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Summary

In the last years there has been a growing interest in the study of deviations from the

predictions of the Standard Model of particle physics in the context of Flavour Physics.

This dissertation is devoted to the study of these deviations, with special focus on those

involving B mesons.

The interest on deviations from the Standard Model predictions is twofold: theoret-

ical questions not yet solved and recent experimental measurements showing this kind

of deviations. On the theoretical side, the Standard Model does not attemp to explain

why the flavour structure is what we observe, with three generations of matter parti-

cles which only differ on their masses. On the experimental side, flavour is a remarkable

hunting ground for hints of new physics, since many processes are affected by suppres-

sions that could be lifted by new interactions, leading to clear experimental signatures.

In this regard, the most important development is the number of precise flavour experi-

mental measurements in tension with the Standard Model in the last few years. In our re-

search we study two classes of these experimentally-interesting observables: the semilep-

tonic decays of B mesons into K or K ∗ mesons and a pair of charged leptons through

flavour-changing neutral currents, characterized by the RK (∗) ratios between the muonic

and the electronic branching ratios; and the semileptonic decays of B mesons into D or

D∗ mesons, a charged lepton and a neutrino through flavour-changing charged currents,

characterized by the RD(∗) ratios between the tauonic and the light branching ratios.

These anomalous experimental results have spurred numerous proposals for physics

beyond the Standard Model. Effective Field Theories offer a model-independent way to

analyze those New Physics effects. The idea is to integrate out the heavy fields appearing

only in the internal lines of the Feynman diagrams, leaving a set of non-renormalizable in-

teractions including just the light fields and their symmetries. We have used in this thesis

the framework of Effective Field Theories, being able to obtain constraints on New Physics

contributions to the Wilson coefficients of the effective Lagrangian from the experimental

results.

Quantum corrections contained in the Renormalization Group have the effect of mix-

ing the non-renormalizable interactions. As a consequence, the deviations from the Stan-

dard Model introduced through Effective Field Theories tend to propagate also to physi-

cal observables differents from the ones we are interested in. The solution is to determine

the coefficients entering the Effective Field Theory through means of global fits including

vii



viii SUMMARY

observables from all affected sectors. The sheer number of observables involved makes

mandatory the use of numerical calculations, and in the most extreme cases, even us-

ing Machine Learning tools such as regression trees and SHAP (SHAPley Additive exPla-

nation) values. We use for the first time in the flavour context a Montecarlo analysis to

extract the confidence intervals and correlations between observables, showing that it

constitutes a suitable strategy to use in this kind of analysis.

Although most of the dissertation deals with the framework of Effective Field Theo-

ries, we have also extrapolated our results to specific models of New Physics; in particular

to leptoquarks, hypothetical particles that could turn quarks into leptons or vice-versa,

and to W ′ and Z ′ bosons, hypothetical gauge mediators that could exhibit non-universal

couplings to each fermion. We have also performed a more in-deep analysis of a model

for Axion-Like Particles, pseudoscalars that could appear as pseudo-Nambu-Goldstone

bosons for new global U (1) symmetries. Unlike the traditional approaches, we have ex-

amined the case where the Axion-Like Particles have a non-trivial flavour structure in

their couplings to quarks and leptons.

This dissertation is structured as follows:

• We start with a general introduction in Chapter 1 that motivates our work.

• In Chapter 2, the basics of the Standard Model are reviewed, with special focus on

the flavour aspects of the different interactions, and the sources of suppression af-

fecting flavour-changing processes. After that, the flavour observables which will

be used in the rest of the dissertation will be presented. Finally, the experiments ex-

ploring B meson physics and the results that they have obtained are summarized.

• In Chapter 3, the model-independent approach of Effective Field Theories is pre-

sented. The traditional top-down is presented first, where one starts with a high

energy theory and explicitly integrates out some heavy particles. Then the opposite

approach is presented, bottom-up, where one starts with a low energy theory and

extends it by adding all the compatible effective operators. Then, the intricacies of

dealing with several Effective Field Theories are explained: matching between two

theories defined at the same energy scale, and changing the energy scale with the

Renormalization Group equations. Finally, the two theories that we will use are pre-

sented: Standard Model Effective Field Theory (SMEFT) containing all the Standard

Model particles, and the Weak Effective Theory (WET) where the top quark and the

W , Z and Higgs bosons have been also integrated out.

• In Chapter 4, some of the models of new physics are introduced: leptoquarks, new

heavy gauge bosons and Axion-like particles. Finally we discuss the Minimal Flavour

Violation ansatz that proposes a general structure for any New Physics affecting the

flavour sector.
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• Chapter 5 contains our first incursion in the analysis of New Physics violating Lep-

ton Flavour Universality, by using fits in the framework of Effective Field Theories.

We work in the WET with complex coefficients and consider relations between the

operators motivated by models of leptoquarks and Z ′. This first fit only includes a

limited amount of observables related to b → sµ+µ− decays and ∆Ms . The inclu-

sion of complex couplings provides a slightly improved global fit, and a marginally

improved ∆Ms prediction.

• In Chapter 6, we work in the SMEFT framework, and consider several scenarios

of effective operators including two left-handed SU (2)L quark doublets and lepton

doublets. In this analysis we include a set of different scenarios in which the New

Physics contributions to the Wilson coefficients are present in one, two or three of

the Wilson coefficients at a time. For the global fits, we consider a large range of

different physical observables, including electroweak and nuclear precision tests.

We analyze the most descriptive scenario using a Hessian approximation. The sce-

nario in which New Physics modifies three independent Wilson coefficients is the

favoured one for the explanation of the tension between Standard Model predic-

tions and B physics anomalies, but a specific, more restricted scenario can provide

similar goodness of fit with a smaller set of free parameters. Finally, we discuss the

impact of future measurements of electroweak precision tests from linear colliders

on our results.

• In Chapter 7, we consider a different arrangement of SMEFT operators including

two quarks and two leptons. The motivation is a new interaction affecting only the

third generation particles, that are then rotated to the mass basis. We use the same

set of physical observables for our fits than in the previous chapter. We found that,

in this case, the Hessian approximation is no longer useful, and in consequence

we need to use Machine Learning tools to analyze the scenarios. According to our

results, the RK (∗) anomalies can be described as the interplay between tree-level

and loop-level contributions to the effective operators, while the RD(∗) are purely

tree-level phenomena, manifesting in an interesting correlation between RD(∗) and

the semileptonic decays of B mesons into a kaon and a pair of neutrinos.

• In Chapter 8, we turn our attention to Axion-like particles. We study the leptonic

decays of mesons into a lepton and a neutrino in search of hints of an invisible

Axion-like particle present in the branching ratios or the differential distributions.

We consider a generic flavour structure for the couplings of the Axion-like particle to

quarks and leptons and we compare our results with the previous one. Our bounds

for the couplings of ALPs to leptons are the most stringent to date.

• Finally, in Chapter 9, the main results of the thesis are collected and summarized.
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The dissertation also includes several appendices. Appendix A collects the expressions for

the differential observables for B meson decays in the WET. In Appendix B we comment

on the computer codes used to calculate our results, both the public codes and the codes

written ad-hoc for this thesis. Appendix C contains the predictions for the observables in

Chapters 6 and 7.

Resumen

En los últimos años se ha dedicado especial atención a investigar algunas desviaciones

con respecto a las predicciones del Modelo Estándar de la física de partículas en el con-

texto de la física del sabor. El objetivo de esta tesis es el estudio de estas desviaciones,

haciendo especial énfasis en las desviaciones que involucran los mesones B .

El interés en las desviaciones con respecto a las predicciones del Modelo Estándar

está fundamentado tanto en aspectos téoricos aún sin esclarecer como en medidas expe-

rimentales recientes que muestran tales desviaciones. Desde el punto de vista teórico, el

Modelo Estándar no explica por qué la estructura del sabor es tal y como la observamos,

con tres generaciones de partículas constituyentes de la materia que difieren entre sí solo

en sus masas. Desde el punto de vista experimental, el sabor es un excepcional coto de

caza de indicios de nueva física, ya que muchos procesos están suprimidos en el Modelo

Estándar y la introducción de nuevas interacciones podría dar lugar a señales experimen-

tales claras. En este respecto, es importante notar la proliferación en los últimos años de

mediciones experimentales precisas en el ámbito del sabor en tensión con el Modelo Es-

tándar. En esta tesis nos centramos en el estudio de dos clases de estos observables que

muestran anomalías en la física de sabor: las desintegraciones semileptónicas de meso-

nes B en mesones K o K ∗ y un par de leptones cargados, mediadas por corrientes neutras

con cambio de sabor y caracterizadas por el cociente RK (∗) entre las razones de desinte-

gración muónica y electrónica; y las desintegraciones semileptónicas de mesones B en

mesones D o D∗, un leptón cargado y un neutrino, mediadas por corrientes cargadas con

cambio de sabor y caracterizadas por el cociente RD(∗) entre las razones de desintegración

tauónica y en fermiones ligeros.

La existencia de estas anomalías ha motivado numerosas propuestas de modelos de

Nueva Física como candidatos para explicar tales desviaciones. Un análisis independien-

te de modelo requiere el uso de las Teorías de Campos Efectivas. En estas teorías se inte-

gran los campos cuánticos más pesados, que corresponden únicamente a las líneas inter-

nas de los diagramas de Feynman, dejando un conjunto de interacciones no-renormaliza-

bles que incluyen solo los campos ligeros y sus simetrías. En esta tesis hemos usado este

marco teórico de las Teorías de Campos Efectivas, y hemos obtenido límites a las contri-

buciones de Nueva Física en los coeficientes de Wilson del Lagrangiano efectivo partien-

do de resultados experimentales.

Las correcciones cuánticas contenidas en el Grupo de Renormalización tienen el efec-
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to de mezclar las interacciones no-renormalizables. Como consecuencia, las desviaciones

respecto del Modelo Estándar introducidas a través de las Teorías de Campos Efectivas

suelen propagarse también a observables físicos diferentes de los que estamos estudian-

do. La solución a este problema es determinar los coeficientes de la Teoría de Campos

Efectiva mediante un ajuste estadístico global que incluya observables de todos los sec-

tores afectados. El gran número de observables que aparecen en estos análisis hace ne-

cesario el uso de cálculos numéricos, y en los casos más extremos es necesario utilizar

algunas herramientas de “Machine Learning”, como los árboles de regresión y los valores

SHAP ( del inglés SHAPley Additive exPlanation). En esta tesis utilizamos por primera vez

en el marco de la física de sabor un análisis de Montecarlo para extraer los intervalos de

confianza y las correlaciones entre observables, y demostramos que estas herramientas

constituyen una estrategia útil y adecuada en este tipo de análisis.

Aunque la mayor parte de esta tesis se desarrolla dentro del marco teórico de las Teo-

rías de Campos Efectivas, también hemos extendido nuestro análisis a modelos especí-

ficos de Nueva Física. Concretamente, a modelos de leptoquarks, partículas hipotéticas

que podrían transformar quarks en leptones o viceversa, y a bosones W ′ y Z ′, bosones

gauge hipotéticos que podrían exhibir acoplamientos no universales a cada fermión. Ade-

más, hemos hecho un análisis en más profundidad de un modelo de partículas simila-

res a los Axiones –ALPs, del inglés Axion Like Particles–, partículas pseudoescalares que

podrían aparecer como pseudo-bosones de Nambu-Goldstone de nuevas simetrías U (1)

globales. A diferencia de los enfoques tradicionales, hemos examinado el caso en el que

los ALPs tienen una estructura de sabor no trivial en sus acoplamientos a quarks y lepto-

nes.

Esta tesis está organizada como sigue:

• El Capítulo 1 está destinado a una introducción general al tema de la tesis.

• En el Capítulo 2 se expone una vista general del Modelo Estándar, con un especial

énfasis en los aspectos relacionados con el sabor de las distintas interacciones y

en los orígenes de la supresión que afectan a los procesos con cambio de sabor. A

continuación, se introducen los observables de sabor que serán usados a lo largo

de la tesis. Finalmente se resumen los experimentos que exploran la física de los

mesones B y los resultados que han obtenido.

• El Capítulo 3 se centra en el enfoque independiente de modelo ofrecido por las Teo-

rías de Campos Efectivas. Primero presentamos la visión tradicional (de arriba a

abajo), en la que se empieza con una teoría formulada a una alta escala de energía y

se integran explícitamente las partículas pesadas. Continuamos presentando la vi-

sión opuesta (de abajo a arriba), en la que se empieza con una teoría a baja energía

que se extiende añadiendo todos los operadores efectivos compatibles. Posterior-

mente, se explican los pormenores necesarios para tratar con las Teorías de Campos

Efectivas: el procedimiento de “matching” entre dos teorías definidas en la misma
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escala de energía, y el cambio de escala usando las ecuaciones del Grupo de Renor-

malización. Finalmente se presentan las dos teorías en que nos centramos en esta

tesis: SMEFT –del inglés Standard Model Effective Field Theory– que contiene todas

las partículas del Modelo Estándar, y WET –del inglés Weak Effective Theory– donde

se integran el quark top y los bosones W , Z y Higgs.

• En el Capítulo 4 se introducen algunos de los modelos de nueva física: leptoquarks,

nuevos bosones gauge pesados y partículas similares a los axiones. Finalmente dis-

cutimos la hipótesis de la Violación Mínima de Sabor, que propone una estructura

general para cualquier propuesta de Nueva Física que afecte a la física del sabor.

• El Capítulo 5 contiene nuestra primera incursión en el análisis de Nueva Física que

viole la Universalidad del Sabor Leptónico mediante el uso de ajustes estadísticos

en el marco de las Teorías de Campos Efectivas. Trabajamos en la teoría WET con

coeficientes complejos, y consideramos relaciones entre operadores motivadas por

modelos de leptoquarks y Z ′. Este primer ajuste estadístico solamente incluye un

número limitado de observables relacionados con desintegraciones b → sµ+µ− y

∆Ms . La inclusión de coeficientes de Wilson complejos en el análisis proporciona

un ajuste global ligeramente mejorado, no siendo tan favorable la predicción en el

caso de ∆Ms .

• En el Capítulo 6, trabajamos en el marco de la teoría SMEFT, y consideramos varios

escenarios de operadores efectivos que incluyen dos dobletes de SU (2)L de quarks

y leptones levógiros. En este análisis proponemos diferentes escenarios en los cua-

les las contribuciones de Nueva Física a los coeficientes de Wilson están presentes

en uno, dos o tres coeficientes simultáneamente. Para este ajuste estadístico global

consideramos una gran variedad de observables físicos, incluyendo tests de pre-

cisión electrodébiles y nucleares. Analizamos el escenario más descriptivo usando

una aproximación Hessiana. Los resultados muestran que un escenario en el que

Nueva Física modifique tres coeficientes de Wilson simultáneamente es el escena-

rio preferido para explicar las tensiones entre las predicciones del Modelo Estándar

y las anomalías en la física de mesones B . Un escenario específico, más restringido,

es capaz de proporcionar un ajuste similar con un menor número de parámetros

libres. Finalmente, discutimos el impacto que tendrían en nuestros resultados las

futuras mediciones de tests electrodébiles de precisión en los colisionadores linea-

les.

• En el Capítulo 7, consideramos una configuración diferente de los operadores SMEFT

que contienen dos quarks y dos leptones. La motivación es considerar una nueva

interacción que afecte solamente a las partículas de la tercera generación, antes de

calcular la rotación a la base de masa. Usamos el mismo conjunto de observables

en los ajustes estadísticos que en el capítulo previo. En este caso encontramos que
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la aproximación Hessiana no es satisfactoria, y en consecuencia necesitamos usar

herramientas de “Machine Learning”. Según nuestros resultados, las anomalías en

los cocientes RK (∗) necesitarían de contribuciones de Nueva Física a los operadores

efectivos tanto a “nivel árbol” como a “nivel de un bucle”, mientras que las anoma-

lías en los cocientes RD(∗) precisarían solo de las correcciones a “nivel árbol”, lo cual

se manifiesta en una correlación entre las predicciones para RD(∗) y para las desin-

tegraciones semileptónicas de un mesón B en un kaón y un par de neutrinos.

• En el Capítulo 8, nos centramos en las partículas similares a axiones, ALPs. Estu-

diamos las desintegraciones leptónicas de mesones en un leptón y un neutrino en

busca de indicios de ALPs presentes en las razones de desintegración o en las dis-

tribuciones diferenciales. Consideramos una estructura de sabor genérica para los

acoplamientos a quarks y leptones, y comparamos nuestros resultados con resul-

tados previos en la literatura. Obtenemos los límites a los acoplamientos de ALPs a

leptones más restrictivos publicados hasta el momento.

• Finalmente, en el Capítulo 9 se resumen los principales resultados de la tesis.

La tesis incluye además varios apéndices: En el Apéndice A están incluidas las expre-

siones para los observables diferenciales de las desintegraciones de mesones B en la teo-

ría WET. En el Apéndice B se comentan los códigos informáticos empleados para calcular

nuestros resultados, tanto los códigos públicos como los escritos ad-hoc para esta tesis.

El Apéndice C contiene las predicciones de los observables en los Capítulos 6 y 7.
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Chapter 1

Introduction

Since the dawn of humankind, we have tried to find explanations for the world that sur-

round us, using a series of theories, a term derived from the Greek θεωρία, originally

meaning “looking at, observing”. One of the earliest observations of humanity is that there

are many materials with diverse properties. This led us to a question that has pressed

thinkers, philosophers and scientists for millennia, that of the composition of matter. We

have made huge advances in this topic, starting with simplistic theories like the four ele-

ments in the classical Greece, and culminating at the start of the twentieth century with

the radical paradigm shift of the quantum theory. Once that the quantum nature of reality

was established, the task was to find a unified description of the elemental particles and

their interactions. This was accomplished by the Standard Model (SM) of particle physics,

formulated in the decade of 1960s and passing its final experimental verification in 2012

with the discovery of the Higgs boson.

The SM is, by far, the most successful scientific theory in physics. It has been able

to predict, with incredible precision, the observed phenomena from the early Universe

to our everyday lives to collider events. Although the SM is in great shape, there are still

some issues, both theoretical and experimental, that indicate that the SM can not be the

ultimate theory.

The problem for us, particle physicists, is that there is not a single and clear thread to

follow in the quest for that ultimate theory, in part due to the “unreasonable” success of

the SM. If we expect that there is New Physics (NP) that will guide us to that ultimate goal,

and that this NP is “around the corner”, at the TeV energy scale, there are three possible

strategies to follow.

The first one is pushing the energy frontier, achieving collisions with higher center-

of-mass energies with the hopes of finding a resonance for a new elemental particle. The

second strategy is to study the cosmic frontier, using the Universe as a laboratory to study

ultra-relativistic cosmic particles.

The third, more subtle approach, is to push the intensity frontier, by increasing the

number of events. This is done in order to explore rare processes and increase the preci-

sion, in the search for tiny deviations from the SM predictions. In a quantum theory, the

1
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particles and interactions occurring at very high energies, even if not directly accessible,

modify the dynamics at lower energies through virtual particles encoded in the internal

lines of Feynman diagrams. The hope is, therefore, that improving the precision of our

experimental measurements, we will be able to gain sensitivity to the quantum effects

induced by new particles and interactions. This is precisely the main motivation for the

research contained in this thesis dissertation.

Naturally, not every physical process is equally amenable to the intensity frontier.

Flavour physics is an obvious candidate, with many rare processes where quantum ef-

fects might be comparable in magnitude to the SM predictions. Historically, flavour has

been a very fruitful area for indirect discoveries, starting with the proposals of both the

neutrino and the W boson to explain β decays, continuing with the discovery of C P vi-

olation in kaon decays anticipating the need for a third generation of fermions, or the

suppression of KL → µ+µ− decays compared to K + → µ+ν̄µ decays indicating the exis-

tence of the charm quark. We expect to continue the trend by examining the leptonic and

semileptonic decays of B mesons, processes with branching ratios of less than one in a

million.

In addition to know where to look for the hints of new physics, it is also essential to

know how to look for them. Effective theories are the tool to extend in a systematic way

a low-energy theory, in this case the SM, in order to characterize any possible deviation.

The results are model-independent, meaning that they are valid regardless of the physics

happening above the energy scale at which the effective theory is defined.

Once our attack plan has been laid out, let us get into action!



Chapter 2

Standard Model Flavour Physics

This chapter is devoted to the phenomenology of Flavour Physics within the SM of particle

physics, which constitutes the foundation for the rest of the thesis. We start by examining

the fields and interactions of the SM, and how do they relate to the flavour symmetry. This

introduction to the SM will allow us to discuss some of its open questions, and realize that

many of them are related to flavour. We then turn our attention to a class of processes

that are very interesting to us, those that change the flavour of one quark. Some of the

flavour-changing physical observables for the B mesons are presented, as well as their

experimental determinations.

2.1 Standard Model and Flavour Symmetry

The SM is the quantum field theory that describes the elemental particles of matter and

their interactions [7–9]. Matter is composed of fermions, which can be either quarks

or leptons. The Higgs field is responsible for the generation of masses of the particles

through the Electroweak Spontaneous Symmetry Breaking (EWSSB) mechanism [10, 11].

Interactions are mediated by gauge fields, eight massless gluons for the strong interac-

tions, one massless photon for the electromagnetic interactions, and three massive bosons,

W ± and Z for the weak interaction. The photon, W ± and Z are the result of the EWSSB

for the massless electroweak W and B bosons. The Higgs boson was the last missing piece

of the puzzle, until it was discovered in 2012 by the ATLAS [12] and CMS [13].

The SM is invariant under Poincaré symmetry and local SU (3)C×SU (2)L×U (1)Y gauge

symmetry, where SU (3)C is the color symmetry of Quantum Chromodynamics (QCD) and

SU (2)L ×U (1)Y is the chiral electroweak symmetry. At energies below the electroweak

scale, the Brout-Englert-Higgs mechanism causes the EWSSB, only remaining the electro-

magnetic gauge group U (1)em . The SM is also invariant under the C PT transformation,

the combination of a charge conjugation C , a parity transformation P and a time reversal

T . The individual transformations C , P , and T and their pair-wise combinations such as

Charge and Parity symmetry (C P ), are not symmetries of the full SM. Lastly, the SM also

has an accidental global symmetry U (1)B ×U (1)e ×U (1)µ×U (1)τ at the classical level that

3
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leads to the conservation of the baryonic number B and the lepton flavour numbers Le ,

Lµ and Lτ. At the quantum level, these global symmetries are not exact due to the chiral

anomaly [14].

Fields in the SM are classified according to their representation of the Poincaré group,

given by their spin, and the representation of the SU (3)C ×SU (2)L ×U (1)Y group [15–18].

Additionally, fermions come in three identical copies of the gauge representation called

generations, and consequently each fermion has to be identified by one more label, which

is its flavour. The three generations differ only by their mass and their flavour quantum

numbers. Due to the chiral nature of the electroweak interactions, fermion fields have dif-

ferent quantum numbers depending on their chiralities: left-handed quarks and leptons

are grouped in their corresponding SU (2)L doublets while the right-handed fermions are

singlets:

q ′
i =

(
u′

i L

d ′
i L

)
, u′

i R , d ′
i R ,

ℓi =
(
νi L

ei L

)
, ei R . (2.1)

The flavours of the quarks are u′
i = {u′,c ′, t ′} and d ′

i = {d ′, s′,b′} and the leptons ei =
{e,µ,τ} and νi = {νe ,νµ,ντ}, in increasing order of generations. Each quark and lepton has

a corresponding antiparticle with opposite quantum numbers. Fermions must come in

complete generations with their weak isospin and hypercharge assignments, in order to

cancel quantum anomalies of the gauge symmetries [19, 20]. A summary of the fields of

the SM can be found in Table 2.1.

In any quantum field theory, the dynamics of the particles and their interactions can

be obtained from the Lagrangian. The complete Lagrangian of the SM can we written as

LSM =Lϕ+Lkin +LYuk, (2.2)

where Lϕ is the scalar potential, Lkin contains the kinetic terms and gauge interactions

of the fields, and LYuk represents the Yukawa interactions of the Higgs boson with the

massive fermions. In more detail:

• The scalar potential is contained in Lϕ:

Lϕ =−µ2ϕ†ϕ−λ(ϕ†ϕ)2, (2.3)

with µ2 < 0 and λ > 0. This potential attains a minimum when the Higgs field is in

its Vacuum Expectation Value (vev) given by

v =
√

−µ2

λ
. (2.4)
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Particle Symbol Spin SU (3)C SU (2)L T3 Y Q

Higgs boson ϕ 0 1 2 ±1
2

1
2 0

Gluon G A 1 8 1 0 0 0

Electroweak W I 1 1 3 −1, 0, +1 0 −1, 0, +1

bosons B 1 1 1 0 0 0

Quarks

u′
L , c ′L , t ′L

1
2 3 2 1

2
1
6

2
3

u′
R , c ′R , t ′R

1
2 3 1 0 2

3
2
3

d ′
L , s′L , b′

L
1
2 3 2 −1

2
1
6 −1

3

d ′
R , s′R , b′

R
1
2 3 1 0 −1

3 −1
3

Leptons

νe L , νµL , ντL
1
2 1 2 1

2 −1
2 0

eL , µL , τL
1
2 1 2 −1

2 −1
2 −1

eR , µR , τR
1
2 1 1 0 −1 −1

Table 2.1: Particles of the SM before EWSSB, classified according to their quantum num-

bers: Spin, representation under the colour group SU (3)C , representation under the weak

isospin SU (2)L and the corresponding third component of the weak isospin T3, weak hy-

percharge Y and electromagnetic charge Q = T3 +Y . Each quark and lepton has a corre-

sponding antiparticle with opposite quantum numbers.

While the Lagrangian is invariant under SU (2)L ×U (1)Y , the vacuum of the Higgs is

not, prompting the EWSSB. In the unitarity gauge, the perturbations h of the Higgs

field around the minimum occur only in the T3 =−1/2 component,

ϕ= 1p
2

(
0

v +h

)
. (2.5)

• The kinetic terms of the Lagrangian and gauge interactions are described by Lkin,

given by

Lkin =−1

4
G A
µνG Aµν− 1

4
W I
µνW Iµν− 1

4
BµνBµν− (Dµϕ)†(Dµϕ)

− i q ′
iγµDµq ′

i − i u′
i RγµDµu′

i R − i d
′
i RγµDµd ′

i R

− iℓiγµDµℓi − i e i RγµDµei R , (2.6)

where G A
µν, W I

µν and Bµν are the field strength tensors for the gluons, W bosons

and B bosons respectively, Dµ is the gauge covariant derivative and γµ the Dirac

matrices.

The gauge covariant derivative contains the usual derivative, which would corre-

spond to pure kinetical terms, and interactions with the gauge bosons, which de-
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pend on the representation of the gauge group for the field,

Dµ = ∂µ+ i gsT AG A
µ + i g S I W I

µ + i g ′Y , (2.7)

where gs , g and g ′ are the coupling constants for the gauge groups SU (3)C , SU (2)L

and U (1)Y respectively. T A and S I are the generators of the representation of the

SU (3)C and SU (2)L , respectively, for the field the derivative is acting on: T A is pro-

portional to the structure constants of the group f ABC if the derivative acts on the

gluons on the adjoint representation, proportional to the Gell-Mann matrices if

the derivative acts on the quarks on the fundamental representation, or zero if the

derivative acts on a non-coloured field; and S I is proportional to the totally anti-

symmetric tensor εI JK if the derivative acts on the W bosons on the adjoint rep-

resentation, proportional to the Pauli matrices if the derivative acts on the left-

handed fermions or the Higgs boson on the fundamental representation, or zero

if the derivative acts on the right-handed fermions, gluons or B boson.

The field strength tensors are given by the commutators of two gauge covariant

derivatives. As such, in the Abelian case they only contain pure derivative terms,

but in the non-Abelian case there is also a term involving two gauge fields. The

specific forms for each tensor are

G A
µν = ∂µG A

ν −∂νG A
µ − gs f ABC GB

µGC
ν ,

W I
µν = ∂µW I

ν −∂νW I
µ − g εI JK W J

µW K
ν ,

Bµν = ∂µBν−∂νBµ . (2.8)

The kinetic term of the B boson is described by a Maxwell Lagrangian, while the

gluon and W kinetic terms and self-interactions of three and four bosons are gov-

erned by non-Abelian Yang-Mills Lagrangians. The interaction of the gauge fields

with the scalar and fermions are included through the gauge covariant derivative

Dµ.

The EWSSB affects the gauge interactions of the Higgs field, creating terms in the

Lagrangian that are proportional to v2WµνW µν and v2BµνBµν, i.e., mass terms for

the gauge bosons. The charged components of the W gain a mass MW , and a lin-

ear combination of W 0 and B , called the Z boson, gains a mass MZ , while the or-

thogonal combination, the photon A of the unbroken electromagnetism, remains

massless: (
Z

A

)
=

(
cosθW −sinθW

sinθW cosθW

)(
W 0

B

)
. (2.9)

MW = MZ cosθW = 1

2
v g , (2.10)

where θW = tan−1(g ′/g ) is the Weinberg weak mixing angle.

In the fermionic part, above the EWSSB all kinetic and gauge terms are diagonal in

the generation labels: gluons, B and W 0 bosons only interact with two fermions of
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the same flavour, and W ± interact with the two components of each SU (2)L dou-

blets, connecting u-type and d-type or charged lepton and neutrino of the same

generation.

• The Yukawa interactions of the Higgs boson with fermions are included in LYuk:

LYuk = (yd )i j q ′
iϕd ′

j R + (yu)i j q ′
i ϕ̃u′

j R + (ye )i jℓiϕe j R +h.c., (2.11)

where the Yukawa matrices yd , yu and ye are in general non-diagonal and complex,

thus providing the only flavour-dependant interactions in the SM above EWSSB and

the only source of C P violation.

When the Higgs doublet defined in Eq. (2.5) is introduced in the Yukawa Lagrangian,

the fermions gain mass terms:

LM = (Md )i j d
′
i Ld ′

j R + (Mu)i j u′
i Lu′

j R + (Me )i j e i Lϕe j R +h.c., (2.12)

where the mass matrices M f = vp
2

y f are non-diagonal, which means that the eigen-

states of SU (2)L ×U (1)Y are not mass eigenstates. We can diagonalize the mass ma-

trices using a bi-unitary transformation. For example, in the quark sector,

Md =U †
d LMdUd R , Mu =U †

u LMuUu R , (2.13)

where the new mass matrices Md and Mu are diagonal. The mass eigenstates are

obtained by the corresponding unitary rotation of the interaction eigenstates,

di L = (Ud L)i j d ′
j L , di R = (Ud R )i j d ′

j R ,

ui L = (Uu L)i j u′
j L , ui R = (Uu R )i j u′

j R . (2.14)

The introduction of the Higgs doublet of Eq. (2.5) also induces interactions between

the field h and the fermions, collected in the Lagrangian Lh . Since the U matrices

simultaneously diagonalize the Yukawa matrices and the mass matrices, all Higgs

interactions to the mass eigenstates f are flavour-diagonal,

Lh =−1

v

∑
f

m f f Lh fR +h.c. (2.15)

Clearly, the Yukawa Lagrangian includes the Higgs-fermion interactions too, which turn

out to be proportional to the fermion mass. After EWSSB, all the SM fermions acquire

masses (except the neutrinos), which is given by m f = y f
v
2 .

Once that we have reviewed all the interactions in the SM, we can conclude that the

only source of mixing between different flavours are the Yukawa interactions. This fact

can be interpreted as a hint of a deeper flavour symmetry, and the Yukawa interactions as

an spontaneous breaking of said symmetry. We will be back on this subject in section 4.4.
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2.1.1 Is New Physics needed?

Open questions in the Standard Model

The SM is an extremely successful theory of the elemental particles and interactions of

our universe, which has been producing for more than sixty years precise and accurate

predictions for phenomena in a large range of energy scales. However, there is the general

belief that the SM cannot be the ultimate theory of Fundamental Physics. There are sev-

eral aspects where the SM does not provide a satisfactory answer, some of them closely

related to flavour physics. Some unresolved questions within the SM, that require going

beyond the SM, are:

• Fermions in nature come in exactly three generations of particles with the same

quantum numbers: three up-type quarks, three down-type quarks, three charged

leptons and three neutrinos. We also know that the number of light neutrinos must

be three, both from particle physics [21, 22] and from cosmology [23]. But we don’t

know the reason why nature works in exactly three generations.

• We observe an imbalance of matter and antimatter in the universe, which makes

possible the formation of large matter structures, including us. Shakarov in [24]

gave three conditions: interactions out of thermal equilibrium, violation of the bary-

onic number B , and C P violation. Related to the previous point, three is the min-

imum number of generations needed to violate the C P in the mixing of quarks or

leptons, even though the amount of C P violation in the SM is not enough to explain

this imbalance [25].

• While the Higgs mechanism [10, 11] explains how elemental particles acquire mass,

it does not provide any insight in their specific values. The Yukawa couplings show

a clearly hierarchical pattern spanning multiple orders of magnitude, with only the

top Yukawa coupling displaying a “natural” O (1) value.

• In the SM, neutrinos are described as left-handed fermions, as indicated in Eq. (2.1)

and Table 2.1. Therefore, according to Eq. (2.12), the SM neutrinos are massless.

However, this is incompatible with the non-zero mass differences needed to explain

the observations [26–28] of neutrino oscillations [29–31]. There is no clear consen-

sus in which kind of extension of the SM would be needed regarding the Dirac or

Majorana nature of the neutrinos and the role of right-handed neutrinos in seesaw

mechanisms.

• The SM does not present any violation of the C P symmetry in the QCD interaction,

although there is no fundamental reason for this conservation. This is commonly

referred to as the “strong C P problem”. A popular NP solution to the strong C P

problem are the axions.
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• The SM does not provide any insight in the nature of the Dark Matter or the Dark

Energy. However, the prevalent cosmological model, ΛCDM [23, 32], establishes

that the matter composed by SM fermions, or “baryonic matter”, only comprises

a fraction Ωb ≈ 0.049 of the total density of the universe, with neutrinos and pho-

tons corresponding to negligible fractions. Cold Dark Matter comprises a fraction

Ωc ≈ 0.26 and the rest of the density corresponds to Dark Energy in the form of a

cosmological constantΛ, withΩΛ ≈ 0.68.

• On the formal theoretical side, the SM does not contain gravity. There is no known

theory of quantum gravity combining the SM and General Relativity. Both theories

have several conceptual disagreements, as the roll played by spacetime, the fate of

information contained in an object crossing the event horizon of a Black Hole (in-

formation paradox), or the huge disparity between the strength of gravity and the

rest of known interactions (hierarchy problem). Besides, the SM does not provide

gauge coupling unification. A fundamental theory that unifies all known gauge in-

teractions must go beyond the SM.

• On the experimental front, there are some results that are in tension with the SM

predictions, most notably the anomalous magnetic moment of the muon (g − 2)µ
and the Leptonic Flavour Universality (LFU) of semileptonic B meson decays RK (∗)

and RD(∗) . For a recent review of experimental anomalies see [33] and references

therein.

From this list, it is clear that the answer to the question “Is New Physics needed?” is

a resounding yes. There are still many things that we do not know about particle physics

in general, and flavour physics in particular. Flavour physics is also a very welcoming

testground for NP, since models that do not respect the flavour symmetry produce clear

signatures. This is specially true for the processes that proceed through the change of

flavour, that we will present in the rest of this chapter.

2.2 Flavour changing processes

The SU (2)L ×U (1)Y structure of the electroweak interactions implies that flavour chang-

ing processes will have different phenomenology depending on whether the initial and fi-

nal fermion have the same electrical charge. Flavour-Changing Charged Currents (FCCC)

are mediated by the W ± boson at tree level. Flavour-Changing Neutral Currents (FCNC),

as we shall see, are not allowed at tree level in the SM, and are remarkably suppressed at

the loop level [34–36].

In the interaction basis for fermions, the W ± bosons are coupled to fermions as

LFCCC =− gp
2
νi Lγ

µW +
µ ei L − gp

2
u′

i Lγ
µW +

µ d ′
i L +h.c. (2.16)
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Figure 2.1: Unitarity triangle in the complex plane from
∑

i Vi d V ∗
i b = 0. (a) Diagram show-

ing the sides and angles of the triangle in terms of CKM parameters [37]. (b) Experimental

determination [38]

.

We can rewrite this Lagrangian in the mass basis previously found,

LFCCC =− gp
2
νi Lγ

µW +
µ (UνL)i j (U †

e L) j k ek L−
gp

2
ui Lγ

µW +
µ (Uu L)i j (U †

d L) j k dk L+h.c. (2.17)

If we assume that neutrinos are massless, we can absorb the unitary matrices in the

leptonic sector with a redefinition of the neutrinos, νi → (Ue L)i j (U †
νL) j kνk . In the quark

sector, however, we obtain the Cabibbo-Kobayashi-Maskawa (CKM) matrix V connecting

the different flavours,

V =Uu LU †
d L . (2.18)

The CKM matrix is non-diagonal, and therefore FCCC can cause the interaction of

fermions of different generations at tree level. With three generations of fermions, the

CKM matrix is parameterized by three mixing angles between generations and one com-

plex phase, responsible for C P violation. The unitarity of the CKM matrix is expressed by

the constraint of the orthogonality of its rows and its columns,∑
i

Vi j V ∗
i k = δ j k

∑
j

Vi j V ∗
k j = δi k . (2.19)

This relation can be represented in the complex plane as a unitarity triangle, as shown in

Fig. 2.1(a). The lengths and angles of the unitarity triangles are determined experimen-

tally from several flavour processes, as illustrated in Fig. 2.1(b). The area of the triangle is

the Jarlskog invariant J , that is a measure of the C P violation.

In order to appreciate the degree of mixing between generations, it is useful to write

the CKM matrix using the Wolfenstein parameterization [39],

V =

 1−λ2/2 λ Aλ3(ρ− iη)

−λ 1−λ2/2 Aλ2

Aλ3(1−ρ− iη) −Aλ2 1

+O (λ4), (2.20)
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with λ = 0.22650 ± 0.00048, A = 0.790+0.017
−0.012, ρ = ρ(1 −λ2/2 + ·· · ) = 0.141+0.016

−0.017 and η =
η(1−λ2/2+·· · ) = 0.357±0.011. Mixing is important between the first and second gener-

ations, with a mixing given by the Cabibbo angle sinθC ≈ λ, and less important between

the second and third generations with a mixing angle of orderλ2, and between the second

and third generation, where the mixing angle is of order λ3.

While FCCC are possible for quarks, charged currents in the leptonic sector in the SM

are both flavour conserving and Leptonic Flavour Universality (LFU), due to the neutrinos

being massless. If we supplement the SM with massive neutrinos, lepton flavour changes

are possible for the neutrino mass eigenstates ν1, ν2 and ν3, which are experimentally ob-

served in the form of neutrino oscillations. In an analogous fashion to the CKM matrix,

neutrino oscillations are governed by the Pontecorvo-Maki-Nakawa-Sakata (PMNS) ma-

trix [30, 40], parameterized by three angles (solar, atmospheric and reactor angles) and

one C P-violating complex phase.

The LFU of the charged currents can be experimentally observed in the decay modes

of the W boson [37],

BR(W + → e+ν) = (10.71±0.16)%,

BR(W + →µ+ν) = (10.63±0.15)%,

BR(W + → τ+ν) = (11.38±0.21)%. (2.21)

The neutral electroweak interactions arising from the Lagrangian of Eq. (2.6) are

LNC =−g
∑
f ′

T f ′
3 f ′γµW 0

µ f ′− g ′∑
f ′

Y f ′ f ′γµBµ f ′, (2.22)

where f ′ is summed over all interaction eigenstates. We have to rewrite this Lagrangian in

terms of the mass eigenstates for fermions defined in Eq. (2.14) and electroweak bosons

defined in Eq. (2.9). It is important to note that the rotation of the fermion basis does not

induce flavour changing interactions,

f
′
iγµ f ′

i = f iγµ(U †
f L/R )i j (U f L/R ) j k fk = f iγµδi k fk = f iγµ fi . (2.23)

Therefore, the SM does not allow electroweak FCNC at tree level,

LNC = e
∑

f
Q f f γµAµ f + g

cosθW

∑
f

(T f
3 − sin2θW Q f ) f γµZµ f . (2.24)

Neutral currents are not only diagonal, but the couplings are also universal, since all gen-

erations have the same quantum numbers Q and T3. LFU can be checked in the branch-

ing ratios of the different decays modes of the Z boson [37] to leptons,

BR(Z → e+e−) = (3.363±0.004)%,

BR(Z →µ+µ−) = (3.366±0.007)%,

BR(Z → τ+τ−) = (3.370±0.008)%, (2.25)
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to u-type quarks,

1

2

[
BR(Z → uu)+BR(Z → cc)

]= (11.6±0.6),%

BR(Z → cc) = (12.0±0.2)%, (2.26)

and to d-type quarks,

1

3

[
BR(Z → dd)+BR(Z → ss)+BR(Z → bb)

]
= (15.6±0.4)%,

BR(Z → bb) = (15.12±0.05)%. (2.27)

Since the neutral bosons can not change the flavour of fermions, FCNC can only ap-

pear through the exchange of at least two W bosons, in the topologies known as penguin

and box Feynman diagrams. This creates three sources of suppression for these processes:

• Loop suppression: The integration over the internal momentum in the loop present

in box and penguin Feynman diagrams introduces a factor of (2π)−4 (see, for exam-

ple [41]).

• CKM suppression: The diagrams include two W vertices, each with a factor Vi j ,

and at least one of them are off-diagonal. These CKM elements are small numbers,

in the Wolfenstein parameterization they are proportional to some power of λ. For

example, the b → sℓ+ℓ− transitions are dominated by |V ∗
tbVt s | ∼ λ2. For a recent

review, see [42].

• Glashow-Iliopoulos-Maiani (GIM) mechanism [43]: If all u-type quarks or all d-

type in quarks were degenerate in mass, the interaction eigenstates would be also

mass eigenstates. That would rule out flavour changing W interactions, and there-

fore FCNC interactions at the loop level. In the SM this symmetry between quarks is

violated by their masses, and therefore the amplitudes of FCNC processes must be

proportional to the breaking, so it vanishes when the symmetry is restored. For ex-

ample, the decay of the kaon K 0 →µ+µ− is described by two box diagrams, with an

internal u or c line (the diagram with an internal t line has a negligible contribution

due to CKM suppression), as shown in Fig. 2.2. The amplitudes for these diagrams

are

Au ∝ m2
u

M 2
W

sinθC cosθC , Ac ∝− m2
c

M 2
W

sinθC cosθC ,

Au + Ac ∝
m2

u −m2
c

M 2
W

sinθC cosθC . (2.28)

In fact, the suppression of the∆S = 2 processes such as kaon mixing, K →µ+µ− and

K + →π+ℓ+ℓ− was what led Glashow, Iliopoulos and Maiani to predict the existence

of the c quark.
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Figure 2.2: One-loop box diagrams for the decay K 0 → µ+µ− (a) with an internal u quark,

(b) with an internal c quark.

The GIM mechanism only suppresses FCNCs when there is a small mass splitting

between the quarks in the loops. If one of the external quarks is b, then the dom-

inant contribution comes from the exchange of t (since Vtb ≈ 1) and the FCNC is

consequently enhanced by m2
t /M 2

W [42].

In the lepton sector, even if we enlarge the SM with massive neutrinos that would

allow for non-diagonal W ± vertices, FCNCs for the charged leptons would be ex-

tremely suppressed by a GIM factor of ∆m2
ν/M 2

W [44, 45].

To sum up, in the SM, the electroweak interactions involving leptons must always

be flavour-conserving and flavour-universal, so it predict no Leptonic Flavour Violation

(LFV) and no Leptonic Flavour Universality Violation (LFUV). On the other hand, elec-

troweak interactions involving quarks can be flavour-changing and even C P-violating,

with flavour-changing neutral currents suffering large suppressions.

2.3 Flavour observables

In the past decades, kaons, mesons composed by one s quark and one light u or d quark,

have been the testground of flavour physics [46]. The suppression of kaon FCNC led to the

prediction of the c quark, and the violation of C P symmetry in the neutral kaon K 0 −K
0

oscillations led to the prediction of the third generation of quarks to accommodate a com-

plex phase in the CKM matrix. Kaon physics is in agreement with the SM predictions, and

puts stringent constraints on any kind of new physics that modifies the mixing between

the first and second generation of quarks.

With the advent of new, more powerful colliders and detectors, much of the focus of

flavour physics has shifted towards B mesons. B mesons are composed by one b quark

and one lighter quark, B 0 = db, B+ = ub and Bs = sb, and their antiparticles B
0
, B−, B s . B

mesons have “long” lives τB ∼ 10−12 s, compared to the ephemerous charmed D mesons

τD ∼ 10−15 s [37]. This discrepancy is due to CKM suppression, as B decays are dominated

by Vcb = Aλ2, while D decays proceed through Vcd =−λ. Longer lives allows experimental
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access to rarer decay modes, such as FCNC decays [47].

2.3.1 FCNC observables

Depending on the final products, FCNC processes for B mesons can be classified as [48–

53]:

• Neutral meson oscillations: The oscillations B 0 −B 0 and Bs −Bs occur through W

box diagrams, similar to the well-known kaon oscillations [54]. The oscillation fre-

quency is determined by the mass splitting ∆M between meson and anti-meson.

Oscillations in Bs − Bs are notably large, with ∆MBs /ΓBs ≈ 27 [37] due to smaller

CKM suppressions.

B decays exhibit both direct C P violation and indirect C P violation through the

interference between the decays B → f and B → B → f , where the final state is a C P

eigenstate f = f . The time-dependant C P asymmetry is given by [37, 47]

A f
C P (t ) = Γ(B → f )−Γ(B → f )

Γ(B → f )+Γ(B → f )
= S f sin(∆MB t )−C f cos(∆MB t ), (2.29)

where the coefficient S f of the oscillation is due to indirect C P violation and C f due

to direct violation.

The angles α and β of the unitarity triangle in Fig. 2.1 are extracted from C P asym-

metries in B → ππ, ρρ, ρπ and B → J/ψKS respectively. The C P asymmetry in

the decay Bs → J/ψφ is used for the experimental determination of the angle βs =
arg(−Vt sV ∗

tb/VcsV ∗
cb) of the

∑
i Vi sV ∗

i b unitarity triangle [37, 47, 55].

• Radiative decays: The final state contains a light hadron and one photon. At the

quark level, the decays are b → sγ or b → dγ, which in the SM are described by

electromagnetic penguin loops. The exclusive decay BR(B → K ∗γ) and the inclusive

decay BR(B → Xsγ) were measured by CLEO [56, 57]. Inclusive radiative decays are

theoretically very clean and impose constraints on NP Models that predict lepton-

universal FCNC, like 2 Higgs-doublet model.

• Leptonic decays: The leptonic modes Bs →µ+µ− and B 0 →µ+µ− have been exper-

imentally detected by LHC [58, 59]. In the SM, leptonic decays are described by W

box and Z penguin diagrams. In addition to the usual CKM and loop suppressions,

leptonic decays suffer from helicity suppression, as Bs and B 0 are pseudo-scalar

particles decaying into a pair of fermions [50, 60]. The decay rate is

Γ(B(s) → ℓ+ℓ−) =
G2

F M 2
W m3

B(s)
f 2

B(s)

8π5
|V ∗

tbVt q |2
4m2

ℓ

M 2
B(s)

√√√√1− 4m2
ℓ

M 2
B(s)

|C SM
10 |2, (2.30)

where q = d , s and fB(s) is the meson decay constant and C10 is a Wilson coefficient

(see Section 3.5).
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Figure 2.3: Effects of charm loops in semileptonic B decays. (a) Example of a Feynman

diagram illustrating a charm loop via an effective four-quark operator Oi , mediated by

a W exchange [51]. (b) Dimuon invariant mass distribution in the B+ → K +µ+µ− decay

measured by LHCb. The solid red line represents the fit to resonances: one small peak at

1020 GeV corresponding to the φ meson (ss resonance) and two big peaks at 3096 GeV

and 3686 GeV corresponding to the charmonium resonances J/ψ and ψ(2S) [77].

The experimental results are in good agreement with the SM predictions [61–63],

which will restrict the helicity structure of NP. Leptonic decays to a pair of taus are

not possible because of the difficulty to reconstruct them from their decay prod-

ucts [47, 64, 65], and leptonic decays to a pair of electrons have too low branching

ratio to be detected in the current generation of experiments [66, 67]. Therefore,

leptonic decays are not suited for studies of potential LFUV.

• Semileptonic decays: The final states includes a pair of leptons and one hadron,

from the decay b → sℓ+ℓ−. The b decay is described in the SM by electroweak pen-

guins or W boxes, with the light quark of the meson acting as an spectator quark.

The main modes are B+ → K +ℓ+ℓ− and B 0 → K ∗0ℓ+ℓ−, with ℓ= e, µ (semileptonic

τ+τ− suffer from the same experimental challenges as the leptonic modes [68]).

Other semileptonic b → sℓ+ℓ− decays have been also observed in Bs →φµ+µ− [69–

73] and in the baryonic transition Λb → Λµ+µ− [74–76]. Semileptonic B decays

thusly provide an exceptional avenue to test LFU.

The decay rates for the semileptonic B modes are expressed as functions of the di-

lepton invariant mass-squared q2 = m2
ℓℓ

. The final state can also be reached through B →
K (∗)ψ→ K (∗)ℓ+ℓ−, where ψ denotes any charmonium state, as depicted in the example

of the Feynman diagram illustrating this kind of processes in Fig. 2.3(a). This background

is specially prominent in the q2 regions corresponding to resonant production of J/ψ and

ψ(2S) [51, 53, 78–80], as illustrated in Fig. 2.3(b). We can integrate the decay rates in q2
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Figure 2.4: Definition of the angles in the B → K ∗(→ Kπ)ℓ+ℓ− decay.

bins,

Γ[q2
min,q2

max] =
∫ q2

max

q2
min

dΓ(q2)

d q2
d q2 . (2.31)

It is possible to reduce the impact of the charmonium resonances by selecting only the

clean q2 bins and discarding the region 8 GeV2 ≤ q2 ≤ 15 GeV2.

The decays into the pseudoscalar kaon K have a simple angular structure, depending

only on the angle θℓ between the positively-charged lepton and the B meson momenta in

the rest frame of the dilepton system. The angular distribution is given by [81]

d 2Γ(B → Kℓ+ℓ−)

d cosθℓ d q2
= 3

4
(1−FH )(1−cos2θℓ)+ 1

2
FH + Aℓ

FB cosθℓ, (2.32)

where Aℓ
FB is the forward-backward asymmetry, and FH is the flat term, both of them are

very close to zero in the SM.

The decays into the vector excited kaon K ∗ exhibit a richer angular structure. The

polarization of the kaon can be obtained from its decay K ∗ → K +π− [82]. In total there

are three relevant angles: θℓ between the positively-charged lepton and the B meson mo-

menta in the rest frame of the dilepton system, θK between the K + and the B meson mo-

menta in the rest frame of the K ∗, andφ between the planes that contain K +π− and ℓ+ℓ−.

These angles are depicted in Fig. 2.4. The angular distribution in terms of the angular

coefficients Ii reads [83, 84]

d 4Γ(B
0 → K

∗0
ℓ+ℓ−)

d cosθℓ d cosθK d cosφ d q2
= 9

32π

[
I s

1 sin2θK + I c
1 cos2θK + (I s

2 sin2θK + I c
2 cos2θK )cos2θl

+ I3 sin2θK sin2θℓ cos2φ+ I4 sin2θK sin2θℓ cosφ

+ I5 sin2θK sinθℓ cosφ+ (I s
6 sin2θK + I c

6 cos2θK )cosθℓ

+ I7 sin2θK sinθℓ sinφ+ I8 sin2θK sin2θℓ sinφ

+ I9 sin2θK sin2θℓ sin2φ
]

. (2.33)

The angular distribution of the C P-reversed process B 0 → K ∗0ℓ+ℓ− is obtained by the

replacement I i → Ii for i = 1,2,3,4,7, and I i → −Ii for i = 5,6,8,9. The C P-averaged

coefficients Si and the C P asymmetries Ai are obtained as

Si = Ii + Ii

d(Γ+Γ)/d q2
, Ai = Ii − Ii

d(Γ+Γ)/d q2
, (2.34)



2.3. FLAVOUR OBSERVABLES 17

and the Forward-Backward asymmetry and the K ∗ longitudinal and transverse polariza-

tion fractions FL , FT are

AFB = 3

8
(2Ss

6 +Sc
6), FL =−Sc

2 FT = 4Ss
2. (2.35)

The differential decay rate is obtained by integrating the angular distribution over the

angular variables,

dΓ(B
0 → K

∗0
ℓ+ℓ−)

d q2
= 1

4
(3I c

1 +6I s
1 − I c

2 −2I s
2). (2.36)

“Folding” is a procedure used to reduce the number of angular coefficients in the dis-

tribution and extracting all the Si from small datasets. For example, the transformation

φ→φ+π ifφ< 0 cancels all terms with a cosφ or sinφ, leaving terms with cos2φ or sin2φ

unaffected. Reference [85] includes a list of the folding transformations needed to extract

all Si observables.

The theoretical calculations for decay rates and angular distributions involve the eval-

uation of the matrix element 〈K (∗)ℓ+ℓ−|Jℓ · Jq |B〉, where Jℓ and Jq are leptonic and quark

currents. In the large hadron recoil limit q2 ≪ 4m2
c , the matrix element factorizes in lep-

tonic and hadronic elements

〈K (∗)ℓ+ℓ−|Jℓ · Jq |B〉 ∼ 〈K (∗)|Jq |B〉 · 〈ℓ+ℓ−|Jℓ|0〉. (2.37)

The leptonic elements are easily evaluated using the solutions of the Dirac equation. On

the other hand, hadronic elements require knowledge of the non-perturbative regime of

QCD. The hadronic matrix elements are usually written in terms q2-dependent form fac-

tors [86–89]. For a B meson with momentum p decaying into a pseudoscalar kaon P = K

with momentum k, with q = p −k, the matrix elements are

〈P (k)|sγµb|B(p)〉 =
(

pµ+kµ+qµ
M 2

B −M 2
P

q2

)
f+(q2)+qµ

M 2
B −M 2

P

q2
f0(q2),

〈P (k)|sσµνqνb|B(p)〉 = i

MB +MP

[
q2(pµ+kµ)− (M 2

B −M 2
P )q2

]
fT (q2), (2.38)

and for a B meson decaying into a vector meson V = K ∗ with polarization ε,

〈V (k,ε)|sγµb|B(p)〉 =ϵµνρσε∗νpρkσ
2V (q2)

MB +MV
,

〈V (k,ε)|sγµγ5b|B(p)〉 =iε∗µ(MB +MV )A1(q2)− iε∗νqν(pµ+kν)
A2(q2)

MB +MV

− i qνε∗νqµ
2MV

q2

[
A3(q2)− A0(q2)

]
,

〈V (k,ε)|sσµνγνb|B(p)〉 =2ϵµνσρε∗νpρkσT1(q2),

〈V (k,ε)|sσµνγνγ5b|B(p)〉 =iε∗µ(M 2
B −M 2

V )T2(q2)− iε∗νqν(pµ+kµ)T2(q2)

+ iε∗νqν
(

qµ− q2

M 2
B −M 2

V

(pµ+kµ)

)
T3(q2). (2.39)
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The form factors are obtained at low hadron recoil (large q2) from Lattice QCD com-

putations [90–92], and at q2 ≈ 0 from Light-Cone Sum Rules (LCSR) [86, 89]. Both sets of

results can be combined together and interpolated to the whole kinematic range of q2.

Form factors are the main source of uncertainty in the SM predictions for the semilep-

tonic B decays. It is therefore useful to define a new set of observables where the hadronic

uncertainties largely cancel out. A set of clean angular observables was presented in [84],

P1 = 2S3

FT
, P2 =

Ss
6

2FT
, P3 =− S9

FT

P ′
4 =

2S4p
FT FL

, P ′
5 =

S5p
FT FL

, P ′
6 =

−S7p
FT FL

.
(2.40)

Clean observables for the decay rates can be obtained from the ratios of the decay

modes to muons and electrons [93],

R
[q2

min, q2
max]

K (∗) =
∫ q2

max

q2
min

dΓ(B→K (∗)µ+µ−)
d q2 d q2

∫ q2
max

q2
min

dΓ(B→K (∗)e+e−)
d q2 d q2

. (2.41)

We will use the notation RK (∗) to denote the set of all the LFU ratios in b → sℓ+ℓ−

semileptonic decays. Each individual LFU ratio will be identified by the kaon in the final

state, so for example RK + denotes the LFU ratios for the B+ → K +ℓ+ℓ− decays, and RK ∗0

the LFU ratios for the B 0 → K ∗0ℓ+ℓ− decays. Isospin-averaged measurements will be

denoted as RK and RK ∗ . The B meson always has the same electric charge as the kaon. The

RK (∗) observables are of uttermost interest, as they offer a theoretically-clean test of lepton

flavour universality. The SM prediction for the whole q2 range is RK (∗) = 1+O (m2
µ/m2

b),

where the mass corrections are well below 1%.

It is also possible to define clean angular observables sensitive to LFUV [94],

Qi = Pµ

i −P e
i , (2.42)

where Pi are the angular observables defined in Eq. (2.40). A non-zero value for any of the

Qi observables would mark a deviation from LFU.

2.3.2 FCCC observables

FCCC transitions are tree level processes in the SM without large suppressions, and conse-

quently NP was expected to have a lesser impact in these observables. In fact, the branch-

ing ratios of B → Dµν and B → Deν are in agreement with LFU, and are used to perform

measurements of the |Vcb | element of the CKM matrix and to extract hadronic form fac-

tors. However, measurements involving tau leptons have found tensions with the univer-

sality predictions.

