM fields inside the metal. (b) This nanostructure supports
the excitation of surface plasmons, seen as high electric field amplitude lobes near the slits
in the example, corresponding to λ = 1465 nm, the energy of maximum absorption in the
spectra of panel (c). The geometry is defined by p = 1455 nm, a = 795 nm, hAu = 70 nm
and hMo = 190 nm. The calculations were conducted with the FDTD method.

The FDTD method is one of the most widely used methods in computational electromagnetism.
The FDTD algorithm solves Maxwell’s equations numerically and, therefore, provides the entire
optical response of a system, including the temporal evolution of the electromagnetic field. This
method has the ability to treat different materials, from dielectrics to metals, and different types
of sources. Through this algorithm the transmission and reflection coefficients of the system
can be obtained, and varying its geometrical parameters we can maximize the absorption at
the desired energy. Therefore the whole process of designing the TES could be done with this
method, but this is a "brute force" quite inefficient approach when applied in complex systems
like the investigated here, as shown later on.

Specifically, the calculation of the nanostructures can be approximated as a 2D system due
to traslational invariance along the grooves direction. The nanostructures are discretized with
a 5 nm cubic mesh. The system is illuminated by a Gaussian pulse at normal incidence. The
polarization is such that the electric field oscillates perpendicular to the face of the grooves
(x-direction). This choice is important because such a groove array acts as a polarizer. If the
electric field is oriented along the grooves the optical response of the corrugated system does not
differ from that of the unmodified system. The material properties of gold and molybdenum are
incorporated into FDTD by means of a Drude-Lorentz model, which fitting parameters were
obtained from the experimental dielectric constants of Au and Mo in the UV-VIS-IR range and
tabulated in Ref. [24,25], respectively. For further details about this particular implementation of
the FDTD method see Ref. [26].

Note that we take room temperature values of the dielectric constant for both metals. For
temperatures T>Tc, up to 4K, a slightly more negative value of the real part of the dielectric
constant and a reduction of the imaginary component has been observed experimentally [27].
This effect would be beneficial, increasing the optical quality factor of the nanostructures. For
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T<Tc the electrodynamics of metallic superconductors strongly depends on both the temperature
and the photon energy [28]. However, metal reflection, transmission and absorption are still
the same as in the case of T>Tc, for photon energies higher than the superconducting gap
∆(T = 0) = 1.764 kBTc. This quantity is ≈ 8.6x10−6 eV for the expected Tc ≈ 100 mK operation
temperature of the Au/Mo bilayer, which is orders of magnitude lower than 0.8 eV, energy
corresponding to λ = 1550 nm. Therefore, the effect on the surface plasmon dynamics would be
well described by the optical response of metals at room temperature

The space of parameters to investigate in the optimization process is large (4 geometric
parameters) and the time required to calculate the spectra of a single 2D nanostructure by FDTD
is relatively long (5-6 hours per simulation in a Intel Xeon E5-2680 v4 @ 2.40 GHz processor).
It is not thus efficient trying to find a set of optimal parameters by trial and error. Note that this
is not just a limitation of our particular implementation of the FDTD method; simulation time
scales as usual for this kind of system, that is: A × (λ/q)3, where A is the 2D area simulated, λ
the wavelength of light and q the mesh size.

Since a few years ago Neural Networks (NN) are catching great attention in all scientific
fields, including Nanophotonics, with the potential to boost the solution to several problems.
For example NN has been demonstrated to perform better that other methods in inverse design
problems dealing with light scattering from multilayer dielectric nanoparticles [29]. In this work
we made use of NNs in the process of optimization. We have designed and trained a NN able to
calculate optical spectra 106 times faster than our FDTD code. Once trained, we used the NN in
combination with a classical Gradient Descent (GD) optimizer [30] to find the best choice of
parameters that produce the maximum absorption at 1550 nm wavelength.

One of the main advantages of this process is that with the NN, once trained, it can be used in
any optimization process with the same speed factor with respect the numerical method used
to get the training data. In our case, the computational time will substantially increase if 3D
simulations were conducted instead. However, a NN will do the calculation at the same speed
that in the 2D case.

Our NN implementation uses Tensorflow [31], which consists of a Python deep-learning work
environment to define and train almost any type of architecture. In this case, we used a specialized
library for the tensor calculations based on Keras [32].

3. Results

In order to train the NN, 2600 spectra (transmission and reflection) were generated with the FDTD
algorithm. The wavelength range goes from 1200 nm to 1800 nm in steps of 2 nm (300 points
per spectrum). These spectra were obtained from groove arrays defined by randomly selecting
the geometrical parameters within these intervals: period p ∈ [1300 nm, 1700 nm];groove width
a ∈ [0, p]; gold thickness hAu ∈ [20 nm, 400 nm] and molybdenum thickness hMo ∈ [20 nm, 200
nm]. This parameter space is compatible with fabrication requirements.

