000117975 001__ 117975
000117975 005__ 20240319081007.0
000117975 0247_ $$2doi$$a10.1103/PhysRevB.105.165412
000117975 0248_ $$2sideral$$a129180
000117975 037__ $$aART-2022-129180
000117975 041__ $$aeng
000117975 100__ $$aMuniz, Y.
000117975 245__ $$aEntangled two-plasmon generation in carbon nanotubes and graphene-coated wires
000117975 260__ $$c2022
000117975 5060_ $$aAccess copy available to the general public$$fUnrestricted
000117975 5203_ $$aWe investigate the two-plasmon spontaneous decay of a quantum emitter near single-walled carbon nanotubes (SWCNTs) and graphene-coated wires (GCWs). We demonstrate efficient, enhanced generation of two-plasmon entangled states in SWCNTs due to the strong coupling between tunable guided plasmons and the quantum emitter. We predict two-plasmon emission rates more than twelve orders of magnitude higher than in free space, with average lifetimes of a few dozen nanoseconds. Given their low dimensionality, these systems could be more efficient for generating and detecting entangled plasmons in comparison to extended graphene. Indeed, we achieve a tunable spectrum of emission in GCWs, where sharp resonances occur precisely at the plasmons'' minimum excitation frequencies. We show that by changing the material properties of the GCW''s dielectric core, one could tailor the dominant modes and frequencies of the emitted entangled plasmons while keeping the decay rate ten orders of magnitude higher than in free space. By unveiling the unique properties of two-plasmon spontaneous emission processes in the presence of low-dimensional carbon-based nanomaterials, our findings set the basis for a novel material platform with applications to on-chip quantum information technologies. © 2022 American Physical Society.
000117975 536__ $$9info:eu-repo/grantAgreement/ES/DGA/Q-503 MAD$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2020-115221GB-C41
000117975 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000117975 590__ $$a3.7$$b2022
000117975 592__ $$a1.468$$b2022
000117975 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b157 / 343 = 0.458$$c2022$$dQ2$$eT2
000117975 591__ $$aPHYSICS, CONDENSED MATTER$$b24 / 67 = 0.358$$c2022$$dQ2$$eT2
000117975 591__ $$aPHYSICS, APPLIED$$b50 / 160 = 0.312$$c2022$$dQ2$$eT1
000117975 593__ $$aElectronic, Optical and Magnetic Materials$$c2022$$dQ1
000117975 593__ $$aCondensed Matter Physics$$c2022$$dQ1
000117975 594__ $$a6.7$$b2022
000117975 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000117975 700__ $$aAbrantes, P. P.
000117975 700__ $$0(orcid)0000-0001-9273-8165$$aMartín-Moreno, L.
000117975 700__ $$aPinheiro, F. A.
000117975 700__ $$aFarina, C.
000117975 700__ $$aKort-Kamp, W.
000117975 773__ $$g105, 16 (2022), 165412$$pPhys. Rev. B$$tPhysical Review B$$x2469-9950
000117975 8564_ $$s2063980$$uhttps://zaguan.unizar.es/record/117975/files/texto_completo.pdf$$yVersión publicada
000117975 8564_ $$s3063922$$uhttps://zaguan.unizar.es/record/117975/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000117975 909CO $$ooai:zaguan.unizar.es:117975$$particulos$$pdriver
000117975 951__ $$a2024-03-18-14:43:00
000117975 980__ $$aARTICLE