The main semitauonic modes are B → Dτν and B → D∗τν. Semitauonic decays are

free from charm loops and therefore the factorization in hadronic and leptonic elements



2.4. B PHYSICS EXPERIMENTAL RESULTS 19

is exact. The hadronic elements have the same general structure in Eq. (2.38) for the pseu-

doscalar D meson and Eq. (2.39) for the vector D∗ meson [95, 96]. B → D form factors are

obtained from lattice calculations [97, 98], and the B → D∗ form factors are calculated

using Heavy Quark Expansion (HQE) [99].

A set of important observables used to study the B → D (∗)ℓν decays are LFU ratios RD

and RD∗ ratios, defined as [99, 100]

Rµ

D(∗) =
BR(B → D (∗)τν)

BR(B → D (∗)µν)
,

Rℓ
D(∗) =

BR(B → D (∗)τν)

[BR(B → D (∗)eν)+BR(B → D (∗)µν)]/2
(2.43)

In this case, the ratios deviate from unity due to the large mass of the tau lepton [101].

The branching ratios for B → D∗µν and B → D∗eν have been measured to be equal to

great precision [102–104]. The determinations of these ratios that assume universality in

the two lightest generations will be denoted by RD and RD∗ respectively. The SM predic-

tions for these ratios, assuming lepton flavour universality between the first and second

generations, are [105]

RSM
D = 0.299±0.004, RSM

D∗ = 0.257±0.005. (2.44)

The experimentally available angular observables in B → D∗τν decays are the D∗ lon-

gitudinal polarization F D∗
L (defined analogously as in Eq. (2.35)), and the τ longitudinal

polarization. Semitauonic decays also exist for Bc mesons, with the LFU ratio

R J/ψ = BR(Bc → Jψτν)

BR(Bc → Jψµν)
, (2.45)

where the SM prediction is RSM
J/ψ = 0.267± 0.016, that has larger uncertainties from the

hadronic form factors [106].

The leptonic decay Bc → τν has an additional helicity suppression, and therefore is

not expected to be measured in the foreseeable future. However, it is possible to con-

straint its branching ratio from the precise determination of the Bc lifetime [107]. The

leptonic B → ℓν decays, together with similar channels for the D , Ds and K mesons, will

be analyzed in detail in Chapter 8.

2.4 B physics experimental results

Following the experimental discovery of long-lived B mesons and large B 0 −B
0

meson

mixing during the decade of 1980, and a notable increase in collider luminosity, the two “B

factories”, BaBar at the SLAC National Accelerator Laboratory (USA) [108–111] and Belle

at the KEK (Japan) [112], were commissioned. Their goal was to test the flavour mixing

mechanism of the CKM as a source of C P violation. Both experiments used e+e− colli-

sions to achieve resonant production of the bottonium state Υ(4S), which decays into a
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pair of B 0B
0

or B+B− mesons entangled in a P-wave state. The e+ and e− beams had

different energies, so the Υ would not be at rest in the lab frame, and the produced B

mesons would be Lorentz-boosted so it was possible to carry out time-dependant mea-

surements [108]. BaBar was in operation from 1999 until 2008, when it was shut down due

to budgetary reasons. Belle was in operation from 1999 to 2010, and later was upgraded

to Belle-II [113, 114], which started taking data in 2018.

Although not a B factory per se, Large Hadron Collider (LHC) collisions produce a huge

number of B mesons, as well as Bs mesons, Bc mesons and bottom-flavoured baryons.

One of the four main experiments in the LHC tunnel, LHCb [115–117], is devoted to look

for possible NP effects in flavour physics and C P violations, providing complementary

results to those of BaBar and Belle. In addition, the two general-purpose experiments,

ATLAS and CMS, also have their own flavour programme. LHC has been active in Run 1,

from 2009 to 2013, operating at center-of-mass energies of
p

s = 7 and 8 TeV, and in Run

2, from 2015 to 2018 at
p

s = 13 TeV. Run 3, operating at
p

s = 14 TeV, is expected to run

from March 2022 until 2025. After that, an upgrade of the collider and detectors, High

Luminosity Large Hadron Collider (HL-LHC), will increase the luminosity by a factor of

around 7.

2.4.1 b → sℓ+ℓ− decays

Belle was the first experiment that reported observations of b → sℓ+ℓ− decays [118, 119].

The first measurements of the RK (∗) ratios defined in Eq. (2.41), with large uncertainties,

were compatible with the SM [120],

RK = 0.83±0.17±0.08,

RK ∗ = 1.03±0.19±0.06. (2.46)

Measurements of the RK (∗) ratios in the low-q2 region were reported by BaBar in 2012 [121].

They were compatible with the SM predictions within large uncertainties,

R [0.1,8.12]
K = 0.74+0.40

−0.31 ±0.06,

R [0.1,8.12]
K ∗ = 1.06+0.48

−0.33 ±0.08. (2.47)

The measurements in LHCb for the muonic and electronic modes are affected by dif-

ferent experimental efficiencies. In order to reduce experimental uncertainties caused by

this fact, LHCb does not measure directly the RK (∗) ratios. Instead, the measured observ-

ables are the double ratios RK (∗) defined as [122]

RK (∗) = BR(B → K (∗)µ+µ−)

BR(B → K (∗) J/ψ(→µ+µ−))

/ BR(B → K (∗)e+e−)

BR(B → K (∗) J/ψ(→ e+e−))
. (2.48)

The resonant J/ψ→ ℓ+ℓ− decays are used to normalize the lepton efficiencies. LHCb has

determined the ratio [123]

r J/ψ = BR(B → K (∗) J/ψ(→µ+µ−))

BR(B → K (∗) J/ψ(→ e+e−))
= 1.014±0.035, (2.49)
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which is lepton flavour universal, and therefore RK (∗) = RK (∗) to great accuracy. For our

studies, we will consider both types of ratios to be equivalent.

LHCb reported a discrepancy in the RK ratio in 2014, analyzing 3fb−1 of data taken atp
s = 7TeV and

p
s = 8TeV [122],

R[1,6]
K + = 0.745+0.090

−0.074 ±0.036. (2.50)

Another deviation in the RK ∗ ratio was found in 2017, also analyzing the 3fb−1 data

sample [124–126]

R[0.045,1.1]
K ∗0 = 0.66+0.11

−0.07 ±0.03,

R[1.1,6]
K ∗0 = 0.685+0.113

−0.069 ±0.047. (2.51)

In 2019, LHCb reported a new value for RK , including an additional 2fb−1 of data ob-

tained during Run 2 at
p

s = 13TeV. The value is closer to the SM prediction, but the un-

certainty has notably improved, so the overall significance remains at the 2.5σ level [123],

R[1.1,6]
K + = 0.846+0.060

−0.054
+0.016
−0.014. (2.52)

The 2019 Belle results still were compatible with the SM within the large uncertain-

ties [127, 128],

R [0.1,4]
K = 1.01+0.28

−0.25 ±0.02, R [0.1,4]
K 0

S
= 1.62+1.31

−1.01 ±0.02, R [0.1,4]
K + = 0.98+0.29

−0.26 ±0.02,

R [1,6]
K = 1.03+0.28

−0.24 ±0.01, R [1,6]
K 0

S
= 0.55+0.46

−0.34 ±0.01, R [1,6]
K + = 1.39+0.36

−0.33 ±0.02,

R [0.045,1.1]
K ∗ = 0.52+0.36

−0.26 ±0.06, R [0.045,1.1]
K ∗0 = 0.46+0.55

−0.27 ±0.13, R [0.045,1.1]
K ∗+ = 0.62+0.60

−0.36 ±0.09,

R [1.1,6]
K ∗ = 0.96+0.45

−0.29 ±0.11, R [1.1,6]
K ∗0 = 1.06+0.63

−0.38 ±0.14, R [1.1,6]
K ∗+ = 0.72+0.99

−0.44 ±0.15.

(2.53)

A new analysis in 2021, including the full run 2 data set from LHCb set the value [129]

R[1.1,6]
K+ = 0.846+0.042

−0.039
+0.013
−0.012 , (2.54)

that had the same central value as the 2019 result but reduced uncertainty, increasing the

tension with the SM prediction to 3.1σ.

Also in 2021, LHCb reported the LFU ratios for the B 0 → K 0
Sℓ

+ℓ− and B+ → K ∗+ℓ+ℓ−

decays, which are the isospin partners of B+ → K +ℓ+ℓ− and B 0 → K ∗0ℓ+ℓ− respectively,

but are affected by reduced experimental efficiency at LHCb [130].

RK 0
S
= 0.66+0.20

−0.14
+0.02
−0.04 ,

RK ∗+ = 0.70+0.18
−0.13

+0.03
−0.04 . (2.55)

Angular analyses of the B → K ∗µ+µ− were performed by LHC and Belle in [71, 131–

138]. A good agreement with the SM predictions was found for all observables except P ′
5

in the medium-q2 region, collected in Table 2.2. The measurements show a discrepancy

of around 3σ with the values predicted in [139],

P
′ [1,6]
5 =−0.412+0.042

−0.070
+0.026
−0.045

+0.096
−0.089

+0.014
−0.017. (2.56)
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Experiment q2 bin P ′
5 Ref.

2013 LHCb [1,6] 0.21+0.20
−0.21 ±0.03 [131]

2015 LHCb [1.1,6] −0.049+0.107
−0.108 ±0.014 [133]

2016 Belle [1,6] 0.385+0.276
−0.285 ±0.099 [134, 135]

2018 ATLAS [1.1,6] 0.01±0.21±0.07 [137]

2020 LHCb [1.1,6] −0.114±0.068±0.026 [138]

Table 2.2: Measurements of the angular observable P ′
5.

Experiment Rℓ
D Rℓ

D∗ Rµ

D∗ Ref.

2009 Belle 0.48+0.22
−0.19

+0.06
−0.05 0.47+0.11

−0.10
+0.06
−0.07 — [142]

2012 BaBar 0.440±0.058±0.042 0.332±0.024±0.018 — [141]

2015 Belle 0.375±0.064±0.026 0.293±0.038±0.015 — [143]

2015 LHCb — — 0.336±0.027±0.030 [144]

2016 Belle — 0.270±0.035+0.028
−0.025 — [145]

2017 LHCb — — 0.291±0.019±0.026±0.013 [146]

2019 Belle 0.307±0.037±0.016 0.283±0.018±0.014 — [147]

Table 2.3: Belle, BaBar and LHCb measurements of the RD(∗) ratios.

2.4.2 b → cℓν decays

Belle reported in 2007 the observation of b → cτν decays [140]. Since then, Belle and

BaBar have made several measurements of the ratios Rℓ
D(∗) of the muon and electron decay

modes combined, while LHCb has measured the ratio Rµ

D only to the muonic decay mode.

All of these measurements can be found in Table 2.3.

BaBar was the first experiment to report an excess in the RD and RD∗ ratios [141]. Belle

and LHCb have reproduced these anomalies.

The average experimental values for the RD(∗) ratios, as obtained by Heavy Flavour

Averaging Group (HFLAV), is [148]

Rave
D = 0.340±0.027±0.013,

Rave
D∗ = 0.295±0.011±0.008. (2.57)

RD exceeds the SM value by 1.4σ, and RD∗ by 2.5σ. When combined together, included

their correlation, the excess is 3.08σ. The combined analysis is plotted in Fig. 2.5. The el-

lipses BaBar12 [141], Belle15 [143] and Belle19 [147] correspond to the 1σ allowed regions

in correlated measurements of RD and RD∗ , while the horizontal bands LHCb15 [144],



2.4. B PHYSICS EXPERIMENTAL RESULTS 23

0.2 0.3 0.4 0.5
R(D)

0.2

0.25

0.3

0.35

0.4R
(D

*)

HFLAV average

Average of SM predictions

 = 1.0 contours2χ∆

 0.003±R(D) = 0.299 
 0.005±R(D*) = 0.258 

HFLAV

Winter 2019

) = 27%2χP(

σ3

LHCb15

LHCb18

Belle17

Belle19 Belle15

BaBar12

HFLAV
Spring 2019

Figure 2.5: Combined RD and RD(∗) analysis by Heavy Flavour Averaging Group (HFLAV)

in Spring 2019. Solid contours correspond to 1σ compatibility, and the dashed contour to

3σ compatibility with the averaged values [148].

Belle17 [145] and LHCb18 [146] are the 1 σ values for measurements of RD∗ only. The

average obtained by HFLAV, including the correlation between both observables, is indi-

cated by the red ellipse at 1 σ and by the dashed ellipse at 3 σ. The average of SM predic-

tions is marked by a cross. In general, recent measurements are closer to the SM values

than older measurements.

The integrated longitudinal polarization of the D∗ meson in B 0 → D∗−τ+ν decays has

been measured by Belle [149],

F D∗
L = 0.60±0.08±0.04, (2.58)

which is 1.6σ larger than the SM prediction.

The ratio R J/ψ defined in Eq. (2.45) has been reported by LHCb [150],

Rµ

J/ψ = 0.71±0.17±0.18, (2.59)

that lies within 2σ of the SM predictions. This observable is currently not included in our

analysis, although we are planning to implement it in the future.
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Chapter 3

Effective Field Theories

Physics phenomena at different energy scales generally can be decoupled from each other.

For example, one does not need to know a thing about QCD in order to understand the

energy levels of the Hydrogen atom. While this fact might seem obvious, Effective Theo-

ries provide the formalism needed to perform this decoupling in a rigorous and consistent

way. In particular, we will make use of Effective Field Theory (EFT), since Quantum Field

Theory is the natural language to describe many-body relativistic quantum processes.

This Chapter contains the theoretical foundations of the EFTs used in the thesis. First,

we focus on the top-down approach1, where one starts with a theory valid up to a certain

high energy scale, and integrates out the heaviest fields to obtain a simpler theory valid

only at low energies. The Heisenberg theory for light-by light scattering is presented as a

pedagogical example of this approach. Then we discuss the bottom-up approach, where

one starts with a theory valid at low energies, and extend it in the more general possible

way using effective operators with no previous knowledge of the physics at higher scales.

An example of historical importance of this approach is the Fermi theory for the β decays.

The theoretical apparatus is completed with the discussion of the matching and running

procedures used to relate two different EFTs, which are common to both approaches.

For our analyses we will mostly use the bottom-up approach, starting with the SM, or a

low-energy version of the SM, as the initial theory, and constructing a basis of dimension-

6 effective operators to capture the effects of any possible heavy particle. The last part

of this chapter is devoted to the initial theory, the Standard Model Effective Field Theory

(SMEFT), and to the Weak Effective Theory (WET), where the top, Higgs boson and W and

Z gauge bosons are also integrated out.

3.1 Top-down approach

The original approach to EFT was top-down [151–153]: one would start with a theory valid

up to a high energy scale, commonly denoted as the “ultraviolet (UV) theory”. We then

1Here, top-down and bottom-up mean directions on the energy scale, not the quark flavours.

25
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define the energy scale Λ that sets the limit of validity of the EFT. One can then identify

which degrees of freedom have masses lower thanΛ, that will be the only ones appearing

in the EFT. The heavy degrees of freedom, that in the UV theory can only appear through

internal lines in Feynman diagrams, are “integrated out” when going down to the EFT.

Let us consider a UV theory with nH heavy fieldsΦ1, . . . ,ΦnH , and nL light fieldsφ1, . . . ,φnL .

We can write the partition function as [152, 153]

ZUV[JΦ, Jφ] =
∫

[DnHΦ][DnLφ]exp

[
i
∫

d 4x

(
LUV(Φ,φ)+

nH∑
i=1

JΦiΦi +
nL∑

i=1
Jφiφi

)]
, (3.1)

where [DnHΦ] = [DΦ1] · · · [DΦnH ] and [DnLφ] = [Dφ1] · · · [DφnL ] denote the functional in-

tegration over the heavy and light fields respectively and LUV(Φ,φ) is the Lagrangian of

the UV theory depending both on the heavy and light fields. The partition function fully

determines the theory, as any n-point correlation function can be obtained by taking the

functional derivative with respect to the currents JΦ and Jφ. In the EFT, the heavy fields

are not present in the correlation functions since they can not be initial or final states of

the process below the energy Λ. Therefore we can simply set the effective partition func-

tion as

ZEFT[φ] = ZUV[0, Jφ]. (3.2)

Now we would want to write the effective partition function as the integral of some

Lagrangian LEFT(φ) depending only on the light fields,

ZEFT[Jφ] =
∫

[DnLφ]exp

[
i
∫

d 4x

(
LEFT(φ)+

nL∑
i=1

Jφiφi

)]
, (3.3)

so we can extract the Feynman rules from the Lagrangian and use them to compute the

amplitudes contributing to any physical observable. It is clear that we can not just simply

set LEFT(φ) =LUV(0,φ), as that would mean switching off any interaction where the light

fields exchange one or more heavy fields. If we compare the expressions for the partition

functions in Eq. (3.1) and Eq. (3.3), we notice that the EFT Lagrangian is given by

exp

(
i
∫

d 4xLEFT(φ)

)
=

∫
[DnHΦ]exp

(
i
∫

d 4xLUV(Φ,φ)

)
, (3.4)

where we have integrated out the heavy fields, as promised. The price to pay is that

LEFT(φ) now is non-local, i.e. it includes terms that are not polynomial in the fields or

their derivatives. The non-local terms include one or several propagators of the heavy

fields. At leading order, the heavy fields configurations that contribute to the integral

above are the classical fields, obtained by extremizing the action:

LEFT(φ) =LUV(Φcl,φ)
δS

δΦ

∣∣∣∣
Φ=Φcl

= 0. (3.5)

For example, let us examine a toy model with one light scalarφ of mass m (m <Λ) and

one heavy scalarΦ of mass M (M ≫Λ) with a cubic interaction,

L (Φ,φ) = 1

2
∂µφ∂

µφ− m2

2
φ2 + 1

2
∂µΦ∂

µΦ− M 2

2
Φ2 +κΦφ2 , (3.6)
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Figure 3.1: (a) Light fields φ exchanging a heavy field Φ in the UV theory. (b) In the EFT,

the heavy field is integrated out, and the result is a non-local interaction. (c) Performing

a series expansion in p/M , the non-local interaction is replaced by an infinite number of

local interactions.

where κ corresponds to the coupling of the cubic interaction.

Since we are working at the energy scale Λ, the heavy field can not appear in any ex-

ternal line, but it will be present in the internal lines, for example mediating the φφ→φφ

scattering depicted in Fig. 3.1(a). We obtain the classical configuration of Φ using the

Euler-Lagrange equations

∂µ

(
∂L

∂(∂µΦ)

)
− ∂L

∂Φ
= 0, □Φ+M 2Φ−κφ2 = 0, (3.7)

where □= ∂µ∂µ is the Laplacian operator. The solution is

Φcl = κ2φ(□+M 2)−1φ. (3.8)

The factor (□+M 2)−1 is the propagator of the heavy field. By inserting the classical field

into the Lagrangian of Eq. (3.6), we obtain non-local terms of Fig. 3.1(b):

L (Φcl,φ) = 1

2
∂µφ∂

µφ− m

2
φ2 + κ2

2
∂µ[φ(□+M 2)−1φ]∂µ[φ(□+M 2)−1φ]

− κ2M 2

2
[φ(□+M 2)−1φ]2 +κ2[φ(□+M 2)−1φ]φ2. (3.9)

The mass M of the heavy fields are much larger than the masses of the lights fields and

their momenta. This allows us to perform a series expansion in the derivatives (i.e. in the

momenta) of the propagators

(□+M 2)−1 = 1

M 2
− 1

M 4
□+ 1

M 6
□2 +·· · . (3.10)

When we insert this series expansion in the EFT Lagrangian, each propagator con-

tributes with a infinite number of local terms.

In our example of two light fields exchanging a heavy field, the Lagrangian now in-

cludes the following terms, shown in Fig. 3.1(c):

LEFT(φ) ⊃ 2κ2

M 4
φ2∂µφ∂

µφ+ κ2

2M 2
φ4 +O

(
□

M 4

)
. (3.11)
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The first term can be simplified by first integrating by parts, ∂µφ∂µφ = −1
3φ□φ, and

then using the equation of motion forφ,□φ+m2φ=O (M−2). With these transformations,

we can rewrite the effective Lagrangian as

LEFT(φ) ⊃ κ2

M 2

(
2

3

m2

M 2
+ 1

2

)
φ4 +O

(
□

M 4

)
. (3.12)

The effects of the particles that were integrated out are suppressed by negative powers

of the UV scale. This fact is known as the decoupling theorem, established by Appelquist

and Carazzone [154]. The theorem states that under certain conditions in a given Quan-

tum Field Theory with light and heavy particles, if the heavy particles are integrated out

to all orders in perturbation theory, the remaining effective action to be valid at energies

much lower that the heavy particle masses does not show any trace of these heavy par-

ticles. Then, they are said to decouple from the low energy theory. More specifically, all

the quantum effects of the heavy particles that are left in the effective action can be either

absorbed into a redefinition of the parameters of the original theory or wave function

renormalization referring to the light fields, or they are suppressed by inverse powers of

the heavy masses and, therefore, vanish in the infinite mass limit.

We obviously can not work in a theory with an infinite number of terms, so we have to

choose a criterion in order to retain only some of them. The terms in the Lagrangian come

from (3.10), an expansion in p/MΦ when the momenta of the processes are always p ≪
MΦ. In this regime, the dominant terms are the lower orders in p/MΦ. Let us make this

classification in a systematic way [155–158]: we can write every term in the Lagrangian as

a product of an operator Ok and its corresponding Wilson coefficient C j .

LEFT =∑
j

C j O j . (3.13)

An operator is a monomial in the fields and derivatives, and describes the local physics.

The Wilson coefficient is some function of the couplings and masses, and condensates the

non-local physics coming from the integration of the heavy fields. The energy behaviour

of any term of the Lagrangian is set, using dimensional analysis, by the mass dimension

of its operator. The mass dimension of a derivative is [∂] = 1, and in a 4-dimensional

space-time, the mass dimensions of the fields are [φ] = 1 for scalars, [A] = 1 for vectors

and [ψ] = 3/2 for fermions. If an operator has dimension D , its coefficient must have

dimension 4−D , since the Lagrangian has dimension 4 and the action is non-dimensional

(it has the same dimensions as ℏ, which in natural units is ℏ= 1), an we can write

C j ∼ c jΛ
4−D , (3.14)

where c j is a dimensionless constant. According to their dimension, we can classify oper-

ators in [155, 156]2:

2The names for the classes of operators come from their low-energy behaviour. Since this thesis is fo-

cused on high-energy phenomenology, the names are somewhat a misnomer, and “irrelevant” operators

will be absolutely relevant for our work.
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• “Relevant”: Operators with D < 4, and their coefficients have positive dimension.

They describe the physics at low energies E ≪Λ, but their effects become negligible

at higher energies. The only relevant operators in a relativistic theory in four space-

time dimensions are a cosmological constant (dimension 0), boson mass terms (di-

mension 2), fermion mass terms (dimension 3) and 3 scalars interactions (dimen-

sion 3). In the SM, the only relevant term is the mass of the Higgs boson, as the mass

terms of fermions and other bosons are not allowed by gauge symmetries.

• “Marginal”: Operators with D = 4, and their coefficients are dimensionless. In a

classical theory they would be equally important at all energy scales. Quantum cor-

rections, however, generate an anomalous dimension γ for all operators. In the case

of marginal operators, they become relevant if γ < 0 and irrelevant if γ > 0. Some

usual marginal operators are gauge interactions, Yukawa interactions and 4 scalars

interactions. In the case of the SM, electroweak gauge interactions have γ > 0 and

become stronger at higher energies, while QCD gauge interactions have γ < 0 and

become weaker at higher energies, a fact known as asymptotic freedom [159, 160].

• “Irrelevant”: Operators with D > 4, and their coefficients have negative dimension.

At low energies these operators provide corrections to the observables, suppressed

by powers of E/Λ. Their effects become larger at higher energies.

By dimensional analysis, a single insertion of an operator of dimension Di contributes

to the amplitude as

A ∼ (E/Λ)Di−4. (3.15)

When multiple insertions are included, even in the presence of loops, the total contribu-

tion is [158]

A ∼ (E/Λ)
∑

i (Di−4). (3.16)

When working at a fixed energy scale E , we can just truncate the EFT Lagrangian to oper-

ators with dimension up to D , and compute any amplitude with accuracy

ϵ≲
(

E

Λ

)D−4

. (3.17)

If the experimental uncertainties of the physical observables improve, it is then nec-

essary to increase the precision of the theoretical calculations, which is achieved by in-

cluding more terms in the EFT expansion.

Irrelevant operators are non-renormalizable, and as the energy scale grows, the theory

needs counterterms of increasing dimension. Combining (3.15) and (3.16), the dimension

of the counterterm for a given diagram is

D −4 =∑
i

(Di −4). (3.18)
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Figure 3.2: (a) Light-by-light scattering at one loop in QED. (b) Effective operator con-

tributing to light-by-light scattering in the Euler-Heisenberg Lagrangian.

For example, let us imagine a Lagrangian truncated to operators up to dimension 5. A

diagram with two insertions of dimension 5 operators scales as A ∼ (E/Λ)(1+1), and there-

fore dimension 6 counterterms are needed to renormalize it. If we include dimension 6

operators, dimension 8 counterterms are needed, etc. The need for counterterms of ever-

increasing dimension would be a fatal flaw for a fundamental theory, as it would loose

its predictive power. In the case of an EFT, however, it is totally expected: the theory was

designed from the beginning to be valid up to a certain scale Λ, and the breaking down

of renormalizability is just a sign that we are getting closer to this scale, and therefore we

must use instead the full UV theory, which is free of these troubles.

3.1.1 Example: Euler-Heisenberg Lagrangian for light-by-light scatter-

ing

One traditional textbook example of a top-down EFT is the Euler-Heisenberg Lagrangian [161,

162] that describes light-by-light scattering, see for example [151, 153]. The UV theory is

Quantum Electrodynamics (QED), where the lowest order of photon scattering proceeds

through one loop of charged fermions, as shown in Fig. 3.2(a). The Euler-Heisenberg La-

grangian is obtained by integrating out all the charged fermions, so the only surviving field

in the EFT is the photon. The lowest order corresponds to the free Maxwell Lagrangian,

with dimension 4, and the next order to dimension-8 operators including four photons,

shown in Fig. 3.2(b). Note that is not possible to construct gauge-invariant operators with

odd-numbered dimension (since the only gauge-invariant object containing only pho-

tons is the field strength tensors, of dimension 2), and all dimension-6 combinations van-

ish through the equations of motion. The Lagrangian up to dimension-8 operators is

LE−H =−1

4
FµνFµν+ α2

em

m4
e

[
1

90
(FµνFµν)2 + 7

360
(FµνF̃µν)2

]
+·· · , (3.19)

where Fµν = ∂µAν−∂νAµ is the field strength tensor, F̃µν = 1
2ϵ

µναβFαβ its dual tensor and

αem = e2/(4π) the electromagnetic fine-structure constant.

In the Euler-Heisenberg Lagrangian, the m4
e factor is set by the order of the EFT ex-

pansion. The rest of the coefficient depends on the details of the UV theory. In particular,
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since the light-by-light scattering diagram have 4 electromagnetic vertices, each with one

electromagnetic coupling e, the effective Lagrangian must have a factor e4 ∼α2
em. Just by

knowing this, we deduce that the amplitude for the scattering of two photons of energy

∼ Eγ is

A(γγ→ γγ) ∼
α2

emE 4
γ

m4
e

. (3.20)

The cross section is proportional to |A|2 and has dimension −2, so the phase space

must be proportional to E−2
γ :

σ(γγ→ γγ) ∼ 1

E−2
γ

(
α2

emE 4
γ

m4
e

)2

=
α4

emE 6
γ

m8
e

. (3.21)

The full calculation yields [163]

σ(γγ→ γγ) = 973

10125π

α4
emE 6

γ

m8
e

. (3.22)

3.2 Bottom-up approach

In the Euler-Heisenberg example, the EFT formalism has allowed us to deduce a non-

trivial piece of information, that the scattering cross section of two photons depends on

E 6
γ, just from the fact that the lowest effective operator has dimension 8 and gauge invari-

ance. This is a general feature of effective theories, and one that we can exploit in the case

when we do not know the full UV theory. It is always possible to write down an Effective

Lagrangian starting from the low-energy physics in a bottom-up way [157, 158, 164]. The

ingredients needed are:

• Energy scaleΛ, that sets the limit of validity of the EFT.

• Physical degrees of freedom belowΛ. If the EFT is a weakly coupled version of some

UV theory, it is clear that the physical degrees of freedom are just the particles with

mass m <Λ. This might not be true in strongly coupled theories: for example, Chi-

ral Perturbation Theory is a EFT of QCD where the physical degrees of freedom are

pions rather than quarks and gluons [165–167].

• Symmetries in the low-energy regime. Note that symmetries at low energy are a

remnant of symmetries in the UV theory, but not necessary the same. For example,

an EFT might exploit an approximate symmetry not present in the full theory.

• Desired accuracy ϵ. Using (3.17), the accuracy fixes the maximum dimension D in

the EFT expansion.

All we have to do now is to construct all the local operators O j with dimension D j ≤
D from the physical fields and that are compatible with the symmetries. The Effective
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Figure 3.3: Tree-level Feynman diagrams describing β decay in (a) Fermi EFT and (b) SM.

Lagrangian will be the sum of all these allowed operators multiplied by Wilson coefficients

of dimension 4−D j . The result is a Lagrangian of the form of Eq. (3.13).

In the simplest case, the energy scale Λ is much higher than any energy experimen-

tally accessible, so we can compute amplitudes to any desired accuracy. In this case, we

can retain just the relevant and marginal operators. For example, if there is no NP up to

the Grand Unification scale ΛGUT ∼ 1016GeV, the SM would be a EFT consisting only of

relevant and marginal operators capable of accuracies of ϵ∼ 10−14.

The set of all allowed operators of dimension D is a vector space. The operators ap-

pearing in the Effective Lagrangian must be a basis in that space, that is, a complete set

of independent vectors. Independent means that there cannot be redundant operators

when applying the equations of motion, partial integration, Fierz rearrangements, Ward

identities, etc. We already saw an example in our toy model of operators that superficially

looked different, but were in fact equivalent after applying integration by parts and the

equations of motion, with the operators φ2∂µφ∂
µφ and φ4 that appeared in Eq. (3.11).

The task to obtain an independent set of operators is highly non-trivial3, but it can be

done in a systematic way using the properties of the on-shell amplitudes [170, 171]. One

further complication is the number of independent operators up to dimension D grows

in an approximately exponential way with D [172], and EFTs expanded to high orders

become hard to use in practice.

It is important to remark that the condition of gauge anomaly cancellation depends

only on the charge assignment of the fermions of the low-energy theory, and is not spoilt

by the presence of effective operators of higher dimension [173].

3.2.1 Example: Fermi theory of the β decay

One historical example of a bottom-up EFT is the Fermi theory of the β decays [174, 175].

The only particles known at the time were the proton, neutron, electron, and the newly-

theorized neutrino (actually anti-neutrino), and the energies experimentally accessible

were well below the electroweak scale Λ∼ MW . The Lagrangian proposed by Fermi, writ-

ten in terms of the constituent quarks instead of proton and neutron, takes the form [157,

3For example, the first attempt [168] to find a basis of dimension-6 operators for the SMEFT theory, that

we will study in Section 3.4, included a large number of redundant operators, and one operator was missing.

A correct basis was later found in [169].
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158]

LF =CF (ūγµPLd)(ēγµPLνe ), (3.23)

where CF is a Wilson coefficient of mass dimension −2, and PL = 1−γ5
2 is the chiral pro-

jector. The tree-level Feynman diagram is shown in Fig. 3.3(a). The cross section of the

process u → deν̄e must be proportional to the square of the Wilson coefficient, and by

dimensional analysis it should be

σ(u → deν̄e ) ∼C 2
F s, (3.24)

where s is the Mandelstam variable corresponding to the center-of-mass energy. This

cross section reproduced the low-energy behaviour observed at the time. However, the

cross section in the Fermi theory grows without bound as the energy increases, and even-

tually violates unitarity, marking the end of the validity of the EFT.

The Weinberg-Salam electroweak theory, which is part of the SM, includes a massive

gauge boson W ± that mediates theβdecay. The tree-level amplitude, shown in Fig. 3.3(b),

is

A(u → deν̄e ) =
(−i gp

2

)
Vud (ūγµPLd)(ēγνPLνe )

(
−i gµν

p2 −M 2
W

)
, (3.25)

where g is the SU (2) electroweak coupling and Vud is the element of the CKM matrix.

When p ≪ MW , we can expand the W propagator, and the amplitude at first order of the

expansion is

A(u → deν̄e ) = i

M 2
W

(−i gp
2

)
Vud (ūγµPLd)(ēγµPLνe )+O(M−4

W ). (3.26)

This amplitude corresponds to a Lagrangian of the form (3.23) where the Wilson coeffi-

cient takes the value

CF =− g 2

2M 2
W

Vud =−4GFp
2

Vud . (3.27)

GF is the so-called Fermi constant, and historically was used as the low-energy param-

eter describing the electroweak interactions. Its numerical value was determined much

earlier [176] that the discovery of the W [177, 178] , using the muon decay µ− → e−νµνe

described by the effective Lagrangian

Lµ =−4GFp
2

(ν̄µγ
αPLµ)(ē γαPL νe ). (3.28)

3.3 Matching and Running

Let us consider an EFT valid up to a certain energy scaleΛ, and another theory that com-

pletes it in the UV (either a fundamental theory or another EFT) valid up to Λ′ >Λ. Both

theories must reproduce the same low-energy physics, that is, the S-matrix elements be-

tween light particles must agree. This imposes a set of relations between the parameters

of both theories, known as matching conditions. The matching procedure allows us to
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obtain the low-energy parameters in terms of the high-energy parameters, but not the

other way, since the matching conditions are not bijective (as the high energy theory has

more parameters than the low-energy theory).

In order to match the full S-matrix, it is sufficient to match all one-light-particle-

irreducible Feynman diagrams, that is, all diagrams that cannot be split by removing only

one internal propagator of the particles present in the low-energy theory. Thusly, the

matching is performed perturbatively, order by order. When calculating diagrams with

quantum loops, the results of the matching will depend on the regularization scheme

used. It is better to work in a mass independent scheme, such as dimensional regulariza-

tion with MS or MS substraction, in order to avoid additional mass scales (e.g. a cutoff)

that spoil the dimensional power-counting [158]. At one loop, the general form of the

matching conditions of the low-energy Wilson coefficient C in terms of the high-energy

parameters λ in the MS scheme will be

C (λ; µ) =C (0)(λ)+ 1

16π2
C (1)(λ) log

µ

Λ
, (3.29)

where µ is introduced by dimensional regularization. Note that the loops introduce a

logarithm logµ/Λ. In order to avoid large logarithms, matching is usually performed at

the scale µ≈Λ.

After dimensional regularization, Wilson coefficients, the same as any other param-

eter in the Lagrangian, will depend on µ. Operators will also depend on µ through the

wavefunction renormalization of the fields Zi j (µ),

Zi j (µ)Oi (µ) =OB
j , (3.30)

where OB
j is the operator composed of bare fields and Oi is composed of renormalized

fields. Since there can be several operators with the same quantum numbers, the Zi j (µ)

are in general non-diagonal. Requiring that the matrix element of the bare operator 〈OB
i 〉

be independent of µ results in the well-known Callan-Symanzik Renormalization Group

(RG) equation, one gets(
µ

d

dµ
+γOi j (µ)

)
〈O j (µ)〉 = 0, γO (µ) = Z−1µ

d

dµ
Z . (3.31)

The product Ci (µ)〈Oi (µ)〉 must be also scale independent. Imposing this condition

results in a Callan-Symanzik equation for the Wilson coefficients:(
µ

d

dµ
−γOi j (µ)

)
C j (µ) = 0. (3.32)

By integrating the RG equation, one can obtain the value of the Wilson coefficients at

any energy scale within the validity range of that EFT. When the anomalous dimension

matrix is not diagonal, the evolution produces the mixing of operators. Therefore, even

if some Wilson coefficient is zero at a certain energy scale, it might be non-zero at other

energies due to quantum loops effects.
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RGE

Matching

...

RGE

Figure 3.4: Stairway of EFTs from µ = Λ to µ = E . Vertical arrows denote the running of

the RG equations for a given theory. Horizontal arrows denote the matching between two

theories, performed at the same scale, which is the mass of the heavy particle M1, . . . , Mn

integrated out.

As noted previously, Feynman diagrams with multiple insertions of operators are renor-

malized by operators of higher dimension, according to the power counting formula (3.18).

This produces mixing of operators with different dimensions, and the RG equations are

no longer lineal. For example [158],

µ
d

dµ
C (6)

i = γ(6)
i j C (6)

j +γi j kC (5)
j C (5)

k , (3.33)

where the notation C (D)
i , D = 5,6, · · · has been used to denote a Wilson coefficient for an

effective operator O (D)
i with dimension D .

If the theory also has mass terms, there is also mixing to operators of lower dimension,

µ
d

dµ
C (4)

i = γi j C (4)
j +m2γ̃i j C (6)

j +·· · . (3.34)

Comparing the result of the differential equation in Eq. (3.31) with Eq. (3.29), we note

that the RG evolution automatically sums large logarithms. In consequence, if one per-

forms the matching procedure at the scaleµ=Λ, and then runs the RG equations down to

the scale of interest µ= E , the Wilson coefficients at the scale E are completely free from

large logarithms that may invalidate the perturbative expansion.

To sum up, matching and running provides a workflow to use with theories with sev-

eral energy scales, illustrated in Fig. 3.4:

1. Start with a theory at some high scaleΛ.
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2. Run the RG equations for the Wilson coefficients down to M1, the mass of the heav-

iest particle.

3. At µ= M1, match with the EFT where the particle of mass M1 is integrated out.

4. Repeat steps 1-3 for each particle that must be integrated out at µ= M2, . . . , Mn .

5. Run the RG equations down to the energy scale µ= E of the physical process.

3.4 Standard Model Effective Field Theory

The Standard Model Effective Field Theory (SMEFT) is the EFT obtained when expanding

the SM Lagrangian to operators with dimension D > 4, retaining all the SM fields and

symmetries. The SMEFT is valid up to some energy scale Λ, usually taken to be of the

order of a few TeV. Calculations in the SMEFT up to D = 6 are predominantly performed

in the Warsaw basis, first introduced in [169]. Alternative bases were proposed in [179,

180] and [181]. The Warsaw basis has been extended to dimension 7 [182] and 8 [183].

In the Warsaw basis, the Wilson coefficients are defined to be dimensionless, with

explicit prefactors ofΛ4−D ,

LSMEFT =LSM + 1

Λ

∑
k

C (5)
k Q(5)

k + 1

Λ2

∑
k

C (6)
k Q(6)

k +·· · , (3.35)

where Q(n)
k denote dimension-n operators, and C (n)

k the corresponding Wilson coeffi-

cients.

The SMEFT does not contain any dimension 5 operator compatible with the full sym-

metry of the SM. However, there is one dimension 5 operator that violates the lepton num-

ber in ∆L = 2, the Weinberg operator describing a Majorana mass for the neutrinos

Qνν = (ϕ̃ℓp )T C (ϕ̃ℓr ), (3.36)

where C = iγ2γ0 is the charge conjugation matrix and p,r are flavour indices. After EWSSB,

this operator generates a mass term for the neutrinos, with mν ∼ Cννv2/Λν, where v is

the Highs vacuum expectation value and Λν the scale of the dimension 5 operator. The

smallness of the neutrino masses, mν ∼ 0.1 eV, means that the Majorana scale must be

Λν ∼ 1015 GeV. This scale is much higher than the scale Λ describing the NP integrated

out in the dimension 6 operators. The separation of scales is consistent if the interactions

atΛ conserve lepton number and therefore do not contribute to the Weinberg operator.

The dimension 6 operators are classified according to their field contents. The four

fermion operators, that are the most numerous class, are further subdivided according

to the chiral structure of their currents. In total, there are 2499 dimension 6 effective op-

erators. Of these, 1350 operators are C P-even and 1149 are C P-odd. The SMEFT also

contains dimension 6 operators that violate the baryon number in ∆B = ∆L = ±1, which



3.4. STANDARD MODEL EFFECTIVE FIELD THEORY 37

X 3 X 2ϕ2

QG f ABC G Aν
µ GBρ

ν GCµ
ρ QϕG ϕ†ϕG A

µνG Aµν

QG̃ f ABC G̃ Aν
µ GBρ

ν GCµ
ρ QϕB ϕ†ϕBµνBµν

QW ϵI JK W Iν
µ W Jρ

ν W Kµ
ρ QϕW ϕ†ϕW I

µνW Iµν

QW̃ ϵI JK W̃ Iν
µ W Jρ

ν W Kµ
ρ QϕW B ϕ†τIϕW I

µνBµν

ϕ6 QϕG̃ ϕ†ϕG̃ A
µνG Aµν

Qϕ

(
ϕ†ϕ

)3
QϕB̃ ϕ†ϕB̃µνBµν

ϕ4D2 QϕW̃ ϕ†ϕW̃ I
µνW Iµν

Qϕ□
(
ϕ†ϕ

)
□

(
ϕ†ϕ

)
QϕW̃ B ϕ†τIϕW̃ I

µνBµν

QϕD
(
ϕ†Dµϕ

)∗ (
ϕ†Dµϕ

)
Table 3.1: SMEFT purely bosonic operators [169].

would describe proton decays. The full list of dimension 6 operators in the Warsaw basis

is reproduced in Tables 3.1, 3.2, 3.3 and 3.4. In the tables, the flavour indices are omitted;

there is an index for each fermion in the operator. For example, the expression for the

operators Qϕℓ(1) and Qℓq(1) with their explicit flavour indices become

Q i j
ϕℓ(1) =

(
ϕ†i

↔
Dµϕ

)(
ℓ̄iγ

µℓ j
)

,

Q i j kl
ℓq(1) =

(
ℓ̄iγµℓ j

)(
q̄kγ

µql
)

. (3.37)

The notation
↔
D used to construct Hermitian derivative operators including the Higgs filed

has the following meaning:

ϕ†i
↔
Dµϕ≡ iϕ†(Dµ−

←
Dµ)ϕ≡ iϕ†(Dµϕ)− i (Dµϕ)†ϕ ,

ϕ†i
↔
Dµ

Iϕ≡ iϕ†(τI Dµ−
←
Dµτ

I )ϕ≡ iϕ†τI (Dµϕ)− i (Dµϕ)†τIϕ . (3.38)

One effect of the inclusion of dimension-6 SMEFT operators in the SM physics is the

shift of the minimum of the Higgs potential from v to vT [184] due to the additional term

in the Higgs potential introduced by the effective operator Qϕ in Table 3.1. The new min-

imum of the potential is given by

vT = v

(
1+ 3Cϕv2

8λ

)
, (3.39)

where λ is the quartic Higgs coupling and Cϕ is the coefficient corresponding to the oper-

ator Qϕ.

The value of v in the SM is obtained from the measurement of GF in µ decay. Several

effective operators contribute to the muon decays of Eq. (3.28), modifying the definition
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ψ2ϕ3 ψ2ϕ2D

Quϕ
(
ϕ†ϕ

)(
q̄uRϕ̃

)
Qϕℓ(1)

(
ϕ†i

↔
Dµϕ

)(
ℓ̄γµℓ

)
Qdϕ

(
ϕ†ϕ

)(
q̄dRϕ

)
Qϕℓ(3)

(
ϕ†i

↔
Dµ

Iϕ
)(
ℓ̄τIγµℓ

)
Qeϕ

(
ϕ†ϕ

)(
ℓ̄eRϕ

)
Qϕe

(
ϕ†i

↔
Dµϕ

)(
ēRγ

µeR
)

ψ2Xϕ Qϕq(1)

(
ϕ†i

↔
Dµϕ

)(
q̄γµq

)
QeW

(
ℓ̄σµνeR

)
τIϕW I

µν Qϕq(3)

(
ϕ†i

↔
Dµ

Iϕ
)(

q̄τIγµq
)

QeB
(
ℓ̄σµνeR

)
ϕBµν Qϕu

(
ϕ†i

↔
Dµϕ

)(
ūRγ

µuR
)

QuG
(
q̄σµνT AuR

)
ϕ̃G A

µν Qϕd

(
ϕ†i

↔
Dµϕ

)(
d̄Rγ

µdR
)

QuW
(
q̄σµνuR

)
τI ϕ̃W I

µν Qϕud
(
ϕ̃†i Dµϕ

)(
ūRγ

µdR
)+h.c.

QuB
(
q̄σµνuR

)
ϕ̃Bµν

QdG
(
q̄σµνT AdR

)
ϕG A

µν

QdW
(
q̄σµνdR

)
τIϕW I

µν

QdB
(
q̄σµνdR

)
ϕBµν

Table 3.2: SMEFT mixed operators involving bosons and fermions [169].

of the Fermi constant [184, 185],

4GFp
2

= 2

v2
T

−C 2112
ℓℓ −C 1221

ℓℓ +2C 11
ϕℓ(3) +2C 22

ϕℓ(3) . (3.40)

Here Cϕℓ(3) and Cℓℓ are the coefficients of the operators Qϕq(3) (Table 3.2) and Qℓℓ (Ta-

ble 3.3), respectively.

The mass matrix of the fermions is also modified by dimension-6 operators,

Mψ = vTp
2

(
yψ− v2

2
C∗
ψϕ

)
, (3.41)

where ψ = u,d ,e. In general, the mass matrix is no longer proportional to the Yukawa

matrix yψ, so it is not possible to simultaneously diagonalize them. As a consequence, the

elements of the CKM matrix are also affected. The authors of Ref. [186] propose that the

elements of the CKM matrix in the SMEFT context should determined from a set of four

input observables, which must be accurately measured and theoretically clean, depend-

ing on few SMEFT Wilson coefficients. The observables chosen are:

• The ratio Γ(K − → µ−νµ)/Γ(π− → µ−νµ) to determine |Vus |2/|Vud |2. The ratio be-

tween these two decays is chosen in order to minimize the SM dependence on the

lattice inputs of the form factors.

• The decay rate Γ(B− → τ−τ) is used to determine |Vub |2.
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(
L̄L

)(
L̄L

) (
L̄L

)(
R̄R

)
Qℓℓ

(
ℓ̄γµℓ

)(
ℓ̄γµℓ

)
Qℓe

(
ℓ̄γµℓ

)(
ēRγ

µeR
)

Qqq(1)
(
q̄γµq

)(
q̄γµq

)
Qℓu

(
ℓ̄γµℓ

)(
ūRγ

µuR
)

Qqq(3)
(
q̄γµτI q

)(
q̄γµτI q

)
Qℓd

(
ℓ̄γµℓ

)(
d̄Rγ

µdR
)

Qℓq(1)
(
ℓ̄γµℓ

)(
q̄γµq

)
Qqe

(
q̄γµq

)(
ēRγ

µeR
)

Qℓq(3)
(
ℓ̄γµτ

Iℓ
)(

q̄γµτI q
)

Qqu(1)
(
q̄γµq

)(
ūRγ

µuR
)(

R̄R
)(

R̄R
)

Qqu(8)
(
q̄γµT A q

)(
ūRγ

µT AuR
)

Qee
(
ēRγµeR

)(
ēRγ

µeR
)

Qqd(1)
(
q̄γµq

)(
d̄Rγ

µdR
)

Quu
(
ūRγµuR

)(
ūRγ

µuR
)

Qqd(8)
(
q̄γµT A q

)(
d̄Rγ

µT AdR
)

Qdd
(
d̄RγµdR

)(
d̄Rγ

µdR
) (

L̄R
)(

R̄L
)

Qeu
(
ēRγµeR

)(
ūRγ

µuR
)

Qℓed q
(
ℓ̄ j eR

)(
d̄R q j

)+h.c.

Qed
(
ēRγµeR

)(
d̄Rγ

µdR
) (

L̄R
)(

L̄R
)

Qud(1)
(
ūRγµuR

)(
d̄Rγ

µdR
)

Qquqd(1)
(
q̄ j uR

)
ϵ j k

(
q̄k dR

)+h.c.

Qud(8)
(
ūRγµT AuR

)(
d̄Rγ

µT AdR
)

Qquqd(8)
(
q̄ j T AuR

)
ϵ j k

(
q̄k T AdR

)+h.c.

Qℓequ(1)
(
ℓ̄ j eR

)
ϵ j k

(
q̄k uR

)+h.c.

Qℓequ(3)
(
ℓ̄ jσµνeR

)
ϵ j k

(
q̄kσµνuR

)+h.c.

Table 3.3: SMEFT purely fermionic operators which preserve Baryon number [169].

Baryon-number-violating

Qduqℓ
(
d T

R CuR
)(

qT Cℓ
)+h.c.

Qqque
(
qT C q

)(
uT

R CeR
)+h.c.

Qqqqℓ ϵi lϵ j k
(
qT

i C q j
)(

qT
k Cℓl

)+h.c.

Qduue
(
d T

R CuR
)(

uT
R CeR

)+h.c.

Table 3.4: SMEFT Baryon-number-violating operators [169].
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• The mass difference ∆Md of the oscillation of the neutral mesons B −B is used to

determine the product |VtbVtd |.

• The mass difference ∆Ms of the oscillation of the neutral mesons BS −B S is used to

determine the product |VtbVt s |.

The rest of the elements of the CKM matrix, or equivalently the Wolfenstein parameters

defined in Eq. (2.20), can be extracted from this four quantities [186].

The one loop anomalous dimension matrices for the Warsaw basis were described

in [184, 187–189]. These matrices include the renormalization of SM and SMEFT oper-

ators generated only by the dimension 6 operators. The effect of the Weinberg operator

in (3.33) is usually considered negligible when assuming a separation of scales for lepton

number violating and lepton number conserving NP.

3.5 Weak Effective Theory

The Weak Effective Theory (WET) is an EFT describing the physics below the electroweak

scale ΛEW ∼ MW . The WET contains the photon, gluon, all the leptons and all quarks ex-

cept the top. This theory has operators obtained by the integration of the heavy SM par-

ticles, in addition to the new operators constructed from light fields in a bottom-up way.

The symmetry group in this energy regime is SU (3)C ×U (1)em , that do not mix operators

with different flavour quantum numbers.

Bases for the WET can be found in [185, 190–192], together with their RG evolution and

matching conditions to the SMEFT. We will instead use a “traditional” basis (see e.g. [193,

194]), which is the same used internally by flavio [195], which is the routine that we use

for the global fits, and fully characterized in [196].

The set of operators traditionally used in order to describe |∆b| = |∆s| = 1 decays

is [193, 194, 197, 198]

LWETbs =
4GFp

2
VtbV ∗

t s
αe

4π

(
mb

e

∑
j=7,8

(C j O j +C ′
j O′

j )+ ∑
j=9,10,S,P,ν

(C j O j +C ′
j O′

j )

)
, (3.42)

with the effective operators

O7 = (sLσ
µνbR )Fµν O′

7 = (sRσ
µνbL)Fµν

O8 = (sLσ
µνT abR )G a

µν O′
8 = (sRσ

µνT abL)G a
µν

Oℓ
9 = (sLγ

µbL)(eℓγµeℓ) O
′ℓ
9 = (sRγ

µbR )(eℓγµeℓ)

Oℓ
10 = (sLγ

µbL)(eℓγµγ5eℓ) O
′ℓ
10 = (sRγ

µγ5bR )(eℓγµγ5eℓ)

Oℓ
S = (sLbR )(eℓeℓ) O

′ℓ
S = (sR bL)(eℓeℓ)

Oℓ
P = (sLbR )(eℓγ5eℓ) O

′ℓ
P = (sR bL)(eℓγ5eℓ)

Oℓ
ν = 2(sLγ

µbL)(νℓγµPLνℓ) O
′ℓ
ν = 2(sRγ

µbR )(νℓγµPLνℓ) (3.43)
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Figure 3.5: Example of SM Feynman diagrams contributing to WET operators: (a) penguin

diagrams contributing to C7 and C8, (b) penguin diagrams contributing to C9 and C10, (c)

box diagrams contributing to C9, C10.

The EFT scale has been factored out as GF ∼ M−2
W , and therefore the Wilson coeffi-

cients are dimensionless. The primed operators O′
j are chirality-flipped version of the

un-primed ones O j .

The dimension-5 magnetic and chromomagnetic moment operators O7 and O8 re-

ceive contributions from SM penguin diagrams, as shown in Fig. 3.5(a). The dimension-6

operators O9, O10 and Oν also receive contributions from SM penguin and box diagrams,

shown in Fig. 3.5(b) and Fig. 3.5(c) respectively. The chirality-flipped operators, as well

as the scalar operator OS and the pseudoscalar operator OP , do not receive any contri-

butions from the SM. For the operators with SM contributions, we can split their Wilson

coefficients in a SM part, C SM
i , and a NP part, C NP

i :

Ci =C SM
i +C NP

i . (3.44)

Operators that have an SM part tend to produce enhanced contributions to the phys-

ical observables, as compared to operators that are purely NP. This can be seen from the

general dependence of the amplitude-squared for a process in the EFT,

|A|2 ∼ |Ci |2 ∼ (C SM
i )2 +2C SM

i ReC NP
i +|C NP

i |2 , (3.45)

where the term |C NP
i |2 is of orderΛ−4 and therefore is suppressed compared to 2C SM

i ReC NP
i ,

which is of orderΛ−2.

The matching conditions from the SM to the WET at µb = 4.8 GeV can be computed

by using flavio. We have obtained the following results:

C SM
7 (µb) =−0.318, C SM

8 (µb) =−0.173,

Cℓ SM
9 (µb) = 4.053, Cℓ SM

10 (µb) =−4.189,

Cℓ SM
ν (µb) =−6.403. (3.46)
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Notice that the matching is independent of the flavour ℓ of the charged leptons, and

that Cℓ SM
9 (µb) ≈ −Cℓ SM

10 (µb). The first property is a consequence of the LFU in the SM,

and the second property is due to the V − A (vector minus axial) structure of the elec-

troweak interactions.

For our studies using EFT of the B anomalies, we will need the expressions for the dif-

ferential observables of B → K (∗)ℓ+ℓ− decays in the WET. Since the formulae are quite

long, they have been included in Appendix A. We have analytically computed a numeri-

cal approximation to RK ∗0 as a function of CµNP
9 , CµNP

10 in the region 1.1 ≤ q2 ≤ 6.0GeV2.

After integration and some approximations regarding the scalar products of final state

momenta, we obtain [1]:

RK ∗0 ≃ 0.9875+0.1759ReCµNP
9 −0.2954ReCµNP

10 +0.0212|CµNP
9 |2 +0.0350|CµNP

10 |2
1 +0.1760ReC e NP

9 −0.3013ReC e NP
10 +0.0212|C e NP

9 |2 +0.0357|C e NP
10 |2

(1.1 ≤ q2 ≤ 6.0GeV2).(3.47)

We have checked that this approximation reproduces the flavio-computed value of RK ∗0

to better than 4% in a large region of the parameter space.

In the |∆b| = |∆c| = 1 sector, the WET Lagrangian reads [199, 200]

LWETbc =−GFp
2

Vcb

(
CT OT + ∑

j=V ,S
(C j LO j L +C j RO j R )

)
, (3.48)

with the effective operators

Oℓ
V L = (cLγ

µbL)(eℓLγµνℓL) Oℓ
V R = (cRγ

µbR )(eℓLγµνℓL)

Oℓ
SL = (cR bL)(eℓRνℓL) Oℓ

SR = (cLbR )(eℓRνℓL)

Oℓ
T = (cRσ

µνbL)(eℓRσµννℓL). (3.49)

The only operator with a SM contribution is Oℓ
V L . At tree level, the matching condition,

from the integration of a W boson, is C SM ℓ
V L = 1.

The expressions for the differential observables in the B → D (∗)ℓνdecays can be found

in Appendix A (section A.4). The dependence of the RD(∗) ratios on the Wilson coefficients

is given by [201, 202]:

Rℓ
D(∗) = Rℓ,SM

D(∗)

|1+CτNP
V L |2

(|1+C e NP
V L |2 +|1+CµNP

V L |2)/2
,

Rµ

D(∗) = Rµ,SM
D(∗)

|1+CτNP
V L |2

|1+CµNP
V L |2

. (3.50)

Finally, we will also consider the |∆b| = |∆s| = 2 sector corresponding to the oscilla-

tions of the neutral mesons Bs . The WET Lagrangian in this sector is [194]:

L NP
∆B=2 =−4GFp

2

(
VtbV ∗

t s

)2 [
C LL

bs OLL
bs +h.c.

]
, (3.51)
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where C LL
bs is the Wilson coefficient for the effective operator OLL

bs defined as

OLL
bs = (

s̄LγµbL
)2 . (3.52)

This operator also receives a SM contribution in addition to the NP part. The SM con-

tribution comes from the one-loop box diagram, and is calculated as [203]

C LL SM
bs =

p
2GF M 2

W η̂B S0(xt )

16π2
= 1.3397×10−3 , (3.53)

where η̂B ≈ 0.83798 contains perturbative two-loop QCD corrections [204], xt = m2
t /M 2

W

and S0(xt ) = 2.36853 is the Inami-Lim function for the box diagram [205].
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Chapter 4

New Physics in Flavour

At the present time, there are discrepancies with the SM predictions in several observables

involving B decays. In Chapter 2, some interesting experimental results concerning the

semileptonic decays of the B mesons have been reviewed. These B anomalies show a

disagreement with the SM at the level of statistical significance level of around 3σ in some

cases. If confirmed by further measurements, these anomalies could radically change

our paradigms about flavour-dependant interactions. In particular, FCNC constitute an

exceptionally appropriate testground, since the SM suppressions can be easily dodged

with NP, in consequence giving rise to sizeable contributions.

