000117946 001__ 117946
000117946 005__ 20231221135831.0
000117946 0247_ $$2doi$$a10.1007/s10854-021-06305-7
000117946 0248_ $$2sideral$$a126883
000117946 037__ $$aART-2021-126883
000117946 041__ $$aeng
000117946 100__ $$aGürsul, M.
000117946 245__ $$aSignificant enhancement of superconducting performances of Bi-2212 fibers through combined sodium substitution and LFZ process
000117946 260__ $$c2021
000117946 5060_ $$aAccess copy available to the general public$$fUnrestricted
000117946 5203_ $$aThis paper reports the microstructure, magnetoresistivity, electrical and superconducting properties of Bi-2212 fibers with Na+ ions incorporated into a superconducting matrix prepared by a polymer solution method and additionally textured through the laser floating zone process. XRD patterns showed that Bi-2212 phase is the major one with mostly (00l) diffractions due to the grain alignment, independently of Na content. SEM micrographs showed that samples are composed of well-stacked and oriented grains. The irreversibility field (Hirr), upper critical magnetic field (Hc2), coherence length (¿), and activation energies (U) have been calculated using magnetoresistivity measurements and explained based on the thermally activated flux flow (TAFF) model. Considering the resistivity-temperature graph for zero field, Tc values tend to increase from 84.8 K (for the pure sample) to 93.2 K (for 0.075Na sample), slightly decreasing for higher content. Besides, transition temperature width (¿Tc = Tconset - Tcoffset) decreases with the increment in the Na content and reaches its minimum value (¿Tc = 3.7 K) in 0.075Na sample. However, broadening of superconducting transition has been observed with applied field and Tc values decreased to 76.1 K for the pure sample and 86.8 K for 0.075Na sample. Likewise, the activation energies of the samples also decreases significantly with the increase of the magnetic field and the activation energies of the Na-containing samples are found to be higher than the pure sample at each magnetic field value. Hc2(0) values are calculated as 33.8, 43.8, 50.1, 33.1, and 21.4 T for 0.0, 0.075, 0.10, and 0.20 T Na samples, respectively. As a consequence, referring to all experimental results and theoretical findings, the superconducting characteristics improve regularly with Na-doping until x = 0.075 due to increment in the interaction of superconducting clusters, decrement in weak-links and stabilization of charge carriers in CuO2 conducting planes. © 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
000117946 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/T54-20R$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/MAT2017-82183-C3-1-R
000117946 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000117946 594__ $$a4.2$$b2021
000117946 590__ $$a2.779$$b2021
000117946 592__ $$a0.464$$b2021
000117946 591__ $$aPHYSICS, APPLIED$$b80 / 161 = 0.497$$c2021$$dQ2$$eT2
000117946 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b133 / 274 = 0.485$$c2021$$dQ2$$eT2
000117946 591__ $$aPHYSICS, CONDENSED MATTER$$b40 / 69 = 0.58$$c2021$$dQ3$$eT2
000117946 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b220 / 344 = 0.64$$c2021$$dQ3$$eT2
000117946 593__ $$aAtomic and Molecular Physics, and Optics$$c2021$$dQ2
000117946 593__ $$aBioengineering$$c2021$$dQ2
000117946 593__ $$aCondensed Matter Physics$$c2021$$dQ2
000117946 593__ $$aBiophysics$$c2021$$dQ2
000117946 593__ $$aElectronic, Optical and Magnetic Materials$$c2021$$dQ2
000117946 593__ $$aBiomaterials$$c2021$$dQ2
000117946 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000117946 700__ $$aErgin, I.
000117946 700__ $$aÖzçelik, C.
000117946 700__ $$aDepci, T.
000117946 700__ $$0(orcid)0000-0002-8100-6417$$aÖzçelik, B.
000117946 700__ $$0(orcid)0000-0002-0794-3998$$aMadre, M.A.$$uUniversidad de Zaragoza
000117946 700__ $$0(orcid)0000-0001-7056-0546$$aSotelo, A.$$uUniversidad de Zaragoza
000117946 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000117946 773__ $$g32, 13 (2021), 17686-17699$$pJ. mater. sci., Mater. electron.$$tJournal of Materials Science: Materials in Electronics$$x0957-4522
000117946 8564_ $$s2930943$$uhttps://zaguan.unizar.es/record/117946/files/texto_completo.pdf$$yVersión publicada
000117946 8564_ $$s2203470$$uhttps://zaguan.unizar.es/record/117946/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000117946 909CO $$ooai:zaguan.unizar.es:117946$$particulos$$pdriver
000117946 951__ $$a2023-12-21-13:43:41
000117946 980__ $$aARTICLE