In vitro hydrolytic degradation of polyester-based scaffolds under static and dynamic conditions in a customized perfusion bioreactor
Financiación H2020 / H2020 Funds
Resumen: Creating biofunctional artificial scaffolds could potentially meet the demand of patients suffering from bone defects without having to rely on donors or autologous transplantation. Three-dimensional (3D) printing has emerged as a promising tool to fabricate, by computer design, biodegradable polymeric scaffolds with high precision and accuracy, using patient-specific anatomical data. Achieving controlled degradation profiles of 3D printed polymeric scaffolds is an essential feature to consider to match them with the tissue regeneration rate. Thus, achieving a thorough characterization of the biomaterial degradation kinetics in physiological conditions is needed. Here, 50:50 blends made of poly(e-caprolactone)–Poly(D, L-lactic-co-glycolic acid (PCL-PLGA) were used to fabricate cylindrical scaffolds by 3D printing (Ø 7 × 2 mm). Their hydrolytic degradation under static and dynamic conditions was characterized and quantified. For this purpose, we designed and in-house fabricated a customized bioreactor. Several techniques were used to characterize the degradation of the parent polymers: X-ray Photoelectron Spectroscopy (XPS), Gel Permeation Chro-matography (GPC), Scanning Electron Microscopy (SEM), evaluation of the mechanical properties, weigh loss measurements as well as the monitoring of the degradation media pH. Our results showed that flow perfusion is critical in the degradation process of PCL-PLGA based scaffolds implying an accelerated hydrolysis compared to the ones studied under static conditions, and up to 4 weeks are needed to observe significant degradation in polyester scaffolds of this size and chemical composition. Our degradation study and characterization methodology are relevant for an accurate design and to tailor the physicochemical properties of polyester-based scaffolds for bone tissue engineering.
Idioma: Inglés
DOI: 10.3390/ma15072572
Año: 2022
Publicado en: Materials 15, 7 (2022), 2572 [18 pp.]
ISSN: 1996-1944

Factor impacto JCR: 3.4 (2022)
Categ. JCR: METALLURGY & METALLURGICAL ENGINEERING rank: 20 / 79 = 0.253 (2022) - Q2 - T1
Categ. JCR: PHYSICS, APPLIED rank: 57 / 160 = 0.356 (2022) - Q2 - T2
Categ. JCR: PHYSICS, CONDENSED MATTER rank: 29 / 67 = 0.433 (2022) - Q2 - T2
Categ. JCR: MATERIALS SCIENCE, MULTIDISCIPLINARY rank: 174 / 343 = 0.507 (2022) - Q3 - T2
Categ. JCR: CHEMISTRY, PHYSICAL rank: 84 / 161 = 0.522 (2022) - Q3 - T2

Factor impacto CITESCORE: 5.2 - Materials Science (Q2)

Factor impacto SCIMAGO: 0.563 - Materials Science (miscellaneous) (Q2) - Condensed Matter Physics (Q2)

Financiación: info:eu-repo/grantAgreement/ES/AEI/PID2020-113819RB-I00
Financiación: info:eu-repo/grantAgreement/EC/H2020/722535/EU/Predictive models and simulations in bone regeneration: a multiscale patient-specific approach/CuraBone
Financiación: info:eu-repo/grantAgreement/ES/MINECO/DPI2017-84780-C2-1-R
Tipo y forma: Article (Published version)
Área (Departamento): Área Ingeniería Química (Dpto. Ing.Quím.Tecnol.Med.Amb.)
Área (Departamento): Área Mec.Med.Cont. y Teor.Est. (Dpto. Ingeniería Mecánica)
Área (Departamento): Área Cienc.Mater. Ingen.Metal. (Dpto. Ciencia Tecnol.Mater.Fl.)


Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2024-03-18-14:53:00)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Ciencia de los Materiales e Ingeniería Metalúrgica
Articles > Artículos por área > Mec. de Medios Contínuos y Teor. de Estructuras
Articles > Artículos por área > Ingeniería Química



 Record created 2022-08-17, last modified 2024-03-19


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)