As discussed in Chapter 3, EFT can be used to describe the B anomalies and any other

deviation from the SM in a model-independent way. But EFT are a descriptive tool, as the

NP particles are integrated out and their nature can not be investigated. In order to go

from the description to an explanation of NP, we need to consider specific models that

are compatible with the EFT approach.

A complete revision of all theoretical proposals to explain the B decays is beyond the

scope of this thesis. For a non-exhaustive list please check, for example, [206–233]. A

recent review can be found on Ref. [234], and references therein. We will focus in this

thesis on some of the simpler and most popular families of models, namely leptoquarks,

W ′ and Z ′ bosons. This section provides some generalities of these models and few details

needed for our analysis.

Apart from the B anomalies, we also will study the axions, proposed as a solution of

the strong C P problem and also a possible component of Dark Matter, two of the open

problems of the SM presented in Section 2.1.1. In particular, we will explore the possi-

bility of pseudo-scalar particles with flavour-dependent couplings to the SM quarks and

leptons. For completeness, a brief introduction to this issue is included in Section 4.3.

Finally, we discuss the Minimal Flavour Violation ansatz which proposes the flavour

structure for any New Physics model. This ansatz will be an inspiration for our studies,

although we do not follow it strictly.

45
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4.1 Leptoquarks

Leptoquarks are hypothetical particles that can decay into a quark and a lepton. Lep-

toquarks appear naturally in many grand-unification scenarios [235–239]. Since lepto-

quarks couple to two fermions, they can be either scalars or vector bosons. Given that

quarks are triplets of SU (3)C and leptons are singlets, leptoquarks must appear in a tridi-

mensional representation of the colour group. Consequently, they cannot decay into a

pair of leptons. Leptoquarks in the 3 representation of SU (3)C cannot decay into a pair of

quarks either, and therefore they conserve both baryonic and leptonic numbers. Accord-

ing to their SU (2)L , leptoquarks can belong to the 3 representation coupling two weak

isospin doublets, to the 2 representation coupling one doublet and one singlet, or in the 1

representation coupling two singlets or two doublets. The scalar leptoquarks and vector

leptoquarks that couple to the SM fermions (i.e. assuming no right-handed neutrinos) are

summarized in Table 4.1 and 4.2 respectively [240]:

• The scalar leptoquarks in the 3 representation of SU (3)C are denoted by the letter

S, with their couplings to one lepton and one quark being y and their couplings to

two quarks being z.

• The scalar leptoquarks in the 3 representation of SU (3)C are denoted by the letter

R, and the letter y is used for their couplings to one quark and one lepton.

• The vector leptoquarks in the 3 representation of SU (3)C are denoted by the letter

V , with their couplings to one lepton and one quark being x and their couplings to

two quarks being w .

• The vector leptoquarks in the 3 representation of SU (3)C are denoted by the letter

U , and the letter x is used for their couplings to one quark and one lepton.

Each leptoquark, and their corresponding couplings, are labelled by a subscript indicating

the SU (2)L representation. In the cases where two leptoquarks have the same SU (3)C and

SU (2)L quantum numbers, one of them is indicated by a tilde. Finally, each coupling has

a superscript corresponding to the chirality of the fermions.

Different leptoquark models have been proposed as solutions to the RK (∗) and RD(∗)

anomalies. The leptoquarks that can mediate b → sℓ+ℓ− transitions at tree level are S3,

R2, R̃2, S̃1, U3, V2 and U1 [241]. b → cℓν transitions can be mediated by S3, R2, S1, U3, V2

and U1 [242, 243]. The most popular models to explain concurrently RK (∗) and RD(∗) are

the vector leptoquark U1 [244–249] and a combination of the scalar leptoquarks S1 and

S3 [244, 250–258]. The Feynman diagrams of the U1-mediated b → sℓ+ℓ− and b → cℓν

transitions are depicted in Fig. 4.1.

The matching conditions for the leptoquarks to the SMEFT were obtained in [201,

259]. In particular, a leptoquark U1 with mass MU , is matched to the SMEFT at the scale
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LQ SU (3)C SU (2)L Y Coupling to fermions

S3 3 3 1
3 yLL

3 qC
ϵ(τS3)ℓ+ zLL

3 qC
ϵ(τS3)†q +h.c.

R2 3 2 7
6 −yRL

2 uR R2ϵℓ+ yLR
2 eR R∗

2 q +h.c.

R̃2 3 2 1
6 −ỹRL

2 d R R̃2ϵℓ+h.c.

S̃1 3 1 4
3 ỹRR

1 d
C
R S̃1eR + z̃RR

1 uC
R S̃∗

1 uR +h.c.

S1 3 1 1
3 yLL

1 qC S1ϵℓ+ yRR
1 uC

R S1eR + zLL
1 qC S∗

1ϵq + zRR
1 uC

R S∗
1 dR +h.c.

Table 4.1: Properties of the scalar leptoquarks. τ are the Pauli matrices and ϵ the antisym-

metric dimension 2 tensor. Flavour and gauge indices have been omitted [240].

LQ SU (3)C SU (2)L Y Coupling to fermions

U3 3 3 2
3 xLL

3 qγµ(τU3µ)ℓ+h.c.

V2 3 2 5
6 xRL

2 d
C
Rγ

µV2µϵℓ+xLR
2 qC

γµϵV2µeR +w LR
2 qC

γµV ∗
2µuR +h.c.

Ṽ2 3 2 −1
6 x̃RL

2 uC
Rγ

µṼ2µϵℓ+ w̃ RL
2 d

C
Rγ

µṼ ∗
2µq +h.c.

Ũ1 3 1 5
3 x̃RR

1 uRγ
µŨ1µeR +h.c.

U1 3 1 2
3 xLL

1 qγµU1µℓ+xRR
1 d RγµU1µeR +h.c.

Table 4.2: Properties of the vector leptoquarks. τ are the Pauli matrices and ϵ the antisym-

metric dimension 2 tensor. Flavour and gauge indices have been omitted [240].

`

b

U1

`

s b

`
U1

ν

c

(a) (b)

Figure 4.1: Vector leptoquark U1 (a) mediating a b → sℓ+ℓ− transition, (b) mediating a

b → cℓν transition.
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Λ following the conditions

C i j kl
ℓq(1) =C i j kl

ℓq(3) =
−Λ2

2M 2
U

(xLL
1 )l i (xLL

1 )∗k j ,

C i j kl
ed =−1

2
C i j kl

led q = −Λ2

M 2
U

(xRR
1 )l i (xRR

1 )∗k j . (4.1)

The matching has to be performed at an energy scale Λ ∼ MU , as indicated in the

workflow of Fig. 3.4.

For the scalar leptoquark S3 with mass MS3 , we will be interested in the contribution

to WET coefficients. The Wilson coefficients CµNP
9,10 arise at the tree level and are given

by [260],

CµNP
9 =−CµNP

10 = πp
2GF M 2

S3
α

(
(yLL

3 )32(yLL
3 )∗22

VtbV ∗
t s

)
. (4.2)

For C LL NP
bs the contribution appears at the one loop level and can be written as [260, 261]:

C LL NP
bs = ηLL(MS3 )

4
p

2GF M 2
S3

5

64π2

(∑
α(yLL

3 )3α(yLL
3 )∗2α

VtbV ∗
t s

)2

, (4.3)

where α = 1,2,3 is a lepton family index, and ηLL(MS3 ) > 0 encodes the running down to

the bottom mass scale.

The ATLAS and CMS experiments in LHC have performed direct searches of lepto-

quarks pair production from proton-proton collisions decaying into one quark and one

neutrino. They have excluded at the 95% confidence level (C.L.) scalar leptoquarks with

mass MLQ ≲ 1000 GeV, and vector leptoquarks with mass MLQ ≲ 1500 ∼ 1800 GeV [262,

263].

In Chapter 5 we will analyze a NP scenario based on the leptoquark S3. The leptoquark

U1 is considered in Chapter 6, and studied in Chapter 7, in the light of the results obtained

in the analysis of SMEFT operators. In these two Chapters we also briefly discuss the

compatibility with other leptoquarks, namely S3, S1 and U3.

4.2 New gauge bosons

A colourless SU (2)L triplet of vector bosons with zero hypercharge contains charged bosons

W ′ and a neutral boson Z ′ [264–266]. These bosons couple to left-handed fermions,

LW ′ =− 1p
2

(
Vi kλ

Q
k j ui Lγ

µd j +λL
i j e i Lγ

µν j

)
W ′+

µ +h.c., (4.4)

LZ ′ = −1

2

[
λ

Q
i j (ui Lγ

µu j L −d j Lγ
µd j L)+λL

i j (νi Lγ
µν j L −e i Lγ

µe j L)
]

Z ′
µ , (4.5)

and the couplings can be non-universal and non-diagonal. The W ′ boson mediates new

FCCC including b → cℓν transition [267–269], while Z ′ generates tree-level FCNC, being
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s

b

Z ′
`

` b

c

W ′
ν

`

(a) (b)

Figure 4.2: New gauge bosons W ′ and Z ′ (a) mediating a b → sℓ+ℓ− transition, (b) medi-

ating a b → cℓν transition.

a prime candidate to explain anomalies in b → sℓ+ℓ− decays [270–273]. Fig. 4.2 includes

the Feynman diagrams for these processes.

The integration of the Z ′ boson produces an effective Lagrangian relevant for b →
sµ+µ− transitions and Bs-mixing, given by [260],

L eff
Z ′ = − 1

2M 2
Z ′

(
λ

Q
i j d̄i Lγµd j L +λL

αβ ēαLγµeβL

)2
(4.6)

∼ − 1

2M 2
Z ′

[
(λQ

23)2 (
s̄LγµbL

)2 +2λQ
23λ

L
22(s̄LγµbL)(µ̄Lγ

µµL)+h.c.
]
+·· · ,

where λQ and λL are hermitian matrices in flavour space. When matching the above

equation with Eqs. (3.42) and (3.51), one obtains the expressions for the Wilson coeffi-

cients at the tree level [260],

CµNP
9 =−CµNP

10 =− πp
2GF M 2

Z ′α

(
λ

Q
23λ

L
22

VtbV ∗
t s

)
, (4.7)

and

C LL NP
bs = ηLL(MZ ′)

4
p

2GF M 2
Z ′

(
λ

Q
23

VtbV ∗
t s

)2

, (4.8)

where ηLL(MZ ′) > 0 encodes the running down to the bottom mass scale. The matching

has to be performed at an energy scaleΛ∼ MZ ′ , as indicated in the workflow of Fig. 3.4.

Direct searches of heavy bosons decaying into a pair of fermions have ruled out at the

95% C.L. W ′ and Z ′ triplet bosons with masses up to 4.5 ∼ 5 TeV [274, 275].

In Chapter 5 we will study a model based on a heavy Z ′ boson with non-universal cou-

plings to quarks and leptons. The viability of the W ′ and Z ′ bosons is briefly considered

in Chapter 6 and Chapter 7.

4.3 Axions and Axion-like particles

As commented in Section 2.1.1, one of the open questions in the SM is the strong C P

problem, that is, the lack of C P violation in the strong interactions. The Lagrangian of



50 CHAPTER 4. NEW PHYSICS IN FLAVOUR

the SM in Eq. (2.2) admits the addition of a new term Lθ that has dimension 4 and is

compatible with the gauge symmetries [276–280],

Lθ = θ
αs

8π
G a
µνG̃µνa , (4.9)

where G̃µνa = ϵµνρσG a
ρσ/2 is the dual tensor of the gluon field strength tensor, and θ is

an angular parameter θ ∈ [−π,π). A chiral transformation of any quark qL → e iα/2qL ,

qR → e−iα/2qR , which shifts the mass term to mq → mq e−iα, transform the θ term as

θ→ θ+α. Therefore, the θ term can be rotated away if any of the quarks is massless [281]

(which is not compatible with the current lattice predictions [282–286]). Otherwise, θ is a

physical parameter of the Lagrangian that has the effect of acting as a new source of C P

violation, in addition to the complex entries of the CKM matrix.

However, the θ term induces an electric dipole moment for hadrons. The neutron

electric dipole moment has been found to be compatible with zero to an extraordinary

accuracy [287], constraining the value of θ, |θ| < 8×10−11 [280]. There is no known reason,

at least within the SM, for the C P violations in the gluon sector to be that small or non-

existent.

A possible solution to the strong C P problem was devised by Peccei and Quinn [288,

289]. They proposed the existence of a global axial U (1) symmetry, classically exact and

violated at the quantum level by the colour anomaly GG̃ , and spontaneously broken at

a high energy scale fa . Weinberg and Wilczek noted that such a spontaneously broken

global symmetry would imply the existence of a pseudo Nambu-Goldstone boson (pNG),

the axion [290, 291]. The low-energy Lagrangian for the QCD-axion is

La = 1

2
(∂µa)(∂µa)− αs

8π

a

fa
G a
µνG̃µνa . (4.10)

Compared to the Lagrangian in Eq. (4.9), the axion Lagrangian replaced the input pa-

rameter θ by a dynamical pseudoscalar field, the axion a. The QCD vacuum energy has

its absolute minimum at a = 0 [292], and therefore, the axion would eventually reach its

minimum and automatically solve the strong C P problem.

The axion, through the coupling to gluons, mixes into the η′ meson and the neutral

pion. Through this mixing, the axion acquires a mass [285, 293–295],

ma fa ≈ mπ fπ

p
mumd

mu +md
∼ mπ fπ , (4.11)

where fπ is the decay constant of the pion. In the Peccei-Quinn model, the mass of the

axion is uniquely determined by fa .

The axion can be generalized to an Axion-Like Particle (ALP) by just assuming the ex-

istence of a pseudo-scalar a resulting from the spontaneous breaking of some U (1) global

symmetry, but removing the relation of Eq. (4.11). In this case, ma and fa are independent

parameters, and the ALP does not fully (or at all) solve the strong C P problem. However,
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ALPs are interesting on their own as they are predicted by several NP models [296, 297].

The simplest realization of the global U (1) symmetry is [298]

a → a + c , f ′ → f ′ , (4.12)

for all fermionic chiral fields f ′ = {q ′, u′
R , d ′

R , ℓ′, e ′
R } defined as electroweak eigenstates.

Under these transformations, it is clear that the effective operators

(O f ′)i j =
∂µa

fa
( f̄ ′

i γ
µ f ′

j ) (4.13)

are invariant for any flavour indices i , j . The most general dimension-5 effective La-

grangian for the interaction between ALP and SM particles is [298]

LALP = cGOG + cW OW + cBOB + cϕOϕ+
∑
f ′

(c f ′)i j (O f ′)i j , (4.14)

where ck (k ≡ G ,W,B ,ϕ, f ′) are the Wilson coefficients of each effective operator, and in

particular c f ′ are general hermitian matrices (if the ALP-fermion interactions are assumed

to not generate new sources of C P violation). The bosonic operators are defined as

OG = αs

4π

a

fa
G a
µνG̃µνa , OW = α2

4π

a

fa
W i
µνW̃ µνi

OB = α1

4π

a

fa
BµνB̃µν , Oϕ = ∂µa

fa
(ϕ†i Dµϕ+h.c.) . (4.15)

However, the Lagrangian in Eq. (4.14) contains redundant operators:

• The Oϕ operator can be eliminated redefining the Higgs and fermionic fields [298,

299],

ϕ→ e i cϕa/ faϕ , f ′ → e−iβ f ′cϕa/ fa f ′ , c f ′ → c f ′ +β f ′cϕ . (4.16)

• The derivative couplings are defined modulo generators of the global symmetries

for the Baryon number and Lepton number generators [298]. The generator of the

baryon number allows to eliminate one coupling to quarks, and the generators of

lepton numbers allow to eliminate three couplings to leptons. The choice in [299]

is to eliminate one diagonal element in Oq ′ , and the three diagonal elements in Oℓ′ .

The total number of free parameters is 1 (mass) + 3 (boson couplings) + 5×9 (hermitian

flavour couplings) - 4 (B and L generators) = 45.

Integrating by parts the derivative terms and using the SM equations of motion and ax-

ial anomaly [300] (or equivalently by using field redefinitions, see Appendix B of [299]), the

operators O f ′ can be written as a linear combination of bosonic operators and Yukawa-

like operators O f ′ϕ, given by

(Ou′ϕ)i j = a

fa
q̄ ′

i ϕ̃u′
R j , (Od ′ϕ)i j = a

fa
q̄ ′

iϕd ′
R j , (Oe ′ϕ)i j = a

fa
ℓ̄′iϕe ′

R j . (4.17)
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The Lagrangian in the new basis is [300, 301]

LALP =CGOG +CW OW +CBOB − ∑
f ′=u′,d ′,e ′

(C f ′ϕO f ′ϕ+h.c.) . (4.18)

The complex matrices C f ′ϕ are not generic as in the usual Yukawa case (if they were,

we would have 3×18 = 54 free parameters). Instead, they are related to the c f ′ couplings

by [300, 301]

Cu′ϕ = i (yucu′ − cq ′ yu) , Cd ′ϕ = i (yd cd ′ − cq ′ yd ) , Ce ′ϕ = i (ye ce ′ − cℓ′ ye ) , (4.19)

where y f are the SM Yukawa matrices.

The bosonic couplings of the new basis CV (V ≡ G ,W,B)) receive contributions from

the fermions [300, 301],

CG = cG + 1

2
Tr(cd ′ + cu′ −2cq ′) ,

CW = cW − 1

2
Tr(Nc cQ ′ + cℓ′) ,

CB = cB +Tr[Nc (Y 2
d ′cd ′ +Y 2

u′cu′ −2Y 2
q ′cq ′)+Y 2

e ′ce ′ −2Y 2
ℓ′cℓ′] , (4.20)

where Nc = 3 is the number of colours, and YF is the hypercharge of the chiral fields,

defined as Y =Q −T3.

Below the EWSSB, after rotating to the mass eigenbasis for the fermions, the interac-

tions to the ALP are

L f ALP =− i a

2 fa

∑
f =u,d ,e

∑
i , j

[
(m fi −m f j )(k f R +k f L)i j f̄i f j + (m fi +m f j )(k f L −k f R )i j f̄iγ5 f j

]
,

(4.21)

with the rotated couplings k f R (k f L) for the right-(left) handed fermions ( f = u, d , e) given

by

kuL =Uu Lcq ′U †
u L , kdL =Ud Lcq ′U †

d L =V †kU V ,

keL =Ue Lcℓ′U
†
e L , k f R =U f R c f ′U †

f R . (4.22)

With the usual choice of rotation matrices Uu L =Ue L =Ud R =Uu R =Ue R = I, Ud L =V ,

the conditions to have only flavour-conserving interactions are

(cℓ′)i j = (cd ′)i j = (cu′)i j = (ce ′)i j = 0 for i ̸= j ,

cq ′ = 0. (4.23)

If we also remove the redundant diagonal entries of Oℓ′ , the condition becomes clearer:

in the derivative basis we only consider flavour-conserving couplings to right-handed

fermions. Using this couplings, we arrive at the following Lagrangian [302]

L f ALP =−i
a

fa

∑
i

ci ′mi f̄iγ5 fi . (4.24)

This Lagrangian will be our starting point for the studies performed in Chapter 8.
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4.4 Minimal Flavour Violation

Minimal Flavour Violation (MFV) is a prescription for NP models in the flavour sector. The

MFV ansatz [303] consists in the assumption that any source of flavour and CP violation in

any NP models is the one in the SM, i.e. the Yukawa couplings. As explained in Section 2.1,

the Yukawa interactions are the only terms of the renormalizable Lagrangian that are

not invariant under the flavour symmetry, unless the Yukawa couplings are formally pro-

moted to be fields, spurions, transforming non-trivially under this symmetries. NP mod-

els with MFV require that any new flavour structure should be analogous to the flavour

structure of the SM. Formally, MFV requires that any term of the Lagrangian should be

invariant under the flavour group GF presented below, and flavour (and C P ) violations

can only appear through the spurions Yu , Yd and Yℓ [304, 305].

The largest group of unitary field transformations that commutes with the gauge group

in the SM is GF =U (5)3 [303]. The flavour group can be decomposed as

GF =U (1)Y ×U (1)B ×U (1)L ×U (1)PQ ×U (1)eR ×SU (3)3
q ×SU (3)2

ℓ,

SU (3)3
q = SU (3)q ×SU (3)uR ×SU (3)dR ,

SU (3)2
ℓ = SU (3)ℓ×SU (3)eR . (4.25)

The U (1) charges correspond to the gauged hypercharge and the global baryon and lep-

ton numbers, as well as the Peccei-Quinn symmetry, that affects right-handed d-type

quarks and charged leptons, and a rotation in the eR sector. The five SU (3) groups rotate

fermions of different generations for left-handed quarks, right-handed d-quarks, right-

handed u-quarks, left-handed leptons and right-handed charged leptons. In the SM, only

the U (1)Y ×U (1)B ×U (1)L symmetry survives at the classical level, and SU (3)3
q ×SU (3)2

ℓ
×

U (1)PQ ×U (1)eR are explicitly broken by the Yukawa terms. However, it is possible to re-

cover a formal flavour symmetry with the introduction of spurions [304], auxiliary (i.e.

non-dynamical) fields that transform under the flavour group,

Yu ∼ (3,3,1)SU (3)3
q

, Yd ∼ (3,1,3)SU (3)3
q

, Yℓ ∼ (3,3)SU (3)2
ℓ
. (4.26)

The only renormalizable terms that can be written using the SM fields and these spu-

rions, compatible with all the Lorentz and gauge symmetries, are

LY = q ′
LYdϕd ′

R +q ′
Yuϕ̃u′

R +ℓYℓϕeR +h.c., (4.27)

which is precisely the Yukawa Lagrangian in Eq. (2.11), with the identification of the spu-

rions with the Yukawa matrices. Particularizing to the leptonic sector, the consequence of

the flavour symmetry is the LFU, since gauge bosons have the same couplings to all the

leptons.

In NP models, the fact that flavour (and C P ) violations can only appear through the

spurions Yu , Yd and Yℓ imposes constraints for the combinations of flavour indices that
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can appear. For example, the interaction for a Z ′ boson to a pair of quarks of Eq. (4.5),

assuming MFV, would take the form

L = Z ′
µ(ui Lγ

µu j L −d i Lγ
µd j L)

[
aδi j +b(YuY †

u )i j +O (Y 4)
]
, (4.28)

where a and b are flavour-universal coefficients expected to be of order O (1). The domi-

nant source of flavour violation, in the basis where yd is diagonal, comes from

(YuY †
u )i j =

∑
k=u,c,t

m2
k

v2
Vki V ∗

k j ≈
m2

t

v2
Vt i V ∗

t j , i ̸= j . (4.29)

And consequently we can write the coupling as

λ
Q
i j ≈−2aδi j −2b

m2
t

v2
Vt i V ∗

t j . (4.30)

MFV is minimal in the sense that, even in the case where NP has a trivial flavour struc-

ture, radiative corrections from the SM interactions down to the electroweak scale will

include new flavour terms that break GF following the MFV principle [306].

MFV predicts correlations between NP effects in different observables [307–309], for

example relating Bs → µ+µ− and B → µ+µ− decays. However, MFV is not capable of de-

scribing sizable violations of lepton flavour universality, as the ones seen in the RK (∗) and

RD(∗) ratios, since the lepton flavour structure is determined solely by the small Yukawa

couplings appearing in the spurion YeY
†

e = diag(y2
e , y2

µ, y2
τ).

Extensions of the MFV paradigm with more restricted flavour groups have been pre-

sented in [310, 311], where some of the SU (3) subgroups are broken down to SU (2) sub-

groups including only the light fermions. This allows, for example, to introduce some NP

interactions that affect only the third generation quarks and leptons, and leave the light

fermions unaffected. This is one of the proposals that we will study in our analysis, in

Chapters 6 where NP only contributes to the third generation of quarks, and in Chapter 7,

where it only contributes to the third generations of quarks and leptons.



Chapter 5

Fit to complex Wilson coefficients

This Chapter contains the first numerical analysis that we performed, using the frame-

work of EFT, of the B anomalies. In particular, we studied the RK (∗) LFU ratios for the

b → sµ+µ− FCNC transitions using the WET operators. We also considered the observ-

able ∆Ms , the mass difference for the oscillation of the neutral mesons Ms − M̄s . At the

time when we performed the analysis, there was a mild tension between the experimen-

tal measurements and theoretical prediction for ∆Ms ; although this tension later disap-

peared with more precise theoretical inputs. Since the WET does not establish any re-

lation between the effective operators affecting RK (∗) and ∆Ms , we turn our attention to

two specific NP models, Z ′ and S3 leptoquark models, that can provide the connection

between the two types of observables, and in both cases complex Wilson coefficients are

needed for a combined explanation. The introduction of complex parameters forces us

to also consider the C P asymmetry.

This Chapter is based on the work published in [1]. The conclusions have been up-

dated in order to reflect the new results published after the completion of this work. The

code needed for the calculations of this work can be found in Appendix B.3.1.

5.1 Introduction

At present, many interesting measurements on flavour physics are performed at the LHC

and B factories, as detailed in Section 2.4. Some of these decays allow us to build opti-

mized observables, as ratios of these decays, that are theoretically clean observables and

whose measurements are in tension with SM predictions. One example is the case of the

RK (∗) observables in b → sℓ+ℓ− transitions, defined in Eq. (2.41). For the analysis of this

Chapter, we will consider only the experimental results that were available at the mo-

ment we have performed the computations presented in [1], that is, the values reported

in Eq. (2.50) and (2.51); although the effects of newer measurements will be discussed

in Section 5.5.1. In the SM RK + = RK ∗0 = 1 with theoretical uncertainties of the order of

1% [93, 312], as a consequence of LFU. The compatibility of the above results with respect

to the SM predictions is of 2.6σ deviation in the first case and for RK ∗0 , in the low q2 di-

55
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lepton invariant mass region is of about 2.3 standard deviations; being in the central−q2

of 2.4σ. A discrepancy of about 3σ is found when the measurements of RK + and RK ∗0

are combined [313]. Anomalous deviations were also observed in the angular distribu-

tions of the decay rate of B → K ∗µ+µ−, being the most significant discrepancy for the P
′
5

observable shown in the first four rows of Table 2.2.

From the theoretical side, the ratios RK + and RK ∗0 are very clean observables; essen-

tially free of hadronic uncertainties that cancel in the ratios [93]. The experimental data

has been used to constrain NP models.

On the other hand, NP models are also severely constrained by other flavour observ-

ables, for example in Bs−mixing. An updated computation, performed in 2016 and 2017,

for the Bs mesons mass difference in the SM was presented in [260, 314–317], showing a

deviation with the experimental result [260, 318]:

∆M exp
s = (17.757±0.021)ps−1 , ∆M SM

s = (20.01±1.25)ps−1 , (5.1)

such that ∆M SM
s > ∆M exp

s at about 2σ. This fact imposes additional constraints over the

NP parameter space. Therefore, a combined fit is mandatory when considering all up-

dated flavour observables. A negative contribution to ∆Ms is needed to reconcile it with

the experimental result, in the context of some NP models (like Z ′ or leptoquarks) it im-

plies complex Wilson coefficients in the effective Lagrangian of RK (∗) [260] (see also be-

low). To the best of our knowledge, most previous works have used only real Wilson coef-

ficients in fits of RK (∗) observables together with∆Ms , an exception being Ref. [319]. An ef-

fect of introducing complex couplings is the generation of C P asymmetries. The mixing-

induced C P asymmetry in the B sector can be measured through Amix
C P ≡ Amix

C P (Bs → J/ψφ) ≡
sin(φcc̄s

s ), experimentally it is measured to be [318]:

Amix
C P

exp(Bs → J/ψφ) =−0.021±0.031 . (5.2)

In the SM it is given by Amix
C P

SM = sin(−2βs) [55, 260, 320], with βs = 0.01852±0.00032 [38]

we obtain Amix
C P

SM = −0.03703± 0.00064, which is consistent with the experimental re-

sult in Eq. (5.2) at the ∼ 0.5σ level. Here, βs is one of the angles of the unitarity triangle∑
V ∗

i sVi b = 0, given by [38]

βs = Arg

(
−Vt sV ∗

tb

VcsV ∗
cb

)
. (5.3)

Ref. [319] performed fits for the B decay physics observables using complex Wilson

coefficients, in the model-independent and model dependent approaches. The analysis

of Ref. [319] performs fits for the B decay observables using complex couplings, without

including the ∆Ms or Amix
C P observables, then Ref. [319] proceeds to provide predictions to

C P-violation observables. Ref. [319] only includes ∆Ms and Amix
C P in the Z ′-model fit. Our

results agree with the ones of Ref. [319] wherever comparable.

The aim of the present chapter is to investigate the effects of complex Wilson coeffi-

cients in the analyses of NP in B meson anomalies. We assume a model-independent ef-

fective Lagrangian approach and we study the region of NP parameter space compatible
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with the experimental data, by considering the dependence of the results on the assump-

tions of imaginary or complex Wilson coefficients. We compare our results with the case

of considering only real Wilson coefficients. A brief summary of the NP contributions to

the effective Lagrangian relevant for b → sℓ+ℓ− transitions and Bs-mixing is presented

in Section 5.2, where we also recall the need to consider complex Wilson coefficients in

the analysis. In Section 5.3 we discuss the effects of having imaginary or complex Wilson

coefficients on RK (∗) observables. The impact of these complex Wilson coefficients in the

analysis of B meson anomalies in two specific models, Z ′ and leptoquarks, is included in

Section 5.4. We consider a combined fit of RK (∗) observables, together with ∆Ms and C P-

violation observable Amix
C P in this analysis. Finally, conclusions are given in Section 5.5.

5.2 Setting of the fits: Effective Lagrangian and New Physics

models

The effective Lagrangian for b → sℓ+ℓ− transitions has been introduced in Section 3.5. In

order to analyze the anomalies in the b → sℓ+ℓ− decays, we will use the operators of the

WET O
′ℓ
9 and O

′ℓ
10 with ℓ= e, µ defined in Eq. (3.43), and we analyze the NP contributions

to the Wilson coefficients C
′ℓNP
i . In most of our analysis we will consider the left-handed

Wilson coefficients CℓNP
i , the right-handed Wilson coefficients C ′ℓNP

i are treated briefly

in the model-independent approach of Section 5.3 (see Table 5.1 below). The NP contri-

butions to Bs-mixing are described by the effective Lagrangian of Eq. (3.51). In order to

study the allowed NP parameter space we follow the same procedure as given in [260],

comparing the experimental measurement of the mass difference with the prediction in

the SM and NP. Therefore, the effects can be parameterized as [260],

∆Ms

∆M SM
s

=
∣∣∣∣∣1+ C LL NP

bs

C LL SM
bs

∣∣∣∣∣ . (5.4)

The NP prediction to the C P-asymmetry Amix
C P is given by [55, 260, 320]

Amix
C P = sin(φ∆−2βs) , φ∆ = Arg

(
1+ C LL NP

bs

C LL SM
bs

)
. (5.5)

Since Eq. (5.1) establishes that∆M exp
s <∆M SM

s , Eq. (5.4) tells us that to obtain a predic-

tion of ∆Ms closer to ∆M exp
s the NP Wilson coefficient C LL NP

bs Eq. (3.51) must be negative

(C LL NP
bs < 0). In a generic effective Lagrangian approach, each Wilson coefficient is inde-

pendent, and setting C LL NP
bs < 0 has no effect on CµNP

9 , CµNP
10 , etc. However, explicit NP

models give predictions on the Wilson coefficients which introduce correlations among

them. We will concentrate on two specific models that have been proposed to solve the

semi-leptonic Bs-decay anomalies: Z ′ and leptoquarks. The goal is to validate the com-

patibility of these models with the experimental data, and therefore the matching to the

EFT is performed at the scale of the mass of the NP particle, as indicated in Fig. 3.4.



58 CHAPTER 5. FIT TO COMPLEX WILSON COEFFICIENTS

We start with the Z ′ model that contains a Z ′ boson with mass MZ ′ that may exhibit

couplings to the SM fermions that are not diagonal. The interaction Lagrangian for a Z ′

can be found in Eq. (4.5). The part of the effective Lagrangian relevant for b → sµ+µ−

transitions and Bs-mixing is given by Eq. (4.7).

When the new boson is integrated out, at the electroweak scale induces NP contribu-

tions to the b → sℓ+ℓ− decays at tree level, and to the Bs mixing at one loop level, with the

matching conditions of Eq. (4.7) and (4.8) respectively. From Eq. (4.8) it is clear that to ob-

tain a negative C LL NP
bs one needs an imaginary number inside the square (λQ

23/(VtbV ∗
t s) ∈ I),

but this is the same factor that appears in CµNP
9 = −CµNP

10 in Eq. (4.7). λL
22 ∈ R, since λ is

an hermitic matrix, then it follows that CµNP
9,10 would be imaginary (CµNP

9,10 ∈ I). Of course,

a purely imaginary coupling (or Wilson coefficient) is just a particular and extreme case

of having a generic complex coupling. Once one abandons the restriction of consider-

ing real couplings it seems more natural to consider the most generic case of complex

couplings. There is, however, a motivation to try also the extreme case of imaginary cou-

plings: an imaginary λQ
23/(VtbV ∗

t s) provides a real C LL NP
bs Eq. (4.8), which in turn provides

no additional contributions to the C P-asymmetry Amix
C P Eq. (5.5), so imaginary couplings

might provide a way of improving the predictions on∆Ms without introducing unwanted

C P-asymmetries.

Now we focus on leptoquark models. Specifically, we consider the scalar leptoquark

S3 ∼ (3,3,1/3) with mass MS3 . The interaction Lagrangian can be found in first line of

Table 4.1, assuming that the leptoquarks do not induce new quark-quark interactions,

that is, zLL
3 = 0. To simplify the notation, in this Chapter we will use yQL ≡ yLL

3 .

In this case, the matching of the leptoquark to the WET can be found in Eq. (4.2) and

(4.3). Again, in order to obtain C LL NP
bs < 0 in Eq. (4.3), the couplings must comply the

condition
∑3
α=1 yQL

3α yQL∗
2α /(VtbV ∗

t s) ∈ I. If the combinations yQL
3α yQL∗

2α /(VtbV ∗
t s) ∈ I, then the

expression in Eq. (4.2) suggests CµNP
9,10 ∈ I. Of course, the expression in Eq. (4.3) is a sum

over all generations, so it is possible to set up a model with yQL
32 yQL∗

22 /(VtbV ∗
t s) ∈ R, and to

have a cancellation such that the sum in Eq. (4.3) is imaginary, but this would be a highly

fine-tuned scenario. If the sum in Eq. (4.3) has an imaginary part, it would be most natural

if all its addends have some imaginary part.

Here we have shown two examples of new physics models which justify the choice of

imaginary (or complex) values for the Wilson coefficients CµNP
9,10 . In the next section we

take an effective Lagrangian approach and explore whether an imaginary or complex NP

Wilson coefficients can accommodate the experimental RK (∗) deviations.

5.3 Imaginary Wilson coefficients and RK (∗) observables

Several groups have analyzed the predictions for the ratios RK (∗) based on different global

fits [313, 319, 321–328], extracting possible NP contributions or constraining it. As it is well

known, an excellent fit to the experimental data is obtained when CℓNP
9 = −CℓNP

10 ; corre-
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Figure 5.1: Values of RK + and RK ∗0 with (a) imaginary and (b) real Wilson coefficients.

sponding to left-handed lepton currents. By considering this relation, we investigate the

effects of having imaginary Wilson coefficients on RK (∗) observables. For the numerical

evaluation we use inputs values as given in [329]. The SM input parameters most relevant

for our computation are:

αs(MZ ) = 0.1181(11) , GF = 1.1663787(6)×10−5 GeV−2 ,

MW = 80.385(15)GeV, mt = 173.1(0.6)GeV,

MBs = 5.36689(19)GeV,

Vtb = 0.9991022 , Vt s =−0.04137511−7.74823325×10−4 i , (5.6)

note that the product VtbV ∗
t s , which appears in the computation of Wilson coefficients in

NP models in Eqs. (4.7), (4.8), (4.2), (4.3) is approximately a negative real number (VtbV ∗
t s ≃

−0.04).

Figure 5.1 shows the values of the ratios RK (∗) , in their respective q2 ranges, when both

Wilson coefficients CµNP
9 and CµNP

10 are imaginary (Figure 5.1a) and when they are real

(Figure 5.1b), by assuming that CµNP
9 = −CµNP

10 . If these two coefficients are imaginary,

in all cases the minimum value for the ratio is obtained at the corresponding SM point

CµNP
9 = −CµNP

10 = 0. The addition of non-zero imaginary Wilson coefficients results in

larger values of RK (∗) , at odds with the experimental values Rexp
K (∗) < RSM

K (∗) . This behaviour

was already pointed out in Ref. [330], where it is shown that the interference of purely

imaginary Wilson with the SM vanishes, and therefore they can not provide negative con-

tributions to RK (∗) (see also below). In contrast, as shown in the right panel, values of

RK (∗) ∼ 0.7 (as in the experimental measurements) are possible when the Wilson coeffi-

cients are real.

We have done a combined fit by including the ratios RK + and RK ∗0 , and the angular

observables P ′
4 and P ′

5 [133, 331, 332]1. Results are shown in Figure 5.2. The allowed re-

gions for imaginary values of CµNP
9 and CµNP

10 when fitting to measurements of a series

1For the P ′
4, P ′

5 observables we include all q2 bins, except the ones around to the charm resonances

q2 ∈ [8.7,14]GeV2, where the theoretical computation is not reliable. In total we include 15 measurements

for P ′
4 and 21 measurements for P ′

5 [133, 331, 332].
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Figure 5.2: Best fit and 1σ and 2σ contours to semi-leptonic B decays observables, RK + ,

RK ∗0 , P ′
4 and P ′

5, using (a) imaginary and (b) real Wilson coefficients.

of b → sµ+µ observables are presented in Figure 5.2a, by assuming all other Wilson co-

efficients to be SM-like. The numerical analysis has been done by using the open source

code flavio 0.28 [195], which computes the χ2 function with each (CµNP
9 ,CµNP

10 ) pair.

The χ2 difference is evaluated with respect to the SM point, ∆χ2
SM = χ2

SM −χ2
min. Then,

the pull in σ is defined as
√
∆χ2

SM, in the case of only one Wilson coefficient, and for

the two-dimensional case it can be evaluated by using the inverse cumulative distribu-

tion function of a χ2 distribution having two degrees of freedom (d.o.f.); for instance,

∆χ2 = 2.29 for 1σ. The darker red shaded regions in Fig. 5.2 correspond to the points

with ∆χ2 = χ2 −χ2
min ≤ 2.29, that is, they are less than 1σ away from the best fit point,

whereas the lighter red shaded regions correspond to ∆χ2 ≤ 6.18 (≡ 2σ). The crosses

mark the position of the best fit points. In Fig. 5.2a the χ2 function has a broad flat region

centered around the origin, with two nearly symmetric minima found at (CµNP
9 = 0.72 i ,

CµNP
10 = 0.74 i ) and (CµNP

9 = −0.75 i , CµNP
10 = −0.74 i ). The pull of the SM, defined as

the probability that the SM scenario can describe the best fit assuming that ∆χ2
SM fol-

lows a χ2 distribution with 2 d.o.f., is of just
√
∆χ2

SM = 1.42 (≡ 0.91σ) and
√
∆χ2

SM = 1.38

(≡ 0.87σ) respectively, and both of them have the same χ2
min/d.o.f. = 2.25, that is, purely

complex couplings do not provide a good description of the data. For completeness, the

fit to real values of the Wilson coefficients are included in Figure 5.2b. Now the confi-

dence regions are much tighter and do not include the SM point. In fact, the best fit point

(CµNP
9 = −1.09, CµNP

10 = 0.481) improves the SM by
√
∆χ2

SM = 6.28 (≡ 5.95σ), and a much

lower χ2
min/d.o.f. = 1.24.

Ref. [330] showed that imaginary Wilson coefficients do not interfere with the SM am-

plitude, an therefore imaginary CµNP
9,10 can not decrease the prediction for RK (∗) . This is nu-

merically shown in the above analysis, where imaginary Wilson coefficients CµNP
9,10 are not

able to reduce significantly the prediction for RK (∗) . To further investigate this question,

we can examine the approximate expression for RK ∗0 that we have obtained in Eq. (3.47).
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Best fit(s) Pull (
√
∆χ2

SM) Pull (σ) χ2
min/d.o.f.

CµNP
9 −1.11−0.02 i 5.94 5.60σ 1.35

CµNP
10

1.66+1.99 i
5.02 4.65σ 1.62

1.67−2.01 i

CµNP
9 =−CµNP

10

−1.16+1.14 i
6.06 5.72σ 1.31−1.18−1.18 i

C
′µNP
9 −0.24−0.003 i 1.07 0.57σ 2.27

C
′µNP
10 0.33−0.014 i 2.22 1.72σ 2.17

C e NP
9

−3.29+5.02 i
4.85 4.47σ 1.67−3.35−5.04 i

C e NP
10

−0.27+3.48 i
4.72 4.34σ 1.70−0.27−3.48 i

C e NP
9 =−C e NP

10

−3.29+4.58 i
4.85 4.47σ 1.67−3.35−4.59 i

C
′ e NP
9

−0.59+3.89 i
4.81 4.43σ 1.68−0.59−3.89 i

C
′e NP
10

0.52+3.88 i
4.81 4.43σ 1.68

0.53−3.88 i

Table 5.1: Best fit Wilson coefficients complex values to semi-leptonic decay observables

RK + , RK ∗0 , P ′
4 and P ′

5, allowing only one free coefficient at a time. Shown are also the

corresponding pulls, and χ2
min/d.o.f..

Now, if we assume that NP does not affect the electron channel (C e NP
9 = C e NP

10 = 0), it

is clear that to obtain RK ∗0 < RSM
K ∗0 one needs to introduce CµNP

9 and CµNP
10 with a non-

zero real part: the only possible negative contributions come from the ReCµNP
9 , ReCµNP

10

terms, whereas the |CµNP
9 |2, |CµNP

10 |2 terms have a positive-defined sign, and can not re-

duce the value of RK ∗0 . Thus, purely imaginary values of CµNP
9,10 contribute only to the

modulus (positive-definite) and not to the real part, and can not bring the prediction of

RK ∗0 closer to the experimental value. In addition, this expression tells us that the better

option to reduce the prediction of RK ∗0 is using a real negative CµNP
9 , and a real posi-

tive CµNP
10 . This is actually the result that we have obtained in our numerical analysis.

Fig. 5.1b shows that, for real Wilson coefficients, the lowest prediction for RK ∗0 is obtained

for CµNP
9 =−CµNP

10 < 0, and Fig. 5.2b shows that the best fit is obtained for negative CµNP
9

and positive CµNP
10 . Fig. 5.1a shows that, in general, imaginary Wilson coefficients give

positive contributions to RK (∗) , in accordance with Eq. (3.47). Of course, the full expres-

sion is richer than Eq. (3.47), and we expect some deviations, Fig. 5.2a shows that the best

fit point is not the SM (CµNP
9 = CµNP

10 = 0), but the best fit regions are centered around it,

and the SM pull with respect the best fit points is small.

We conclude that, actually, a NP explanation for RK + , RK ∗0 requires that CµNP
9 , CµNP

10
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RK + R [0.045,1.1]
K ∗0 R [1.1,6]

K ∗0

CµNP
9 0.77±0.03 0.887±0.009 0.82±0.04

CµNP
10 0.78±0.05 0.87±0.03 0.80±0.10

CµNP
9 =−CµNP

10 0.59±0.08 0.83±0.03 0.63±0.09

C
′µNP
9 0.95±0.05 0.96±0.03 1.09±0.09

C
′µNP
10 0.92±0.07 0.95±0.03 1.07±0.09

C e NP
9 0.76±0.09 0.69±0.12 0.52±0.17

C e NP
10 0.69±0.06 0.77±0.06 0.59±0.13

C e NP
9 =−C e NP

10 0.76±0.09 0.70±0.10 0.52±0.17

C
′ e NP
9 0.75±0.09 0.71±0.10 0.52±0.18

C
′e NP
10 0.75±0.09 0.80±0.09 0.66±0.14

Table 5.2: RK + , RK ∗0 predictions with 1σuncertainties corresponding to the best fit Wilson

coefficients of Table 5.1.

have a non-zero real part, whereas we saw above that NP explanation for ∆Ms requires

that CµNP
9 , CµNP

10 have a non-zero imaginary part. Then, to have a NP explanation for

both observables CµNP
9 , CµNP

10 should be general complex numbers. Following this rea-

soning we have performed a combined fit to the semi-leptonic decay observables RK + ,

RK ∗0 , P ′
4 and P ′

5 using generic complex Wilson coefficients allowing only one free Wil-

son coefficient at a time. Table 5.1 shows the best fit values, pulls (defined as
√
∆χ2

SM)

and χ2
min/d.o.f., for scenarios with NP in one individual complex Wilson coefficient, and

Table 5.2 shows the prediction for RK (∗) for the corresponding central values of each fit,

together with the 1σ uncertainties. The primed Wilson coefficients are also included.

We found that the best fit of RK + and RK ∗0 and the angular distributions is obtained for

CµNP
9 =−1.11−0.02 i , for CµNP

10 we find two points with similar minimum value for χ2 with

opposite signs of the imaginary part, CµNP
10 = 1.66+1.99 i and CµNP

10 = 1.65−2.10 i . Assum-

ing CµNP
9 =−CµNP

10 we also obtain a double minimum CµNP
9 =−CµNP

10 =−1.16+1.14 i and

CµNP
9 =−CµNP

10 =−1.18−1.18 i with a pull of
√
∆χ2

SM = 6.06 (≡ 5.72σ) and a χ2
min/d.o.f. =

1.31. By looking at χ2
min/d.o.f. we see that the scenarios with only CµNP

9 or CµNP
9 =−CµNP

10

provide the best description of experimental data, whereas the scenarios with C
′µNP
9 and

C
′µNP
10 provide the worst description. If only real Wilson coefficients are chosen the best

fit of RK + and RK ∗0 yields CµNP
9 =−1.59, CµNP

10 = 1.23 or CµNP
9 =−CµNP

10 =−0.64, with a pull

around 4.2σ [324].

Ref. [319] also provides fits for complex generic Wilson coefficients. Their scenario I

corresponds to our first line in Table 5.1, our best fit value agrees with their result (CµNP
9 =

(−1.1± 0.2)+ (0± 0.9 i )), within the large uncertainties they give for the imaginary part,

but we obtain larger pulls (5.6σ vs. 4.2σ of Ref. [319]). Their scenario II corresponds to

our third line in Table 5.1 (CµNP
9 = −CµNP

10 ), we agree with the main features of their fit,

for the real part they obtain Re(CµNP
9 ) = Re(CµNP

10 ) =−0.8±0.3, we obtain a slightly smaller
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Figure 5.3: Fit on Z ′ parameter space in the MZ ′-Im λ
Q
23 plane (see text).

real part, but they agree within uncertainties, both of us obtain a double minimum for the

imaginary part ∼ ±(1.1−1.2) i , again, we obtain a slightly larger pull (5.72σ vs. 4.0, 4.2σ

of Ref. [319]).

Choosing complex Wilson coefficients also implies additional constraints from C P-

violating observables. This fact has not been considered in the previous analysis. In the

next section we study the consequences of having these coefficients in the analysis of B

meson anomalies on some NP models and we consider a combined fit of both the ratios

RK + and RK ∗0 and the angular observables P ′
4 and P ′

5, and also the C P-mixing asymmetry.

5.4 Bs-mixing and NP models

Several NP models that are able to explain the lepton flavour universality violation effects

are constrained by other flavour observables like Bs-mixing. In particular the parameter

space of Z ′ and leptoquark models are severely constrained by the present experimen-

tal results of ∆Ms [260]. Besides, as already mentioned, additional constraints emerge

from C P-violating observables when considering complex couplings. Ref. [260] argues

that nearly imaginary Wilson coefficients could explain the discrepancies with the ∆Ms

experimental measurement, but a combined fit of RK + and RK ∗0 observables, together

with ∆Ms and C P-violation observable Amix
C P in Bs → J/ψφ decays should be performed.

In the next subsections we investigate these issues for the case of Z ′ and leptoquark mod-

els.

5.4.1 Z ′ fit

From now on, a combined fit of RK + and RK ∗0 observables, ∆Ms and the C P-violation

observable Amix
C P is included in our analysis.
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Best fits Real Imaginary Complex

λ
Q
23 −0.002 ±0.047 i −0.0020−0.0021 i

MZ ′ 1.31 TeV 12 TeV 1.08 TeV

Pull (
√
∆χ2

SM) 5.70 1.61 6.05

Pull (σ) 5.39σ 1.09σ 5.43σ

χ2
min/d.o.f. 1.41 2.12 1.34

RK + 0.66±0.05 1.00±0.01 0.65±0.07

R [0.045,1.1]
K ∗0 0.849±0.013 0.93±0.02 0.84±0.02

R [1.1,6]
K ∗0 0.68±0.05 1.00±0.01 0.68±0.07

∆Ms 20.41±1.26 ps−1 18.0±1.7 ps−1 19.95±1.27 ps−1

Amix
C P −0.0369±0.0002 −0.041±0.002 −0.035±0.003

Table 5.3: Best fits, and corresponding pulls, to RK + , RK ∗0 ,∆Ms and Amix
C P ; considering real,

imaginary and complex couplings on the Z ′ model. Shown are also the corresponding

pulls, χ2
min/d.o.f., and the predictions for semi-leptonic decay observables RK + , RK ∗0 ;∆Ms

and Amix
C P with 1σ uncertainties.

Figure 5.3 shows the fits on the Z ′ mass MZ ′ and the imaginary coupling λQ
23 (setting

λL
22 = 1) imposed by b → sµ+µ− decays and Bs-mixing. The red lines (dotted, dash-dotted)

correspond to the fit using only semi-leptonic B meson decays, i.e. b → sµ+µ− as in Fig-

ure 5.2 plus the branching ratios BR(Bs → µ+µ−) and BR(B 0 → µ+µ−). The best fit region

is the one between the curves; dotted lines: ∆χ2 = 1, dash-dotted lines: ∆χ2 = 4. Blue

lines (solid, dashed) correspond to the fit to Bs-mixing observables ∆Ms and Amix
C P . The

best fit region is the one between the lines; solid lines∆χ2 = 1, dashed lines∆χ2 = 4, there

are two regions with ∆χ2 < 1, but between them ∆χ2 is always smaller than 4. The green

regions are the combined fit: dark region ∆χ2 ≤ 1, medium ∆χ2 ≤ 4 and light ∆χ2 ≤ 9.

The best fit for the b → sµ+µ− observables in the region under study is MZ ′ = 11TeV,

λ
Q
23 = 0.015 i , with a tiny

√
∆χ2

SM = 0.23, which makes it statistically indistinguishable

from the SM, and a large χ2
min/d.o.f. = 2.92 which indicates that it does not provide a good

fit to the data. For the Bs-mixing observables, the best fit is found at the maximum al-

lowed mass MZ ′ = 12TeV, λQ
23 =±0.05 i , which corresponds to C LL NP

bs =−1.54×10−4. The

SM has a pull of
√
∆χ2

SM = 1.73 (≡ 1.21σ), and the minimum has a χ2
min/d.o.f. = 0.52.

The best fit when all observables are considered, in the MZ ′ region of our analysis, and

λ
Q
23 being a pure imaginary coupling, is found at MZ ′ = 12TeV, λQ

23 = ±0.047 i , and the

pull of the SM is
√
∆χ2

SM = 1.61(≡ 1.09σ) and χ2
min/d.o.f. = 2.12. Larger values of MZ ′

do not improve the pull of the SM. Actually, if one allows larger values for MZ ′ the best

fit point has a linear relation between the coupling and the maximal allowed mass: λQ
23 ≃

i (3.95×M max
Z ′ /TeV)×10−3. This linear relation produces a (approximately) constant C LL NP

bs

Eq. (4.8), with a∆Ms prediction close to the experimental value in Eq. (5.1), while the con-

tributions to |CµNP
9,10 | decrease as M−1

Z ′ Eq. (4.7). Since imaginary couplings worsen the RK (∗)
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Figure 5.4: Fit on Z ′ parameter space in the λQ
23 complex plane for the best fit Z ′ mass

MZ ′ = 1.08TeV (see text).

prediction, the larger MZ ′ provides better predictions for them, bringing them closer to

the SM value. The best fit ∆χ2
SM grows very slowly with growing allowed MZ ′ . Table 5.3

summarizes the best fit values for λQ
23 and MZ ′ , and corresponding pulls, to RK + and RK ∗0

observables,∆Ms and Amix
C P ; considering real, imaginary and complex Wilson coefficients.

Results for the above observables in each scenario are included in this table. It is clear

that RK (∗) observables prefer real Wilson coefficients, as expected. For real couplings the

description is better than the SM, with a pull of 5.39σ but it does not improve the pre-

diction for ∆Ms . Contrary, to improve the prediction for ∆Ms imaginary couplings are

required in the Z ′ model, however the pull with respect the SM is small, and it has a large

χ2
min/d.o.f.. When allowing generic complex couplings (third column in Table 5.3) we find

that the best fit point is close to the best fit point using only real couplings (first column

in Table 5.3), and the pull with respect the SM improves slightly (5.43σ versus 5.39σ), and

the predictions for the observables are also close to the pure real couplings case, showing

a slight improvement in the prediction for ∆Ms .

Fig. 5.4 shows the best fit regions in the complex λQ
23 plane for the best fit mass value

MZ ′ = 1.08TeV (Table 5.3). The red region shows the 2-dimensional 1 and 2σ allowed

values (∆χ2 = 2.29, 6.18) including only the b → sµ+µ− observables, the blue region shows

the 1 and 2σ allowed values including only ∆Ms , and the green region show the 1 and 2σ

allowed values including only Amix
C P , the violet region shows the combined fit. Here we see

the tension between the b → sµ+µ− and ∆Ms fits. b → sµ+µ− selects a region around the

real axis of the coupling, whereas ∆Ms selects regions away from it. There are two small

intersection regions for the 1σ allowed values of both fits. The Amix
C P fit selects one of these

regions, and breaks the degeneracy. Actually, the b → sµ+µ− fit selects fixed values of

CµNP
9 =−CµNP

10 , Eq. (4.7), since CµNP
9 =−CµNP

10 scale as ∼λQ
23/M 2

Z ′ , for fixed CµNP
9 =−CµNP

10

the allowed values of λQ
23 (red region in Fig. 5.4) around the real axis will grow as M 2

Z ′ ,

but, at the same time, the allowed region will move away from the imaginary axis as M 2
Z ′ .
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On the other hand, the fit on ∆Ms selects fixed values of C LL NP
bs , Eq. (4.8), since C LL NP

bs ∼
(λQ

23)2/M 2
Z ′ , for fixed C LL NP

bs the 1σ unfavored region around the origin (light blue region

in Fig. 5.4) will grow as λQ
23 ∼ MZ ′ . As MZ ′ grows, the red region moves away from the

origin as M 2
Z ′ , but the blue region expands only as MZ ′ , so that at some MZ ′ value their

1σ regions do not longer intersect. This is the reason why we obtain a relatively low MZ ′

in the fits of Table 5.3.

Ref. [319] provides also a fit for the Z ′ model, using a fixed MZ ′ = 1TeV, this value

is close to our best fit value of Table 5.3. For λL
22 = 1 they obtain the best fit coupling

λ
Q
23 = (−0.8±0.3)×10−3 + (−0.4±3.1)×10−3 i with a pull of 4.0σ. Our best fit values agree

with them within uncertainties. Note that we do not provide uncertainties for the best fit

values, the reason being that the parameters are not independent, the 2-dimensional best

fit regions in Fig. 5.4 are not ellipses, and the best fit points are not on the center of the

figures, so that giving a central value with 1-dimensional uncertainties overestimates the

uncertainty and leads to confusion about the meaning and position of the best fit point.

We conclude that, in the framework of Z ′ models, RK (∗) observables are better de-

scribed than in the SM, with a pull >∼ 5.39σ for MZ ′ ≃ 1− 1.3TeV, and a coupling with

a real part Re(λQ
23) ≃ −0.002. The presence of a similar imaginary part for the coupling

Im(λQ
23) ≃−0.0021 improves slightly the fit, as well as the ∆Ms prediction.

5.4.2 Leptoquark fit

The leptoquark model has three independent couplings contributing to ∆Ms Eq. (4.3).