The NN is trained with 2400 spectra of the 2600 generated by the FDTD, the rest are left for
test and validation (one hundred in each case, which is small as compared to typical datasets).
The NN topology (see schematics in Fig. 2) which better performed in our investigations consists
of an input layer having 9 neurons, corresponding to the 4 geometric parameters (hAu, hMo, a and
p), the dielectric constants of the materials (ϵ iAu, ϵ rAu, ϵ iMo, ϵ rMo) and the wavelength λ. The output
layer consists of one neuron that provide absorption (A) at λ. The rest of the NN consists of
2 hidden layers of 40 neurons each, all dense, which in this environment means that they are
completely connected. Sigmoid function is applied for neuron activation for all the layers. The
cost function binary cross-entropy was used. To evaluate the good functioning of the network
we used the mean squared error (MSE). Finally the stochastic gradient descent (SGD) was the
chosen optimizer [30].
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Fig. 2. The NN model takes as input: i) the geometrical parameters of the nanostructure
(hAu, hMo, a and p), shown in (a); the dielectric constants of the materials (ϵ iAu, ϵrAu, ϵ iMo,
ϵrMo), which experimental tabulated values are compared with those used in calculations
in (b); and iii), the wavelength of light λ. c) The NN topology in this work consist in two
hidden layers with 40 neurons each, fully connected. The sigmoid function is applied for
neuron activation for all the layers. The cost function binary cross-entropy was chosen.
Finally, the output layer consists of one neuron that provides absorption at λ, illustrated in
(d) with an spectrum obtained by iteration of the trained NN in λ.

The following optimal values for the hyperparameters were found: mini-batch size = 64,
learning rate η = 1.0, regularization parameter λ = 0.1, momentum = 0.45, decay = 1 · 10−6

and Nesterov = True. The momentum, together with the decay and Nesterov, are characteristic
parameters of the SGD optimizer that offers Keras, to improve the convergence process towards
the minimum of the function to be optimized [31].

In Fig. 3(a) the evolution of the MSE function can be seen against the number of epochs for the
2600 spectra training and test datasets. Values very close to zero are reached in both cases, with
even lower values for the test data set, showing that no overfitting is taking place. The inset of
Fig. 3(a) depicts MSE as a function of the size of the dataset, revealing that only a few hundred
spectra would be enough to achieve comparable MSE that of the trained NN, used herein. The
chosen training dataset does not imply a minimum size for it. In fact, our approach based on the
use of NN would properly work with less data. The good performance of our trained NN can
be seen in Fig. 3(b) where the dispersion curve of absorption at λ = 1550 nm (predicted by the
NN vs true results from FDTD numerical calculations) is depicted for the 2400 training data
spectra. Interestingly, a randomly chosen set of geometrical parameters will most likely lead to
low absorption values, which reinforces the idea of using a NN as a Maxwell’s equation "solver"
in the optimization process instead of a canonical numerical method. To get some insight into
how a given MSE value represents the accuracy of our trained NN, Fig. 3(c) shows the best and
the worst FDTD versus NN comparisons as defined by MSE. In the best situation the agreement
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between both results is excellent, but even in the worst case the resemblance between the results
of both methods is remarkable.

Fig. 3. (a) MSE evolution versus the number of epochs for training data (blue curve) and test
data (red curve). This is obtained through the NN, implemented in the Keras environment,
described in the text. The inset shows MSE as a function of the number of spectra on
the training dataset. (b) Dispersion representation of training data showing NN results for
absorption as compared to those obtained with the FDTD method. (c) Spectra obtained by
the NN for two specific cases of the test data set. The lowest MSE corresponds to p = 1525
nm, a = 615 nm, hAu = 145 nm, hMo = 150 nm, and the highest to p = 1470 nm, a = 940
nm, hAu = 115 nm, hMo = 100 nm. The best agreement between the NN prediction and the
FDTD result is obtained for the case with the lower MSE, as expected.

With the GD algorithm a great number of iterations were necessary to obtain an optimized
design. We seeded the GD algorithm with fifty sets of geometrical parameters. On average, 1000
iterations were needed to converge. The whole process was possible only thanks to the trained
NN; it would have been unpractical with the numerical method.

Optimization of the absorption is not the only issue to be considered for designing a functional
TES. The operating temperature, the heating capacity and the spectral resolution are parameters
that have to be finely tuned so that a given TES design eventually works, because both quantities
depend on the Mo and Au thicknesses.

To achieve the appropriate heat capacity and optimal sensitivity, TESs work at very low
temperatures. Normally, it is not possible to find superconducting materials with the required
operating temperature, so an effect known as the proximity effect [33] is used, in which a normal
metal is deposited on a superconductor reducing its critical temperature Tc. Thus, the final Tc of
the bilayer depends on the relative proportion of thicknesses.

In addition, to detect a photon absorbed by the sensor, it has to produce a measurable temperature
change as dictated by the expression δT = E/C. A TES can be sensitive to temperature variations
of up to a few µK, and for that values, the heat capacity must be around 10 fJ/K. So in order
to observe the photon absorption event at the IR (E <1 eV) there are constrains on the lateral
size of the device. There must be a balance between the plasmonic response (the more periods,
the better) and the heat capacity, that has to be low enough. We estimated that a compromise is
achieved taking this size equal to 20 × p.

