000117970 001__ 117970
000117970 005__ 20220831095648.0
000117970 0247_ $$2doi$$a10.1021/acsnano.6b07352
000117970 0248_ $$2sideral$$a129420
000117970 037__ $$aART-2017-129420
000117970 041__ $$aeng
000117970 100__ $$aWillems, Nathalie
000117970 245__ $$aBiomimetic Phospholipid Membrane Organization on Graphene and Graphene Oxide Surfaces: A Molecular Dynamics Simulation Study
000117970 260__ $$c2017
000117970 5060_ $$aAccess copy available to the general public$$fUnrestricted
000117970 5203_ $$aSupported phospholipid membrane patches stabilized on graphene surfaces have shown potential in sensor device functionalization, including biosensors and biocatalysis. Lipid dip-pen nanolithography (L-DPN) is a method useful in generating supported membrane structures that maintain lipid functionality, such as exhibiting specific interactions with protein molecules. Here, we have integrated L-DPN, atomic force microscopy, and coarse-grained molecular dynamics simulation methods to characterize the molecular properties of supported lipid membranes (SLMs) on graphene and graphene oxide supports. We observed substantial differences in the topologies of the stabilized lipid structures depending on the nature of the surface (polar graphene oxide vs nonpolar graphene). Furthermore, the addition of water to SLM systems resulted in large-scale reorganization of the lipid structures, with measurable effects on lipid lateral mobility within the supported membranes. We also observed reduced lipid ordering within the supported structures relative to free-standing lipid bilayers, attributed to the strong hydrophobic interactions between the lipids and support. Together, our results provide insight into the molecular effects of graphene and graphene oxide surfaces on lipid bilayer membranes. This will be important in the design of these surfaces for applications such as biosensor devices.
000117970 536__ $$9info:eu-repo/grantAgreement/EC/FP7/328163/EU/In depth characterization of bio-mimetic lipid membrane structures generated by dip-pen nanolithography/DPNLipidMembranes
000117970 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000117970 590__ $$a13.709$$b2017
000117970 591__ $$aCHEMISTRY, PHYSICAL$$b7 / 146 = 0.048$$c2017$$dQ1$$eT1
000117970 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b5 / 92 = 0.054$$c2017$$dQ1$$eT1
000117970 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b10 / 171 = 0.058$$c2017$$dQ1$$eT1
000117970 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b12 / 285 = 0.042$$c2017$$dQ1$$eT1
000117970 592__ $$a7.203$$b2017
000117970 593__ $$aEngineering (miscellaneous)$$c2017$$dQ1
000117970 593__ $$aPhysics and Astronomy (miscellaneous)$$c2017$$dQ1
000117970 593__ $$aNanoscience and Nanotechnology$$c2017$$dQ1
000117970 593__ $$aMaterials Science (miscellaneous)$$c2017$$dQ1
000117970 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000117970 700__ $$0(orcid)0000-0002-8424-9780$$aUrtizberea, Ainhoa
000117970 700__ $$aVerre, Andrea F.
000117970 700__ $$aIliut, Maria
000117970 700__ $$aLelimousin, Mickael
000117970 700__ $$aHirtz, Michael
000117970 700__ $$aVijayaraghavan, Aravind
000117970 700__ $$aSansom, Mark S. P.
000117970 773__ $$g11, 2 (2017), 1613-1625$$pACS Nano$$tACS NANO$$x1936-0851
000117970 8564_ $$s5003240$$uhttps://zaguan.unizar.es/record/117970/files/texto_completo.pdf$$yVersión publicada
000117970 8564_ $$s3143206$$uhttps://zaguan.unizar.es/record/117970/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000117970 909CO $$ooai:zaguan.unizar.es:117970$$particulos$$pdriver
000117970 951__ $$a2022-08-31-09:48:34
000117970 980__ $$aARTICLE