For the combined fits we will assume that the dominant coupling is the muon coupling

yQL
32 yQL∗

22 , which is the one contributing to RK (∗) Eq. (4.2). The fits on the S3 leptoquark

mass MS3 and the imaginary coupling yQL
32 yQL∗

22 imposed by b → sµ+µ− decays and Bs-

mixing are presented in Figure 5.5. The observables used in the respective fits are the

same as in Figure 5.3. The red lines (dotted, dash-dotted) correspond to the fit using

only semi-leptonic B meson decays, i.e. b → sµ+µ− plus the branching ratios BR(Bs →
µ+µ−) and BR(B 0 →µ+µ−), the best fit region is the one between the curves; dotted lines:

∆χ2 = 1, dash-dotted lines: ∆χ2 = 4. Blue lines (solid, dashed) correspond to the fit to

Bs-mixing observables ∆Ms and Amix
C P . The best fit region is the one between the lines;

solid lines ∆χ2 = 1, dashed lines ∆χ2 = 4, there are two regions with ∆χ2 < 1, but between

them ∆χ2 is always smaller than 4. The green regions are the combined fit: dark region

∆χ2 ≤ 1, medium ∆χ2 ≤ 4 and light ∆χ2 ≤ 9. In the b → sµ+µ− fit the best fit parameters

for imaginary couplings is yQL
32 yQL∗

22 = −0.2 i , MS3 = 40.8TeV. The leptoquark fit to Bs-

mixing observables has a double minimum, located at MS3 = 44.9TeV, yQL
32 yQL∗

22 = ±2 i ,

with a SM pull of
√
∆χ2

SM = 1.74 (≡ 1.22σ) and χ2
min/d.o.f. = 0.51. These points corre-

spond to a value for the Wilson coefficient of C LL NP
bs = −1.39× 10−4. The combined fit,

including all observables, and considering only imaginary yQL
32 yQL∗

22 couplings, is located

at MS3 = 50TeV, yQL
32 yQL∗

22 = −1.67 i ; with a SM pull of only
√
∆χ2

SM = 1.1(≡ 0.6σ) and a
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Figure 5.5: Fit on S3 leptoquark parameter space in the MS3 -Im yQL
32 yQL∗

22 plane (see text).

large χ2
min/d.o.f. = 2.16. Larger MS3 masses provide similar values for the best fit cou-

plings, and observable predictions, and the pulls improve slowly. The situation is sim-

ilar than in the Z ′ case: by allowing larger MS3 masses the best fit coupling reaches an

asymptotic straight line, where the contribution to ∆Ms is constant Eq. (4.3), whereas

the contribution to |CµNP
9,10 | Eq. (4.2) decreases as M−1

S3
, the best fit coupling behaves as

yQL
32 yQL∗

22 ≃ i (4.43×10−2 ×MS3 /TeV). Table 5.4 shows the best fit parameters for the lep-

toquark model considered in this work, corresponding pulls, predictions to the observ-

ables RK + , RK ∗0 , ∆Ms and Amix
C P and χ2

min/d.o.f., considering real, imaginary and complex

Wilson coefficients. Table 5.4 shows that only imaginary couplings do not improve the

results, they cannot explain the RK (∗) anomaly. However, when complex couplings are

considered, we found a better fit of RK (∗) observables, the best fit parameters emerge at

MS3 = 4.1TeV and yQL
32 yQL∗

22 = 0.033+0.034 i , with
√
∆χ2

SM = 5.90 (≡ 5.27σ). The best fit

point MS3 and the coupling real part are similar to the real couplings case. The imaginary

part of the coupling is similar to the real part. The pull with respect the SM is marginally

better in the case of complex couplings (
√
∆χ2

SM = 5.9 versus 5.82), but it actually worsens

in units of σ, since the complex coupling fit has one more free parameter. The χ2
min/d.o.f.

is similar in both scenarios. The predictions for the B meson physics observables are sim-

ilar than in the real couplings case.

Fig. 5.6 shows the best fit regions in the complex yQL
32 yQL∗

22 plane, for the best fit mass

parameter MS3 = 4.1TeV, Table 5.4. The meaning of each region is as in Fig. 5.4. In this

model there is no intersection between the 1σ best fit regions of the b → sµ+µ− and the

∆Ms fits. Here we also find the tension between the b → sµ+µ− and∆Ms observables, and

the different evolution of the best fit regions with the leptoquark mass MS3 . The ∆Ms fit

moves the best fit point away from the real axis, and the Amix
C P fit selects of the of the signs

for the imaginary part, however the combined best fit region lies outside the 1σ region for

∆Ms , and the ∆Ms prediction does not improve with respect the SM.

Ref. [319] also provides a fit for the leptoquark scenario, our model corresponds to
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Best fits Real Imaginary Complex

yQL
32 yQL∗

22 0.04 −1.67 i 0.033+0.034 i

MS3 5.19 TeV 50 TeV 4.10 TeV

Pull (
√
∆χ2

SM) 5.82 1.10 5.90

Pull (σ) 5.47σ 0.60σ 5.27σ

χ2
min/d.o.f. 1.38 2.16 1.39

RK + 0.64±0.06 1.00±0.01 0.62±0.14

R [0.045,1.1]
K ∗0 0.835±0.015 0.93±0.02 0.84±0.04

R [1.1,6]
K ∗0 0.66±0.06 1.00±0.01 0.66±0.14

∆Ms 20.07±1.27 ps−1 18.8±1.7 ps−1 20.0±1.2 ps−1

Amix
C P −0.0374±0.0006 −0.039±0.002 −0.032±0.003

Table 5.4: Best fits, and corresponding pulls, to RK + , RK ∗0 ,∆Ms and Amix
C P ; considering real,

imaginary and complex couplings on the S3 leptoquark. Shown are also the correspond-

ing pulls, χ2
min/d.o.f. and the predictions for semi-leptonic decay observables RK + , RK ∗0 ;

∆Ms and Amix
C P with 1σ uncertainties.

their ∆⃗1/3[S3] model. Ref. [319] performs a fit fixing the leptoquark mass to MS3 = 1TeV,

and they obtain a two nearly degenerate minimums with positive and negative imaginary

parts. The reason for that is that they do not include the Amix
C P observable in the fit. Since

the CµNP
9 =−CµNP

10 Wilson coefficient scales like ∼ yQL
32 yQL∗

22 /M 2
S3

Eq. (4.2) we can compare

both results by scaling the best fit coupling with the mass squared, by taking their central

value for the positive imaginary part, we obtain yQL
32 yQL∗

22 = (1.4+ 1.7 i )× 10−3 × (4.1)2 =
0.023+0.029 i , which is similar to our third column in Table 5.4, and is inside the best fit

region of Fig. 5.6. Again, we obtain a larger pull (
√
∆χ2

SM = 5.9 versus 4.0).

If one relaxes the condition yQL
33 yQL∗

23 ≃ yQL
31 yQL∗

21 ≃ 0 then the leptoquark contribu-

tions to ∆Ms Eq. (4.3) and CµNP
9,10 Eq. (4.2) are no longer correlated, it would be possible to

choose: a purely real coupling to muons, such that it fulfills the first column of Table 5.4;

a vanishing coupling for electrons, such that it does not contribute to RK (∗) ; and a com-

plex coupling for taus, such that yQL
33 yQL∗

23 + yQL
32 yQL∗

22 is purely imaginary, and provides a

good prediction for∆Ms like in the second column of Table 5.4. Of course, this would be a

quite strange arrangement for leptoquark couplings! Another option would be to take an

specific model construction for the relations among the leptoquark couplings, and make

a fit on these parameters. This analysis is beyond the scope of the present work.

To end the discussion of this chapter, we study the impact of considering complex

Wilson coefficients in the analysis of B meson anomalies in the two specific models dis-

cussed previously, Z ′ and S3 leptoquark. We have performed a fit of the RK + and RK ∗0

observables, together with ∆Ms and C P-violation observable Amix
C P when these complex

couplings are included in the analysis. Results are presented in Fig. 5.7. Predictions for

the Z ′ model are represented in blue, and for the S3 leptoquark model in red. The central
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Figure 5.6: Fit on S3 leptoquark parameter space in the complex yQL
32 yQL∗

22 plane for the

best fit leptoquark mass MS3 = 4.1TeV (see text).

values are marked with a circle in the real fits, with a triangle in the imaginary fits and with

a square in the complex fit. The length of the error bars corresponds to the 1σ confidence

interval. Our predictions are compared to the SM predictions (yellow rectangles) and ex-

perimental values (green rectangles), with the height of the rectangles corresponding to

the 1σ values. The obtained results confirm that real Wilson coefficients cannot explain

the Bs-mixing anomaly; but also only imaginary Wilson coefficients cannot explain the

RK (∗) anomaly. For complex couplings, the predictions for RK + , RK ∗0 and ∆Ms are similar

to those of real couplings (Tables 5.3, 5.4), although the tension in∆Ms slightly decreases.

5.5 Conclusions

We have updated the analysis of NP violating LFU, by using the effective Lagrangian ap-

proach and also in the Z ′ and leptoquark models [1]. By considering generic complex Wil-

son coefficients we found that purely imaginary coefficients do not improve significantly

B meson physics observable predictions, whereas complex coefficients (Table 5.1) do im-

prove the predictions, with a slightly improved pull than using only real coefficients [324].

We have analyzed the impact of considering complex Wilson coefficients in the analysis

of B meson anomalies in two specific models: Z ′ and leptoquarks, and we have presented

a combined fit of RK + and RK ∗0 observables, together with ∆Ms and C P-violation observ-

able Amix
C P when these complex couplings are included in the analysis, Fig. 5.7. We confirm

that real Wilson coefficients cannot explain the Bs-mixing anomaly; but also only imagi-

nary Wilson coefficients cannot explain the RK (∗) anomaly. Contrary, complex couplings

offer a slightly better fit. For complex couplings the predictions for RK + , RK ∗0 and∆Ms are

similar than for real couplings (Tables 5.3, 5.4). For Z ′ models the best fit in both cases is

obtained for MZ ′ ≃ 1−1.3TeV, a negative real part of the coupling Re(λQ
23) ≃−0.002, with
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Figure 5.7: Predictions for the observables included in the fit: (a) RK + and RK ∗0 , (b) ∆Ms

and (c) Amix
CP . Predictions for the Z ′ models are represented in blue, and for the S3 lepto-

quark model in red. Central values are marked with a circle in the real fits, with a triangle

in the imaginary fits and with a square in the complex fit. The length of the error bars

corresponds to the 1σ confidence interval. Our predictions are compared to the SM pre-

dictions (yellow rectangles) and experimental values (green rectangles), with the height

of the rectangles corresponding to the 1σ values.
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Figure 5.8: Updated version of Fig. 5.7(a), with the experimental value of RK (∗) obtained

by LHCb in [123] (purple rectangle). Model predictions are unchanged.

possibly a similar imaginary coupling part Im(λQ
23) ≃−0.0021. For leptoquark models the

situation is similar, with a best fit mass of MS3 = 4−5TeV and a coupling with a positive

real part yQL
32 yQL∗

22 ≃ 0.03−0.04, the presence of a similar imaginary part does not improve

significantly the fit. One can obtain better fits in the leptoquark models by relaxing the as-

sumption on the leptoquark couplings, or providing specific models for leptoquark cou-

plings, this analysis is beyond the scope of the present work. In summary, new physics Z ′

or leptoquark models with complex couplings provide a slightly improved fit to B meson

physics observables as compared with models with real couplings.

5.5.1 Updated conclusions

After the completion of this work, Ref. [203] appeared also analyzing the presence of com-

plex couplings in the B system. Our results agree with Ref. [203] wherever comparable.

After the publication of [1], the SM predictions of the Bs mass difference has been

updated to ∆M SM
s = (18.4+0.7

−1.2) ps−1 [317, 333–337]. In consequence, the theoretical values

now lies just within 1σ of the experimental measurement, dispelling for now any hint of

anomaly concerning this particular observable. While ∆Ms will be considered in the rest

of the global analyses, we will focus on real Wilson coefficients.

The 2019 and 2021 measurement of RK in LHCb [123, 129] increased the experimental

value of this observable. The predictions obtained with our models are no longer com-

patible at the 1σ level, as shown in Fig. 5.8.
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Chapter 6

Fit to SMEFT coefficients and future

prospects

This Chapter is devoted to an analysis of the B anomalies using the SMEFT formalism. In

order to guarantee the internal consistency of the results when the mixing induced by the

RG equations is considered, the analysis also includes observables from several physical

sectors. We will focus on eleven scenarios containing various combinations of effective

operators that include two leptons and two third generation quarks. After comparing all

the scenarios, the most descriptive scenario is studied in more detail, in order to under-

stand how each Wilson coefficient is affected by the observables. In the last Section, the

analysis is generalized in order to see how the expected improvement of the electroweak

experimental measurements could impact the results of the global fit.

This chapter is based on [2], and Section 6.4 is also based on [3, 5]. Some of the results

have been updated and extended with respect to the published versions, comparisons

between old and new results are included.

6.1 Introduction

As detailed in Section 2.4, several experimental collaborations observed LFUV processes

in B meson decays that would be a clear sign for NP. Besides the RK (∗) ratios discussed in

the previous section, another example is the case of the RD(∗) ratios defined in Eq. (2.43).

In the b → cℓν transitions, signs of violation of lepton universality have been observed

only in the e −τ and µ−τ cases, while the universality has been tested to great precision

in the e−µ case [102–104]. As a consequence, both Rℓ
D(∗) and Rµ

D(∗) should have similar pre-

dictions and measurements. We will consider for the present analysis all the experimental

measurements available for the RD(∗) ratios, that have been described in Section 2.4.2. For

the purposes of this analysis we also consider all the available experimental data for the

RK (∗) ratios and related b → sℓ+ℓ− observables, namely the optimized angular observable

P ′
5 [84], that can be found in Section 2.4.1.

73



74 CHAPTER 6. FIT TO SMEFT COEFFICIENTS AND FUTURE PROSPECTS

The compatibility of the individual measurements with respect to the SM predictions

is of 3.1σ for the RK + ratio, 2.3σ for the RK ∗0 ratio in the low-q2 region and 2.4σ in the

central-q2 region, taking into account the 2019 and 2021 experimental results.

In this chapter we investigate the effects of the global fits to the Wilson coefficients as-

suming a model-independent effective Lagrangian approach and including a discussion

of the consequences of our analysis in leptoquark models. We define different scenarios

for the phenomenological study by considering the NP contributions to the Wilson co-

efficients in such a way that NP is present in one, two or three of the Wilson coefficients

simultaneously. These scenarios are used to study the impact of the global fits on the

Wilson coefficients and, therefore, to exhibit more clearly which combinations of Wilson

coefficients are preferred and/or constrained by experimental data.

We begin in section 6.2 by presenting a brief summary of the EFT used to describe

possible NP contributions to B decays observables. Then, section 6.3 is devoted to the

global fits to the Wilson coefficients, presenting the set of scenarios that we are going to

analyze. As already explained, we will work in different scenarios that arise by considering

the presence of NP contributions in one, two or three of the Wilson coefficients. We will

compare the results of the global fit in each scenario with respect to two cases: the SM and

the best fit point of the three independent Wilson coefficients scenario (the most general

case). This particular choice of the Wilson coefficients that will enter our analysis is the

main difference with respect to previous global fits analysis in the literature. Section 6.3.1

is devoted to discuss in more detail the most general proposed scenario, scenario VII,

in which the prediction of the RD(∗) and RK (∗) observables is improved. In section 6.4

we include a discussion of the impact that future e+e− linear colliders will have in the

B anomalies. Finally, the phenomenological implications of our analysis in leptoquark

models is included in section 6.5. Conclusions are presented in section 6.6. Appendix C.1

contains the list of observables that contribute to the global fit with their prediction in the

most general scenario: the global fit to three independent Wilson coefficients receiving

NP contributions.

6.2 Setting of the fit

The SMEFT presented in Section 3.4 is formulated at an energy scale µSMEFT = Λ higher

that the electroweak scale, and the degrees of freedom are all the SM fields. The WET

presented in section 3.5 is formulated at an energy scale below the electroweak scale, for

example µWET = mb , and the top quark, Higgs, W and Z bosons are integrated out. All the

numerical analyses of this chapter will be performed using only the SMEFT operators,

while the WET Lagrangian will be useful for the discussion of the results.

We consider NP contributions at an energy scale Λ (Λ ∼ O (TeV)) described by the

SMEFT Lagrangian in Eq. (3.35). Since we are interested in the B anomalies, we only study

the SMEFT operators containing two left-handed quarks and two left-handed leptons,
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that is,

LSMEFT = 1

Λ2

(
C i j kl
ℓq(1) Q i j kl

ℓq(1) +C i j kl
ℓq(3) Q i j kl

ℓq(3)

)
, (6.1)

where the dimension six operators are defined as

Q i j kl
ℓq(1) = (ℓ̄iγµℓ j )(q̄kγ

µql ), Q i j kl
ℓq(3) = (ℓ̄iγµτ

Iℓ j )(q̄kγ
µτI ql ), (6.2)

ℓ and q are the lepton and quark SU (2)L doublets defined in the mass basis1, τI the Pauli

matrices, and i , j ,k, l denote generation indices. The Qℓq(1) operator couples two SU (2)L-

singlet currents, while the Qℓq(3) operator couples two SU (2)L-triplet currents. Conse-

quently, Qℓq(1) only mediates FCNC processes, and Qℓq(3) mediates both FCNC and FCCC

processes. We will restrict our analysis to operators including only third generation quarks

and same-generation leptons, and we will use the following notation for their Wilson co-

efficients:

C e
ℓq ≡C 1133

ℓq , Cµ

ℓq ≡C 2233
ℓq , Cτ

ℓq ≡C 3333
ℓq . (6.3)

This particular choice of the Wilson coefficients that will enter our analysis is motivated

by the fact that the most prominent discrepancies between SM predictions and experi-

mental measurements, namely RK (∗) and RD(∗) , affect the third quark generation. From a

symmetry point of view, this would amount to imposing an U (2)3 =U (2)q ×U (2)u ×U (2)d

symmetry between the first and second quark generations [310, 338, 339], that remain

SM-like. No restriction is imposed on the third quark generation. In the lepton sector

we only consider diagonal entries in order to avoid LFV decays. This flavour structure for

NP contributions has been presented in [339] as a minimal working setup. An analysis

that studies NP contributions to C e
ℓq and Cµ

ℓq , although not simultaneously, can be found

at [340].

These operators contribute to the NP part of the Cℓ
V L operators in Eqs. (3.48), Cℓ

9 and

Cℓ
10 operators in Eqs. (3.42) of the WET when matched at the electroweak scale µEW. Using

the package wilson [341], we define the Cℓq operators at Λ = 1TeV, we calculate their

running down to µEW = MZ , then match them with the WET operators and finally run the

down to µ= mb , where the B physics observables are computed. We found the following

relations between the Wilson coefficients at high and low energies:

C e,µNP
9 (mb) =−0.583C e,µ

ℓq(1) −0.596C e,µ
ℓq(3) , C e,µNP

10 (mb) = 0.588C e,µ
ℓq(1) +0.591C e,µ

ℓq(3) ,

C e,µNP
V L (mb) = 0.0012C e,µ

ℓq(1) −0.0644C e,µ
ℓq(3) , CτNP

V L (mb) =−0.0598Cτ
ℓq(3) . (6.4)

The RD(∗) ratios obey the expressions of Eq. (3.50). The dependence of the RK (∗) ratios

on the Wilson coefficients has been obtained in Appendix A, and an analytic computation

of RK ∗0 as a function of CµNP
9 , CµNP

10 in the region 1.1 ≤ q2 ≤ 6.0GeV2 can be found in

Eq. (3.47).

1In both the “Warsaw” and in the “Warsaw-down” basis, the lepton and d-quark fields are defined so

that their mass matrices are diagonal. Consequently, translating from one to another does not modify the

Lagrangian in Eq. (6.1). The relation between the two basis is shown in Eq. (7.3) of the next chapter.
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It is important to note that the RG-induced SMEFT operators shift the Fermi con-

stant [185] according to Eq. 3.40 and the elements of the CKM matrix [186] from their

SM values. These shifts are already included in the matching conditions of Eq. (6.4).

The Oℓq operators (6.2) also produce unwanted contributions to the B → K (∗)νν̄ de-

cays [202, 342]. In order to obey these constraints, we will fix the relation at the scale

Λ= 1TeV

C i
ℓq(1) =C i

ℓq(3) ≡C i
ℓq . (6.5)

While Eq. (6.5) eliminates the tree-level contribution to the B → K (∗)νν̄ decays, the RG

generates a one-loop contribution proportional to the Cℓq(3) coefficients. However, we

have checked that this term is only a correction of 0.1% of the SM prediction. Eq. (6.5)

also has the positive consequence of a partial cancellation of loop-induced effects in Z -

pole and LFV observables.

6.3 Global fits

The effective operators affect a large range of observables. Therefore, any NP predic-

tion based on Wilson coefficients has to be confronted not only with the RK (∗) an RD(∗)

measurements, but also with several additional measurements involving the decays of

B mesons. In the case of the SMEFT, the evolution of the RG produces a mix of the

low-energy effective operators. For example, the Qℓq operators mix under RG evolution

with [184, 188]

Q j k
ϕℓ(1) = (ϕ†i

←→
D µϕ)(ℓ̄ jγ

µℓk ) , Q j k
ϕℓ(3) = (ϕ†i

←→
D I

µϕ)(ℓ̄ jγ
µτIℓk ) ,

Q j k
ϕe = (ϕ†i

←→
D µϕ)(ē jγ

µek ) , (6.6)

that modify the W and Z couplings to leptons. In consequence, NP in the semileptonic

couplings of third generation quarks will indirectly affect electroweak (EW) observables,

such as the mass of the W boson, the hadronic cross-section of the Z boson σ0
had or the

branching ratios of the Z to different leptons. In order to keep the predictions consistent

with this range of experimental test, global fits have proven to be a valuable tool [225,

343–345].

We have performed global fits to the Cℓq Wilson coefficients using the package smelli
v2.3 [342]. The global fit includes the RK (∗) and RD(∗) observables, the electroweak preci-

sion observables, W and Z decay widths and branching ratios to leptons, superallowed

nuclear β decays, the b → sµ+µ− observables (including P ′
5 and the branching ratio of

Bs → µ+µ−) and the b → sνν̄ observables. The SM input parameters are presented in Ta-

ble 6.1. These values are taken from open source code flavio v2.3 [195], sources used by

the program are quoted when available. Note that the experimental measurements used

to determine the SM input parameters, such as the µ→ eν̄ν decay, are not included in the

fit in order to ensure the consistency of the procedure. This code assumes unitarity of the

CKM matrix.
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G0
F 1.1663787(6)×10−5 GeV−2 PDG 2014 [346]

αe (MZ ) 0.00781616(86) [195]

αs(MZ ) 0.1182(8) FLAG 2019 [333]

sin2 θ̂W (MZ ), MS 0.23129(5) PDG 2017 [329]

V 0
us 0.2248(8) FLAG 2017 N f = 2+1+1 [347]

|V 0
ub | 3.73(14)×10−3 FLAG 2017 N f = 2+1 B →πℓν [347]

V 0
cb 4.221(78)×10−2 [195]

δ0
KM 1.27(12) [195]

mu(2 GeV), MS 2.130(41) MeV [348]

md (2 GeV), MS 4.675(56) MeV [348]

ms(2 GeV), MS 92.47(69) MeV [348]

mc (mc ), MS 1.273(10) GeV [348]

mb(mb), MS 4.195(14) GeV [348]

Table 6.1: SM input parameters.

We proceed to study observables by defining some specific scenarios for combina-

tions of the C i
ℓq operators such that NP contributions to the Wilson coefficients emerge

in one, two or three of the Wilson coefficients simultaneously: in Scenarios I-III NP only

modifies the Cℓq operators in one lepton flavour at a time; in Scenarios IV-VI and X NP

is present in two of the Wilson coefficients simultaneously; and finally in Scenarios VII-

IX and XI we consider the more general case in which three of the C i
ℓq operators receive

NP contributions. The more general one of these last three scenarios is Scenario VII, in

which we consider three independent Wilson coefficients. This scenario is discussed in

more detail in section 6.3.1.

The goodness of each fit is evaluated with its difference of χ2 with respect to the SM,

∆χ2
SM = χ2

SM −χ2
fit. The package smelli actually computes the differences of the loga-

rithms of the likelihood function ∆ logL = −1
2∆χ

2. In order to compare two fits A and B ,

we use the pull between them in units of σ, defined as [349, 350]

PullA→B =p
2Erf−1[F (∆χ2

A −∆χ2
B ;nB −nA)] , (6.7)

where Erf−1 is the inverse of the error function, F is the cumulative distribution func-

tion of the χ2 distribution and n is the number of degrees of freedom of each fit. We will

compare each scenario against two cases: the SM (Cℓq = 0, n = 0) and the fit to three in-

dependent Wilson coefficients (scenario VII), which is the more general and descriptive

case. The pull from the SM quantifies how much each scenario is preferred over the SM

to describe the data. The larger the pull, the better description of the data of the pre-



78 CHAPTER 6. FIT TO SMEFT COEFFICIENTS AND FUTURE PROSPECTS

ferred scenario. The pull of scenario VII quantifies how much the fit over the whole space

of parameters is preferred over the simpler and more constrained fits. From the analy-

sis of this pull we are able to discuss the relevance of the proposed scenarios, the larger

the pull means that the more restricted scenario represents a worser description of the

experimental data.

The results of the fits are summarized in Table 6.2 for several combinations of C i
ℓq

operators, with one, two or three lepton flavour present simultaneously in the Wilson

coefficients as defined below. The best fit values at 1σ and pulls from the SM and to

scenario VII for all scenarios are included in this table.

• Scenarios I, II and III: In these scenarios, NP only modifies the C i
ℓq operators in one

lepton flavour at a time, i.e C e
ℓq , Cµ

ℓq or Cτ
ℓq . The largest pull from the SM prediction,

more than 4σ, is found in scenario II when the coupling to muons is added. This

result is in line with the common wisdom about the anomalies, explaining them

through NP in the muon sector [323–325, 328, 349], as well as the importance of

the superallowed nuclear β decays in the fit. The worst pull is obtained in the fit

to the tau coefficient, with 1.96σ, as it does not modify the value of the RK (∗) ratios.

Scenarios I and II both produce SM-like predictions for the observables RD and RD∗ :

Rℓ
D = 0.3006 and Rℓ

D∗ = 0.2528 for Scenario I and Rℓ
D = 0.3048 and Rℓ

D∗ = 0.2563

for Scenario II. Scenario III, with a larger value of its Wilson coefficient, produces

values closer to the average of the experimental measurements; i.e Rℓ
D = 0.318 and

Rℓ
D∗ = 0.268. In order to fully address the anomaly in these observables, a larger

deviation from the SM would be needed; however such a deviation would be in

conflict with the electroweak precision data, as we will see later in section 6.3.1, and

in agreement with [351].

• Scenarios IV, V and VI: In these scenarios NP is present in two of the Wilson coeffi-

cients. The best fit corresponds to scenario IV, where the contributions to C e
ℓq and

Cµ

ℓq are favoured with a pull of 4.73σwith respect to the SM. Figure 6.1a-c shows the

allowed regions for these fits at 1 and 2σ levels. In the fit to Scenario IV, the RK (∗) and

RD(∗) observables constrain the C e
ℓq −Cµ

ℓq combination; while the LFU-conserving

electroweak precision observables tightly constrain the combination C e
ℓq +Cµ

ℓq , and

the nuclear bet a decays only affect Cµ

ℓq . It is clear that EW precision observables

play an important role in the global fit and the preferred values for the Wilson co-

efficients. The reason for this behaviour is justified by deviations in Z -couplings to

leptons, the τ-leptonic decays and the Z and W decays widths, as shown in [352].

The values of the RK (∗) and RD(∗) observables in this scenario are given in Table 6.3.

Together, these sets of observables constrain the fit to a narrow ellipse around the

best fit point. In Scenarios V and VI, the Cτ
ℓq coefficient is determined by the elec-

troweak precision observables, that are compatible with a SM-like coefficient, and

by RD(∗) observables, that prefer a large negative value. All the experimental con-
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Figure 6.1: 1σ and 2σ contours for scenarios with two lepton flavours present in the Wil-

son coefficients: (a) Scenario IV, (b) Scenario V, (c) Scenario VI and (d) Scenario XI. All

available data is considered. The likelihood associated with the nuclear β decays is not

displayed in scenario V because it does not depend on the Wilson coefficients C e
ℓq and

Cτ
ℓq .
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straints for Cτ
ℓq show large uncertainties, which result in less statistical significance

of these fits and Cτ
ℓq still being compatible with zero at 2σ level. The central values

with 1σ uncertainties of the RK (∗) and RD(∗) observables for Scenario IV (the best fit

scenario in this subset) are shown in Table 6.3 and Figure 6.2. Below we compare

these results in various scenarios.

• Scenario VII: In this fit, the three Cℓq operators receive independent NP contribu-

tion. The pull from the SM, 4.64σ, is similar to that of scenario IV, and the values of

C e
ℓq and Cµ

ℓq are similar too, therefore the predictions for the RK (∗) observables are

very similar, as shown in Figure 6.2a. The value of Cτ
ℓq is close to that of Scenarios

III, V and VI, which allows a better fit to the RD(∗) observables, and especially to Rℓ
D ,

that is compatible at 1σwith its experimental value, as shown in Figure 6.2b. There-

fore, we conclude that the prediction of the RD(∗) and RK (∗) observables is improved

in scenario VII. We will discuss this scenario in more detail in Section 6.3.1.

• Scenario VIII: This scenario has universal couplings; the three Wilson coefficients

have the same universal contribution, and does not violate LFU. It has the small-

est pull with respect to the SM (1.40σ). This shows that LFU NP can not explain

experimental data, and LFU violation is needed to accommodate it.

• Scenario IX, X and XI: In these scenarios we impose the condition C e
ℓq =−Cµ

ℓq tak-

ing inspiration from Scenario VII. The allowed region for Scenario XI is depicted in

Figure 6.1d The treatment of Cτ
ℓq is what differentiates each scenario: In Scenario IX

the three Wilson coefficients have the same absolute value, but Cµ

ℓq has the opposite

sign; in Scenario X there is no NP contribution to Cτ
ℓq ; and in Scenario XI Cτ

ℓq enters

the fit independently from the other two coefficients. All three scenarios produce a

similar ∆χ2
SM, with Scenario X slightly lower because it does not describe the RD(∗)

anomalies, as we shall see. Scenario IX produces a better pull value, 5.27σ since it

requires less degrees of freedom. Scenarios IX and XI are able to reproduce Scenario

VII in a more parsimonious way.

The results for the RK (∗) and RD(∗) observables in the scenarios with best pulls, Sce-

narios IV, VII, IX, X and XI are presented in Table 6.3. Figure 6.2 shows the results for the

central value and 1σ uncertainty of these two observables in the three scenarios, com-

pared to the SM prediction (yellow area) and experimental measurements (green area).

These three scenarios have similar fits for the Wilson coefficients C e
ℓq and Cµ

ℓq , and there-

fore reproduce the experimental value of R [1.1,6]
K and reduce the tension in R [1.1,6]

K ∗ . The

main difference between these Scenarios is the fit for Cτ
ℓq : Scenario IV and X have no NP

contribution in the τ sector and consequently predicts SM-like RD(∗) ratios; Scenarios VII

and XI have a large contribution to Cτ
ℓq and is able to produce a prediction for Rℓ

D com-

patible with the experimental results at the 1σ level, and significantly improve the predic-

tions for Rℓ
D∗ and Rµ

D∗ ; Scenario IX has an intermediate value of Cτ
ℓq , and consequently its
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Figure 6.2: Central value and 1σ uncertainty of the (a) RK (∗) observables, and (b) RD(∗)

observables (blue lines) in scenarios IV, VII, IX, X and XI compared to the SM prediction

(yellow) and experimental measurements (green).

predictions for the RD(∗) ratios are not as good as in Scenario VII and XI.

In addition to the observables included in our global fits, it is also possible to constrain

the NP contributions to Wilson coefficients using high-energy collision data from LHC. In

particular, it is known that high pT tails in proton-proton collisions producing tau lep-

tons provide bounds that are competitive to those from the RD(∗) ratios in B physics [353].

Ref. [353] finds the bound |Cτ
ℓq(3)|/Λ2 < 2.6 TeV−2 by recasting the pp → τ+τ− searches in

ATLAS 13 TeV with 3.2 fb−1. The constraint |Cτ
V L| < 0.32 is established [354] for mono-τ

searches pp → τX+ ̸ET , by combining the results from ATLAS with 36.1 fb−1 and CMS

with 35.9 fb−1, at 13 TeV. In order to compare this constraint in the WET with our fits in

the SMEFT basis, we use the matching condition in Eq. (6.4), obtaining that |Cτ
ℓq(3)| < 5.35.

Therefore, we can conclude that all the results of our fits are clearly compatible with the

limits imposed by the high-pT phenomena.

6.3.1 Scenario VII

Since the scenario VII is the more general one and we found that the prediction of the RD(∗)

and RK (∗) observables is improved in this case, we discuss in this section this scenario in

more detail.

The χ2 of the fit can be expressed as a series expansion around its minimum [350],

χ2(C k
ℓq ) =χ2

fit +δC i
ℓq Hi j δC j

ℓq +O ((δC k
ℓq )3) , (6.8)

where δC i
ℓq =C i

ℓq −C i
ℓq |BF represent the deviation with respect to the best fit (BF) andH is

the Hessian matrix evaluated at the best fit. In scenario VII, the Hessian matrix takes the
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value:

H=

 307.34 56.741 −0.16755

56.741 669.62 −6.3921

−0.16755 −6.3921 28.466

 . (6.9)

Within the quadratic approximation, the points with constant ∆χ2 (e.g. all the points

that are 1σ away from the best fit) are located in the surface of an ellipsoid. The length and

orientation of the ellipsoid can be found with the Singular Value Decomposition (SVD) of

the Hessian,

H=UΣU T , (6.10)

where U is an orthogonal matrix whose columns are the directions of the principal axes,

and Σ is a diagonal matrix. The lengths of the semi-axes for a given value of ∆χ2 are

a j =
√
∆χ2

Σ j j
. (6.11)

In a χ2 distribution with 3 degrees of freedom, the 1σ confidence region corresponds

to ∆χ2 = 3.527. The lengths of the semi-axes, in decreasing order, are

a1 = 0.352, a2 = 0.109, a3 = 0.0721. (6.12)

The orientation of the axes, also in decreasing order of ai , are given by

U =

0.001453 0.9885 −0.1512

−0.01010 −0.1512 −0.9885

−0.9999 0.002963 0.009761

 . (6.13)

The first direction (i.e. the one that is less constrained by the fit) corresponds to the τ

coefficient, while the second and third directions contain a mix of the two other Wilson

coefficients, with a mixing angle θeµ = 8.7◦,

C1 ∼−Cτ
ℓq , (6.14)

C2 ∼ cosθeµC e
ℓq − sinθeµCµ

ℓq , C3 ∼−sinθeµC e
ℓq −cosθeµCµ

ℓq ,

C e
ℓq ∼ cosθeµC2 − sinθeµC3, Cµ

ℓq ∼−sinθeµC2 −cosθeµC3 . (6.15)

In the previous fit presented in [4], the mixing angle was θeµ ≈ 45◦. The physical inter-

pretation of the orientation of the axes in that case was pretty clear from our analysis. We

concluded that the NP effects in τ (axis 1) are mostly uncorrelated with those of the lighter

leptons, and NP in e and µ are better described as a combination of LFU effects (axis 2)

and LFUV effects (axis 3). The value obtained for the coordinate 3 implies a simultaneous

decrease in the electronic part and an increase in the muonic part to describe the LFUV

observables; and the value of coordinate 2 so close to 0 indicates that the LFU processes

are not changed with respect to the SM. However, the current fit is greatly affected by the

inclusion of the superallowed nuclear β decays, which constrain the possible values of
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Cµ

ℓq while leaving C e
ℓq and Cτ

ℓq unaffected. As a result, the mixing between the first and

second lepton generations is less important than before.

The extrema of the 1σ confidence ellipsoid are located at

C i
ℓq

∣∣∣
j s
= C i

ℓq

∣∣∣
BF

+ sUi k Ak j , (6.16)

where j = 1,2,3, s =±1 and Ak j = a jδk j .

Other notable points on the ellipsoid are found moving from the best fit point in the

direction of the C e
ℓq , Cµ

ℓq and Cτ
ℓq axes ( j = e,µ,τ). The distance from the best fit to the

ellipsoid when changing only one Wilson coefficient j is

a j =
√
∆χ2

H j j
, j = e, µ, τ , (6.17)

and the points of the ellipsoid obtained when only one Wilson coefficient is changed from

its best fit value are given by

C i
ℓq

∣∣∣
j s
= C i

ℓq

∣∣∣
BF

+ sa jδ
i
j , j = e, µ, τ . (6.18)

Finally, the points on the 1σ ellipsoid closest and furthest in the direction connecting

the best fit point and the SM benchmark are given by

C i
ℓq

∣∣∣
SM s

= C i
ℓq

∣∣∣
BF

(1+ saSM) , (6.19)

where the distance aSM is given by

aSM =
√√√√ ∆χ2

C i
ℓq |BF Hi j C j

ℓq |BF

. (6.20)

The Wilson coefficients at these points of the ellipse, from the corresponding best fit

point to the ellipsoid, at 1σ confidence level, are given in Table 6.4.

The pull for a single observable is defined as

PullO (Cℓq ) = O (Cℓq )−Oexp√
σ2

exp +σ2
th(Cℓq )

. (6.21)

The theoretical uncertainties of the observables in general depend on the SMEFT coef-

ficients. The package smelli treats the theoretical uncertainties in two different ways:

in some observables, such as the EW precision tests, the theoretical uncertainty is con-

sidered negligible compared to the experimental uncertainty. In other cases, like the B

physics observables, both theoretical and experimental uncertainties are included, but

they are assumed to be Gaussian. The list of observables that contribute to the global

fit with their prediction in scenario VII as well as the pulls that compare the predictions

against experimental measurements for NP models (NP pull) and in the SM (SM pull) is

presented in Appendix C.1. Notice that the values of these pulls are approximate, as they
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j s C e
ℓq Cµ

ℓq Cτ
ℓq ∆χ2

BF -0.150 0.150 -0.269

1 + -0.149 0.146 -0.622 3.35

1 − -0.150 0.153 0.0829 3.39

2 + -0.0423 0.133 -0.269 4.29

2 − -0.257 0.166 -0.270 4.44

3 + -0.161 0.0784 -0.269 3.71

3 − -0.139 0.221 -0.270 3.70

e + -0.0426 0.150 -0.269 4.07

e − -0.257 0.150 -0.269 4.17

µ + -0.150 0.222 -0.269 4.08

µ − -0.150 0.0771 -0.269 3.78

τ + -0.150 0.150 0.0824 3.39

τ − -0.150 0.150 -0.621 3.35

SM + -0.210 0.210 -0.378 4.69

SM − -0.0897 0.0897 -0.161 4.29

Table 6.4: Values of the Wilson coefficients at some points located at 1σ confidence ellip-

soid around the best fit point in Scenario VII.

0 100 200 300 400

Observable

0

1

2

3

4

|Pu
ll|

5

189
273

339

408

427

436

New Physics

Standard Model

Figure 6.3: Pulls in the Standard Model (orange) and scenario VII (blue) of the observables

included in the global fit. The observables with a difference of pulls between the SM and

Scenario VII of more than 1σ are highlighted: R [1.1,6]
K + (obs. 5), BR(τ− → e−νν̄) (obs. 189),

F t (54Co) (obs. 273), F t (34Cl) (obs. 339), F t (50Mn) (obs. 408), F t (14O) (obs. 427) and

F t (38mK) (obs. 436).
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do not take in account the correlation between observables and the uncertainty of the fit

is not considered in the reported values.

Figure 6.3 shows the pull of the observables included in the global fit for scenario VII

with respect to their experimental measurement (blue line), compared to the same pull in

the SM (orange line). It is clear that, for most of the observables, the NP either improves

their prediction, especially for RK + , RK ∗0 (observables 5, 12 and 16 in the table presented

in Appendix C.1), as well as the differential branching ratios of b → sµ+µ− processes in

several low-q2 bins 2; or leave the prediction mostly unchanged. Nevertheless, in the case

of the following observables, the pull of the scenario VII is significantly worse than that of

the SM:

Reµ(K + → ℓ+ν) = BR(K + → e+ν)

BR(K + →µ+ν)
, BR(τ− → e−νν̄) ,

Rµ/e
D∗ = Rµe (B → D∗ℓ+ν) = BR(B → D∗µ+ν)

BR(B → D∗e+ν)
, BR(π+ → e+ν) . (6.22)

Those observables corresponds to observables 95, 189, 276 and 299 respectively in the

table given in Appendix C.1. Scenario VII also produces worse predictions of the RK (∗)

ratios in the low-recoil bins q2 > 14 GeV2 (observables 154 and 197 in Appendix C.1), and

the corrected half-lives F t parameters of various superallowed nuclear β decays [355,

356] (observables 202, 236, 273, 339, 355, 408, 427, 439).

In order to identify which operators are constraining the fit in each direction we use

the difference of the pulls, defined as [350]:

δ′j s(O ) = PullO (Cℓq |BF)−PullO (Cℓq | j s) , (6.23)

where j s represents the direction of the corresponding axis, as described in Eqs. (6.16),

(6.18). The observables with the largest values of the square of δ′ for each extreme of the

ellipse are shown in Table 6.5. We can see that the values of C e
ℓq are constrained mostly by

the RK + ratio and the electroweak precision tests: the electron asymmetry in the Z decay

Ae , the W −mass, the forward-backward asymmetry AFB(Z → b̄b) and the Z-decay width

ΓZ (corresponding to observable 18-Ae , observable 58-mW , observable 15-AFB and ob-

servable 272-ΓZ as presented in Appendix C.1). The coefficient Cµ

ℓq is constrained mostly

by the F t values for superallowed nuclear decays (observable 202-26mAl, observable 339-
34Cl, observable 436-38mK, observable 145-46V), as well as RK + . Finally, the coefficient Cτ

ℓq

is constrained by τ observables: the branching ratios of τ→ eν̄ν and τ→ µν̄ν (observ-

ables 189 and 38) and the ratios Rℓ
D∗ and Rµ

D∗ (observables 3 and 72). This result is in

agreement with [357].

If we focus instead in the principal directions of the uncertainty ellipsoid, the picture is

similar: axis 1 is still dominated by τ observables. Axis 2, which is aligned predominantly

with C e
ℓq , is constrained by the LFU tests RK + and Rµ/e

D∗ (observables 5 and 284) and the

2See for example observables 1, 6, 7, 10, 29, 39, 41, 43, 46, 48, 53, 55, 56, 60, 78, 80, 84, 99, 127, 137, 140,

216, 238, 310, 324 in Appendix C.1
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C e
ℓq Cµ

ℓq Cτ
ℓq

No. Observable δ′2 No. Observable δ′2 No. Observable δ′2

5 R [1.1,6]
K + 1.05 202 F t (26mAl) 1.22 189 BR(τ− → e−νν) 0.99

18 Ae 0.47 399 F t (34Cl) 0.67 38 BR(τ− →µ−νν) 0.97

58 mW 0.41 436 F t (38mK) 0.57 354 σ0
had 0.68

15 AFB 0.34 145 F t (46V) 0.55 3 Rℓ
D∗ 0.43

272 ΓZ 0.27 5 R [1.1,6]
K + 0.53 72 Rℓ

D 0.16

Axis 1 Axis 2 Axis 3

No. Observable δ′2 No. Observable δ′2 No. Observable δ′2

189 BR(τ− → e−νν) 0.98 5 R [1.1,6]
K + 1.42 202 F t (26mAl) 1.17

38 BR(τ− →µ−νν) 0.97 18 Ae 0.35 339 F t (34Cl) 0.65

354 σ0
had 0.69 58 mW 0.30 436 F t (38mK) 0.55

3 Rℓ
D∗ 0.43 180 BR(π+ → e+ν) 0.27 145 F t (46V) 0.53

72 Rℓ
D 0.16 284 Rµ/e

D∗ 0.26 408 F t (50Mn) 0.47

SM direction

No. Observable δ′2

5 R [1.1,6]
K + 1.40

202 F t (26mAl) 0.83

339 F t (34Cl) 0.46

436 F t (38mK) 0.39

145 F t (46V) 0.38

Table 6.5: Observables with the largest difference of pulls between the best fit and the

extreme of the 1σ confidence ellipsoid. Number of the observables corresponds to the

ones given in Appendix C.1.
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Figure 6.4: Evolution of the pull of the observables in Table 6.5 along each axis of the

ellipsoid (a)-(c) and the SM direction (d).

electroweak precision tests Ae , mW (observables 18 and 58). Axis 3, on the other hand, is

constrained by the F t values.

Figure 6.4 represents the evolution of some selected observables from various sectors

(the B anomalies RD(∗) and RK (∗) , electroweak tests, τ and π decays and superallowed nu-

clear β decays) along the axes of the ellipsoid (see eq. (6.14) for definitions of C1,C2,C3).

In the case of the first axis, δC1/a1 =−1 corresponds to a suppression of NP in the τ sec-

tor, which is preferred by the τ decays, while δC1/a1 = 1 is an increase of τ effects with

respect to the best fit, that accommodates better the RD(∗) anomalies, as was previously

pointed out in [351]. In the second axis, δC2/a2 = 1 decreases the deviation of C e
ℓq , and to

a lesser extent also of Cµ

ℓq from their SM values, which would improve the pull for the π

decay into an electron and the F t parameters, and to a lesser extent, also for the τ→ eνν̄

decay and the Rℓ
D∗ ratio. On the other hand, a decrease in C2 would be favored by the elec-

troweak observables, and RK + for moderate decreases. In the case of axis 3, δC3/a3 =−1

favours NP effects in muons and slightly reduce the impact of NP in electrons, resulting

in improved pulls for RK + and Rℓ
D∗ , and worse pulls for the F t parameters, electroweak

observables and the τ and π leptonic decays into electrons.
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The last columns of Table 6.5 and Figure 6.4d show the observables that constrain

the fit along the direction connecting the SM and best fit point, that is in the points with

Wilson coefficients of the form C i
ℓq = C i

ℓq |BF (1+δCSM). We observe that this direction

is determined mostly by the LFUV observables R [1.1,6]
K + and the F t values from superal-

lowed nuclear β decays. These are the observables whose pulls change the most when

comparing the best fit and SM, and therefore the ones more relevant to constrain the fit.

In particular, the fit shows a tension between these observables, with RK + , together with

RD(∗) and the electroweak precision tests, preferring larger NP contributions, and F t and

the leptonic decays preferring the Wilson coefficients to be more SM-like.

6.4 Prospects from future colliders

A new generation of particle colliders, complementary to the LHC and its future upgrade

HL-LHC, will be ready in the coming decades. The International Linear Collider (ILC)

will be a linear e+e− collider in Japan, operating at center-of-mass energies ranging fromp
s =250 GeV at the first stages up to

p
s =1 TeV [358]. The Compact Linear Collider (CLIC)

at CERN will also be a linear e+e− collider, operating from
p

s = 380 GeV up to
p

s = 3

TeV [359]. The Future Circular Collider (FCC), also at CERN, will be a circular collider first

using electrons (FCC-ee) from
p

s =90 GeV (Z pole) up to
p

s =365 GeV, and then using

hadrons (FCC-hh) reaching
p

s =100 TeV [360]. These colliders are conceived primarily

as Higgs factories, exploring the origin of the EWSSB mechanism and the hierarchy prob-

lem. But they can also supplement the flavour programs of the LHCb and Belle in different

ways: by producing B flavoured hadrons in e+e− → Z → bb events (ILC operating at the

Z pole is expected to produce around 109 Z s (“GigaZ”) [361], and the FCC-ee is expected

to deliver 1012 Z s (“TeraZ”) [362]); by searching for new particles responsible for the devi-

ations, such as leptoquarks or Z ′ bosons; by probing the effects of Wilson coefficients in

the kinematical distributions sensible to virtual effects; and by improving the precision of

the observables that enter our global fits. Due to the high number of Z bosons produced,

EW observables are a prime example of the advantages of e+e− colliders.

In what follows, we will focus on the prospects of indirect discovery using Wilson coef-

ficients and EW observables. The increased center-of-mass energy of the future colliders

improves the sensitivity to the effects of any dimension-6 Wilson coefficient. This is evi-

dent from the energy scaling of the 2 → 2 scattering amplitudes mediated by a dimension-

6 effective operator, A6 ∝ E 2

Λ2 [363].

The study of neutral-current benefits greatly from the clean signatures and small the-

oretical uncertainties provided by lepton colliders. The use of polarized beams allows for

the study of the different helicity structures of the Wilson coefficients. The constraints

from lepton colliders for the four-fermion contact operators are the result of a variety

of final states. For example, the e+e− → t t events can constrain Cℓq(1) −Cℓq(3), while

e+e− → bb events can constrain Cℓq(1) +Cℓq(3) [365]. Also the leading higher-derivative
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Figure 6.5: 95% exclusion reach in future colliders from the operators O2W (blue) and O2B

(orange). The effective scale is given by Λ/(g ′2pC2W ) for the blue bars, and Λ/(g 2pC2B )

for the orange bars. Taken from [364].

corrections to the W and Z bosons propagators from the O2W and O2B operators,

O2W = (DµWµν)i (DρW ρν)i , O2B = (∂µBµν)(∂ρBρν) (6.24)

from the Strongly Interacting Light Higgs (SILH) basis [179] can be recast into flavour-

universal four-fermion operators using the equations of motion

O2W =−g 2

4

∑
i , j

Oi i j j
ℓq(3) +·· · , O2B =−g ′2

6

∑
i , j

Oi i j j
ℓq(1) +·· · , (6.25)

where g and g ′ are the gauge couplings for the SU (2)L and U (1)Y SM groups.

The exclusion reach for the operators O2W and O2B in the different colliders are de-

picted in Figure 6.5, taken from [364]. Lepton colliders provide better sensitivity for singlet

operators (O2B ) than for triplet operators (O2W ), while the sensitivity of hadron colliders

is similar in both cases. In its initial stage at
p

s =250 GeV, ILC is expected to provide a

better sensitivity than the HL-LHC.

Since in our global fit, we found that NP couplings to electrons have roughly similar

values to the couplings to muons (see Table 6.2), this opens a window of possible obser-

vation in an e+e− machine, specially using e+e− → bs production. This process has a

very clean SM background due to it is only generated at one loop and CKM-suppressed

by Vt s [366].

The lepton linear colliders running at their initial stages will generate a great num-

ber of W and Z bosons (about 108 in ILC at
p

s = 250 GeV and 107 in CLIC at
p

s = 380

GeV [364]). This will allow to improve the precision of the EW observables: the mass of

the W boson mW , and the decay asymmetries (A) and rates of the Z boson (R). A dedi-

cated program running at the Z pole would increase the number of bosons by an order

of magnitude, improving accordingly the precision of the measurements. Circular e+e−

colliders using transversely polarized beams will achieve even better results.
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Obs
Central value

Error
IV V VI VII IX X XI

mW [GeV] 80.359 80.369 80.348 80.359 80.359 80.359 80.359 0.002

Ae 0.14724 0.14884 0.14537 0.14725 0.14726 0.14725 0.14725 0.00015

Aµ 0.1479 0.1486 0.1451 0.1468 0.1467 0.1468 0.1468 0.0008

Aτ 0.1470 0.1491 0.1458 0.1474 0.1472 0.1470 0.1474 0.0008

Ac 0.6675 0.6682 0.6668 0.6675 0.6675 0.6675 0.6675 0.0014

Ab 0.9347 0.9348 0.9346 0.9347 0.9347 0.9347 0.9347 0.0006

Re 20.73 20.73 20.73 20.73 20.73 20.73 20.73 0.02

Rµ 20.74 20.74 20.74 20.74 20.74 20.74 20.74 0.02

Rτ 20.78 20.77 20.77 20.77 20.78 20.78 20.77 0.02

Rc 0.1722 0.1722 0.1722 0.1722 0.1722 0.1722 0.1722 0.0008

Rb 0.2158 0.2158 0.2158 0.2158 0.2158 0.2158 0.2158 0.0002

Table 6.6: Assumed central values for the EW observables and their uncertainties in the

ILC global fits for several scenarios.

It is important to stress that, since the EW precision observables play an important

role in the global fit and the preferred values for the Wilson coefficients, a significant im-

provement in the precision of EW observables would have consequently a great impact

on our results and, in general, on the analysis of flavour anomalies. In order to study the

impact of the improved precision on our analysis, we have performed a new global fit.

Our projections for the EW observables to be included in our new fit are constructed as

follows: the central values correspond to the predictions in each of our scenarios, and the

uncertainties are taken from the ILC at
p

s = 250 GeV projections from [364]. The central

values and uncertainties for the EW observables are shown on Table 6.6 for Scenarios IV,

V, VI, VII, IX, X and XI. The largest tensions between our inputs and the SM predictions

are found in the observables Ae and mW (as a matter of example, being 5.6σ and 2.9σ

respectively in scenario VII). This choice for the projections guarantees us that the best fit

points are the same as in the previous section, so we can do a direct comparison between

the allowed regions between both fits.

The results for the fits to scenarios IV, V, VI and XI, the ones with NP contributions

present in two Wilson coefficients simultaneously are displayed in Figure 6.6. Both the

predictions obtained by the analysis of present colliders and by using the projected ILC

values are included. Solid lines correspond to the current fits, and dash-dotted lines to

the fits including the ILC projections. For clarification, a detailed region in which the

ILC prediction appears is displayed. The results confirm that EW precision observables

are relevant in the global fit. The reason for this behaviour is justified by deviations in

Z -couplings to leptons, the τ-leptonic decays and the Z and W decays widths, as shown

in [352]. Notice that in the scenarios where NP is present on the Cτ
ℓq coefficient (Scenarios
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Figure 6.6: 1σ and 2σ contours for scenarios with two lepton flavours present in the Wil-

son coefficients: (a) Scenario IV, (b) Scenario V, (c) Scenario VI and (d) Scenario XI. Solid

lines correspond to the current fits, and dash-dotted lines to the fits including the ILC

projections. All available data are considered.
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Observable Scenario IV Scenario VII Scenario IX Scenario X Scenario XI

R [1.1,6]
K + 0.862±0.013 0.864±0.013 0.861±0.003 0.862±0.016 0.864±0.013

R [0.045, 1.1]
K ∗0 0.889±0.006 0.890±0.006 0.888±0.003 0.889±0.006 0.890±0.005

R [1.1, 6]
K ∗0 0.862±0.013 0.864±0.014 0.861±0.005 0.862±0.016 0.864±0.014

Rℓ
D 0.297±0.007 0.306±0.007 0.302±0.007 0.297±0.008 0.306±0.007

Rℓ
D∗ 0.245±0.007 0.252±0.008 0.249±0.007 0.244±0.008 0.252±0.008

Rµ

D∗ 0.249±0.008 0.257±0.010 0.254±0.008 0.249±0.009 0.257±0.010

Table 6.7: Values of the RK (∗) and RD(∗) observables in the scenarios with better pulls for

the fit with the upgraded ILC precision.
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Figure 6.7: Central value and 1σ uncertainty of the (a) RK (∗) observables, and (b) RD(∗)

observables in scenarios IV, VII and IX (blue lines for current predictions, red lines for

ILC-based predictions), compared to the SM prediction (yellow) and experimental mea-

surements (green).

V and VI), Cτ
ℓq is determined by the EW precision observables and by RD(∗) observables,

that prefer a large negative value. The experimental constraints for Cτ
ℓq show large uncer-

tainties, then less statistical significance of these fits is expected.

The effects of the improved sensitivity to electroweak observables is most evident in

the C e
ℓq −Cµ

ℓq plane, as can be seen in Figure 6.6(a). The mixing angle in Scenario VII is

now θILC
eµ = 47◦, indicating a clearly marked separation between the LFUV physics, de-

scribed by C ILC
2 = cosθILC

eµ C e
ℓq − sinθILC

eµ ≈ 1p
2

(C e
ℓq −Cµ

ℓq ), and the LFU physics, described

by C ILC
3 = sinθILC

eµ C e
ℓq +cosθILC

eµ ≈ 1p
2

(C e
ℓq +Cµ

ℓq ). The LFUV direction is constrained mostly

by the RK (∗) ratios, and the LFUV is tightly constrained by the ILC projections around

C e
ℓq +Cµ

ℓq ≈ 0. Consequently, the scenarios that assume no LFU contribution to C e
ℓq and

Cµ

ℓq , that is Scenarios IX, X and XI, are barely affected by the changes to the electroweak

observables. A similar demarcation between LFUV contributions and LFU contributions

to the effective operators, in this case in the WET, was previously found in Ref. [367, 368].

The predictions for the RK (∗) and RD(∗) observables in the best fit points for scenarios
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IV, VII, IX, X and XI with the upgraded ILC precision can be found in Table 6.7. Figure 6.7

displays the central value and 1σ uncertainty of the RK (∗) and RD(∗) observables in the

three scenarios, compared to the SM prediction (yellow area) and experimental measure-

ments (green area). Both the current predictions (blue lines) and the ILC predictions (red

lines) are included in this figure. By the construction of Table 6.6, the central values are

the same as the ones in Table 6.3. The uncertainties in the predictions for the RK (∗) ratios

are controlled by C ILC
2 , and for the RD(∗) ratios by Cτ

ℓq , in both cases with little affection

from the ILC prospects. The exception is RD(∗) in Scenario IV, since these ratios are also

sensitive to LFU contributions and Cτ
ℓq is not included in this scenario.

6.5 Connection to leptoquark models

For completeness, we discuss in this section the phenomenological implications of our

assumptions in the leptoquark models, concretely in the vector leptoquark model U1 ∼
(3,1,2/3). The goal is to check the compatibility of the leptoquarks with our assumptions

and the experimental data, but we do not seek to impose new bounds on their scale.

The U1 leptoquark couples to left-handed and right-handed fermions according to the

Lagrangian in Table 4.2. The matching conditions of an vector leptoquark U1 of mass MU

to the SMEFT Wilson coefficients can be found in Eq. (4.1). This matching is performed

at the scale of MU , as indicated in Figure 3.4.

If we only allow couplings to the left-handed fermions, the leptoquark only affects Cℓq ,

as we used in our assumptions. The coefficients used in scenarios I through XI in terms

of the leptoquarks couplings are

C e
ℓq =− Λ2

2M 2
U

|(xLL
1 )be |2 Cµ

ℓq =− Λ2

2M 2
U

|(xLL
1 )bµ|2 Cτ

ℓq =− Λ2

2M 2
U

|(xLL
1 )bτ|2 , (6.26)

which obviously must be negative real numbers.