On the other hand, although the nanostructure is tuned and optimized for a single wavelength
(1550 nm), energy resolution is still important. The Poisson nature of sources leads to the
possibility to detect multiphoton events within the time resolution of the device. For applications
where resolving the number of photons is important (and where TESs can actually provide an
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added value), the device needs to guarantee a good enough energy resolution to disentangle the
number of photons in each detection (the expected energy detected will be E = mE0 with m the
number of photons and E0 the energy observed when only one photon is detected). This is not as
restrictive as in spectroscopic applications, at least for low m, but needs to be considered. We use
a common expression to estimate the expected energy resolution for our devices:

∆E = 2.355 ×

[︂
4 × Kb × T2

c × C/α ×
√︁

n/2
]︂1/2

where Tc and C are the critical temperature and heat capacity of the device. α and n are parameters
related to the TES model [1]. In order to get an estimate of Tc we use Martinis expression [33]:

Tc = Tc0

[︃
dMo

d0 × 1.13 × (1 + 1/r) × t

]︃ r

where Tc0 is the bulk critical temperature of molybdenum, dMo is the molybdenum thickness,
d0 is a constant which depends on the density of states of molybdenum, r is proportional to the
ratio of thicknesses of molybdenum and gold, and t is the transparency of the interface, a free
parameter with values in the range (0,1).

From this, we can also make an estimate for the electronic heat capacity of the sensor in the
normal state for every combination of thicknesses obtained from the neural network and use the
obtained values of Tc and C to estimate the expected resolution:

C = Tc × Area × [dMo × γMo × (ρ/A)Mo + dAu × γAu × (ρ/A)Au]

where γ is the molar specific heat, and ρ/A is the mass density divided by the atomic weight [1] .
Figure 4 summarized the optimization process. In Fig. 4(a), the left axis shows the absorption

of the groove array at λ = 1550 nm and the rest of vertical axes are for the geometrical parameters,
Tc, C and ∆E, which ultimately determines the TES performance. The GD algorithm was
powered by the NN corresponding to optimized groove arrays to operate at λ = 1550 nm.

From the results of Fig. 4, it is clear that there is a range of geometrical parameters which
provides high absorption (≈ 98%). To illustrate and demonstrate the validity of our approach
using a NN, we compared in Fig. 4(b) the absorption spectrum obtained with both our trained NN
and the FDTD method, in this case for a grating with p = 1490 nm, a = 260 nm, hAu =110 nm
and hMo =30 nm, showing excellent agreement. Note that these values are obtained by rounding
off those returned by the optimizer and that best fit the discretized grid used in the FDTD method
(5 nm). It has been proven that the change in the absorption curve is minimal when passing
from nominal values obtained by the optimizer to the values used in the FDTD calculations. The
chosen value for hMo is also compatible with fabrication and is the lower limit to avoid 2D effects
[34].

We also verified that the value obtained for the absorption is not very sensitive to the variation
of the parameters of the TES. We have found that a change of ± 5 nm/10 nm in the thickness of
the gold or in the width of the period, causes a shift of the position of the peak in, approximately,
the same amount.

From the geometrical parameters of the example in Fig. 4(b) we can calculate the expected Tc,
C and ∆E:

TC = 108 mK; C = 1.4 fJ/K;∆E = 0.08 eV

This calculated values are very promising for an operating device both with respect operating
temperature and expected energy resolution, which would allow photon resolving capabilities
at the design wavelength of 1550nm (E0 = 0.8eV versus ∆E = 0.08 eV). Our group plans to
fabricate and test the first devices guided by this design procedure in a near future.
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Fig. 4. (a) The parallel plot summarizes the results of the best trials in terms of absorption,
Tc, C and ∆E out of the series of optimization processes conducted. Left axis shows the
absorption of the groove array at λ = 1550 nm and the rest of vertical axis are for the
geometrical parameters (in nm), Tc, C and ∆E, variables that ultimately determine TES
performance. (b) Optimized groove array (highlighted in (a) with thick line): absorption
spectra predicted by the trained NN (blue dots) and the calculated with the FDTD method
(red line) for p = 1490 nm, a = 260 nm, hAu = 110 nm and hMo = 30 nm. Absorption
reaches almost 98% at the peak.

4. Conclusions

A plasmonic nanostructure based on a periodically corrugated metallic bilayer of gold and
molybdenum has been proposed as the absorbing component of a TES sensitive to telecom
radiation. The nanostructure achieves a theoretical absorption efficiency of 98% at λ = 1550 nm
and constitutes a promising design to use TESs in this important spectral range. The optimization
steps were enabled by the use of NNs. We trained a NN to calculate the light absorbed by the
nanostructure speeding the process of calculating each absorption spectrum up to 106 times over
a classical numerical algorithm like the one used in this work based on the FDTD method. With
the rise of quantum applications, single photon detectors with high absorption efficiency in the
telecom are needed. TESs emerge as a promising technology. Their energy resolving capabilities
and the possibility to tune the sensitivity to other wavelengths make them interesting also in
spectroscopic applications in the infrared and visible range.
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