According to the results of the fits in Table 6.2, the scenarios that include NP contribu-

tions in the electronic or tau sectors show preference for negative values of C e
ℓq and Cτ

ℓq ,

and thus can be described by a U1 leptoquark. On the contrary, all the fits to scenarios

affecting the muon coupling show clear preference for positive values of the Wilson coef-

ficient Cµ

ℓq . In consequence, with our assumptions, the leptoquark U1 can not describe

the anomalies in the muon sector and therefore, does not play an important role in de-

scribing the LFUV, as shown by the fact that the scenarios with a greater pull from the SM,

scenarios IV, VII and IX, are not compatible. These results confirm previous results which

have shown that the U1 leptoquark models with couplings only to the third generation

quarks can not describe the anomalies on RK (∗) and can only address the deficit in this

observable when it has both couplings to bµ and sµ (see, for example [369]).

Other leptoquark models do not retain the Cℓq(1) = Cℓq(3) condition [201, 259], and

therefore produce large contributions to the B → K (∗)νν̄ decays. That is the case of the
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scalar S3 = (3̄,3)1/3, that predicts Cℓq(1) = 3Cℓq(3), and the vector U3 = (3̄,3)2/3, where

Cℓq(1) =−3Cℓq(3). The scalar S1 = (3̄,1)1/3 is even less suited, as it predicts Cℓq(1) =−Cℓq(3),

which would result in no NP contributing to b → sℓ+ℓ− at all. New vector bosons W ′ and

Z ′ would also be in conflict with the B → K (∗)νν̄ decays, as they predict Cℓq(1) = 0 while

Cℓq(3) has a non-zero value.

6.6 Conclusions

In this chapter we provide an analysis of the effects of the global fits to the Wilson coef-

ficients assuming a model-independent effective Lagrangian approach and including a

discussion of the consequences of our assumptions on the analysis in leptoquark models.

The global fit includes b → sµ+µ− observables (including the Lepton Flavour Universality

ratios RK (∗) , the angular observables P ′
5 and the branching ratio of Bs → µ+µ−), as well

as the RD(∗) , b → sνν̄ and electroweak precision observables (W and Z decay widths and

branching ratios to leptons).

We consider different scenarios for the phenomenological analysis such that NP is

present in one, two or three of the Wilson coefficients at a time (Table 6.2), with the choice

of the effective operators motivated by a U (2)3 symmetry between light quarks. Our re-

sults are relevant for model-independent analysis, clarifying which combinations of the

Wilson coefficients are constrained by the data. For all scenarios we compare the results

of the global fit with respect to both the SM and the more general and descriptive sce-

nario: the best fit point of the three independent Wilson coefficients scenario in which

NP modifies each of the operators independently.

We conclude that, when NP contributes to only one lepton flavour operator at a time,

the largest pull from the Standard Model prediction, almost 4σ (Table 6.2), appears when

the coupling to muons is added independently, corresponding to our scenario II. In those

scenarios in which NP is present in two of the Wilson coefficients simultaneously, the

best fit corresponds to the case of scenario IV, where the contributions to C e
ℓq and Cµ

ℓq are

favoured with a pull of 4.73σ with respect to the SM (Table 6.2).

If we focus on the more general and descriptive scenario of three independent Wilson

coefficients, we found that the prediction of the RD(∗) and RK (∗) observables is improved

in the scenario in which the three Cℓq operators receive independent NP contributions:

Scenario VII. In this case, the pull from the Standard Model is 4.64σ (Table 6.2) and the

predictions for the RK (∗) observables are very similar to the case of Scenario IV. A better fit

to RD(∗) observables, and specially to Rℓ
D , is obtained in this scenario. From our analysis,

we also conclude that the more relevant observables in the global fit are the LFUV observ-

able R [1.1,6]
K + and the F t parameters of the superallowed β decays; given that these observ-

ables exhibit the larger change in their pulls along the direction connecting the SM and

best fit point, that is C i
ℓq =C i

ℓq |BF (1+δCSM). These observables are also the more relevant

when constraining the Cµ

ℓq Wilson coefficient, while electroweak observables constrain
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C e
ℓq , and leptonic τ decays and the RD(∗) ratios constrain Cτ

ℓq .

Scenario IX (Table 6.2) represents a much more restricted scenario with only one free

Wilson coefficient, nevertheless it provides a good fit to experimental data, with a pull of

5.27σ with respect to the SM, and it is compatible with Scenario VII at 0.62σ, therefore

it provides a similar description to experimental data with less free parameters. Scenario

XI, with two degrees of freedom, provides a similar fit and a pull of 4.94σ.

Summarizing, Scenario VII (three independent Wilson coefficients) is the favoured

one for explaining the tension between SM predictions and B physics anomalies, with

Scenario IX and XI providing a similar fit goodness with a smaller set of free parameters.

We have also discussed that the future particle colliders, and in particular the linear

lepton colliders ILC and CLIC, will provide valuable new information to cast light on the

B anomalies.

Finally, we compare our setting to the U1 leptoquark model. We conclude that, with

our assumptions, this model can not describe the anomalies in the muon sector, and

therefore, does not play an important role in describing the LFUV. Other leptoquark mod-

els do not contribute to the effective operators that we consider in this chapter.

6.6.1 Updated conclusions

The results presented in this chapter have been obtained using the version 2.3 of flavio
and smelli, in contrast to version 1.3 that was used in [2, 3, 5]. The update has altered

some of our previous conclusions:

• Our previous analysis combined the 2014 and 2021 RK + measurements as if they

were statistically independent. However, the 2021 LHCb data included the 9fb−1

of data from 2014 plus 4fb−1 additional data, so the new result supersedes the old

one. This problem has been fixed in the present chapter, that includes only the

newest measurement for RK + . The consequence is a slightly smaller experimental

uncertainty for this observable, and therefore a larger SM pull (from 2.3σ to 3.2σ).

• The new version uses a different set of B → D∗ℓν̄ form factors [370]. The previ-

ous implementation produced smaller SM predictions for the RD(∗) ratios and also

underestimated the theoretical uncertainties; both effects combined approximately

compensated when calculating the statistical significance. Since the NP predictions

are proportional to the SM values (see Eq. (3.50)), the consequence of the new form

factors is that the predictions of our analysis for RD(∗) are less compatible with the

experimental results.

• The number of observables included in the flavio database and present in the fit

has increased dramatically, from 251 to 476. The most impactful inclusion are the

F t values of the superallowed nuclear β decays. These experiments are very sen-

sitive to the RG-induced modifications of the Fermi constant caused by the Wilson
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coefficient Cµ

ℓq (which mixes with C 22
ϕℓ(3) and C 1221

ℓℓ
appearing in Eq. (3.40)). While

our previous results showed a marked separation between the LFU (C e
ℓq +Cµ

ℓq ) and

LFUV (C e
ℓq −Cµ

ℓq ) phenomenology, the new observables blurred this separation. We

were only able to recover it when we studied the impact of the ILC by adding to the

fit very precise LFU observables.
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Chapter 7

Using Machine Learning techniques in

flavour physics

This Chapter is devoted to another global fit to the SMEFT operators, with the ultimate

goal of finding a common description for the RK (∗) and RD(∗) anomalies in B meson de-

cays. The difference with respect to the previous Chapter is a more complicated flavour

arrangement for the Wilson coefficients of the effective operators. This arrangement is

based on the idea that a NP interaction could affect only to one generation of fermions, in

a basis of eigenstates not aligned with the mass basis.

Due to the complicated geometry of the likelihood function, inherited from the non-

linear constraints between Wilson coefficients imposed by the flavour arrangement con-

sidered, an analysis of the best-fit point and the surrounding region requires the genera-

tion of samples of points using the Montecarlo algorithm. And to ease the time of com-

putation, a Machine Learning algorithm based on regression trees is trained in order to

approximate the likelihood function. This allows for a determination of the importance

of each fit parameter in the approximation, and the analysis of correlations between op-

erators and between observables. Finally, the results of the fit are interpreted in terms of

a vector leptoquark.

This Chapter is based on [4]. Some of the results have been updated compared to the

published version, although the conclusions remain unchanged.

7.1 Introduction

In the previous two chapters we have presented the results of analyzing LFUV processes

in B meson decays, in tension with the SM predictions. Concretely, we include in our

study the ratios of branching fractions RK (∗) (Eq. (2.41)), and Rℓ
D(∗) and Rµ

D(∗) (Eq. (2.43)),

by performing a global fit to the experimental results available when the corresponding

works have been done [1–3, 5].

It is also known that there exist other observables displaying some discrepancies with

99



100 CHAPTER 7. USING MACHINE LEARNING TECHNIQUES...

SM predictions even when larger theoretical uncertainties are taken into account [71, 137,

371, 372]. It is clear than when investigating the implications of the experimental mea-

surements in flavour physics observables, a global fit should be considered. Several global

fits can be found in the literature (see, for example [1–3, 209, 225, 323, 343–345, 373, 374]

and references therein).

In this chapter, we consider the SMEFT Lagrangian as before and we perform a global

fit by including the b → sµ+µ− observables; i.e. the Lepton Flavour Universality ratios

RK (∗) , the angular observables P ′
5 and the branching ratio of Bs → µ+µ−, as well as the

RD(∗) , b → sνν̄ and electroweak precision observables (W and Z decay widths and branch-

ing ratios to leptons). Because of the Gaussian approximation to characterize the fit is not

successful, we will use for the first time in this context a Montecarlo analysis to extract the

confidence intervals and other relevant statistics, and we explicitly show that machine

learning, taking jointly with the SHapley Additive exPlanation (SHAP) values, constitute a

suitable strategy to use in this analysis.

This chapter is organized as follows: Section 7.2 presents some details, not previously

included, of the EFT used to describe possible NP contributions to B decays observables.

For completeness, we then discuss in section 7.3 few details of the global fits performed,

introducing the phenomenological scenarios that we used in the analysis and presenting

our results. We found that the Gaussian approximation is not suitable to characterize the

fit and, therefore, in order to extract the confidence intervals and other relevant statis-

tics, we use a Montecarlo analysis that is described in section 7.4. The agreement of the

results obtained by the Maching Learning Montecarlo algorithm that we have proposed

and the ones obtained by using the Renormalization Group equations is also included

in this section. Section 7.5 includes a discussion of the phenomenological implications

of our analysis in leptoquark models. The conclusions are presented in section 7.6. Ap-

pendix C.2 contains the list of observables that contribute to the global fit, as well as their

prediction in the most general scenario considered in this work.

7.2 Setting of the fit

This section presents some issues of the EFT formalism used in our analysis that have

not been explained previously. First, at energy scales relevant for flavour processes it is

convenient to work at an energy scale below the electroweak scale, for example µWET =
mb , with the top quark, Higgs, W and Z bosons being integrated out. This theory has been

reviewed in Section 3.5, and the relevant operators for our analysis are Oℓ
V L in Eq. (3.48)

for the RD(∗) anomalies, Oℓ
9 and Oℓ

10 in Eq. (3.42) for the RK (∗) anomalies, and Oℓ
ν, also in

Eq. (3.42) for the B → K (∗)νν̄ decays. The dependence of the RK (∗) ratios on the Wilson

coefficients has been obtained in Appendix A, and an analytic computation of RK ∗0 as a

function of CµNP
9 , CµNP

10 in the region 1.1 ≤ q2 ≤ 6.0GeV2 can be found in Eq. (3.47). For

the RD(∗) ratios, their expressions in the WET are included in Eq. (3.50).
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Second, the NP contributions at an energy scale Λ (Λ ∼ O (TeV)) is defined via the

SMEFT Lagrangian of Eq. (3.35). We note that we will use the SMEFT operators for our

numerical analysis, and will refer to the WET operators only f or discussion and compar-

ison with other previous results in the literature. We focus on only a subset of operators

that affect the semileptonic B decays, as given in Eq. (6.1), but where the dimension six

operators are defined as

Q i j kl
ℓq(1) = (ℓ̄′iγµℓ

′
j )(q̄ ′

kγ
µq ′

l ), Q i j kl
ℓq(3) = (ℓ̄′iγµτ

Iℓ′j )(q̄ ′
kγ

µτI q ′
l ), (7.1)

being τI the Pauli matrices, ℓ′ and q ′ the lepton and quark SU (2)L doublets in the basis

of electroweak eigenstates, and i , j ,k, l denoting generation indices. As was established

in Section 6.2, translating from the mass basis to the electroweak basis not modify the La-

grangian in Eq. (6.1). The translation between the SMEFT Lagrangian in the electroweak

basis and in the mass basis was obtained in [200]. The SMEFT Lagrangian in the mass

basis is

Lmass =
C̃ i j kl
ℓq(1)

Λ2

(
ν̄i Lγµν j L + ēi Lγµe j L

)(
VmkV ∗

nl ūm Lγ
µun L + d̄k Lγ

µdl L

)
+

C̃ i j kl
ℓq(3)

Λ2

(
ν̄i Lγµν j L − ēi Lγµe j L

)(
VmkV ∗

nl ūm Lγ
µun L − d̄k Lγ

µdl L

)
+2

C̃ i j kl
ℓq(3)

Λ2

[
(ν̄i Lγµe j L)(Vmk ūm Lγ

µdl L)+ (ēi Lγµν j L)(V ∗
nl d̄k Lγ

µdn L)
]

. (7.2)

The relation between the Cℓq coefficients in the electroweak basis and the C̃ℓq coeffi-

cients in the mass basis is given by [200]

C̃ i j kl
ℓq(1) =C i j mn

ℓq(1) (U∗
d L)km(Ud L)l n , C̃ i j kl

ℓq(3) =C i j mn
ℓq(3) (U∗

d L)km(Ud L)ln , (7.3)

where Ud L and Uu L are the SM rotation matrices for the left-handed quarks, defined in

Eq. (2.13). The only constraint for these matrices is given by the CKM matrix, V =Uu LU †
d L .

The choice Ud L = 1, Uu L =V defines the “Warsaw-down” basis of the SMEFT [196], where

Cℓq(1) = C̃ℓq(1) and Cℓq(3) = C̃ℓq(3).

Finally, there is a recent proposal that links the B meson anomalies with NP in the top

sector [202, 352, 375]. In the interaction basis, denoted by double-primed fermions, only

the third generation particles exhibit NP couplings,

LNP = 1

Λ2
[C1(ℓ̄′′3γµℓ

′′
3)(q̄ ′′

3γ
µq ′′

3 )+C3(ℓ̄′′3γµτ
Iℓ′′3)(q̄ ′′

3γ
µτI q ′′

3 )] , (7.4)

where C1 = C 3333
ℓq(1) and C3 = C 3333

ℓq(3). The interaction basis is related to the basis where the

mass matrices are diagonal via the unitary transformations,

uL = Ûuu′′
L , dL = Ûd d ′′

L , νL = Ûℓν
′′
L , eL = Ûℓe ′′

L , (7.5)
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where ψL = PLψ (ψ= u, d , ν, e), Ûψ are generic unitary matrices, and the quark unitary

matrices are related to the CKM matrix as ÛuÛ †
d = V . The fermionic bilinears are trans-

formed as follows,

ū′′
3γµu′′

3 =λu
i j ūiγµu j , d̄ ′′

3γµd ′′
3 =λq

i j d̄iγµd j , ū′′
3γµd ′′

3 =λud
i j ūiγµd j

ē ′′
3γµe ′′

3 =λℓi j ēiγµe j , ν̄′′3γµν
′′
3 =λℓi j ν̄iγµν j , ē ′′

3γµν
′′
3 =λℓi j ēiγµν j , (7.6)

with the flavour matrices λ given by

λu
i j = (Ûu)3i (Ûu)∗3 j , λ

q
i j = (Ûd )3i (Ûd )∗3 j ,

λud
i j = (Ûu)3i (Ûd )∗3 j , λℓi j = (Ûℓ)3i (Ûℓ)∗3 j . (7.7)

We can write all the quark matrices in terms of λq ,

λu =V λqV † , λud =V λq , (7.8)

so every u-type quark picks an additional CKM matrix, which are exactly the same factors

appearing in the Lagrangian for the mass basis in Eq. (7.2). For example, if we expand the

first term in Eq. (7.4), we obtain

C1

Λ2
(ℓ̄′′3γµℓ

′′
3)(q̄ ′′

3γ
µq ′′

3 )

=C1

Λ2

(
ν̄′′3γµν

′′
3 + ē ′′

3γµe ′′
3

)(
ū′′

3γ
µu′′

3 + d̄ ′′
3γ

µd ′′
3

)
=C1

Λ2
λℓi jλ

q
kl

(
ν̄i Lγµν j L + ēi Lγµe j L

)(
VmkV ∗

nl ūm Lγ
µun L + d̄k Lγ

µdl L

)
, (7.9)

which agrees with Eq. (7.2) with the identification C i j kl
ℓq(1) = C̃ i j kl

ℓq(1) = C1λ
ℓ
i jλ

q
kl . Repeating

the same steps with the other term in Eq. (7.4), we arrive to C i j kl
ℓq(3) = C̃ i j kl

ℓq(3) =C3λ
ℓ
i jλ

q
kl .

In conclusion, the Lagrangian of Eq. (7.4) in the “Warsaw-down” basis becomes

LNP =
λℓi jλ

q
kl

Λ2

(
C1(ℓ̄iγµℓ j )(q̄kγ

µql )+C3(ℓ̄iγµτ
Iℓ j )(q̄kγ

µτI ql )
)

. (7.10)

We perform the RG running of the SMEFT Wilson coefficients fromΛ= 1TeV down to

µEW [376], where we match the SMEFT and WET operators [185], and finally we perform

the RG running of the WET coefficients down to µ = mb [190]. We check that the ana-

lytical expressions are in agreement with the numerical results obtained by the package

Wilson [341]. This operation is performed for all the effective operators in the WET that

receive contributions from the Lagrangian in Eq. (7.10). Here we reproduce the matching

conditions for the Wilson coefficients with the largest impact on the semileptonic B me-

son decays, that is, C i NP
9 and C i NP

10 for the B → K (∗)ℓ+ℓ− decays, C i NP
V L for the B → D (∗)ℓν
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decays, and C i
ν for the B → K (∗)νν̄ decays:

C i NP
9 ≈ 2

p
2π2

e2VtbV ∗
t s

1

GFΛ2
(C1 +C3)λq

23λ
ℓ
i i +

p
2

3VtbV ∗
t s

1

GFΛ2
(C1 +C3)λq

23 log
mb

Λ
,

C i NP
10 ≈− 2

p
2π2

e2VtbV ∗
t s

1

GFΛ2
(C1 +C3)λq

23λ
ℓ
i i ,

C i NP
V L ≈− 1p

2GFΛ2
C3λ

ℓ
i i

(
Vcs

Vcb
λ

q
23 +λ

q
33

)
,

C i
ν ≈

2
p

2π2

e2VtbV ∗
t s

1

GFΛ2
(C1 −C3)λq

23λ
ℓ
i i +

3
p

2g ′2

2e2VtbV ∗
t s

1

GFΛ2
C3λ

q
23λ

ℓ
i i log

mb

Λ
. (7.11)

We find out that there is a sizeable subleading term that affects C i NP
9 and not C i NP

10 ,

thus breaking the leading-order relation C i NP
9 = −C i NP

10 . However, this subleading term

is LFU, since it does not depend on the leptonic flavour matrix λℓ, and consequently this

term alone can not explain the anomalies observed in the universality ratios RK (∗) . Any ex-

planation will inevitably include some LFUV effects appearing at tree level. The interplay

between the tree-level and loop-induced terms is well-known and was also previously

discussed by [377].

In order to describe the rotation between the two bases, the flavour matrices λ intro-

duced in Eq. (7.7) must be hermitian, idempotent λ2 = λ, and trλ = 1. These properties

are consequences of the fact that, in the interaction basis, NP only affects one generation,

and follow immediately from the definitions:

λ j i = Û3 jÛ
∗
3i = (Û3iÛ

∗
3 j )∗ =λ∗

i j ,

λi jλ j k = Û3iÛ
∗
3 jÛ3 jÛ

∗
3k = Û3iÛ

∗
3k =λi k ,

trλ=∑
i
λi i =

∑
i

Û3iÛ
∗
3i = (ÛÛ †)33 = 1. (7.12)

A 3 × 3 hermitian idempotent matrix with trace one has 4 free real parameters, or

equivalently, 2 free complex parameters. Without loss of generality, we can use the pa-

rameterization [202]

λℓ, q = 1

1+|αℓ, q |2 +|βℓ, q |2

 |αℓ, q |2 αℓ, q β̄ℓ, q αℓ, q

ᾱℓ, qβℓ, q |βℓ, q |2 βℓ, q

ᾱℓ, q β̄ℓ, q 1

 , (7.13)

where αℓ, q and βℓ, q are complex numbers, which are related to the unitary rotation ma-

trices as

(Ûℓ,q )31 = αℓ,q√
1+|αℓ,q |2 +|βℓ,q |2

,

(Ûℓ,q )32 = βℓ,q√
1+|αℓ,q |2 +|βℓ,q |2

,
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(Ûℓ,q )33 = 1√
1+|αℓ,q |2 +|βℓ,q |2

,

αℓ,q = (Ûℓ,q )31

(Ûℓ,q )33
, βℓ,q = (Ûℓ,q )32

(Ûℓ,q )33
. (7.14)

We can therefore understand the parameters αℓ and βℓ as the relative degree of mix-

ing to the first and second generations of leptons, respectively, produced by the rotation

from the interaction basis to the mass basis. Analogously, the parameters αq and βq rep-

resent the relative degree of mixing to the first and second generations of d-type quarks

(remember that the u-type quarks pick additional CKM factors).

The conditions in Eq. (7.13) impose several relations between the LFUV operators,

which are proportional to the diagonal entries of λℓ, and the LFV operators, proportional

to the off-diagonal entries:

C 11i j
ℓq =

|C 13i j
ℓq |2

C 33i j
ℓq

, C 22i j
ℓq =

|C 23i j
ℓq |2

C 33i j
ℓq

. (7.15)

On the other hand, the Oℓq operators also produce unwanted contributions to the

B → K (∗)νν̄ decays [202]. In order to obey these constraints, we will fix at the scale µ=Λ
the relation

C i j kl
ℓq(1) =C i j kl

ℓq(3) ≡C i j kl
ℓq . (7.16)

This relation cancels the tree-level contribution to the B → K (∗)νν̄, but there is still a loop-

induced contribution, proportional to the Cℓq(3) coefficients. However, we have checked

that in our scenarios, this is only a 0.1% correction of the SM predictions.

7.3 Global fits

As previously mentioned and discussed in details, the effective operators affect a large

number of observables, connected between them via the Wilson coefficients, and there-

fore, global fits are mandatory in order to keep the predictions consistent with experi-

mental measurements. As in chapter 6, the global fits to the Cℓq Wilson coefficients have

been performed by using the packages flavio v2.3 [195] and smelli v2.3 [342]. As be-

fore, the goodness of each fit is evaluated with its difference of χ2 with respect to the SM,

and in order to compare two fits we use the pull between them in units of σ, as defined in

Eq. (6.7). The SM input parameter used for these fits are also the same as in the previous

chapter (Table 6.1). The Renormalization Group effects of the SMEFT operators that shift

the Fermi constant GF [185] from its SM value G0
F , as described by Eq. (3.40), are consid-

ered. The effects on the CKM matrix [186] are also considered by smelli. In particular,

for the best fit point of Scenario II (see below), we find a correction of 8% for Vub , while

Vus , Vcb and δKM remain unchanged.
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Scenario I Scenario II

C −0.13±0.05 −0.13±0.08

αℓ ±(0.07+0.04
−0.07)

βℓ 0±0.025 0±0.025

αq −0.05+0.12
−0.07

βq 0.8+2.0
−0.5 0.73+2.8

−0.6

∆χ2
SM 40.32 57.06

SM Pull 5.75σ 6.57σ

Table 7.1: Best fits to the flavour parameters and the coefficient C in Scenarios I and II.

Now we proceed to fit the set of flavour observables to the parameters C1 = C3 ≡ C ,

αℓ, q and βℓ, q of Eqs. (7.10) and (7.13). In this setting, we consider two Scenarios:

• Scenario I: λℓ, q
11 =λℓ, q

12 =λℓ, q
13 = 0, that is, αℓ =αq = 0, and C1 =C3.

• Scenario II: The only assumption is C1 =C3.

In both scenarios C1 = C3 in order to implement the constraints from the B → K (∗)ν̄ν

observables, as previously mentioned (see Eq. (7.16)). In Scenario I we also set λℓ, q
11 =

λ
ℓ, q
12 = λ

ℓ, q
13 = 0, i.e. αℓ = αq = 0, assuming that the mixing affecting the first generation

are negligible; this is the same assumption used in [202]. Scenario II is more general,

including non-negligible mixings to the first generation, allowing us to check the validity

of the above assumption and to discuss the results in a more general situation; focusing

in the relevance of the mixing in the first generation. In both scenarios, we only consider

real values for the parameters of the fit.

The best fits to the flavour parameters α and β for leptons and quarks and to the Wil-

son coefficient C ≡C1 =C3 in these two Scenarios are summarized in Table 7.1. The better

fit is found for Scenario II, with a pull of 6.57σ with respect to the Standard Model, 3.68σ

with respect to Scenario I. We note that the βℓ parameter, which mix the second and third

generations of leptons at tree level, is negligible in both fits. Figure 7.1 shows the two-

dimensional sections of the likelihood function ∆χ2
SM for the αℓ-βℓ and αq -βq parame-

ters in Scenario II, at 1σ and 2σ. The rest of parameters are given as in the best fit point

of this Scenario. Results for the RK (∗) and RD(∗) observables and for the LFV observables,

as well as for the global fit are included. We can observe that, due to the non-linear re-

lations imposed by Eq. (7.13), the regions of equal probability are highly non-ellipsoidal.

Therefore, we cannot use the Gaussian approximation to characterize the fit. Instead, we

will use a Montecarlo analysis, described in section 7.4, in order to extract the confidence

intervals and correlations between observables. The values of the parameters of the La-
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Figure 7.1: 1σ and 2σ contours for the (a) αℓ and βℓ and (b) αq and βq parameters, with

the rest of parameters as in the best fit point of Scenario II.

grangian (7.10) in Scenario II are C =C1 =C3 =−0.126±0.010, and

λℓ =

(5±3)×10−3 (0±1)×10−3 (6±3)×10−2

(0±1)×10−3 (0±2)×10−4 (0±1.5)×10−2

(6±3)×10−2 (0±1.5)×10−2 0.995±0.003

 , (7.17)

λq =

(1.7±1.5)×10−3 (−2±2)×10−2 (−3±2)×10−2

(−2±2)×10−2 0.35±0.2 0.47±0.08

(−3±2)×10−2 0.47±0.08 0.65±0.2

 . (7.18)

The most notable effect of the mass rotation is the mixing of the second and third

generation quarks, and there is also some mixing between the first and third generation

leptons.

In order to better understand and discuss the results obtained in Scenario II, we present

the matching of the parameters in Table 7.1 to the more relevant WET Wilson coefficients,

CµNP
9 =−0.67±0.21, CµNP

10 =−0.002±0.012, CτNP
V L = 0.098±0.03,

C e NP
9 =−0.32±0.25, C e NP

10 =−0.36±0.25. (7.19)

As established in Eq. (7.11), subleading RG effects cause a notable deviation from the

leading-order relation CµNP
9 =−CµNP

10 . This is in agreement with the fits performed in [1,

313, 321, 323–325, 327, 328, 349, 378–383], where the Wilson coefficient CµNP
9 receives

a greater NP contribution than CµNP
10 . According to our fit, CµNP

10 ≈ 0: from the match-

ing conditions, this operator is generated at tree level and is proportional to λℓ22 ∼ |βℓ|2.

From the plot in Fig. 7.1 we learn that the parameter βℓ is severely constrained by the LFV

observables, in green lines. Consequently, CµNP
9 = −CµNP

10 +C loop
9 ≈ C loop

9 is dominated
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Figure 7.2: Central value and 1σ uncertainty (blue lines) of the (a) RK (∗) observables and

(b) RD(∗) observables in Scenarios I and II, compared to the Standard Model prediction

(yellow area) and experimental measurements (green area).

by the loop-generated term in Eq. (7.11). Clearly, the logarithmic term that appear in the

first equation of (7.11) is relevant in the phenomenological analysis. In the electron sec-

tor, the mixing parameter αℓ does not suffer large constraints from the LFV sector. In this

case, the tree-level and loop-level terms are similar, and therefore C e NP
9 =−C e NP

10 +C loop
9 ≈

−C e NP
10 +CµNP

9 , which is of the same order of magnitude as C e NP
10 . In Section 7.5, we assess

an specific model of leptoquarks where these relations are met.

The predictions for RK (∗) and RD(∗) observables in the best fit points for both scenarios

are displayed in Figure 7.2, where the central value and 1σ uncertainty of the observables

is included. The yellow area corresponds with the SM prediction, and the green area with

the experimental measurements for each observable. Table 7.2 summarizes the results for

the RK (∗) and RD(∗) observables in Scenarios I and II for the corresponding best fit points.

For comparison, an statistical combination of all the available measurements of each ob-

servable, performed by flavio is included in the last column of this table.

From the above results, it is clear that the assumptions of Scenario I do not allow for a

simultaneous explanation of the RK (∗) and RD(∗) anomalies, as already pointed out in [202].

In particular, a value of the mixing between the second and third generation leptons βℓ

is large enough to describe RK (∗) through the tree-level CµNP
9 = −CµNP

10 coefficients, but

implies that RD(∗) < RSM
D(∗) . Instead, our fit shows a preference for a negligible βℓ, and

therefore the RD(∗) anomalies are explained only through NP in Cτ
V L . The predictions for

the branching ratios and angular observables of the B → K (∗)µ+µ− decays are improved

thanks to the flavour-universal loop-induced contribution to CµNP
9 =C loop

9 , while the RK (∗)

ratios are not sensitive to the universal contribution and remain SM-like.

The parameters in the fit of Scenario II, on the other hand, are able to describe the

RK (∗) and RD(∗) anomalies at the same time, as it is shown in Figure 7.2 and Table 7.2. To

consider the mixing between the first and third lepton generation does not notably alter
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Observable Scenario I Scenario II Measurement

R [1.1,6]
K + 1.0009±0.0011 0.84±0.03 0.85±0.03

R [0.045, 1.1]
K ∗0 0.924±0.004 0.885±0.010 0.65±0.09

R [1.1, 6]
K ∗0 0.9960±0.0010 0.84±0.03 0.68±0.10

Rℓ
D 0.356±0.010 0.357±0.011 0.35±0.03

Rℓ
D∗ 0.294±0.011 0.294±0.011 0.296±0.016

Rµ

D∗ 0.294±0.011 0.295±0.011 0.31±0.03

Table 7.2: Values of the RK (∗) and RD(∗) observables in Scenarios I and II for the best fit

points.
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Figure 7.3: Pulls in the Standard Model (orange) and Scenario II (blue) of the observables

included in the global fit. The observables whose pull changes in more than 1.5σ between

the SM and Scenario II are specially marked in the plot: Rℓ
D∗ (observable 3), R [1.1,6]

K + (ob-

servable 5) and Rµ

D∗ (observable 14).

the prediction for RD(∗) . At the same time, it originates a tree-level contribution to C e NP
9 =

−C e NP
10 , that breaks the universality between the electron and muon Wilson coefficients,

allowing for RK (∗) ̸= 1.

The comparison of the pull of each observable for this scenario with respect to their

experimental measurement (blue line), compared to the same pull in the SM (orange line)

is presented in Figure 7.3. The observables whose pull changes in more than 1.5σ be-

tween the SM and Scenario II are specially marked in the plot, i.e. RK + , R l
D(∗) and Rµ

D(∗)

(observables 5, 3 and 14 in the table presented in Appendix C.2). It is clear that for these

observables NP improves their prediction. For completeness, the full list of predictions

and pulls is also included in Appendix C.2. We have checked that all the observables in

the appendix, with the only exception of |ϵK | (observable 20), can receive a contribution

from the Wilson coefficients in Scenario II when considering the full RG equations. It is
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also important to note that the muon lifetime is not included in the above list of observ-

ables because it is used to determine the SM value of GF ; an input parameter.

Finally, we also investigate which class of observables constraint each parameter of

the fit. For this purpose we modify the flavour parameters α and β for leptons and quarks

and the Wilson coefficient C ≡ C1 = C3 independently, and we compare the results with

respect to the likelihood for RK (∗) , RD(∗) and LFV observables, and to the global likelihood.

Figure 7.4 shows the evolution of the likelihood for RK (∗) and RD(∗) observables and LFV

observables, as well as the global likelihood, when one parameter is modified from its

best fit value. The interplay between all observables is clearly established when the Wil-

son coefficient C is modified (Figure 7.4 (a)). In the case of the lepton mixing, it is clear

that the RK (∗) observables determine the best values of αℓ (Figure 7.4 (b)), while the LFV

observables limit the allowed values of βℓ to a narrow region around zero; being the ob-

servables that determine the behaviour of the global fit in this case (Figure 7.4 (c)). In the

quark mixing (Figure 7.4 (d) and (e)), we found that αq is constrained by the observable

BR(K + → π+νν̄), while βq is determined by the interplay of RK (∗) and RD(∗) , that prefer

larger values, and the LFV observables, that disallow βq > 1.

Clearly, the above results show the interplay between all parameters and confirm the

relevance of considering all observables when performing phenomenological studies in

the context of B anomalies and the discussion of possible explanation of these anomalies

through NP models.

7.4 Montecarlo analysis using Machine Learning

In this section we study the parameter points in the neighborhood of the best fit point. We

will generate samples of parameter points following the χ2 distribution given by the likeli-

hood of the fit. The Montecarlo algorithm is the standard procedure to generate samples

that follow a known distribution. In our case, the computation time needed to calculate

the likelihood of each candidate point is a huge drawback. Instead, we opted to use a Ma-

chine Learning algorithm to construct an approximation to the likelihood function and

that can be evaluated in a much shorter time. As far as we know, this is the first time that

these procedure is used in the analysis of flavour anomalies. There exist a previous article

that address the problem of NP model in b → cτντ decays by using a specific machine

learning algorithm [384], but the techniques used in this work are different to the ones we

used here.

7.4.1 Methodology

The first Machine Learning tool that we will use for our analysis is a model able to ap-

proximate any arbitrary function f : Rn → R, that we will use to create an approximation

of the log-likelihood function of our fit. We have chosen an ensemble method based on
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Figure 7.4: Likelihood of the fit when one coefficient is modified: (a) C , (b) αℓ, (c) βℓ, (d)

αq , (e) βq .
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Figure 7.5: Example of regression tree with four leaves. In red, application of the function

f (x) associated with the tree to an input x.

regression trees, which is implemented by xgboost [385].

Regression trees are a type of decision tree. A decision tree is a diagram that recursively

partitions data into subsets, based on the binary (true/false) conditions located at the

nodes of the tree. The final subsets in which the data are classified are called “leaves”. A

decision tree with T leaves is formally a function q : Rn → {1,2, . . . ,T } which associates to

each data point x ∈ Rn its leaf q(x). A regression tree assigns to each leaf i a real number

wi ∈R. The regression tree therefore defines a function f :Rn →R, given by

f (x) = wq(x) . (7.20)

An example of a regression tree with four leaves is depicted in Fig. 7.5. In practice, a single

tree is not general enough to reproduce an arbitrary function. For this reason, we consider

instead an ensemble of K regression trees F = { f (1), f (2), . . . , f (K )}. The ensemble defines

a function φ :Rn →R,

φ(x) =
K∑

i=1
f (i )(x) =

K∑
i=1

w (i )
q(x) . (7.21)

The function φ(x) will represent the approximation for the log-likelihood function. It

will be calculated using supervised learning, that is, the trees are obtained from a dataset

D = {(xi , yi )} where x1, . . . xN ∈ Rn are the inputs and y1, . . . yN ∈ R are the pre-computed

outputs for each input. In our case, the input data will be of the form xi = (Ci ,αℓi ,βℓi ,αq
i ,βq

i ),

and the outputs will be yi = logL(xi ).

In order to train the model from the dataset, we need to define an objective function

L [φ] that measures how well the model fits the data,

L [φ] =∑
i

l (φ(xi ), yi )+∑
k
Ω( f (k)) , (7.22)

which has two components:

• The loss function l (φ(xi ), yi ) is a differentiable function that measures the similarity

between the true output yi and its approximationφ(xi ). We use as loss function the

mean absolute error, l (φ(xi ), yi ) = |φ(xi )− yi |.

• The function Ω is the regularization term, that penalizes the complexity of trees,

that is, trees with many leaves or with large ||w ||. The purpose of the regularization
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is to prevent over-fitting, that is, the model learning “by heart” the training data and

being unable to extrapolate from them.

The ensemble is constructed in an iterative way, starting from one single tree f (0) that

contains just one leaf. At the step t of the iteration, the tree f (t ) is obtained by splitting one

of the leaves of the tree f (t−1) into two leaves; the splitting is determined by the optimiza-

tion of the objective function. In order to prevent over-fitting, the shrinkage technique

is used, that scales newly added weights by a factor η < 1, similar to the learning rate in

other Machine Learning algorithms.

Once we have an approximation of the log-likelihood function, we put it to use new

samples of datapoints xi = (Ci ,αℓi ,βℓi ,αq
i ,βq

i ). We use a Montecarlo algorithm to produce

the data distributed according to the χ2 distribution of the fit. At each step of the Monte-

carlo algorithm, a new tentative xi is proposed, which is accepted if the ratio of its prob-

ability divided by the probability of the best fit point is greater than a random number u

distributed uniformly in the interval [0,1], and rejected otherwise. Expressed in terms of

the logarithms of the likelihood function instead,

logL(xi ) > logLbf + logu . (7.23)

This algorithm requires many calls to the likelihood function, which are computationally

very tasking, and most of the proposed points are rejected. As a way to ease the burden,

we use the approximated log-likelihood φ(xi ) instead of the true function.

We can asses the importance of each parameter in the Machine Learning approxima-

tion at any point of the generated samples by using SHAP values [386, 387]. SHAP values

are based in Lloyd Shapley’s work on game theory [388], who won the Nobel Prize in Eco-

nomics for it in 2012.

The SHAP values are designed with three properties in mind:

• Local accuracy: The sum of the SHAP values is equal to the model prediction.

• Missingness: If any feature is missing, its SHAP value is zero.

• Consistency: If the model is changed so any feature has larger impact, its SHAP

value will increase.

Given a model φ(x), the SHAP trains 2n new models φz(x) for z ∈ {0,1}n binary vec-

tors. The modelφz(x) contains the feature x(i ) only if z(α) = 1, while that feature is ignored

when training if z(α) = 0. The marginal contribution φz ′(xi )−φz(xi ) for two models dif-

fering only in the presence of one feature (i.e. z(α) = 0, z ′(α) = 1 and z(β) = z ′(β) ∀ β ̸= α),

gives the importance of adding the feature α to the model z. The SHAP value for the fea-

ture α in the point xi is just the weighted average of all marginal contributions, with the

weight given by a combinatorial factor. An example is depicted in Fig. 7.6. The prediction

without any features φ0···0 is simply the average of the values yi in the dataset, and acts as

a base value common for all xi .
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Figure 7.6: Prediction models that would we necessary to train for three features in order

to calculate the SHAP values. The edges represent the marginal contributions for each

feature: in red for x1, green for x2 and blue for x3.

Finally, we will analyze the correlations between the points in the generated samples,

in order to understand the physical relations caused by the NP.

7.4.2 Procedure and results

In the first place we create a sample of 10000 parameter points (5000 re-used from the

calculation of Fig. 7.1 and 5000 randomly generated) and their likelihood. We discard the

points with ∆χ2
SM < 20, retaining 5763 points.

We train a Machine Learning predictor using the pre-computed sample. We used the

eXtreme Gradient Boosting (XGBoost) algorithm. We split the sample in two parts, 75% of

the points for the training and 25% points for the validation of the model. The algorithm

uses a learning rate of 0.05 and 1000 estimators, allowing early stopping at 5 rounds. The

performance of the Machine Learning predictor can be seen in Figure 7.7 (a). The hori-

zontal axis represents the actual value of the∆χ2
SM for each point of the validation dataset,

computed using the full flavio and smelli code, with the best fit point found in Sec-

tion 7.3 corresponding to the maximum value. The vertical axis represents the predicted

value for the same points obtained using the Machine Learning approximation. The pre-

dicted values for the∆χ2
SM reproduce their actual values, with a Pearson regression coeffi-

cient r = 0.971 and Mean Absolute Error of 0.655 in the validation dataset. The agreement

between the predicted and actual values is specially good for parameters near the best fit

point (∆χ2
SM > 45).
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Figure 7.7: Predictor performance: (a) Regression of the predicted values of ∆χ2 com-

pared to the real ones in the validation dataset. (b) Histogram of the predictions for the

Montecarlo points generated using the Machine Learning algorithm.

Base SHAP value for Final Actual

value C αℓ βℓ αq βq prediction logL

39.43 3.293 4.056 1.993 2.671 4.086 55.537 57.06

Table 7.3: SHAP values and Machine Learning prediction for the best fit point.

Next we implement the Montecarlo algorithm. To check if the Machine Learning Mon-

tecarlo algorithm can actually reproduce the χ2 distribution, we generate a sample of 500

points. The histogram for the predicted values of the χ2 are plotted in Figure 7.7 (b). The

histogram follow the general shape of the χ2 distribution, although there is an excess of

points near the best fit and a deficit of points in the region of low likelihood.

In order to understand how each parameter affects the prediction of the likelihood,

we use the SHAP values. Table 7.3 contains an example of the SHAP values for logL at the

best fit point. According to the Machine Learning model, the values of C and αℓ and βq

have the larger impact in the Machine Learning prediction.

Figure 7.8 shows the impact of each parameter to the final prediction, measured as

the mean of the absolute values of their SHAP values across a sample of 1000 Montecarlo

points.The SHAP values allow us to quantify the relative importance of each parameter in

the fit. The parameters βq and αℓ have the largest contribution and βℓ and C contribute

the less. This results is in disagreement with the assumption of Scenario I. Therefore, the

obtained result is in agreement with the previous section, where we already concluded

that the mixing with the first generation were necessary in order to describe both anoma-
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Figure 7.8: Distribution of the SHAP values for each parameter in a sample of 1000 gener-

ated points.

lies simultaneously.

We calculate the SHAP values for the logarithm of the likelihood at each point of the

Montecarlo sample. In this way, we can determine how each parameter contributes to the

fit, as shown in Figure 7.9. We can compare these SHAP values with Figure 7.4, where only

one parameter was changed at a time. We can conclude that the SHAP values reproduce

correctly the general features of the fit.

The above results show that the Machine Learning Montecarlo algorithm can be very

useful in this kind of analysis, being able to reproduce the results obtained in the previous

section in a shorter time. We can conclude that the machine learning, made jointly with

the SHAP values, constitute a suitable strategy to use in complex fitting problems with

large dimensionalities and complicated constraints, where a direct evaluation is too time-

consuming.

In order to check our Machine Learning procedure, we now discuss on the agreement

of the results obtained by the Machine Learning Montecarlo algorithm that we have pro-

posed and the ones obtained by using the RG equations defined as given in Section 7.2.

The Lagrangian in Eq. (7.10) exhibit a flavour structure, given by the λ matrices, relat-

ing the different entries of the tensor of Wilson coefficients C i j kl
ℓq . Under the RG evolution

and matching, this flavour structure is imprinted in the WET Lagrangian in Eq. (3.42) and

(3.48), and therefore in the related observables. Using the Machine Learning Montecarlo

algorithm described in the previous section, we generate a sample of 1000 points in pa-

rameter space around the best fit point. In each point we run the RG equations down

to the electroweak scale, perform the matching with the WET, and run the RG equations

again down to µ = mb . We compute the correlations between the semileptonic b → s

and b → c coefficients CℓNP
9 , CℓNP

10 , CℓNP
V L and Cℓ

ν for the different lepton generations. Fig-

ure 7.10 shows the matrix of Pearson coefficients describing linear correlations between

the WET Wilson Coefficients. In the electron sector, C e NP
10 , C e NP

V L and C e
ν show strong cor-

relations close to ±1. In the muon sector, CµNP
10 , CµNP

V L and Cµ
ν are also correlated between
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Figure 7.9: SHAP values for the parameters of the fit at the sample of 1000 generated

points.
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Figure 7.10: Matrix of Pearson correlation coefficients between semileptonic WET Wilson

Coefficients in the sample of 1000 points in parameter space.

them, however they are linearly independent of CµNP
9 . Instead, CµNP

9 is correlated with

the tau coefficients CτNP
V L and Cτ

ν, and to a lesser extent to C e NP
9 .

The correlations that we have found are consistent with the results of RG evolution

and matching in Eq. (7.11). In the case of the electron sector, the C e NP
10 , C e NP

V L and C e
ν

coefficients are all proportional to the product Cλq
23λ

ℓ
11 appearing in the tree-level con-

tribution. Analogously in the muon sector CµNP
10 , CµNP

V L and Cµ
ν , depend on Cλq

23λ
ℓ
22 and

in the tau sector CτNP
V L and Cτ

ν depend on Cλq
23λ

ℓ
33. The coefficient CµNP

9 is not correlated

to the rest of the muonic coefficients because it is dominated by the loop-level contri-

bution C loop
9 , which depend on the product Cλq

23. The coefficient C e NP
9 receives sizeable

contributions both from the tree-level and the one-loop terms, and consequently shows

a mild correlation with CµNP
9 and a total correlation with the combination CµNP

9 −C e NP
10 .

Lastly, there is a perfect correlation of ±1 between CµNP
9 and the tau coefficients, which is

caused by the fact that λl
33 = 0.994±0.001 is almost constant, so Cλq

23λ
l
33 ≈Cλq

23. We can

therefore conclude that the obtained data is in agreement with the arrangement of Wilson

coefficients presented in Eq. (7.11).

Besides, in the same sample of 1000 points, we determine the predictions of our model

for several selected observables of various flavour sectors, with large pull differences be-

tween the SM and Scenario II predictions: R [1.1,6]
K ∗0 (observable 12 in the table presented

in Appendix C.2)), BR(B+ → K +νν̄) (observable 89) and BR(Bs → µ+µ−) (observable 39)

from b → s decays, Rℓ
D (observable 72) from b → c decays, BR(B 0 → µ+µ−) (observable

258) from b → d decays, BR(K + →π+µ+µ−) (observable 394) from s → d decays that has a
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Figure 7.11: Matrix of Pearson correlation coefficients for selected observables in the 1000

points sample.

great impact in the fit value of αq , and the tau decay BR(τ− →µ−νν̄) (observable 38). The

correlation matrices are depicted in Figure 7.11.

From the above results, it is clear that the observables Rℓ
D∗ and BR(B+ → K +νν̄) show

an almost-perfect correlation. Then, predictions for these two observables in the gener-

ated sample are shown in Figure 7.12. The green vertical band in this figure corresponds

to the Rℓ
D∗ measurement [148], the red horizontal band to the 90% C.L. excluded region

for BR(B → K ∗νν̄) [389] and the gray band to the 2021 world average obtained by Belle

II [390]. The yellow horizontal band summarizes the SM prediction. The obtained val-

ues of Montecarlo points and the best fit prediction of our computations are also in-

cluded. It is important to stress that Rℓ
D∗ depends on the Wilson coefficient CτNP

V L , and

BR(B+ → K +νν̄) on Cτ
ν, and both of them are proportional to the product Cλq

23λ
ℓ
33. This is

in contrast with the conclusions of [391], where several leptoquark scenarios coupling

to right-handed neutrinos did not find a significant correlation between both observ-

ables. Even if the correlation is strong, the prediction for the B+ → K +νν decay remains

compatible with the 90% C.L., BR(B → K +νν) < 1.6× 10−5 [389], for the whole range of

experimentally-compatible values of Rℓ
D∗ . The world average for the branching ratio ob-

tained by Belle II [390] (not included in our numerical analysis) shows an enhancement

of a factor of 2.4±0.9 compared to the SM prediction [391]. While our data is in tension

with this world average, it is an encouraging sign of a possible interplay between RD(∗)

and BR(B+ → K +νν̄). Future experimental results from Belle II will further clarify the sit-

uation.
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Figure 7.12: Predictions for the observables Rℓ
D∗ and BR(B+ → K +νν̄) in the generated
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izontal band to the 90% C.L. excluded region for BR(B → K ∗νν̄) [389], the grey band to

the 2021 world average obtained by Belle II [390] and the yellow horizontal band to its SM

prediction.

It is worth stressing that the observable RK ∗0 displays a moderate correlation with Rℓ
D∗

and BR(B+ → K +νν̄), caused by the relation of the Wilson coefficient CµNP
9 with Cτ

V L and

Cτ
ν. On the other hand, RK ∗0 shows a mild correlation to BR(Bs →µ+µ−), even though both

observables depend on CµNP
10 . This is a result that sets us apart from many NP models that

impose the relation CµNP
9 =−CµNP

10 , in which case the correlation would be stronger.

Finally, none of the selected observables display a large correlation to the goodness of

fit measured by ∆χ2. This is a sign that there is not a single observable dominating the fit,

and reaffirms that global fits are in fact a necessity on the analysis of flavour anomalies.

7.5 Connection to leptoquark models

In this section we discuss the phenomenological implications of our assumptions in the

vector leptoquark model. The goal is to check the compatibility of the leptoquarks with

our assumptions and the experimental data, but we do not seek to impose new bounds

on their scale.

The vector leptoquark U1 ∼ (3,1,2/3) couples to left-handed and right-handed fermions,

with an interaction Lagrangian included in Table 4.2. An U1 leptoquark with mass MU ,

when matched with the SMEFT at the scale Λ, contributes to the Wilson coefficients

Cℓq(1), Cℓq(3), C i j kl
ed and C i j kl

led q . The matching conditions to these operators are indicated

in Eq. (4.1). This matching is performed at the scale of MU , as indicated in Fig. 3.4.

Our model does not include couplings to right-handed leptons in the interaction La-

grangian, and therefore all the xR couplings are set to zero. The left-handed couplings xL
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are related to the parameters of the Lagrangian in Eq. (7.10) according to

|(xLL
1 ) j i |2 =−2M 2

U

Λ2
Cλℓi iλ

q
j j ,

Arg((xLL
1 ) j i ) = Arg(λq

j 3)−Arg(λℓi 3)+θ , (7.24)

where θ is a free global complex phase. Since the flavour matricesλ are hermitian (λℓi i and

λ
q
j j are real and positive), we need C1 =C3 to be a real negative number. This condition is

fulfilled in both Scenarios I and II.

Without loss of generality we set θ = 0. The mass of the leptoquark is chosen to be

MU = 1.5 TeV, the lowest mass not excluded by direct searches [392]. The RG evolution

from the scale of the matchingµ= MU = 1.5TeV down to the scaleµ=Λ= 1TeV of the Wil-

son coefficients in the previous sections is negligible. Taking this into account, Eq. (7.24)

provides a one to one correspondence between the flavour parameters in the Lagrangian

of Eq. (7.10) and the leptoquark couplings to left-handed fermions. In the context of this

work, the leptoquark only couples to the third generation fermions in its interaction basis,

and the expression in Eq. (7.24) is the result of the rotation to the mass basis of quarks and

leptons.

In particular, if we apply Eq. (7.24) to the results of the fit in Scenario I in Table 7.1,

corresponding to an U1 leptoquark interacting with the second and third generations of

fermions in the mass basis, we obtain

xLL
1 =

0 0 0

0 1×10−14 0.495

0 1×10−14 0.586

 . (7.25)

And if we apply Eq. (7.24) to the results of the fit in Scenario II in Table 7.1, corre-

sponding to an U1 leptoquark interacting with all three generations of fermions in the

mass basis, we obtain

xLL
1 =

−2.27×10−3 −3.76×10−10 −0.0325

0.0319 5.29×10−9 0.458

0.0437 7.25×10−9 0.627

 . (7.26)

In both scenarios, the most important couplings are (xLL
1 )23 to second generation

quarks and third generation leptons, and (xLL
1 )33 to third generation quarks and leptons.

A similar leptoquark model has been proposed previously, as scenario RD2A in [393] as a

solution for the RD(∗) anomaly. The advantage of our proposal is that the inclusion of small

non-zero values of the couplings (xLL
1 )21 and (xLL

1 )31 is able to explain the RK (∗) anomalies

at the same time. The values of (xLL
1 )23 and (xLL

1 )33 are compatible with the exclusion

limits set in [393].

Other leptoquark models do not retain the Cℓq(1) = Cℓq(3) condition [201, 259], and

therefore produce large contributions to the B → K (∗)νν̄ decays. That is the case of the



7.6. CONCLUSIONS 121

scalar S3 = (3,3,1/3), that predicts Cℓq(1) = 3Cℓq(3), and the vector U3 = (3,3,2/3), where

Cℓq(1) = −3Cℓq(3). The scalar S1 = (3,1,1/3) is even less suited, as it predicts Cℓq(1) =
−Cℓq(3), which would result in no NP contributing to b → sℓ+ℓ− at all. New vector bosons

W ′ and Z ′ would also be in conflict with the B → K (∗)νν̄ decays, as they predict Cℓq(1) = 0

while Cℓq(3) has a non-zero value.

7.6 Conclusions

In this chapter, we present the results of the global fit to the flavour physics observables

that exhibit some discrepancies with respect to the SM values, by considering the NP

effects on the Wilson coefficients of the SMEFT Lagrangian. The global fit includes the

b → sµ+µ− observables; i.e. the Lepton Flavour Universality ratios RK (∗) , the angular ob-

servables P ′
5 and the branching ratio of Bs → µ+µ−, as well as the RD(∗) , b → sνν̄ and

electroweak precision observables (W and Z decay widths and branching ratios to lep-

tons). We choose two scenarios in which the condition C1 = C3 is imposed in order to

avoid unwanted contributions to the B → K (∗)νν̄ decays. In Scenario I we fix parameters

by assuming that the mixing in the first generation are negligible, as already considered

in [202]. Scenario II includes non-negligible mixings to the first generation, allowing us

to check the validity of the above assumption. We found that the better fit is obtained for

Scenario II, with a pull of 7.08σ with respect to the Standard Model, 2.92σ with respect

to Scenario I (Table 7.1). Simultaneous explanation of the RK (∗) and RD(∗) anomalies have

been also found in Scenario II (Figure 7.2 and Table 7.2).

We show that the Gaussian approximation to characterize the fit is not successful (see

Figure 7.1) and therefore, we use for the first time in the context of the so-called B anoma-

lies a Machine-Learning Montecarlo analysis to extract the confidence intervals and cor-

relations between observables. We found that our procedure reproduce the results ob-

tained in Section 7.3 for both the ∆χ2 distribution and the analysis of the impact of each

parameter on the global fit. We also have checked the agreement between the results ob-

tained by the Machine Learning Montecarlo algorithm proposed in this work and the ones

obtained by following the RG equations. Therefore, we conclude that machine learning,

jointly with the SHAP values, constitute a suitable strategy to use in this kind of analysis.

This is a promising area of study even if present uncertainties do not allow us to con-

clusively establish the presence of physics beyond the SM, and further analyses are needed.

An observation of the B+ → K +νν̄ decay in the near future at Belle II could provide fur-

ther insight in the RK (∗) and RD(∗) anomalies, especially if the excess in the current world

average is confirmed. This, together with the expected improved measurements of the

electroweak observables in the future linear colliders that we previously studied in [2,

3], underlines the fundamental role of global analyses and experimental precision in the

quest for an explanation of the B anomalies.
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Chapter 8

Leptonic Meson Decays into Invisible

ALP

This Chapter is devoted to a phenomenological study of ALP models with generic flavour

couplings to fermions. We only consider “invisible” ALP, that is, particles that evade direct

detection because of either a long half-life or preferential decays into other “invisible”

particles. The processes that we study are leptonic decays of mesons M → ℓνℓ, with M =
K , D, Ds ,B , that are expected to be sensitive to invisible particles with masses of hundreds

of MeV, or even a few GeV. The analytical expressions for leptonic meson decays with the

production of a massive ALP are derived and compared with the literature for the massless

case. The expressions are used, together with experimental data, to obtain bounds for

the couplings to the different flavours of quarks and leptons. Two methods to obtain the

bounds are compared, one of them uses the full branching ratio and the other exploits the

kinematical structure of a three-body decay by analyzing the differential decay rate.

This chapter is based on [6]. The work of this chapter was carried out during the stay

at Università degli Studi di Padova, Italy.

8.1 Introduction

Light pseudo–scalar particles naturally arise in many extensions of NP, as they are a com-

mon feature of any model endowed with a global U (1)PQ symmetry spontaneously bro-

ken at a scale fa ≫ v . Small breaking terms of the global U (1)PQ symmetry are needed

for providing a mass term, ma ≪ fa , to the pNG. Sharing a common nature with the QCD

axion [289–291], these class of pNGBs are generically dubbed as ALP. The key difference

between the QCD axion and a generic ALP can be summarized in the fact that ALPs do not

need to satisfy the well-known constraint [290], ma fa ≈ mπ fπ, that bounds the QCD ax-

ion mass and the U (1)PQ symmetry breaking scale via QCD instanton effects. Therefore,

in a generic ALP framework, one can assume the ALP mass being determined by some

unspecified UV physics, and, consequently, ma and fa can be taken as independent pa-

123



124 CHAPTER 8. LEPTONIC MESON DECAYS INTO INVISIBLE ALP

rameters.

The ALP parameter space has been intensively explored in several terrestrial facili-

ties, covering a wide energy range [394–403], as well as by many astrophysical and cos-

mological probes [404–408]. The synergy of these experimental searches allows to ac-

cess several orders of magnitude in ALP masses and couplings, cf. e.g. Ref. [279] and ref-

erences therein. While astrophysics and cosmology impose severe constraints on very

light ALPs, the most efficient probes of weakly-coupled particles in the MeV-GeV range

come from experiments acting on the precision frontier [409]. Fixed-target facilities such

as E949 [410–412], NA62 [413, 414] and KOTO [415] and the proposed SHiP [416] and

DUNE [417] experiments can be very efficient to constrain long-lived particles. Further-

more, the rich ongoing research program in the B physics experiments at LHCb [418, 419]

and the B factories [420–428] offers several possibilities to probe ALP couplings in ALP

mass regions not completely explored yet.

The main goal of this chapter is the detailed analysis of pseudo–scalar meson lep-

tonic decays, M → ℓνℓa, with an ALP escaping the detector or decaying into an “invis-

ible” sector. These decay channels were previously analyzed in [302] for a massless ALP

and for a universal ALP–fermion coupling. Here, a generic ALP mass and generic, yet

flavour–conserving, ALP couplings are going to be considered. Moreover, a factor 2 mis-

print in Eq. (15) of [302] (and equivalently a factor 4 misprint in the hadronic contribution

of Eq. (17) of [302]) is going to be corrected.

8.2 Leptonic Meson Decays in ALP

The most general effective Lagrangian describing ALP interactions with SM fermions, in-

cluding operators up to dimension five and assuming flavor conserving couplings reads:

δL a
eff =−∂µa

2 fa

∑
i

ci f iγ
µγ5 fi = i

a

fa

∑
i= f er

ci mi f iγ5 fi . (8.1)

The Lagrangian in Eq. (8.1) depends only on nine independent flavor diagonal couplings,

ci , one for each massive fermion fi = {u,d ,c, s, t ,b,e,µ,τ}, once fermionic vector–current

conservation and massless neutrinos are implied. It might be useful, for simplifying inter-

mediate calculations, and explicitly showing the mass dependence of ALP-fermion cou-

plings, to write the effective Lagrangian in the “Yukawa” basis instead of the “derivative”

one. The two versions of the effective Lagrangian in Eq. (8.1) are equivalent up to opera-

tors of O(1/ f 2
a ).

Using the effective Lagrangian of Eq. (8.1) one can calculate the leptonic decay rates

of pseudo–scalar mesons, M → ℓνℓ a, with the ALP sufficiently long-lived to escape the

detector without decaying (or decaying into invisible channels). In such a case the only

possible ALP signature is its missing energy/momentum. In the following, MM and PM

will denote the mass and 4–momentum of the decaying meson, while leptons and ALP
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Figure 8.1: Tree level contributions to the M → ℓνℓ a amplitude, with the ALP emitted

from the M meson. The diagram where the ALP is emitted from the charged lepton is

straightforward.

masses and 4–momenta will be indicated with mℓ, ma , pℓ, pν and pa respectively. Neu-

trinos will be assumed massless.

Charged pseudo-scalar meson decays proceed through the s–channel tree-level dia-

grams of Fig. 8.1, where only the diagrams where the ALP is emitted from the M–meson

are shown. The diagram where the ALP is emitted from the charged lepton follow straight-

forwardly, while the one with the ALP emitted from the W + internal line automatically

vanishes, being the W +W −–ALP coupling proportional to the fully antisymmetric 4D ten-

sor. In the following, the derivation of the decay amplitude for the channel in which the

ALP is emitted from the initial quarks or from the final charged lepton are discussed sep-

arately, as they need two different hadronization treatments.

8.2.1 Hadronic ALP Emission

The two diagrams depicted in Fig. 8.1 represent the contributions to the M → ℓνℓ a decay

in which the parent meson constituent quarks emit the ALP and then annihilate into a

virtual W boson, producing the final leptons. One refers to this case as hadronic ALP

emission. The corresponding amplitude 1 can be written as:

Mh = 〈0| q̄ΓµhQ |M〉(ℓ̄γµPLνℓ
)

, (8.2)

with Γµh given by

Γ
µ

h =−4GFp
2

VqQ

(
cq mq

fa
γµPL

̸pa− ̸pq +mq

m2
a −2pa ·pq

γ5 −
cQ mQ

fa
γ5

̸pa− ̸pq −mQ

m2
a −2pa ·pQ

γµPL

)
. (8.3)

In Eq. (8.3) pq and pQ are the initial quarks momenta, with cq and cQ the corresponding

ALP-fermion couplings.

The calculation of the 〈0|Q̄Γµh q |M〉 hadronic matrix element in Eq. (8.2) is compli-

cated by the fact that the meson is a bound state of quarks and one must assume a model

to describe the effective quark-antiquark momenta distribution. This can be done follow-

ing the Lepage–Brodsky technique [429, 430]. In the case of a massless ALP and universal

ALP-fermion couplings this amplitude have been firstly derived in [302].

1For definiteness, the leptonic current is written assuming a negative charged meson M = q̄Q state, being

q a light up-type quark and Q an heavy down-type one.
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Following [302, 429, 430], the ground state of a meson M is parameterized with the

wave–function

ΨM (x) = 1

4
φM (x)γ5( ̸PM + gM (x)MM ). (8.4)

In Eq. (8.4), with x one typically denotes the fraction of the momentum carried by the

heaviest quark in the meson. The function φM (x) describes the meson’s quark momenta

distribution, that for heavy and light mesons reads, respectively:

φH (x) ∝
[
ξ2

1−x
+ 1

x
−1

]−2

, φL(x) ∝ x(1−x) , (8.5)

with the normalization fixed such that:∫ 1

0
d xφM (x) = 1. (8.6)

The parameter ξ in φH (x) is a small parameter typically of O(mq /mQ ), being q and Q the

light and heavy quark in the meson. The mass function gM (x) is usually taken to be a

constant varying from gH (x) ≈ 1 and gL(x) ≪ 1 for a heavy or a light meson. The hadronic

matrix element can then be obtained by integrating, over the momentum fraction x, the

trace of the Γµ amplitude multiplied by the meson wave–functionΨM (x):

〈0| q̄ΓµQ |M〉 ≡ i fM

∫ 1

0
d x Tr

[
ΓµΨM (x)

]
, (8.7)

with the meson decay constants fM defined as:

〈0| q̄γµγ5Q |M〉 = i fM Pµ

M . (8.8)

In Eqs. (8.4–8.7), a slightly different notation with respect to the referred literature is used.

In particular the functions φM (x) have been normalized to one, in such a way that in

Eq. (8.7) the mesonic form factor can be explicitly factorized.

Inserting Eq. (8.3) and Eq. (8.4) into Eq. (8.7), and defining the initial quark momenta

as:

pq = (1−x)PM , pQ = xPM , (8.9)

one obtains the following decay amplitudes for the meson ALP–emission process:

Mh = 4iGF VqQp
2

fM

fa

M 2
M

2pa ·PM

[
cQ

mQ

MM
Φ

(Q)
M (m2

a)− cq
mq

MM
Φ

(q)
M (m2

a)

](
ℓ̄ ̸paPLνℓ

)
, (8.10)

where the functionsΦ(q,Q)
M (m2

a) contain the integrals over the quark momentum fraction

and are defined respectively as:

Φ
(q)
M (m2

a) =
∫ 1−δM

0

pa ·PM

m2
a −2(1−x)pa ·PM

φM (x)gM (x)d x ,

Φ
(Q)
M (m2

a) =
∫ 1

δM

pa ·PM

m2
a −2 x pa ·PM

φM (x)gM (x)d x . (8.11)
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The presence of the kinematical cutoff δM = ma/(2MM ) prevents the appearance of un-

physical bare singularities.

One can check the calculation done in Ref. [302] by taking the ma = 0 limit in Eq. (8.10)

and by setting cq = cQ = 2, as demanded by the different normalization of the correspond-

ing ALP-fermion couplings introduced in the effective Lagrangians. Notice that[
mb

MB
Φ(b)

B (0)− mu

MB
Φ(u)

B (0)

]
= 2

p
6Φ(mb , MB ) , (8.12)

with Φ(mb , MB ) the integral defined in Ref. [302]. Doing all these replacements one real-

izes that Eq. (15) of Ref. [302] is wrong and 1/2 of the result obtained from Eq. (8.10).

8.2.2 Leptonic ALP Emission

The leptonic decay amplitude for the lepton ALP–emission process can be easily obtained

by using the definition of the meson form factors of Eq. (8.8), giving

Mℓ = 〈0| q̄γµPLQ |M〉(ℓ̄Γµ
ℓ
νℓ

)
, (8.13)

with

Γ
µ

ℓ
=−4GFp

2
VqQ

(
cℓmℓ

fa
γ5

̸pa+ ̸pℓ+mℓ

m2
a +2pa ·pℓ

γµPL

)
. (8.14)

In Eq. (8.14) pℓ dubs the momentum of the final charged lepton. By making use of all the

Dirac matrices relations one obtains:

Mℓ =−4iGFp
2

VqQ
fM

fa

[
cℓmℓ

(
ℓ̄PLνℓ

)− cℓm2
ℓ

m2
a +2 pa ·pℓ

(
ℓ̄ ̸paPLνℓ

)]
. (8.15)

From Eq. (8.15), by setting ma = 0 and cℓ = 2 one recovers correctly the result in Eq. (7) of

Ref. [302].

8.2.3 Differential Decay Rate

For the 3-body decay at hand, and assuming a massless neutrino, one can define the fol-

lowing Mandelstam variables:

s = (PM −pℓ)2 = (pν+pa)2 = M 2
M +m2

ℓ−2MMωℓ ,

t = (PM −pν)2 = (pℓ+pa)2 = M 2
M −2MMων ,

u = (PM −pa)2 = (pℓ+pν)2 = M 2
M +m2

a −2MMωa , (8.16)

with the energy conservation providing the identity:

s + t +u = M 2
M +m2

ℓ+m2
a . (8.17)

The differential 3-body decay rate of any scalar particle in its rest frame can be simply

written as function of two independent final energies ωi , or equivalently of the two inde-

pendent Mandelstam variables, as

(dΓM )RF = 1

(2π)3

1

8MM
|MM |2 dωe dωa = 1

(2π)3

1

32M 3
M

|MM |2 d s du , (8.18)
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with MM =Mℓ+Mh . The Feynman amplitude squared reads:

|Mℓ|2 =CM c2
ℓ

m2
ℓ

M 2
M

{
pℓ ·pν

M 2
M

+ m2
ℓ

M 2
M

(
pa ·pν

m2
a +2 pa ·pℓ

+m2
a

pℓ · (pa +pν)

(m2
a +2pa ·pℓ)2

)}
, (8.19)

|Mh |2 =CM

[
cQ

mQ

MM
Φ

(Q)
M (m2

a)− cq
mq

MM
Φ

(q)
M (m2

a)

]2 2(pa ·pℓ)(pa ·pν)−m2
a pℓ ·pν

(pa ·PM )2 , (8.20)

MhM∗
ℓ
=CM cℓ

m2
ℓ

M 2
M

[
cQ

mQ

MM
Φ

(Q)
M (m2

a)− cq
mq

MM
Φ

(q)
M (m2

a)

]
m2

a(pa ·pν+pℓ ·pν)

(m2
a +2pa ·pℓ)(pa ·PM )

, (8.21)

with the overall constant factor defined as:

CM = 4G2
F |VqQ |2M 4

M

f 2
M

f 2
a

. (8.22)

One can notice from Eq. (8.21), that the mixed product is proportional both to the ALP

and the charged lepton masses and, consequently, can be neglected either for a massless

ALP or for meson decays to a light charged lepton.

The total decay rate, for a general ALP mass, can be obtained by numerically integrat-

ing the differential decay rate of Eq. (8.18) in the kinematically allowed region. On the

other hand, the massless ALP limit can be easily integrated analytically. By setting ma = 0

one obtains:

ΓM→ℓνℓa = G2
F |VqQ |2M 5

M

384π2

f 2
M

f 2
a

{
c2
ℓ

(
2ρ2 +3ρ4 +12ρ4 logρ−6ρ6 +ρ8)+

+
[

cQ mQ

MM
Φ

(Q)
M (0)− cq mq

MM
Φ

(q)
M (0)

]2 (
1−6ρ2 −12ρ4 logρ+3ρ4 +2ρ6)}. (8.23)

For cℓ = cq = cQ = 2 one recovers an agreement with the leptonic part of the decay rate in

Eq. (17) of Ref. [302], while the hadronic part is wrong and 1/4 of the result in Eq. (8.23),

consistently with what obtained from the Feynman amplitude check.

8.3 Bounds on ALP-fermion couplings

Pseudo–scalar leptonic decay experiments can be used to constraint flavour–diagonal

ALP-fermion couplings of Eq. (8.1) via the ALP (invisible) decay rate derived in the pre-

vious section. Leptonic B decays have been measured at B factories, latest Belle data for

electron, muon and tau channel can be found in [431–433], respectively. Charmed me-

son decays have been measured at BESS (see [434–436] for D and [437, 438] for Ds decays

respectively) and at Belle [439]. Leptonic kaon decays have been measured by KLOE and

NA62 [37, 440, 441]. In Tab. 8.1 available experimental determinations for the leptonic

pseudo–scalar decay branching ratios are summarized and the lowest order SM predic-

tions are shown for comparison.

The main assumption underlying the following phenomenological analysis is that the

ALP lifetime is sufficiently long to escape the detector (i.e. τa ≳ 100 ps) or alternatively

that the ALP is mainly decaying into a, not better specified, invisible sector. In both cases,
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Channel SM Branching Ratio Experiment Ref.

B± → e±ν̄e 8.37×10−12 < 9.8×10−7 [431]

B± →µ±ν̄µ 3.57×10−7 (5.3±2±0.9)×10−7 [432]

B± → τ±ν̄τ 7.95×10−5 (7.2±2.7±1.1)×10−5 [433]

D± → e±ν̄e 9.51×10−9 < 8.8×10−6 [434]

D± →µ±ν̄µ 4.04×10−4 (3.71±0.19±0.06)×10−4 [435]

D± → τ±ν̄τ 1.08×10−3 (1.2±0.24±0.12)×10−3 [438]

D±
s → e±ν̄e 1.24×10−7 < 8.3×10−5 [439]

D±
s →µ±ν̄µ 5.28×10−3 (5.49±0.17)×10−3 [436]

D±
s → τ±ν̄τ 5.15×10−2 (4.83±0.65±0.26)×10−2 [437]

K ± → e±ν̄e 1.62×10−5 (1.582±0.007)×10−5 [37]

K ± →µ±ν̄µ 0.629 0.6356±0.0011 [37]

Table 8.1: Lowest order SM predictions and experimental constraints on the considered

M → ℓν decay branching ratios.

the ALP signature is a missing energy/momentum, just as for neutrinos. In this scenario,

the simplest way to constrain ALP–fermion couplings is then to saturate the 1σ experi-

mental limits on the corresponding leptonic branching ratio adding the leptonic ALP de-

cay to the leptonic SM amplitude. No kinematical constraint (2-body vs 3-body decay) is

used in the analysis at this stage.

The derived bounds on the U (1)PQ breaking scale fa are shown in Tab. 8.2. These

values have been obtained by setting the relevant ALP-fermion coupling to one, with all

the others vanishing. The results are provided for two reference values of the ALP mass

ma = 0 GeV and ma = MM /2 GeV, showing the variability range that should be expected

for a massive vs (almost) massless ALP. As an example, the first row in Tab. 8.2 should be

read as follows: the “up–quark” columns represent the fa limits obtained by setting cu = 1

and cb = ce = 0 for the two reference values of ma , the “down–quark” columns represent

the limits obtained by setting cb = 1 and cu = ce = 0, and finally the values in the “lepton”

columns are obtained by setting ce = 1 and cu = cb = 0.

For heavy pseudo–scalar mesons, such as B , D and Ds , the formulas described in Sec-

tion 8.2 are straightforward. These mesons are very well described by the heavy wave

functionφH (x) in Eq. (8.5), with gM = 1. Constituent quark masses should be used for par-

tons, instead of bare masses, i.e. MM = m̂Q +m̂q (being m̂Q ≈ mQ ) with Q and q the heavy

and light quark in the meson, respectively. The kaon sector is more delicate as kaons can-

not be treated fully consistently neither as heavy or as light mesons [442]. Therefore, as

the Kaon mass is not too far from ΛQC D , the Brodsky–Lepage method introduces larger

hadronic uncertainties compared to the heavy mesons case. Here, conservatively, the



130 CHAPTER 8. LEPTONIC MESON DECAYS INTO INVISIBLE ALP

Channel
fa [MeV] up-quark fa [MeV] down-quark fa [MeV] lepton

ma = 0 ma = MM /2 ma = 0 ma = MM /2 ma = 0 ma = MM /2

B± → e±ν̄e 2849 79 3918 1294 0.50 0.13

B± →µ±ν̄µ 6016 167 8274 2723 218 59

B± → τ±ν̄τ 380 6 522 65 200 55

D± → e±ν̄e 5960 2130 5688 858 1.99 0.53

D± →µ±ν̄µ 3923 1370 3744 559 267 70

D± → τ±ν̄τ 7 7 6

D±
s → e±ν̄e 7921 2939 8236 1870 2.47 0.66

D±
s →µ±ν̄µ 5487 1995 5706 1284 349 92

D±
s → τ±ν̄τ 21 12 17

K ± → e±ν̄e 249144 87087 169804 10176 243 65

K ± →µ±ν̄µ 1744 497 1188 47 321 60

Table 8.2: Limits on the U (1)PQ scale fa derived from leptonic pseudo–scalar meson de-

cays, setting the relevant ALP-fermion coupling equal to one, with all the other couplings

vanishing.

heavy meson wave–function is used 2, with gK = 1 and the partonic masses defined as

m̂u = mu+Λ and m̂s = ms +ΛwithΛ= (MK −mu−ms)/2 a parameter of orderΛQC D . Dif-

ferent choices for gK , lead to different limits on fa that can obtained by a simple rescaling

of the ones shown in the last two rows of Tab. 8.2, i.e. f ′
a = gK fa . Therefore, smaller values

for gK result in less stringent bounds for the U (1)PQ scale.

One can immediately realize that the fa bounds shown in Tab. 8.2 from up-type and

down-type ALP-quark sectors are far from being competitive with the ones derived from

FCNC processes, like K → πa or B → K a. For example, from [427], one can infer a limit

fa ≳ 109 MeV stemming from the top-enhanced penguin contribution, assuming ct = 1.

Tree–level diagram contributions to FCNC processes can provide constraints on lighter

quark sectors [403], giving limits on fa in the range fa ≳ 106 −107 MeV. From Y (ns) de-

cays on can obtain a constraint of the same order for the bottom sector [428]. The only

pseudo–scalar meson leptonic channel that provide almost comparable bounds on the

quark sector is the K ± → e±ν̄e decay, while most the other pseudo–scalar leptonic de-

cays provide limits in the ballpark fa ≳ 103 − 104 MeV for the light lepton decays and

fa ≳ 101 −102 MeV for the τ ones.

Nonetheless, pseudo–scalar meson leptonic decays can be still very useful, as they

provide the best present limits on the ALP–lepton sector for an ALP with ma in the (sub)–

GeV range, bounding fa ≳ 102 − 103 MeV for most of the available channels. Typically,

2Using the heavy meson wave–function φH (x) one obtains a decay amplitude roughly 2/3 of one ob-

tained using the light meson wave–function, φL(x). A detailed analysis of the hadronic uncertainties for K

decays can be found in [403].
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Figure 8.2: Limits on the coupling (a) cu/ fa and (b) cd / fa derived from the leptonic meson

decay indicated in the legend, as function of the ALP mass ma .

the muon sector gives better limits on fa as it combines experimental data with relatively

smaller errors and a not too large lepton mass suppression of the amplitude in Eq. (8.19).

The electron sector suffers from a larger mass suppression and typically provides bounds

on fa ≳ 105 −106 MeV, with the only exception of the K ± → e±ν̄e channel benefiting from

its highly precise determination 3. Furthermore, in this ALP mass range, the results pre-

sented here on the electron coupling ce can be complementary with present and future

ALP-Dark Matter searches like EDELWEISS [443] and LDMX [444] and reactor searches at

CONNIE, CONUS, MINE, and ν-cleus [445].

The same information can be visually obtained from the plots in Fig. 8.2 and Fig. 8.3,

where the dependence of the ci / fa bounds on the ALP mass is shown for the ALP cou-

plings to up-type and down-type quarks (Fig. 8.2 (a) and Fig. 8.2 (b) respectively) and for

the ALP couplings to charged leptons (Fig. 8.3 (a)). As previously noticed, the K ± → e±ν̄e

channel is the most promising one, putting bounds on cu,s/ fa ≲ 5 TeV−1, while most of the

other channels are providing limits cu,c,s,b/ fa ≲ 102 −103 TeV−1, still far from the pertur-

bativity region for fa = 1 TeV. Concerning the ALP-charged lepton coupling notice that the

best limits come form µ decay channels, bounding cµ/ fa ≲ 103 −104 TeV−1. Measures of

cτ are still limited by worse experimental resolution providing bounds cτ/ fa ≲ 105 TeV−1.

Sensitivity to the ALP-electron coupling ce is obviously suppressed by the tiny electron

mass giving ce / fa ≲ 106 −107 TeV−1.

The results presented here represent an improvement of at least one order of mag-

nitude compared with limits obtained in Tab. III of [302]. Three main reasons can be

3Recall, however, that caution should be used when handling K data as a larger hadronic uncertainty has

to be accounted for, unavoidably.
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Figure 8.3: Limits on the coupling cℓ/ fa (a) derived from the leptonic meson decays indi-

cated in the legend, as function of the ALP mass ma . Figure (b) shows the limits obtained

on all the couplings from the analysis of the Ds →µνµa decay using the experimental BR

(full lined) and the missing mass distribution (dashed line).

advocated:

1. First of all, since the publishing of [302], experimental determination of pseudo–

scalar leptonic decays has typically improved by roughly a factor ten, leading to

more stringent bounds on fa .

2. Moreover, one has to recall that the leading hadronic contribution in Eq. (17) of [302]

underestimates by 1/4 the ALP branching ratio, resulting again in lower fa bounds.

3. Finally, assuming a universal ALP-fermion coupling results in a parametric cancel-

lation, clearly shown in Eq. (8.10) and Eq. (8.12) once cq = cQ is assumed, causing a

lost in sensitivity that numerically can be estimated in the 50%–70% range 4.

All the bounds shown up to now have been extracted using only information inferred

from the total decay rate. One may think that stronger constraints should be derived from

the differential decay rate dΓ/dωe (or equivalently dΓ/d s) obtained integrating Eq. (8.18)

over the ALP energy ωa (or over the Mandelstam variable u), thus exploiting the differ-

ent leptonic energy distribution characterizing two–body vs three–body decays. The SM

two-body decay distribution is peaked around vanishing missing mass s = m2
ν ≈ 0, and

therefore any excess of events with s > 0 could be an indication of a three-body decay.

Unfortunately this analysis cannot be performed for most of the decays under consid-

erations as available public results lack of the needed information regarding signal and

background differential distributions. However, as an example, in Fig. 8.3(b), the limit on

4A detailed and more qualitative discussion of this effect can be found in [403].
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the ci / fa coefficients obtained from the differential decay rate analysis for the Ds → µνµ

decay observed by BESIII [436] is shown. BESSIII collaboration provides data on missing

mass distribution (i.e. s in our notation) only for s < 0.2 GeV2, thus all limits for ma > 0.44

have been obtained assuming a flat background distribution up to the kinematical al-

lowed bound. For comparison, in the same plot, also the bounds from the branching ratio

(solid lines) are reported. The analysis reported in Fig. 8.3(b) should be considered as a

theoretical exercise, offering nevertheless an order of magnitude comparison between the

two approaches, showing that at the moment no clear improvement is obtained adding

spectral information. Having said that, a more serious effort could be done only having

full access to all the experimental data of signal and background distributions, and is be-

yond the scope of this work.

8.4 Conclusions

A detailed analysis of the pseudo–scalar meson leptonic ALP decays, M → ℓνℓ a has been

presented. These decay channels were previously analyzed in Ref. [302] but only for a

massless ALP and for a universal ALP–fermion coupling. Moreover, a factor 2 misprint in

Eq. (15) of Ref. [302] (and equivalently a factor 4 misprint in the hadronic contribution of

Eq. (17) of Ref. [302]) has been addressed.

Bounds on flavor diagonal ALP–fermion couplings are derived from the latest experi-

mental limits on the corresponding leptonic decays. The stringent bounds on ALP-quarks

couplings can be derived from the K → e ν̄e a decay, with cs,u/ fa around 5 TeV−1, bar-

ring large hadronic uncertainties. This bound is, however, still quite far from being com-

petitive with the ones derived from the K → πa process (see for example [403] for a re-

cent analysis). From heavier pseudo–scalar meson decay channels with a final electron

o muon, one can derive bounds on ALP-quarks couplings, cq / fa ≳ 102 TeV−1. Typically,

less stringent bounds can be obtained from the tau channels, mainly due to larger exper-

imental uncertainties.

Nevertheless, pseudo–scalars leptonic decays can provide the most stringent inde-

pendent upper bounds on ALP–leptons couplings, for and ALP mass, ma , in the (sub)–

GeV range. From Ds and B muon and tau decays one derives limits on cµ,τ/ fa around

5×103 TeV−1, in all the kinematically allowed ma range. The most stringent limit on the

ALP–electron coupling can be derived from the K → e νe a decay, ce / fa ≲ 4×103 TeV−1,

for ma ≲ 0.3 GeV. For heavier ALP, Ds and B pseudo–scalar meson decays provide much

softer bounds with ce / fa ≲ 106 TeV−1. Present bounds on ALP–electron couplings can be

complementary to those obtained from ALP–Dark Matter searches [446].



134 CHAPTER 8. LEPTONIC MESON DECAYS INTO INVISIBLE ALP



Chapter 9

Conclusions

Along the pages of this thesis, we have studied different physical processes related to the

phenomenology of Flavour Physics for quarks and leptons. A common thread is the idea

to account for the possible deviations of experimental results compared to the theoretical

predictions from a point of view free of prejudices from specific models of New Physics.

The way to do this is by extending the Standard Model in the most general way, but with-

out losing predictive power, with the use of Effective Field Theory. For the most part, our

studies have focused on the anomalies observed in the semileptonic decays of B mesons.

We have also analyzed the leptonic decays of several mesons and their compatibility with

ALPs.

The Standard Model offers an excellent prediction for most of the phenomena that are

observed in the high energy experiments, and these predictions must not be spoilt just to

find an explanation for a few puzzling observables. Therefore, it is mandatory to perform

global studies comprising all available experimental data from diverse physical sectors.

We saw a first example of this when the introduction of imaginary or complex cou-

plings and Wilson coefficients forced us to consider the implications on the C P asymme-

try. An even clearer example were the fits to the Standard Model Effective Field Theory

at the energy scale of Λ = 1TeV, where we discussed how our results were limited by ob-

servables coming from superallowed nuclear β decays, electroweak precision tests and

Leptonic Flavour Violation. Finally, in the case of the invisible ALP production, we have

seen the importance of different leptonic meson decay channels, and their comparison

with other decays analyzed previously.

Phenomenology is an area of physics that lives in the balance between theory and ex-

periment, and therefore, any new development in either can have a large impact in our

results. This is specially true in the phenomenology of Flavour Physics, which is in rapid

evolution caused by the plethora of experimental measurements and the renewed theo-

retical interest. We have experienced this evolution during the elaboration of the thesis,

forcing us to redo some of our analyses and even re-evaluate previous conclusions. An ex-

ample is our initial interest in a possible anomaly affecting the observable ∆Ms , included

with other flavour observables in the analysis of [1]. However, improved theoretical cal-

135
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culations within the SM solved the anomaly, making obsolete our results in this regard.

On the contrary, the anomalies that have centered most of our work, RK (∗) and RD(∗) , have

maintained their interest with new experimental measurements, and in the case of RK (∗) ,

its significance has even increased slightly. In fact, in our works [2, 4] we have updated

our global fits taking into account experimental measurements with improved precision

which have been published after the completion of our works. Additionally, we have stud-

ied the possible impact on our analysis of the future measurements of the electroweak

precision tests in the next generation of linear electron colliders. A final example of the

evolution in Flavour Physics is present in the study of [6], where the new experimental

measurements in the leptonic decays of several mesons have been an important factor in

the results that we have obtained.

A last general point of discussion is that, as we study more complete theories or mod-

els and include more observables, the required calculations become more involved. At

first this means the jump from analytical to numerical calculations, and when even the

traditional numerical approaches become too complicated and slow, as is the case of our

fit in Chapter 7, we need to look for alternative methods. We have resorted to a Machine

Learning algorithm based on decision trees in order to approximate the likelihood func-

tion and speed up the calculations [4]. It is important to note that, although Machine

Learning methods are useful in physics to help in the computations, they will never sub-

stitute physical theories as our guide to understand reality.

In the aforementioned works, which have been included in this thesis, we have per-

formed a series of numerical analyses, including global fits, which have produced some

novel results:

• In the analysis of the impact of complex Wilson coefficients for the B anomalies

within the Z ′ and S3 leptoquark models, we have considered a combined fit of

the observables RK + , RK ∗0 , ∆Ms and Amix
C P . We have concluded that purely imag-

inary couplings allow us to reproduce the tension in ∆Ms while obeying the con-

straints imposed by the C P asymmetry, but not achieving compatibility with the

RK (∗) anomalies.

The introduction of complex couplings in the leptoquark and Z ′ models results in

a slightly improved fit, compatible with the observed values of RK (∗) , while slightly

improving the prediction for ∆Ms .

• Taking into account the new theoretical determinations of∆Ms and the limited im-

pact of imaginary parts in the Wilson coefficients for the B anomalies, it is safe to

assume for the rest of our work that all Wilson coefficients are real.

• In the global fit to the SMEFT Wilson coefficients Cℓq(1) and Cℓq(3), which included

the b → sµ+µ− observables, as well as RD(∗) , BR(B → K (∗)νν̄) and the precision

tests in electroweak and nuclear β decays, we found that the favored scenarios are

those with maximal violation of Lepton Universality between the first and second
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generations, that is needed to explain the RK (∗) anomalies. Additionally, scenarios

where NP also contributes to the τ sector provide improved predictions for the RD(∗)

anomalies.

The value of the best fit can be understood as the interplay between three different

sectors: the B anomalies are sensitive to violations of lepton flavour universality,

electroweak observables that are sensitive to universal NP contributions, and the

superallowed nuclear β decays that are sensitive to physics in the muonic part. It

is therefore evident the relevance of the inclusion of all physical sectors in a phe-

nomenological analysis.

• We have shown that future measurements in the linear electron colliders will signif-

icantly improve the constrains to lepton-universal NP contributions.

• A mechanism for the simultaneous generation of the RK (∗) and RD(∗) anomalies has

been proposed, where the Effective Theory reflects an interaction that, at the high

scale, affects only the third generation fermions before the corresponding rotation

to the mass basis of the physical quarks and leptons. In this picture, the RD(∗) ra-

tios are tree level phenomena, while the RK (∗) ratios are the result of the interplay

between tree level affecting only the B → K (∗)e+e− decays, and loop level affect-

ing universally the electron and muon decay modes. Tree level contributions to the

muon decay modes are severly limited by Lepton Flavour-violating observables.

An interesting prediction of our proposal is the correlation between the RD(∗) anoma-

lies and an excess in the B → K (∗)νν̄ decays. A similar an excess has been indepen-

dently reported by the Belle II experiment.

• A possible realization of this mechanism has been proposed in the form of a vector

leptoquark U1 that interacts with the second and third generations of quarks and

the first and third generations of leptons. This leptoquark model extends a previous

proposal to explain only the RD(∗) anomalies, and is compatible with all the experi-

mental searches.

• Our work marks a novel approach to the study of the flavour anomalies, with a Ma-

chine Learning analysis being used to extract confidence intervals and correlations

between observables. We have shown that the Machine Learning techniques con-

stitute a suitable and useful tool for this kind of analyses.

• Finally, we have presented a detailed analysis of leptonic decays of mesons that

could produce pseudoescalar ALPs, M → ℓνℓ a. We have found that leptonic kaon

decays can impose bounds to the couplings of invisible ALPs to quarks which are

comparable, although not competitive, with bounds coming from hadronic decays.

The bounds derived from other leptonic meson decays are less stringent by sev-

eral orders of magnitude. On the other hand, the bounds on ALP-leptons couplings
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coming from leptonic meson decays, and specially from K → eνe a, are the most

stringent in the GeV and sub-GeV range.

9.1 Conclusiones

A lo largo de las páginas de esta tesis, hemos estudiado diferentes procesos físicos rela-

cionados con la fenomenología de la Física del Sabor. El hilo conductor ha sido la idea

de investigar posibles desviaciones en resultados experimentales de los últimos años con

respecto a las predicciones del Modelo Estándar, y además, hacerlo desde un punto de

vista libre de prejuicios de adopción de modelos específicos de Nueva Física. Con esta in-

tención, debemos extender el Modelo Estándar de la manera más general posible, pero

sin perder poder predictivo, mediante el uso de Teorías de Campos Efectivas. La mayo-

ría de nuestros estudios se han centrado en las anomalías en las desintegraciones semi-

leptónicas de mesones B . Posteriormente también hemos analizado las desintegraciones

leptónicas de varios mesones y su compatibilidad con ALPs.

El Modelo Estándar describe con una extraordinaria precisión la gran mayoría de los

fenómenos que se observan en los experimentos de altas energías. Sus predicciones no

deben ponerse en entredicho solo para buscar una explicación a unos pocos observables

de interés en los que hemos observado posibles desviaciones, como es el caso de las ano-

malías en la física de sabor. Para tenerlo en cuenta es necesario realizar estudios globales

incluyendo todos los datos experimentales disponibles de los diversos sectores físicos del

modelo.

En nuestro trabajo hemos visto un ejemplo de la necesidad de estos estudios globa-

les desde sus inicios, cuando introducir los acoplamientos y coeficientes de Wilson com-

plejos nos forzó a considerar las implicaciones en la asimetría C P . Un ejemplo aún más

claro han sido los ajustes estadísticos globales a la Teoría Efectiva del Modelo Estándar en

la escala de energía Λ= 1TeV, donde hemos discutido cómo nuestros resultados estaban

limitados tanto por los observables de las desintegracionesβ nucleares como por los tests

de precisión electrodébiles y los observables de violación del sabor leptónico. Finalmen-

te, en el caso de la producción de ALPs invisibles, hemos comprobado la relevancia de los

diferentes modos de desintegración leptónicos de los mesones, así como su comparación

con otras desintegraciones analizadas previamente.

La fenomenología es un área de la física que vive en el equilibrio entre la teoría y el ex-

perimento, y por lo tanto, cualquier avance en una u otra dirección puede tener un gran

impacto en nuestros resultados y conclusiones. En el presente, la fenomenología de la Fí-

sica del Sabor está marcada por una rápida evolución debido a la multitud de resultados

experimentales y el renovado interés teórico en el campo. En el transcurso de los trabajos

que se incluyen en esta tesis, esta evolución nos ha llevado a rehacer algunos de nuestros

análisis e incluso re-evaluar conclusiones previas. Un ejemplo de ello es que inicialmen-

te nos interesamos en una posible anomalía que afectaba al observable ∆Ms , realizando
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nuestro análisis de este observable, conjuntamente a otros asociados a la física del sabor,

en [1]. Sin embargo, la precisión en los cálculos teóricos en el seno del Modelo Estándar

resolvió la anomalía, haciendo que nuestros resultados en ese respecto quedaran obso-

letos. Por el contrario, dos anomalías que han centrado la mayor parte de esta tesis, RK (∗)

y RD(∗) , han corroborado su interés a medida que se publicaban nuevas medidas expe-

rimentales, y en el caso de RK (∗) , su significancia incluso ha aumentado ligeramente. En

nuestros trabajos [2, 4], de hecho, hemos ido actualizando los análisis globales tenien-

do en cuenta medidas experimentales más precisas posteriores a la publicación de los

mismos. Además, hemos abordado el posible impacto en nuestro análisis de las futuras

mediciones de los tests de precisión electrodébiles en la próxima generación de colisio-

nadores lineales [3, 5]. Otro ejemplo de la evolución en la Física del Sabor lo constituye

el estudio realizado en [6], donde la aparición de nuevas mediciones experimentales en

las desintegraciones leptónicas de varios mesones ha sido uno de los factores que han

conrtibuido a los resultados obtenidos.

Un último punto de discusión general es el hecho de que, a medida que estudiamos

teorías más completas e incluimos más observables, los cálculos necesarios pasan a ser

más complejos. Al principio esto significa el salto de cálculos analíticos a numéricos, y

cuando incluso los enfoques numéricos tradicionales se vuelven demasiado complica-

dos y lentos, como es el caso de nuestro ajuste del Capítulo 7, hay que buscar métodos

alternativos. Hemos recurrido a un algoritmo de “Machine Learning” basado en árboles

de decisión con el objetivo de hacer una aproximación de la función de verosimilitud y

acelerar los cálculos [4]. Es importante notar que los métodos de “Machine Learning”,

aunque resulten útiles en física para ayudar en los cálculos, nunca reemplazarán a las

teorías físicas como nuestra guía para comprender la realidad.

En los trabajos antes mencionados, e incluídos en esa tesis doctoral, hemos desarro-

llado una serie de análisis numéricos, incluyendo ajustes estadísticos globales con el pro-

pósito de investigar las anomalías en la Física de Sabor. Resumimos a continuación los

resultados más relevantes obtenidos:

• En el análisis del impacto de los coeficientes de Wilson complejos en el estudio de

las anomalías de mesones B en los modelos Z ′ y leptoquark S3, hemos consideran-

do un ajuste combinado de los observables RK + , RK ∗0 , ∆Ms y Amix
C P . Hemos conclui-

do que los acoplamientos imaginarios puros nos permiten reproducir la tensión en

el observable ∆Ms , obedeciendo las restricciones impuestas por la asimetría C P ,

pero no siendo compatibles con las anomalías en RK (∗) .

La introducción de acoplamientos complejos para los modelos de leptoquarks o Z ′

conlleva un ajuste ligeramente mejor que puede ser compatible con los valores ob-

servados de RK (∗) , y mejorar ligeramente la predicción para ∆Ms .

• Teniendo en cuenta la nueva determinación teórica de ∆Ms , que resolvió la ano-

malía en este observable, y el impacto limitado que tienen las partes imaginarias de
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los coeficientes de Wilson sobre las anomalías B , podemos afirmar que es plausible

considerar que todos los coeficientes de Wilson sean reales.

• En el ajuste estadístico a los coeficientes de Wilson del SMEFT Cℓq(1) y Cℓq(3), in-

cluyendo tanto los observables asociados de b → sµ+µ−, así como RD(∗) , BR(B →
K (∗)νν̄) y los observables de precisión electrodébiles y nucleares β, encontramos

que los escenarios más favorables son aquellos que muestran una violación máxi-

ma de la universalidad de los leptones, que es necesaria para explicar las anomalías

RK (∗) . Además, los escenarios donde la Nueva Física también contribuye al sector

del τ proporcionan predicciones mejoradas para las anomalías RD(∗) .

El valor que ofrece el mejor ajuste se puede entender como el resultado de los efec-

tos combinados de tres sectores: las anomalías B detectan las violaciones de la uni-

versalidad del sabor leptónico, los observables electrodébiles detectan las contri-

buciones universales de Nueva Física, y las desintegraciones nucleares β detectan

la física en el sector muónico. Esta interpretación es una evidencia de la relevancia

de considerar todos los sectores físicos en una análisis fenomenológico.

• Hemos mostrado que las mediciones futuras en los colisionadores lineales de elec-

trones mejorarán significativamente los límites a las contribuciones universales de

Nueva Física.

• Se ha propuesto un mecanismo para la generación simultánea de las anomalías de

RK (∗) y RD(∗) , donde la teoría efectiva refleja una interacción que, a escalas altas de

energía, afecta solamente a la tercera generación de fermiones, antes de la corres-

pondiente rotación a la base de masa de los quarks y leptones físicos. En esta situa-

ción, las anomalías de RD(∗) se generan a nivel de diagramas a nivel árbol, mientras

que RK (∗) es el resultado combinado de diagramas a nivel árbol que afectan sola-

mente a la desintegración B → K (∗)e+e− y efectos a un bucle que afectan de modo

universal a los modos de desintegración tanto en electrones como en muones. Las

contribuciones a nivel árbol a los modos de desintegración en muones están muy

limitadas por los observables de violación del sabor leptónico.

Una predicción interesante de nuestra propuesta es la correlación entre la anoma-

lía RD(∗) y un exceso en las desintegraciones B → K (∗)νν̄. El experimento Belle II ha

reportado un exceso similar.

• En este marco de trabajo, hemos propuesto una posible implementación de este

mecanismo en forma de un leptoquark vectorial U1 que interacciona con la segun-

da y tercera generaciones de quarks, y la primera y tercera generaciones de leptones.

Este modelo de leptoquarks extiende una propuesta previa que explicaba solamen-

te la anomalía RD(∗) , y es compatible con todas las búsquedas experimentales.

• Una novedad relevante de nuestro trabajo es que utilizamos por primera vez en el

contexto de las llamadas anomalías de sabor un análisis de Machine-Learning para
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extraer los intervalos de confianza y las correlaciones entre observables, demos-

trando que es una herramienta útil y adecuada en este tipo de análisis.

• Finalmente, hemos presentado un análisis detallado de las desintegraciones leptó-

nicas de mesones que podrían producir ALPs pseudoescalares, M → ℓνℓ a. Encon-

tramos que las desintegraciones leptónicas de kaones pueden imponer límites pa-

ra los acoplamientos de ALPs invisibles a quarks que son comparables, aunque no

competitivos, con los límites provenientes de las desintegraciones hadrónicas. Los

límites derivados de las desintegraciones leptónicas de otros mesones son varios

órdenes de magnitud menos restrictivos. Por otra parte, los límites a los acopla-

mientos ALP-leptones provenientes de desintegraciones leptónicas, y en especial

de K → eνe a, son los más restrictivos en el ámbito de los ALP de masas del orden

del GeV o sub-GeV.
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Appendix A

Differential observables for B decays in

the Weak Effective Theory

A.1 B → Kℓ+ℓ− decay

In the limit of vanishing lepton masses, the differential decay rate for the B → Kℓ+ℓ−

decay is given by [447]

dΓ(B → Kℓ+ℓ−)

d q2
= G2

Fα
2
em|VtbV ∗

t s |2
210π5M 5

B

λ3/2(M 2
B , M 2

K , q2)
(
|FV |2 +|FA|2

)
, (A.1)

where λ is the Källén function,

λ(x, y, z) = x2 + y2 + z2 −2(x y +xz + y z), (A.2)

and the vector and axial structures are

FV (q2) = (C9 +C ′
9) f+(q2)+ 2mb

MB +MK
(C7 +C ′

7) fT (q2)+hK (q2)

FA(q2) = (C10 +C ′
10) f+(q2). (A.3)

The function hK (q2) contains non-factorizable contributions, including the charm loop

effects. The functions f+(q2) and fT (q2) are the form factors introduced in Eq. (2.38).

A.2 B → K ∗ℓ+ℓ− decay

The transversity amplitudes are the projections of the total amplitude into the basis of

chirality of the quark current and polarization of the virtual boson decaying into the pair

of leptons. The transversity amplitudes for the B → K ∗ℓ+ℓ− decay in the WET are [83,
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448]

AL,R
⊥ =p

2Nλ1/2(M 2
B , M 2

K ∗ , q2)

[
(Cℓ

9 +C
′ℓ
9 )∓ (Cℓ

10 +C
′ℓ
10)

V (q2)

MB +MK ∗
+ 2mb

q2
(C7 +C ′

7)T1(q2)

]
,

AL,R
∥ =−p2N (M 2

B −M 2
K ∗)

[
(Cℓ

9 −C
′ℓ
9 )∓ (Cℓ

10 −C
′ℓ
10)

A1(q2)

MB −MK ∗
+ 2mb

q2
(C7 −C ′

7)T2(q2)

]
,

AL,R
0 =− N

2MK ∗
√

q2

[
(Cℓ

9 −C
′ℓ
9 )∓ (Cℓ

10 −C
′ℓ
10)

A12(q2)

MB −MK ∗
+ 2mb

q2
(C7 −C ′

7)T23(q2)

]
,

At = N√
q2
λ1/2(M 2

B , M 2
K ∗ , q2)

[
2(Cℓ

10 −C
′ℓ
10 +

q2

mℓ
(Cℓ

P −C
′ℓ
P )

]
A0(q2),

AS =−2Nλ1/2(M 2
B , M 2

K ∗ , q2)(Cℓ
S −C

′ℓ
S )A0(q2), (A.4)

where V (q2), A0(q2), A1(q2), T1(q2), T2(q2) and T3(q2) are the form factors in Eq. (2.39),

and the combinations of form factors A12 and T23 are defined as

A12(q2) = (M 2
B −M 2

K ∗)(M 2
B −M 2

K ∗ −q2)A1(q2)−λ(M 2
B , M 2

K ∗ , q2)
MB −MK ∗

MB +MK ∗
A2(q2) ,

T23(q2) = q2(M 2
B +3M 2

K ∗ −q2)T2(q2)−λ(M 2
B , M 2

K ∗ , q2)
q2

M 2
B −M 2

K ∗
T3(q2) , (A.5)

and the overall normalization is defined as

N =VtbV ∗
t s

 G2
Fα

2
em

3072π5M 3
B

q2

√
1− 4m2

ℓ

q2
λ1/2(M 2

B , M 2
K ∗ , q2)

1/2

. (A.6)

The angular observables are given in terms of the transversity amplitudes by

I s
1 =

3−4m2
ℓ

/q2

4
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⊥|2 +|AL
∥ |2 +|AR
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I c
6 = 4mℓ√
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ℓ
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A.3 B → Dℓν decay

The expression for the differential decay rate is [96]

dΓ(B → Dℓν)

d q2
= G2

F V 2
cb
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3
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where the helicity amplitudes are given by

H s
V 0(q2) =

√
λ(M 2

B , M 2
D , q2)

q2
f+(q2),

H s
V t (q2) = M 2

B −M 2
D√
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H s
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√
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fT (q2). (A.9)

A.4 B → D∗ℓν decay

The transversity amplitudes in this decay are [96]

A0 = N
MB +MD∗

2MD∗
√

q2

[
−(M 2

B −M 2
D∗ −q2)A1(q2)+ λ(M 2
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]
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V R ),
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The normalization of the amplitudes is
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The angular observables in terms of the transversity amplitudes are
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Appendix B

Codes

In order to calculate predictions for observables in the SM and EFT and their uncertain-

ties, perform fits of the Wilson coefficients to several observables and plot the results, I

needed a combination of code publicly available complemented with code I wrote. All the

code is written in python3, with the code in Appendix B.3.2 requiring at least python3.8.

My code relies on the following common packages:

• matplotlib [449]: plotting.

• numpy [450] and scipy [451]: mathematics and array handling.

• pandas [452]: large datasets.

• iminuit [453] v1.x: function minimization, based on MINUIT [454].

B.1 Public codes for Flavour Physics

In this section I will comment the principal characteristics of the public codes designed

specifically for computations in the field of Flavour Physics, wilson, flavio and smelli.

B.1.1 wilson

The package wilson [341] is used for matching and running Wilson coefficients of di-

mension six effective operators. wilson works in both the SMEFT and WET, as well as

effective theories at lower energies where the b and c quarks are integrated out. The bases

available, and the notation for the effective operators in each basis, follow the Wilson Co-

efficient eXchange Format (wcxf) [196].

The RG evolution of the Wilson coefficient is performed, by default, by numerical in-

tegration of the RG equations in [184, 187–189] for the SMEFT and [190] for the WET,

although the package also offers the option of the leading-log approximation.

The matching between the SMEFT and WET is performed at tree level at the scale

µEW = MZ = 91.1876 GeV, implementing the equations from [185].
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The method match_run solves the complete task of running down the SMEFT Wil-

son coefficients from the NP scale Λ to the electroweak scale, matching them to the WET

coefficients and running from the electroweak scale down to the mb scale.

As an example of wilson, the following code defines the SMEFT Wilson coefficients

C 2233
ℓq(1) = C 2233

ℓq(3) = 1 at the scale Λ = 1 TeV and obtains the value of CµNP
9 and CµNP

10 at the

scale mb .

from wilson import Wilson

Lambda_SMEFT = 1000 # A l l dimensionful quanti t ies are in powers of GeV

m_b = 4.2

wc_SMEFT = Wilson ( { ’ lq1_2233 ’ : 1/Lambda_SMEFT* *2 ,

’ lq3_2233 ’ : 1/Lambda_SMEFT* * 2 } ,

scale = Lambda_SMEFT, e f t = ’SMEFT ’ , basis = ’Warsaw ’ )

wc_WET = wc_SMEFT. match_run ( scale = m_b, e f t = ’WET’ , basis = ’ f l a v i o ’ )

C9mu = wc_WET. values [ ’C9_bsmumu ’ ] [ ’Re ’ ]

C10mu = wc_WET. values [ ’C10_bsmumu ’ ] [ ’Re ’ ]

print ( ’C9mu = ’ + s t r (C9mu) + ’ \tC10mu = ’ + s t r (C10mu) )

Obtaining the output:

C9mu = -1.1781396204511558 C10mu = 1.1791467325619762.

An alternative to wilson is provided by the Mathematica package DSixTools [455].

DSixTools also implements the RG evolution of the Wilson coefficients (available meth-

ods are numerical integration, leading log and evolution matrix), and matching with the

WET at the electroweak scale. The main drawback of DSixTools is that it only imple-

ments the basis defined in [185] for the WET, that is not widely used in the literature. The

results of wilson have been tested against those of DSixTools.

B.1.2 flavio

The code flavio [195] is used to calculate predictions for a large number of flavour physics

observables, both in the SM and in EFTs using the Wilson coefficients specified by wilson.

While version 0.28 contained mostly B decays observables, electroweak precision observ-

ables were added by version 1.5, and Higgs observables in version 2.0.

Predictions for observables in the SM are obtained with the method sm_prediction,

and in the EFT with the method np_prediction. For example, the values of Rℓ
D and R [1.1,6]

K +

in the SM and the SMEFT point of the previous section are calculated with the following

code:

import f l a v i o
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Figure B.1: logL calculated with the flavio classes Likelihood and FastLikelihood,

including the observables R [1.1,6]
K + , R [1.1,6]

K ∗ , Rℓ
D and Rℓ

D∗ .

RD_SM = f l a v i o . sm_prediction ( ’ Rtaul (B−>Dlnu ) ’ )

RD_SMEFT = f l a v i o . np_prediction ( ’ Rtaul (B−>Dlnu ) ’ , wc_SMEFT)

RK_SM = f l a v i o . sm_prediction ( ’<Rmue>(B+−> K l l ) ’ , q2min=1.1 , q2max=6)

RK_SMEFT = f l a v i o . np_prediction ( ’<Rmue>(B+−> K l l ) ’ ,

wc_SMEFT, q2min=1.1 , q2max=6)

print ( ’RD: \ tSM = ’ + s t r (RD_SM) + ’ \tSMEFT = ’ + s t r (RD_SMEFT) )

print ( ’RK: \ tSM = ’ + s t r (RK_SM) + ’ \tSMEFT = ’ + s t r (RK_SMEFT) )

The output of the code above is:

RD: SM = 0.303002599436188 SMEFT = 0.3212463003336509
RK: SM = 1.00077907868083 SMEFT = 0.5021697262791173

flavio comes with an extense database of experimental measurements, including

probability density functions and correlations between observables when available. This

allows flavio to construct the likelihood function L for any set of observables, with the

class Likelihood. An approximate version, where all probability distributions are as-

sumed to be Gaussian distributions and the correlations are assumed to depend only on

the SM input parameters, is available through the class FastLikelihood.

The code below compares the usage of the classes Likelihood and FastLikelihood,

including the observables R [1.1,6]
K + , R [1.1,6]

K ∗ , Rℓ
D and Rℓ

D∗ . It calculates the value of logL in

both cases for Wilson coefficients C 2233
ℓq(1) = C 2233

ℓq(3) ∈ [−1,1] and plots them. The result is
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included as Fig. B.1.

import numpy as np

import matplotlib . pyplot as p l t

from f l a v i o . s t a t i s t i c s . l ikel ihood import Likelihood , FastLikelihood

SM_par = f l a v i o . default_parameters . g e t _ c e n t r a l _ a l l ( ) #SM input parameters

lh = [ ]

f l h = [ ]

observables = [ ’ Rtaul (B−>Dlnu ) ’ ,

’ Rtaul (B−>D* lnu ) ’ ,

( ’ <Rmue>(B+−> K l l ) ’ , 1 . 1 , 6 ) ,

( ’ <Rmue>(B0−>K* l l ) ’ , 1 . 1 , 6) ]

lh_function = Likelihood ( observables=observables )

f lh_function = FastLikelihood ( observables=observables , name= ’ ’ )

f lh_function . make_measurement ( ) #Pre− c a l c u l a te s \ac {sm} covariance matrix

for c in np . linspace ( −1 , 1 , 100) :

cLambda = c/Lambda_SMEFT**2

wc = Wilson ( { ’ lq1_2233 ’ : cLambda, ’ lq3_2233 ’ : cLambda} ,

scale = Lambda_SMEFT,

e f t = ’SMEFT’ , basis = ’Warsaw ’ )

lh . append( lh_function . log_l ikel ihood (SM_par , wc) )

f l h . append( flh_function . log_l ikel ihood (SM_par , wc) )

# P l o t t i n g

p l t . plot (np . linspace ( −1 ,1 ,100) , lh , l a be l =r ’ $\mathtt { Likelihood } $ ’ )

p l t . plot (np . linspace ( −1 ,1 ,100) , f lh , l ab e l =r ’ $\mathtt { FastLikelihood } $ ’ )

p l t . legend ( )

p l t . x label ( r ’ $C_ { \ e l l q( 1 ) } ^ { 2 2 3 3 } = C_{ \ e l l q( 3 ) } ^ { 2 2 3 3 } $ ’ )

p l t . y label ( r ’ $\ log L$ ’ )

p l t . t ight_layout (pad=0.5)

p l t . show ( )

The code flavio already includes the RG effects of the SMEFT operators on the vev of

the Higgs in Eq. (3.39) and the Fermi constant in Eq. (3.40). By default, flavio uses the

SM values for the entries of the CKM matrix.

Alternatives to flavio include:

• HEPfit [456].
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• EOS [457]. Only implements effective operators in the WET.

• FlavBit [458] module for GAMBIT [459]. Only implements effective operators in the

WET.

B.1.3 smelli

The package smelli [342] implements a likelihood function including all flavio observ-

ables that are experimentally constrained. That includes electroweak precision tests, B

and K decays, meson-antimeson mixing, τ decays and magnetic anomalous moments of

leptons. In order to overcome the computational cost of the calculation for the complete

likelihood function, it is factorized in two parts: one part for observables whose theoreti-

cal uncertainty can be neglected compared to the experimental uncertainty, and another

part for observables whose uncertainties can be approximated by Gaussian distributions

independent of Wilson coefficients, similar to the flavio class FastLikelihood.

Starting on version 1.4, smelli implements the determination of the CKM matrix

from the measurements included in the fit, overwriting the SM values used by flavio.

The procedure is as explained in Ref. [186], with the exception that |Vub |2 is determined

from the inclusive decay BR(B → Xc eνe ).

B.1.4 Contributions to flavio and smelli

Version 2.0 of flavio introduced a new parameterisation of the B → D∗ for factors [370].

Comparing the uncertainties of the RD(∗) ratios with the previous version, I noticed a bug

in the implementation of the new form factors, where one of the parameters had a wrong

sign in the correlation matrix. I fixed the bug with a pull request that has been merged in

the main repository.1

The package flavio has a function to include new measurements into its database.

In the versions 1.x, smelli automatically imports every measurement. My code relied on

this functionality to investigate the impact of the ILC prospects in the global fit. However,

smelli 2.0 changed this behaviour, and now it only considers a hard-coded selection of

measurements that can not be changed in runtime. The solution was to add a new option

to smelli to add or remove measurements to the likelihood. It was implemented in a pull

request to the main repository.2

B.2 Public codes for Machine Learning

The Machine Learning analysis performed in section 7.4 required the use of specialized

codes:

1https://github.com/flav-io/flavio/pull/160
2https://github.com/smelli/smelli/pull/45
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• scikit-learn [460]: a general-purpose Python package to work with Machine Learn-

ing models. We use it to prepare the training and validation datasets, and to provide

metrics of the model.

• xgboost [385]: Implements the Machine Learning model based on regression trees.

• shap [386, 387] calculates an approximation for the SHAP values, which does not

require training any additional model. In fact, for tree-based models, the algorithm

is of polynomial time [387].

The ideas behind the xgboost and shap algorithms are explained in Section 7.4.1.

B.3 Custom-made codes

B.3.1 Code used in chapter 5

The code that I wrote in order to produce the results and plots of chapter 5 is publicly

available at [461]. The calculation routines are contained in the file src/bigftit.py,

and the plotting routines can be found in the file src/plotter.py.

bigfit.py

The first part of the file includes definitions for later use: the function myDeltaMS im-

plements the observable ∆Ms as in Equation (5.4), and the functions wc_Z and wc_LQ
the matching of the Z ′ and S3 leptoquark to the Wilson coefficients, as defined in Equa-

tions (4.7), (4.8), (4.2) and (4.3). The functions C9mu, C10mu, C910mu, C9pmu, C10pmu, C9e,

C10e, C910e, C9pe, C10pe define the scenarios with one Wilson coefficient used in Ta-

bles 5.1 and 5.2, CRe910 and CIm910 define the scenarios with two Wilson coefficients

used in Figure 5.2, and C910Im is used in 5.1. The code in save_observables selects

the bins of the angular observables P ′
4 and P ′

5 relevant to our analysis, pre-computes

the SM prediction and uncertainty for all observables in the fit, and writes them to a

file. This file can be later open using read_observables, and a sample file is found in

results/observables_ZLQ.yaml. The function chi2 computes the χ2 of the fit as a

function of the Wilson coefficients, splitting the contributions of∆Ms , Amix
CP and the rest of

observables; the contribution of each individual observables is obtained by chi2_budget.

The second part of the file is used to study the impact of one single complex Wilson

coefficient at a time. The function define_fit creates the flavio.FastFitobject, that is

used by the function plot to produce Figure 5.2. The function predictions uses Minuit
to compute the best fit and its pull in the one-dimensional scenarios, as well as the central

values and uncertainties for each observable. The results of this function are in Tables 5.1

and 5.2.

The third part of the file is contains the functions relevant for the specific NP models,

namely Z ′ and leptoquark S3. The function makefit_complex scans over the parameter
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space of the real and imaginary parts of the coupling constant and the mass of the NP

particle, and saves the results to a file. This function was used to generate Figures 5.3,

5.4, 5.5 and 5.6. The function predmodel computes, using Minuit, the best fit, pull and

predictions for the observables, in Tables 5.3 and 5.4.

plotter.py

The function drawplot was used to produce Fig. 5.3 and 5.5 depicting the mass versus

imaginary coupling for the Z ′ leptoquark and respectively. The function takes a datafile

which contains the mass of the particle in the first column, the coupling in the second,

and the likelihoods for the RK (∗) observables, the ∆MS observables and their sum in the

following columns. The resulting plot represents the contours of 1, 2 and 3σ as solid green

regions for the global fit, and the contours of 1 and 2σ for RK (∗) and ∆MS as lines.

The function plot was used to generate Fig. 5.4 and 5.6, for the real and imaginary

parts of the coupling when the mass of the Z ′ or leptoquark is kept constant. This function

is based on flavio’s likelihood_contour, but the calculation task is separated from the

plotting task, allowing for a more flexible approach as the likelihoods do not need to be

re-computed each time that a minor change to the appearance of the plot is needed.

Finally, the function errorplot is used for Fig. 5.7 and 5.8. The 1σ allowed values

for the observables are represented as a green (or brown) rectangle for the experimental

values, as a yellow rectangle for the SM predictions, and as red or blue errorbars for our

results.

B.3.2 Code used in chapters 6 and 7

The code used for the calculations in chapters 6 and 7 can be found in the GitHub repos-

itory [462], and the jupyter notebooks to execute the code, together with the results of

the execution, in the repository [463].

The files in the repository [462] are organized as follows:

scenarios

The module scenarios.py contains the functions needed to translate the parameters of

the fit into the Wilson coefficients.

• For the fits in Chapter 6, the functions scI through scXI are used.

• The functions corresponding to the fits in Chapter 7 are rotBI and rotBII, which

use the function idemp to implement the parameterisation of Eq. (7.13).

• The function rot2lqU1 matches the Wilson coefficients of these two scenarios into

the couplings of a vector U1 leptoquark of mass M according to Eq. (7.24).
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SMEFTglob

The module SMEFTglob.py contains basic functions to work with the global likelihood

and physical observables:

• likelihood_global and likelihood_fits return the logarithm of the likelihood

function at an specific parameter point for the global fit or a fit restricted to only a

sector (RK (∗) , RD(∗) , electroweak, etc.) respectively.

• The functions prediction and pull_obs return the NP prediction and the pull for

a single observable.

• The function newlist creates a YAML file containing the list of all observables in-

cluded in the fit, ordered according to their SM pull.

ellipse

The module ellipse.py is used to perform the Hessian approximation of Eq. (6.8) around

the best-fit point.

• The function minimum calculates the minimum of the log-likelihood and returns the

best-fit point, the SVD of the Hessian matrix, and the log-likelihood and significance

of the fit.

• All this data can be saved to a YAML file and retrieved with the functions save and

load.

• The function parametrize maps the points of the unit hypersphere to points in the

ellipsoid of (approximate) constant likelihood.

• Finally, the function notablepoints creates a table with the points at the 1σ el-

lipsoid obtained when changing one Wilson coefficient or when moving along the

principal axes.

obsuncert

The function calculate of the module obsuncert calculates the predictions in the fit

for the observables RK (∗) and RD(∗) , and saves the results to a YAML file. In order to es-

timate the uncertainty associated to the fit, the function uses a Montecarlo algorithm to

generate a small sample distributed according to the likelihood function. If used with

the argument mode = ’exact’, the complete log-likelihood is used, and otherwise the

Hessian approximation of the likelihood is used instead.
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comparepulls

The module comparepulls contains functions to compare the pulls of one or more ob-

servables between different points in the parameter space.

• The function compare generates the tables in Appendix C comparing the pulls in

the SM and in the best fit for all the observables included.

• The function pointpull identifies the observables whose pulls change the most

when comparing the best-fit point to any other given point in parameter space, and

the function notablepulls does the same between the best-fit point and the points

obtained by notablepoints of the ellipse module.

• Finally, pullevolution calculates the change in the pulls of any observable when

one Wilson coefficient is modified or when moving along one of the principal axes

of the ellipsoid.

plots

The module plots contains several functions to graphically plot the results obtained us-

ing the previous modules.

• The function hatch_contour generalizes flavio’s contour, allowing the use of any

colour and hatch pattern for the contour plots.

• This function is then used by likelihood_plot, that processes the likelihoods of

parameter points distributed along a grid and adds the axis labels, legend and a

marker for the best-fit point. This function, unlike flavio’s likelihood_contour,

separates the plotting from the calculation of the likelihoods, making much more

easier to modify the appearance of the plot. This function is an evolution of the

function plot from the previous section, including more options to change the style

of the plot.

• The function binerrorbox is used to plot a rectangular box marking the uncertainty

of an observable, with an horizontal line for its central value.

• The function errorplot plots binerrorboxes for the SM predictions and experi-

mental values, and errorbars for predictions in NP scenarios, for the RK (∗) and RD(∗)

observables. This function is an evolution of the one with the same name in the

previous section, and now draws an horizontal line for the central value of the ob-

servables.

• The function compare_plot plots the pull for every observable in the SM and in the

best-fit point.
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• The function evolution_plot plots the pulls of several observables when one Wil-

son coefficient is modified or when moving along one of the principal axes of the

ellipsoid.

All the plots are saved in two vectorial formats: PDF, which can be opened on their own

on any operating system, and PGF, which can be included in a TEXfile and compiled.

ml

The module ml contains the functions used in the Machine-Learning analysis of sec-

tion 7.4.

• The function train takes a dataset of parameter points and their likelihood and

trains an XGBoostmodel to predict them. The function saves the validation dataset,

not used for training, and the trained model as a JSON file.

• The function load_model opens the JSON file with the trained XGBoost model.

• The function regr creates a regression plot between the actual likelihoods and the

ML predictions in the validation datasets.

• The function hist creates a histogram for the likelihoods of the new points gener-

ated by the Montecarlo-ML algorithm, and compares it with the probability distri-

bution function of the χ2 distribution with the corresponding d.o.f..

• The function SHAP_bf computes the SHAP values for each parameter in the best-fit

point.

• The function SHAP_summary calculates the SHAP values for each point in the dataset

and plots their frequency.

• The function SHAP_param plots the SHAP values against each parameter in the fit.

Jupyter notebooks

The jupyter notebooks available at [463] demonstrate the usage of the code described

above. The notebooks in the folder PaperSMEFT have been used to generate step-by-step

all the results in section 6.3, the notebooks in the folder PaperILC to generate the results

in section 6.4, and the notebooks in the folder PaperML to generate the results in chapter 7.
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Predictions of the observables

The tables in this appendix contains all observables that contribute to the global fit, as

well as their prediction in the NP scenarios of chapters 6 and 7 and their pull in both the

scenario (NP pull) and SM (SM pull). Predictions for dimensionful observables are ex-

pressed in the corresponding power of GeV (for example,∆Ms in GeV andσ0
had in GeV−2).

The notation 〈·〉 means that the observable is binned in the invariant mass-squared of

the di-lepton system q2, with the endpoints of the bin in GeV2 are indicated in the su-

perscript. Observables are ordered according to their SM pull, and color-coded according

to the difference between the SM scenario and SM pulls: green observables have a better

pull in the NP scenario, red observables have a better pull in the SM and white observables

have a similar pull in both cases.

Section C.1 contains the pulls and predictions for the global fit to Scenario VII pro-

posed in Chapter 6, where there are independent New Physics contributions to the Wilson

coefficients C e
ℓq , Cµ

ℓq and Cτ
ℓq . Section C.2 contains the pulls and predictions for the global

fit to Scenario II proposed in Chapter 7, where the New Physics contributes to the Wilson

coefficient C 3333
ℓq(1) = C 3333

ℓq(3) in the interaction basis, which is then rotated to both the first

and second generations of fermions in the mass basis. The fits performed in Chapter 5

included fewer observables, so their predictions are included in the body of the Chapter,

in Tables 5.3 and 5.4.

C.1 Predictions of the observables in Scenario VII of chap-

ter 6

Observable NP prediction NP pull SM pull

0 aµ 0.0011659 4.2 σ 4.2 σ

1 〈 dBR
d q2 〉(Bs →φµ+µ−)[2.5, 4.0] 4.6797×10−8 3.3 σ 4 σ

2 〈FL〉(B+ → K∗+µ+µ−)[2.5, 4] 0.79641 3.3 σ 3.3 σ

3 Rτℓ(B → D∗ℓ+ν) 0.25225 2.8 σ 3.3 σ

4 〈P2〉(B0 → K∗0µ+µ−)[0.1, 0.98] -0.12728 3.2 σ 3.3 σ

5 〈Rµe 〉(B± → K±ℓ+ℓ−)[1.1, 6.0] 0.86244 0.38 σ 3.2 σ

159
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Observable NP prediction NP pull SM pull

6 〈 dBR
d q2 〉(Bs →φµ+µ−)[1.1, 2.5] 5.0154×10−8 2.6 σ 3.2 σ

7 〈 dBR
d q2 〉(Bs →φµ+µ−)[4.0, 6.0] 4.9885×10−8 2.5 σ 3.1 σ

8
〈

dR
dθ

〉
(e+e− →W +W −)[198.38, 0.8, 1.0] 7.2259 2.9 σ 3 σ

9 〈P ′
5〉(B0 → K∗0µ+µ−)[4, 6] -0.74244 2.7 σ 2.8 σ

10 〈 dBR
d q2 〉(Bs →φµ+µ−)[0.1, 0.98] 1.0842×10−7 2.3 σ 2.7 σ

11 BR(W ± → τ±ν) 0.10824 2.6 σ 2.6 σ

12 〈Rµe 〉(B0 → K∗0ℓ+ℓ−)[1.1, 6.0] 0.86267 1.6 σ 2.5 σ

13 ϵ′/ϵ −3.0463×10−5 2.5 σ 2.5 σ

14 Rτµ(B → D∗ℓ+ν) 0.25716 2 σ 2.5 σ

15 A0,b
FB 0.10323 2.5 σ 2.4 σ

16 〈Rµe 〉(B0 → K∗0ℓ+ℓ−)[0.045, 1.1] 0.88927 2.1 σ 2.4 σ

17 〈BR〉
BR (B → D∗τ+ν)[10.4, 10.93] 0.018511 2.3 σ 2.3 σ

18 Ae 0.14725 2.1 σ 2.2 σ

19 〈 dBR
d q2 〉(B+ → K∗+µ+µ−)[15.0, 19.0] 5.8443×10−8 1.7 σ 2.2 σ

20
〈

dR
dθ

〉
(e+e− →W +W −)[189.09, 0.8, 1.0] 6.2442 2.2 σ 2.2 σ

21 〈P ′
4〉(B0 → K∗0µ+µ−)[4, 6] -0.49957 2.1 σ 2.2 σ

22 B̃ [0.591]
n 0.98894 2.2 σ 2.2 σ

23 〈P ′
8〉(B0 → K∗0µ+µ−)[1.1, 2.5] -0.017094 2.2 σ 2.2 σ

24 〈P1〉(B0 → K∗0µ+µ−)[1.1, 2.5] 0.028313 2.1 σ 2.1 σ

25 〈P3〉(B0 → K∗0µ+µ−)[1.1, 2.5] 0.003771 2.1 σ 2.1 σ

26 |ϵK | 0.001705 2.4 σ 2.1 σ

27 〈 dBR
d q2 〉(B+ → K∗+µ+µ−)[4.0, 6.0] 4.9242×10−8 1.7 σ 2.1 σ

28 〈BR〉
BR (B → D∗τ+ν)[5.07, 5.6] 0.063084 2.1 σ 2.1 σ

29 〈 dBR
d q2 〉(B± → K±µ+µ−)[4.0, 5.0] 3.1613×10−8 1.6 σ 2.1 σ

30 BR(KL → e+e−) 1.8922×10−13 2.1 σ 2.1 σ

31 BR(B± → K±τ+τ−) 1.8473×10−7 2 σ 2 σ

32 〈 dBR
d q2 〉(B0 → K∗0µ+µ−)[15.0, 19.0] 5.3937×10−8 1.4 σ 2.1 σ

33 〈P ′
5〉(B+ → K∗+µ+µ−)[15, 19] -0.59572 2 σ 2 σ

34 〈Aℓh
FB〉(Λb →Λµ+µ−)[15, 20] 0.1631 2.1 σ 2 σ

35 〈P2〉(B+ → K∗+µ+µ−)[4, 6] 0.27461 2 σ 2.1 σ

36 〈 dBR
d q2 〉(Bs →φµ+µ−)[1.0, 6.0] 4.9208×10−8 1.7 σ 2 σ

37 〈P3〉(B+ → K∗+µ+µ−)[0.1, 0.98] 0.00148 2 σ 2 σ

38 BR(τ− →µ−νν̄) 0.17272 2.3 σ 2 σ

39 BR(Bs →µ+µ−) 3.3492×10−9 1.1 σ 1.9 σ

40 〈P2〉(B0 → K∗0µ+µ−)[4, 6] 0.27271 1.7 σ 1.9 σ

41 〈 dBR
d q2 〉(B0 → K 0µ+µ−)[4.0, 6.0] 2.9215×10−8 1.6 σ 2 σ

42 ae 0.0011597 1.9 σ 1.9 σ

43 〈P ′
5〉(B0 → K∗0µ+µ−)[2.5, 4] -0.46464 1.8 σ 1.9 σ

44 〈 dBR
d q2 〉(B0 → K 0µ+µ−)[15.0, 22.0] 1.264×10−8 1.4 σ 1.9 σ

45 〈BR〉
BR (B → Dτ+ν)[7.73, 8.27] 0.091527 1.9 σ 1.9 σ

46 〈 dBR
d q2 〉(B± → K±µ+µ−)[5.0, 6.0] 3.138×10−8 1.4 σ 1.9 σ

47 〈BR〉
BR (B → D∗τ+ν)[7.2, 7.73] 0.10189 1.9 σ 1.9 σ

48 〈 dBR
d q2 〉(B± → K±µ+µ−)[1.1, 2.0] 3.2122×10−8 1.4 σ 1.9 σ

49
〈

dR
dθ

〉
(e+e− →W +W −)[198.38, −0.6, −0.4] 0.83212 1.9 σ 1.9 σ

50 〈P1〉(B0 → K∗0µ+µ−)[4.3, 6] -0.17938 1.9 σ 1.9 σ

51 µZ h (h → cc̄) 1 1.8 σ 1.8 σ

52
〈

dR
dθ

〉
(e+e− →W +W −)[198.38, 0.6, 0.8] 4.4207 1.7 σ 1.8 σ

53 〈 dBR
d q2 〉(B0 → K∗0µ+µ−)[1.1, 2.5] 4.3064×10−8 1.3 σ 1.8 σ

54
〈

dR
dθ

〉
(e+e− →W +W −)[182.66, −1.0, −0.8] 0.69934 1.7 σ 1.8 σ

55 〈 dBR
d q2 〉(B0 → K∗0µ+µ−)[4.3, 6] 4.5956×10−8 1.2 σ 1.7 σ

56 〈 dBR
d q2 〉(B0 → K∗0µ+µ−)[4.0, 6.0] 4.5477×10−8 1.2 σ 1.7 σ

57
〈

dR
dθ

〉
(e+e− →W +W −)[198.38, −1.0, −0.8] 0.53951 1.8 σ 1.7 σ

58 mW 80.359 1.7 σ 1.7 σ
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Observable NP prediction NP pull SM pull

59
〈

dR
dθ

〉
(e+e− →W +W −)[182.66, 0.0, 0.2] 1.7271 1.7 σ 1.7 σ

60 〈 dBR
d q2 〉(B0 → K 0µ+µ−)[2.0, 4.0] 2.9586×10−8 1.4 σ 1.7 σ

61 µW h (h → τ+τ−) 1 1.7 σ 1.7 σ

62
〈

dR
dθ

〉
(e+e− →W +W −)[205.92, 0.2, 0.4] 2.0516 1.7 σ 1.7 σ

63
〈

dR
dθ

〉
(e+e− →W +W −)[205.92, −0.6, −0.4] 0.76722 1.7 σ 1.7 σ

64 µt t̄h (h →W +W −) 1 1.7 σ 1.7 σ

65 〈 dBR
d q2 〉(Λb →Λµ+µ−)[15, 20] 6.4546×10−8 2 σ 1.7 σ

66 R(e+e− →W +W −)[182.7] 0.99786 1.7 σ 1.6 σ

67 A∆Γ(Bs →φγ) 0.030488 1.7 σ 1.7 σ

68 〈 dBR
d q2 〉(B± → K±µ+µ−)[15.0, 22.0] 1.3721×10−8 0.9 σ 1.6 σ

69 BR(KS →π+e+ν) 0.00071896 1.6 σ 1.7 σ

70 〈P ′
5〉(B0 → K∗0µ+µ−)[0.1, 0.98] 0.6688 1.5 σ 1.7 σ

71 〈BR〉
BR (B → Dτ+ν)[9.0, 9.5] 0.066851 1.6 σ 1.6 σ

72 Rτℓ(B → Dℓ+ν) 0.30611 1.3 σ 1.6 σ

73 〈P ′
6〉(B+ → K∗+µ+µ−)[15, 19] -0.0023099 1.6 σ 1.6 σ

74 〈FL〉(B0 → K∗0µ+µ−)[1.1, 2.5] 0.74681 1.4 σ 1.6 σ

75 τBs→µµ 2.4506×1012 1.6 σ 1.6 σ

76 BR(KL →π+e+ν) 0.41064 1.4 σ 1.5 σ

77 〈Dµe
P ′

5
〉(B0 → K∗0ℓ+ℓ−)[14.18, 19.0] 0.0015837 1.5 σ 1.5 σ

78 〈 dBR
d q2 〉(B± → K±µ+µ−)[3.0, 4.0] 3.1809×10−8 1 σ 1.5 σ

79 〈P ′
6〉(B0 → K∗0µ+µ−)[4, 6] -0.031906 1.5 σ 1.5 σ

80 〈P ′
5〉(B0 → K∗0µ+µ−)[1.1, 2.5] 0.17609 1.3 σ 1.5 σ

81 A0,τ
FB 0.016283 1.5 σ 1.5 σ

82 〈 dBR
d q2 〉(Bs →φµ+µ−)[15.0, 19.0] 5.0587×10−8 0.69 σ 1.5 σ

83 R0
µ 20.74 1.3 σ 1.5 σ

84 〈 dBR
d q2 〉(B0 → K∗0µ+µ−)[2.5, 4.0] 4.0902×10−8 0.97 σ 1.5 σ

85 BR(B− →π−τ+e−) 0 1.5 σ 1.5 σ

86
〈

dR
dθ

〉
(e+e− →W +W −)[182.66, 0.2, 0.4] 2.1845 1.5 σ 1.5 σ

87 〈S4〉(Bs →φµ+µ−)[15.0, 19.0] -0.30176 1.5 σ 1.5 σ

88 FL (B0 → D∗−τ+ντ) 0.46989 1.5 σ 1.5 σ

89 BR(B+ → K+νν̄) 4.3186×10−6 1.5 σ 1.4 σ

90 BR(KS →µ+µ−) 5.1859×10−12 1.4 σ 1.4 σ

91 〈BR〉
BR (B → D∗τ+ν)[6.0, 6.5] 0.080351 1.4 σ 1.4 σ

92 BR(W ± →µ±ν) 0.10855 1.5 σ 1.4 σ

93 R0
e 20.729 1.5 σ 1.4 σ

94 〈A9〉(B0 → K∗0µ+µ−)[15, 19] 6.2164×10−5 1.4 σ 1.4 σ

95 Reµ(K+ → ℓ+ν) 2.4693×10−5 2.1 σ 1.4 σ

96 〈P ′
5〉(B+ → K∗+µ+µ−)[4, 6] -0.74882 1.3 σ 1.3 σ

97 〈BR〉(B → Xs e+e−)[14.2, 25.0] 3.2516×10−7 1.2 σ 1.4 σ

98 F t (10C) 4.6723×1027 0.57 σ 1.4 σ

99 〈 dBR
d q2 〉(B± → K±µ+µ−)[0, 2] 3.2172×10−8 0.91 σ 1.3 σ

100
〈

dR
dθ

〉
(e+e− →W +W −)[189.09, −0.2, 0.0] 1.3994 1.3 σ 1.3 σ

101 BR(B+ → e+ν) 1.1308×10−11 1.3 σ 1.3 σ

102 〈Dµe
P ′

5
〉(B0 → K∗0ℓ+ℓ−)[1.0, 6.0] 0.053944 1.2 σ 1.3 σ

103 Sφγ -0.00025088 1.3 σ 1.3 σ

104 BR(Bs → e+e−) 9.0501×10−14 1.3 σ 1.3 σ

105 〈P ′
8〉(B0 → K∗0µ+µ−)[4, 6] -0.011885 1.4 σ 1.3 σ

106 〈P ′
4〉(B0 → K∗0µ+µ−)[2, 4] -0.33273 1.3 σ 1.3 σ

107 BR(KS → e+e−) 1.6217×10−16 1.3 σ 1.3 σ

108 BR(B0 → e+e−) 2.5351×10−15 1.3 σ 1.3 σ

109 BR(KL →π0νν̄) 3.505×10−11 1.3 σ 1.3 σ

110 〈BR〉
BR (B → D∗τ+ν)[8.27, 8.8] 0.10324 1.3 σ 1.3 σ

111 BR(B0 → ρ0νν̄) 1.7848×10−7 1.3 σ 1.3 σ

112 BR(B− →π−e+τ−) 0 1.3 σ 1.3 σ

113 〈Rµe 〉(B0 → K 0ℓ+ℓ−)[4.0, 8.12] 0.86339 0.93 σ 1.3 σ
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Observable NP prediction NP pull SM pull

114 BR(K+ →π0e+ν) 0.051494 1.2 σ 1.3 σ

115
〈

dR
dθ

〉
(e+e− →W +W −)[205.92, 0.0, 0.2] 1.5572 1.3 σ 1.3 σ

116 BR(B0 → K∗0νν̄) 9.3704×10−6 1.3 σ 1.3 σ

117 〈FL〉(B0 → K∗0µ+µ−)[2, 4] 0.79504 1.2 σ 1.2 σ

118 µt t̄h (h →V V ) 1 1.3 σ 1.3 σ

119 BR(KS →π+µ+ν) 0.00047741 1.3 σ 1.2 σ

120 〈BR〉
BR (B → Dτ+ν)[9.86, 10.4] 0.052842 1.2 σ 1.2 σ

121 〈P3〉(B0 → K∗0µ+µ−)[0.1, 0.98] 0.0014165 1.2 σ 1.2 σ

122 SψKS 0.76793 1.2 σ 1.2 σ

123 µVBF(h → bb̄) 1 1.2 σ 1.2 σ

124
〈

dR
dθ

〉
(e+e− →W +W −)[182.66, 0.6, 0.8] 3.7997 1.2 σ 1.2 σ

125 BR(τ+ → K+ν̄) 0.0071074 1.1 σ 1.2 σ

126 〈BR〉
BR (B → D∗τ+ν)[4.0, 4.5] 0.026461 1.2 σ 1.2 σ

127 〈 dBR
d q2 〉(B0 → K∗0µ+µ−)[2, 4.3] 4.1071×10−8 0.66 σ 1.1 σ

128 〈FL〉(B+ → K∗+µ+µ−)[1.1, 2.5] 0.75442 1.1 σ 1.2 σ

129 µZ h (h → bb̄) 1 1.1 σ 1.1 σ

130 BR(B+ → K∗+νν̄) 1.0088×10−5 1.1 σ 1.1 σ

131 µZ h (h →W +W −) 1 1.1 σ 1.1 σ

132 〈P ′
4〉(B+ → K∗+µ+µ−)[15, 19] -0.63457 1.1 σ 1.1 σ

133 µW h (h →W +W −) 1 1.1 σ 1.1 σ

134 aτ 0.0011772 1.2 σ 1.2 σ

135 Rµe (W ± → ℓ±ν) 1.002 1.2 σ 1.1 σ

136 ∆Ms 1.2278×10−11 0.8 σ 1.1 σ

137 〈 dBR
d q2 〉(B± → K±µ+µ−)[2.0, 3.0] 3.1977×10−8 0.59 σ 1.1 σ

138 〈P ′
4〉(B+ → K∗+µ+µ−)[1.1, 2.5] -0.047638 1.1 σ 1.1 σ

139 〈P ′
6〉(B0 → K∗0µ+µ−)[1.1, 2.5] -0.069838 1.1 σ 1.1 σ

140 〈BR〉(B → Xsµ
+µ−)[1.0, 6.0] 1.5671×10−6 0.96 σ 1.1 σ

141
〈

dR
dθ

〉
(e+e− →W +W −)[182.66, −0.8, −0.6] 0.83817 1 σ 1.1 σ

142 〈P ′
8〉(B+ → K∗+µ+µ−)[0.1, 0.98] -0.03255 1.1 σ 1.1 σ

143 BR(K+ →π0µ+ν) 0.034081 1.1 σ 1 σ

144 〈P ′
5〉(B+ → K∗+µ+µ−)[1.1, 2.5] 0.14924 1 σ 1 σ

145 F t (46V) 4.6723×1027 0.49 σ 1 σ

146 〈P1〉(B0 → K∗0µ+µ−)[4, 6] -0.17664 1.1 σ 1.1 σ

147 〈S3〉(Bs →φµ+µ−)[15.0, 19.0] -0.20988 1.1 σ 1.1 σ

148 〈P1〉(B0 → K∗0µ+µ−)[2, 4] -0.08703 1.1 σ 1 σ

149 µt t̄h (h → γγ) 1 1 σ 1 σ

150 µg g (h → Zγ) 1 1 σ 1 σ

151
〈

dR
dθ

〉
(e+e− →W +W −)[182.66, −0.6, −0.4] 1.008 0.98 σ 1 σ

152 µW h (h → γγ) 1 0.99 σ 0.99 σ

153 〈P3〉(B0 → K∗0µ+µ−)[15, 19] -0.00041326 1 σ 1 σ

154 〈P ′
5〉(B0 → K∗0µ+µ−)[15, 19] -0.5926 1 σ 0.99 σ

155 〈P1〉(B+ → K∗+µ+µ−)[0.1, 0.98] 0.044855 0.99 σ 0.99 σ

156 〈BR〉
BR (B → D∗τ+ν)[10.5, 11.0] 0.0098782 0.96 σ 0.96 σ

157
〈

dR
dθ

〉
(e+e− →W +W −)[189.09, −0.8, −0.6] 0.77821 0.98 σ 0.95 σ

158 ACP(B → Xs+dγ) −1.8859×10−18 0.94 σ 0.94 σ

159 µVBF(h →W +W −) 1 0.94 σ 0.94 σ

160 〈A7〉(B0 → K∗0µ+µ−)[1.1, 6] 0.0025461 0.94 σ 0.94 σ

161 〈P1〉(B+ → K∗+µ+µ−)[4, 6] -0.17492 0.96 σ 0.96 σ

162
〈

dR
dθ

〉
(e+e− →W +W −)[189.09, −0.6, −0.4] 0.92501 0.98 σ 0.94 σ

163 〈BR〉
BR (B → D∗τ+ν)[7.73, 8.27] 0.10629 0.94 σ 0.94 σ

164 〈P ′
4〉(B0 → K∗0µ+µ−)[0.1, 0.98] 0.25299 0.96 σ 0.95 σ

165 R(e+e− →W +W −)[204.9] 0.99771 0.81 σ 0.94 σ

166 R(e+e− →W +W −)[188.6] 0.99781 0.75 σ 0.92 σ

167 〈BR〉(B → Xsµ
+µ−)[14.2, 25.0] 3.2225×10−7 1 σ 0.91 σ

168 〈P ′
4〉(B+ → K∗+µ+µ−)[0.1, 0.98] 0.23607 0.84 σ 0.83 σ

169 〈Dµe
P ′

4
〉(B0 → K∗0ℓ+ℓ−)[1.0, 6.0] 0.022819 0.86 σ 0.91 σ
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170 〈BR〉
BR (B → Dτ+ν)[10.93, 11.47] 0.023168 0.9 σ 0.9 σ

171
〈

dR
dθ

〉
(e+e− →W +W −)[205.92, −0.4, −0.2] 0.96897 0.94 σ 0.9 σ

172 Aτ 0.14743 1 σ 0.9 σ

173 〈BR〉
BR (B → Dτ+ν)[6.67, 7.2] 0.095702 0.89 σ 0.89 σ

174 〈A7〉(B0 → K∗0µ+µ−)[15, 19] 0.00010742 0.89 σ 0.89 σ

175 ã[0.695]
n -0.09921 0.89 σ 0.89 σ

176 µg g (h →µ+µ−) 1 0.89 σ 0.89 σ

177 µZ h (h → γγ) 1 0.88 σ 0.88 σ

178 〈S4〉(Bs →φµ+µ−)[2.0, 5.0] -0.14405 0.88 σ 0.87 σ

179 µg g (h → Z Z ) 1 0.88 σ 0.88 σ

180 〈FL〉(B0 → K∗0µ+µ−)[1, 2] 0.70831 0.72 σ 0.87 σ

181 〈FL〉(Bs →φµ+µ−)[2.0, 5.0] 0.80957 0.87 σ 0.88 σ

182 〈BR〉
BR (B → Dτ+ν)[10.0, 10.5] 0.046209 0.87 σ 0.87 σ

183
〈

dR
dθ

〉
(e+e− →W +W −)[198.38, 0.4, 0.6] 2.9975 0.83 σ 0.87 σ

184 BR(B− → K−e+τ−) 0 0.87 σ 0.87 σ

185
〈

dR
dθ

〉
(e+e− →W +W −)[182.66, 0.4, 0.6] 2.8168 0.85 σ 0.87 σ

186 〈BR〉
BR (B → Dτ+ν)[8.8, 9.33] 0.074315 0.86 σ 0.86 σ

187 µV h (h → bb̄) 1 0.86 σ 0.86 σ

188 〈BR〉
BR (B → Dτ+ν)[5.5, 6.0] 0.081066 0.86 σ 0.86 σ

189 BR(τ− → e−νν̄) 0.17716 2 σ 0.84 σ

190 〈BR〉
BR (B → D∗τ+ν)[8.8, 9.33] 0.097951 0.85 σ 0.85 σ

191 〈BR〉
BR (B → D∗τ+ν)[5.5, 6.0] 0.069889 0.84 σ 0.84 σ

192 〈BR〉
BR (B → Dτ+ν)[7.2, 7.73] 0.094208 0.84 σ 0.84 σ

193 F t (22Mg) 4.6723×1027 0.35 σ 0.85 σ

194 〈BR〉
BR (B → D∗τ+ν)[6.13, 6.67] 0.089674 0.83 σ 0.83 σ

195 〈BR〉
BR (B → Dτ+ν)[9.5, 10.0] 0.05713 0.83 σ 0.83 σ

196 〈BR〉
BR (B → Dτ+ν)[10.4, 10.93] 0.038397 0.83 σ 0.83 σ

197 A0,c
FB 0.073719 0.86 σ 0.83 σ

198 〈A8〉(B0 → K∗0µ+µ−)[1.1, 6] 0.0012012 0.83 σ 0.83 σ

199 BR(W ± → e±ν) 0.10833 0.77 σ 0.82 σ

200 〈BR〉
BR (B → Dτ+ν)[6.13, 6.67] 0.095556 0.82 σ 0.82 σ

201
〈

dR
dθ

〉
(e+e− →W +W −)[189.09, 0.4, 0.6] 2.9406 0.78 σ 0.81 σ

202 F t (26m Al) 4.6723×1027 1.4 σ 0.82 σ

203 〈P ′
6〉(B0 → K∗0µ+µ−)[15, 19] -0.0023148 0.82 σ 0.81 σ

204 〈A9〉(B0 → K∗0µ+µ−)[1.1, 6] 0.00013597 0.8 σ 0.8 σ

205 〈AℓFB〉(Λb →Λµ+µ−)[15, 20] -0.35236 0.83 σ 0.81 σ

206 µVBF(h → τ+τ−) 1 0.8 σ 0.8 σ

207 〈AFB〉(B0 → K∗0µ+µ−)[4.3, 6] 0.12379 0.75 σ 0.8 σ

208 〈BR〉
BR (B → D∗τ+ν)[6.67, 7.2] 0.096421 0.8 σ 0.8 σ

209 BR(KL →π+µ+ν) 0.27267 0.92 σ 0.78 σ

210 〈BR〉
BR (B → Dτ+ν)[6.0, 6.5] 0.087333 0.78 σ 0.78 σ

211 〈P1〉(B0 → K∗0µ+µ−)[2.5, 4] -0.10919 0.74 σ 0.76 σ

212 Ã[0.586]
n -0.11027 0.78 σ 0.78 σ

213 〈P ′
4〉(B+ → K∗+µ+µ−)[4, 6] -0.4979 0.75 σ 0.74 σ

214 〈P1〉(B0 → K∗0e+e−)[0.000784, 0.257] 0.032439 0.71 σ 0.71 σ

215
〈

dR
dθ

〉
(e+e− →W +W −)[189.09, −1.0, −0.8] 0.65839 0.81 σ 0.77 σ

216 〈P2〉(B0 → K∗0µ+µ−)[2.5, 4] -0.10196 0.54 σ 0.78 σ

217
〈

dR
dθ

〉
(e+e− →W +W −)[205.92, 0.8, 1.0] 7.772 0.72 σ 0.77 σ

218 R(e+e− →W +W −)[199.5] 0.99774 0.63 σ 0.76 σ

219 〈FL〉(B0 → K∗0µ+µ−)[0, 2] 0.36926 0.63 σ 0.75 σ

220 〈P3〉(B+ → K∗+µ+µ−)[2.5, 4] 0.0040249 0.78 σ 0.78 σ

221 〈BR〉
BR (B → Dτ+ν)[7.5, 8.0] 0.086998 0.75 σ 0.75 σ

222 Ã[0.559]
n -0.11027 0.75 σ 0.75 σ

223
〈

dR
dθ

〉
(e+e− →W +W −)[198.38, −0.4, −0.2] 1.0179 0.79 σ 0.75 σ

224 〈P3〉(B+ → K∗+µ+µ−)[4, 6] 0.0026242 0.72 σ 0.72 σ

225
〈

dR
dθ

〉
(e+e− →W +W −)[205.92, 0.4, 0.6] 2.8975 0.7 σ 0.74 σ
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226 〈P1〉(B0 → K∗0µ+µ−)[2, 4.3] -0.098168 0.76 σ 0.75 σ

227 R0
b 0.21582 0.71 σ 0.73 σ

228 µVBF(h → γγ) 1 0.72 σ 0.72 σ

229 〈FL〉(Bs →φµ+µ−)[15.0, 19.0] 0.34157 0.72 σ 0.71 σ

230 〈FL〉(B0 → K∗0µ+µ−)[4, 6] 0.71323 0.73 σ 0.7 σ

231 τ[0.655]
n 1.3812×1027 0.74 σ 0.71 σ

232 〈AFB〉(B0 → K∗0µ+µ−)[1, 2] -0.16334 0.66 σ 0.7 σ

233
〈

dR
dθ

〉
(e+e− →W +W −)[198.38, 0.2, 0.4] 2.1565 0.67 σ 0.71 σ

234
〈

dR
dθ

〉
(e+e− →W +W −)[189.09, 0.0, 0.2] 1.711 0.73 σ 0.7 σ

235 R0
uc 0.17224 0.69 σ 0.69 σ

236 F t (34Ar) 4.6723×1027 1.1 σ 0.7 σ

237 〈P2〉(B+ → K∗+µ+µ−)[0.1, 0.98] -0.13065 0.64 σ 0.69 σ

238 〈FL〉(B0 → K∗0µ+µ−)[0.1, 0.98] 0.27912 0.4 σ 0.67 σ

239 A0,e
FB 0.016263 0.71 σ 0.69 σ

240 µg g (h → bb̄) 1 0.68 σ 0.68 σ

241 〈BR〉
BR (B → Dτ+ν)[8.5, 9.0] 0.075222 0.68 σ 0.68 σ

242 BR(B+ →π+νν̄) 1.115×10−7 0.68 σ 0.68 σ

243 〈BR〉
BR (B → D∗τ+ν)[7.5, 8.0] 0.097746 0.68 σ 0.68 σ

244 〈BR〉
BR (B → Dτ+ν)[10.5, 11.0] 0.034069 0.68 σ 0.68 σ

245
〈

dR
dθ

〉
(e+e− →W +W −)[189.09, 0.6, 0.8] 4.1152 0.64 σ 0.68 σ

246 BR(B+ → ρ+νν̄) 3.8453×10−7 0.68 σ 0.68 σ

247 〈P ′
6〉(B0 → K∗0µ+µ−)[0.1, 0.98] -0.054674 0.7 σ 0.7 σ

248
BR(B0→K∗0γ)

BR(Bs→φγ)
1.0402 0.68 σ 0.68 σ

249 µt t̄h (h → Z Z ) 1 0.67 σ 0.67 σ

250 〈BR〉
BR (B → Dτ+ν)[4.0, 4.53] 0.039797 0.67 σ 0.67 σ

251 〈BR〉
BR (B → D∗τ+ν)[10.0, 10.5] 0.05616 0.66 σ 0.66 σ

252 F t (38Ca) 4.6723×1027 0.17 σ 0.68 σ

253 〈P ′
5〉(B0 → K∗0µ+µ−)[4.3, 6] -0.7557 0.7 σ 0.65 σ

254
〈

dR
dθ

〉
(e+e− →W +W −)[182.66, −0.2, 0.0] 1.3984 0.67 σ 0.65 σ

255 Rτe (W ± → ℓ±ν) 0.99919 0.63 σ 0.65 σ

256 〈AFB〉(B0 → K∗0µ+µ−)[2, 4.3] -0.037416 0.55 σ 0.63 σ

257 〈FL〉(B0 → K∗0µ+µ−)[2.5, 4] 0.79417 0.6 σ 0.64 σ

258 BR(B0 →µ+µ−) 9.313×10−11 0.53 σ 0.66 σ

259
〈

dR
dθ

〉
(e+e− →W +W −)[205.92, −1.0, −0.8] 0.52962 0.6 σ 0.64 σ

260 BR(B0 →π0νν̄) 5.1899×10−8 0.63 σ 0.63 σ

261 SK∗γ -0.024607 0.58 σ 0.58 σ

262 〈BR〉
BR (B → Dτ+ν)[4.0, 4.5] 0.03694 0.63 σ 0.63 σ

263 µW h (h → bb̄) 1 0.62 σ 0.62 σ

264 Rτµ(W ± → ℓ±ν) 0.99718 0.4 σ 0.61 σ

265 R(e+e− →W +W −)[195.5] 0.99777 0.74 σ 0.61 σ

266 〈BR〉
BR (B → D∗τ+ν)[4.53, 5.07] 0.047598 0.61 σ 0.61 σ

267
〈

dR
dθ

〉
(e+e− →W +W −)[205.92, −0.8, −0.6] 0.63944 0.57 σ 0.61 σ

268 〈P3〉(B0 → K∗0µ+µ−)[4, 6] 0.0026785 0.62 σ 0.62 σ

269 〈FL〉(B0 → K∗0µ+µ−)[4.3, 6] 0.70555 0.6 σ 0.59 σ

270 µZ h (h → τ+τ−) 1 0.6 σ 0.6 σ

271 BR(B0 →π−τ+ντ) 0.00010418 0.61 σ 0.61 σ

272 ΓZ 2.4935 0.86 σ 0.6 σ

273 F t (54Co) 4.6723×1027 1.8 σ 0.6 σ

274 〈Rµe 〉(B+ → K∗+ℓ+ℓ−)[15.0, 19.0] 0.85764 0.8 σ 0.59 σ

275 〈AFB〉(B0 → K∗0µ+µ−)[0, 2] -0.10442 0.59 σ 0.58 σ

276 〈Rµe 〉(B± → K±ℓ+ℓ−)[4.0, 8.12] 0.86338 0.95 σ 0.59 σ

277 Dn 5.0399×10−42 0.58 σ 0.58 σ

278 Ab 0.93471 0.59 σ 0.59 σ

279 µg g (h →W +W −) 1 0.58 σ 0.58 σ

280 〈P ′
5〉(B0 → K∗0µ+µ−)[0.04, 2] 0.52693 0.47 σ 0.52 σ

281 BR(τ− → e−µ+e−) 0 0.58 σ 0.58 σ
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282 BR(B− → K−τ+µ−) 0 0.57 σ 0.57 σ

283 〈P ′
8〉(B+ → K∗+µ+µ−)[15, 19] 0.0005773 0.57 σ 0.57 σ

284 Rµe (B → D∗ℓ+ν) 0.96256 0.71 σ 0.56 σ

285 〈BR〉
BR (B → Dτ+ν)[8.27, 8.8] 0.083047 0.56 σ 0.56 σ

286 〈P3〉(B+ → K∗+µ+µ−)[15, 19] -0.00041161 0.58 σ 0.58 σ

287 〈P ′
5〉(B0 → K∗0µ+µ−)[1, 2] 0.3184 0.62 σ 0.54 σ

288 〈P ′
6〉(B0 → K∗0µ+µ−)[2.5, 4] -0.054331 0.55 σ 0.56 σ

289 〈P ′
5〉(B+ → K∗+µ+µ−)[0.1, 0.98] 0.66506 0.5 σ 0.56 σ

290 〈BR〉
BR (B → Dτ+ν)[4.53, 5.07] 0.0622 0.53 σ 0.53 σ

291 〈Rµe 〉(B0 → K 0ℓ+ℓ−)[14.18, 19.0] 0.86617 0.67 σ 0.53 σ

292 λ[0.581]
AB -1.251 0.53 σ 0.53 σ

293 A
0,µ
FB 0.016213 0.53 σ 0.53 σ

294 〈P1〉(B+ → K∗+µ+µ−)[1.1, 2.5] 0.026958 0.5 σ 0.51 σ

295 〈A8〉(B0 → K∗0µ+µ−)[15, 19] 7.9509×10−5 0.52 σ 0.52 σ

296 〈BR〉
BR (B → Dτ+ν)[11.5, 12.0] 0.0018997 0.52 σ 0.52 σ

297 〈 dBR
d q2 〉(B0 → K∗0µ+µ−)[0, 2] 7.9038×10−8 0.7 σ 0.53 σ

298 BR(τ− →µ−e+µ−) 0 0.51 σ 0.51 σ

299 BR(π+ → e+ν) 0.0001231 0.76 σ 0.51 σ

300 〈 dBR
d q2 〉(B+ → K∗+µ+µ−)[2.0, 4.0] 4.4449×10−8 0.72 σ 0.48 σ

301 R(e+e− →W +W −)[206.6] 0.99769 0.66 σ 0.5 σ

302 〈Rµe 〉(B0 → K 0ℓ+ℓ−)[0.1, 4.0] 0.86182 0.64 σ 0.5 σ

303 〈BR〉
BR (B → D∗τ+ν)[4.5, 5.0] 0.042537 0.5 σ 0.5 σ

304 µt t̄h (h → τ+τ−) 1 0.49 σ 0.49 σ

305
〈

dR
dθ

〉
(e+e− →W +W −)[182.66, −0.4, −0.2] 1.1777 0.51 σ 0.49 σ

306 BR(τ− →µ−e+e−) 0 0.49 σ 0.49 σ

307 〈FL〉(B+ → K∗+µ+µ−)[15, 19] 0.33821 0.53 σ 0.53 σ

308 〈P2〉(B+ → K∗+µ+µ−)[1.1, 2.5] -0.45271 0.52 σ 0.52 σ

309 BR(B0 → K 0νν̄) 3.9987×10−6 0.49 σ 0.48 σ

310 〈 dBR
d q2 〉(B0 → K 0µ+µ−)[0, 2] 2.9848×10−8 0.31 σ 0.48 σ

311 〈FL〉(B0 → K∗0µ+µ−)[0.04, 2] 0.36926 0.6 σ 0.45 σ

312 BR(Bc → τ+ν) 0.023954 0.47 σ 0.46 σ

313 〈BR〉
BR (B → D∗τ+ν)[7.0, 7.5] 0.094377 0.45 σ 0.45 σ

314 As 0.93552 0.45 σ 0.45 σ

315 BR(B− → K∗−e+µ−) 0 0.45 σ 0.45 σ

316
〈

dR
dθ

〉
(e+e− →W +W −)[198.38, −0.8, −0.6] 0.66133 0.41 σ 0.45 σ

317 BR(Bs →φγ) 3.9614×10−5 0.36 σ 0.43 σ

318 〈BR〉
BR (B → D∗τ+ν)[9.86, 10.4] 0.067671 0.44 σ 0.44 σ

319 〈P2〉(B0 → K∗0µ+µ−)[15, 19] 0.37173 0.42 σ 0.45 σ

320 〈P1〉(B0 → K∗0µ+µ−)[15, 19] -0.62362 0.44 σ 0.44 σ

321 〈P2〉(B0 → K∗0e+e−)[0.000784, 0.257] -0.012579 0.45 σ 0.46 σ

322 µW h (h → Z Z ) 1 0.43 σ 0.43 σ

323 〈BR〉
BR (B → Dτ+ν)[11.0, 11.5] 0.019884 0.43 σ 0.43 σ

324 〈 dBR
d q2 〉(B± → K±µ+µ−)[2, 4.3] 3.1865×10−8 0.03 σ 0.41 σ

325 µg g (h → γγ) 1 0.42 σ 0.42 σ

326 〈BR〉(B → Xs e+e−)[1.0, 6.0] 1.8785×10−6 0.2 σ 0.42 σ

327 〈P ′
4〉(B0 → K∗0µ+µ−)[0.04, 2] 0.15589 0.42 σ 0.43 σ

328 BR(KL →µ+µ−) 7.3261×10−9 0.39 σ 0.41 σ

329
〈

dR
dθ

〉
(e+e− →W +W −)[189.09, −0.4, −0.2] 1.1338 0.37 σ 0.41 σ

330 〈P ′
4〉(B+ → K∗+µ+µ−)[2.5, 4] -0.37795 0.44 σ 0.42 σ

331 〈FL〉(B0 → K∗0µ+µ−)[2, 4.3] 0.79028 0.39 σ 0.43 σ

332 F t (74Rb) 4.6723×1027 0.058 σ 0.39 σ

333 an -0.09921 0.39 σ 0.39 σ

334 〈 dBR
d q2 〉(B0 → K 0µ+µ−)[2, 4.3] 2.9561×10−8 0.24 σ 0.4 σ

335 〈P1〉(B0 → K∗0µ+µ−)[0.1, 0.98] 0.043914 0.39 σ 0.38 σ

336
〈

dR
dθ

〉
(e+e− →W +W −)[198.38, 0.0, 0.2] 1.6621 0.41 σ 0.38 σ

337 R0
τ 20.772 0.16 σ 0.37 σ
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338 〈P2〉(B+ → K∗+µ+µ−)[15, 19] 0.37336 0.35 σ 0.36 σ

339 F t (34Cl) 4.6723×1027 2.1 σ 0.38 σ

340 〈Rµe 〉(B0 → K∗0ℓ+ℓ−)[0.1, 8.0] 0.87689 0.066 σ 0.37 σ

341 〈Rµe 〉(B0 → K∗0ℓ+ℓ−)[15.0, 19.0] 0.85765 0.72 σ 0.36 σ

342 µVBF(h → Z Z ) 1 0.35 σ 0.35 σ

343 〈Ah
FB〉(Λb →Λµ+µ−)[15, 20] -0.31823 0.34 σ 0.34 σ

344 Aµ 0.1468 0.32 σ 0.34 σ

345 BR(Bs → τ+τ−) 8.6607×10−7 0.33 σ 0.33 σ

346 µt t̄h (h → bb̄) 1 0.32 σ 0.32 σ

347 〈FL〉(B+ → K∗+µ+µ−)[4, 6] 0.71408 0.34 σ 0.32 σ

348 〈BR〉
BR (B → Dτ+ν)[6.5, 7.0] 0.090073 0.32 σ 0.32 σ

349 〈P ′
8〉(B0 → K∗0µ+µ−)[2.5, 4] -0.017558 0.31 σ 0.31 σ

350 〈P ′
8〉(B+ → K∗+µ+µ−)[4, 6] -0.011748 0.29 σ 0.29 σ

351 〈BR〉
BR (B → Dτ+ν)[4.5, 5.0] 0.055942 0.3 σ 0.3 σ

352 〈P1〉(B0 → K∗0µ+µ−)[0.04, 2] 0.043605 0.29 σ 0.29 σ

353 〈FL〉(B+ → K∗+µ+µ−)[0.1, 0.98] 0.288 0.38 σ 0.27 σ

354 σ0
had 0.00010662 1.3 σ 0.3 σ

355 F t (42Sc) 4.6723×1027 1.1 σ 0.32 σ

356 BR(B̄0 → K̄∗0µ+e−) 0 0.3 σ 0.3 σ

357 〈P2〉(B+ → K∗+µ+µ−)[2.5, 4] -0.093553 0.41 σ 0.28 σ

358 Rn 2.1495×10−20 0.32 σ 0.32 σ

359 〈Rµe 〉(B± → K±ℓ+ℓ−)[14.18, 19.0] 0.86616 0.78 σ 0.29 σ

360 〈Rµe 〉(B± → K±ℓ+ℓ−)[0.1, 4.0] 0.86182 0.25 σ 0.28 σ

361 〈P ′
5〉(B+ → K∗+µ+µ−)[2.5, 4] -0.48271 0.3 σ 0.27 σ

362 〈S3〉(Bs →φµ+µ−)[2.0, 5.0] -0.0080823 0.24 σ 0.24 σ

363 〈P3〉(B0 → K∗0µ+µ−)[2.5, 4] 0.0040835 0.21 σ 0.21 σ

364 Γ(π+ →µ+ν) 2.5233×10−17 0.15 σ 0.25 σ

365 Sψφ 0.040814 0.24 σ 0.25 σ

366 〈P ′
4〉(B0 → K∗0µ+µ−)[2.5, 4] -0.37916 0.31 σ 0.23 σ

367 R(W + → c X ) 0.5 0.25 σ 0.25 σ

368 xIm,D
12 2.0459×10−19 0.25 σ 0.25 σ

369 BR(B− → K∗−µ+e−) 0 0.25 σ 0.25 σ

370 µVBF(h →µ+µ−) 1 0.24 σ 0.24 σ

371 〈P ′
5〉(B0 → K∗0µ+µ−)[2, 4.3] -0.41246 0.34 σ 0.24 σ

372 µZ h (h → Z Z ) 1 0.23 σ 0.23 σ

373 〈P ′
5〉(B0 → K∗0µ+µ−)[2, 4] -0.37032 0.12 σ 0.23 σ

374 〈 dBR
d q2 〉(B+ → K∗+µ+µ−)[0, 2] 8.2778×10−8 0.17 σ 0.25 σ

375 µV h (h → Z Z ) 1 0.23 σ 0.23 σ

376 BR(K+ →µ+ν) 0.63441 0.14 σ 0.23 σ

377 〈P ′
6〉(B+ → K∗+µ+µ−)[1.1, 2.5] -0.054307 0.24 σ 0.24 σ

378 〈BR〉
BR (B → D∗τ+ν)[5.6, 6.13] 0.076832 0.22 σ 0.22 σ

379 〈BR〉
BR (B → Dτ+ν)[11.47, 12.0] 0.002539 0.22 σ 0.22 σ

380 R(e+e− →W +W −)[191.6] 0.99779 0.14 σ 0.21 σ

381 〈FL〉(B0 → K∗0e+e−)[0.000784, 0.257] 0.054518 0.31 σ 0.19 σ

382 〈BR〉
BR (B → D∗τ+ν)[8.5, 9.0] 0.095922 0.2 σ 0.2 σ

383 µV h (h → γγ) 1 0.2 σ 0.2 σ

384
〈

dR
dθ

〉
(e+e− →W +W −)[189.09, 0.2, 0.4] 2.1824 0.23 σ 0.2 σ

385 BR(B− → K−τ+e−) 0 0.2 σ 0.2 σ

386 〈P1〉(B+ → K∗+µ+µ−)[15, 19] -0.62023 0.2 σ 0.2 σ

387
〈

dR
dθ

〉
(e+e− →W +W −)[205.92, 0.6, 0.8] 4.4376 0.23 σ 0.19 σ

388 〈P1〉(B0 → K∗0µ+µ−)[1, 2] 0.046592 0.14 σ 0.15 σ

389 〈AIm
T 〉(B0 → K∗0e+e−)[0.000784, 0.257] 0.00028612 0.21 σ 0.21 σ

390 〈P ′
8〉(B+ → K∗+µ+µ−)[1.1, 2.5] -0.026951 0.21 σ 0.21 σ

391 BR(B− →π−τ+µ−) 0 0.18 σ 0.18 σ

392 BR(B → Xsγ) 0.00033157 0.18 σ 0.18 σ

393 BR(τ+ →π+ν̄) 0.10821 0.025 σ 0.19 σ

394 BR(K+ →π+νν̄) 8.2767×10−11 0.19 σ 0.15 σ
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395 〈BR〉
BR (B → D∗τ+ν)[6.5, 7.0] 0.088536 0.17 σ 0.17 σ

396 〈BR〉
BR (B → Dτ+ν)[7.0, 7.5] 0.089808 0.17 σ 0.17 σ

397 BR(B0 → K∗0γ) 4.1206×10−5 0.25 σ 0.16 σ

398 ΓW 2.0913 0.15 σ 0.16 σ

399 〈 dBR
d q2 〉(B0 → K∗0µ+µ−)[1, 2] 4.518×10−8 0.2 σ 0.15 σ

400 〈P ′
8〉(B0 → K∗0µ+µ−)[15, 19] 0.00057776 0.14 σ 0.14 σ

401
〈

dR
dθ

〉
(e+e− →W +W −)[182.66, 0.8, 1.0] 5.4263 0.13 σ 0.15 σ

402 〈P ′
6〉(B+ → K∗+µ+µ−)[4, 6] -0.02992 0.14 σ 0.14 σ

403 〈FL〉(B0 → K∗0µ+µ−)[15, 19] 0.34049 0.12 σ 0.13 σ

404 〈BR〉
BR (B → D∗τ+ν)[5.0, 5.5] 0.05722 0.14 σ 0.14 σ

405 〈P1〉(B+ → K∗+µ+µ−)[2.5, 4] -0.10947 0.17 σ 0.16 σ

406 RT (K+ →π0µ+ν) −9.1454×10−19 0.1 σ 0.1 σ

407 〈P ′
6〉(B+ → K∗+µ+µ−)[2.5, 4] -0.045641 0.14 σ 0.15 σ

408 F t (50Mn) 4.6723×1027 1.6 σ 0.14 σ

409 〈BR〉
BR (B → Dτ+ν)[8.0, 8.5] 0.082028 0.13 σ 0.13 σ

410 σtrident/σSM
trident 1.0024 0.14 σ 0.13 σ

411 〈BR〉
BR (B → D∗τ+ν)[9.33, 9.86] 0.087022 0.13 σ 0.13 σ

412 R(e+e− →W +W −)[201.6] 0.99773 0.03 σ 0.12 σ

413 〈P ′
4〉(B0 → K∗0µ+µ−)[1.1, 2.5] -0.046594 0.23 σ 0.12 σ

414
〈

dR
dθ

〉
(e+e− →W +W −)[198.38, −0.2, 0.0] 1.2615 0.14 σ 0.1 σ

415 〈Rµe 〉(B+ → K∗+ℓ+ℓ−)[0.1, 8.0] 0.87648 0.28 σ 0.1 σ

416 〈BR〉
BR (B → Dτ+ν)[5.07, 5.6] 0.07714 0.1 σ 0.1 σ

417 〈P ′
6〉(B+ → K∗+µ+µ−)[0.1, 0.98] -0.047636 0.093 σ 0.092 σ

418 〈BR〉
BR (B → Dτ+ν)[5.6, 6.13] 0.087798 0.1 σ 0.1 σ

419 BR(τ− → e−e+e−) 0 0.1 σ 0.1 σ

420 〈P3〉(B+ → K∗+µ+µ−)[1.1, 2.5] 0.0038341 0.1 σ 0.1 σ

421
〈

dR
dθ

〉
(e+e− →W +W −)[205.92, −0.2, 0.0] 1.2276 0.13 σ 0.097 σ

422 Ac 0.6675 0.092 σ 0.092 σ

423 ln(C )(K+ →π0µ+ν) 0.19988 0.084 σ 0.084 σ

424 〈BR〉
BR (B → D∗τ+ν)[8.0, 8.5] 0.098402 0.084 σ 0.084 σ

425 〈BR〉
BR (B → D∗τ+ν)[9.0, 9.5] 0.089545 0.082 σ 0.082 σ

426 〈Dµe
P ′

4
〉(B0 → K∗0ℓ+ℓ−)[14.18, 19.0] -0.0001102 0.072 σ 0.072 σ

427 F t (14O) 4.6723×1027 1.1 σ 0.052 σ

428 〈BR〉
BR (B → Dτ+ν)[5.0, 5.5] 0.070732 0.066 σ 0.066 σ

429 BR(B+ → K∗+γ) 4.1857×10−5 0.03 σ 0.052 σ

430 〈P2〉(B0 → K∗0µ+µ−)[1.1, 2.5] -0.45169 0.11 σ 0.11 σ

431 〈BR〉
BR (B → D∗τ+ν)[9.5, 10.0] 0.077734 0.053 σ 0.053 σ

432 R0
c 0.17222 0.04 σ 0.041 σ

433 〈P ′
4〉(B0 → K∗0µ+µ−)[15, 19] -0.63519 0.046 σ 0.047 σ

434 〈P ′
8〉(B+ → K∗+µ+µ−)[2.5, 4] -0.018578 0.0092 σ 0.0091 σ

435 〈P ′
8〉(B0 → K∗0µ+µ−)[0.1, 0.98] -0.0050462 0.0018 σ 0.0043 σ

436 F t (38m K) 4.6723×1027 1.6 σ 0.012 σ

437 〈BR〉
BR (B → D∗τ+ν)[4.0, 4.53] 0.028569 0.026 σ 0.026 σ

438 µg g (h → τ+τ−) 1 0.025 σ 0.025 σ

439 F t (62Ga) 4.6723×1027 0.54 σ 0.0023 σ

440 〈BR〉
BR (B → Dτ+ν)[9.33, 9.86] 0.063887 0.016 σ 0.016 σ

441 BR(B+ →µ+ν) 4.6652×10−7 0.044 σ 0.017 σ

442 〈 dBR
d q2 〉(B+ → K∗+µ+µ−)[2, 4.3] 4.4708×10−8 0.11 σ 0.0019 σ

443 BR(B0 → τ+τ−) 2.4006×10−8 0.0047 σ 0.0045 σ

444 BR(B̄0 → K̄∗0e+µ−) 0 0 σ 0 σ

445 BR(B− → K−e+µ−) 0 0 σ 0 σ

446 BR(B− → K−µ+e−) 0 0 σ 0 σ

447 BR(B− → K−µ+τ−) 0 0 σ 0 σ

448 BR(B− →π−µ+τ−) 0 0 σ 0 σ

449 BR(B̄0 → e±µ∓) 0 0 σ 0 σ

450 BR(B̄0 → e±τ∓) 0 0 σ 0 σ
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451 BR(B̄0 →µ±τ∓) 0 0 σ 0 σ

452 BR(B̄s → e±µ∓) 0 0 σ 0 σ

453 BR(B̄s →µ±τ∓) 0 0 σ 0 σ

454 BR(B̄0 →π0e±µ∓) 0 0 σ 0 σ

455 BR(B− →π−e±µ∓) 0 0 σ 0 σ

456 BR(KL → e±µ∓) 0 0 σ 0 σ

457 BR(µ− → e−e+e−) 0 0 σ 0 σ

458 BR(µ→ eγ) 0 0 σ 0 σ

459 BR(τ→µγ) 0 0 σ 0 σ

460 BR(τ− →µ−µ+µ−) 0 0 σ 0 σ

461 BR(τ− → e−µ+µ−) 0 0 σ 0 σ

462 BR(τ→ eγ) 0 0 σ 0 σ

463 BR(τ+ → ρ0e+) 0 0 σ 0 σ

464 BR(τ+ → ρ0µ+) 0 0 σ 0 σ

465 BR(τ+ →φe+) 0 0 σ 0 σ

466 BR(τ+ →φµ+) 0 0 σ 0 σ

467 C R(µ−e) in 48
22Ti 0 0 σ 0 σ

468 C R(µ−e) in 197
79 Au 0 0 σ 0 σ

469 BR(Z 0 → e±µ∓) 0 0 σ 0 σ

470 BR(Z 0 → e±τ∓) 0 0 σ 0 σ

471 BR(Z 0 →µ±τ∓) 0 0 σ 0 σ

C.2 Predictions of the observables in Scenario II of chapter

7

Observable NP prediction NP pull SM pull

0 aµ 0.0011659 4.3 σ 4.3 σ

1 〈 dBR
d q2 〉(Bs →φµ+µ−)[2.5, 4.0] 4.5349×10−8 3.1 σ 4 σ

2 〈FL〉(B+ → K∗+µ+µ−)[2.5, 4] 0.76718 3.2 σ 3.3 σ

3 Rτℓ(B → D∗ℓ+ν) 0.29444 0.11 σ 3.3 σ

4 〈P2〉(B0 → K∗0µ+µ−)[0.1, 0.98] -0.13088 3.3 σ 3.3 σ

5 〈Rµe 〉(B± → K±ℓ+ℓ−)[1.1, 6.0] 0.83564 0.25 σ 3.2 σ

6 〈 dBR
d q2 〉(Bs →φµ+µ−)[1.1, 2.5] 4.9232×10−8 2.5 σ 3.2 σ

7 〈 dBR
d q2 〉(Bs →φµ+µ−)[4.0, 6.0] 4.7857×10−8 2.2 σ 3.1 σ

8
〈

dR
dθ

〉
(e+e− →W +W −)[198.38, 0.8, 1.0] 7.236 3 σ 3 σ

9 〈P ′
5〉(B0 → K∗0µ+µ−)[4, 6] -0.61471 1.8 σ 2.8 σ

10 〈 dBR
d q2 〉(Bs →φµ+µ−)[0.1, 0.98] 1.0947×10−7 2.4 σ 2.7 σ

11 BR(W ± → τ±ν) 0.10837 2.6 σ 2.6 σ

12 〈Rµe 〉(B0 → K∗0ℓ+ℓ−)[1.1, 6.0] 0.84252 1.4 σ 2.5 σ

13 ϵ′/ϵ −2.4922×10−5 2.5 σ 2.5 σ

14 Rτµ(B → D∗ℓ+ν) 0.29506 0.57 σ 2.5 σ

15 A0,b
FB 0.10307 2.4 σ 2.4 σ

16 〈Rµe 〉(B0 → K∗0ℓ+ℓ−)[0.045, 1.1] 0.88458 2.1 σ 2.4 σ

17 〈BR〉
BR (B → D∗τ+ν)[10.4, 10.93] 0.018511 2.3 σ 2.3 σ

18 Ae 0.14703 2.2 σ 2.2 σ

19 〈 dBR
d q2 〉(B+ → K∗+µ+µ−)[15.0, 19.0] 5.4963×10−8 1.4 σ 2.2 σ

20
〈

dR
dθ

〉
(e+e− →W +W −)[189.09, 0.8, 1.0] 6.253 2.2 σ 2.2 σ

21 〈P ′
4〉(B0 → K∗0µ+µ−)[4, 6] -0.49053 2 σ 2.1 σ

22 B̃ [0.591]
n 0.98894 2.2 σ 2.2 σ

23 〈P ′
8〉(B0 → K∗0µ+µ−)[1.1, 2.5] -0.012211 2.2 σ 2.1 σ

24 〈P1〉(B0 → K∗0µ+µ−)[1.1, 2.5] 0.022867 2.2 σ 2.2 σ

25 〈P3〉(B0 → K∗0µ+µ−)[1.1, 2.5] 0.0028863 2.2 σ 2.1 σ
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26 |ϵK | 0.0016583 2.6 σ 2.1 σ

27 〈 dBR
d q2 〉(B+ → K∗+µ+µ−)[4.0, 6.0] 4.7359×10−8 1.6 σ 2.1 σ

28 〈BR〉
BR (B → D∗τ+ν)[5.07, 5.6] 0.063084 2.1 σ 2.1 σ

29 〈 dBR
d q2 〉(B± → K±µ+µ−)[4.0, 5.0] 2.9582×10−8 1.2 σ 2.1 σ

30 BR(KL → e+e−) 1.7487×10−13 2.1 σ 2.1 σ

31 BR(B± → K±τ+τ−) 5.7453×10−5 2 σ 2 σ

32 〈 dBR
d q2 〉(B0 → K∗0µ+µ−)[15.0, 19.0] 5.0724×10−8 0.93 σ 2.1 σ

33 〈P ′
5〉(B+ → K∗+µ+µ−)[15, 19] -0.56699 1.9 σ 2 σ

34 〈Aℓh
FB〉(Λb →Λµ+µ−)[15, 20] 0.15534 2.2 σ 2.1 σ

35 〈P2〉(B+ → K∗+µ+µ−)[4, 6] 0.16362 1.5 σ 2.1 σ

36 〈 dBR
d q2 〉(Bs →φµ+µ−)[1.0, 6.0] 4.7692×10−8 1.7 σ 2 σ

37 〈P3〉(B+ → K∗+µ+µ−)[0.1, 0.98] 0.0013649 2 σ 2 σ

38 BR(τ− →µ−νν̄) 0.17278 2.2 σ 2 σ

39 BR(Bs →µ+µ−) 3.6616×10−9 1.9 σ 1.9 σ

40 〈P2〉(B0 → K∗0µ+µ−)[4, 6] 0.16155 0.65 σ 1.9 σ

41 〈 dBR
d q2 〉(B0 → K 0µ+µ−)[4.0, 6.0] 2.7333×10−8 1.3 σ 1.9 σ

42 ae 0.0011597 1.9 σ 1.9 σ

43 〈P ′
5〉(B0 → K∗0µ+µ−)[2.5, 4] -0.29333 0.79 σ 1.9 σ

44 〈 dBR
d q2 〉(B0 → K 0µ+µ−)[15.0, 22.0] 1.1833×10−8 1 σ 1.9 σ

45 〈BR〉
BR (B → Dτ+ν)[7.73, 8.27] 0.091527 1.9 σ 1.9 σ

46 〈 dBR
d q2 〉(B± → K±µ+µ−)[5.0, 6.0] 2.9353×10−8 1 σ 1.9 σ

47 〈BR〉
BR (B → D∗τ+ν)[7.2, 7.73] 0.10189 1.9 σ 1.9 σ

48 〈 dBR
d q2 〉(B± → K±µ+µ−)[1.1, 2.0] 3.0075×10−8 1.1 σ 1.9 σ

49
〈

dR
dθ

〉
(e+e− →W +W −)[198.38, −0.6, −0.4] 0.835 1.9 σ 1.9 σ

50 〈P1〉(B0 → K∗0µ+µ−)[4.3, 6] -0.16703 1.9 σ 1.9 σ

51 µZ h (h → cc̄) 1 1.8 σ 1.8 σ

52
〈

dR
dθ

〉
(e+e− →W +W −)[198.38, 0.6, 0.8] 4.428 1.8 σ 1.8 σ

53 〈 dBR
d q2 〉(B0 → K∗0µ+µ−)[1.1, 2.5] 4.2691×10−8 1.3 σ 1.8 σ

54
〈

dR
dθ

〉
(e+e− →W +W −)[182.66, −1.0, −0.8] 0.702 1.8 σ 1.8 σ

55 〈 dBR
d q2 〉(B0 → K∗0µ+µ−)[4.3, 6] 4.4203×10−8 1.1 σ 1.7 σ

56 〈 dBR
d q2 〉(B0 → K∗0µ+µ−)[4.0, 6.0] 4.3783×10−8 0.99 σ 1.7 σ

57
〈

dR
dθ

〉
(e+e− →W +W −)[198.38, −1.0, −0.8] 0.542 1.7 σ 1.7 σ

58 mW 80.359 1.7 σ 1.7 σ

59
〈

dR
dθ

〉
(e+e− →W +W −)[182.66, 0.0, 0.2] 1.731 1.7 σ 1.7 σ

60 〈 dBR
d q2 〉(B0 → K 0µ+µ−)[2.0, 4.0] 2.7695×10−8 1.1 σ 1.7 σ

61 µW h (h → τ+τ−) 1 1.7 σ 1.7 σ

62
〈

dR
dθ

〉
(e+e− →W +W −)[205.92, 0.2, 0.4] 2.056 1.7 σ 1.7 σ

63
〈

dR
dθ

〉
(e+e− →W +W −)[205.92, −0.6, −0.4] 0.77 1.7 σ 1.7 σ

64 µt t̄h (h →W +W −) 1 1.7 σ 1.7 σ

65 〈 dBR
d q2 〉(Λb →Λµ+µ−)[15, 20] 6.0653×10−8 2.1 σ 1.7 σ

66 R(e+e− →W +W −)[182.7] 1 1.6 σ 1.6 σ

67 A∆Γ(Bs →φγ) 0.03051 1.7 σ 1.7 σ

68 〈 dBR
d q2 〉(B± → K±µ+µ−)[15.0, 22.0] 1.2845×10−8 0.41 σ 1.6 σ

69 BR(KS →π+e+ν) 0.00071986 1.6 σ 1.6 σ

70 〈P ′
5〉(B0 → K∗0µ+µ−)[0.1, 0.98] 0.73931 2.1 σ 1.6 σ

71 〈BR〉
BR (B → Dτ+ν)[9.0, 9.5] 0.066851 1.6 σ 1.6 σ

72 Rτℓ(B → Dℓ+ν) 0.3573 0.35 σ 1.6 σ

73 〈P ′
6〉(B+ → K∗+µ+µ−)[15, 19] -0.002583 1.5 σ 1.5 σ

74 〈FL〉(B0 → K∗0µ+µ−)[1.1, 2.5] 0.70778 0.79 σ 1.6 σ

75 τBs→µµ 2.4506×1012 1.6 σ 1.6 σ

76 BR(KL →π+e+ν) 0.41115 1.6 σ 1.6 σ

77 〈Dµe
P ′

5
〉(B0 → K∗0ℓ+ℓ−)[14.18, 19.0] 0.0070533 1.5 σ 1.5 σ

78 〈 dBR
d q2 〉(B± → K±µ+µ−)[3.0, 4.0] 2.9773×10−8 0.7 σ 1.5 σ
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79 〈P ′
6〉(B0 → K∗0µ+µ−)[4, 6] -0.034085 1.5 σ 1.5 σ

80 〈P ′
5〉(B0 → K∗0µ+µ−)[1.1, 2.5] 0.29796 0.47 σ 1.5 σ

81 A0,τ
FB 0.016236 1.5 σ 1.5 σ

82 〈 dBR
d q2 〉(Bs →φµ+µ−)[15.0, 19.0] 4.753×10−8 0.21 σ 1.5 σ

83 R0
µ 20.735 1.5 σ 1.5 σ

84 〈 dBR
d q2 〉(B0 → K∗0µ+µ−)[2.5, 4.0] 3.9895×10−8 0.84 σ 1.5 σ

85 BR(B− →π−τ+e−) 2.0924×10−9 1.5 σ 1.5 σ

86
〈

dR
dθ

〉
(e+e− →W +W −)[182.66, 0.2, 0.4] 2.189 1.5 σ 1.5 σ

87 〈S4〉(Bs →φµ+µ−)[15.0, 19.0] -0.30161 1.5 σ 1.5 σ

88 FL (B0 → D∗−τ+ντ) 0.46989 1.5 σ 1.5 σ

89 BR(B+ → K+νν̄) 5.943×10−6 1 σ 1.4 σ

90 BR(KS →µ+µ−) 5.1619×10−12 1.4 σ 1.4 σ

91 〈BR〉
BR (B → D∗τ+ν)[6.0, 6.5] 0.080351 1.4 σ 1.4 σ

92 BR(W ± →µ±ν) 0.10842 1.4 σ 1.4 σ

93 R0
e 20.734 1.4 σ 1.4 σ

94 〈A9〉(B0 → K∗0µ+µ−)[15, 19] 4.1214×10−5 1.4 σ 1.4 σ

95 Reµ(K+ → ℓ+ν) 2.4755×10−5 1.4 σ 1.4 σ

96 〈P ′
5〉(B+ → K∗+µ+µ−)[4, 6] -0.62316 0.97 σ 1.3 σ

97 〈BR〉(B → Xs e+e−)[14.2, 25.0] 3.182×10−7 1.4 σ 1.4 σ

98 F t (10C) 4.6665×1027 1.4 σ 1.4 σ

99 〈 dBR
d q2 〉(B± → K±µ+µ−)[0, 2] 3.0119×10−8 0.63 σ 1.3 σ

100
〈

dR
dθ

〉
(e+e− →W +W −)[189.09, −0.2, 0.0] 1.403 1.3 σ 1.3 σ

101 BR(B+ → e+ν) 9.8005×10−12 1.3 σ 1.3 σ

102 〈Dµe
P ′

5
〉(B0 → K∗0ℓ+ℓ−)[1.0, 6.0] 0.080606 1.2 σ 1.3 σ

103 Sφγ -0.00023221 1.3 σ 1.3 σ

104 BR(Bs → e+e−) 1.0087×10−13 1.3 σ 1.3 σ

105 〈P ′
8〉(B0 → K∗0µ+µ−)[4, 6] -0.010099 1.3 σ 1.3 σ

106 〈P ′
4〉(B0 → K∗0µ+µ−)[2, 4] -0.3251 1.3 σ 1.3 σ

107 BR(KS → e+e−) 1.6155×10−16 1.3 σ 1.3 σ

108 BR(B0 → e+e−) 2.5204×10−15 1.3 σ 1.3 σ

109 BR(KL →π0νν̄) 3.537×10−11 1.3 σ 1.3 σ

110 〈BR〉
BR (B → D∗τ+ν)[8.27, 8.8] 0.10324 1.3 σ 1.3 σ

111 BR(B0 → ρ0νν̄) 1.9904×10−7 1.3 σ 1.3 σ

112 BR(B− →π−e+τ−) 2.0924×10−9 1.3 σ 1.3 σ

113 〈Rµe 〉(B0 → K 0ℓ+ℓ−)[4.0, 8.12] 0.83657 0.86 σ 1.3 σ

114 BR(K+ →π0e+ν) 0.051558 1.3 σ 1.3 σ

115
〈

dR
dθ

〉
(e+e− →W +W −)[205.92, 0.0, 0.2] 1.561 1.3 σ 1.3 σ

116 BR(B0 → K∗0νν̄) 1.2895×10−5 1.6 σ 1.3 σ

117 〈FL〉(B0 → K∗0µ+µ−)[2, 4] 0.76366 0.98 σ 1.3 σ

118 µt t̄h (h →V V ) 1 1.3 σ 1.3 σ

119 BR(KS →π+µ+ν) 0.00047682 1.3 σ 1.3 σ

120 〈BR〉
BR (B → Dτ+ν)[9.86, 10.4] 0.052842 1.2 σ 1.2 σ

121 〈P3〉(B0 → K∗0µ+µ−)[0.1, 0.98] 0.0013074 1.2 σ 1.2 σ

122 SψKS 0.7251 0.6 σ 1.2 σ

123 µVBF(h → bb̄) 0.99999 1.2 σ 1.2 σ

124
〈

dR
dθ

〉
(e+e− →W +W −)[182.66, 0.6, 0.8] 3.806 1.2 σ 1.2 σ

125 BR(τ+ → K+ν̄) 0.0071474 1.3 σ 1.2 σ

126 〈BR〉
BR (B → D∗τ+ν)[4.0, 4.5] 0.026461 1.2 σ 1.2 σ

127 〈 dBR
d q2 〉(B0 → K∗0µ+µ−)[2, 4.3] 4.0108×10−8 0.56 σ 1.2 σ

128 〈FL〉(B+ → K∗+µ+µ−)[1.1, 2.5] 0.71563 0.9 σ 1.2 σ

129 µZ h (h → bb̄) 1 1.1 σ 1.1 σ

130 BR(B+ → K∗+νν̄) 1.3883×10−5 0.83 σ 1.1 σ

131 µZ h (h →W +W −) 1 1.1 σ 1.1 σ

132 〈P ′
4〉(B+ → K∗+µ+µ−)[15, 19] -0.63437 1.1 σ 1.1 σ

133 µW h (h →W +W −) 1 1.1 σ 1.1 σ

134 aτ 0.0011772 1.1 σ 1.1 σ
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135 Rµe (W ± → ℓ±ν) 1 1.1 σ 1.1 σ

136 ∆Ms 1.2465×10−11 1.1 σ 1.1 σ

137 〈 dBR
d q2 〉(B± → K±µ+µ−)[2.0, 3.0] 2.9936×10−8 0.27 σ 1.1 σ

138 〈P ′
4〉(B+ → K∗+µ+µ−)[1.1, 2.5] -0.07051 1.1 σ 1.1 σ

139 〈P ′
6〉(B0 → K∗0µ+µ−)[1.1, 2.5] -0.069814 1 σ 1 σ

140 〈BR〉(B → Xsµ
+µ−)[1.0, 6.0] 1.495×10−6 0.87 σ 1.1 σ

141
〈

dR
dθ

〉
(e+e− →W +W −)[182.66, −0.8, −0.6] 0.841 1.1 σ 1.1 σ

142 〈P ′
8〉(B+ → K∗+µ+µ−)[0.1, 0.98] -0.030051 1.1 σ 1.1 σ

143 BR(K+ →π0µ+ν) 0.034039 1 σ 1 σ

144 〈P ′
5〉(B+ → K∗+µ+µ−)[1.1, 2.5] 0.27169 0.87 σ 1.1 σ

145 F t (46V) 4.6665×1027 1.1 σ 1.1 σ

146 〈P1〉(B0 → K∗0µ+µ−)[4, 6] -0.1637 0.97 σ 1 σ

147 〈S3〉(Bs →φµ+µ−)[15.0, 19.0] -0.2098 1 σ 1 σ

148 〈P1〉(B0 → K∗0µ+µ−)[2, 4] -0.073287 1 σ 1 σ

149 µt t̄h (h → γγ) 1 1 σ 1 σ

150 µg g (h → Zγ) 1 1 σ 1 σ

151
〈

dR
dθ

〉
(e+e− →W +W −)[182.66, −0.6, −0.4] 1.011 1 σ 1 σ

152 µW h (h → γγ) 1 0.99 σ 0.99 σ

153 〈P3〉(B0 → K∗0µ+µ−)[15, 19] -0.00052873 1 σ 1 σ

154 〈P ′
5〉(B0 → K∗0µ+µ−)[15, 19] -0.56403 1.4 σ 0.99 σ

155 〈P1〉(B+ → K∗+µ+µ−)[0.1, 0.98] 0.042389 0.96 σ 0.95 σ

156 〈BR〉
BR (B → D∗τ+ν)[10.5, 11.0] 0.0098782 0.96 σ 0.96 σ

157
〈

dR
dθ

〉
(e+e− →W +W −)[189.09, −0.8, −0.6] 0.781 0.95 σ 0.95 σ

158 ACP(B → Xs+dγ) 0 0.93 σ 0.93 σ

159 µVBF(h →W +W −) 1 0.94 σ 0.94 σ

160 〈A7〉(B0 → K∗0µ+µ−)[1.1, 6] 0.0025767 0.94 σ 0.94 σ

161 〈P1〉(B+ → K∗+µ+µ−)[4, 6] -0.16215 0.92 σ 0.91 σ

162
〈

dR
dθ

〉
(e+e− →W +W −)[189.09, −0.6, −0.4] 0.928 0.94 σ 0.94 σ

163 〈BR〉
BR (B → D∗τ+ν)[7.73, 8.27] 0.10629 0.94 σ 0.94 σ

164 〈P ′
4〉(B0 → K∗0µ+µ−)[0.1, 0.98] 0.20359 0.56 σ 0.95 σ

165 R(e+e− →W +W −)[204.9] 1 0.94 σ 0.94 σ

166 R(e+e− →W +W −)[188.6] 1 0.92 σ 0.92 σ

167 〈BR〉(B → Xsµ
+µ−)[14.2, 25.0] 3.0603×10−7 1 σ 0.88 σ

168 〈P ′
4〉(B+ → K∗+µ+µ−)[0.1, 0.98] 0.19845 0.75 σ 0.85 σ

169 〈Dµe
P ′

4
〉(B0 → K∗0ℓ+ℓ−)[1.0, 6.0] 0.025677 0.85 σ 0.91 σ

170 〈BR〉
BR (B → Dτ+ν)[10.93, 11.47] 0.023168 0.9 σ 0.9 σ

171
〈

dR
dθ

〉
(e+e− →W +W −)[205.92, −0.4, −0.2] 0.972 0.9 σ 0.9 σ

172 Aτ 0.14723 0.95 σ 0.9 σ

173 〈BR〉
BR (B → Dτ+ν)[6.67, 7.2] 0.095702 0.89 σ 0.89 σ

174 〈A7〉(B0 → K∗0µ+µ−)[15, 19] 0.0001129 0.89 σ 0.89 σ

175 ã[0.695]
n -0.09921 0.89 σ 0.89 σ

176 µg g (h →µ+µ−) 1 0.89 σ 0.89 σ

177 µZ h (h → γγ) 1 0.88 σ 0.88 σ

178 〈S4〉(Bs →φµ+µ−)[2.0, 5.0] -0.14749 0.87 σ 0.87 σ

179 µg g (h → Z Z ) 1 0.88 σ 0.88 σ

180 〈FL〉(B0 → K∗0µ+µ−)[1, 2] 0.66878 0.35 σ 0.85 σ

181 〈FL〉(Bs →φµ+µ−)[2.0, 5.0] 0.7851 0.71 σ 0.88 σ

182 〈BR〉
BR (B → Dτ+ν)[10.0, 10.5] 0.046209 0.87 σ 0.87 σ

183
〈

dR
dθ

〉
(e+e− →W +W −)[198.38, 0.4, 0.6] 3.003 0.87 σ 0.87 σ

184 BR(B− → K−e+τ−) 5.896×10−7 0.91 σ 0.87 σ

185
〈

dR
dθ

〉
(e+e− →W +W −)[182.66, 0.4, 0.6] 2.822 0.87 σ 0.87 σ

186 〈BR〉
BR (B → Dτ+ν)[8.8, 9.33] 0.074315 0.86 σ 0.86 σ

187 µV h (h → bb̄) 1 0.86 σ 0.86 σ

188 〈BR〉
BR (B → Dτ+ν)[5.5, 6.0] 0.081066 0.86 σ 0.86 σ

189 BR(τ− → e−νν̄) 0.17765 1.1 σ 0.84 σ

190 〈BR〉
BR (B → D∗τ+ν)[8.8, 9.33] 0.097951 0.85 σ 0.85 σ
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191 〈BR〉
BR (B → D∗τ+ν)[5.5, 6.0] 0.069889 0.84 σ 0.84 σ

192 〈BR〉
BR (B → Dτ+ν)[7.2, 7.73] 0.094208 0.84 σ 0.84 σ

193 F t (22Mg) 4.6665×1027 0.82 σ 0.81 σ

194 〈BR〉
BR (B → D∗τ+ν)[6.13, 6.67] 0.089674 0.83 σ 0.83 σ

195 〈BR〉
BR (B → Dτ+ν)[9.5, 10.0] 0.05713 0.83 σ 0.83 σ

196 〈BR〉
BR (B → Dτ+ν)[10.4, 10.93] 0.038397 0.83 σ 0.83 σ

197 A0,c
FB 0.07361 0.83 σ 0.83 σ

198 〈A8〉(B0 → K∗0µ+µ−)[1.1, 6] 0.00056089 0.82 σ 0.83 σ

199 BR(W ± → e±ν) 0.10842 0.83 σ 0.82 σ

200 〈BR〉
BR (B → Dτ+ν)[6.13, 6.67] 0.095556 0.82 σ 0.82 σ

201
〈

dR
dθ

〉
(e+e− →W +W −)[189.09, 0.4, 0.6] 2.946 0.81 σ 0.81 σ

202 F t (26m Al) 4.6665×1027 0.81 σ 0.81 σ

203 〈P ′
6〉(B0 → K∗0µ+µ−)[15, 19] -0.0025886 0.81 σ 0.81 σ

204 〈A9〉(B0 → K∗0µ+µ−)[1.1, 6] 7.3603×10−5 0.8 σ 0.8 σ

205 〈AℓFB〉(Λb →Λµ+µ−)[15, 20] -0.33481 1.2 σ 0.8 σ

206 µVBF(h → τ+τ−) 0.99999 0.8 σ 0.8 σ

207 〈AFB〉(B0 → K∗0µ+µ−)[4.3, 6] 0.08224 0.45 σ 0.77 σ

208 〈BR〉
BR (B → D∗τ+ν)[6.67, 7.2] 0.096421 0.8 σ 0.8 σ

209 BR(KL →π+µ+ν) 0.27234 0.77 σ 0.77 σ

210 〈BR〉
BR (B → Dτ+ν)[6.0, 6.5] 0.087333 0.78 σ 0.78 σ

211 〈P1〉(B0 → K∗0µ+µ−)[2.5, 4] -0.092975 0.7 σ 0.76 σ

212 Ã[0.586]
n -0.11027 0.78 σ 0.78 σ

213 〈P ′
4〉(B+ → K∗+µ+µ−)[4, 6] -0.48861 0.8 σ 0.77 σ

214 〈P1〉(B0 → K∗0e+e−)[0.000784, 0.257] 0.03227 0.78 σ 0.77 σ

215
〈

dR
dθ

〉
(e+e− →W +W −)[189.09, −1.0, −0.8] 0.661 0.77 σ 0.77 σ

216 〈P2〉(B0 → K∗0µ+µ−)[2.5, 4] -0.20976 0.12 σ 0.78 σ

217
〈

dR
dθ

〉
(e+e− →W +W −)[205.92, 0.8, 1.0] 7.783 0.77 σ 0.77 σ

218 R(e+e− →W +W −)[199.5] 1 0.76 σ 0.76 σ

219 〈FL〉(B0 → K∗0µ+µ−)[0, 2] 0.34491 0.52 σ 0.8 σ

220 〈P3〉(B+ → K∗+µ+µ−)[2.5, 4] 0.0030891 0.74 σ 0.74 σ

221 〈BR〉
BR (B → Dτ+ν)[7.5, 8.0] 0.086998 0.75 σ 0.75 σ

222 Ã[0.559]
n -0.11027 0.75 σ 0.75 σ

223
〈

dR
dθ

〉
(e+e− →W +W −)[198.38, −0.4, −0.2] 1.021 0.75 σ 0.75 σ

224 〈P3〉(B+ → K∗+µ+µ−)[4, 6] 0.002185 0.7 σ 0.7 σ

225
〈

dR
dθ

〉
(e+e− →W +W −)[205.92, 0.4, 0.6] 2.903 0.74 σ 0.74 σ

226 〈P1〉(B0 → K∗0µ+µ−)[2, 4.3] -0.083388 0.79 σ 0.74 σ

227 R0
b 0.21581 0.73 σ 0.73 σ

228 µVBF(h → γγ) 0.99999 0.72 σ 0.72 σ

229 〈FL〉(Bs →φµ+µ−)[15.0, 19.0] 0.34101 0.69 σ 0.69 σ

230 〈FL〉(B0 → K∗0µ+µ−)[4, 6] 0.69525 0.44 σ 0.71 σ

231 τ[0.655]
n 1.3795×1027 0.71 σ 0.71 σ

232 〈AFB〉(B0 → K∗0µ+µ−)[1, 2] -0.18814 0.51 σ 0.7 σ

233
〈

dR
dθ

〉
(e+e− →W +W −)[198.38, 0.2, 0.4] 2.161 0.71 σ 0.71 σ

234
〈

dR
dθ

〉
(e+e− →W +W −)[189.09, 0.0, 0.2] 1.715 0.7 σ 0.7 σ

235 R0
uc 0.17225 0.69 σ 0.69 σ

236 F t (34Ar) 4.6665×1027 0.72 σ 0.73 σ

237 〈P2〉(B+ → K∗+µ+µ−)[0.1, 0.98] -0.13427 0.69 σ 0.7 σ

238 〈FL〉(B0 → K∗0µ+µ−)[0.1, 0.98] 0.25971 0.076 σ 0.67 σ

239 A0,e
FB 0.016214 0.69 σ 0.69 σ

240 µg g (h → bb̄) 1 0.68 σ 0.68 σ

241 〈BR〉
BR (B → Dτ+ν)[8.5, 9.0] 0.075222 0.68 σ 0.68 σ

242 BR(B+ →π+νν̄) 1.2435×10−7 0.68 σ 0.68 σ

243 〈BR〉
BR (B → D∗τ+ν)[7.5, 8.0] 0.097746 0.68 σ 0.68 σ

244 〈BR〉
BR (B → Dτ+ν)[10.5, 11.0] 0.034069 0.68 σ 0.68 σ

245
〈

dR
dθ

〉
(e+e− →W +W −)[189.09, 0.6, 0.8] 4.122 0.68 σ 0.68 σ

246 BR(B+ → ρ+νν̄) 4.2883×10−7 0.67 σ 0.68 σ
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247 〈P ′
6〉(B0 → K∗0µ+µ−)[0.1, 0.98] -0.057819 0.72 σ 0.69 σ

248
BR(B0→K∗0γ)

BR(Bs→φγ)
1.0404 0.66 σ 0.66 σ

249 µt t̄h (h → Z Z ) 1 0.67 σ 0.67 σ

250 〈BR〉
BR (B → Dτ+ν)[4.0, 4.53] 0.039797 0.67 σ 0.67 σ

251 〈BR〉
BR (B → D∗τ+ν)[10.0, 10.5] 0.05616 0.66 σ 0.66 σ

252 F t (38Ca) 4.6665×1027 0.68 σ 0.67 σ

253 〈P ′
5〉(B0 → K∗0µ+µ−)[4.3, 6] -0.63167 1.2 σ 0.67 σ

254
〈

dR
dθ

〉
(e+e− →W +W −)[182.66, −0.2, 0.0] 1.402 0.65 σ 0.65 σ

255 Rτe (W ± → ℓ±ν) 0.99953 0.64 σ 0.65 σ

256 〈AFB〉(B0 → K∗0µ+µ−)[2, 4.3] -0.076594 0.25 σ 0.65 σ

257 〈FL〉(B0 → K∗0µ+µ−)[2.5, 4] 0.76472 0.14 σ 0.64 σ

258 BR(B0 →µ+µ−) 1.0213×10−10 0.65 σ 0.65 σ

259
〈

dR
dθ

〉
(e+e− →W +W −)[205.92, −1.0, −0.8] 0.532 0.64 σ 0.64 σ

260 BR(B0 →π0νν̄) 5.7879×10−8 0.63 σ 0.63 σ

261 SK∗γ -0.023305 0.64 σ 0.63 σ

262 〈BR〉
BR (B → Dτ+ν)[4.0, 4.5] 0.03694 0.63 σ 0.63 σ

263 µW h (h → bb̄) 1 0.62 σ 0.62 σ

264 Rτµ(W ± → ℓ±ν) 0.99953 0.58 σ 0.61 σ

265 R(e+e− →W +W −)[195.5] 1 0.61 σ 0.61 σ

266 〈BR〉
BR (B → D∗τ+ν)[4.53, 5.07] 0.047598 0.61 σ 0.61 σ

267
〈

dR
dθ

〉
(e+e− →W +W −)[205.92, −0.8, −0.6] 0.642 0.61 σ 0.61 σ

268 〈P3〉(B0 → K∗0µ+µ−)[4, 6] 0.0022292 0.6 σ 0.6 σ

269 〈FL〉(B0 → K∗0µ+µ−)[4.3, 6] 0.68834 0.48 σ 0.6 σ

270 µZ h (h → τ+τ−) 1 0.6 σ 0.6 σ

271 BR(B0 →π−τ+ντ) 0.00010418 0.63 σ 0.63 σ

272 ΓZ 2.494 0.66 σ 0.6 σ

273 F t (54Co) 4.6665×1027 0.57 σ 0.57 σ

274 〈Rµe 〉(B+ → K∗+ℓ+ℓ−)[15.0, 19.0] 0.83103 0.83 σ 0.59 σ

275 〈AFB〉(B0 → K∗0µ+µ−)[0, 2] -0.11537 0.65 σ 0.61 σ

276 〈Rµe 〉(B± → K±ℓ+ℓ−)[4.0, 8.12] 0.83656 1 σ 0.59 σ

277 Dn 2.8379×10−25 0.6 σ 0.6 σ

278 Ab 0.93471 0.59 σ 0.59 σ

279 µg g (h →W +W −) 1 0.58 σ 0.58 σ

280 〈P ′
5〉(B0 → K∗0µ+µ−)[0.04, 2] 0.60523 0.19 σ 0.49 σ

281 BR(τ− → e−µ+e−) 2.1035×10−89 0.58 σ 0.58 σ

282 BR(B− → K−τ+µ−) 1.6205×10−20 0.57 σ 0.57 σ

283 〈P ′
8〉(B+ → K∗+µ+µ−)[15, 19] 0.00077581 0.56 σ 0.56 σ

284 Rµe (B → D∗ℓ+ν) 0.99583 0.53 σ 0.56 σ

285 〈BR〉
BR (B → Dτ+ν)[8.27, 8.8] 0.083047 0.56 σ 0.56 σ

286 〈P3〉(B+ → K∗+µ+µ−)[15, 19] -0.00052625 0.52 σ 0.52 σ

287 〈P ′
5〉(B0 → K∗0µ+µ−)[1, 2] 0.42384 0.91 σ 0.52 σ

288 〈P ′
6〉(B0 → K∗0µ+µ−)[2.5, 4] -0.055302 0.54 σ 0.56 σ

289 〈P ′
5〉(B+ → K∗+µ+µ−)[0.1, 0.98] 0.73584 0.76 σ 0.59 σ

290 〈BR〉
BR (B → Dτ+ν)[4.53, 5.07] 0.0622 0.53 σ 0.53 σ

291 〈Rµe 〉(B0 → K 0ℓ+ℓ−)[14.18, 19.0] 0.83977 0.7 σ 0.53 σ

292 λ[0.581]
AB -1.251 0.53 σ 0.53 σ

293 A
0,µ
FB 0.016214 0.53 σ 0.53 σ

294 〈P1〉(B+ → K∗+µ+µ−)[1.1, 2.5] 0.02184 0.53 σ 0.53 σ

295 〈A8〉(B0 → K∗0µ+µ−)[15, 19] 5.4076×10−5 0.52 σ 0.52 σ

296 〈BR〉
BR (B → Dτ+ν)[11.5, 12.0] 0.0018997 0.52 σ 0.52 σ

297 〈 dBR
d q2 〉(B0 → K∗0µ+µ−)[0, 2] 7.9467×10−8 0.68 σ 0.53 σ

298 BR(τ− →µ−e+µ−) 8.6274×10−59 0.51 σ 0.51 σ

299 BR(π+ → e+ν) 0.0001234 0.51 σ 0.51 σ

300 〈 dBR
d q2 〉(B+ → K∗+µ+µ−)[2.0, 4.0] 4.3362×10−8 0.8 σ 0.49 σ

301 R(e+e− →W +W −)[206.6] 1 0.5 σ 0.5 σ

302 〈Rµe 〉(B0 → K 0ℓ+ℓ−)[0.1, 4.0] 0.83503 0.66 σ 0.5 σ
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303 〈BR〉
BR (B → D∗τ+ν)[4.5, 5.0] 0.042537 0.5 σ 0.5 σ

304 µt t̄h (h → τ+τ−) 1 0.49 σ 0.49 σ

305
〈

dR
dθ

〉
(e+e− →W +W −)[182.66, −0.4, −0.2] 1.181 0.49 σ 0.49 σ

306 BR(τ− →µ−e+e−) 7.1088×10−26 0.49 σ 0.49 σ

307 〈FL〉(B+ → K∗+µ+µ−)[15, 19] 0.33762 0.5 σ 0.5 σ

308 〈P2〉(B+ → K∗+µ+µ−)[1.1, 2.5] -0.4585 0.5 σ 0.48 σ

309 BR(B0 → K 0νν̄) 5.5029×10−6 0.33 σ 0.48 σ

310 〈 dBR
d q2 〉(B0 → K 0µ+µ−)[0, 2] 2.7943×10−8 0.19 σ 0.47 σ

311 〈FL〉(B0 → K∗0µ+µ−)[0.04, 2] 0.34491 0.79 σ 0.43 σ

312 BR(Bc → τ+ν) 0.028435 0.56 σ 0.46 σ

313 〈BR〉
BR (B → D∗τ+ν)[7.0, 7.5] 0.094377 0.45 σ 0.45 σ

314 As 0.93552 0.45 σ 0.45 σ

315 BR(B− → K∗−e+µ−) 2.8849×10−22 0.45 σ 0.45 σ

316
〈

dR
dθ

〉
(e+e− →W +W −)[198.38, −0.8, −0.6] 0.664 0.45 σ 0.45 σ

317 BR(Bs →φγ) 4.0162×10−5 0.42 σ 0.43 σ

318 〈BR〉
BR (B → D∗τ+ν)[9.86, 10.4] 0.067671 0.44 σ 0.44 σ

319 〈P2〉(B0 → K∗0µ+µ−)[15, 19] 0.35191 0.24 σ 0.43 σ

320 〈P1〉(B0 → K∗0µ+µ−)[15, 19] -0.62265 0.42 σ 0.43 σ

321 〈P2〉(B0 → K∗0e+e−)[0.000784, 0.257] -0.013205 0.41 σ 0.43 σ

322 µW h (h → Z Z ) 1 0.43 σ 0.43 σ

323 〈BR〉
BR (B → Dτ+ν)[11.0, 11.5] 0.019884 0.43 σ 0.43 σ

324 〈 dBR
d q2 〉(B± → K±µ+µ−)[2, 4.3] 2.9828×10−8 0.22 σ 0.41 σ

325 µg g (h → γγ) 1 0.42 σ 0.42 σ

326 〈BR〉(B → Xs e+e−)[1.0, 6.0] 1.8341×10−6 0.28 σ 0.42 σ

327 〈P ′
4〉(B0 → K∗0µ+µ−)[0.04, 2] 0.12201 0.5 σ 0.45 σ

328 BR(KL →µ+µ−) 7.3597×10−9 0.42 σ 0.41 σ

329
〈

dR
dθ

〉
(e+e− →W +W −)[189.09, −0.4, −0.2] 1.137 0.41 σ 0.41 σ

330 〈P ′
4〉(B+ → K∗+µ+µ−)[2.5, 4] -0.36596 0.43 σ 0.41 σ

331 〈FL〉(B0 → K∗0µ+µ−)[2, 4.3] 0.76007 0.024 σ 0.4 σ

332 F t (74Rb) 4.6665×1027 0.39 σ 0.39 σ

333 an -0.09921 0.39 σ 0.39 σ

334 〈 dBR
d q2 〉(B0 → K 0µ+µ−)[2, 4.3] 2.767×10−8 0.13 σ 0.39 σ

335 〈P1〉(B0 → K∗0µ+µ−)[0.1, 0.98] 0.041514 0.4 σ 0.38 σ

336
〈

dR
dθ

〉
(e+e− →W +W −)[198.38, 0.0, 0.2] 1.666 0.38 σ 0.38 σ

337 R0
τ 20.777 0.27 σ 0.37 σ

338 〈P2〉(B+ → K∗+µ+µ−)[15, 19] 0.35346 0.13 σ 0.36 σ

339 F t (34Cl) 4.6665×1027 0.39 σ 0.39 σ

340 〈Rµe 〉(B0 → K∗0ℓ+ℓ−)[0.1, 8.0] 0.85895 0.022 σ 0.37 σ

341 〈Rµe 〉(B0 → K∗0ℓ+ℓ−)[15.0, 19.0] 0.83104 0.79 σ 0.36 σ

342 µVBF(h → Z Z ) 1 0.35 σ 0.35 σ

343 〈Ah
FB〉(Λb →Λµ+µ−)[15, 20] -0.31831 0.31 σ 0.31 σ

344 Aµ 0.14703 0.34 σ 0.34 σ

345 BR(Bs → τ+τ−) 0.00026434 0.42 σ 0.33 σ

346 µt t̄h (h → bb̄) 1 0.32 σ 0.32 σ

347 〈FL〉(B+ → K∗+µ+µ−)[4, 6] 0.69599 0.17 σ 0.29 σ

348 〈BR〉
BR (B → Dτ+ν)[6.5, 7.0] 0.090073 0.32 σ 0.32 σ

349 〈P ′
8〉(B0 → K∗0µ+µ−)[2.5, 4] -0.013804 0.26 σ 0.28 σ

350 〈P ′
8〉(B+ → K∗+µ+µ−)[4, 6] -0.010087 0.28 σ 0.28 σ

351 〈BR〉
BR (B → Dτ+ν)[4.5, 5.0] 0.055942 0.3 σ 0.3 σ

352 〈P1〉(B0 → K∗0µ+µ−)[0.04, 2] 0.040328 0.33 σ 0.34 σ

353 〈FL〉(B+ → K∗+µ+µ−)[0.1, 0.98] 0.26798 0.57 σ 0.3 σ

354 σ0
had 0.00010655 0.47 σ 0.3 σ

355 F t (42Sc) 4.6665×1027 0.33 σ 0.32 σ

356 BR(B̄0 → K̄∗0µ+e−) 2.6796×10−22 0.3 σ 0.3 σ

357 〈P2〉(B+ → K∗+µ+µ−)[2.5, 4] -0.20266 0.77 σ 0.28 σ

358 Rn 9.7994×10−21 0.33 σ 0.33 σ
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359 〈Rµe 〉(B± → K±ℓ+ℓ−)[14.18, 19.0] 0.83975 0.87 σ 0.29 σ

360 〈Rµe 〉(B± → K±ℓ+ℓ−)[0.1, 4.0] 0.83503 0.35 σ 0.28 σ

361 〈P ′
5〉(B+ → K∗+µ+µ−)[2.5, 4] -0.31369 0.41 σ 0.26 σ

362 〈S3〉(Bs →φµ+µ−)[2.0, 5.0] -0.0072466 0.26 σ 0.25 σ

363 〈P3〉(B0 → K∗0µ+µ−)[2.5, 4] 0.0031278 0.23 σ 0.22 σ

364 Γ(π+ →µ+ν) 2.5202×10−17 0.25 σ 0.25 σ

365 Sψφ 0.037986 0.14 σ 0.23 σ

366 〈P ′
4〉(B0 → K∗0µ+µ−)[2.5, 4] -0.36793 0.39 σ 0.25 σ

367 R(W + → c X ) 0.50001 0.25 σ 0.25 σ

368 xIm,D
12 4.2076×10−18 0.24 σ 0.24 σ

369 BR(B− → K∗−µ+e−) 2.8849×10−22 0.25 σ 0.25 σ

370 µVBF(h →µ+µ−) 0.99999 0.24 σ 0.24 σ

371 〈P ′
5〉(B0 → K∗0µ+µ−)[2, 4.3] -0.24463 0.8 σ 0.26 σ

372 µZ h (h → Z Z ) 1 0.23 σ 0.23 σ

373 〈P ′
5〉(B0 → K∗0µ+µ−)[2, 4] -0.20115 0.35 σ 0.24 σ

374 〈 dBR
d q2 〉(B+ → K∗+µ+µ−)[0, 2] 8.315×10−8 0.17 σ 0.24 σ

375 µV h (h → Z Z ) 1 0.23 σ 0.23 σ

376 BR(K+ →µ+ν) 0.63364 0.22 σ 0.22 σ

377 〈P ′
6〉(B+ → K∗+µ+µ−)[1.1, 2.5] -0.054332 0.24 σ 0.24 σ

378 〈BR〉
BR (B → D∗τ+ν)[5.6, 6.13] 0.076832 0.22 σ 0.22 σ

379 〈BR〉
BR (B → Dτ+ν)[11.47, 12.0] 0.002539 0.22 σ 0.22 σ

380 R(e+e− →W +W −)[191.6] 1 0.21 σ 0.21 σ

381 〈FL〉(B0 → K∗0e+e−)[0.000784, 0.257] 0.05191 0.24 σ 0.21 σ

382 〈BR〉
BR (B → D∗τ+ν)[8.5, 9.0] 0.095922 0.2 σ 0.2 σ

383 µV h (h → γγ) 1 0.2 σ 0.2 σ

384
〈

dR
dθ

〉
(e+e− →W +W −)[189.09, 0.2, 0.4] 2.187 0.2 σ 0.2 σ

385 BR(B− → K−τ+e−) 5.896×10−7 0.14 σ 0.2 σ

386 〈P1〉(B+ → K∗+µ+µ−)[15, 19] -0.61926 0.18 σ 0.18 σ

387
〈

dR
dθ

〉
(e+e− →W +W −)[205.92, 0.6, 0.8] 4.445 0.19 σ 0.19 σ

388 〈P1〉(B0 → K∗0µ+µ−)[1, 2] 0.038646 0.16 σ 0.15 σ

389 〈AIm
T 〉(B0 → K∗0e+e−)[0.000784, 0.257] 0.00026076 0.21 σ 0.21 σ

390 〈P ′
8〉(B+ → K∗+µ+µ−)[1.1, 2.5] -0.022549 0.19 σ 0.19 σ

391 BR(B− →π−τ+µ−) 5.7464×10−23 0.18 σ 0.18 σ

392 BR(B → Xsγ) 0.00033107 0.16 σ 0.18 σ

393 BR(τ+ →π+ν̄) 0.10837 0.12 σ 0.18 σ

394 BR(K+ →π+νν̄) 8.3437×10−11 0.19 σ 0.16 σ

395 〈BR〉
BR (B → D∗τ+ν)[6.5, 7.0] 0.088536 0.17 σ 0.17 σ

396 〈BR〉
BR (B → Dτ+ν)[7.0, 7.5] 0.089808 0.17 σ 0.17 σ

397 BR(B0 → K∗0γ) 4.1783×10−5 0.18 σ 0.16 σ

398 ΓW 2.0917 0.16 σ 0.16 σ

399 〈 dBR
d q2 〉(B0 → K∗0µ+µ−)[1, 2] 4.4957×10−8 0.21 σ 0.16 σ

400 〈P ′
8〉(B0 → K∗0µ+µ−)[15, 19] 0.00077655 0.14 σ 0.14 σ

401
〈

dR
dθ

〉
(e+e− →W +W −)[182.66, 0.8, 1.0] 5.434 0.15 σ 0.15 σ

402 〈P ′
6〉(B+ → K∗+µ+µ−)[4, 6] -0.031992 0.13 σ 0.14 σ

403 〈FL〉(B0 → K∗0µ+µ−)[15, 19] 0.33989 0.14 σ 0.13 σ

404 〈BR〉
BR (B → D∗τ+ν)[5.0, 5.5] 0.05722 0.14 σ 0.14 σ

405 〈P1〉(B+ → K∗+µ+µ−)[2.5, 4] -0.093246 0.12 σ 0.1 σ

406 RT (K+ →π0µ+ν) 1.5878×10−36 0.1 σ 0.1 σ

407 〈P ′
6〉(B+ → K∗+µ+µ−)[2.5, 4] -0.04655 0.12 σ 0.12 σ

408 F t (50Mn) 4.6665×1027 0.12 σ 0.12 σ

409 〈BR〉
BR (B → Dτ+ν)[8.0, 8.5] 0.082028 0.13 σ 0.13 σ

410 σtrident/σSM
trident 1 0.13 σ 0.13 σ

411 〈BR〉
BR (B → D∗τ+ν)[9.33, 9.86] 0.087022 0.13 σ 0.13 σ

412 R(e+e− →W +W −)[201.6] 1 0.12 σ 0.12 σ

413 〈P ′
4〉(B0 → K∗0µ+µ−)[1.1, 2.5] -0.071117 0.073 σ 0.12 σ

414
〈

dR
dθ

〉
(e+e− →W +W −)[198.38, −0.2, 0.0] 1.265 0.1 σ 0.1 σ

415 〈Rµe 〉(B+ → K∗+ℓ+ℓ−)[0.1, 8.0] 0.85835 0.32 σ 0.1 σ



176 APPENDIX C. PREDICTIONS OF THE OBSERVABLES

Observable NP prediction NP pull SM pull

416 〈BR〉
BR (B → Dτ+ν)[5.07, 5.6] 0.07714 0.1 σ 0.1 σ

417 〈P ′
6〉(B+ → K∗+µ+µ−)[0.1, 0.98] -0.050366 0.087 σ 0.079 σ

418 〈BR〉
BR (B → Dτ+ν)[5.6, 6.13] 0.087798 0.1 σ 0.1 σ

419 BR(τ− → e−e+e−) 3.8425×10−12 0.1 σ 0.1 σ

420 〈P3〉(B+ → K∗+µ+µ−)[1.1, 2.5] 0.0029324 0.084 σ 0.085 σ

421
〈

dR
dθ

〉
(e+e− →W +W −)[205.92, −0.2, 0.0] 1.231 0.097 σ 0.097 σ

422 Ac 0.66752 0.092 σ 0.092 σ

423 ln(C )(K+ →π0µ+ν) 0.19988 0.084 σ 0.084 σ

424 〈BR〉
BR (B → D∗τ+ν)[8.0, 8.5] 0.098402 0.084 σ 0.084 σ

425 〈BR〉
BR (B → D∗τ+ν)[9.0, 9.5] 0.089545 0.082 σ 0.082 σ

426 〈Dµe
P ′

4
〉(B0 → K∗0ℓ+ℓ−)[14.18, 19.0] −7.9298×10−5 0.072 σ 0.072 σ

427 F t (14O) 4.6665×1027 0.041 σ 0.043 σ

428 〈BR〉
BR (B → Dτ+ν)[5.0, 5.5] 0.070732 0.066 σ 0.066 σ

429 BR(B+ → K∗+γ) 4.2462×10−5 0.04 σ 0.055 σ

430 〈P2〉(B0 → K∗0µ+µ−)[1.1, 2.5] -0.45667 0.12 σ 0.074 σ

431 〈BR〉
BR (B → D∗τ+ν)[9.5, 10.0] 0.077734 0.053 σ 0.053 σ

432 R0
c 0.17223 0.042 σ 0.041 σ

433 〈P ′
4〉(B0 → K∗0µ+µ−)[15, 19] -0.63499 0.04 σ 0.038 σ

434 〈P ′
8〉(B+ → K∗+µ+µ−)[2.5, 4] -0.015318 0.028 σ 0.029 σ

435 〈P ′
8〉(B0 → K∗0µ+µ−)[0.1, 0.98] -0.001826 0.036 σ 0.0032 σ

436 F t (38m K) 4.6665×1027 0.017 σ 0.014 σ

437 〈BR〉
BR (B → D∗τ+ν)[4.0, 4.53] 0.028569 0.026 σ 0.026 σ

438 µg g (h → τ+τ−) 1 0.025 σ 0.025 σ

439 F t (62Ga) 4.6665×1027 0.016 σ 0.017 σ

440 〈BR〉
BR (B → Dτ+ν)[9.33, 9.86] 0.063887 0.016 σ 0.016 σ

441 BR(B+ →µ+ν) 4.1832×10−7 0.17 σ 0.013 σ

442 〈 dBR
d q2 〉(B+ → K∗+µ+µ−)[2, 4.3] 4.356×10−8 0.14 σ 0.0085 σ

443 BR(B0 → τ+τ−) 1.0176×10−6 0.031 σ 0.0045 σ

444 BR(B̄0 → K̄∗0e+µ−) 2.6796×10−22 8.4×10−8 σ 0 σ

445 BR(B− → K−e+µ−) 1.2368×10−22 0 σ 0 σ

446 BR(B− → K−µ+e−) 1.2368×10−22 8.4×10−8 σ 0 σ

447 BR(B− → K−µ+τ−) 1.6205×10−20 0 σ 0 σ

448 BR(B− →π−µ+τ−) 5.7464×10−23 0 σ 0 σ

449 BR(B̄0 → e±µ∓) 2.3614×10−27 0 σ 0 σ

450 BR(B̄0 → e±τ∓) 3.9357×10−9 0.00026 σ 0 σ

451 BR(B̄0 →µ±τ∓) 1.0858×10−22 0 σ 0 σ

452 BR(B̄s → e±µ∓) 6.77×10−25 0 σ 0 σ

453 BR(B̄s →µ±τ∓) 3.1385×10−20 0 σ 0 σ

454 BR(B̄0 →π0e±µ∓) 3.4752×10−25 0 σ 0 σ

455 BR(B− →π−e±µ∓) 7.4665×10−25 0 σ 0 σ

456 BR(KL → e±µ∓) 2.5388×10−24 0 σ 0 σ

457 BR(µ− → e−e+e−) 3.0781×10−27 0 σ 0 σ

458 BR(µ→ eγ) 2.4192×10−36 0 σ 0 σ

459 BR(τ→µγ) 7.6018×10−35 0 σ 0 σ

460 BR(τ− →µ−µ+µ−) 1.0555×10−25 0 σ 0 σ

461 BR(τ− → e−µ+µ−) 2.5878×10−12 0 σ 0 σ

462 BR(τ→ eγ) 2.787×10−21 0 σ 0 σ

463 BR(τ+ → ρ0e+) 2.4383×10−12 0.00022 σ 0 σ

464 BR(τ+ → ρ0µ+) 6.6168×10−26 0 σ 0 σ

465 BR(τ+ →φe+) 9.6464×10−9 0.51 σ 0 σ

466 BR(τ+ →φµ+) 2.6082×10−22 0 σ 0 σ

467 C R(µ−e) in 48
22Ti 4.598×10−26 0 σ 0 σ

468 C R(µ−e) in 197
79 Au 5.4131×10−26 0 σ 0 σ

469 BR(Z 0 → e±µ∓) 1.0657×10−27 0 σ 0 σ

470 BR(Z 0 → e±τ∓) 8.0094×10−12 0.0026 σ 0 σ

471 BR(Z 0 →µ±τ∓) 2.2002×10−25 0 σ 0 σ
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